
Recent Advances in Function and Homomorphic
Secret Sharing

(Invited Talk)

Elette Boyle(B)

IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu

Abstract. Function Secret Sharing (FSS) and Homomorphic Secret
Sharing (HSS) are two extensions of standard secret sharing, which sup-
port rich forms of homomorphism on secret shared values.

– An m-party FSS scheme for a given function family F enables split-
ting a function f : {0, 1}n → G from F (for Abelian group G) into
m succinctly described functions f1, . . . , fm such that strict subsets
of the fi hide f , and f(x) = f1(x) + · · · + fm(x) for every input x.

– An m-party HSS is a dual notion, where an input x is split into shares
x1, . . . , xm, such that strict subsets of xi hide x, and one can recover
the evaluation P (x) of a program P on x given homomorphically
evaluated share values Eval(x1, P ), . . . ,Eval(xm, P ).

In the last few years, many new constructions and applications of FSS
and HSS have been discovered, yielding implications ranging from effi-
cient private database manipulation and secure computation protocols,
to worst-case to average-case reductions.

In this treatise, we introduce the reader to the background required to
understand these developments, and give a roadmap of recent advances
(up to October 2017).

1 Introduction

A secret sharing scheme [38] enables a dealer holding a secret s to randomly
split s into m shares, such that certain subsets of the shares can be used to
reconstruct the secret and others reveal nothing about it. The simplest type of
secret sharing is additive secret sharing, where the secret is an element of an
Abelian group G, it can be reconstructed by adding all m shares, and every
subset of m − 1 shares reveals nothing about the secret. A useful feature of this
secret sharing scheme is that it is (linearly) homomorphic, in the sense that if
m parties hold shares of many secrets, they can locally compute shares of the
sum of all secrets. This feature of additive secret sharing (more generally, linear
secret sharing) is useful for many cryptographic applications.

Supported in part by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and
ERC Grant no. 307952.

c© Springer International Publishing AG 2017
A. Patra and N. P. Smart (Eds.): INDOCRYPT 2017, LNCS 10698, pp. 1–26, 2017.
https://doi.org/10.1007/978-3-319-71667-1_1



2 E. Boyle

A line of recent works [6–11,28] has investigated secret sharing schemes which
support richer classes of homomorphism. In this survey, we present recent devel-
opments in the following (closely related) natural extensions of additive secret
sharing:

– Function Secret Sharing (FSS) [6]. Suppose we are given a class F of
efficiently computable and succinctly described functions f : {0, 1}n → G. Is
it possible to split an arbitrary function f ∈ F into m functions f1, . . . , fm

such that: (1) each fi is described by a short key ki that enables its efficient
evaluation, (2) strict subsets of the keys completely hide f , and (3) f(x) =∑m

i=1 fi(x) (on every input x)? We refer to a solution to this problem as a
function secret sharing (FSS) scheme for F .

– Homomorphic Secret Sharing (HSS) [8]. A (m-party) HSS scheme for
class of programs1 P randomly splits an input x into shares2 (x1, . . . , xm)
such that: (1) each xi is polynomially larger than x, (2) subsets of shares
xi hide x, and (3) there exists a polynomial-time local evaluation algorithm
Eval such that for any “program” P ∈ P (e.g., a boolean circuit, formula or
branching program), the output P (x) can be efficiently reconstructed from
Eval(x1, P ), . . . ,Eval(xm, P ).

FSS can be thought of as a dual notion of HSS, where the roles of the function
and input are reversed: FSS considers the goal of secret sharing a function f
(represented by a program) in a way that enables compact evaluation on any
given input x via local computation on the shares of f , and HSS considers the
goal of secret sharing an input x in a way that enables compact evaluation of
any given function f via local computation on the shares of x.

While any FSS scheme can be viewed as an HSS scheme for a suitable class
of programs and vice versa, the notions of “FSS for P” and “HSS for P” for
a given program class P are not identical, in that FSS allows the share size to
grow with the size of the programs P ∈ P, whereas HSS restricts share size to
grow with the size of the input to P .

In addition, HSS admits a natural multi-input variant (where secrets orig-
inating from different parties can be homomorphically evaluated on together),
whereas in FSS the secret function always originates from a single source.

In different applications and examples, FSS or HSS perspective is more
natural.

Computational security. Unlike secret sharing with basic linear homomor-
phism, it can be shown that most nontrivial FSS and HSS cannot provide infor-
mation theoretic hiding [6,11,28]. For example, even for simple classes F (such
1 Function vs. program: Note that in FSS we will consider simple classes of functions

where each function has a unique description, whereas in HSS we consider functions
with many programs computing it. For this reason we refer to “function” for FSS
and “program” for HSS.

2 fi vs. xi: We maintain the subscript/superscript conventions of existing works (pri-
marily [6,11]). Note that superscript notation is used in HSS where one can consider
shares of multiple inputs, xj �→ (x1

j , . . . , x
m
j ).



Recent Advances in Function and Homomorphic Secret Sharing 3

as the class of point functions), the best possible solution is to additively share
the truth-table representation of f , whose shares consist of 2n group elements.
But if one considers a computational notion of hiding, then there are no apparent
limitations to what can be done for polynomial-time computable f . This is what
we refer to when we speak of FSS/HSS.

Homomorphic secret sharing vs. fully homomorphic encryption. HSS
can be viewed as a relaxed version of fully homomorphic encryption (FHE) [26,
37], where instead of a single party homomorphically evaluating on encrypted
data, we allow homomorphic evaluation to be distributed among two parties
who do not interact with each other. As in the case of FHE, we require that the
output of Eval be compact in the sense that its length depends only on the output
length |P (x)| but not on the size of P . But in fact, a unique feature of HSS that
distinguishes it from traditional FHE is that the output representation can be
additive. E.g., we can achieve Eval(x0, P ) + Eval(x1, P ) = P (x) mod β for some
positive integer β ≥ 2 that can be chosen arbitrarily. This enables an ultimate
level of compactness and efficiency of reconstruction that is impossible to achieve
via standard FHE. For instance, if P outputs a single bit and β = 2, then the
output P (x) is reconstructed by taking the exclusive-or of two bits.

Other related notions. We note that other forms of secret sharing of func-
tions and homomorphic secret sharing have been considered in the literature. An
initial study of secret sharing homomorphisms is due to Benaloh [4], who pre-
sented constructions and applications of additively homomorphic secret sharing
schemes. Further exploration of computing on secret shared data took place
in [1]. Secret sharing of functions has appeared in the context of threshold cryp-
tography (cf. [19,20]). However, these other notions either apply only to very
specific function classes that enjoy homomorphism properties compatible with
the secret sharing, or alternatively they do not require a simple (e.g., additive)
representation of the output which is essential for the applications we consider.

1.1 This Survey

The aim of this document is to serve as a centralized resource for FSS and HSS,
providing sufficient background to approach existing papers, and appropriate
references of where to look for further details. In what follows, we present:

– Formal definitions. This includes a discussion on different choices of recon-
struction procedures (and why we focus on linear reconstruction), an
application-targeted definition of FSS, and a broader theory-oriented defi-
nition of HSS.

– Constructions. A guide to existing constructions within the literature, and an
overview of two specific constructions: FSS for point functions from one-way
functions [9], and HSS for branching programs (with 1/poly error) from the
Decisional Diffie-Hellman assumption [8].

– Applications. Discussion on implications and applications of FSS and HSS
and appropriate pointers.



4 E. Boyle

Low-end vs. high-end. A recurring theme throughout the survey is that con-
structions and applications fall predominantly into two categories:

– “Low-end” lightweight constructions for simple function classes.
– “High-end” powerful constructions for broad function classes.

The former refers to constructions from symmetric-key primitives (in particular,
one-way functions), sits closer to current practical applications, and is most
frequently associated with the FSS formulation. The latter includes constructions
from public-key primitives, yields powerful feasibility implications, and is most
frequently associated with the HSS formulation. We will present results from
this perspective.

2 Definitions

At their core, FSS/HSS are secret sharing schemes, and as such demand two
central properties: (1) Correctness, dictating the appropriate homomorphic eval-
uation guarantees, and (2) Privacy, requiring that subsets of shares do not reveal
the original secret.

When defining FSS/HSS, there are a handful of different choices to be made
that result in slightly shifted notions of varying generality. We choose two such
definitions to present:

1. FSS targeted definition, most directly in line with practical applications.
2. HSS general definition, which can be instantiated to capture different notions

from the literature, including those of theoretical works such as [8,10,11] as
well as the FSS definition from above.

Before jumping to these definitions, we begin with some basic notation and
a discussion on different choices of output decoding structure.

2.1 Basic Notation

We denote the security parameter by λ.

Modeling function families. A function family is defined by a pair F =
(PF , EF ), where PF ⊆ {0, 1}∗ is an infinite collection of function descriptions
f̂ , and EF : PF × {0, 1}∗ → {0, 1}∗ is a polynomial-time algorithm defining
the function described by f̂ . Concretely, each f̂ ∈ PF describes a corresponding
function f : Df → Rf defined by f(x) = EF (f̂ , x). We assume by default that
Df = {0, 1}n for a positive integer n (though will sometimes consider inputs
over non-binary alphabets) and always require Rf to be a finite Abelian group,
denoted by G. When there is no risk of confusion, we will sometimes write f
instead of f̂ and f ∈ F instead of f̂ ∈ PF . We assume that f̂ includes an explicit
description of both Df and Rf as well as a size parameter Sf̂ .



Recent Advances in Function and Homomorphic Secret Sharing 5

2.2 Discussion on Output Decoding Structure

One can consider FSS/HSS with respect to many choices of output decoding
structure: that is, the procedure used to combine homomorphically evaluated
shares into the desired output. Based on the structure of the chosen decoding
process, the corresponding scheme will have very different properties: more com-
plex decoding procedures open the possibility of achieving FSS/HSS for more
general classes of functions, but place limits on the applicability of the resulting
scheme. Many choices for the structure of the output decoding function yield
uninteresting notions, as we now discuss (following [6]). For convenience, we
adopt the language of FSS.

Arbitrary reconstruction. Consider, for example, FSS with no restriction
on the reconstruction procedure for parties’ output shares. Such wide freedom
renders the notion non-meaningfully trivial. Indeed, for any efficient function
family F , one could generate FSS keys for a secret function f ∈ F simply by
sharing a description of f interpreted as a string, using a standard secret sharing
scheme. The evaluation procedure on any input x will simply output x together
with the party’s share of f , and the decoding procedure will first reconstruct the
description of f , and then compute and output the value f(x).

This construction satisfies correctness and security as described informally
above (indeed, each party’s key individually reveals no information on f). But,
the scheme clearly leaves much to be desired in terms of utility: From just one
evaluation, the entire function f is revealed to whichever party receives and
reconstructs these output shares. At such point, the whole notion of function
secret sharing becomes moot.

“Function-private” output shares. Instead, from a function secret sharing
scheme, one would hope that parties’ output shares fi(x) for input x do not
reveal more about the secret function f than is necessary to determine f(x).
That is, we may impose a “function privacy” requirement on the reconstruction
scheme, requiring that pairs of parties’ output shares for each input x can be
simulated given just the corresponding outputs f(x).

This requirement is both natural and beneficial, but by itself still allows for
undesired constructions. For example, given a secret function f , take one FSS key
to be a garbled circuit of f , and the second key as the information that enables
translating inputs x to garbled input labels. This provides a straightforward
function-private solution for one output evaluation, and can easily be extended
to the many-output case by adding shared secret randomness to the parties’
keys.3 Yet this construction (and thus definition) is unsatisfying: although the
evaluate output shares fi(x) now hide f , their size is massive—for every out-
put, comparable to a copy of f itself. (Further, this notion does not give any
cryptographic power beyond garbled circuits.)

3 Namely, for each new x, the parties will first use their shared randomness to coor-
dinately rerandomize the garbled circuit of f and input labels, respectively.



6 E. Boyle

Succinct, function-private output shares. We thus further restrict the
scheme, demanding additionally that output shares be succinct: i.e., comparable
in size to the function output.

This definition already captures a strong, interesting primitive. For exam-
ple, as described in Sect. 4, achieving such an FSS scheme for general functions
implies a form of communication-efficient secure multi-party computation. Addi-
tional lower bounds on this notion are shown in [11]. However, there is one final
property that enables an important class of applications, but which is not yet
guaranteed: a notion of share compressibility.

More specifically: One of the central application regimes of FSS [6,9,28]
is enabling communication-efficient secure (m-server) Private Information
Retrieval (PIR). Intuitively, to privately recover an item xi from a database
held by both servers, one can generate and distribute a pair of FSS keys encod-
ing a point function fi whose only nonzero output is at secret location i. Each
server then responds with a single element, computed as the weighted sum of
each data item xj with the server’s output share of the evaluation fi(xj). Cor-
rectness of the DPF scheme implies that the xor of the two servers’ replies is
precisely the desired data item xi, while security guarantees the servers learn
nothing about the index i. But most importantly, the linear structure of the
DPF reconstruction enabled the output shares pertaining to all the different
elements of the database to be compressed into a single short response.

On the other hand, consider, for example, the PIR scenario but where the
servers instead hold shares of the function fi with respect to a bitwise AND recon-
struction of output shares in the place of xor/addition. Recovery of the requested
data item xi now implies computing set intersection—and thus requires commu-
nication complexity equal to the size of the database [34]! We thus maintain
the crucial property that output shares can be combined and compressed in a
meaningful way. To do so, we remain in stride with the linearity of output share
decoding.

Primary focus: linear share decoding. We focus predominantly on the set-
ting of FSS where the output decoder is a linear function of parties’ shares.
That is, we assume the output shares fi(x) lie within an Abelian group G and
consider a decoding function Dec : Gm → G linear in G. This clean, intuitive
structure in fact provides the desired properties discussed above: Linearity of
reconstruction provides convenient share compressibility. Output shares must
themselves be elements of the function output space, immediately guaranteeing
share succinctness. And as shown in [6], the linear reconstruction in conjunction
with basic key security directly implies function privacy. Unless otherwise spec-
ified we will implicitly take an “FSS scheme” (or HSS) to be one with a linear
reconstruction procedure.

2.3 Function Secret Sharing: Targeting Applications

We next present a targeted definition of FSS, which lies most in line with the use
of FSS within current practical applications. The definition follows [9], extending



Recent Advances in Function and Homomorphic Secret Sharing 7

the original definition from [6] by allowing a general specification of allowable
leakage: i.e., partial information about the function that can be revealed.

Recall in the language of FSS, we consider a client holding a secret function
f ∈ F who splits f into shares fi supporting homomorphic evaluation on inputs
x in the domain of f . We use notation of the shares fi described by keys ki.

Modeling leakage. We capture the allowable leakage by a function Leak :
{0, 1}∗ → {0, 1}∗, where Leak(f) is interpreted as the partial information about
f that can be leaked. When Leak is omitted it is understood to output the
input domain Df and the output domain Rf . This will be sufficient for most
classes considered; for some classes, one also needs to leak the size Sf . But,
one can consider more general choices of Leak, which allow a tradeoff between
efficiency/feasibility and revealed information. (E.g., the construction of FSS
for decision trees in [9] leaks the topology of the tree but hides the labels; see
Sect. 3.)

Definition 1 (FSS: Syntax). An m-party function secret sharing (FSS)
scheme is a pair of algorithms (Gen,Eval) with the following syntax:

– Gen(1λ, f̂) is a PPT key generation algorithm, which on input 1λ (security
parameter) and f̂ ∈ {0, 1}∗ (description of a function f) outputs an m-tuple
of keys (k1, . . . , km). We assume that f̂ explicitly contains an input length 1n,
group description G, and size parameter.

– Eval(i, ki, x) is a polynomial-time evaluation algorithm, which on input i ∈
[m] (party index), ki (key defining fi : {0, 1}n → G) and x ∈ {0, 1}n (input
for fi) outputs a group element yi ∈ G (the value of fi(x), the i-th share of
f(x)).

When m is omitted, it is understood to be 2.

Definition 2 (FSS: Requirements). Let F = (PF , EF ) be a function family
and Leak : {0, 1}∗ → {0, 1}∗ be a function specifying the allowable leakage. Let
m (number of parties) and t (secrecy threshold) be positive integers. An m-party
t-secure FSS for F with leakage Leak is a pair (Gen,Eval) as in Definition 1,
satisfying the following requirements.

– Correctness: For all f̂ ∈ PF describing f : {0, 1}n → G, and every x ∈
{0, 1}n, if (k1, . . . , km) ← Gen(1λ, f̂) then Pr [

∑m
i=1 Eval(i, ki, x) = f(x)] = 1.

– Secrecy: For every set of corrupted parties S ⊂ [m] of size t, there exists
a PPT algorithm Sim (simulator), such that for every sequence f̂1, f̂2, . . . of
polynomial-size function descriptions from PF , the outputs of the following
experiments Real and Ideal are computationally indistinguishable:

• Real(1λ): (k1, . . . , km) ← Gen(1λ, f̂λ); Output (ki)i∈S.
• Ideal(1λ): Output Sim(1λ, Leak(f̂λ)).

When Leak is omitted, it is understood to be the function Leak(f̂) = (1n, Sf̂ ,G)
where 1n, Sf̂ , and G are the input length, size, and group description contained
in f̂ . When t is omitted it is understood to be m − 1.



8 E. Boyle

A useful instance of FSS, introduced by Gilboa and Ishai [28], is a distributed
point function (DPF). A DPF can be viewed as a 2-party FSS for the function
class F consisting of all point functions, namely all functions f : {0, 1}n → G

that evaluate to 0 on all but at most one input.

Definition 3 (Distributed Point Function). A point function fα,β, for
α ∈ {0, 1}n and β ∈ G, is defined to be the function f : {0, 1}n → G such that
f(α) = β and f(x) = 0 for x �= α. We will sometimes refer to a point function
with |β| = 1 (resp., |β| > 1) as a single-bit (resp., multi-bit) point function. A
Distributed Point Function (DPF) is an FSS for the family of all point functions,
with the leakage Leak(f̂) = (1n,G).

A concrete security variant. For the purpose of describing and analyzing
some FSS constructions, it is sometimes convenient (e.g., in [9]) to consider a
finite family F of functions f : Df → Rf sharing the same (fixed) input domain
and output domain, as well as a fixed value of the security parameter λ. We
say that such a finite FSS scheme is (T, ε)-secure if the computational indistin-
guishability requirement in Definition 2 is replaced by (T, ε)-indistinguishability,
namely any size-T circuit has at most an ε advantage in distinguishing between
Real and Ideal. When considering an infinite collection of such finite F , parame-
terized by the input length n and security parameter λ, we require that Eval and
Sim be each implemented by a (uniform) PPT algorithm, which is given 1n and
1λ as inputs.

2.4 Homomorphic Secret Sharing: A General Definition

Recall that HSS is a dual form of FSS. We now consider more general multi-
input HSS schemes that support a compact evaluation of a function F on shares
of inputs x1, . . . , xn that originate from different clients. More concretely, each
client i randomly splits its input xi between m servers using the algorithm Share,
so that xi is hidden from any t colluding servers (we assume t = m − 1 by
default). Each server j applies a local evaluation algorithm Eval to its share of
the n inputs, and obtains an output share yj . The output F (x1, . . . , xn) is recon-
structed by applying a decoding algorithm Dec to the output shares (y1, . . . , ym).
To avoid triviality, we consider various restrictions on Dec that force it to be
“simpler” than direct computation of F .

Finally, for some applications it is useful to let F and Eval take an additional
input x0 that is known to all servers. This is necessary for a meaningful notion
of single-input HSS (with n = 1) [8], and function secret sharing [6,9]. Typically,
the extra input x0 will be a description of a function f applied to the input of
a single client, e.g., a description of a circuit, branching program, or low-degree
polynomial. For the case of FSS, the (single) client’s input is a description of a
program and the additional input x0 corresponds to a domain element.

We now give our formal definition of general HSS. We give a definition in
the plain model; this definition can be extended in a natural fashion to settings



Recent Advances in Function and Homomorphic Secret Sharing 9

with various forms of setup (e.g., common public randomness or a public-key
infrastructure, as considered in [10]). We follow the exposition of [11]. Recall
subscripts denote input (client) id and superscripts denote share (server) id.

Definition 4 (HSS). An n-client, m-server, t-secure homomorphic secret
sharing scheme for a function F : ({0, 1}∗)n+1 → {0, 1}∗, or (n,m, t)-HSS for
short, is a triple of PPT algorithms (Share,Eval,Dec) with the following syntax:

– Share(1λ, i, x): On input 1λ (security parameter), i ∈ [n] (client index), and
x ∈ {0, 1}∗ (client input), the sharing algorithm Share outputs m input shares,
(x1, . . . , xm).

– Eval
(
j, x0, (x

j
1, . . . , x

j
n)

)
: On input j ∈ [m] (server index), x0 ∈ {0, 1}∗ (com-

mon server input), and xj
1, . . . , x

j
n (jth share of each client input), the eval-

uation algorithm Eval outputs yj ∈ {0, 1}∗, corresponding to server j’s share
of F (x0;x1, . . . , xn).

– Dec(y1, . . . , ym): On input (y1, . . . , ym) (list of output shares), the decoding
algorithm Dec computes a final output y ∈ {0, 1}∗.

The algorithms (Share,Eval,Dec) should satisfy the following correctness and
security requirements:

– Correctness: For any n + 1 inputs x0, . . . , xn ∈ {0, 1}∗,

Pr

[∀i ∈ [n] (x1
i , . . . , x

m
i ) ← Share(1λ, i, xi)

∀j ∈ [m] yj ← Eval
(
j, x0, (x

j
1, . . . , x

j
n)
) : Dec(y1, . . . , ym) = F (x0;x1, . . . , xn)

]
= 1.

Alternatively, in a statistically correct HSS the above probability is at least
1 − μ(λ) for some negligible μ and in a δ-correct HSS (or δ-HSS for short) it
is at least 1 − δ − μ(λ), where the error parameter δ is given as an additional
input to Eval and the running time of Eval is allowed to grow polynomially
with 1/δ.

– Security: Consider the following semantic security challenge experiment for
corrupted set of servers T ⊂ [m]:
1: The adversary gives challenge index and inputs (i, x, x′) ← A(1λ), with

|x| = |x′|.
2: The challenger samples b ← {0, 1} and (x1, . . . , xm) ← Share(1λ, i, x̃),

where x̃ =

{
x if b = 0
x′ else

.

3: The adversary outputs a guess b′ ← A((xj)j∈T ), given the shares for
corrupted T .

Denote by Adv(1λ,A, T ) := Pr[b = b′] − 1/2 the advantage of A in guessing
b in the above experiment, where probability is taken over the randomness of
the challenger and of A.
For circuit size bound S = S(λ) and advantage bound α = α(λ), we say
that an (n,m, t)-HSS scheme Π = (Share,Eval,Dec) is (S, α)-secure if for all
T ⊂ [m] of size |T | ≤ t, and all non-uniform adversaries A of size S(λ), we
have Adv(1λ,A, T ) ≤ α(λ). We say that Π is:



10 E. Boyle

• computationally secure if it is (S, 1/S)-secure for all polynomials S;
• statistically α-secure if it is (S, α)-secure for all S;
• statistically secure if it statistically α-secure for some negligible α(λ);
• perfectly secure if it is statistically 0-secure.

Remark 1 (Unbounded HSS). Definition 4 treats the number of inputs n as being
fixed. We can naturally consider an unbounded multi-input variant of HSS
where F is defined over arbitrary sequences of inputs xi, and the correctness
requirement is extended accordingly. We denote this flavor of multi-input HSS
by (∗,m, t)-HSS. More generally, one can allow all three parameters n,m, t to
be flexible, treating them as inputs of the three algorithms Share,Eval,Dec.

Remark 2 (Comparing to FSS Definition). Function secret sharing (FSS) as per
Definition 2 can be cast in the definition above as (1,m)-HSS for the universal
function F (x;P ) = P (x), where P ∈ P is a program given as input to the client
and x is the common server input.

Note the security requirement for HSS in Definition 4 is expressed as an indis-
tinguishability guarantee, whereas the FSS definition from the previous section
(Definition 2) referred instead to efficient simulation given leakage on the secret
data. However, the two flavors are equivalent for every function family F and
leakage function Leak for which Leak can be efficiently inverted; that is, given
Leak(f̂) one can efficiently find f̂ ′ such that Leak(f̂ ′) = Leak(f̂). Such an inver-
sion algorithm exists for all instances of F and Leak considered in existing works.

As discussed, Definition 4 can be trivially realized by Eval that computes the
identity function. To make HSS useful, we impose two types of requirements on
the decoding algorithm.

Definition 5 (Additive and compact HSS). We say that an (n,m, t)-HSS
scheme Π = (Share,Eval,Dec) is:

– Additive if Dec outputs the exclusive-or of the m output shares. Alternatively,
if Dec interprets its m arguments as elements of an Abelian group G (instead
of bit strings), and outputs their sum in G.4

– Compact if the length of the output shares is sublinear in the input length when
the inputs are sufficiently longer than the security parameter. Concretely:

• We say that Π is g(λ, �)-compact if for every λ, �, and inputs
x0, x1, . . . , xn ∈ {0, 1}�, the length of each output share obtained by apply-
ing Share with security parameter λ and then Eval is at most g(λ, �).

• We say that Π is compact if it is g(λ, �)-compact for g that satisfies
the following requirement: There exists a polynomial p(·) and sublinear
function g′(�) = o(�) such that for any λ and � ≥ p(λ) we have g(λ, �) ≤
g′(�).

In the case of perfect security or statistical α-security with constant α, we
eliminate the parameter λ and refer to Π as being g(�)-compact.

4 In this case, we think of the function F and all HSS algorithms Share,Eval,Dec as
implicitly receiving a description of G as an additional input.



Recent Advances in Function and Homomorphic Secret Sharing 11

Remark 3 (Other notions of compactness). One could alternatively consider a
stronger notion of compactness, requiring that the length of each output share
is of the order of the output length (whereas Definition 5 requires merely for
it to be sublinear in the input size). Every additive HSS scheme satisfies this
notion. HSS schemes that satisfy this notion but are not additive were used in
the context of private information retrieval and locally decodable codes in [2].
A different way of strengthening the compactness requirement is by restricting
the computational complexity of Dec, e.g., by requiring it to be quasi-linear in
the length of the output. See Sect. 4.1 (worst-case to average-case reductions)
for motiving applications.

Remark 4 (Special HSS Cases)

– We will sometimes be interested in additive HSS for a finite function F , such
as the AND of two bits; this can be cast into Definition 4 by just considering
an extension F̂ of F that outputs 0 on all invalid inputs. (Note that our
notion of compactness is not meaningful for a finite F .)

– As noted above, the common server input x0 is often interpreted as a “pro-
gram” P from a class of programs P (e.g., circuits or branching programs),
and F is the universal function defined by F (P ;x1, . . . , xn) = P (x1, . . . , xn).
We refer to this type of HSS as HSS for the class P.

3 Constructions of FSS and HSS

FSS/HSS constructions as of the writing of this survey (October 2017) are as
follows. Given complexity measures are with respect to n-bit inputs.

“Low End”: FSS from One-Way Functions

Here λ corresponds to a pseudorandom generator seed length, taken to be 128
bits in an AES-based implementation. Unless otherwise specified, for m = 2
servers.

– Point functions (“Distributed Point Functions”).
The class of point functions consists of those functions fα,β which evaluate
to β on input α and to 0 otherwise.

• Implicitly constructed in [15] with key size O(2εn) bits for constant ε > 0.
Formally defined and constructed recursively with key size O(nlog2(3)λ)
bits, in [28]. Improved to O(nλ) bits via tree-based solution in [6].

• Current best: Key size λ + n(λ + 2) − �log λ/|β|� bits, in [9].5

For m > 2 servers: nontrivial (but poor) key size O(2m2n/2λ) bits, in [6].

5 In particular: λ + n(λ + 2) for λ-bit outputs, and λ + n(λ + 2) − �log λ� for 1-bit
outputs.



12 E. Boyle

– Comparison and Intervals [6,9].
The class of comparison functions consists of those functions fa which output
1 on inputs x with a < x. Interval functions f(a,b) output 1 precisely for inputs
x that lie within the interval a < x < b, and 0 otherwise.
Constructions follow a similar structure as DPFs. Best key size for comparison
functions n(λ + 3) bits, for interval functions 2n(λ + 3) bits [9].

– NC0 predicates (i.e., functions with constant locality) [6].
For locality d, the key size grows as O(λ · nd). For example, this includes
bit-matching predicates that check a constant number of bits d.

– Decision trees [9].
A decision tree is defined by: (1) a tree topology, (2) variable labels on each
node v (where the set of possible values of each variable is known), (3) value
labels on each edge (the possible values of the originating variable), and (4)
output labels on each leaf node.
In the construction of [9], the key size is roughly λ · |V | bits, where V is the
set of nodes, and evaluation on a given input requires |V | executions of a
pseudorandom generator, and a comparable number of additions. The FSS
is guaranteed to hide the secret edge value labels and leaf output labels, but
(in order to achieve this efficiency) reveals the base tree topology and the
identity of which variable is associated to each node.
Constant-dimensional intervals. A sample application of FSS for deci-
sion trees is constant d-dimensional interval queries: that is, functions
f(x1, . . . , xd) which evaluate to a selected nonzero value precisely when
ai ≤ xi ≤ bi for some secret interval ranges (ai, bi)i∈[d]. For n-bit inputs
xi, FSS for d-dimensional intervals can be obtained with key size and com-
putation time O(λ · nd). For small values of d, such as d = 2 for supporting a
conjunction of intervals, this yields solutions with reasonably good concrete
efficiency.

We observe that FSS constructions for the function classes above can be com-
bined with server-side database operations, to emulate private database opera-
tions of richer function classes, such as Max/Min and top-k [40]. (See Sect. 4.2.)

“High End”: HSS from Public-Key Cryptography

– Branching programs (capturing logspace, NC1), for 2-servers, with inverse-
polynomial δ-correctness, from Decisional Diffie-Hellman (DDH) [8]. Evalua-
tion runtime grows as 1/δ.
Heavily optimized versions of this construction are given in [7,10].

– General circuits, from Learning With Errors (LWE) [6,23].
More specifically, in the language of Definition 4: Additive (n,m)-HSS for
arbitrary n,m and polynomial-size circuits can be obtained from the Learn-
ing With Errors (LWE) assumption, by a simple variation of the FSS con-
struction from spooky encryption of [23] (more specifically, their techniques
for obtaining 2-round MPC). See [11] for details.



Recent Advances in Function and Homomorphic Secret Sharing 13

(It was also previously shown how to achieve FSS for general circuits from
subexponentially secure indistinguishability obfuscation in [6].)

Intuition of Constructions. In the following two subsections, we present high-
level intuition behind two specific constructions: (1) the optimized OWF-based
DPF of [9], and (2) the DDH-based δ-HSS for branching programs of [8].

3.1 Overview: Distributed Point Function from OWF

We give an intuitive description of the (2-party) distributed point function (DPF)
(Gen•,Eval•) construction from [9] (following the text therein). Recall a DPF is
an FSS scheme for the class of point functions fα,β : {0, 1}n → G whose only
nonzero evaluation is fα,β(α) = β. For simplicity, consider the case of a DPF
with a single-bit output G = {0, 1} and β = 1.

Basic key structure. At a high level, each of the two DPF keys k0, k1 defines
a GGM-style binary tree [29] with 2n leaves, where the leaves are labeled by
inputs x ∈ {0, 1}n. We will refer to a path from the root to a leaf labeled by x
as the evaluation path of x, and to the evaluation path of the special input α as
the special evaluation path. Each node v in a tree will be labeled by a string of
length λ + 1, consisting of a control bit t and a λ-bit seed s, where the label of
each node is fully determined by the label of its parent. The function Eval• will
compute the labels of all nodes on the evaluation path to the input x, using the
root label as the key, and output the control bit of the leaf.

Generating the keys. We would like to maintain the invariant that for each
node outside the special path, the two labels (on the two trees) are identical, and
for each node on the special path the two control bits are different and the two
seeds are indistinguishable from being random and independent. Note that since
the label of a node is determined by that of its parent, if this invariant is met
for a node outside the special path then it is automatically maintained by its
children. Also, we can easily meet the invariant for the root (which is always on
the special path) by just explicitly including the labels in the keys. The challenge
is to ensure that the invariant is maintained also when leaving the special path.

Towards describing the construction, it is convenient to view the two labels
of a node as a mod-2 additive secret sharing of its label, consisting of shares
[t] = (t0, t1) of the control bit t and shares [s] = (s0, s1) of the λ-bit seed s. That
is, t = t0 ⊕ t1 and s = s0 ⊕ s1. The construction employs two simple ideas.

1. In the 2-party case, additive secret sharing satisfies the following weak homo-
morphism: If G is a PRG, then G([s]) = (G(s0), G(s1)) extends shares of
the 0-string s = 0 into shares of a longer 0-string S = 0, and shares of a
random seed s into shares of a longer (pseudo-)random string S, where S is
pseudo-random even given one share of s.

2. Additive secret sharing is additively homomorphic: given shares [s], [t] of a
string s and a bit t, and a public correction word CW , one can locally compute
shares of [s ⊕ (t · CW )]. We view this as a conditional correction of the secret
s by CW conditioned on t = 1.



14 E. Boyle

To maintain the above invariant along the evaluation path, we use the two types
of homomorphism as follows. Suppose that the labels of the i-th node vi on
the evaluation path are [s], [t]. To compute the labels of the (i + 1)-th node,
the parties start by locally computing [S] = G([s]) for a PRG G : {0, 1}λ →
{0, 1}2λ+2, parsing [S] as [sL, tL, sR, tR]. The first two values correspond to labels
of the left child and the last two values correspond to labels of the right child.

To maintain the invariant, the keys will include a correction word CW for
each level i. As discussed above, we only need to consider the case where vi is
on the special path. By the invariant we have t = 1, in which case the correction
will be applied. Suppose without loss of generality that αi = 1. This means that
the left child of vi is off the special path whereas the right child is on the special
path. To ensure that the invariant is maintained, we can include in both keys
the correction CW (i) = (sL, tL, sR ⊕ s′, tR ⊕ 1) for a random seed s′. Indeed,
this ensures that after the correction is applied, the labels of the left and right
child are [0], [0] and [s′], [1] as required. But since we do not need to control
the value of s′, except for making it pseudo-random, we can instead use the
correction CW (i) = (sL, tL, sL, tR ⊕ 1) that can be described using λ + 2 bits.
This corresponds to s′ = sL ⊕ sR. The n correction values CW (i) are computed
by Gen• from the root labels by applying the above iterative computation along
the special path, and are included in both keys.

Finally, assuming that β = 1, the output of Eval• is just the shares [t] of the
leaf corresponding to x. A different value of β (from an arbitrary Abelian group)
can be handled via an additional correction CW (n+1).

3.2 Overview: δ-HSS for Branching Programs from DDH

We next give a simplified overview of the HSS construction from [8], following
exposition from [7]. Cast into the framework of Definition 4, this yields an addi-
tive public-key (∗, 2)-δ-HSS for the class of branching programs under the DDH
assumption.

For simplicity of notation (and for greater efficiency), we assume circular
security of ElGamal encryption. This assumption can be replaced by stan-
dard DDH by replacing ElGamal encryption with the circular secure public-
key encryption scheme of Boneh, Halevi, Hamburg, and Ostrovsky [5], as shown
in [8].

RMS Programs

The construction of [8] supports homomorphic evaluation of straight-line pro-
grams of the following form over inputs wi ∈ Z, provided that all intermediate
computation values in Z remain “small,” bounded by a parameter M (where the
required runtime grows with this size bound).

Definition 6 (RMS programs). The class of Restricted Multiplication
Straight-line (RMS) programs consists of a magnitude bound 1M and an arbi-
trary sequence of the four following instructions, each with a unique identifier id:



Recent Advances in Function and Homomorphic Secret Sharing 15

– Load an input into memory: (id, ŷj ← ŵi).
– Add values in memory: (id, ŷk ← ŷi + ŷj).
– Multiply value in memory by an input value: (id, ŷk ← ŵi · ŷj).
– Output value from memory, as element of Zβ: (id, β, Ôj ← ŷi).

If at any step of execution the size of a memory value exceeds the bound M , the
output of the program on the corresponding input is defined to be ⊥. We define
the size of an RMS program P as the number of its instructions.

In particular, RMS programs allow only multiplication of a memory value
with an input (not another memory value). RMS programs with M = 2 are
powerful enough to efficiently simulate boolean formulas, logarithmic-depth
boolean circuits, and deterministic branching programs (capturing logarithmic-
space computations). For concrete efficiency purposes, their ability to perform
arithmetic computations on larger inputs can also be useful.

Encoding Zq Elements. Let H be a prime-order group, with a subgroup G of
prime order q (the DDH group). Let g denote a generator of G. For any x ∈ Zq,
consider the following 3 types of two-party encodings:

Level 1: “Encryption.” For x ∈ Zq, we let [x] denote gx, and �x�c denote
([r] , [r · c + x]) for a uniformly random r ∈ Zq, which corresponds to an ElGamal
encryption of x with a secret key c ∈ Zq. (With short-exponent ElGamal, c is a
160-bit integer.) We assume that c is represented in base B (B = 2 by default)
as a sequence of s digits (ci)1≤i≤s We let [[[x]]]c denote (�x�c , (�x · ci�c)1≤i≤s).
All level-1 encodings are known to both parties.

Level 2: “Additive shares.” Let 〈x〉 denote a pair of shares x0, x1 ∈ Zq such
that x0 = x1 + x, where each share is held by a different party. We let 〈〈x〉〉c

denote (〈x〉 , 〈x · c〉) ∈ (Z2
q)

2, namely each party holds one share of 〈x〉 and one
share of 〈x · c〉. Note that both types of encodings are additively homomorphic
over Zq, namely given encodings of x and x′ the parties can locally compute a
valid encoding of x + x′.

Level 3: “Multiplicative shares.” Let {x} denote a pair of shares x0, x1 ∈ G such
that the difference between their discrete logarithms is x. That is, x0 = x1 · gx.

Operations on Encodings

We manipulate the above encodings via the following two types of operations,
performed locally by the two parties:

1. Pair(�x�c , 〈〈y〉〉c) �→ {xy}. This pairing operation exploits the fact that [a] and
〈b〉 can be locally converted to {ab} via exponentiation.

2. Convert({z} , δ) �→ 〈z〉, with failure bound δ. The implementation of Convert
is also given an upper bound M on the “payload” z (M = 1 by default),
and its expected running time grows linearly with M/δ. We omit M from the
following notation.



16 E. Boyle

The Convert algorithm works as follows. Each party, on input h ∈ G, outputs
the minimal integer i ≥ 0 such that h · gi is “distinguished,” where roughly
a δ-fraction of the group elements are distinguished. Distinguished elements
were picked in [8] by applying a pseudo-random function to the description
of the group element. An optimized conversion procedure from [10] (using spe-
cial “conversion-friendly” choices of G ⊂ Z

∗
p and g = 2) applies the heuristic of

defining a group element to be distinguished if its bit-representation starts with
d ≈ log2(M/δ) leading 0’s; this was further optimized by considering instead the
(d + 1)-bit string 1||0d in [7]. Note that this heuristic only affects the running
time and not security, and thus it can be validated empirically. Correctness of
Convert holds if no group element between the two shares {z} ∈ G

2 is distin-
guished.

Finally, Convert can signal that there is a potential failure if there is a dis-
tinguished point in the “danger zone.” Namely, Party b = 0 (resp., b = 1)
raises a potential error flag ⊥ if h · g−i (resp., h · gi−1) is distinguished for some
i = 1, . . . , M .

Note that we used the notation M both for the payload upper bound in
Convert and for the bound on the memory values in the definition of RMS pro-
grams (Definition 6). In the default case of RMS program evaluation using base
2 for the secret key c in level 1 encodings, both values are indeed the same.
(However, when using larger basis, they can differ in parts of the computation,
and a more careful analysis can improve error bound guarantees.)

Let PairConv be an algorithm that sequentially executes the two operations
Pair and Convert above: PairConv(�x�c , 〈〈y〉〉c, δ) �→ 〈xy〉, with error δ. We denote
by Mult the following algorithm:

– Functionality: Mult([[[x]]]c, 〈〈y〉〉c, δ) �→ 〈〈xy〉〉c

• Parse [[[x]]]c as (�x�c , (�x · ci�c)1≤i≤s).
• Let 〈xy〉 ← PairConv(�x� , 〈〈y〉〉c, δ

′) for δ′ = δ/(s + 1).
• For i = 1 to s, let 〈xy · ci〉 ← PairConv(�xci�c , 〈〈y〉〉c, δ

′).
• Let 〈xy · c〉 =

∑s
i=1 Bi−1 〈xy · ci〉.

• Return (〈xy〉 , 〈xy · c〉).

HSS for RMS Programs

Given the above operations, an additive δ-HSS for RMS programs is obtained
as follows. This can be cast as HSS in Definition 4 with a key generation setup.

– Key generation: Gen(1λ) picks a group G of order q with λ bits of
security, generator g, and secret ElGamal key c ∈ Zq. It output pk =
(G, g, h, �ci�c)1≤i≤s, where h = gc, and (ek0, ek1) ← 〈c〉, a random additive
sharing of c.

– Share: Share(pk, x) uses the homomorphism of ElGamal to compute and
output [[[x]]]c.

– RMS program evaluation: For an RMS program P of multiplicative size
S, the algorithm Eval(b, ekb, (ct1, . . . , ctn), P, δ, β) processes the instructions



Recent Advances in Function and Homomorphic Secret Sharing 17

of P , sorted according to id, as follows. We describe the algorithm for both
parties b jointly, maintaining the invariant that whenever a memory variable
ŷ is assigned a value y, the parties hold level-2 shares Y = 〈〈y〉〉c.

• ŷj ← x̂i: Let Yj ← Mult([[[xi]]]c, 〈〈1〉〉c, δ/S), where 〈〈1〉〉c is locally com-
puted from (ek0, ek1) using 〈1〉 = (1, 0).

• ŷk ← ŷi + ŷj : Let Yk ← Yi + Yj .
• ŷk ← x̂i · ŷj : Let Yk ← Mult([[[xi]]]c, Yj , δ/S).
• (β, Ôj ← ŷi): Parse Yi as (〈yi〉 , 〈yi · c〉) and output Oj = 〈yi〉 + (r, r)

mod β for a fresh (pseudo-)random r ∈ Zq.
The confidence flag is ⊥ if any of the invocations of Convert raises a potential
error flag, otherwise it is �.

The pseudorandomness required for generating the outputs and for Convert is
obtained by using a common pseudorandom function key that is (implicitly)
given as part of each ekb, and using a unique nonce as an input to ensure that
different invocations of Eval are indistinguishable from being independent.

A single-input (“secret-key”) HSS variant is simpler in two ways. First, Share
can directly run Gen and generate [[[x]]]c from the secret key c. Second, an input
loading instruction ŷj ← x̂i can be processed directly, without invoking Mult, by
letting Share compute Yj ← 〈〈xi〉〉c and distribute Yj as shares to the two parties.

Performance. The cost of each RMS multiplication or input loading is dom-
inated by s + 1 invocations of PairConv, where each invocation consists of Pair
and Convert. The cost of Pair is dominated by one group exponentiation (with
roughly 200-bit exponent in [7]). The basis of the exponent depends only on
the key and the input, which allows for optimized fixed-basis exponentiations
when the same input is involved in many RMS multiplications. When the RMS
multiplications apply to 0/1 values (this is the case when evaluating branching
programs), the cost of Convert is linear in BS/δ, where the B factor comes from
the fact that the payload z of Convert is bounded by the size of the basis. When
δ is sufficiently small, the overall cost is dominated by the O(BS2s/δ) “conver-
sion” steps, where each step consists of multiplying by g and testing whether
the result is a distinguished group element.

4 Applications and Implications

In this section, we turn to implications of FSS and HSS constructions. We begin
by describing what is known about the relation of FSS/HSS to other primitives,
and then address applications of both “low-end” and “high-end” construction
regimes.

4.1 Relation to Other Primitives

Below are the primary known theoretical implications of FSS/HSS primitives.

One-way functions. FSS for any “sufficiently rich” function class F (e.g., point
functions) necessitates the existence of OWF [28]. Further, in such an FSS, each



18 E. Boyle

output share fi viewed as a function on its own must define a pseudorandom
function [6]. Note that this is not a-priori clear from the security definition,
which only requires that the shares hide f .

(Amortized) Low-communication secure computation. It was shown
in [6] that FSS for a function class F strictly containing the decryption circuit for
a secure symmetric-key encryption scheme implies amortized low-communication
protocols for secure two-party computation of a related function class, relying
on a reusable source of correlated randomness (that can be realized via one-time
offline preprocessing). Given HSS for F , the same result holds without needing
to amortize over the preprocessing.6

At the time of this result, all known approaches for obtaining such proto-
cols relied on fully homomorphic encryption or related primitives, and as such
this was viewed as a “barrier” against achieving such FSS without FHE. In an
interesting twist, this was reversed by the work of [8], which succeeded in con-
structing a form of HSS for NC1 (and thus succinct secure computation) from
DDH.

However, the “barrier” still seems legitimate as evidence against the possi-
bility of constructing general FSS/HSS (or even classes such as NC1 or possibly
AC0) from weak cryptographic assumptions such as the existence of one-way
functions or oblivious transfer.

Non-interactive key exchange (NIKE) & 2-message oblivious trans-
fer (OT). The power of additive multi-input HSS (where inputs from different
parties can be homomorphically computed on together; c.f. Definition 4) seems
to be much greater than its single-input counterpart. Whereas constructions for
single-input HSS exist for some function classes from OWF, to date all construc-
tions of multi-input HSS rely on a select list of heavily structured assumptions:
DDH, LWE, and obfuscation [8,23].

It appears this is in some sense inherent: As shown in [11], even a mini-
mal version of 2-party, 2-server additive HSS for the AND of two input bits
implies the existence of non-interactive key exchange (NIKE) [21], a well-studied
cryptographic notion whose known constructions are similarly limited to select
structured assumptions. NIKE is black-box separated from one-way functions
and highly unlikely to be implied by generic public-key encryption or oblivious
transfer.

On the other hand, this same type of (2, 2)-additive-HSS for AND is unlikely
to be implied by NIKE, as the primitive additionally implies the existence of 2-
message oblivious transfer (OT) [8], unknown to follow from NIKE alone. Further
connections from HSS to 2-round secure computation have been demonstrated
in [10,11].

Worst-case to average-case reductions. A different type of implication of
HSS is in obtaining worst-case to average-case reductions in P . Roughly speak-
ing, the HSS evaluation function Eval for homomorphically evaluating a function
6 Recall in HSS the secret share size scales with input size and not function description

size.



Recent Advances in Function and Homomorphic Secret Sharing 19

F defines a new function F ′ such that computing F on any given input x can be
reduced to computing F ′ on two or more inputs that are individually pseudo-
random (corresponding to the HSS secret shares of x). A similar application was
pointed out in [17] using fully homomorphic encryption (FHE) (and a signifi-
cantly weaker version in [28] using DPF). Compared to the FHE-based reduc-
tions, the use of HSS has the advantages of making only a constant number of
queries to a Boolean function F ′ (as small as 2), and minimizing the complexity
of recovering the output from the answers to the queries. The latter can lead
to efficiency advantages in the context of applications (including the settings of
fine-grained average-case hardness and verifiable computation; see [11]). It also
gives rise to worst-case to average-case reductions under assumptions that are
not known to imply FHE, such as the DDH assumption.

4.2 Applications in the One-Way Function Regime

FSS in the “low-end” regime has interesting applications to efficient private
manipulation of remotely held databases, extending the notions of Private Infor-
mation Retrieval (PIR) [16] and Private Information Storage (PIS) [35] to more
expressive instruction sets. Recently, FSS has also been shown to yield concrete
efficiency improvements in secure 2-party computation protocols for programs
with data-dependent memory accesses. We describe these in greater detail below.

Multi-server PIR and secure keyword search. Suppose that each of m
servers holds a database D of keywords wj ∈ {0, 1}n. A client wants to count
the number of occurrences of a given keyword w without revealing w to any
strict subset of the servers. Letting G = Zm+1 and f = fw,1 (the point function
evaluating to 1 on target value w), the client can split f into m additive shares
and send to server i the key ki describing fi. Server i computes and sends back
to the client

∑
wj∈D fi(wj). The client can then find the number of matches by

adding the m group elements received from the servers. Standard PIR corre-
sponds to the same framework with point function fi,1 for target data index i.
In this application, FSS for other classes F can be used to accommodate richer
types of search queries, such as counting the number of keywords that lie in an
interval, satisfy a fuzzy match criterion, etc. We note that by using standard
randomized sketching techniques, one can obtain similar solutions that do not
only count the number of matches but also return the payloads associated with
a bounded number of matches (see, e.g., [36]).

Splinter [40]. In this fashion, FSS for point functions and intervals are the core of
the system Splinter [40] of Wang et al., serving private search queries on a Yelp
clone of restaurant reviews, airline ticket search, and map routing. On top of the
functionalities offered directly by the FSS, the system supports more expressive
queries, such as MAX/MIN and TOP-k, by manipulating the database on the
server side such that a point function/interval search on the modified database
answers the desired query. (Here the type of query is revealed, but the search
parameters are hidden.) Splinter reports end-to-end latencies below 1.6 s for



20 E. Boyle

realistic workloads, including search within a Yelp-like database comparable to
40 cities, and routing within real traffic-map data for New York City.

Incremental secret sharing. Suppose that we want to collect statistics about
web usage of mobile devices without compromising the privacy of individual
users, and while allowing fast collection of real-time aggregate usage data. A
natural solution is to maintain a large secret-shared array of group elements
between m servers, where each entry in the array is initialized to 0 and is incre-
mented whenever the corresponding web site is visited. A client who visits URL
u can now secret-share the point function f = fu,1, and each server i updates
its shared entry of each URL uj by locally adding fi(uj) to this share. The end
result is that only position uj in the shared array is incremented, while no collu-
sions involving strict subsets of servers learn which entry was incremented. Here
too, applying general FSS can allow for more general “attribute-based” writ-
ing patterns, such as secretly incrementing all entries whose public attributes
satisfy some secret predicate. The above incremental secret sharing primitive
can be used to obtain low-communication solutions to the problem of private
information storage [35], the “writing” analogue of PIR.

Riposte [18]. FSS for point functions on a 220-entry database are used in this
way in the anonymous broadcast system Riposte of Corrigan-Gibbs et al. [18].
Roughly, in the system each user splits his message msg as a point function
fr,msg for a random position index r ∈ [220]. Shares of such functions across
many users are combined additively by each server, and ultimately the aggregate
is revealed. FSS security guarantees that the link from each individual user to
his contributed message remains hidden.

Protecting against malicious clients. In some applications, malicious clients may
have incentive to submit bogus FSS shares to the servers, corresponding to illegal
manipulations of the database. This can have particularly adverse effects in
writing applications, e.g., casting a “heavy” vote in a private poll, or destroying
the current set of anonymous broadcast messages. Because of this, it is desirable
to have efficient targeted protocols that enable a client to prove the validity of
his request before it is implemented, via minimal interaction between the client
and servers. Such protocols have been designed for certain forms of DPFs and
related settings in [9,18].

Secure 2-party computation (2PC) of RAM programs. A standard chal-
lenge in designing secure computation protocols is efficiently supporting data-
dependent memory accesses, without leaking information on which items were
accessed (and in turn on secret input values). Since the work of [35], this is typi-
cally addressed using techniques of Oblivious RAM (ORAM) [31] to transform a
memory access to a secret index i from data size N into a sequence of polylog(N)
memory accesses whose indices appear independent of i. Indeed, a line of works
in the past years have implemented and optimized systems for ORAM in secure
computation.

Floram [39]. In a surprising recent development, Doerner and shelat [39]
demonstrated an FSS-based 2PC system that—despite its inherent poor O(N)



Recent Advances in Function and Homomorphic Secret Sharing 21

asymptotic computation per private access of each secret index i (instead of
polylog(N))—concretely outperforms current ORAM-based solutions.

In their construction, similar to use of ORAM in 2PC, the two parties in the
secure computation act as the two servers in the FSS scheme, and an underlying
(circuit-based) secure computation between the parties emulates the role of the
client. The core savings of their approach is that, while overall computation
is high, the emulation of “client” operations in the FSS requires a very small
secure computation in comparison to prior ORAM designs (up to one hundred
times smaller for the memory sizes they explore). Their implemented 2PC system
Floram [39] (“FSS Linear ORAM”) outperforms the fastest previously known
ORAM implementations, Circuit ORAM [41] and Square-root ORAM [43], for
datasets that are 32 KiB or larger, and outperforms prior work on applications
such as secure stable matching [24] or binary search [32] by factors of two to ten.

4.3 Applications in the Public-Key Regime

In the “high-end” regime, HSS can serve as a competitive alternative to FHE
in certain application settings. Fully homomorphic encryption (FHE) [26,37] is
commonly viewed as a “dream tool” in cryptography, enabling one to perform
arbitrary computations on encrypted inputs. For example, in the context of
secure multiparty computation (MPC) [3,13,30,42], FHE can be used to mini-
mize the communication complexity and the round complexity, and shift the bulk
of the computational work to any subset of the participants. However, despite
exciting progress in the past years, even the most recent implementations of
FHE [14,25,33] are still quite slow and require large ciphertexts and keys. This
is due in part to the limited set of assumptions on which FHE constructions can
be based [12,22,27], which are all related to lattices and are therefore susceptible
to lattice reduction attacks. As a result, it is arguably hard to find realistic appli-
cation scenarios in which current FHE implementations outperform optimized
versions of classical secure computation techniques (such as garbled circuits)
when taking both communication and computation costs into account.

A main motivating observation is that unlike standard FHE, HSS can be use-
ful even for small computations that involve short inputs, and even in application
scenarios in which competing approaches based on traditional secure computa-
tion techniques do not apply at all.

Advantages of HSS. As with FHE, HSS enables secure computation proto-
cols that simultaneously offer a minimal amount of interaction and collusion
resistance. However, the optimal output compactness of HSS makes it the only
available option for applications that involve computing long outputs (or many
short outputs) from short secret inputs (possibly along with public inputs). More
generally, this feature enables applications in which the communication and com-
putation costs of output reconstruction need to be minimized, e.g., for the pur-
pose of reducing power consumption. For instance, a mobile client may wish to
get quickly notified about live news items that satisfy certain secret search crite-
ria, receiving a fast real-time feed that reveals only pointers to matching items.



22 E. Boyle

Further advantages of group-based HSS over existing FHE implementations
include smaller keys and ciphertexts and a lower startup cost.

HSS Applications

Applications of HSS include small instances of general secure multiparty compu-
tation, as well as distributed variants of private information retrieval, functional
encryption, and broadcast encryption. Exploring concrete such applications (and
optimizing the DDH-based δ-HSS construction) is the primary focus of [7].

Secure MPC with minimal interaction. Using multi-input HSS, a set of
clients can outsource a secure computation to two non-colluding servers by using
the following minimal interaction pattern: each client independently sends a sin-
gle message to the servers (based on its own input and the public key), and
then each server sends a single message to each client. Alternatively, servers
can just publish shares of the output if the output is to be made public. The
resulting protocol is resilient to any (semi-honest) collusion between one server
and a subset of the clients, and minimizes the amount of work performed by the
clients. It is particularly attractive in the case where many “simple” computa-
tions are performed on the same inputs. In this case, each additional instance of
secure computation involves just local computation by the servers, followed by
a minimal amount of communication and work by the clients.

Secure data access. HSS yields several different applications in the context of
secure access to distributed data. For example, HSS can be used to construct a
2-server variant of attribute based encryption, in which each client can access
an encrypted file only if its (public or encrypted) attributes satisfy an encrypted
policy set up by the data owner. Other sample applications include 2-server pri-
vate RSS feeds, in which clients can receive succinct notifications about new data
that satisfies their encrypted matching criteria, and 2-server PIR schemes with
general boolean queries. These applications benefit from the optimal output com-
pactness feature of HSS discussed above, minimizing the communication from
servers to clients and the computation required for reconstructing the output.

Unlike competing solutions based on classical secure computation techniques,
HSS-based solutions only involve minimal interaction between clients and servers
and no direct interaction between servers. In fact, for the RSS feed and PIR
applications, the client is free to choose an arbitrary pair of servers who have
access to the data being privately searched. These servers do not need to be aware
of each other’s identity, and do not even need to know they are participating
in an HSS-based cryptographic protocol: each server can simply run the code
provided by the client on the (relevant portion of) the data, and return the
output directly to the client.

Correlated randomness generation. An interesting application scenario is
where the target output itself is an additive secret sharing. HSS provides a
method for non-interactively generating sources of correlated randomness that
can be used to speed up classical protocols for secure two-party computation.



Recent Advances in Function and Homomorphic Secret Sharing 23

Concretely, following a setup phase, in which the parties exchange HSS shares of
random inputs, the parties can locally expand these shares (without any commu-
nication) into useful forms of correlated randomness. The non-interactive nature
of the correlated randomness generation is useful for hiding the identities of the
parties who intend to perform secure computation (e.g., against network traffic
analysis), as well as the time and the size of the computation being performed.

Useful correlations considered in [7] include bilinear correlations (which cap-
ture “Beaver triples” as a special case) and truth-table correlations. The work
of [7] also proposes further compression of communication in the setup phase by
using homomorphic evaluation of local PRGs, and present different approaches
for improving its asymptotic computational complexity. However, this PRG-
based compression is still in the theoretical regime (too slow to be realized with
good concrete running time using the current implementation of group-based
HSS).

5 Future Directions

The study of FSS/HSS is a rapidly expanding new field of research, which con-
tinues to surprise and reveal even further layers of mystery. This survey is by no
means a comprehensive coverage of all that is known, but rather seeks to facili-
tate future study by providing a semi-centralized resource with helpful pointers.

We close with a selection of open problems, as well as an excitement (on
behalf of the author) for what is yet to come.

5.1 Open Problems

– Improved FSS from OWF
• Improved DPF efficiency and/or lower bounds?
• OWF-based FSS for CNF/DNF formulas? Better FSS for decision trees?
• 3-server DPF with better than 2n/2 key size?
• Separations between OWF and FSS for new function classes F?

– Improved HSS from DDH
• Better error-to-computation tradeoff (in share conversion step of Eval)?
• DDH-based error-free HSS for branching programs?
• DDH-based δ-HSS for circuits (or anything beyond branching programs)?
• DDH-based HSS for >2 servers?

– New types of constructions
• FSS/HSS from new assumptions?
• HSS from LWE without going through FHE?

– Applications & Implementations
• Better optimizations for implementation?
• Implementation of “high-end” HSS-based applications?
• New application settings of FSS & HSS?

Acknowledgements. Tremendous thanks to my FSS/HSS partners in crime, Niv
Gilboa and Yuval Ishai, and to additional coauthors on the presented works: Geoffroy
Couteau, Huijia Rachel Lin, Michele Orrù, and Stefano Tessaro.



24 E. Boyle

References

1. Beimel, A., Burmester, M., Desmedt, Y., Kushilevitz, E.: Computing functions of
a shared secret. SIAM J. Discrete Math. 13(3), 324–345 (2000)

2. Beimel, A., Ishai, Y., Kushilevitz, E., Orlov, I.: Share conversion and private infor-
mation retrieval. In: CCC 2012, pp. 258–268 (2012)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10 (1988)

4. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret
(extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 19

5. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85174-5 7

6. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

7. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret shar-
ing: optimizations and applications. In: ACM SIGSAC CCS, pp. 2105–2122 (2017)

8. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 19

9. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: ACM SIGSAC CCS, pp. 1292–1303 (2016)

10. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 6

11. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: ITCS (2017)

12. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

13. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC, pp. 11–19 (1988)

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

15. Chor, B., Gilboa, N.: Computationally private information retrieval (extended
abstract). In: Proceedings of 29th Annual ACM Symposium on the Theory of
Computing, pp. 304–313 (1997)

16. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

17. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation
using fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483–501. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14623-7 26

https://doi.org/10.1007/3-540-47721-7_19
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-642-14623-7_26
https://doi.org/10.1007/978-3-642-14623-7_26


Recent Advances in Function and Homomorphic Secret Sharing 25

18. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: An anonymous messaging
system handling millions of users. In: IEEE Symposium on Security and Privacy,
SP, pp. 321–338 (2015)

19. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: Proceedings of 26th Annual ACM Symposium on Theory of Computing, pp.
522–533 (1994)

20. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

21. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

22. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomor-
phic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 2

23. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–
122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 4

24. Doerner, J., Evans, D., Shelat, A.: Secure stable matching at scale. In: ACM
SIGSAC CCS, pp. 1602–1613 (2016)

25. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 24

26. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

27. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

28. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 35

29. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

31. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

32. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: ACM CCS,
pp. 513–524 (2012)

33. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

34. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity
of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)

35. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In:
ACM Symposium on the Theory of Computing, pp. 294–303 (1997)

https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-662-46800-5_25


26 E. Boyle

36. Ostrovsky, R., Skeith III, W.E.: Private searching on streaming data. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 14

37. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. In: Workshop on Foundations of Secure Computation, Georgia Institute
of Technology, Atlanta, GA, pp. 169–179. Academic, New York (1978)

38. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
39. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: ACM SIGSAC

CCS, pp. 523–535 (2017)
40. Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M.: Splinter: prac-

tical private queries on public data. In: 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI, pp. 299–313 (2017)

41. Wang, X., Chan, T.H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-
Ostrovsky lower bound. In: ACM SIGSAC CCS, pp. 850–861 (2015)

42. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

43. Zahur, S., Wang, X.S., Raykova, M., Gascón, A., Doerner, J., Evans, D., Katz, J.:
Revisiting square-root ORAM: efficient random access in multi-party computation.
In: IEEE Symposium on Security and Privacy, SP, pp. 218–234 (2016)

https://doi.org/10.1007/11535218_14

	Recent Advances in Function and Homomorphic Secret Sharing
	1 Introduction
	1.1 This Survey

	2 Definitions
	2.1 Basic Notation
	2.2 Discussion on Output Decoding Structure
	2.3 Function Secret Sharing: Targeting Applications
	2.4 Homomorphic Secret Sharing: A General Definition

	3 Constructions of FSS and HSS
	3.1 Overview: Distributed Point Function from OWF
	3.2 Overview: -HSS for Branching Programs from DDH

	4 Applications and Implications
	4.1 Relation to Other Primitives
	4.2 Applications in the One-Way Function Regime
	4.3 Applications in the Public-Key Regime

	5 Future Directions
	5.1 Open Problems

	References




