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Abstract. Most Multivariate Quadratic (MQ) signature schemes have
a very large public key, which makes them unsuitable for many appli-
cations, despite attractive features such as speed and small signature
sizes. In this paper we introduce a modification of the Unbalanced Oil
and Vinegar (UOV) signature scheme that has public keys which are an
order of magnitude smaller than other MQ signature schemes. The main
idea is to choose UOV keys over the smallest field F2 in order to achieve
small keys, but to lift the keys to a large extension field, where solving
the MQ problem is harder. The resulting Lifted UOV signature scheme
is very competitive with other post-quantum signature schemes in terms
of key sizes, signature sizes and speed.
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1 Introduction

When large scale quantum computers are built, they will be able to break
nearly all public key cryptography that is being used today, including RSA [25],
DSA [17] and ECC. This is because these schemes rely on the hardness of number
theoretic problems such as integer factorization and finding discrete logarithms,
which can be solved efficiently by Shor’s Algorithm [26]. Even if it would take
10 or 20 years to build large scale quantum computers, upgrading our current
systems may be very slow and some stored data requires long term protection (in
particular for confidentiality). To avert a potential catastrophe, post-quantum
cryptography should be designed, implemented and deployed well before large
scale quantum computers are built.

During recent years, the research on post-quantum cryptography has been
accelerating. One of the goals of the EU-funded PQCRYPTO project is to
develop and standardize post-quantum algorithms [1]. Recently NIST, the US
National Institute for Standards and Technology, has started the process of
selecting post-quantum algorithms for standardization [19]. According to both
PQCRYPTO and NIST, multivariate cryptography is one of the major candi-
dates for providing post-quantum security. Multivariate cryptography is based
on the hardness of some problems related to multivariate polynomials over finite
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fields, such as solving multivariate polynomial equations. In general, multivariate
cryptography is very fast and requires only moderate computational resources,
which makes it attractive for applications in low-cost devices. However, a dis-
advantage of multivariate cryptography is its large public keys, which can be
prohibitive for many applications. Some work in mitigating this problem in
the case of the UOV and Rainbow signature schemes has been published by
Petzoldt [22], who managed to reduce the key size by a factor of 8 in the case of
UOV and a factor of 3 in the case of the Rainbow signature scheme. His proposal
makes a small modification to the key generation algorithm and exploits the fact
that a large part of the public key can be freely chosen by the user. One can
then choose to generate this part using a Pseudo-Random Number Generator
(PRNG), and to only store the seed for the PRNG. In this paper we introduce
a new idea to reduce the size of the public keys of UOV dramatically, by lifting
the public and central maps to an extension field. The new idea is compatible
with the ideas of Petzoldt and together they provide public keys that are up to
10 times smaller than if we were to use only Petzoldt’s modification of UOV.

Before introducing the Lifted UOV signature scheme in Sect. 5, we present
an overview of the MQ problem in Sect. 2 and the UOV signature and how it
was improved by Pezoldt in Sects. 3 and 4. We finish with a brief description of
our software implementation in Sect. 6 and conclude in Sect. 7.

2 The MQ Problem

The security of an MQ signature scheme relies on the hardness of the MQ-
problem. We give a brief discussion of the problem here.

MQ Problem. Given a quadratic polynomial map P : Fn
q → F

m
q over a finite

field Fq, find x ∈ F
n
q that satisfies P(x) = 0.

It is known that the MQ problem is NP-hard [18]. Therefore it is unlikely
that there are (quantum) algorithms that solve the hardest instances of the MQ
problem in polynomial time. The problem is also believed to be hard on average
in the case n ≈ m. Only exponential time algorithms are known to solve random
instances of the problem for these parameters.

Systems with n = m are called determined systems; these are the most
difficult systems to solve. When n < m a system is called overdetermined, and
when n > m the system is called underdetermined. Thomae et al. showed that
finding a solution for an underdetermined system with n = αm can be reduced
to finding a solution of a determined system with only m+1−�α� equations [27].
This means that as a system becomes more underdetermined it becomes easier
to solve. This fact will become important in the security analysis of UOV.
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2.1 Classical Algorithms

The best known classical algorithms to solve the MQ-problem for generic deter-
mined systems over finite fields use the hybrid approach [5,6]. This approach
combines exhaustive search with Gröbner basis computations. In this approach
k variables are fixed to random values and the remaining n − k variables are
found with a Gröbner basis algorithm such as F4, F5 or XL. If no assignment
to the remaining n − k variables exists that solves the system, the procedure
starts again with a different guess for the first k variables. We require on aver-
age roughly qk Gröbner basis computations until a solution is found. As a result,
the optimal value of k decreases as q increases. The complexity of computing a
Gröbner basis for a system of polynomials depends critically on the degree of reg-
ularity (dreg) of that system. Though it is of little importance to the rest of the
paper, we refer to Bardet [2] for a precise definition of the degree of regularity.
The complexity of the F5 algorithm is given by

CF5(n, dreg) = O

((
n + dreg

dreg

)ω)
,

where 2 ≤ ω < 3 is the constant in the complexity of matrix multiplication.
Therefore the complexity of the hybrid approach is

CHybridF5(n,dreg,k) = O

(
qk

(
n − k + dreg(k)

dreg(k)

)ω)
, (1)

where dreg(k) stand for the degree of regularity of the system after fixing the
values of k variables.

Determining the degree of regularity for a specific polynomial system is dif-
ficult, but for a certain class of systems, called semi-regular systems, it is known
that the degree of regularity can be deduced from the number of equations m and
the number of variables n [2,8]. In particular, for quadratic semi-regular systems
the degree of regularity is the degree of the first term in the power series of

Sm,n(x) =
(1 − x2)m

(1 − x)n

with a non-positive coefficient. This gives a practical method to calculate the
degree of regularity of any semi-regular system. Empirically, polynomial systems
that are randomly chosen have a very large probability of being semi-regular and
it is conjectured that most systems are semi-regular systems. For the definition
and the theory of semi-regular systems we refer to Chap. 3 of the PhD thesis of
Bardet [2].
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2.2 Quantum Algorithms

Currently, there are no specialized quantum algorithms that solve polynomial
systems over finite fields. However, Grover’s algorithm [13] can be used to speed
up the brute force part of the hybrid approach. This approach gives a quadratic
speedup for the brute force part of the attack, so the new complexity would be

CHybridF5(n,dreg,k) = O

(
qk/2

(
n − k + dreg(k)

dreg(k)

)ω)
, (2)

where the difference with (1) is that we have the factor qk/2 instead of qk.
However it should be noted that this approach requires sequentially running
qk/2 Gröbner basis computations on a quantum computer. This would be an
incredible feat because even for moderately sized polynomial systems this would
require gigabytes worth of qubits and days of computation without decoherence.
Also, note that the gains of parallelizing Grover search grow only with the square
root of the number of independent computers used, instead of a linear growth
for the classical brute force search [28]. Nevertheless, in the security analysis of
the signature scheme proposed in this paper we will be cautious and assume
that these kinds of attacks on the MQ problem are possible and we will make
our parameter choices accordingly. This has the additional benefit of providing
a large safety margin against classical attacks.

Remark 1. Typically the optimal value of k, i.e. the number of variables that is
guessed by brute force, is quite small (eg. 2, 3 or 4), this does not mean that
the hybrid approach is only a marginal improvement over a direct Gröbner basis
computation. Guessing only a few variables can drastically reduce the degree of
regularity of a system. For example, guessing only one variable in a determined
semi-regular system of polynomials roughly reduces the degree of regularity by
half! The idea of lifting a public key to an extension field is a countermeasure to
the hybrid approach. By working in a large extension field (eg. F264) we ensure
that guessing even a single variable is computationally too expensive.

3 The UOV Signature Scheme

The UOV or Unbalanced Oil and Vinegar digital signature scheme is a mul-
tivariate quadratic (MQ) signature scheme. It is a slightly modified version of
the original Oil and Vinegar signature scheme that was proposed by Patarin in
1997 [20]. With the right parameter choices UOV has withstood all cryptanalysis
since 1997 and it is one of the best studied and most promising MQ signature
schemes.

3.1 Description of UOV

The UOV signature scheme uses a one-way function P : Fn
q → F

m
q , which is a

multivariate quadratic polynomial map over some finite field Fq. The trapdoor
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is a factorization P = F ◦T , where T : Fn
q → F

n
q is an invertible linear map, and

F : Fn
q → F

m
q is a quadratic map whose components f1, · · · , fm are of the form

fk(x) =
v∑

i=1

n∑
j=i

αi,j,kxixj +
n∑

i=1

βi,kxi + γk,

where v = n − m. We say that the first v variables x1, · · · , xv are the vinegar
variables, whereas the remaining m variables are the oil variables. The compo-
nents of F are quadratic polynomials in the variables xi such that there are no
quadratic terms which contain two oil variables. One could say that the vinegar
variables and the oil variables are not fully mixed, which is where their names
come from.1

How does the trapdoor P = F ◦ T help to invert the function P? Given a
target x ∈ F

m
q a solution y for P(y) = x can be found by first solving F(y′) =

x for y′ and then computing y = T −1(y′). The system F(y′) = x can be
solved efficiently by randomly choosing the values of the vinegar variables. If
we substitute these values in the equations the remaining system only contains
linear equations, because every quadratic term contains at least one vinegar
variable and thus turns into a linear or constant term after substitution. The
remaining linear system can be solved using linear algebra. In the event that
there are no solutions we can simply try again with a different choice for the
vinegar variables.

The trapdoor function is then combined with a collision resistant hash func-
tion H : {0, 1}∗ → F

m
q into a signature scheme using the standard hash-and-sign

paradigm. The resulting key generation, signature generation and verification
algorithms of the UOV signature scheme are described in Algorithms 1, 2 and 3.

1 However it is not a very good name because in reality oil mixes with oil and vinegar
mixes with vinegar but no mixing happens between oil and vinegar, and this is not
what happens in UOV polynomials. A better name would have been hen variables
and rooster variables because hens can get along with hens and roosters, but two
roosters start a fight when they appear in the same term. Moreover, this foreshad-
ows the fact that in order for the signature scheme to be secure, the number of
hen (vinegar) variables should be larger than the number of rooster (oil) variables.
Nevertheless, we will stick to the traditional naming of oil and vinegar variables.
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3.2 Attacks Against UOV

Direct Attack. This attack tries to forge a signature s for a message M by
solving the polynomial system P(s) = H(M). An attacker can use the trick of
Thomae and Wolf [27] to reduce this to finding a solution of a polynomial system
with m+1−�n/m� equations. The best known algorithms to solve this problem
use the hybrid approach [5] which was briefly described in Sect. 2. Empirically,
the systems that have to be solved behave like semi-regular systems [12], there-
fore we can calculate the degree of regularity and use this to estimate the com-
plexity of the hybrid approach. Petzoldt [22] uses a similar method to estimate
the complexity of a direct attack against UOV, the only difference being that we
have used an updated estimate of the complexity of F5 [6]. In Petzoldt’s thesis
it was shown that the estimated complexity of a direct attack agrees very well
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with the measured complexity of a direct attack against small instances of UOV.
These experiments justify ignoring the big-O notation in formula (1) and treat-
ing the formula as an estimate for the concrete hardness of the hybrid approach.

Example 1. We will estimate the complexity of a direct attack against UOV
with the parameter set (q = 31,m = 52, v = 104); this set is proposed in [22]
as a set that achieves 128-bit security. Using the trick of Thomae et al. we can
reduce finding a solution to this underdetermined system to finding a solution of
a determined system with 52 + 1 − �(52 + 104)/52� = 50 equations. We assume
this system to be semi-regular. If we fix k extra variables the degree of regularity
is equal to the degree of the first term in the power series of

S50,50−k(x) =
(1 − x2)50

(1 − x)50−k

which has a non-positive coefficient. For k = 0 we have S50,50(x) = (1 + x)50, so
the degree of regularity is 51. For k = 1 we have

S50,49(x) = 1 + 49x+ 1175x3 + · · ·+ 4861946401452x25 − 4861946401452x26 +O(x27) ,

where all the omitted terms have positive coefficients, so the degree of regularity
is 26. We can now use (1) to estimate the complexity of the hybrid approach.
We prefer to err on the side of caution, so we have chosen ω = 2 for the value of
the linear algebra constant. For k equal to 0 and 1 this is equal to

(
50 + 51

51

)2

≈ 2194.7 and 31
(

50 − 1 + 26
26

)2

≈ 2137.8

respectively. Continuing this for higher values of k we eventually see that the
optimal value of k is 6, the corresponding degree of regularity is 16 and the
complexity of the direct attack is 2123.9.

In the example we concluded that the complexity of the attack is less than
2128 which was supposed to be the security level of the parameter set (q =
31,m = 52, v = 104) according to [22]. Even though we have used roughly the
same method of estimating the complexity as the method used by Petzoldt [22]
we arrive at a slightly different value because we have used a tighter bound on the
complexity of F5 coming from an improved analysis of the hybrid approach [6].

With this method we can calculate the minimal number of equations that is
needed in a determined semi-regular system in order to guarantee that the com-
plexity of finding a solution is larger than a targeted security level. For quantum
attackers, we can follow the same method with (2) instead of (1) for estimating
the complexity of the hybrid approach. The result of these calculations for the
security levels of 2128 and 2256 for different finite fields of size up to q = 2100 are
plotted in Fig. 1.
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Fig. 1. The minimal sizes of determined semi-regular systems to reach 128-bit security
and 256-bit security for different finite fields.

UOV Attack. Patarin [20] suggested in the original version of the Oil and
Vinegar scheme to choose the same number of vinegar and oil variables, or
v = m. This choice was cryptanalyzed by Kipnis and Shamir [16]: they showed
that an attacker can find the inverse image of the oil variables under the map
T . This is enough information to find an equivalent secret key, so this breaks
the scheme. This approach generalizes for the case v > m; the complexity then
increases to O(qv−mn4) [15] and is thus exponential in v − m. Typically one
chooses v = 2m or v = 3m to preclude the UOV attack.

UOV Reconciliation Attack. Similar to the UOV attack, the UOV reconcili-
ation attack proposed by Ding et al. [9] tries to find an equivalent secret key. We
present a brief summary. In this section we will make a distinction between m,
the number of polynomials in the public and private system, and o, the number
of oil variables. In the UOV signature scheme these numbers are the same, which
explains why we did not need to make this distinction before. It turns out that
for a public key P there exists with a very high probability a private key (F , T )
such that the matrix representation of T is of the form

MT =
(
Iv T
0 Io

)
.

This means that an attacker only has to find the v × o matrix T to get an
equivalent key. The UOV reconciliation attack tries to find T algebraically by
solving a quadratic system. If the choice of T is correct (i.e. there exists a private
key of the form (F , T ), then we have that the matrix representation Pi of the
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quadratic part of each polynomial in the public key satisfies for all 1 ≤ i ≤ m

(
∗v×v ∗o×v

∗v×o 0o×o

)
=

(
Iv 0

−T Io

)
Pi

(
Iv −T
0 Io

)
. (3)

The condition that the lower right o×o submatrices of the private system consist
of zeroes give quadratic equations in the entries of T. It looks like we have o2

equations for each component, but since the matrix representations are only
defined up to the addition of a skew symmetric matrix this gives only o(o+1)/2
equations per component. In total we have a system of mo(o+1)/2 equations in
vo variables. The reconciliation attack tries to recover T by solving this system
of equations.

The reconciliation system has a structure that makes it much easier to solve
compared to a random system of the same size. In fact, Ding et al. argue that
the complexity of this attack for UOV variants with v ≤ m (like Rainbow and
TTS) is the same as the complexity of solving a system of m equations in v
variables [9].

In the case v ≥ m the complexity of the attack is more difficult to estimate,
but we can formulate a lower bound to the complexity of the attack. The rec-
onciliation system has mo(o + 1)/2 equations in ov variables. For all parameter
choices of UOV this is a heavily overdetermined system, so it should not be a
surprise that there is only one matrix T that satisfies (3). Computer experi-
ments have shown that there is a unique solution for T as soon as the number
of equations of the reconciliation system exceeds the number of variables. Let
Rec[v, o,m] denote the complexity of a key reconciliation attack against a UOV
public system with v vinegar variables, o oil variables and m polynomials in
the public key. Increasing m only makes the reconciliation attack easier. Indeed,
increasing the number of equations can only make the attack easier, because
an attacker could just ignore the extra equations and still find the same unique
solution. In other words, if m < m′, then we have Rec[v, o,m] ≥ Rec[v, o,m′],
provided that mo(o + 1)/2 > ov, which is the case for all good UOV parameter
choices.

We can now derive a lower bound on the complexity of a reconciliation attack
when v > m = o. According to the above observation, we can increase m, the
number of equations, until it matches the number of vinegar variables v, and
this would make solving the system easier, i.e. we have

Rec[v,m,m] ≥ Rec[v,m, v] . (4)

We can now use the argument of Ding et al. which says that when m ≥ v, the
complexity of the reconciliation attack is equal to the complexity of solving a
system of m quadratic equations in v variables, so Rec[v,m, v] is equal to the
complexity of solving a system of v quadratic equations in v variables.

We conclude that a UOV reconciliation attack on a UOV system with m
equations and v ≥ m vinegar variables is at least as difficult as solving a system
of v quadratic variables in v equations, but it is expected to be more difficult,
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because a lot of hardness is lost in the inequality (4). In particular, the reconcil-
iation attack is less effective against the UOV scheme than attacking the system
P(s) = H(M) directly.

Quantum Attacks. There are no known specialized quantum algorithms that
solve multivariate quadratic equations. However, as described in Sect. 2, Grover’s
algorithms can be used to speed up the exhaustive search part of hybrid solution
finding algorithms. This quantum version of the hybrid approach algorithm can
be used to speed up a direct attack and a reconciliation attack.

Grover search could be used to speed up the UOV attack from O(qv−mn4)
to O(q

v−m
2 n4). This requires repeatedly running an algorithm that calculates

the common eigenspaces of a set of matrices and checks whether any of these
eigenspaces lies within the oil subspace in superposition. In comparison with
the classical algorithm this has the disadvantage that it cannot be parallelized
without a significant amount of overhead.

4 Improving UOV

In [22] Petzoldt presented a new method to reduce the public key size of UOV
by roughly a factor 8. The key generation algorithm was adapted to make it
possible to choose a large part of the public key. One can generate this part with
a pseudo-random number generator and replace a large part of the public key
by a seed. Also, it is possible to choose part of the public key in such a way such
that signatures can be verified faster [21].

Usually, during key generation, a UOV system F and an invertible linear
map T are chosen randomly, and then P is determined as P = F ◦ T . With
this strategy we have full control over F , but no control over the public key P.
Instead, Petzoldt proposed to first pick T and v(v+1)/2+mv coefficients of each
polynomial of P. Then we solve the system P = F ◦ T to find the coefficients of
F , and the remaining coefficients of P. This is a linear system of equations, so
this can happen efficiently. With a small probability this system does not have
any solutions, but in that case we can simply try again with a different choice
of T . For the details of this method we refer to [22].

With this approach the public key size is decreased with m(v(v +1)/2+mv)
field elements, at the negligible cost of including the seed for the random number

Table 1. The effect of Petzoldt’s method on the public key size

security level q (m, v) public key (kB) public key with Petzoldt’s method (kB)

100-bit 28 (36,72) 207 23

128-bit 28 (47,94) 460 52

192-bit 28 (72,144) 1648 185

256-bit 28 (98,196) 4150 464
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generator. The public key size is now m2(m+1)/2 log2(q)+ |seed|. Table 1 shows
that this method drastically reduces the size of the public key. However, the
public key remains much larger than the signature schemes that are in use today
such as RSA [25] and DSA [17], which typically stay well under 1 kB. Note that
if Petzoldt’s method is used, the size of the public key is independent of v, the
number of vinegar variables.

5 Lifting P to an Extension Field

In this section we will work with UOV over a finite field F2r of characteristic 2.
The parameter r is quite important for the security of the scheme, the signature
size and key sizes. It can be seen in Fig. 1 that by choosing a larger value of r
we can put a smaller number of equations in the system and still reach the same
level of security. Since the number of field elements in the public key and secret
key is O(m3) it is desirable to have a small value of m. However, since it costs
r bits to store a field element r should not be too big either. We must make a
trade-off between large r and large m. In this section we propose a scheme that
gets some security benefits of a high value of r, but has a public and private key
with coefficients in F2, greatly reducing the key sizes.

5.1 Description of the New Scheme

As usual, the public key of the scheme represents a quadratic system over F2r ,
given by

P = F ◦ T .

When we want to sign a message m we use a hash function to generate a digest
of mr bits which represents a vector h of m elements of F2r . Then we use
the knowledge of the private key to solve the system P(s) = h to get a valid
signature s. However, the difference with standard UOV is that we now choose
all the coefficients of F ,P and T in F2. Therefore the key generation process
is identical to the key generation process of a regular UOV scheme over F2. In
particular, we can use the approach of Petzoldt [22] as explained in Sect. 4 to
reduce the size of the public key. Contrary to the key generation, the signature
generation and verification still happen over the field F2r as usual.

To summarize, we simply take a key pair of the UOV scheme over F2, and
use it as a key pair for the UOV scheme over F2r . The public key is thus approx-
imately a factor r smaller than if we were to use the regular UOV scheme over
F2r since we only use one bit to represent each coefficient instead of r bits. Fur-
thermore, we can now choose r to be much larger than what would otherwise its
optimal value. This in turn allows for a smaller value of m (See Fig. 1), reducing
the public key size even more.

The public key consists of a seed for a pseudorandom number generator and
the part of the public map which cannot be generated. The total size of the
public key is therefore

|seed| +
m2(m + 1)

2
bits.
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Storing the private maps F and T would take

m
v(v + 1)

2
+ m2v bits and n2 bits

respectively, but they do not need to be stored, because they can be calculated
using the key generation algorithm each time they are needed. A signature con-
sists of n = m + v elements of F2r , so the size of the signature is nr bits.

Remark 2. Though we have presented this scheme with a finite field of charac-
teristic 2 and with the subfield F2 ⊂ F2r , it is easy to see that we can use this
scheme with any field extension of finite fields K ⊂ K ′. In such a scenario we
generate a key pair with coefficients in the small field K, and the signing and
verifying is done with elements of the big field K ′.

5.2 Security Analysis of the New Scheme

Direct Attack. This attack tries to forge a signature for a certain message M
by trying to find a solution s ∈ F

n
2r for the system F(s) = H(M). The best

known methods for this use the hybrid approach as described in Sect. 2.
For a direct attack against the new scheme all the coefficients of the system

that needs to be solved lie in F2, except those of the constant terms, because
those coefficients come from the message digest. We claim that this does not
significantly reduce the hardness of finding solutions relative to the case where
the coefficients are generic elements of F2r . It has been noticed by Faugère and
Perret [12] that the polynomial systems that result from fixing ≈ v variables
in a UOV system behave like semi-regular systems. The degree of regularity of
a quadratic semi-regular system is given by the degree of the first term in the
power series of

(1 − x2)m

(1 − x)n

with a non-positive coefficient. In particular the degree of regularity does not
depend on q for semi-regular systems. Hence, the degree of regularity for a direct
attack against the modified UOV scheme is identical to the degree of regular-
ity of an attack against the regular UOV scheme. Therefore a Gröbner basis
computation against the modified scheme is not significantly more efficient than
a Gröbner basis computation against regular UOV with the same parameters.
This argument is confirmed by the experimental data in Table 2. There we see
that a direct attack is slightly faster against the modified scheme than against
the original UOV scheme, but only by a small constant factor. Even though
the Gröbner basis is computed over F2r , the largest part of the arithmetic only
involves the field elements 0 and 1, so the arithmetic is faster than with generic
elements of F2r . This is where the difference observed in Table 2 comes from. If
we do the same experiment with a smaller extension field such as F28 there is no
observed difference between the running time of a direct attack against a regular
UOV scheme and our modified scheme.
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Table 2. Running time of a direct attack against the regular UOV scheme over F264

and the modified UOV scheme, with the MAGMA v2.22-10 implementation of the F4
algorithm. We did not implement the method of Thomae and Wolf [27].

(m,v) Regular UOV (s) Lifted UOV (s) difference

(7,35) 0.43 0.21 −52%

(8,40) 1.56 0.76 −51%

(9,45) 7.00 3.21 −54%

(10,50) 33.50 17.44 −48%

(11,55) 132.88 76.60 −42%

(12,60) 828.31 588.33 −29%

Remark 3. In a direct attack one fixes ≈ v variables randomly to make the
system a slightly overdetermined system. In our experiments we have fixed these
variables to values in F2 to make sure that we do not introduce linear terms with
coefficients in F2r instead of F2 in the case of the modified UOV scheme.

Remark 4. It might seem tempting to decompose the equations over F2r into
equations over F2 to make a direct attack more efficient. This decomposition is
done by fixing some basis β1, · · · , βr of F2r over F2 and replacing each variable
xi by

∑r
j=1 x̂i,jβj , where the x̂i,j are nr new variables in F2. Each equation of

the original system is then decomposed into r equations, resulting in a total of
mr equations in nm variables over F2. The problem with this approach is that
the number of equations and variables is increased by the factor r, which makes
the naive approach of solving the decomposed system with a generic boolean
solver hopelessly slow. However, the decomposed system has a specific structure
which could potentially be exploited to solve the system more efficiently. We
investigated this possibility, but we were not able to make any progress. It should
be pointed out that this idea does not only apply to our scheme, but to any
multivariate cryptosystem over a field of non-prime order. Still, no such attacks
are reported in literature. One could say that the idea of decomposing a system
to make it easier to solve is not very promising because in big-field schemes
such as Gui [24] and medium-field schemes such as HMFEv [23] the systems are
decomposed with the objective of making them harder to solve for an attacker.

Key Recovery Attacks. In contrast to a direct attack, the modified scheme is
more vulnerable to a key recovery attack. Since the key pair used in the Lifted
UOV scheme is identical to the key pair of regular UOV over the field F2 it is
clear that a key recovery attack against the Lifted UOV scheme is equivalent
to a key recovery attack against a regular UOV scheme over F2, which is much
easier than a key recovery attack against UOV over F2r . Luckily, key recovery
attacks against UOV have been investigated ever since the invention of the oil
and vinegar scheme in 1997 [20], so it is well understood which attacks are
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possible (see Sect. 3.2) and what the complexities of these attacks are. It is also
clear that we can make key recovery attacks harder by increasing the number of
vinegar variables.

The UOV attack attempts to recover an equivalent private key by searching
for the oil subspace. This attack has complexity qv−m−1 ·n4. Since a UOV attack
on the Lifted UOV scheme is equivalent to a UOV attack over F2, we have that
the complexity of a UOV attack against the Lifted UOV scheme is 2v−m−1 · n4.

The reconciliation attack against the lifted UOV scheme is equivalent to the
UOV reconciliation attack against UOV over the field F2. A lower bound on the
complexity of this attack is given by the complexity of solving a quadratic system
of v variables and v equations over F2, but we expect the problem to be harder.
There exists specialized algorithms for solving polynomial systems over F2 that
are more efficient than the generic hybrid approach. One method is a smart
exhaustive search, which requires approximately log2(n)2n+2 bit operations [7].
The BooleanSolve algorithm [3] combines an exhaustive search with sparse lin-
ear algebra to achieve a complexity of O(20.792n). However the method only
becomes faster than the exhaustive search method when n > 200. Recently, Joux
et al. proposed a new algorithm that was able to solve a boolean system of
146 quadratic equations in 73 variables in one day [14]. The algorithm beats
the exhaustive search algorithm, even for small systems. The complexity of this
algorithm is still under investigation, but a rough estimate based on the reported
experiments suggests that it scales like 2αn with α between 0.8 and 0.85 and with
a small constant factor. For choosing the parameters of our signature scheme,
we have assumed that a determined system of n quadratic boolean equations
provides 0.75n bits of security, even though this is likely to seriously overesti-
mate the capabilities of the state of the art algorithms. Quantum attackers can
use Grover search to solve systems over F2 with complexity O(2n/2).

5.3 Choice of Parameters

For convenience and efficiency we will work with binary finite fields whose ele-
ments are represented by a number of bits that is a multiple of 16, i.e. the finite
fields we want to use are F216 ,F232 ,F248 and so on.

When designing a signature scheme of security level l, we choose a finite field
that is large enough such that the minimal number of equations in a determined
regular system that is needed to reach the security level l is minimized. Figure 1
shows that for 128-bit and 256-bit security the chosen fields are F248 and F280

respectively, and the minimal number of equations is 34 and 66 respectively or
40 and 81 when considering quantum attacks. For 100-bit and 192-bit security
the chosen fields are F232 and F264 , and the minimal number of equations is 27
and 50 for classical attackers or 33 and 60 for quantum attackers.

We now consider the constraints on the parameters due to the different
attacks against our scheme. In order to be safe against a direct attack we require

m − �v/m� ≥ mmin ,
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Table 3. Parameter choices and corresponding public key and signature sizes for dif-
ferent security levels

Security level (r,m, v) |pk| (kB) |sig| (kB) classical security

100-bit
classical (32,31,134) 1.9 0.6

quantum (32,37,200) 3.2 0.9 115 bit

128-bit
classical (48,38,171) 3.4 1.2

quantum (48,45,256) 5.7 1.8 153 bit

192-bit
classical (64,54,256) 9.8 2.4

quantum (64,65,384) 17.0 3.5 224 bit

256-bit
classical (80,70,341) 21.2 4.0

quantum (80,87,526) 40.7 6.0 296 bit

with mmin equal to 27, 34, 50 or 66 if the desired security level is 100 bits, 128
bits, 192 bits, or 256 bits respectively. For quantum attackers mmin is equal to
33, 40, 60 and 81 respectively. In order to be safe against the UOV attack we
require

2v−m−1n4 > 2l or 2(v−m−1)/2n4 > 2l ,

depending on whether we want l bits of security against classical, or quantum
adversaries. To be secure against the UOV reconciliation attack it suffices that an
attacker cannot solve a determined system with v equations over F2. Therefore
it suffices to have

20.75v > 2l or 2v/2 > 2l

for classical and quantum attackers respectively. The parameter sets displayed
in Table 3 satisfy all the constraints for the targeted security level and minimize
the size of the public key, i.e. they minimize m. In the last column of the table,
the bit complexity of the best known classical attack against the parameter set
is calculated. For all the proposed parameters the best known classical attack is
a direct Groebner basis attack.

5.4 Trade-Off

In comparison to regular UOV, Lifted UOV has much smaller public keys, but
also larger signatures. In the discussion above, we have chosen the parameter r
very large in order to minimize the size of the public key, without considering the
size of the signatures. It is possible to make a trade-off between the size of the
public key and the size of the signature by choosing a smaller value of r. Having
a smaller value of r requires a larger value of m to reach the same security level,
resulting in a larger public key, but since the signature consists of n elements of
F2r it also leads to smaller signatures. Figure 2 compares public key sizes and
signature sizes of the Lifted UOV scheme with different values of the parameter
r with some other MQ signature schemes [22], the lattice-based signature scheme
BLISS-II [10] and SPHINCS, a hash-based signature scheme [4]. Note that even
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Fig. 2. Comparison of different signature schemes providing 128 bits of post-quantum
security.

though the MQ schemes UOVRand and RainbowLRS2 claim to provide 128-bit
of post-quantum security, their parameters are not chosen to resist quantum
attacks on the MQ problem or quantum versions of the UOV attack. So we are
not comparing schemes with the same security level. Ignoring quantum attacks,
the Lifted UOV signature scheme with r = 48 in the comparison achieves 153
bits of security.

Example 2. For some application on a low-cost device it might be desirable to
have a signature scheme that provides 128 bits of post-quantum security with
minimal signature sizes subject to the condition that the public key is smaller
than, say, 10 kB. If we choose the parameters as in the discussion above, we
would have a public key of 5.7 kB and signatures of 1.8 kB. However, we can
do better by choosing r = 12. The lowest values of m and v providing 128 bits
of security are then m = 54 and v = 256. This leads to a public key of 9.8 kB
(< 10 kB) and a signature of 0.45 kB.

6 Implementation and Results

We developed an ANSI C implementation of the Lifted UOV signature scheme.
The large fields are implemented as extension fields of F216 and the arithmetic
in F216 is done using log tables. We have a table that maps each nonzero element
x to the number y such that x = ay, where a is some generator of the group
F

×
216 . Conversely, we also have a table that maps a number y to the element ay.

Multiplication in F216 is then computed with three table lookups and an addition
modulo 216 −1. Note that this approach could make our implementation vulner-
able to cache timing attacks. Newer CPUs support the CLMUL instruction set
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Table 4. Running times for the key generation, signing and verification algorithms on
a single thread on an IntelR©CoreTM i7-4710MQ CPU at 2.5 GHz

Security level key gen (ms) sig gen (ms) verification (ms)

100-bit
classical 4 6 3

quantum 13 16 7

128-bit
classical 10 14 7

quantum 26 34 15

192-bit
classical 32 46 21

quantum 148 156 54

256-bit
classical 125 149 55

quantum 366 410 144

which could be used to perform the field arithmetic efficiently without the need
for lookup tables, eliminating the possibility of this attack. Two field elements
are added using a XOR operation. During the key generation phase we only use
elements of F2, so we have used bit slicing whenever possible to speed up the
algorithm. The running times of the key generation, signature generation and
the verification algorithms are displayed in Table 4.

Please note that the implementation uses naive implementations of matrix
multiplication, polynomial multiplication and Gaussian reduction, and the code
was not heavily optimized. Therefore, it can be expected that the running times
reported in Table 4 are nowhere near optimal. Some techniques that can speed
up the code very significantly include writing cache friendly code, using paral-
lelization and using Karatsuba’s algorithms for the field arithmetic. Moreover,
it is possible to use a method of Petzoldt to structure part of the public key
in such a way that the verification algorithm is faster [22]. In order to avoid
storing the large private key, part of the key generation algorithm is run each
time a signature is generated to generate the private key. If a batch of messages
is signed together this step only has to happen once. Alternatively, if storing the
private key is not an issue, this part can be omitted altogether to speed up the
signing algorithm significantly.

7 Conclusion

The simple idea of lifting a UOV key pair from F2 to an extension field F2r

increases the security against direct attacks without affecting the size of the
public key. At the same time, thanks to the method of Petzoldt, we can increase
the number of vinegar variables to protect against key recovery attacks without
increasing the size of the public key. These two ideas come together to create
a secure signature scheme whose public key is an order of magnitude smaller
than other MQ signature schemes, with slightly larger signatures. The signa-
ture scheme is very competitive with other post-quantum signature schemes.
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By choosing the parameter r it is possible to make a trade-off between larger
public keys and smaller signatures or vice versa. We developed a rudimentary
ANSI C implementation of the Lifted UOV signature scheme which shows that
key generation, signing and verification takes only a few milliseconds for 100-bit
security instantiations of the scheme and up to a few hundred milliseconds for
256-bit security instantiations. However it is very likely that these times can be
improved significantly with an optimized implementation.

The idea of lifting keys to a large extension field can be applied to any
MQ signature scheme, but it might not always be useful to produce smaller
public keys. We believe that the idea could be used to improve the Rainbow
signature scheme, but not HFE or C∗. This is because the public keys of signature
schemes such as HFE and C∗ are not semi-regular maps [11] and have a much
smaller degree of regularity than random maps of the same dimensions. This
means that guessing a few variables does not necessarily reduce the degree of
regularity, like it does in the case of semi-regular systems. This makes the hybrid
approach unsuitable for attacking these systems, since solving the system with
one big Gröbner basis computation is more efficient. Therefore there is no point
in lifting the system to a larger field, because the complexity of a Gröbner basis
computation is largely independent of the size of the finite field.
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