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Preface

INDOCRYPT 2017, the 18th International Conference on Cryptology in India, was
held at Institute of Mathematical Sciences, Chennai, India, during December 10–13,
2017. The INDOCRYPT series of conferences began in 2000 under the leadership of
Prof. Bimal Roy of the Indian Statistical Institute and is organized under the aegis
of the Cryptology Research Society of India (CRSI). The conference focused on all
technical aspects of cryptology.

The submissions for INDOCRYPT 2017 were due on August 27, 2017. In response
to the call for papers, we received 75 submissions from around 20 countries, out of
which 19 were chosen for inclusion in the program. The review process was conducted
in two stages. In the first stage, each paper was reviewed by at least three independent
reviewers, with papers from Program Committee members receiving at least five
reviews. This was followed by a week-long rigorous and detailed discussion phase to
decide on the acceptance of the submissions. Reviewers with potential conflicts of
interest for specific papers were excluded from all discussions about those papers. The
43 members of the Program Committee were aided in this tedious and time-consuming
task by many external reviewers. We would like to thank them all for their service, their
expert opinions, and their spirited contributions to the review process. The authors had
to revise their papers according to the suggestions of the referees and submit the
camera-ready versions by October 15.

The submission and review process was done using Shai Halevi’s Web Submission
and Review Software. We wish to express our sincere gratitude to Shai Halevi for the
software, which facilitated a smooth and easy submission and review process.

INDOCRYPT 2017 had three invited speakers with two from academia and one
from the Government of India. Elette Boyle (Israel) enlightened the audience on
“Recent Advances in Function and Homomorphic Secret Sharing”. Tancrède Lepoint
(USA) spoke on the interesting topic of “Post-Quantum Cryptography Using Module
Lattices”. The speech of Saikat Datta (Policy Director, Centre for Internet & Society,
India) covered policy-making in India on Cryptography.

Finally, we would like to thank the general chairs, Prof. C. Pandu Rangan (Indian
Institute of Technology Madras) and Prof. R. Balasubramanian (Institute of Mathe-
matical Sciences); the team at the Indian Institute of Science who maintained the
conference website; and the local organizing team at the Indian Institute of Technology,
Madras, for their sincere hard work and for the local organization matters for the
conference. We are especially grateful to our sponsors for their generous support of the
conference. We would also like to express our appreciation to Springer for their active
cooperation and timely production of the proceedings.



Finally, we would like to thank all the authors who submitted their work to
INDOCRYPT 2017, and all the attendees. Without your spirited participation, the
conference would not be a success. We hope you enjoy the proceedings of this year’s
INDOCRYPT conference.

December 2017 Nigel P. Smart
Arpita Patra

VI Preface
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Post-quantum Cryptography
Using Module Lattices

(Invited Talk)

Tancrède Lepoint

SRI International, New York, USA

Recent advances in quantum computing and the announcement by the National
Institute of Standards and Technology (NIST) to define new standards for
digital-signature, encryption, and key-establishment protocols, spurred on the design
and analysis of many post-quantum cryptographic schemes. One of the most efficient
quantum-resilient alternatives for the above basic primitives is that of lattice
cryptography.

Many lattice cryptography schemes are based on the learning-with-error problem
over a ring Rq. Fix size parameters k; ‘� 1 and an ‘error’ probability v on Rq. Let As;v

on R‘
q � Rq be the probability distribution obtained by choosing a vector a 2 R‘

q uni-
formly at random, choosing e 2 Rq according to v, and outputting ða; ha; siþ eÞ where
additions are performed in Rq. In the (decision) learning-with-error problem, the goal is
to distinguish As;v, for a uniformly random secret s 2 R‘

q, from the uniform distribution

over R‘
q � Rq. Most past works have described digital signature schemes, encryption

schemes, and key encapsulation mechanisms in one of two ways. Either they set the
parameters k ¼ ‘ ¼ 1 and Rq ¼ Zq½x�=ðxn þ 1Þ or they set k; ‘[ 1 and Rq ¼ Zq. The
former choice results in schemes based on the hardness of the Ring-LWE and Ring-SIS
problems (or the NTRU problem), while the latter choice of parameters results in
schemes based on the LWE and SIS problems. In this talk, we consider the general case
where k; ‘� 1 and R ¼ Zq½x�=ðxn þ 1Þ: this case results in schemes based on the
Module-LWE and Module-SIS problems [3].

First, we explain how “module lattices” enable to design cryptographic primitives
that are not only simple to implement securely, conservatively designed, and have a
small memory footprint, but are modular, i.e., easily enable to vary security while
keeping the same core operations. Then, we present Kyber [1], a key encapsulation
mechanism, and Dilithium [2], a digital signature, part of CRYSTALS—Cryptographic
Suite for Algebraic Lattices—, a portfolio of cryptographic primitives based on the
Module-LWE and Module-SIS hardness assumptions submitted to the NIST call for
post-quantum standards.

http://orcid.org/0000-0003-3796-042X
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Recent Advances in Function and Homomorphic
Secret Sharing

(Invited Talk)

Elette Boyle(B)

IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu

Abstract. Function Secret Sharing (FSS) and Homomorphic Secret
Sharing (HSS) are two extensions of standard secret sharing, which sup-
port rich forms of homomorphism on secret shared values.

– An m-party FSS scheme for a given function family F enables split-
ting a function f : {0, 1}n → G from F (for Abelian group G) into
m succinctly described functions f1, . . . , fm such that strict subsets
of the fi hide f , and f(x) = f1(x) + · · · + fm(x) for every input x.

– An m-party HSS is a dual notion, where an input x is split into shares
x1, . . . , xm, such that strict subsets of xi hide x, and one can recover
the evaluation P (x) of a program P on x given homomorphically
evaluated share values Eval(x1, P ), . . . ,Eval(xm, P ).

In the last few years, many new constructions and applications of FSS
and HSS have been discovered, yielding implications ranging from effi-
cient private database manipulation and secure computation protocols,
to worst-case to average-case reductions.

In this treatise, we introduce the reader to the background required to
understand these developments, and give a roadmap of recent advances
(up to October 2017).

1 Introduction

A secret sharing scheme [38] enables a dealer holding a secret s to randomly
split s into m shares, such that certain subsets of the shares can be used to
reconstruct the secret and others reveal nothing about it. The simplest type of
secret sharing is additive secret sharing, where the secret is an element of an
Abelian group G, it can be reconstructed by adding all m shares, and every
subset of m − 1 shares reveals nothing about the secret. A useful feature of this
secret sharing scheme is that it is (linearly) homomorphic, in the sense that if
m parties hold shares of many secrets, they can locally compute shares of the
sum of all secrets. This feature of additive secret sharing (more generally, linear
secret sharing) is useful for many cryptographic applications.

Supported in part by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and
ERC Grant no. 307952.

c© Springer International Publishing AG 2017
A. Patra and N. P. Smart (Eds.): INDOCRYPT 2017, LNCS 10698, pp. 1–26, 2017.
https://doi.org/10.1007/978-3-319-71667-1_1



2 E. Boyle

A line of recent works [6–11,28] has investigated secret sharing schemes which
support richer classes of homomorphism. In this survey, we present recent devel-
opments in the following (closely related) natural extensions of additive secret
sharing:

– Function Secret Sharing (FSS) [6]. Suppose we are given a class F of
efficiently computable and succinctly described functions f : {0, 1}n → G. Is
it possible to split an arbitrary function f ∈ F into m functions f1, . . . , fm

such that: (1) each fi is described by a short key ki that enables its efficient
evaluation, (2) strict subsets of the keys completely hide f , and (3) f(x) =∑m

i=1 fi(x) (on every input x)? We refer to a solution to this problem as a
function secret sharing (FSS) scheme for F .

– Homomorphic Secret Sharing (HSS) [8]. A (m-party) HSS scheme for
class of programs1 P randomly splits an input x into shares2 (x1, . . . , xm)
such that: (1) each xi is polynomially larger than x, (2) subsets of shares
xi hide x, and (3) there exists a polynomial-time local evaluation algorithm
Eval such that for any “program” P ∈ P (e.g., a boolean circuit, formula or
branching program), the output P (x) can be efficiently reconstructed from
Eval(x1, P ), . . . ,Eval(xm, P ).

FSS can be thought of as a dual notion of HSS, where the roles of the function
and input are reversed: FSS considers the goal of secret sharing a function f
(represented by a program) in a way that enables compact evaluation on any
given input x via local computation on the shares of f , and HSS considers the
goal of secret sharing an input x in a way that enables compact evaluation of
any given function f via local computation on the shares of x.

While any FSS scheme can be viewed as an HSS scheme for a suitable class
of programs and vice versa, the notions of “FSS for P” and “HSS for P” for
a given program class P are not identical, in that FSS allows the share size to
grow with the size of the programs P ∈ P, whereas HSS restricts share size to
grow with the size of the input to P .

In addition, HSS admits a natural multi-input variant (where secrets orig-
inating from different parties can be homomorphically evaluated on together),
whereas in FSS the secret function always originates from a single source.

In different applications and examples, FSS or HSS perspective is more
natural.

Computational security. Unlike secret sharing with basic linear homomor-
phism, it can be shown that most nontrivial FSS and HSS cannot provide infor-
mation theoretic hiding [6,11,28]. For example, even for simple classes F (such
1 Function vs. program: Note that in FSS we will consider simple classes of functions

where each function has a unique description, whereas in HSS we consider functions
with many programs computing it. For this reason we refer to “function” for FSS
and “program” for HSS.

2 fi vs. xi: We maintain the subscript/superscript conventions of existing works (pri-
marily [6,11]). Note that superscript notation is used in HSS where one can consider
shares of multiple inputs, xj �→ (x1

j , . . . , x
m
j ).
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as the class of point functions), the best possible solution is to additively share
the truth-table representation of f , whose shares consist of 2n group elements.
But if one considers a computational notion of hiding, then there are no apparent
limitations to what can be done for polynomial-time computable f . This is what
we refer to when we speak of FSS/HSS.

Homomorphic secret sharing vs. fully homomorphic encryption. HSS
can be viewed as a relaxed version of fully homomorphic encryption (FHE) [26,
37], where instead of a single party homomorphically evaluating on encrypted
data, we allow homomorphic evaluation to be distributed among two parties
who do not interact with each other. As in the case of FHE, we require that the
output of Eval be compact in the sense that its length depends only on the output
length |P (x)| but not on the size of P . But in fact, a unique feature of HSS that
distinguishes it from traditional FHE is that the output representation can be
additive. E.g., we can achieve Eval(x0, P ) + Eval(x1, P ) = P (x) mod β for some
positive integer β ≥ 2 that can be chosen arbitrarily. This enables an ultimate
level of compactness and efficiency of reconstruction that is impossible to achieve
via standard FHE. For instance, if P outputs a single bit and β = 2, then the
output P (x) is reconstructed by taking the exclusive-or of two bits.

Other related notions. We note that other forms of secret sharing of func-
tions and homomorphic secret sharing have been considered in the literature. An
initial study of secret sharing homomorphisms is due to Benaloh [4], who pre-
sented constructions and applications of additively homomorphic secret sharing
schemes. Further exploration of computing on secret shared data took place
in [1]. Secret sharing of functions has appeared in the context of threshold cryp-
tography (cf. [19,20]). However, these other notions either apply only to very
specific function classes that enjoy homomorphism properties compatible with
the secret sharing, or alternatively they do not require a simple (e.g., additive)
representation of the output which is essential for the applications we consider.

1.1 This Survey

The aim of this document is to serve as a centralized resource for FSS and HSS,
providing sufficient background to approach existing papers, and appropriate
references of where to look for further details. In what follows, we present:

– Formal definitions. This includes a discussion on different choices of recon-
struction procedures (and why we focus on linear reconstruction), an
application-targeted definition of FSS, and a broader theory-oriented defi-
nition of HSS.

– Constructions. A guide to existing constructions within the literature, and an
overview of two specific constructions: FSS for point functions from one-way
functions [9], and HSS for branching programs (with 1/poly error) from the
Decisional Diffie-Hellman assumption [8].

– Applications. Discussion on implications and applications of FSS and HSS
and appropriate pointers.



4 E. Boyle

Low-end vs. high-end. A recurring theme throughout the survey is that con-
structions and applications fall predominantly into two categories:

– “Low-end” lightweight constructions for simple function classes.
– “High-end” powerful constructions for broad function classes.

The former refers to constructions from symmetric-key primitives (in particular,
one-way functions), sits closer to current practical applications, and is most
frequently associated with the FSS formulation. The latter includes constructions
from public-key primitives, yields powerful feasibility implications, and is most
frequently associated with the HSS formulation. We will present results from
this perspective.

2 Definitions

At their core, FSS/HSS are secret sharing schemes, and as such demand two
central properties: (1) Correctness, dictating the appropriate homomorphic eval-
uation guarantees, and (2) Privacy, requiring that subsets of shares do not reveal
the original secret.

When defining FSS/HSS, there are a handful of different choices to be made
that result in slightly shifted notions of varying generality. We choose two such
definitions to present:

1. FSS targeted definition, most directly in line with practical applications.
2. HSS general definition, which can be instantiated to capture different notions

from the literature, including those of theoretical works such as [8,10,11] as
well as the FSS definition from above.

Before jumping to these definitions, we begin with some basic notation and
a discussion on different choices of output decoding structure.

2.1 Basic Notation

We denote the security parameter by λ.

Modeling function families. A function family is defined by a pair F =
(PF , EF ), where PF ⊆ {0, 1}∗ is an infinite collection of function descriptions
f̂ , and EF : PF × {0, 1}∗ → {0, 1}∗ is a polynomial-time algorithm defining
the function described by f̂ . Concretely, each f̂ ∈ PF describes a corresponding
function f : Df → Rf defined by f(x) = EF (f̂ , x). We assume by default that
Df = {0, 1}n for a positive integer n (though will sometimes consider inputs
over non-binary alphabets) and always require Rf to be a finite Abelian group,
denoted by G. When there is no risk of confusion, we will sometimes write f
instead of f̂ and f ∈ F instead of f̂ ∈ PF . We assume that f̂ includes an explicit
description of both Df and Rf as well as a size parameter Sf̂ .
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2.2 Discussion on Output Decoding Structure

One can consider FSS/HSS with respect to many choices of output decoding
structure: that is, the procedure used to combine homomorphically evaluated
shares into the desired output. Based on the structure of the chosen decoding
process, the corresponding scheme will have very different properties: more com-
plex decoding procedures open the possibility of achieving FSS/HSS for more
general classes of functions, but place limits on the applicability of the resulting
scheme. Many choices for the structure of the output decoding function yield
uninteresting notions, as we now discuss (following [6]). For convenience, we
adopt the language of FSS.

Arbitrary reconstruction. Consider, for example, FSS with no restriction
on the reconstruction procedure for parties’ output shares. Such wide freedom
renders the notion non-meaningfully trivial. Indeed, for any efficient function
family F , one could generate FSS keys for a secret function f ∈ F simply by
sharing a description of f interpreted as a string, using a standard secret sharing
scheme. The evaluation procedure on any input x will simply output x together
with the party’s share of f , and the decoding procedure will first reconstruct the
description of f , and then compute and output the value f(x).

This construction satisfies correctness and security as described informally
above (indeed, each party’s key individually reveals no information on f). But,
the scheme clearly leaves much to be desired in terms of utility: From just one
evaluation, the entire function f is revealed to whichever party receives and
reconstructs these output shares. At such point, the whole notion of function
secret sharing becomes moot.

“Function-private” output shares. Instead, from a function secret sharing
scheme, one would hope that parties’ output shares fi(x) for input x do not
reveal more about the secret function f than is necessary to determine f(x).
That is, we may impose a “function privacy” requirement on the reconstruction
scheme, requiring that pairs of parties’ output shares for each input x can be
simulated given just the corresponding outputs f(x).

This requirement is both natural and beneficial, but by itself still allows for
undesired constructions. For example, given a secret function f , take one FSS key
to be a garbled circuit of f , and the second key as the information that enables
translating inputs x to garbled input labels. This provides a straightforward
function-private solution for one output evaluation, and can easily be extended
to the many-output case by adding shared secret randomness to the parties’
keys.3 Yet this construction (and thus definition) is unsatisfying: although the
evaluate output shares fi(x) now hide f , their size is massive—for every out-
put, comparable to a copy of f itself. (Further, this notion does not give any
cryptographic power beyond garbled circuits.)

3 Namely, for each new x, the parties will first use their shared randomness to coor-
dinately rerandomize the garbled circuit of f and input labels, respectively.
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Succinct, function-private output shares. We thus further restrict the
scheme, demanding additionally that output shares be succinct: i.e., comparable
in size to the function output.

This definition already captures a strong, interesting primitive. For exam-
ple, as described in Sect. 4, achieving such an FSS scheme for general functions
implies a form of communication-efficient secure multi-party computation. Addi-
tional lower bounds on this notion are shown in [11]. However, there is one final
property that enables an important class of applications, but which is not yet
guaranteed: a notion of share compressibility.

More specifically: One of the central application regimes of FSS [6,9,28]
is enabling communication-efficient secure (m-server) Private Information
Retrieval (PIR). Intuitively, to privately recover an item xi from a database
held by both servers, one can generate and distribute a pair of FSS keys encod-
ing a point function fi whose only nonzero output is at secret location i. Each
server then responds with a single element, computed as the weighted sum of
each data item xj with the server’s output share of the evaluation fi(xj). Cor-
rectness of the DPF scheme implies that the xor of the two servers’ replies is
precisely the desired data item xi, while security guarantees the servers learn
nothing about the index i. But most importantly, the linear structure of the
DPF reconstruction enabled the output shares pertaining to all the different
elements of the database to be compressed into a single short response.

On the other hand, consider, for example, the PIR scenario but where the
servers instead hold shares of the function fi with respect to a bitwise AND recon-
struction of output shares in the place of xor/addition. Recovery of the requested
data item xi now implies computing set intersection—and thus requires commu-
nication complexity equal to the size of the database [34]! We thus maintain
the crucial property that output shares can be combined and compressed in a
meaningful way. To do so, we remain in stride with the linearity of output share
decoding.

Primary focus: linear share decoding. We focus predominantly on the set-
ting of FSS where the output decoder is a linear function of parties’ shares.
That is, we assume the output shares fi(x) lie within an Abelian group G and
consider a decoding function Dec : Gm → G linear in G. This clean, intuitive
structure in fact provides the desired properties discussed above: Linearity of
reconstruction provides convenient share compressibility. Output shares must
themselves be elements of the function output space, immediately guaranteeing
share succinctness. And as shown in [6], the linear reconstruction in conjunction
with basic key security directly implies function privacy. Unless otherwise spec-
ified we will implicitly take an “FSS scheme” (or HSS) to be one with a linear
reconstruction procedure.

2.3 Function Secret Sharing: Targeting Applications

We next present a targeted definition of FSS, which lies most in line with the use
of FSS within current practical applications. The definition follows [9], extending
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the original definition from [6] by allowing a general specification of allowable
leakage: i.e., partial information about the function that can be revealed.

Recall in the language of FSS, we consider a client holding a secret function
f ∈ F who splits f into shares fi supporting homomorphic evaluation on inputs
x in the domain of f . We use notation of the shares fi described by keys ki.

Modeling leakage. We capture the allowable leakage by a function Leak :
{0, 1}∗ → {0, 1}∗, where Leak(f) is interpreted as the partial information about
f that can be leaked. When Leak is omitted it is understood to output the
input domain Df and the output domain Rf . This will be sufficient for most
classes considered; for some classes, one also needs to leak the size Sf . But,
one can consider more general choices of Leak, which allow a tradeoff between
efficiency/feasibility and revealed information. (E.g., the construction of FSS
for decision trees in [9] leaks the topology of the tree but hides the labels; see
Sect. 3.)

Definition 1 (FSS: Syntax). An m-party function secret sharing (FSS)
scheme is a pair of algorithms (Gen,Eval) with the following syntax:

– Gen(1λ, f̂) is a PPT key generation algorithm, which on input 1λ (security
parameter) and f̂ ∈ {0, 1}∗ (description of a function f) outputs an m-tuple
of keys (k1, . . . , km). We assume that f̂ explicitly contains an input length 1n,
group description G, and size parameter.

– Eval(i, ki, x) is a polynomial-time evaluation algorithm, which on input i ∈
[m] (party index), ki (key defining fi : {0, 1}n → G) and x ∈ {0, 1}n (input
for fi) outputs a group element yi ∈ G (the value of fi(x), the i-th share of
f(x)).

When m is omitted, it is understood to be 2.

Definition 2 (FSS: Requirements). Let F = (PF , EF ) be a function family
and Leak : {0, 1}∗ → {0, 1}∗ be a function specifying the allowable leakage. Let
m (number of parties) and t (secrecy threshold) be positive integers. An m-party
t-secure FSS for F with leakage Leak is a pair (Gen,Eval) as in Definition 1,
satisfying the following requirements.

– Correctness: For all f̂ ∈ PF describing f : {0, 1}n → G, and every x ∈
{0, 1}n, if (k1, . . . , km) ← Gen(1λ, f̂) then Pr [

∑m
i=1 Eval(i, ki, x) = f(x)] = 1.

– Secrecy: For every set of corrupted parties S ⊂ [m] of size t, there exists
a PPT algorithm Sim (simulator), such that for every sequence f̂1, f̂2, . . . of
polynomial-size function descriptions from PF , the outputs of the following
experiments Real and Ideal are computationally indistinguishable:

• Real(1λ): (k1, . . . , km) ← Gen(1λ, f̂λ); Output (ki)i∈S.
• Ideal(1λ): Output Sim(1λ, Leak(f̂λ)).

When Leak is omitted, it is understood to be the function Leak(f̂) = (1n, Sf̂ ,G)
where 1n, Sf̂ , and G are the input length, size, and group description contained
in f̂ . When t is omitted it is understood to be m − 1.
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A useful instance of FSS, introduced by Gilboa and Ishai [28], is a distributed
point function (DPF). A DPF can be viewed as a 2-party FSS for the function
class F consisting of all point functions, namely all functions f : {0, 1}n → G

that evaluate to 0 on all but at most one input.

Definition 3 (Distributed Point Function). A point function fα,β, for
α ∈ {0, 1}n and β ∈ G, is defined to be the function f : {0, 1}n → G such that
f(α) = β and f(x) = 0 for x �= α. We will sometimes refer to a point function
with |β| = 1 (resp., |β| > 1) as a single-bit (resp., multi-bit) point function. A
Distributed Point Function (DPF) is an FSS for the family of all point functions,
with the leakage Leak(f̂) = (1n,G).

A concrete security variant. For the purpose of describing and analyzing
some FSS constructions, it is sometimes convenient (e.g., in [9]) to consider a
finite family F of functions f : Df → Rf sharing the same (fixed) input domain
and output domain, as well as a fixed value of the security parameter λ. We
say that such a finite FSS scheme is (T, ε)-secure if the computational indistin-
guishability requirement in Definition 2 is replaced by (T, ε)-indistinguishability,
namely any size-T circuit has at most an ε advantage in distinguishing between
Real and Ideal. When considering an infinite collection of such finite F , parame-
terized by the input length n and security parameter λ, we require that Eval and
Sim be each implemented by a (uniform) PPT algorithm, which is given 1n and
1λ as inputs.

2.4 Homomorphic Secret Sharing: A General Definition

Recall that HSS is a dual form of FSS. We now consider more general multi-
input HSS schemes that support a compact evaluation of a function F on shares
of inputs x1, . . . , xn that originate from different clients. More concretely, each
client i randomly splits its input xi between m servers using the algorithm Share,
so that xi is hidden from any t colluding servers (we assume t = m − 1 by
default). Each server j applies a local evaluation algorithm Eval to its share of
the n inputs, and obtains an output share yj . The output F (x1, . . . , xn) is recon-
structed by applying a decoding algorithm Dec to the output shares (y1, . . . , ym).
To avoid triviality, we consider various restrictions on Dec that force it to be
“simpler” than direct computation of F .

Finally, for some applications it is useful to let F and Eval take an additional
input x0 that is known to all servers. This is necessary for a meaningful notion
of single-input HSS (with n = 1) [8], and function secret sharing [6,9]. Typically,
the extra input x0 will be a description of a function f applied to the input of
a single client, e.g., a description of a circuit, branching program, or low-degree
polynomial. For the case of FSS, the (single) client’s input is a description of a
program and the additional input x0 corresponds to a domain element.

We now give our formal definition of general HSS. We give a definition in
the plain model; this definition can be extended in a natural fashion to settings
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with various forms of setup (e.g., common public randomness or a public-key
infrastructure, as considered in [10]). We follow the exposition of [11]. Recall
subscripts denote input (client) id and superscripts denote share (server) id.

Definition 4 (HSS). An n-client, m-server, t-secure homomorphic secret
sharing scheme for a function F : ({0, 1}∗)n+1 → {0, 1}∗, or (n,m, t)-HSS for
short, is a triple of PPT algorithms (Share,Eval,Dec) with the following syntax:

– Share(1λ, i, x): On input 1λ (security parameter), i ∈ [n] (client index), and
x ∈ {0, 1}∗ (client input), the sharing algorithm Share outputs m input shares,
(x1, . . . , xm).

– Eval
(
j, x0, (x

j
1, . . . , x

j
n)

)
: On input j ∈ [m] (server index), x0 ∈ {0, 1}∗ (com-

mon server input), and xj
1, . . . , x

j
n (jth share of each client input), the eval-

uation algorithm Eval outputs yj ∈ {0, 1}∗, corresponding to server j’s share
of F (x0;x1, . . . , xn).

– Dec(y1, . . . , ym): On input (y1, . . . , ym) (list of output shares), the decoding
algorithm Dec computes a final output y ∈ {0, 1}∗.

The algorithms (Share,Eval,Dec) should satisfy the following correctness and
security requirements:

– Correctness: For any n + 1 inputs x0, . . . , xn ∈ {0, 1}∗,

Pr

[∀i ∈ [n] (x1
i , . . . , x

m
i ) ← Share(1λ, i, xi)

∀j ∈ [m] yj ← Eval
(
j, x0, (x

j
1, . . . , x

j
n)
) : Dec(y1, . . . , ym) = F (x0;x1, . . . , xn)

]
= 1.

Alternatively, in a statistically correct HSS the above probability is at least
1 − μ(λ) for some negligible μ and in a δ-correct HSS (or δ-HSS for short) it
is at least 1 − δ − μ(λ), where the error parameter δ is given as an additional
input to Eval and the running time of Eval is allowed to grow polynomially
with 1/δ.

– Security: Consider the following semantic security challenge experiment for
corrupted set of servers T ⊂ [m]:
1: The adversary gives challenge index and inputs (i, x, x′) ← A(1λ), with

|x| = |x′|.
2: The challenger samples b ← {0, 1} and (x1, . . . , xm) ← Share(1λ, i, x̃),

where x̃ =

{
x if b = 0
x′ else

.

3: The adversary outputs a guess b′ ← A((xj)j∈T ), given the shares for
corrupted T .

Denote by Adv(1λ,A, T ) := Pr[b = b′] − 1/2 the advantage of A in guessing
b in the above experiment, where probability is taken over the randomness of
the challenger and of A.
For circuit size bound S = S(λ) and advantage bound α = α(λ), we say
that an (n,m, t)-HSS scheme Π = (Share,Eval,Dec) is (S, α)-secure if for all
T ⊂ [m] of size |T | ≤ t, and all non-uniform adversaries A of size S(λ), we
have Adv(1λ,A, T ) ≤ α(λ). We say that Π is:
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• computationally secure if it is (S, 1/S)-secure for all polynomials S;
• statistically α-secure if it is (S, α)-secure for all S;
• statistically secure if it statistically α-secure for some negligible α(λ);
• perfectly secure if it is statistically 0-secure.

Remark 1 (Unbounded HSS). Definition 4 treats the number of inputs n as being
fixed. We can naturally consider an unbounded multi-input variant of HSS
where F is defined over arbitrary sequences of inputs xi, and the correctness
requirement is extended accordingly. We denote this flavor of multi-input HSS
by (∗,m, t)-HSS. More generally, one can allow all three parameters n,m, t to
be flexible, treating them as inputs of the three algorithms Share,Eval,Dec.

Remark 2 (Comparing to FSS Definition). Function secret sharing (FSS) as per
Definition 2 can be cast in the definition above as (1,m)-HSS for the universal
function F (x;P ) = P (x), where P ∈ P is a program given as input to the client
and x is the common server input.

Note the security requirement for HSS in Definition 4 is expressed as an indis-
tinguishability guarantee, whereas the FSS definition from the previous section
(Definition 2) referred instead to efficient simulation given leakage on the secret
data. However, the two flavors are equivalent for every function family F and
leakage function Leak for which Leak can be efficiently inverted; that is, given
Leak(f̂) one can efficiently find f̂ ′ such that Leak(f̂ ′) = Leak(f̂). Such an inver-
sion algorithm exists for all instances of F and Leak considered in existing works.

As discussed, Definition 4 can be trivially realized by Eval that computes the
identity function. To make HSS useful, we impose two types of requirements on
the decoding algorithm.

Definition 5 (Additive and compact HSS). We say that an (n,m, t)-HSS
scheme Π = (Share,Eval,Dec) is:

– Additive if Dec outputs the exclusive-or of the m output shares. Alternatively,
if Dec interprets its m arguments as elements of an Abelian group G (instead
of bit strings), and outputs their sum in G.4

– Compact if the length of the output shares is sublinear in the input length when
the inputs are sufficiently longer than the security parameter. Concretely:

• We say that Π is g(λ, �)-compact if for every λ, �, and inputs
x0, x1, . . . , xn ∈ {0, 1}�, the length of each output share obtained by apply-
ing Share with security parameter λ and then Eval is at most g(λ, �).

• We say that Π is compact if it is g(λ, �)-compact for g that satisfies
the following requirement: There exists a polynomial p(·) and sublinear
function g′(�) = o(�) such that for any λ and � ≥ p(λ) we have g(λ, �) ≤
g′(�).

In the case of perfect security or statistical α-security with constant α, we
eliminate the parameter λ and refer to Π as being g(�)-compact.

4 In this case, we think of the function F and all HSS algorithms Share,Eval,Dec as
implicitly receiving a description of G as an additional input.
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Remark 3 (Other notions of compactness). One could alternatively consider a
stronger notion of compactness, requiring that the length of each output share
is of the order of the output length (whereas Definition 5 requires merely for
it to be sublinear in the input size). Every additive HSS scheme satisfies this
notion. HSS schemes that satisfy this notion but are not additive were used in
the context of private information retrieval and locally decodable codes in [2].
A different way of strengthening the compactness requirement is by restricting
the computational complexity of Dec, e.g., by requiring it to be quasi-linear in
the length of the output. See Sect. 4.1 (worst-case to average-case reductions)
for motiving applications.

Remark 4 (Special HSS Cases)

– We will sometimes be interested in additive HSS for a finite function F , such
as the AND of two bits; this can be cast into Definition 4 by just considering
an extension F̂ of F that outputs 0 on all invalid inputs. (Note that our
notion of compactness is not meaningful for a finite F .)

– As noted above, the common server input x0 is often interpreted as a “pro-
gram” P from a class of programs P (e.g., circuits or branching programs),
and F is the universal function defined by F (P ;x1, . . . , xn) = P (x1, . . . , xn).
We refer to this type of HSS as HSS for the class P.

3 Constructions of FSS and HSS

FSS/HSS constructions as of the writing of this survey (October 2017) are as
follows. Given complexity measures are with respect to n-bit inputs.

“Low End”: FSS from One-Way Functions

Here λ corresponds to a pseudorandom generator seed length, taken to be 128
bits in an AES-based implementation. Unless otherwise specified, for m = 2
servers.

– Point functions (“Distributed Point Functions”).
The class of point functions consists of those functions fα,β which evaluate
to β on input α and to 0 otherwise.

• Implicitly constructed in [15] with key size O(2εn) bits for constant ε > 0.
Formally defined and constructed recursively with key size O(nlog2(3)λ)
bits, in [28]. Improved to O(nλ) bits via tree-based solution in [6].

• Current best: Key size λ + n(λ + 2) − �log λ/|β|� bits, in [9].5

For m > 2 servers: nontrivial (but poor) key size O(2m2n/2λ) bits, in [6].

5 In particular: λ + n(λ + 2) for λ-bit outputs, and λ + n(λ + 2) − �log λ� for 1-bit
outputs.
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– Comparison and Intervals [6,9].
The class of comparison functions consists of those functions fa which output
1 on inputs x with a < x. Interval functions f(a,b) output 1 precisely for inputs
x that lie within the interval a < x < b, and 0 otherwise.
Constructions follow a similar structure as DPFs. Best key size for comparison
functions n(λ + 3) bits, for interval functions 2n(λ + 3) bits [9].

– NC0 predicates (i.e., functions with constant locality) [6].
For locality d, the key size grows as O(λ · nd). For example, this includes
bit-matching predicates that check a constant number of bits d.

– Decision trees [9].
A decision tree is defined by: (1) a tree topology, (2) variable labels on each
node v (where the set of possible values of each variable is known), (3) value
labels on each edge (the possible values of the originating variable), and (4)
output labels on each leaf node.
In the construction of [9], the key size is roughly λ · |V | bits, where V is the
set of nodes, and evaluation on a given input requires |V | executions of a
pseudorandom generator, and a comparable number of additions. The FSS
is guaranteed to hide the secret edge value labels and leaf output labels, but
(in order to achieve this efficiency) reveals the base tree topology and the
identity of which variable is associated to each node.
Constant-dimensional intervals. A sample application of FSS for deci-
sion trees is constant d-dimensional interval queries: that is, functions
f(x1, . . . , xd) which evaluate to a selected nonzero value precisely when
ai ≤ xi ≤ bi for some secret interval ranges (ai, bi)i∈[d]. For n-bit inputs
xi, FSS for d-dimensional intervals can be obtained with key size and com-
putation time O(λ · nd). For small values of d, such as d = 2 for supporting a
conjunction of intervals, this yields solutions with reasonably good concrete
efficiency.

We observe that FSS constructions for the function classes above can be com-
bined with server-side database operations, to emulate private database opera-
tions of richer function classes, such as Max/Min and top-k [40]. (See Sect. 4.2.)

“High End”: HSS from Public-Key Cryptography

– Branching programs (capturing logspace, NC1), for 2-servers, with inverse-
polynomial δ-correctness, from Decisional Diffie-Hellman (DDH) [8]. Evalua-
tion runtime grows as 1/δ.
Heavily optimized versions of this construction are given in [7,10].

– General circuits, from Learning With Errors (LWE) [6,23].
More specifically, in the language of Definition 4: Additive (n,m)-HSS for
arbitrary n,m and polynomial-size circuits can be obtained from the Learn-
ing With Errors (LWE) assumption, by a simple variation of the FSS con-
struction from spooky encryption of [23] (more specifically, their techniques
for obtaining 2-round MPC). See [11] for details.



Recent Advances in Function and Homomorphic Secret Sharing 13

(It was also previously shown how to achieve FSS for general circuits from
subexponentially secure indistinguishability obfuscation in [6].)

Intuition of Constructions. In the following two subsections, we present high-
level intuition behind two specific constructions: (1) the optimized OWF-based
DPF of [9], and (2) the DDH-based δ-HSS for branching programs of [8].

3.1 Overview: Distributed Point Function from OWF

We give an intuitive description of the (2-party) distributed point function (DPF)
(Gen•,Eval•) construction from [9] (following the text therein). Recall a DPF is
an FSS scheme for the class of point functions fα,β : {0, 1}n → G whose only
nonzero evaluation is fα,β(α) = β. For simplicity, consider the case of a DPF
with a single-bit output G = {0, 1} and β = 1.

Basic key structure. At a high level, each of the two DPF keys k0, k1 defines
a GGM-style binary tree [29] with 2n leaves, where the leaves are labeled by
inputs x ∈ {0, 1}n. We will refer to a path from the root to a leaf labeled by x
as the evaluation path of x, and to the evaluation path of the special input α as
the special evaluation path. Each node v in a tree will be labeled by a string of
length λ + 1, consisting of a control bit t and a λ-bit seed s, where the label of
each node is fully determined by the label of its parent. The function Eval• will
compute the labels of all nodes on the evaluation path to the input x, using the
root label as the key, and output the control bit of the leaf.

Generating the keys. We would like to maintain the invariant that for each
node outside the special path, the two labels (on the two trees) are identical, and
for each node on the special path the two control bits are different and the two
seeds are indistinguishable from being random and independent. Note that since
the label of a node is determined by that of its parent, if this invariant is met
for a node outside the special path then it is automatically maintained by its
children. Also, we can easily meet the invariant for the root (which is always on
the special path) by just explicitly including the labels in the keys. The challenge
is to ensure that the invariant is maintained also when leaving the special path.

Towards describing the construction, it is convenient to view the two labels
of a node as a mod-2 additive secret sharing of its label, consisting of shares
[t] = (t0, t1) of the control bit t and shares [s] = (s0, s1) of the λ-bit seed s. That
is, t = t0 ⊕ t1 and s = s0 ⊕ s1. The construction employs two simple ideas.

1. In the 2-party case, additive secret sharing satisfies the following weak homo-
morphism: If G is a PRG, then G([s]) = (G(s0), G(s1)) extends shares of
the 0-string s = 0 into shares of a longer 0-string S = 0, and shares of a
random seed s into shares of a longer (pseudo-)random string S, where S is
pseudo-random even given one share of s.

2. Additive secret sharing is additively homomorphic: given shares [s], [t] of a
string s and a bit t, and a public correction word CW , one can locally compute
shares of [s ⊕ (t · CW )]. We view this as a conditional correction of the secret
s by CW conditioned on t = 1.
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To maintain the above invariant along the evaluation path, we use the two types
of homomorphism as follows. Suppose that the labels of the i-th node vi on
the evaluation path are [s], [t]. To compute the labels of the (i + 1)-th node,
the parties start by locally computing [S] = G([s]) for a PRG G : {0, 1}λ →
{0, 1}2λ+2, parsing [S] as [sL, tL, sR, tR]. The first two values correspond to labels
of the left child and the last two values correspond to labels of the right child.

To maintain the invariant, the keys will include a correction word CW for
each level i. As discussed above, we only need to consider the case where vi is
on the special path. By the invariant we have t = 1, in which case the correction
will be applied. Suppose without loss of generality that αi = 1. This means that
the left child of vi is off the special path whereas the right child is on the special
path. To ensure that the invariant is maintained, we can include in both keys
the correction CW (i) = (sL, tL, sR ⊕ s′, tR ⊕ 1) for a random seed s′. Indeed,
this ensures that after the correction is applied, the labels of the left and right
child are [0], [0] and [s′], [1] as required. But since we do not need to control
the value of s′, except for making it pseudo-random, we can instead use the
correction CW (i) = (sL, tL, sL, tR ⊕ 1) that can be described using λ + 2 bits.
This corresponds to s′ = sL ⊕ sR. The n correction values CW (i) are computed
by Gen• from the root labels by applying the above iterative computation along
the special path, and are included in both keys.

Finally, assuming that β = 1, the output of Eval• is just the shares [t] of the
leaf corresponding to x. A different value of β (from an arbitrary Abelian group)
can be handled via an additional correction CW (n+1).

3.2 Overview: δ-HSS for Branching Programs from DDH

We next give a simplified overview of the HSS construction from [8], following
exposition from [7]. Cast into the framework of Definition 4, this yields an addi-
tive public-key (∗, 2)-δ-HSS for the class of branching programs under the DDH
assumption.

For simplicity of notation (and for greater efficiency), we assume circular
security of ElGamal encryption. This assumption can be replaced by stan-
dard DDH by replacing ElGamal encryption with the circular secure public-
key encryption scheme of Boneh, Halevi, Hamburg, and Ostrovsky [5], as shown
in [8].

RMS Programs

The construction of [8] supports homomorphic evaluation of straight-line pro-
grams of the following form over inputs wi ∈ Z, provided that all intermediate
computation values in Z remain “small,” bounded by a parameter M (where the
required runtime grows with this size bound).

Definition 6 (RMS programs). The class of Restricted Multiplication
Straight-line (RMS) programs consists of a magnitude bound 1M and an arbi-
trary sequence of the four following instructions, each with a unique identifier id:
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– Load an input into memory: (id, ŷj ← ŵi).
– Add values in memory: (id, ŷk ← ŷi + ŷj).
– Multiply value in memory by an input value: (id, ŷk ← ŵi · ŷj).
– Output value from memory, as element of Zβ: (id, β, Ôj ← ŷi).

If at any step of execution the size of a memory value exceeds the bound M , the
output of the program on the corresponding input is defined to be ⊥. We define
the size of an RMS program P as the number of its instructions.

In particular, RMS programs allow only multiplication of a memory value
with an input (not another memory value). RMS programs with M = 2 are
powerful enough to efficiently simulate boolean formulas, logarithmic-depth
boolean circuits, and deterministic branching programs (capturing logarithmic-
space computations). For concrete efficiency purposes, their ability to perform
arithmetic computations on larger inputs can also be useful.

Encoding Zq Elements. Let H be a prime-order group, with a subgroup G of
prime order q (the DDH group). Let g denote a generator of G. For any x ∈ Zq,
consider the following 3 types of two-party encodings:

Level 1: “Encryption.” For x ∈ Zq, we let [x] denote gx, and �x�c denote
([r] , [r · c + x]) for a uniformly random r ∈ Zq, which corresponds to an ElGamal
encryption of x with a secret key c ∈ Zq. (With short-exponent ElGamal, c is a
160-bit integer.) We assume that c is represented in base B (B = 2 by default)
as a sequence of s digits (ci)1≤i≤s We let [[[x]]]c denote (�x�c , (�x · ci�c)1≤i≤s).
All level-1 encodings are known to both parties.

Level 2: “Additive shares.” Let 〈x〉 denote a pair of shares x0, x1 ∈ Zq such
that x0 = x1 + x, where each share is held by a different party. We let 〈〈x〉〉c

denote (〈x〉 , 〈x · c〉) ∈ (Z2
q)

2, namely each party holds one share of 〈x〉 and one
share of 〈x · c〉. Note that both types of encodings are additively homomorphic
over Zq, namely given encodings of x and x′ the parties can locally compute a
valid encoding of x + x′.

Level 3: “Multiplicative shares.” Let {x} denote a pair of shares x0, x1 ∈ G such
that the difference between their discrete logarithms is x. That is, x0 = x1 · gx.

Operations on Encodings

We manipulate the above encodings via the following two types of operations,
performed locally by the two parties:

1. Pair(�x�c , 〈〈y〉〉c) �→ {xy}. This pairing operation exploits the fact that [a] and
〈b〉 can be locally converted to {ab} via exponentiation.

2. Convert({z} , δ) �→ 〈z〉, with failure bound δ. The implementation of Convert
is also given an upper bound M on the “payload” z (M = 1 by default),
and its expected running time grows linearly with M/δ. We omit M from the
following notation.
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The Convert algorithm works as follows. Each party, on input h ∈ G, outputs
the minimal integer i ≥ 0 such that h · gi is “distinguished,” where roughly
a δ-fraction of the group elements are distinguished. Distinguished elements
were picked in [8] by applying a pseudo-random function to the description
of the group element. An optimized conversion procedure from [10] (using spe-
cial “conversion-friendly” choices of G ⊂ Z

∗
p and g = 2) applies the heuristic of

defining a group element to be distinguished if its bit-representation starts with
d ≈ log2(M/δ) leading 0’s; this was further optimized by considering instead the
(d + 1)-bit string 1||0d in [7]. Note that this heuristic only affects the running
time and not security, and thus it can be validated empirically. Correctness of
Convert holds if no group element between the two shares {z} ∈ G

2 is distin-
guished.

Finally, Convert can signal that there is a potential failure if there is a dis-
tinguished point in the “danger zone.” Namely, Party b = 0 (resp., b = 1)
raises a potential error flag ⊥ if h · g−i (resp., h · gi−1) is distinguished for some
i = 1, . . . , M .

Note that we used the notation M both for the payload upper bound in
Convert and for the bound on the memory values in the definition of RMS pro-
grams (Definition 6). In the default case of RMS program evaluation using base
2 for the secret key c in level 1 encodings, both values are indeed the same.
(However, when using larger basis, they can differ in parts of the computation,
and a more careful analysis can improve error bound guarantees.)

Let PairConv be an algorithm that sequentially executes the two operations
Pair and Convert above: PairConv(�x�c , 〈〈y〉〉c, δ) �→ 〈xy〉, with error δ. We denote
by Mult the following algorithm:

– Functionality: Mult([[[x]]]c, 〈〈y〉〉c, δ) �→ 〈〈xy〉〉c

• Parse [[[x]]]c as (�x�c , (�x · ci�c)1≤i≤s).
• Let 〈xy〉 ← PairConv(�x� , 〈〈y〉〉c, δ

′) for δ′ = δ/(s + 1).
• For i = 1 to s, let 〈xy · ci〉 ← PairConv(�xci�c , 〈〈y〉〉c, δ

′).
• Let 〈xy · c〉 =

∑s
i=1 Bi−1 〈xy · ci〉.

• Return (〈xy〉 , 〈xy · c〉).

HSS for RMS Programs

Given the above operations, an additive δ-HSS for RMS programs is obtained
as follows. This can be cast as HSS in Definition 4 with a key generation setup.

– Key generation: Gen(1λ) picks a group G of order q with λ bits of
security, generator g, and secret ElGamal key c ∈ Zq. It output pk =
(G, g, h, �ci�c)1≤i≤s, where h = gc, and (ek0, ek1) ← 〈c〉, a random additive
sharing of c.

– Share: Share(pk, x) uses the homomorphism of ElGamal to compute and
output [[[x]]]c.

– RMS program evaluation: For an RMS program P of multiplicative size
S, the algorithm Eval(b, ekb, (ct1, . . . , ctn), P, δ, β) processes the instructions



Recent Advances in Function and Homomorphic Secret Sharing 17

of P , sorted according to id, as follows. We describe the algorithm for both
parties b jointly, maintaining the invariant that whenever a memory variable
ŷ is assigned a value y, the parties hold level-2 shares Y = 〈〈y〉〉c.

• ŷj ← x̂i: Let Yj ← Mult([[[xi]]]c, 〈〈1〉〉c, δ/S), where 〈〈1〉〉c is locally com-
puted from (ek0, ek1) using 〈1〉 = (1, 0).

• ŷk ← ŷi + ŷj : Let Yk ← Yi + Yj .
• ŷk ← x̂i · ŷj : Let Yk ← Mult([[[xi]]]c, Yj , δ/S).
• (β, Ôj ← ŷi): Parse Yi as (〈yi〉 , 〈yi · c〉) and output Oj = 〈yi〉 + (r, r)

mod β for a fresh (pseudo-)random r ∈ Zq.
The confidence flag is ⊥ if any of the invocations of Convert raises a potential
error flag, otherwise it is �.

The pseudorandomness required for generating the outputs and for Convert is
obtained by using a common pseudorandom function key that is (implicitly)
given as part of each ekb, and using a unique nonce as an input to ensure that
different invocations of Eval are indistinguishable from being independent.

A single-input (“secret-key”) HSS variant is simpler in two ways. First, Share
can directly run Gen and generate [[[x]]]c from the secret key c. Second, an input
loading instruction ŷj ← x̂i can be processed directly, without invoking Mult, by
letting Share compute Yj ← 〈〈xi〉〉c and distribute Yj as shares to the two parties.

Performance. The cost of each RMS multiplication or input loading is dom-
inated by s + 1 invocations of PairConv, where each invocation consists of Pair
and Convert. The cost of Pair is dominated by one group exponentiation (with
roughly 200-bit exponent in [7]). The basis of the exponent depends only on
the key and the input, which allows for optimized fixed-basis exponentiations
when the same input is involved in many RMS multiplications. When the RMS
multiplications apply to 0/1 values (this is the case when evaluating branching
programs), the cost of Convert is linear in BS/δ, where the B factor comes from
the fact that the payload z of Convert is bounded by the size of the basis. When
δ is sufficiently small, the overall cost is dominated by the O(BS2s/δ) “conver-
sion” steps, where each step consists of multiplying by g and testing whether
the result is a distinguished group element.

4 Applications and Implications

In this section, we turn to implications of FSS and HSS constructions. We begin
by describing what is known about the relation of FSS/HSS to other primitives,
and then address applications of both “low-end” and “high-end” construction
regimes.

4.1 Relation to Other Primitives

Below are the primary known theoretical implications of FSS/HSS primitives.

One-way functions. FSS for any “sufficiently rich” function class F (e.g., point
functions) necessitates the existence of OWF [28]. Further, in such an FSS, each
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output share fi viewed as a function on its own must define a pseudorandom
function [6]. Note that this is not a-priori clear from the security definition,
which only requires that the shares hide f .

(Amortized) Low-communication secure computation. It was shown
in [6] that FSS for a function class F strictly containing the decryption circuit for
a secure symmetric-key encryption scheme implies amortized low-communication
protocols for secure two-party computation of a related function class, relying
on a reusable source of correlated randomness (that can be realized via one-time
offline preprocessing). Given HSS for F , the same result holds without needing
to amortize over the preprocessing.6

At the time of this result, all known approaches for obtaining such proto-
cols relied on fully homomorphic encryption or related primitives, and as such
this was viewed as a “barrier” against achieving such FSS without FHE. In an
interesting twist, this was reversed by the work of [8], which succeeded in con-
structing a form of HSS for NC1 (and thus succinct secure computation) from
DDH.

However, the “barrier” still seems legitimate as evidence against the possi-
bility of constructing general FSS/HSS (or even classes such as NC1 or possibly
AC0) from weak cryptographic assumptions such as the existence of one-way
functions or oblivious transfer.

Non-interactive key exchange (NIKE) & 2-message oblivious trans-
fer (OT). The power of additive multi-input HSS (where inputs from different
parties can be homomorphically computed on together; c.f. Definition 4) seems
to be much greater than its single-input counterpart. Whereas constructions for
single-input HSS exist for some function classes from OWF, to date all construc-
tions of multi-input HSS rely on a select list of heavily structured assumptions:
DDH, LWE, and obfuscation [8,23].

It appears this is in some sense inherent: As shown in [11], even a mini-
mal version of 2-party, 2-server additive HSS for the AND of two input bits
implies the existence of non-interactive key exchange (NIKE) [21], a well-studied
cryptographic notion whose known constructions are similarly limited to select
structured assumptions. NIKE is black-box separated from one-way functions
and highly unlikely to be implied by generic public-key encryption or oblivious
transfer.

On the other hand, this same type of (2, 2)-additive-HSS for AND is unlikely
to be implied by NIKE, as the primitive additionally implies the existence of 2-
message oblivious transfer (OT) [8], unknown to follow from NIKE alone. Further
connections from HSS to 2-round secure computation have been demonstrated
in [10,11].

Worst-case to average-case reductions. A different type of implication of
HSS is in obtaining worst-case to average-case reductions in P . Roughly speak-
ing, the HSS evaluation function Eval for homomorphically evaluating a function
6 Recall in HSS the secret share size scales with input size and not function description

size.
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F defines a new function F ′ such that computing F on any given input x can be
reduced to computing F ′ on two or more inputs that are individually pseudo-
random (corresponding to the HSS secret shares of x). A similar application was
pointed out in [17] using fully homomorphic encryption (FHE) (and a signifi-
cantly weaker version in [28] using DPF). Compared to the FHE-based reduc-
tions, the use of HSS has the advantages of making only a constant number of
queries to a Boolean function F ′ (as small as 2), and minimizing the complexity
of recovering the output from the answers to the queries. The latter can lead
to efficiency advantages in the context of applications (including the settings of
fine-grained average-case hardness and verifiable computation; see [11]). It also
gives rise to worst-case to average-case reductions under assumptions that are
not known to imply FHE, such as the DDH assumption.

4.2 Applications in the One-Way Function Regime

FSS in the “low-end” regime has interesting applications to efficient private
manipulation of remotely held databases, extending the notions of Private Infor-
mation Retrieval (PIR) [16] and Private Information Storage (PIS) [35] to more
expressive instruction sets. Recently, FSS has also been shown to yield concrete
efficiency improvements in secure 2-party computation protocols for programs
with data-dependent memory accesses. We describe these in greater detail below.

Multi-server PIR and secure keyword search. Suppose that each of m
servers holds a database D of keywords wj ∈ {0, 1}n. A client wants to count
the number of occurrences of a given keyword w without revealing w to any
strict subset of the servers. Letting G = Zm+1 and f = fw,1 (the point function
evaluating to 1 on target value w), the client can split f into m additive shares
and send to server i the key ki describing fi. Server i computes and sends back
to the client

∑
wj∈D fi(wj). The client can then find the number of matches by

adding the m group elements received from the servers. Standard PIR corre-
sponds to the same framework with point function fi,1 for target data index i.
In this application, FSS for other classes F can be used to accommodate richer
types of search queries, such as counting the number of keywords that lie in an
interval, satisfy a fuzzy match criterion, etc. We note that by using standard
randomized sketching techniques, one can obtain similar solutions that do not
only count the number of matches but also return the payloads associated with
a bounded number of matches (see, e.g., [36]).

Splinter [40]. In this fashion, FSS for point functions and intervals are the core of
the system Splinter [40] of Wang et al., serving private search queries on a Yelp
clone of restaurant reviews, airline ticket search, and map routing. On top of the
functionalities offered directly by the FSS, the system supports more expressive
queries, such as MAX/MIN and TOP-k, by manipulating the database on the
server side such that a point function/interval search on the modified database
answers the desired query. (Here the type of query is revealed, but the search
parameters are hidden.) Splinter reports end-to-end latencies below 1.6 s for
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realistic workloads, including search within a Yelp-like database comparable to
40 cities, and routing within real traffic-map data for New York City.

Incremental secret sharing. Suppose that we want to collect statistics about
web usage of mobile devices without compromising the privacy of individual
users, and while allowing fast collection of real-time aggregate usage data. A
natural solution is to maintain a large secret-shared array of group elements
between m servers, where each entry in the array is initialized to 0 and is incre-
mented whenever the corresponding web site is visited. A client who visits URL
u can now secret-share the point function f = fu,1, and each server i updates
its shared entry of each URL uj by locally adding fi(uj) to this share. The end
result is that only position uj in the shared array is incremented, while no collu-
sions involving strict subsets of servers learn which entry was incremented. Here
too, applying general FSS can allow for more general “attribute-based” writ-
ing patterns, such as secretly incrementing all entries whose public attributes
satisfy some secret predicate. The above incremental secret sharing primitive
can be used to obtain low-communication solutions to the problem of private
information storage [35], the “writing” analogue of PIR.

Riposte [18]. FSS for point functions on a 220-entry database are used in this
way in the anonymous broadcast system Riposte of Corrigan-Gibbs et al. [18].
Roughly, in the system each user splits his message msg as a point function
fr,msg for a random position index r ∈ [220]. Shares of such functions across
many users are combined additively by each server, and ultimately the aggregate
is revealed. FSS security guarantees that the link from each individual user to
his contributed message remains hidden.

Protecting against malicious clients. In some applications, malicious clients may
have incentive to submit bogus FSS shares to the servers, corresponding to illegal
manipulations of the database. This can have particularly adverse effects in
writing applications, e.g., casting a “heavy” vote in a private poll, or destroying
the current set of anonymous broadcast messages. Because of this, it is desirable
to have efficient targeted protocols that enable a client to prove the validity of
his request before it is implemented, via minimal interaction between the client
and servers. Such protocols have been designed for certain forms of DPFs and
related settings in [9,18].

Secure 2-party computation (2PC) of RAM programs. A standard chal-
lenge in designing secure computation protocols is efficiently supporting data-
dependent memory accesses, without leaking information on which items were
accessed (and in turn on secret input values). Since the work of [35], this is typi-
cally addressed using techniques of Oblivious RAM (ORAM) [31] to transform a
memory access to a secret index i from data size N into a sequence of polylog(N)
memory accesses whose indices appear independent of i. Indeed, a line of works
in the past years have implemented and optimized systems for ORAM in secure
computation.

Floram [39]. In a surprising recent development, Doerner and shelat [39]
demonstrated an FSS-based 2PC system that—despite its inherent poor O(N)
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asymptotic computation per private access of each secret index i (instead of
polylog(N))—concretely outperforms current ORAM-based solutions.

In their construction, similar to use of ORAM in 2PC, the two parties in the
secure computation act as the two servers in the FSS scheme, and an underlying
(circuit-based) secure computation between the parties emulates the role of the
client. The core savings of their approach is that, while overall computation
is high, the emulation of “client” operations in the FSS requires a very small
secure computation in comparison to prior ORAM designs (up to one hundred
times smaller for the memory sizes they explore). Their implemented 2PC system
Floram [39] (“FSS Linear ORAM”) outperforms the fastest previously known
ORAM implementations, Circuit ORAM [41] and Square-root ORAM [43], for
datasets that are 32 KiB or larger, and outperforms prior work on applications
such as secure stable matching [24] or binary search [32] by factors of two to ten.

4.3 Applications in the Public-Key Regime

In the “high-end” regime, HSS can serve as a competitive alternative to FHE
in certain application settings. Fully homomorphic encryption (FHE) [26,37] is
commonly viewed as a “dream tool” in cryptography, enabling one to perform
arbitrary computations on encrypted inputs. For example, in the context of
secure multiparty computation (MPC) [3,13,30,42], FHE can be used to mini-
mize the communication complexity and the round complexity, and shift the bulk
of the computational work to any subset of the participants. However, despite
exciting progress in the past years, even the most recent implementations of
FHE [14,25,33] are still quite slow and require large ciphertexts and keys. This
is due in part to the limited set of assumptions on which FHE constructions can
be based [12,22,27], which are all related to lattices and are therefore susceptible
to lattice reduction attacks. As a result, it is arguably hard to find realistic appli-
cation scenarios in which current FHE implementations outperform optimized
versions of classical secure computation techniques (such as garbled circuits)
when taking both communication and computation costs into account.

A main motivating observation is that unlike standard FHE, HSS can be use-
ful even for small computations that involve short inputs, and even in application
scenarios in which competing approaches based on traditional secure computa-
tion techniques do not apply at all.

Advantages of HSS. As with FHE, HSS enables secure computation proto-
cols that simultaneously offer a minimal amount of interaction and collusion
resistance. However, the optimal output compactness of HSS makes it the only
available option for applications that involve computing long outputs (or many
short outputs) from short secret inputs (possibly along with public inputs). More
generally, this feature enables applications in which the communication and com-
putation costs of output reconstruction need to be minimized, e.g., for the pur-
pose of reducing power consumption. For instance, a mobile client may wish to
get quickly notified about live news items that satisfy certain secret search crite-
ria, receiving a fast real-time feed that reveals only pointers to matching items.
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Further advantages of group-based HSS over existing FHE implementations
include smaller keys and ciphertexts and a lower startup cost.

HSS Applications

Applications of HSS include small instances of general secure multiparty compu-
tation, as well as distributed variants of private information retrieval, functional
encryption, and broadcast encryption. Exploring concrete such applications (and
optimizing the DDH-based δ-HSS construction) is the primary focus of [7].

Secure MPC with minimal interaction. Using multi-input HSS, a set of
clients can outsource a secure computation to two non-colluding servers by using
the following minimal interaction pattern: each client independently sends a sin-
gle message to the servers (based on its own input and the public key), and
then each server sends a single message to each client. Alternatively, servers
can just publish shares of the output if the output is to be made public. The
resulting protocol is resilient to any (semi-honest) collusion between one server
and a subset of the clients, and minimizes the amount of work performed by the
clients. It is particularly attractive in the case where many “simple” computa-
tions are performed on the same inputs. In this case, each additional instance of
secure computation involves just local computation by the servers, followed by
a minimal amount of communication and work by the clients.

Secure data access. HSS yields several different applications in the context of
secure access to distributed data. For example, HSS can be used to construct a
2-server variant of attribute based encryption, in which each client can access
an encrypted file only if its (public or encrypted) attributes satisfy an encrypted
policy set up by the data owner. Other sample applications include 2-server pri-
vate RSS feeds, in which clients can receive succinct notifications about new data
that satisfies their encrypted matching criteria, and 2-server PIR schemes with
general boolean queries. These applications benefit from the optimal output com-
pactness feature of HSS discussed above, minimizing the communication from
servers to clients and the computation required for reconstructing the output.

Unlike competing solutions based on classical secure computation techniques,
HSS-based solutions only involve minimal interaction between clients and servers
and no direct interaction between servers. In fact, for the RSS feed and PIR
applications, the client is free to choose an arbitrary pair of servers who have
access to the data being privately searched. These servers do not need to be aware
of each other’s identity, and do not even need to know they are participating
in an HSS-based cryptographic protocol: each server can simply run the code
provided by the client on the (relevant portion of) the data, and return the
output directly to the client.

Correlated randomness generation. An interesting application scenario is
where the target output itself is an additive secret sharing. HSS provides a
method for non-interactively generating sources of correlated randomness that
can be used to speed up classical protocols for secure two-party computation.
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Concretely, following a setup phase, in which the parties exchange HSS shares of
random inputs, the parties can locally expand these shares (without any commu-
nication) into useful forms of correlated randomness. The non-interactive nature
of the correlated randomness generation is useful for hiding the identities of the
parties who intend to perform secure computation (e.g., against network traffic
analysis), as well as the time and the size of the computation being performed.

Useful correlations considered in [7] include bilinear correlations (which cap-
ture “Beaver triples” as a special case) and truth-table correlations. The work
of [7] also proposes further compression of communication in the setup phase by
using homomorphic evaluation of local PRGs, and present different approaches
for improving its asymptotic computational complexity. However, this PRG-
based compression is still in the theoretical regime (too slow to be realized with
good concrete running time using the current implementation of group-based
HSS).

5 Future Directions

The study of FSS/HSS is a rapidly expanding new field of research, which con-
tinues to surprise and reveal even further layers of mystery. This survey is by no
means a comprehensive coverage of all that is known, but rather seeks to facili-
tate future study by providing a semi-centralized resource with helpful pointers.

We close with a selection of open problems, as well as an excitement (on
behalf of the author) for what is yet to come.

5.1 Open Problems

– Improved FSS from OWF
• Improved DPF efficiency and/or lower bounds?
• OWF-based FSS for CNF/DNF formulas? Better FSS for decision trees?
• 3-server DPF with better than 2n/2 key size?
• Separations between OWF and FSS for new function classes F?

– Improved HSS from DDH
• Better error-to-computation tradeoff (in share conversion step of Eval)?
• DDH-based error-free HSS for branching programs?
• DDH-based δ-HSS for circuits (or anything beyond branching programs)?
• DDH-based HSS for >2 servers?

– New types of constructions
• FSS/HSS from new assumptions?
• HSS from LWE without going through FHE?

– Applications & Implementations
• Better optimizations for implementation?
• Implementation of “high-end” HSS-based applications?
• New application settings of FSS & HSS?
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Abstract. Evaluating the practical security of Ring-LWE based cryp-
tography has attracted lots of efforts recently. Indeed, some differences
from the standard LWE problem enable new attacks. In this paper we dis-
cuss the security of Ring-LWE as found in Fully Homomorphic Encryp-
tion (FHE) schemes. These FHE schemes require parameters of very
special shapes, that an attacker might use to its advantage. First we
present the specificities of this case and recall state-of-the-art attacks,
then we derive a new special-purpose attack. Our experiments show that
this attack has unexpected performance and confirm that we need to
study the security of special parameters sets carefully.

Keywords: Homomorphic encryption · Concrete security
Implementation · Ring-LWE

1 Introduction

The Learning With Errors over Rings (Ring-LWE) problem has been introduced
by [LPR10] as a ring variant of the Learning With Errors due to Regev [Reg05].
Both problems enjoy security reductions to hard lattice problems (SIVP for LWE
and SVP in ideal lattices for Ring-LWE), so they serve as hardness grounds
for many cryptographic constructions, among others homomorphic encryption.
See the survey from Peikert [Pei15] for an extensive retrospective. Today, the
paramount question, that still stands in the way to practical use, concerns the
security of concrete instances of these problems. Namely, how shall one choose
parameters for these problems to meet a security level objective, say 80 bits of
security?

Homomorphic encryption (HE) is a type of encryption that allows to com-
pute over encrypted data. The result, once decrypted, equals that of the same
computation done over the plain data. HE enables many new applications
because one no longer needs to trust the computing entity, e.g. cloud ser-
vice providers. Fully homomorphic encryption (FHE) was first achieved by the
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ground-breaking works of Gentry [Gen09] and Aguilar et al. [AMGH10]. Since
then, huge efforts have been spent and have led to numerous scheme propos-
als, e.g. [vDGHV10,BGV12,FV12,GSW13,DS15,DM15,CGGI16]. Some of the
most efficient ones are now implemented, for early users: HElib [Hal], SEAL
[DGBL+15], FV-NFLlib [Cry]. These efficient schemes are known secure under
the assumption that Ring-LWE is intractable. For an application, the parame-
ters need to be chosen to guarantee the expected security level. This choice of
parameters is also constrained so that the scheme itself works.

Related work: This need for a better understanding of the Ring-LWE security, in
practice, has already driven some studies. For example, Albrecht et al. [APS15]
offer a complete overview of the known attacks against LWE. They also give
estimates of their costs against some LWE-based cryptographic schemes, not only
FHE. We recall them briefly below for our later discussion. Another more recent
line of work has been developed against Ring-LWE specifically, taking advantage
of the underlying ring structure, see [Pei16] for a summary and guidelines to draw
immune parameters.

Today, the estimates we can use to choose parameters are from the works of
Lindner and Peikert [LP11] or Van de Pol and Smart [vdPS13]. Also Albrecht
et al. maintain an LWE security estimator based on models of state-of-the-art
attacks1. However none of them include special-purpose attacks for FHE settings.

Our work: It seems to us that a focus on Ring-LWE-based FHE scheme is needed.
As we see later, in order to keep correctness in the homomorphic schemes, an
application designer needs to pick very special parameters. It seemed unclear to
us what concrete advantage an attacker might have in such cases. Our contribu-
tion aims at filling this gap. After reviewing state-of-the-art attacks, we derive
a new one, specially designed for this case, and present experimental results.

Roadmap: Introducing notation and definitions in Sect. 2, we review the state-
of-the-art of the attacks against Ring-LWE in Sect. 3. In Sect. 4 we present our
new attack in details, its performance in Sect. 5 and draw some conclusions in
Sect. 6.

2 Preliminaries

2.1 Notation

For a positive integer q > 0 we note Zq the set of elements {0, . . . , q − 1}.
For n > 0 integer, the matrix In refers to the identity matrix of size n.

Capital bold letters are used for matrices, e.g. B, and small ones for (row)
vectors, e.g. v. We similarly write B for a matrix or for the ordered family of
(row) vectors B = (b1,b2, . . . ,bn) using bold subscripts. For a vector v, we
refer to its components with italic subscripts vi.

1 https://bitbucket.org/malb/lwe-estimator/overview.

https://bitbucket.org/malb/lwe-estimator/overview
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When dealing with a polynomial p of degree n − 1, we use the coefficient
embedding and assimilate it as a coordinate vector: p = (p1,p2, . . . ,pn). We will
work with polynomials in polynomial ring R = Z[x]/(f(x)) for some f ∈ Z[x].
We denote Rq the set of polynomials in R with coefficients in Zq.

2.2 Lattices

General definitions. In general, a lattice L of dimension n is a discrete additive
subgroup of Rn. Integer lattices are discrete additive subgroups of Zn. In this
paper we only work with the integer lattices and simply call them lattices.

Lattices (of size n) are usually represented by a basis B, a set of n indepen-
dent integer vectors (b1,b2, . . . ,bn) of size n whose integer linear combinations
generate the lattice.

L(B) =

{
n∑

i=1

vibi : vi ∈ Z

}
=

{
BTv : v ∈ Z

n
}

= BZ
n

In our lattices, B is always a square integer matrix, B ∈ Z
n×n. For most of

the discussion we restrict to this full rank definition and will make it explicit
when working with greater generating families.

An invariant of a lattice is its determinant det(L). It is defined as the absolute
value of the determinant of any of its bases.

det(L) = |det(B)|

Gram-Schmidt Orthogonalization (GSO). We refer several times to the GSO
of a basis. This algorithm takes the matrix to orthogonalize and outputs the
resulting matrix B� and a matrix μ (lower triangular with 1 on the diagonal)
such that : B = μ × B�. We construct B� so that its vectors verify:

– b�
1 = b1

– b�
i is the projection of bi orthogonally to the subspace generated by the i− 1

first vectors of B.

It works in polynomial time in the size of the matrix.

q-ary lattices. When studying LWE and Ring-LWE problems, the lattices we
mostly work with are called q-ary, because they are defined modulo some integer
q (not necessarily prime). These lattices are defined as follows:

Lq(B) =

{
n∑

i=1

vibi mod q : vi ∈ Z

}

=
{
BTv mod q : v ∈ Z

n
}

Hence, since we are working modulo q, we can equivalently consider that all
the components of B and v are in Zq.
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Lattice reduction. As we discuss below, working with lattices is better when we
have nice bases. Therefore we have lattice reduction algorithms that, given a
basis, make it nicer according to some criteria. There is a wealth of studies on
this computational problem.

We usually consider the following criteria and say that a basis is:

– η-size-reduced if ∀i < j, |(bj|b�
i )| ≤ η . ‖b�

i ‖2
– δ-LLL-reduced if it is size-reduced and ∀i, δ‖b�

i ‖2 ≤
(
‖b�

i+1‖2 + (bi+1|b�
i )

2

‖bi
�‖2

)
– β-BKZ-reduced if it is LLL-reduced and for all j, b�

j is the shortest vector of
the sublattice spanned by (bj, . . . ,bk) with k = min(j + β − 1, n)

We have algorithms to achieve such reductions:

– The celebrated LLL algorithm from Lenstra et al. [LLL82], running in poly-
nomial time of the dimension and the size of the elements. Improvements
have been proposed since then and are available in current implementations
[NS05].

– The Blockwise Korkine-Zolotarev algorithm [SE94,CN11] achieves BKZ
reduction. It makes a polynomial (in n) call to a SVP oracle in a sublat-
tice of size β. It behaves roughly as a sub-exponential in the basis quality
[GN08b] and uses LLL as a sub-routine.

– Slide Reduction [GN08a] is another block algorithm, in the spirit of BKZ, but
simpler to express and analyze, whose performance approaches that of BKZ
[MW15].

The quantity we usually use to measure the reduction quality, indepen-
dently of the algorithm, is the root Hermite factor γ. It is defined as: ‖b1‖ =
γn det(L)1/n where b1 is the smallest vector of the basis we qualify. The higher
the quality, the smaller it gets.

2.3 Learning with Errors and Ring Variant

We recall here the definitions of the Learning With Errors problem [Reg05] and
the Ring-LWE variant [LPR10]. Both exist in a search version and a decision
version.

Definition LWE. Let n, q be positive integers, χ a probability distribution on
Z of standard deviation σ and s a secret random vector in Z

n
q . We denote by Ls,χ

the probability distribution on Z
n
q ×Zq obtained by choosing a ∈ Z

n
q uniformly at

random, choosing e ∈ Z according to χ and considering it in Zq, and returning
(a, c) = (a, 〈a, s〉 + e) ∈ Z

n
q × Zq.

Decision-LWE is the problem of deciding whether given pairs (a, c) are sam-
pled according to Ls,χ or the uniform distribution on Z

n
q × Zq.

Search-LWE is the problem of recovering s from pairs (a, c) sampled from
Ls,χ.
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Definition Ring-LWE. Let R be a ring of degree n over Z (usually R =
Z[x]/(f(x)) for some cyclotomic polynomial f(x)). Let q be a positive integer,
χ a probability distribution on R of standard deviation σ and s a secret ran-
dom element in Rq. We denote by Ls,χ the probability distribution on Rq × Rq

obtained by choosing a ∈ Rq uniformly at random, choosing e ∈ R according to
χ and considering it in Rq, and returning (a, c) = (a, [a · s + e]q) ∈ Rq × Rq.

Decision-Ring-LWE is the problem of deciding whether given pairs (a, c) are
sampled according to Ls,χ or the uniform distribution on Rq × Rq.

Search-Ring-LWE is the problem to recovering s from pairs (a, c) sampled
from Ls,χ.

The hardnesses of (Ring-)LWE problems depend on the three variables n,
σ and q. The hardness reductions presented in the introductory papers stands
when σ > 2

√
n. Besides that, we aim to establish a link between a choice of

parameters and the provided security level, in the context of FHE.

2.4 Ring-LWE Based FHE Schemes

Since the works of Gentry [Gen09] and Aguilar et al. [AMGH10], lots of homo-
morphic encryption schemes have been proposed. They can be divided into two
families: those based on integers and those based on lattices. LWE and Ring-
LWE serve as building ground for the latter family. Generally, those based on
Ring-LWE derive from an equivalent scheme on LWE and are more efficient in
terms of space and/or time. The most common Ring-LWE based schemes are:
[BGV12], [FV12] and SHIELD [KGV15].

For expository purpose, we recall here only elements of the [FV12] scheme.
The discussion remains valid for all schemes as well. The interested reader should
refer to the original papers for extensive details about the schemes. In our present
study, we are interested in the elements that will be the attack target, namely
the public key. In [FV12] the key generation process goes as follows:

1. FV.ParameterChoice(λ): choose (n, σ, q) to guarantee of level of security λ
and set R = Z[x]/(Φn(x))

2. FV.KeyGen(n, σ, q): sample s ← R2, a ← Rq, e ← χ and output

sk = s and pk = ([−(a · s + e)]q,a)

Security. Let aside the sign of the first element, the public key pk is exactly
a Ring-LWE pair as described above. The objective of the attacker is to solve
search-Ring-LWE (i.e. find s) when given access to this public key and the public
parameters (n, σ, q and R).

Correctness. The condition for the scheme to be correct (i.e. decryption yields
a result consistent with the computation) is [FV12, Eq. 6]:

4 · β(ε) · δLmax
R · (δR + 1.25)Lmax+1 · tLmax−1 <

q

σ
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where

– Lmax is the maximum multiplicative depth before bootstrapping is needed.
– t is the size of the plaintext space (Rt).
– δR = max{‖a · b‖/(‖a‖ · ‖b‖) : a,b ∈ R}, e.g. δZ[x]/(xn+1) = n.
– β(ε) is such that the error samples are bounded by B = β(ε) · σ with proba-

bility 1 − ε, e.g. β(2−64) ≈ 9.2.

As a result of this constraint, we can see that q will have to be very large, in
front of σ, to conserve correctness with interesting depth, say L = 9. To prevent
q from being enormous, many authors tend to take σ very tiny, e.g. 3.2 or 8.
However, this completely violates the bound σ > 2

√
n required for the hardness

reductions to hold [LPR10].

3 Existing Attacks

In January 2015, Albrecht et al. [APS15] aimed at assessing the concrete hardness
of LWE and provided an excellent survey of the state-of-art approaches as of
this date. These methods apply also to Ring-LWE. We recall here, from a high
level perspective, the different families of methods, together with more recent
attacks when such exist. The sections of their paper contains extensive details
and are therefore mentioned here as reference for the interested reader. Then we
briefly present the attacks targeting Ring-LWE specifically and summarized in
the recent survey [Pei16].

Bruteforce on s. Attempting an exhaustive search is always possible, yet rarely
efficient to solve the problem if the parameter choice is sound. For completeness
they express the time complexity of such attack, in general [APS15, Sect. 5.1]
and in the case where ||s|| ≤ 1 [APS15, Sect. 6.1]. There are better performing
methods, as follow.

Distinction. In [APS15, Sect. 5.3], they present a way to distinguish LWE sam-
ples from uniformly random samples, as stated by the Decision-LWE problem.
However this does not directly recover the secret.

Arora-Ge Attack [AG11]. A purely algebraic attack [APS15, Sects. 5.6 and 6.5],
this one consists in constructing from LWE samples a polynomial whose root is
the secret. It is particularly efficient in cases where ||e|| is very small, for example
binary errors. For this case however, we are outside of the domain of validity of
the hardness reduction from [Reg05] which requires σ > 2

√
n.

Blum-Kalai-Wasserman [BKW03]. This combinatorial method works like the
Gauss elimination procedure [APS15, Sects. 5.2 and 6.4]. It requests many sam-
ples, searches collisions between parts of these samples and gradually creates
linear combinations where more and more components equal 0. At the end, the
combination allows to deduce the secret. This method has been improved a lot
since its original presentation. To date, the best is from Guo et al. [GJS15]. Due
to the number of samples required, we do not consider this attack further. Indeed
we prefer to assume availability of only the public key and see what can be done.
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Decoding. In LWE samples, Gaussian errors can be considered bounded, with
high probability, by a sufficiently large bound. An approach is then to use
decoding algorithms to remove the error. This addresses the LWE problem as a
Bounded-Distance Decoding (BDD) instance in a specially crafted lattice. The
BDD problem asks to recover the lattice point closest to a given one (not in the
lattice), with the promise that the target point is close to the lattice [APS15,
Sect. 5.4].

Decoding with Embedding. Another technique to cope with the difficulties of
direct decoding is to embed the lattice into another. The latter has higher dimen-
sion and more properties that enable some optimizations. Two embeddings are
presented: one in the general case [APS15, Sect. 5.5] by Kannan [Kan87] and one
in the specific case of ||s|| ≤ 1 [APS15, Sect. 6.3] from [BG14].

Using the Ring Structure. Several recent works [EHL14,ELOS15,CLS15,CIV16]
use the underlying ring structure to attack Ring-LWE. Peikert describe a unified
framework that encompasses all these attacks and sort them into two classes:
reduction to errorless LWE and reduction modulo an ideal for which decision-
Ring-LWE is tractable [Pei16]. Consequently, we know some rings to be vulner-
able and others to be immune.

4 Our New Attack

Out of these surveys, we conclude to keep the decoding attacks. Algebraic attacks
are not usable within the bounds of hardness reductions [Reg05,LPR10] and
combinatorial attacks require too many samples, we let them aside. In the case
of [FV12], the secret is small, ||s|| ≤ 1, so when it comes to embedding, the
solution [BG14] is best.

4.1 Bai-Galbraith Embedding Improved

We detail here a slightly improved version of this embedding.
Let (A,b = AT s+ e mod q) be a LWE instance for some n, q and σ. As we

derive the matrix A from a single Ring-LWE sample (the key), we fix m = n,
A ∈ Z

n×n. Write A′ = (A|In), being a n × 2n matrix. We have the following
equality

b = A′
(
s
e

)
mod q

where ( s
e ) is a short vector with respect to q.

Clearly for w = ( 0
b ) we have A′w = b. We then try to approximate this

vector w by a point v0 from the lattice L′ defined by

L′ =
{
v ∈ Z

2n : A′v = 0 mod q
}
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For such a vector v0, we have v0 ≈ w so w − v0 is a short vector (with
respect to q) and

A′(w − v0) mod q = A′w − A′v0 mod q

= b − 0 mod q

= b

Consequently we have w−v0 = ( s
e ). Hence, finding v0 in L′ allows us to recover

s (and also e). We can use BDD algorithms for this, if we have a basis B for L′.
We obtain it by embedding as follows:

BT =
(

In 0
−A qIn

)
∈ Z

2n×2n

It can be verified that the columns of this matrix are linearly independent
and each of them satisfies the definition of L′, so B is a basis of L′.

This slightly differs from what Bai and Galbraith did. They introduced the
matrix

M =

⎛
⎝ In

qI2n
−A

⎞
⎠ ∈ Z

2n×3n

and compute its column Hermite Normal Form to end up with a full rank matrix
generating the lattice. Our trick avoids this HNF computation and yields a basis
for L′ more efficiently2.

After the embedding part, we leave untouched the rescaling operation from
[BG14]. Since ||s|| ≤ 1 whereas the standard deviation for e is σ (which is
not small as discussed above), the components of the difference w − v0 are
unbalanced. Therefore we multiply the n first components of the basis vectors.
It makes the lattice reduction easier, the difference more balanced and still short
(with respect to q). Consequently the next stage of the attack works in the lattice
whose basis is

BT =
(

σIn 0
−A qIn

)
∈ Z

2n×2n

4.2 Lattice Reduction

Once the embedding and rescaling are done, the next step is to find the closest
point v0 to w in L′. The existing algorithms for BDD require a somehow reduced
basis of the lattice, otherwise they are completely impracticable. Since our basis
B in its present form verifies none of the criteria for reduction given at the
beginning Sect. 2.2, we need to reduce it. We detail here the different options
and our strategy.

Lattice reduction has been studied for long since it is very useful in crypt-
analysis, integer programming, to cite only a few. The first and celebrated work of
2 Computing the HNF of a matrix is not an intense computation, but can be avoided.

See [SL96] for a complexity analysis.
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Lenstra et al. [LLL82] presented a polynomial time algorithm for lattice reduc-
tion, whose output quality suffices for many applications. Since then, several
blockwise algorithms have been introduced, the best performing are BKZ [CN11]
and Slide Reduction [GN08a]. Both achieve better output quality than LLL but
have worse time complexities. Since BDD becomes quicker with a better reduced
basis, we need to find a trade-off between the time spent on the reduction step
and on the BDD step, so that the overall attack time is minimized. Therefore,
an attacker might attempt to use LLL first and if the BDD step takes too much
time, try a stronger reduction algorithm. Same discussion apply when the algo-
rithm is fixed, the attacker can tweak its parameters and achieve different output
qualities at different computational costs.

The attacker may also look for specialised lattice reduction algorithm since
the previous ones work for any lattices and do not take advantage of any struc-
ture in them. To the best of our knowledge, the only specialized algorithm that
fits our case is the variant from Gama et al. [GHGN06]. The lattices it reduces
are symplectic. Denoting J2n =

(
0 In

−In 0

) ∈ Z
2n×2n, a lattice with basis B is

symplectic if and only if BT J2nB = J2n The bases of our case are indeed sym-
plectic, as can be verified. So this variant of LLL would be interesting to try.
The authors reported a speed-up factor of nearly 10 when compared to reference
implementation of classical LLL. However the code is not available, so we were
not able to use it in our tests.

In the next section we present the details of our experiments on algorithms
and parameters. Our conclusion is that for our case, the BDD step is successful
even when we only perform an LLL reduction with quite weak parameters. This
fact is absolutely no general conclusion. Here we are in a specific case, our basis
B has several properties (integer, upper triangular, blockwise upper triangular
with scaled identity on the diagonal, etc.) and so do our parameters n, σ and q.

4.3 Pruned Enumeration for BDD

Finally, to find v0 in L′ close to w with the reduced basis, we use Liu-Nguyen
pruned enumeration [LN13]. To our knowledge pruned enumeration is the best
performing algorithms in practice, see [HPS11] for a description of the other
candidates.

This method of pruned enumeration is an adaptation to BDD of the extreme
pruning technique introduced by Gama et al. [GNR10]. This algorithm enumer-
ates lattice points that are close enough to the target, with a bound provided as
a pruning function. Since the enumeration works by adding one component at
a time to the current partial solution, we may define different bounds for each
positions. Unlike previous work [Bab86,LP11], Liu-Nguyen pruned enumeration
evaluates the heuristic on the projections of the current candidate and not on
its components.

This concludes the algorithmic description of our attack. We turn now to
implementation aspects and the results we get.
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5 Implementation and Results

In this section we present the implementation details of our new attack, described
in the previous section. Since we were able to use it successfully against many
[FV12] keys, we thoroughly analyse its performance and give out some conclu-
sions.

5.1 Implementation Details

In order to implement our attack, we use the following existing codes:

– Lepoint’s implementation [Lep14] of [FV12],
– Stehlé’s fplll [dt16] for lattice reduction algorithms,
– Shoup’s NTL [Sho15] for additional lattice operations.

Then, we implemented the embedding/rescaling, the pruned enumeration algo-
rithm from Liu-Nguyen (following their pseudo-code [LN13]) and created the
glue between the different libraries to lead the attack from beginning to end.

Lepoint’s implementation. In [LN14], in order to compare [FV12] and YASHE,
Lepoint implemented the code needed to use both schemes and perform homo-
morphic operations. We use his constructor method with light modification. It
allows us to create a public key pk = ([−(a · s + e)]q,a), given n, σ and q. The
attack aims to recover the secret when given the FVKey object as input.

From [FV12] to R-LWE lattice. From the a in the public key, we construct a
lattice basis A so that [a · s + e]q (polynomial operation) equals As + e mod q
(matrix/vector operation). For instance, with R = Z[x]/(xn + 1) we have:

AT =

⎛
⎜⎜⎜⎜⎜⎝

a1 a2 a3 · · · an

−an a1 a2 · · · an−1

−an−1 −an a1 · · · an−2

...
...

...
. . .

...
−a2 −a3 −a4 · · · a1

⎞
⎟⎟⎟⎟⎟⎠

Embedding and rescaling. Then we embed this matrix A into B following
Sect. 4.1. Rescaling is also done here. B is ready for the next stage.

Lattice reduction. For this step we rely on the different routines from fplll
[dt16]. Both LLL and BKZ algorithms are available and can be tweaked conve-
niently. We detail below the settings we experimented.

BDD enumeration. Finally, we implemented the pruned enumeration algorithm
from Liu-Nguyen to solve BDD in the reduced lattice L′. Later, we discovered
an undocumented implementation of enumeration in fplll, that we included in
our experiments.
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5.2 Attack Settings – Early Benchmarks

Before launching a full-scale attack, we run it on small cases. It allows us to
explore the choices we have, for algorithms and their parameters, for the different
stages.

Lattice Reduction Tweaking. State-of-the-art results [APS15] tell us that
strong reductions like BKZ is needed to make enumeration possible. Yet after
a few toy examples with BKZ as reduction algorithm, we realized that most of
the attack time was spent in the lattice reduction stage. So we tried different
settings for BKZ and LLL on cases where n ≤ 100.

Beginning with BKZ, we could confirm [CN11], an intermediate blocksize
β = 20 leads to moderate running times. Whereas smaller values like 5 or greater
like 40 lead to prohibitive running times. Even with such blocksize, the attack
time is not balanced between reduction and enumeration, so we rapidly shifted
to study LLL.

LLL algorithm is governed by two parameters δ and η. We recall the size
reduction condition and the Lovász condition from Sect. 2.2:

∀i < j, |(bj|b�
i )| ≤ η . ‖b�

i ‖2 with 1/2 ≤ η ≤
√

δ

∀i, δ‖b�
i ‖2 ≤

(
‖b�

i+1‖2 +
(bi+1|b�

i )
2

‖b�
i ‖2

)
with 1/4 ≤ δ ≤ 1

The default values in fplll are (δ, η) = (0.99, 0.51).

Optimising δ. First, we tried to decrease δ to loosen the Lovász condition, how-
ever with (0.75, 0.51) we gained only limited speedups and only for n ≥ 100, and
it had dramatic effect on the observed success rate of the overall attack. The
enumeration stage fails due to a lattice basis of insufficient quality.

Optimising η. Then we restored δ and experimented with an increased η ∈
[0.60, 0.98], to ease the size-reduction condition.

As we can see in Fig. 1, loosening the size reduction condition decreases the
running time of LLL. We observe a greater gain (in time) between 0.60 and 0.75
than between 0.75 and 0.95. In addition, with η = 0.95 we get a less successful
attack, whereas for η equal to 0.51 or 0.75 the observed success rates are similar.

Observed root Hermite factor. We report in Table 1 the quality we get with
reduction parameters δ = 0.99 and η = 0.71. As a reminder, the best proved γ
for LLL is γ = 1.0754 and Gama and Nguyen observed γ = 1.0219 for random
lattices of similar dimensions [GN08b]. In our case, we observe that LLL reduces
lattices to a very good quality, even with weak reduction parameters δ and η.

Enumeration Behavior. For the enumeration step, we use the technique
of pruned enumeration from [LN13]. Its only setting is the pruning function
(R2

1, . . . , R
2
2n). As we know precisely the expected distance between w and the
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Fig. 1. Execution time in seconds in term of n for different η

Table 1. Observed reduction quality for different lattice parameters

γ log2 q = 47 log2 q = 95

n = 50 1.00238 1.00129

n = 200 1.00300 1.00147

lattice point v0, w − v0 = ( σs
e ), we can set the bound R2n to the expected

norm of ( σs
e ). For a Gaussian error distribution we have with high probability

||e||2 ≤ n × (3σ2), so R2
2n = nσ2 + n(3σ)2 = 10nσ2.

In their paper, Gama et al. [GNR10] introduce three pruning functions: lin-
ear, step and piecewise linear, whose they study the resulting time complexity
and success probability. They also mention another pruning function obtained
by numerical optimization. In our case, we start with a linear pruning function
defined by R2

k = (k/2n)R2
2n.

One of the surprising finding of our experiments is that the enumeration
terminates with the first candidate solutions, in nearly every cases. Recall that
enumeration for BDD begins with getting a vector quite close to the target,
and then, enumerates around, towards the one which minimizes the distance.
So this first enumerated vector is equal to that outputed by Babai’s Nearest
Plane algorithm [Bab86]. It so happens that this solution falls below our pruning
bound for most of our test cases, and leads to a successful key recovery. Both our
implementation of BDD and fplll’s ClosestVector routine show this behavior.
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A qualitative explanation for this unexpected costless enumeration is that
the error norm (depending on σ) is very small compared to the Gram-Schmidt
vectors, whose norms highly depend on q. Consequently, the simple rounding
from Babai algorithm seems enough to get directly to the closest vector, compo-
nent by component. This result stands also for other FHE schemes, in all which
we have the same properties for σ and q.

5.3 Attacking Higher Dimensions

With these first conclusions we decided to go for a greater range of values
for n and q. In terms of possible circuit depth evaluation, this range covers
up to L = 13. We set the attack to an LLL reduction with δ = 0.99 and
η ∈ {0.51, 0.61, 0.71} and an enumeration limited to Nearest Plane, and launched
it for a few weeks.

Fig. 2. Execution time in seconds in terms of n and q for different η

With n up to 250 we see in Fig. 2 that with η = 0.71 the attack takes fairly less
time than 0.51, roughly 5 times less and still finishes successfully. This motivated
us to keep only the version η = 0.71 and continue to higher dimensions.

In the end we were able to successfully break [FV12] keys with n = 250 and
log q = 46.8 in 10 h, or n = 320 and log q = 68.7 in little less than 28 h, see Fig. 3.
Our result compares favorably with the work of Laine and Lauter [LL15], who
were able to recover a key in dimension 350 in 3.5 days, yet with a less generic
attack working for q very large (252) and σ very small (3.2).

Such parameters are not considered secure, even prior to our work. One would
take much greater n for instance. Yet they serve as good examples to understand
the performance of our special-purpose attack. When composed with an LLL
reduction and an enumeration with Nearest Plane, our proposal requires only a
polynomial number of operations (in the parameters of the lattice) to complete.
Moreover, the estimator from [APS15], which takes into account only generic
attacks, including the latest [Alb17], predicts one month of computation to break
such key.
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Fig. 3. Execution time in seconds in terms of n and q for η = 0.71

6 Conclusion

In this work, we aimed at assessing the practical security of FHE schemes based
on Ring-LWE. To us, this is a topic that needs more focus, since the requirements
of correctness in FHE lead to very special shape of Ring-LWE parameters. After
reviewing state-of-the-art attacks, we presented a new special-purpose attack
for the case at hands. Our experiments show that such attack has unexpected
performance: with only a polynomial number of steps, it successfully breaks keys
with parameters beyond toy sizes.

Our main results, on lattice reduction and enumeration in FHE cases, confirm
our opinion that attacker may have unexpected advantage in special situations.
Our result does not contradict the security reductions of Ring-LWE, but when
picking practical parameters, it is really important to consider such results. The
discussion about sizing parameters to guarantee a security level objective is far
from being closed. We hope we raise interest for this kind of work which is of
great importance to move forward with FHE implementation.
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Abstract. On the basis of a software implementation of Kummer based
HECC over Fp presented in 2016, we propose new hardware architectures.
Our main objectives are: definition of architecture parameters (type, size
and number of units for arithmetic operations, memory and internal
communications); architecture style optimization to exploit internal par-
allelism. Several architectures have been designed and implemented on
FPGAs for scalar multiplication acceleration in embedded systems. Our
results show significant area reduction for similar computation time than
best state of the art hardware implementations of curve based solutions.
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1 Introduction

Reducing the cost of asymmetric cryptography is a challenge for hardware imple-
mentation of embedded systems where silicon area is limited. Hyper-elliptic curve
cryptography (HECC [6]) is considered to be an interesting solution compared
to elliptic curve cryptography (ECC [12]). HECC requires smaller finite fields
than ECC at similar security level. For instance, size of field elements is divided
by two in genus-2 HECC solutions. But the number of field-level operations is
larger in HECC per key/scalar bit. Then comparisons depend a lot on curve
parameters, algorithm optimizations and implementation efforts.

HECC solutions based on Kummer surfaces (see [10] for details) demonstrate
promising improvements for embedded software implementations. In 2016, Renes
et al. presented in [24] a new Kummer-based HECC (KHECC) solution and its
implementation on microcontrollers with 30 to 70% clock cycles count reduction
compared to the best similar curve based solutions at equivalent security level.

To the best of our knowledge, there is no hardware implementation of this
recent KHECC solution. Below, we present hardware architectures for KHECC
c© Springer International Publishing AG 2017
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adapted from [24] for scalar multiplication and their FPGA implementations.
We study and evaluate the impact of various architecture parameters on the cost
and performances: type, size and number of units (arithmetic, memory, internal
communications); architecture topology; and exploitation of internal parallelism.
We target embedded applications where the FPGA bitstream cannot be changed
easily (trusting the configuration system at application level is complex) or pro-
totyping for ASIC applications. Then to provide flexible circuits at software level,
our solutions are designed for Fp with generic primes (where [24] only deals with
p = 2127 − 1). Several architectures have been designed and implemented on
different FPGAs for various parameters, and compared in terms of area and
computation time.

Our paper outline is as follows. Section 2 recalls background on KHECC and
introduces notations. Section 3 presents major elements of the work [24] used
as a starting point and discusses required adaptations for hardware implemen-
tation. Section 4 quickly presents our units selected for the architectures and
our tools used for design space exploration. Section 5 describes the proposed
KHECC architectures and their implementation results on different FPGAs.
Section 6 reports comparisons. Finally, Sect. 7 concludes the paper.

2 State-of-the-Art

HECC was introduced by Koblitz in [14] as a larger set of curves compared to
ECC with a generalization of the class of groups obtained from the jacobians
of hyper-elliptic curves. Subsequently, many HECC improvements have been
proposed. See book [6] for a complete presentation on HECC and book [12] for
ECC. Broadly speaking, field elements in HECC are smaller than in ECC for
a similar security level (e.g. 128-bit HECC on genus-2 curves is equivalent to
256-bit ECC). This reduction should directly benefit to HECC since the width
of field elements has a major impact on circuit area. But HECC requires more
field operations to achieve operations at curve level such as point addition (ADD)
and point doubling (DBL) for each scalar/key bit.

Many efforts have been made to reduce the cost of curve level operations in
HECC. For genus-2, one can refer to Lange [18], Gaudry [10], Bos et al. [5] and
Renes et al. [24] for instance. Table 1 reports a few costs for HECC and ECC
solutions. There were many works on F2n solutions at low security levels (fields
with 80–90 bits) in the past but very few on Fp at 128-bit security level until
recently in software (our goal is hardware implementation).

KHECC solutions from [24] are based on a Kummer surface KC of an hyper-
elliptic curve C defined over Fp. Curve C is defined using constant parameters
among which the “squared theta constants” (a, b, c, d) used during scalar multi-
plications. Points are represented by tuples of four n-bit coordinates in Fp where
±P = (xP : yP : zP : tP ) is the projection of P from C on KC .

In (H)ECC primitives such as signature or key exchange, the main operation
is the scalar multiplication [k]Pb of a base point Pb by a m-bit scalar or key k. In
embedded systems, scalar multiplication must be protected against side channel
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Table 1. Cost per key bit of curve level operations in various (H)ECC solutions (M
and S denote multiplication and square in the finite field).

Solution & source Field width [bit] ADD DBL

Fp ECC [4] �ECC 12M + 2S 7M + 3S

F2n HECC [18] �HECC ≈ 0.5�ECC 40M + 4S 38M + 6S

Fp KHECC [24] �HECC ≈ 0.5�ECC 19M + 12S

attacks (SCAs [20]). A popular protection against SCAs is the adaptation of
Montgomery ladder (ML) algorithm [22]. ML is constant time (i.e. computation
time of iterations does not depend on the key bit values) and uniform (i.e.
the exact same schedule of the exact same field operations is executed at each
iteration whatever the key bit values).

For KHECC hardware implementations (but also for more general HECC
solutions), designers have to face several questions. How one should exploit the
internal parallelism available at field level? Are few large and fast units more
efficient than several parallel small and slow units? How to select parameters in
a parallel architecture? Our work was related to those questions.

3 Hardware Adaptation of Renes et al. Solution

We based our work on the KHECC solution presented by Renes et al. at CHES
2016 [24] for software implementations of Diffie-Hellman key exchange and sig-
nature at 128-bit security level. Their solution optimizes the use of Kummer
surface of hyper-elliptic curve described by Gaudry [10].

3.1 Analysis of Renes et al. Solution

In [24], the prime for Fp is p = 2127 − 1 due to fast modular reduction algo-
rithms for Mersenne primes. The scalar size is m = 256 bits. ML algorithm
starts with most significant key bits first. Each iteration computes a couple of
points (±V1,±V2) of KC from the result of the previous iteration using curve
level operations CSWAP and xDBLADD. Using initial values ±V1 = (a : b : c : d)
and ±V2 = (xPb

: yPb
: zPb

: tPb
), the scalar multiplication computes

(±[k]Pb,±[k + 1]Pb).
The core operation in ML iterations is the modified pseudo-addition

xDBLADD combined differential double-and-add (see [24]). Given points
±V1,±V2 on KC , and base point ±Pb, it computes (±[2]V1,±(V1 + V2)) =
xDBLADD(±V1,±V2,±Pb). Based on the set of Fp operations described in Fig. 1,
xDBLADD has a constant time and uniform behavior.

The CSWAP operation consists in swapping the 2 input points (IN) of xDBLADD
and the 2 resulting points (OUT) depending on the current key bit value (see
Algorithm 7 in [24]). It does not involve any computation but it impacts SCA
aspects.
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Fig. 1. Fp operations in xDBLADD from [24] (IN/OUT are ±V1, ±V2 coordinates).

Renes et al. performed a smart selection of optimized curve parameters
(from [10]) to determine constants with reduced size: 16 bits instead of 127.
Then they use a dedicated optimized function for modular multiplication by
this type of constants in the software implementation.

Their implementations target low-cost microcontrollers: 8-bit AVR AT Mega
and 32-bit ARM Cortex M0. They report significant improvements over the best
known solutions. On Cortex M0, the clock cycles count is reduced by 27% for
key exchange and by 75% for scalar multiplication in signature. On AT Mega,
the corresponding reductions are respectively 32% and 71%.

3.2 Objectives and Constraints for Our Hardware Accelerators

Unlike Renes et al. [24], in the present paper we only propose hardware accel-
eration for scalar multiplication since this is the main operation in terms of
performance, energy consumption and security against SCAs (when the scalar
is the private key). As is frequently the case in a complete embedded system, we
assume that our hardware accelerator is coupled to a software implementation
for high level primitives (which are out of scope of this paper).

In order to design flexible hardware accelerators and to report results in a
general case, we target KHECC on generic prime fields. In [24] the selected prime
p = 2127 − 1 leads to very cheap modular reduction but it is very specific (there
is no Mersenne prime for slightly different security levels). Currently, we only
deal with generic primes but we plan to derive versions for specific ones (e.g.
pseudo-Mersenne) in the future. Field characteristic impacts the choice of curve
parameters. We propose to use material presented in the work from Gaudry [10]
to derive curves parameters and implementation constants.

One of our goal is to study hardware accelerators for scalar multiplication
at architecture level. KHECC offers some internal parallelism as illustrated in
Fig. 1. Groups of 4 to 8 Fp operations can be easily performed at the same
time with uniform and constant time schedules. In most of ECC solutions, fewer
operations can be performed in parallel. We will evaluate the impact of this
parallelism on the design of efficient accelerators with various trade-offs in terms
of area and computation time (see questions at end of Sect. 2).

This paper is not dedicated to protection against physical attacks. But we
target hardware accelerators where the execution of ML type of algorithms is
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actually constant time and uniform at low level. We will describe how we
designed some units to achieve this objective (not yet evaluated using real
attacks).

In order to provide hardware accelerators that can be easily adapted to other
application constraints and algorithms, we use a modular type of architectures
based on independent units (for arithmetic operations and internal storage); a
microcoded control; and an internal communication system based on multiplex-
ors (between some units). This type of modular architectures allows us to easily
explore many solutions in design space: type, size and number of units; size
of internal communications; scheduling impact on performances and security.
This choice also comes from the type of dedicated resources available in modern
FPGAs: small embedded multipliers (DSP slices/blocks), small embedded mem-
ory (BRAM: block RAM), dedicated multiplexors in routing resources. Archi-
tecture modularity also helps the debug and validation process of the proposed
solutions using a hierarchical method. First, we extensively and individually
simulate in HDL and evaluate on FPGAs all our units. Second, we extensively
simulate in HDL and evaluate on FPGAs the complete accelerator solutions.

4 Accelerator Units and Exploration Tools

Architecture modularity allows to explore a wide parameter space but it requires
huge efforts in terms of implementation and debug. First, we decided to design,
implement, validate, and optimize a small set of units for arithmetic operations,
memory and internal communications. They are presented in Sect. 4.1. Second,
based on this set of units, we designed specific tools for architecture level explo-
ration and evaluation. These tools are quickly described in Sect. 4.2.

4.1 Accelerator Units and Resources

There are several types of resources in our hardware accelerators:

– arithmetic units for field level operations (Fp addition, subtraction and mul-
tiplication with generic prime p in this work);

– memory unit(s) for storing intermediate values (Fp elements for points coor-
dinates), curve parameters and constants;

– a CSWAP unit in charge of scalar management and on-line schedule of operands
depending on scalar/key bit values;

– an internal communication system for data transfers between the units;
– a control based on a microcode running the architecture.

Multiplier (Mult): Prime p is generic and can be programmed in our archi-
tecture. Then, there is no low-cost modular reduction. We use the Montgomery
modular multiplication (MMM) proposed in [21]. Operands and product are
represented in Montgomery domain (MD)

{
(x × R) mod p, ∀x ∈ Fp

}
with

gcd(R, p) = 1 and R > p. We use MMM optimization methods from Orup [23]
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and Koc et al. [15] where internal high-radix computations reduce the amount of
data dependencies and partial product/reduction steps are interleaved to speed
up the multiplication with a slightly larger internal datapath.

In our target Xilinx FPGAs (see Sect. 5), there are embedded multipliers for
18 × 18 bits signed integers called DSP blocks/slices (in 2’s complement repre-
sentation). But for Fp computations, one can only use the 17 LSBs (all but the
“sign” bit). Then our datapath width must be a multiple of 17. We evaluated
that 34-bit word size for multiplication is interesting in our KHECC context
(smaller size leads to slow multipliers, larger size requires too many DSP slices).
For 34-bit words, operands and products are between 0 and 2p represented using
136 bits in MD (136 is the closest multiple of 17 and 34 larger than 127). Then
we can select R > 4p for speed purpose (as many works in state of the art).

For improving the efficiency of our accelerators, we used the hyper-threaded
multiplier version we proposed in [9] specially for KHECC. Hyper-threading
hides the latency in DSP slices at high frequency (when all internal registers are
activated). It computes 3 independent MMMs in parallel using 11 DSP slices
(17 × 17), 2 BRAMs and a few slices in 79 clock cycles at 360 MHz on Virtex 5.

Due to MD, all field elements, parameters and constants are 128-bit values
(contrary to [24] where shorter constants can be used). Using shorter constants
in hardware requires a specific unit and then a more complex control and smaller
overall frequency. Also for flexibility and frequency reasons, we only use generic
Fp multiplier Mult. For the same reasons, we avoid dedicated square units (for
generic p, MMM variants for square operation only lead to small improvements).

Similarly to state of the art solutions, final reduction from MD (0 ≤ x < 2p)
to “standard” Fp (0 ≤ x < p) is performed after the scalar multiplication (there
is no performance or security issue for this conversion).

Adder (AddSub): It performs both modular addition/subtraction ((x± y) mod
2p) in MD by setting a mode signal at operation start-up. Subtraction is imple-
mented by adding operand x with the 2’s complement of y operand (ȳ). The
reduced sum in MD (resp. difference), is obtained from the parallel computa-
tions r = x+ y (resp. r = x+ ȳ) and rp = r+2p (resp. rp = r+2p). The output
is r if 0 ≤ r < 2p, else rp. The range of r is determined from the value of the
output carry bit of r + 2p for addition and of x + ȳ for subtraction. We evalu-
ated the impact of AddSub units for several word sizes: 34, 68 and 136 bits. The
two large ones significantly reduce the overall frequency of the accelerator (due
to longer carry propagations). It seems that our target FPGAs are optimized
to handle word sizes around 32 bits but not for larger widths without costly
pipeline schemes. To enforce short combinatorial paths and simplify the control,
we set AddSub internal datapath width to warith = 34 bits as in Mult.

Memory: The accelerator uses internal memory(ies) for storing intermediate
values (Fp elements of points coordinates), curve parameters and some con-
stants (e.g. initial values (a : b : c : d)). To fit the internal width of arithmetic
units (warith = 34 bits) and BRAM width in Xilinx FPGAs (configurable into
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Table 2. Memory and internal communication width configurations.

Config w [bit] s [word] Cycle(s)/mem. op. BRAM(s)

w34 34 4 4 1

w68 68 2 2 2

w136 136 1 1 4

{1, 2, 4, 9, 18, 36} bits), we selected a memory configuration where words are
multiple of 34 bits to simplify the control and avoid interfaces. Due to the large
number of memory operations (read/write), we will show in Sect. 5 that a wider
memory reduces the number of clock cycles per memory operation of full 136-bit
values. We tested 3 configurations for the memory width (and internal commu-
nications see below) described in Table 2. The main parameter w (in bits) is the
internal width of memory words (and communications). Related parameter s is
the number of words required for storing a complete 136-bit value. Our BRAMs
are configured into 512 lines of 36 bits words (2 unused bits per word). Less
than 512 words are required for KHECC even in w34 configuration. Table 2 also
reports the clock cycles count of each memory operation and the memory area
(in BRAMs). For security reason, this internal memory in restricted to the accel-
erator and cannot be accessed from outside (inputs and outputs are handled by
a specific very small unit which is mute during scalar multiplications).

Internal Communications: The units are interconnected through a specific
internal communication system based on multiplexors (buses are not very effi-
cient in target FPGAs and lead to high capacitances switching which can be a
bad point for SCA protection). The communication system will be described in
Sect. 5. In order to explore cost and performance trade-offs, we used configura-
tions from Table 2 for the width in the internal communication system. Different
widths for memory and communications requires a very costly control. Then w is
shared for memory and communications. But for arithmetic units in this paper,
we evaluated that warith = 34 is the best choice for our KHECC accelerators.
For w68 and w136 configurations, small serial-parallel interfaces are added in the
arithmetic units to handle the width difference with communications.

CSWAP Unit: In algorithm 7 from [24] (called crypto scalarmult), the CSWAP
operation manages the scalar/key bits by swapping, or not, points ±V1 and ±V2

at the beginning and end of each ML iteration. We designed a dedicated unit for
this purpose. It reads 2 Fp elements as inputs (corresponding to one coordinate
of ±V1 and ±V2) and swaps them, or not, depending on the actual key bit
value for the current iteration. At the last iteration, CSWAP triggers a “end of
scalar multiplication” signal. In our CSWAP unit, there is no variable addresses
or key management in the accelerator control for security reasons (instructions
decoding does not depend on secret bits). For SCA protection, our CSWAP unit has
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been designed to ensure that there is always electrical activity in the pipelined
unit, communication system and memory between successive clock cycles even
if there is no swapping (read/write operations for one coordinate are interleaved
with those of the other coordinates). Our CSWAP unit (pipelined with internal
communications and memory) has a constant time and uniform behavior.

In the future, we will investigate the use of advanced scalar recoding schemes
on the performances and security against SCAs.

Accelerator Control: We defined a tiny ISA (instruction set architecture).
Instructions, detailed in Table 3, are read from the code memory and decoded to
provide control signals to/from units, communication system and memory. The
user program is stored into a small program memory (one BRAM). This type
of control provides flexibility, avoids long synthesis and place & route processes
(during modifications of user programs), and leads to fairly high frequencies on
the target FPGAs when using pipelined BRAMs and decoding.

Table 3. Instructions set for our accelerators.

Instruc. Description

read Transfer operands from memory to target unit and start computation

write Transfer result from target unit to memory

wait Wait for immediate clock cycles

nop No operation (1 clock cycle)

jump Change program counter (PC) to immediatecode address

end Trigger the end of the scalar multiplication

Instructions are 36-bit wide and our KHECC programs fit into one single
BRAM (<512 instructions). Instructions contain: 4-bit opcode, 3-bit unit index,
2-bit operation mode, two 9-bit memory addresses and 9-bit immediate value.

We implemented hardware loops, using small finite state machines (FSMs),
to handle s cycles during communication and memory operations and duration of
wait instruction. Instruction decoding does not handle or depend on the scalar
bit values for SCA protection (only the CSWAP unit handles secret bits).

Control resources include a few w-bit registers dedicated to external commu-
nications and initialization of memory parameters. They are very small and not
involved during scalar multiplications, then we do not detail them here.

In the future, we plan to explore other types of control (e.g. distributed or
FSM based solutions without microcode) for ASIC implementations.
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4.2 Tools for Exploration and Evaluation at Architecture Level

Several parameters must be specified at design time for each architecture:

– type and number of units (AddSub, Mult, CSWAP, memory);
– width w for internal memory and communications;
– topology of the architecture.

All units have been fully described in synthesizable VHDL for FPGA imple-
mentation (with optimizations for DSP slices and BRAMs). They can also be
tested and evaluated using cycle accurate and bit accurate (CABA) simulations.
Then the time model at every clock cycle and the hardware cost of each unit are
perfectly known (from implementation results).

Fully designing all possible architectures in VHDL is too time consuming. We
decided to define and use a hierarchical and heterogeneous method to efficiently
explore and validate numerous architectures.

Each architecture is described and simulated using a high-level model based
on a CCABA (critical CABA) specification1. The critical cycles at architecture
level are clock cycles where there are transitions in the control signals to/from
the units and their inputs/outputs. For functional units, this corresponds to
operands inputs, operation mode selection, start of computation, end of compu-
tation, and results outputs. The purely internal control signals inside the units
are not modeled in CCABA (since their behavior is perfectly determined in the
VHDL description and does not impact other parts of the accelerator).

A CCABA simulation tool has been developed in Python. Each unit is mod-
eled in Python to specify: (a) its mathematical behavior and (b) its behavior at
critical cycles based on the corresponding VHDL model (e.g. computation dura-
tion after start signal). For each unit, we need its complete VHDL and Python
CCABA models (both manually written). Our tool allows fast simulations of
complete scalar multiplications due to the hierarchical approach.

We also started the development of a tool to automatically schedule arith-
metic and memory operations as well as internal communications. Currently, it
uses a basic greedy algorithm to first feed the multipliers (due to their longer
latency). We plan to improve it in the future. The schedule gives the total clock
cycles count of a complete scalar multiplication.

We are able to quickly estimate the area and computation time of various
architectures. The estimated area sums up the VHDL results for all units instan-
tiated in the accelerator. The computation time is estimated by the total number
of clock cycles multiplied by the slowest unit period. We approximate the impact
of the control system (not yet designed in VHDL at this stage of the exploration)
based on our experience.

During the exploration, we perform this type of estimation for each accelera-
tor configuration to be evaluated. Then we select the most interesting solutions

1 Our CCABA model is inspired by Transaction Level Modeling (TLM) with full cycle
accuracy for all control signals at the architecture level but not inside the units (when
there is no input/output impact).
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for full implementation in VHDL, final validation, and accurate comparisons
(the corresponding results are presented in Sect. 5).

Once the accelerator has been fully implemented in VHDL, it is intensively
tested using both VHDL simulations and executions on FPGA cards against
reference values computed by SAGE mathematical software.

5 Proposed Architectures

We explored various configurations for parameters and architectures. We selected
4 architectures summarized in Table 4 and fully implemented them in VHDL on
several FPGAs. The corresponding results are reported in sub-sections below. We
began with a small and basic architecture A1 embedding the minimum number
of units. Then we explored optimizations and more parallel architectures. Archi-
tecture A2 uses an optimization of CSWAP unit (V2). Architecture A3 embeds 2
operators for each arithmetic operation (± and ×) to reach a higher parallelism
(notice that a single Mult already handles 3 sets of operands in parallel using
hyper-threading, see [9]). Architecture A4 is a cluster of parallel units for both
arithmetic operations and data memory operations, and V3 of CSWAP unit.

Table 4. Main characteristics of the 4 implemented and evaluated architectures.

Resources Architectures

A1 (Sect. 5.1) A2 (Sect. 5.2) A3 (Sect. 5.3) A4 (Sect. 5.4)

AddSub 1 1 2 2

Mult 1 1 2 2

CSWAP 1 V1 1 V2 1 V2 1 V3

Data memory 1 1 1 2

Communication system 1 1 1 2 with bridge

Program memory 1 1 1 1

Control 1 1 1 1

The Xilinx FPGAs listed in Table 5 were our implementation targets.
ISE 14.7 tools were used for synthesis and place & route, as well as SmartX-
plorer. V4/V5 FPGAs were used for comparison with state of the art. FPGA
S6 was used for low-cost solutions and imminent SCA evaluation on SAKURA
card [16]. In order to fairly compare area results, it should be remembered that
slice and look-up table (LUT) definition strongly depends on the FPGA fam-
ily, see examples in Table 5. Flip-flop (FF) means a 1-bit register. One LUT6 is
equivalent to 4 LUT4. Then slices in V4 or in V5/S6 should not be compared
directly.

For architectures A1–4, we report below implementation results for w34, w68,
w136 configurations on V4, V5, S6 FPGAs using 100 SmartXplorer runs.
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Table 5. Target FPGAs with some characteristics (fmax is the maximum frequency).

Short name Model Techno. [nm] Slice content fmaxDSP [MHz] BRAM capacity

LUT Flip-flop

V4 Virtex 4 VLX100 90 2 LUT4 2 500 18Kb

V5 Virtex 5 LX110T 65 4 LUT6 4 550 36Kb

S6 Spartan 6 SLX75 45 4 LUT6 4 390 18Kb

5.1 Architecture A1: Base Solution

Architecture A1, depicted in Fig. 2, corresponds to a basic Harvard processor
dedicated to the scalar multiplication derived from [24] with our modifications
detailed in Sect. 3.2. This is the smallest accelerator with only one instance of
each type of unit (AddSub, Mult, and CSWAP-V1 described in Sect. 4.1).

Fig. 2. Architecture A1 with its main units (arithmetic and memory), internal com-
munication system, and control (warning: areas of boxes are not on a real scale).

Architecture A1 was fully implemented in VHDL for the 3 widths w ∈
{34, 68, 136} on 3 FPGAs {V4, V5, S6}. The corresponding results are reported
in Table 6. Intensive VHDL simulations were used for validation.

Table 6 reveals a few trends:

– Width w has a small impact (at most 5% reduction) on the clock cycles count
since most of the time is spent into the single AddSub and Mult.

– Width w strongly impacts the area in LUTs (+50–70% for w68 compared
to w34, and +80–110% for w136 compared to w34 depending on the FPGA).
Clearly, enlarging the datapath requires more logic cells.

– The link between w and flip-flops numbers seems tricky. This is partly due to
the cost of serial-parallel interfaces between arithmetic operators (warith = 34)
and memory/communications (w68 the most complex case, and w136).
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Table 6. FPGA implementation results for architecture A1 (all BRAMs are 18 Kb
ones, only 17 × 17 multipliers were used in DSP slices for all FPGAs).

FPGA w [bit] LUT FF Logic slices DSP blocks RAM blocks Freq. [MHz] Clock cycles Time [ms]

V4 34 1010 1833 1361 11 4 322 194,614 0.60

68 1750 3050 2251 11 5 305 186,911 0.61

136 2281 3028 1985 11 7 266 184,337 0.69

V5 34 757 1816 603 11 4 360 194,614 0.54

68 1264 3033 908 11 5 360 186,911 0.52

136 1582 3008 940 11 7 360 184,337 0.51

S6 34 1064 1770 408 11 4 278 194,614 0.70

68 1555 2970 705 11 5 252 186,911 0.74

136 1910 2994 747 11 7 221 184,337 0.83

– The increase in BRAMs comes from the wider memory for configurations w68
and w136 (see Table 2).

– Frequency decreases when w increases due to longer combinatorial delays and
larger fanout. Depending on the FPGA, the reduction varies about 5–20%.
On V5, 360 MHz is the frequency for both the slowest unit and the complete
accelerator (the control does not impact the overall frequency for a small
accelerator which uses a small part of the complete FPGA).

As a conclusion for our smallest architecture, using large w is not interesting.
The reduction of the clock cycles count is canceled by the frequency drop for
w68 or w136. Hence, the best solution is always w34 for A1 on all tested FPGAs.

5.2 Architecture A2: CSWAP Optimization

Architecture A2 is similar to A1 where we modified the CSWAP unit, version V2
(the architecture schematic is the same as Fig. 2). The ML algorithm proposed
in [24] uses one CSWAP operation at the end of each iteration and another CSWAP
at the beginning of the next iteration with the same key bit operands. As there
is no computation between these 2 consecutive CSWAP operations, we propose to
merge them (this halves the calls to the CSWAP unit).

Our modified CSWAP-V2 uses 2 consecutive key bits: ki and ki−1 (scalar k
is used starting MSB first). There is no swapping when ki = ki−1, and swap-
ping when ki �= ki−1 (we just need one xor gate). The very first CSWAP-V2 call
is computed using bits 0 (current bit) and km−1 (“next” bit and MSB of k).
The proposed modification does not change security aspects against SCAs. The
accelerator is still constant-time and uniform. As for CSWAP in A1, we designed
CSWAP-V2 with a uniform activity pipeline (see CSWAP description in Sect. 4.1).

Complete implementation results for A2 are reported in Table 7. A2 shows a
similar behavior than A1 with respect to w variations. A few elements can be
noticed for A2 as summarized below:
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Table 7. FPGA implementation results for architecture A2 (all BRAMs are 18 Kb
ones, only 17 × 17 multipliers were used in DSP slices for all FPGAs).

FPGA w [bit] LUT FF Logic slices DSP blocks RAM blocks Freq. [MHz] Clock cycles Time [ms]

V4 34 872 1624 1121 11 4 330 184,374 0.56

68 1556 2637 1978 11 5 290 183,071 0.63

136 2161 3027 2100 11 7 327 183,057 0.56

V5 34 722 1605 541 11 4 360 184,374 0.51

68 1196 2620 840 11 5 360 183,071 0.51

136 1419 3009 944 11 7 360 183,057 0.51

S6 34 940 1559 381 11 4 293 184,374 0.63

68 1503 2565 553 11 5 262 183,071 0.70

136 1890 2981 667 11 7 283 183,057 0.65

– Clock cycles count in A2 is slightly smaller than A1 due to reduced number
of CSWAP operations.

– Frequency is slightly higher for large w compared to A1. Frequency variations
are smaller in A2 than A1.

– Computation time in A2 is slightly smaller than A1: −5–10% depending on
the FPGA. The best solution is obtained for small w (the 0.8% speed-up for
w68/w136 in V5 is not relevant due to the large area increase).

– Area (LUTs, FFs and slices) in A2 is slightly smaller than A1 due to a sim-
plified management of CSWAP operations: −5–13% depending on the FPGA.

– DSP slices and BRAMs are identical in A2 and A1 (not related to CSWAP-V2).

As a conclusion for architecture A2, the best configuration is always w34
for all tested FPGAs. This optimization is interesting since A2 is slightly more
efficient than A1 in terms of both speed and area (about 10%).

5.3 Architecture A3: Large Architecture

Architecture A3, depicted in Fig. 3, embeds more arithmetic units: 2 AddSub and
2 Mult units. It can perform up to 6 Fp multiplications in parallel (only 3 for
A1/A2) using our hyper-threaded Mult unit (see Sect. 4.1 and [9]).

Complete implementation results for A3 are reported in Table 8. A3 behaves
quite differently from A1/A2.

– Adding 1 AddSub and 1 Mult increases LUTs by 60–90% depending on the
FPGA and w. The second Mult adds 11 DSP slices and 2 BRAMs. This
confirms that Fp units constitute the largest resources in the accelerator.

– Frequency is slightly smaller in A3 than A2 due to larger fanout and more
complex control. The frequency drop for increasing w values is very small for
V4/V5 (less than 4%), and about 15% for S6.

– Unlike A1/A2, w has a large impact on the clock cycles count in A3: 34%
reduction for w68 compared to w34 and 36% for w136. More arithmetic oper-
ations in parallel put pressure on the memory and communication system. A
larger w allows to actually exploit more parallelism.
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Fig. 3. Architecture A3 with its main units (arithmetic and memory), internal com-
munication system, and control (warning: areas of boxes are not on a real scale).

Table 8. FPGA implementation results for architecture A3 (all BRAMs are 18 Kb
ones, only 17 × 17 multipliers were used in DSP slices for all FPGAs).

FPGA w [bit] LUT FF Logic slices DSP blocks RAM blocks Freq. [MHz] Clock cycles Time [ms]

V4 34 1462 2611 1783 22 6 294 188,218 0.64

68 2802 4367 3468 22 7 282 124,191 0.44

136 3768 5017 3660 22 9 285 119,057 0.42

V5 34 1262 2607 921 22 6 358 188,218 0.53

68 2290 4403 1409 22 7 345 124,191 0.36

136 2737 4978 1594 22 9 348 119,057 0.34

S6 34 1527 2503 668 22 6 265 188,218 0.71

68 2421 4267 1020 22 7 225 124,191 0.55

136 3007 4877 1131 22 9 225 119,057 0.53

– Computation time benefits from the reduction of clock cycles count for large
values of w: 25 to 35% reduction for w136 depending on the FPGA.

– A3 is faster than A2: from 16 to 35% depending on the FPGA. But this
speed-up comes at the expense of a larger area.

As a conclusion for architecture A3, there is no best solution but various
compromises in terms of area and speed. When area is limited, w34 is interesting
but computation time is 25–33% larger. When speed is the main objective, w68
and w136 lead to the fastest solutions but the area overhead is important.

5.4 Architecture A4: Clustered Architecture

A closer look at Fig. 1 shows that xDBLADD can be decomposed into 2 clusters of
Fp operations with few dependencies using the red dashed horizontal line (i.e.
one cluster above, one cluster below). Only 4 values have to be transferred from
bottom cluster to top one at each ML iteration.

Architecture A4, depicted in Fig. 4, was designed to exploit this decompo-
sition using a clustered accelerator. It also embeds a new optimization of the
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Fig. 4. Architecture A4 with its 2 clusters (units, data memory and local communi-
cation system), common control and new modification of CSWAP (warning: areas of
boxes are not on a real scale).

CSWAP unit described below. To lighten Fig. 4, control signals are not completely
drawn but represented by small circles. Constants values are duplicated in each
cluster memory when necessary (at no cost in BRAMs).

We added a new modification of the CSWAP behavior (V3). CSWAP operation
is replaced by 2 new swapping operations CS0 and CS1 (with 4 Fp operands):

– CS0(A,B,C,D) returns (A,B,C,B) if ki = 0, else it returns (C,D,A,D)
– CS1(A,B,C,D) returns (A,B,C,D) if ki = 0, else it returns (C,D,A,B).

The modification of the CSWAP behavior (V3) was associated to a new schedule
for xDBLADD presented in Fig. 5. This figure is simplified, each black line now
represents the communication of 4 operands from Fig. 1. H box represents a set
of 8 Fp additions/subtractions, and M box a set of 4 Fp multiplications (only 3 in
the top right upper box of Fig. 5). CS0 and CS1 are respectively in charge of the
first and last CSWAP-V3 of the original ML iteration. Square operations of the
original xDBLADD have been replaced by multiplications in the new solution (i.e.
A2×B is now A×B×A) since we do not implement dedicated square units. This
does not change the mathematical behavior nor the operations count compared
to A2/A3, but it allows to use A4 more efficiently. CS0 and CS1 operations also
act as “bridge” to exchange data between the 2 clusters when shared into a single
CSWAP-V3 unit as illustrated in Fig. 4.

Fig. 5. Modified xDBLADD formula for architecture A4 with the new CSWAP behavior.
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Table 9. FPGA implementation results for architecture A4 (all BRAMs are 18 Kb
ones, only 17 × 17 multipliers were used in DSP slices for all FPGAs).

FPGA w [bit] LUT FF Logic slices DSP blocks RAM blocks Freq. [MHz] Clock cycles Time [ms]

V4 34 1695 2950 2158 22 7 324 142,119 0.44

68 2804 4282 3184 22 9 290 128,021 0.44

136 3171 4994 3337 22 13 299 125,456 0.42

V5 34 1370 2953 1013 22 7 358 142,119 0.40

68 2095 4259 1358 22 9 337 128,021 0.38

136 2514 4952 1589 22 13 313 125,456 0.40

S6 34 1564 2089 758 22 7 262 142,119 0.54

68 2387 4030 1060 22 9 239 128,021 0.54

136 3181 4786 1136 22 13 251 125,456 0.50

Architecture A4 (Fig. 4) is based on two identical clusters. Each cluster con-
tains: 1 AddSub, 1 Mult, 1 data memory and 1 local communication system. The
shared CSWAP-V3 unit uses a 2-bit control mode to select the relevant swapping
pattern according to the dependency graph in Fig. 5. The control is shared for
the 2 clusters, management of ML iterations and external inputs/outputs (at
beginning/end of scalar multiplication).

Complete implementation results for A4 are reported in Table 9. A few ele-
ments are summarized below:

– Clock cycles count is reduced for w34 but slightly increased for w68 and w136
compared to A3. This is due to additional constraints on the scheduler for A4
since all units do not share a common memory and clusters can only exchange
data during the new modified CSWAP-V3.

– Frequency is higher in A4 compared to A3 in most of case (and very similar
in the other cases). This is due to a more local control and a smaller fanout
(most of signals are local to each cluster).

– Computation time is significantly reduced for small w values. For instance,
w34 leads to a similar speed than A3 but with much smaller architecture.

– On V5, the fastest solution is the intermediate configuration w68.
– DSP slices amount is exactly the same in A4 and A3 (both use 2 Mult units).
– BRAMs amount is larger in A4 than A3 due to the 2 local memories (one in

each cluster). The number of BRAMs increases with w accordingly to Table 2
configurations.

– Area results in terms of LUTs are quite different from previous architectures.
It increases for w34 (up to +15%) but decreases for w136 (up to −16%)
compared to A3.

– Adding a second memory unit allows parallel read/write accesses and helps
to quickly extract more parallel operations.

As a conclusion for architecture A4, selecting the right set of parameters
depends a lot on the objective (high speed or low cost) and the FPGA family.
When the main objective is selecting the absolute smallest accelerator, A4 is less
interesting then A3. When the main objective is selecting the absolute fastest
accelerator, A4 is interesting for low-cost S6 FPGA (but A3 is better for V4/V5).
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But in practice, A4 is interesting for accelerators almost as fast as the fastest
A3 but for much smaller area. For instance on V4, w34 configuration is only 5%
slower than the absolute fastest A3 solution with an area reduced by 55% in
LUTs and 22% in BRAMs.

6 Comparisons

Figure 6 reports all the implementation results for the 4 proposed architectures
and w configurations on 3 different FPGAs. This figure only reports LUTs for
area since there are only a very few different numbers of BRAMs and DSP slices
given in Table 10. The best configuration (architecture type, w) depends on the
objective (high speed or low area) and target FPGA. Then exploration tools
at architecture level are helpful for designers and users. For low-area solution,
A2 is always the best one. For high speed, A4 is a very good cost-performance
trade-off on V4 and S6 (A3 is the fastest on V5 but with a large area).

Fig. 6. Trade-offs for our architectures A1–4 in terms of area (LUTs) and computation
time for all w configurations and FPGAs (legend is top figure).

Most of hardware HECC implementations use curves over F2n with low secu-
rity levels (typically 81–89 bits fields). Table 11 reports some of them. None of
those HECC implementations embed hardware level protections against SCAs.
Some of them use algorithmic protections for scalar multiplication such as the
Montgomery ladder. Our Fp accelerators show similar computation times but
for a much higher security level (128 bits) on more recent FPGAs. To the best
of our knowledge, we found only one hardware implementation of HECC over
Fp in [1]. It is an 0.13µm ASIC implementation for 81-bit generic prime p with
502.8 ms computation time for scalar multiplication at 1 MHz. The very low
reported frequency makes comparisons quite difficult.

Directly comparing our accelerators with implementations of HECC over F2n

for much lower security level is not possible. Then, in Table 12, we report some of
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Table 10. Summary of our most interesting FPGA implementation results (those on
Pareto front from Fig. 6).

Archi. w [bit] Target Logic slices DSP blocks RAM blocks Freq. [MHz] Time [ms]

A2 34 V4 1121 11 4 330 0.56

A3 136 3660 22 9 285 0.42

A4 34 2158 22 7 324 0.44

A2 34 V5 541 11 4 360 0.51

A3 136 1594 22 9 348 0.34

A4 34 1013 22 7 358 0.40

A2 34 S6 381 11 4 293 0.63

A3 136 1131 22 9 225 0.53

A4 34 758 22 7 262 0.54

Table 11. FPGA implementation results for various HECC solutions over F2n from
state of the art (warning: security levels are much lower than our solutions). For F2n

DSP slices cannot be used. Values with a “*” are estimated number of RAM blocks
based on paper explanations.

Ref. Year Target n LUT FF Logic slices RAM blocks Freq. [MHz] Time [ms]

[3] 2006 Virtex 2Pro 83 20999 n.a. 11296 n.a. 166 0.5

[8] 2008 XC2V4000 83 n.a. n.a. 2316 6 125 0.31

[13] 2004 XC2V4000 89 8451 2178 4995 1 54 1.02

XC2V4000 89 16459 4437 9950 0 57 0.44

[25] 2006 Virtex 2Pro 83 n.a. n.a. 2446 1* 100 0.99

Virtex 2Pro 83 n.a. n.a. 6586 3* 100 0.42

[26] 2016 Virtex 2 83 n.a. n.a. 5734 n.a. 145 0.3

XC5V240 83 n.a. n.a. 5086 n.a. 175 0.29

[27] 2004 Virtex 2Pro 81 n.a. n.a. 4039 1 57 0.79

Virtex 2Pro 81 n.a. n.a. 7737 0 61 0.39

XC2V4000 81 n.a. n.a. 3955 1 54 0.83

XC2V4000 81 n.a. n.a. 7785 n.a. 57 0.42

[7] 2007 XC2V8000 113 n.a. n.a. 25271 n.a. 45 2.03

the best FPGA implementations results we found in the state of the art for ECC
solutions over Fp and 128 bits security level. In practice using hundred of DSP
blocks and BRAMs may not be a realistic solution for embedded systems. In [2]
several SCAs protections have been presented: DBL&ADD-always, ML, scalar
randomization, units with uniform behavior, randomization of memory addresses
and noise addition. Those protections impact the number of logic slices but not
those of DSPs and BRAMs (very huge is this work).

Compared to [19], a very optimized fast and compact solution from state
of the art using randomized Jacobian coordinates, our accelerator have a very
similar computation time (0.44 ms) but with 40% reduction in DSP and RAM
blocks and 53% reduction of logic slices on V4 FPGA (similar for V5).
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Table 12. FPGA implementation results for various ECC solutions over Fp and 128-bit
security level from state of the art.

Ref. Year Target p LUT FF Logic

slices

DSP

blocks

RAM

blocks

Freq.

[MHz]

Time [ms]

[2] 2014 XCV6FX760 NIST-256 32900 n.a. 11200 289 128 100 0.4

[11] 2008 XC4VFX12 NIST-256 2589 2028 1715 32 11 490 0.5

XC4VFX12 NIST-256 34896 32430 24574 512 176 375 0.04

[17] 2012 XC4VFX12 GEN-256 n.a. n.a. 2901 14 n.a. 227 1.09

XC5VLX110 GEN-256 n.a. n.a. 3657 10 n.a. 263 0.86

[19] 2013 XC4VLX100 GEN-256 5740 4876 4655 37 11 250 0.44

XC5LX110T GEN-256 4177 4792 1725 37 10 291 0.38

7 Conclusion and Future Prospects

We proposed the first hardware implementation of Kummer based HECC solu-
tion for 128-bit security level. Various architectures and parameters have been
explored using in-house tools. Several architectures with different amount of
internal parallelism have been optimized and fully implemented on 3 different
FPGAs. The obtained results lead to similar speed than the best curve based
solutions for embedded systems but with an area almost divided by 2 (−40% for
DSP and RAM blocks and −60% for logic slices). Those results were obtained
with generic prime fields and fully programmable architectures (which is not the
case in most of state of the art implementations).

In the future, we plan to optimize our tools and architectures, evaluate the
security against SCAs using real measurement setup, automate the control gen-
eration of the accelerator, and publish our architectures as open source hardware.
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Abstract. ChaCha is a family of stream ciphers that are very efficient on
constrainted platforms. In this paper, we present electromagnetic side-
channel analyses for two different software implementations of ChaCha20
on a 32-bit architecture: one compiled and another one directly written in
assembly. On the device under test, practical experiments show that they
have different levels of resistance to side-channel attacks. For the most
leakage-resilient implementation, an analysis of the whole quarter round
is required. To overcome this complication, we introduce an optimized
attack based on a divide-and-conquer strategy named bricklayer attack.

Keywords: ChaCha · Implementation · Side-channel attacks

1 Introduction

ChaCha [7] is a family of stream ciphers introduced by Daniel J. Bernstein in
2008. It is a variant of the Salsa20 family [8], which is part of the eSTREAM
portfolio [4], providing better diffusion for similar performances. ChaCha is an
ARX-based cipher, which means that it only uses modular additions, rotations
and bitwise XORs. It has been widely adopted for encryption, as well as for ran-
dom number generation in many operating systems (e.g. Linux, OpenBSD) and
protocols (e.g. SSH, TLS). Moreover, the upcoming version 1.3 of the Trans-
port Layer Security (TLS) protocol [35] will allow Authenticated Encryption
with Associated Data (AEAD) cipher suites only, leaving AES-CCM [31], AES-
GCM [37] and ChaCha20-Poly1305 [25] as the only three options. This update
should significantly increase the use of ChaCha in the near future. On top of
that, the Internet of Things (IoT) should be in favour of the ChaCha deployment
(e.g. Apple HomeKit for IoT devices [2]), since its instances are cheaper than
AES on microcontrollers that do not have any dedicated cryptographic hardware.
For instance, on Android phones, HTTPS connections from Chrome browsers to
Google now use ChaCha20-Poly1305 [12].
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As a result of its standardization, ChaCha is under close scrutiny with
regards to cryptanalysis, especially regarding differential attacks [3,14,28,38,40].
Recently, studies have been carried out to evaluate its physical security, espe-
cially regarding fault attacks [24,32]. However, only one side-channel analysis
has been proposed so far [21]. We believe that further work must be undertaken
in this field since ChaCha is particularly well suited for embedded devices.

Our Contribution. In this paper, we focus on the side-channel analysis of
ChaCha by taking two different implementations into consideration.

First, we investigate the OpenSSL C source code compiled on a 32-bit ARM
microcontroller. It results in a straightforward attack path, which consists in
targeting each 32-bit key word independently.

The second target is an assembly implementation which saves some memory
accesses. We highlight that, on the device under test (DUT), this slight modifi-
cation protects from the only side-channel attack published to date. Neverthe-
less, our implementation remains vulnerable even though attack paths are more
complex. We tackle this problem by introducing the bricklayer attack, which is
based on a divide-and-conquer approach, and emphasize that attacking from the
keystream rather than from the input is way more efficient.

Outline. First, we present the ChaCha family of stream ciphers before providing
an outline of side-channel attacks. Then, we describe our approaches on perform-
ing electromagnetic analyses depending on software implementations of ChaCha.
Subsequently, we present our practical results and discuss the feasibility of con-
ducting these attacks in real-world scenarios. Finally, we analyze the overhead
introduced by the masking countermeasure in the specific case of ChaCha20.

2 The ChaCha Family of Stream Cipher

As its predecessor, and unlike traditional stream ciphers, ChaCha does not have
an initilization phase since it works like a block cipher used in counter (CTR)
mode [18]. Its core is an ARX-based function which maps a 512-bit input block
to a 512-bit output key stream. Input blocks are built by arranging data in
a 4 × 4 matrix where each element is a 32-bit word. The encryption key fills
half of the matrix as it is 256-bit long, while the two remaining quarters are
respectively occupied by the inputs and the constant ‘expand 32-byte k’. This
constant aims at reducing the amount of data an attacker can control while the
inputs refer to a nonce which is built from the block counter and the initial
vector (IV) (Fig. 1).

The core function is defined by iterating several rounds on the input block,
where each round consists of four parallel quarter round (QR) operations. A QR
updates 4 words (i.e. a block quarter) as defined in Algorithm1 where � means
addition modulo 232, ⊕ means XOR and ≪ means left bitwise rotation.

Depending on the round number (enumerated from 0), each QR operates
either on a column, or on a diagonal. ChaChaR refers to a specific instance
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Fig. 1. ChaCha’s input block intialization

Algorithm 1. ChaCha quarterround(a, b, c, d)

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

where R rounds are used. Several variants are defined with 8, 12 or 20 rounds,
defining different trade-offs between security and performance. Recently, it has
been shown under certain assumptions that ChaCha12 is sufficiently secure to
ensure a 256-bit security level [14]. Nevertheless, ChaCha20 remains the most
widespread instance for security margins. In many implementations, ChaChaR
uses R

2 iterations of double rounds instead of R rounds, which consists in a
column round and a diagonal one.

(a) Even round (b) Odd round

On top of iterating several rounds on the input block, an additional step is
required. The reason is that while QRs scramble blocks beyond recognition, they
are invertible. Therefore, applying the reverse of each operation in the reverse
order leads to the original block and thus, the encryption key. ChaCha prevents
this by adding the original block to the scrambled one, word by word, in order
to generate the pseudo-random block. The whole encryption process is detailed
in Algorithm 2.

3 Background on Side-Channel Attacks

3.1 Correlation Electromagnetic Analysis

Cryptographic primitives are usually built to resist to mathematical cryptanaly-
sis or exhaustive key search. However, they are designed to be finally executed
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Algorithm 2. ChaChaR encryption
Require:

n-bit plaintext P
encryption key k
counter ctr
IV iv

Ensure: n-bit ciphertext C
for i from 0 to �n/512� do

B ← init(k, ctr, iv) � input block initialization
B′ ← B � working variable
for j from 0 to R

2
− 1 do

quarterround(B′
0, B

′
4, B

′
8, B

′
12) � column rounds

quarterround(B′
1, B

′
5, B

′
9, B

′
13)

quarterround(B′
2, B

′
6, B

′
10, B

′
14)

quarterround(B′
3, B

′
7, B

′
11, B

′
15)

quarterround(B′
0, B

′
5, B

′
10, B

′
15) � diagonal rounds

quarterround(B′
1, B

′
6, B

′
11, B

′
12)

quarterround(B′
2, B

′
7, B

′
8, B

′
13)

quarterround(B′
3, B

′
4, B

′
9, B

′
14)

end for
B ← B � B′ � final block addition
Ci ← Pi ⊕ B
ctr ← ctr + 1

end for

on a given processor with its own physical characteristics. Electronic circuits are
inherently leaky as they produce emissions that make it possible for an attacker
to deduce how the circuit works and what data is being processed. Because these
emissions are nothing more than side effects, their use to recover cryptographic
keys has been termed ‘side-channel attacks’. Since the publication of Differen-
tial Power Analysis (DPA) [23], it is common knowledge that the analysis of
the power consumed by the execution of a cryptographic primitive might reveal
information about the secret involved.

A few years later, Correlation Power Analysis (CPA) has been widely adopted
over DPA as it requires fewer traces and has been shown to be more efficient [11].
The principle is to target a sensitive intermediate state of the algorithm and try
to predict its value from the known input and different key guesses. Then, to
uncover the link between these predictions and the leakage measurements, the
Pearson correlation coefficient between these two variables is computed using
an appropriate leakage model. The Hamming weight (HW) and the Hamming
distance (HD) model are the most commonly used models to simulate the leakage
of a cryptographic device. For each key hypothesis, it results in a value between
−1 (total negative correlation) and 1 (total positive correlation) for every point
in time, indicating how much the prediction correlates with the recorded values
over several measurements. The formula of this coefficient is
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Corr (X, Y ) =
E (X · Y ) − E (X) · E (Y )√

E
(
(X − E (X))2

)
· E

(
(Y − E (Y ))2

) (1)

where E(X) is the expected value of the random variable X. Finally, the hypothe-
sis which matches with the real key should return a significantly higher coefficient
than the other hypotheses. This attack remains valid when analyzing electromag-
netic emanations [19,34] instead of power consumption, since they are mainly
due to the displacement of current through the rails of the metal layers. In this
case, we talk about Correlation ElectroMagnetic Analysis (CEMA).

3.2 Selection Function

The intermediate state y on which the side-channel attack focuses is defined
by a selection function ϕ(x, k) = y, which is part of the encryption algorithm.
It depends on x, a known part of the input and on k, an unknown part of
the secret key. Usually, selection functions are chosen to be easy to compute,
typically at the beginning of the encryption or decryption process. Furthermore,
a valuable property for selection functions is high non-linearity as it ensures a
good distinguishability between the correct and incorrect key guesses. Indeed,
correlation between the leakage and the prediction will be close to zero if the
key guess is incorrect due to their non-linear relationship.

In case of ARX structures, the non-linearity only relies on modular addi-
tions, while diffusion is provided by rotations (diffusion within single words)
and XORs (diffusion between words). Although the carry propagation in the
modular addition results in some non-linearity, it is not as good a candidate
as S-boxes. It can be explained by the fact that most significant bits in the
output of a modular addition are more subject to non-linearity than least signif-
icant ones. However, side channel attacks remain possible as shown in numerous
publications [10,26,41].

4 Side-Channel Overview of ChaCha

4.1 ChaCha Case Study

To set up such a side-channel attack, one has to determine an attack path (i.e.
to choose a selection function) either starting from the plaintext, or from the
ciphertext. Physical attacks against stream ciphers can be challenging because
the key stream is computed independently from the plaintext/ciphertext, which
interferes in the relationship between known values and the secret key. However,
from a side-channel point of view, ChaCha differs significantly from other stream
ciphers’ designs such as linear-feedback shift registers where the key is only
directly involved during registers’ initialization. Indeed, as ChaCha operates like
a block cipher in CTR mode, the key is directly manipulated everytime a 512-bit
block needs to be encrypted. More precisely, each key word directly interacts
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with other data during the first round (after which they have been updated)
and again during the final block addition.

An attack that takes advantage of the first round has already been published
in [21]. The attack on the ith column round (0 < i < 4) relies on the selection
function defined by

ϕ0

(
noncei, k̃i ‖ ki+4

)
=

((
noncei ⊕ k̃i

)
≪ 16

)
� ki+4 (2)

where k̃i = ki � constanti. However, this selection function forces the attacker
to target two key words at once, which results in a key search space |K| = 264.
Since the bit-size of the targeted subkey determines the memory complexity
of the side-channel attack, one can understand why this would be undoable in
practice. To get around this problem, the authors exploit the QRs’ intermediate
states in order to operate step by step. They propose to first recover ki by
targeting noncei ⊕ k̃i and then take advantage of its knowledge to find ki+4.
Therefore, recovering ki and ki+4 requires the knowledge of noncei. However,
the paper also describes an attack path that allows to recover the entire key
with the knowledge of only two words. This latter exploits several intermediate
states in the first two rounds.

Regarding the final block addition, an attacker could choose ϕ(x, k) = x� k
where x refers to a keystream word and � refers to modular subtraction. Com-
pared to the previous attack path, it has the advantage of recovering all key words
using the modular subtraction as selection function. Moreover, all keystream
words are pseudorandom values, which is not necessarily the case for nonces.
However, this selection function requires the knowledge of the keystream (i.e.
both plaintext and ciphertext).

Throughout this paper, we will make the assumption that an attacker has
access to all this information. In Sect. 6 we discuss the attacks’ feasibility in
practice and thus, whether our assumptions are reasonable.

4.2 Implementation Aspects

When targeting software implementations on load/store architectures, data
transfers due to memory accesses (i.e. loads and stores between memory and
registers) are known to leak the most information compared to arithmetic and
logic operations [13,30], which only occur between registers and are usually
unexploitable in practice [9]. Our practical experiments on the DUT presented
in Sect. 6 verified this hypothesis. Therefore, the intermediate values that are
manipulated by these sensitive operations should be easiest to target, introduc-
ing a direct link between selection functions and implementation aspects.

Throughout this paper we will study selection functions in relation to memory
accesses, assuming they are the main source of exploitable leakage.

4.3 OpenSSL Implementation

First, we decided to attack a C implementation of ChaCha20 in order to see
how compilers can deal with ARX structures and memory accesses. To do so,
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we compiled the ChaCha20 C implementation from OpenSSL (version 1.0.1f)
for an ARM Cortex-M3 microcontroller using the GNU ARM C compiler 5.06
(update 2). Regardless of the optimization level chosen (from -O0 to -O3), within
a QR, each addition and each rotation is followed by a STR instruction. Hence,
these memory accesses allowed us to carry out the attacks described above.
Practical results are briefly presented in Sect. 6 for comparative purposes.

4.4 Side-Channel Analysis of the Salsa20 Quarter Round

In the next section, we show how memory accesses can be easily managed to
remove the leakage of intermediate states within a QR. This implies to target
the QR output without taking its intermediate values into consideration, making
the attacks presented in [21] irrelevant in this case. Although such an analysis
has already been performed on Salsa20 [29], it does not apply to ChaCha.

Algorithm 3. Salsa20 quarterround(a, b, c, d)

b ⊕= (a � d) ≪ 7; c ⊕= (b � a) ≪ 9;

d ⊕= (c � b) ≪ 13; a ⊕= (d � c) ≪ 18;

In the case of Salsa20, as described in Algorithm 3, the update of the second
input only depends on itself and two others (the first and the last). This allows to
recover the key words involved in this computation as first/last input words, with
two other ‘non-key’ operands (i.e. constant and nonce). The attack consists in
performing a CPA on a 32-bit value using a divide-and-conquer (D&C) approach,
which consists in separating the attack into � 32

n � computations on n-bit windows
in parallel. The other key words that do not match these requirements were
retrieved by using the knowledge of those which have been previously recovered.
This allowed to keep a search space of 232 instead of 264. On top of providing
better diffusion, the ChaCha QR gives each input word a chance to affect the
other three twice. This adjustment makes the attack irrelevant against ChaCha
since the key search space cannot be less than 264 in any case.

5 Side-Channel Analysis of the Quarter Round

Throughout this section, for greater clarity, we assume that all operators are
left-associative so that

a � b ⊕ c ≪ d ⇐⇒ (((a � b) ⊕ c) ≪ d).
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5.1 Optimizing Memory Accesses

A solution to overcome attacks on intermediate states within QRs is a straight-
forward assembly implementation, which is a good way to reduce memory access
instructions for load/store architectures. As explained in [9], for some instances
of ARX lightweight block ciphers like Simon and Speck [5], it is possible to keep
the whole state in registers during the entire encryption process. Thereby, they
can be implemented in assembly without having to execute a single STR instruc-
tion during the whole encryption process, drastically reducing the amount of
leakage.

Unfortunately, in the case of ChaCha, the state consists of 16 32-bit words.
Therefore, it would require a 32-bit CPU with at least 16 general-purpose regis-
ters (excluding the stack pointer, the program counter and other specific cases
such as hardwired registers) to avoid memory accesses. As our chip only has
13 general-purpose registers, we implemented ChaCha so that word values are
loaded into registers at the beginning of each QR and are then stored in RAM at
the end. Furthermore, during the last round, related key words are also loaded
into registers at the beginning of QRs, resulting in

quarterround′(x0, x5, x10, x15, k1, k6)
quarterround′(x1, x6, x11, x12, k2, k7)
quarterround′(x2, x7, x8, x13, k3, k4)
quarterround′(x3, x4, x9, x14, k0, k5)

where quarterround′(a, b, c, d, x, y) = quarterround(a, b, c, d) � (0, x, y, 0).
This method protects against leakages that would allow an attack from the
keystream using the modular subtraction as selection function. Thus, these ele-
mentary implementation tricks imply to analyze the side-channel resilience of
the whole QR.

5.2 Focusing on the Quarter Round

As every word influences the three others, and is updated twice, the simplest
selection function would be defined by focusing, during the first column rounds,
on the word which is completely updated at first, resulting in having

ϕ1 (noncei, ki ‖ ki+4) = noncei ⊕ k̃i ≪ 16 � ki+4 ⊕ ki ≪ 12 � k̃i. (3)

However, as previously mentioned, this implies a side-channel attack on 64 bits,
which is not feasible in practice. Therefore, we investigated the relevance of the
D&C approach in this specific case. Figure 2 sketches how key words are involved
in computations. It results that targeting n bits of y = ϕ1(noncei, ki ‖ki+4) does
not lead to a complexity equal to 22n since rotations make different n-bit windows
interact with each other. As there is a rotation of 16 bits followed by another
one of 12, some bits of k̃i may overlap. Hence, the key search space depends on
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the windows’ size.

|K| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

24n, if n ≤ 4
23n+4, if 4 ≤ n ≤ 12
22n+16, if 13 ≤ n ≤ 16
2n+32, otherwise

(4)

Furthermore, rotations are discarded from the selection function, resulting in

ϕ2,n

(
noncei, k̃

A
i ‖ kB

i ‖ kB
i+4 ‖ k̃C

i

)
= nonceA

i ⊕ k̃A
i �n kB

i+4 ⊕ kB
i �n k̃C

i (5)

where superscripts refer to intervals that define n-bit windows.

Fig. 2. D&C approach on the ChaCha QR, n = 8

In order to evaluate this method, we performed software simulations using
the HW model (without any additional noise) and random nonces. As expected,
the right key matches with the highest correlation coefficient. Nevertheless, some
other hypotheses also lead to the maximum coefficient as shown in Fig. 3, result-
ing in collisions.

Definition 1 (Collision). Let ϕ(n, k) be a selection function and κ be the right
key hypothesis. A collision is an hypothesis κ′ such that ϕ(n, κ) = ϕ(n, κ′) for
all n.

Fig. 3. Attack simulation on ϕ2,2
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Proposition 1. An attack on ϕ2,n returns up to n · 2n+2 collisions.

Another point that has not been discussed so far is the drawback caused by
carry propagations. Except when focusing on the least significant bits (LSBs),
one has no way of knowing if subkeys involved in additions are affected by a
carry. Thus, the positions of targeted windows are very important. Plus, we
made the choice to dissociate k̃i from ki in order to prevent from erroneous
predictions of kA

i �n constantA
i and kC

i �n constantC
i . For instance, in Fig. 2,

k̃C
i is the only hypothesis which could be erroneous due to a carry propagation

on its addend. As a result, an attacker should mount one attack taking this
carry into consideration, and another one without. This would mean that the
total number of collisions would be doubled. Although this selection function
may provide some information, we chose to investigate a more efficient attack
path.

5.3 Benefits of the Reverse Function

The ChaCha QR is trivially invertible and the inverse quarter round (IQR) is
defined in Algorithm 4.

Algorithm 4. ChaCha inv quarterround(a, b, c, d)

b ≫= 7; b ⊕= c; c �= d;

d ≫= 8; d ⊕= a; a �= b;

b ≫= 12; b ⊕= c; c �= d;

d ≫= 16; d ⊕= a; a �= b;

What matters here is that each input word does not have a chance to influence
the other three, since the first word does not impact the update of the second
one. Hence, the overall selection can be defined as below

ϕ3

(
b ‖ c ‖ d̃i, kb ‖ kc

)
=

(
b � kb ≫ 7

)
⊕

(
c � kc ≫ 12

)
⊕

(
c � kc � d̃i

)
(6)

where d̃i = di � noncei. Regarding the D&C approach where rotations are
discarded, it results in the following selection function.

ϕ4,n

(
b ‖ c ‖ d̃i, k

A
b ‖ kB

c ‖ kC
c

)
=

(
bA �n kA

b

) ⊕ (
cB �n kB

c

) ⊕
(
cC �n kC

c �n d̃C
i

)
(7)

As less words are involved, the key search space is reduced and still depends on
the windows’ size.

|K| =

⎧⎪⎨
⎪⎩

23n, if n ≤ 12
22n+12, if 12 ≤ n ≤ 20
2n+32, otherwise

(8)
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Fig. 4. D&C approach on the ChaCha IQR, n = 8

However, since the rotations are less pronounced, key words do not overlap if
the windows’ size does not exceed 12 bits, as depicted in Fig. 4. Throughout the
rest of this section, we only consider the case where n ≤ 12.

As before, key hypotheses might be affected by carry propagations. However,
another advantage of ϕ4,n over ϕ2,n is that one knows the entire 32-bit minuend
(i.e. b or c). Thus, depending on its value, one can calculate the probability of a
carry propagation. For instance, when targeting k

[x,x+n[
b , the probability is

p = P

(
k
[0,x[
b > b[0,x[

)
=

2x − (
b[0,x[ + 1

)
2x

. (9)

For our simulation with n = 4, we took a carry into consideration only if p > 0.75.
On top of providing a smaller key search space, ϕ4,n is less prone to collisions
as shown by our simulation depicted in Fig. 5.

Fig. 5. Attack simulation on ϕ4,4

Proposition 2. An attack on ϕ4,n returns 4 collisions.

Proof. Flipping the MSB of the minuend/subtrahend also flips the MSB of the
modular difference. Therefore, in the case of ϕ4,n, flipping the MSB of two n-bit
key windows leads to the same output. As a result, the number of collisions is
equal to 1 +

(
3
2

)
= 4. 	


This property allows to halve the key search space (i.e. |K| = 23n−1), since all
collisions can be retrieved from just one. In the next section, we suggest a more
efficient method than repeating this computation over several windows and then
sorting the right key from the collisions.



76 A. Adomnicai et al.

5.4 Overview of the Brickerlayer Attack

Once collisions have been found using ϕ2,n or ϕ4,n, one has to reiterate the same
procedure on different windows. Instead of executing several attacks in parallel,
we suggest to take advantage of windows that have been previously recovered,
in order to target larger ones. For instance, once 4 collisions have been found
after an attack on ϕ4,n, one can target ϕ4,m, where m > n, with a complexity
|K| = 23(m−n)+1.

Proceeding in this sequential manner has two advantages. First, taking the
carry propagation into consideration is only necessary during the first attack.
This property is especially interesting for ϕ2,n since there is no way to estimate
carry propagations in this case. Second, each attack cancels collisions from the
previous ones, since the positions of the collision bits are changed. For instance,
regarding ϕ4,n where collisions only depend on MSBs, the bricklayer approach
transforms previous collisions into the predictions’ lower bits, allowing the cor-
rect collision to stand out. This property is less efficient in the case of ϕ2,n since
collisions depends on all bits of the n-bit word. Therefore, the correct collision
does not stand out directly but some wrong hypotheses are still discarded.

An example application of the bricklayer attack using ϕ4,n is depicted in
Fig. 6. Note that from the fourth step, the attack focuses two key windows instead
of three because rotations lead to a position that has already been recovered.
Finally, the last step considers the entire 32-bit output word using ϕ3 and the
known bits/collisions.

Fig. 6. Bricklayer attack example on IQR
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6 Applications in Practice

6.1 Practical Experiments

All practical experiments presented below were done using an ARM 32-bit
Cortex-M3 processor clocked at 24 MHz. Note that the DUT does not embed
any hardware countermeasure against side-channel attacks. A trigger signal was
inserted to indicate the beginning and the end of the penultimate round in order
to avoid synchronization complications. EM emanations were measured using a
Langer LF-U 5 near-field probe (100 kHz–50 MHz) and a LeCroy WaveSurfer 10
oscilloscope sampled at 10 GS/s. The signal was amplified using a Langer PA 303
BNC preamplifier, providing a gain of 30 dB. We used the same leakage model
as for our simulations, since our microcontroller leaks the HW of intermediate
values.

First, we tried to perform correlation analyses by focusing on arithmetic
operations, without success. Figure 7 emphasizes that attacking the final block
addition during executions of quarterround′ was not successfull, whereas for
the compiled C version (which stores the intermediate values in RAM), we were
able to retrieve the key bits. This reinforced our assumption that, depending on
the computing platform, memory accesses can be the only source of exploitable
leakage for software implementations.

Fig. 7. Impact of memory accesses on electromagnetic leakage

In order to put the bricklayer attack into practice, the following hard-coded
input block was used to encrypt 250 kB of data, where the counter (i.e. nonce0)
was incremented for each 512-bit block (Fig. 8).

Figure 9 depicts all the correlation curves corresponding to each step of the
bricklayer attack when targeting k2 and k7. We incremented the windows’ length
by 4 at each step, exactly as illustrated in Fig. 6, resulting in an overall compu-
tational complexity of 213. All CEMAs were computed by halving the key search
space. Consequently, some results do not appear clearly on charts and have to
be deduced.

The first step, which targets k23...20
7 ‖ k3...0

7 ‖ k10...7
2 , returned the collisions

Γ = {γ1, γ2, γ3, γ4} = {56, 176, 2096, 2232}. For the next stages, each key
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Fig. 8. Input block used for practical experiments

Fig. 9. CEMAs to recover k2 and k7

hypothesis κ ∈ K was coupled to each collision γj ∈ Γ and was placed at
the index i = κ · |Γ | + j of the prediction vector. Thus, higher coefficients
at indexes i revealed the correct collision of the previous step γj by comput-
ing j = i mod |Γ |. Finally, the new collisions are equal to (i − j) / |Γ |. For
instance, Fig. 9b indicates that the maximum coefficient appears at indexes
i ∈ {6499, 6979}. Both indexes are congruent to 3 modulo 4, which means that
γ3 = k23...20

7 ‖ k3...0
7 ‖ k10...7

2 . As a result, the collisions for k27...24
7 ‖ k7...4

7 ‖ k14...11
2

are defined by Γ = {1624, 1744, 3664, 3800}. The remaining steps followed the
same methodology, making it possible to recover k2 and k7 entirely. Obviously,
this can be applied on other IQRs in parallel to recover the whole encryption
key.
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A drawback of the D&C method is the number of required measurements,
since the leakage of the omitted bits influences the attacked ones. Thus, more
traces are needed in order to average out noise. Figure 10 compares, regarding
the number of measurements, an attack on the QR using ϕ2,3 with the first step
of the bricklayer attack presented above, using the same measurement setup.

As a result, to recover the same number of key bits, ϕ4,n requires less traces
as it targets larger windows than ϕ2,n. However, the number of required traces
decreases at each step of the bricklayer attack as the size of targeted windows
increases.

Fig. 10. Correlation coefficients to recover 12 key bits

6.2 Attacks’ Feasibility on Existing Protocols

In a typical side-channel analysis, it is assumed that the attacker has access to
either the plaintext or the ciphertext, but not necessarily to both. In the case
of ChaCha, we can consider the knowledge of the nonce as the knowledge of the
plaintext. However, attacks using ϕ4,n require the knowledge of the keystream
(i.e. plaintexts and ciphertexts), in addition to nonces. This is a strong assump-
tion that could be available in an evaluation laboratory but might be hard to
set up in practice, leaving the attacks from nonces more realistic. Therefore, we
discuss whether the knowledge of nonces is a fair assumption.

By definition, the single requirement for a cryptographic nonce is to be used
only once. Therefore, a simple counter could suit the need. However, in cases
where many different keys are used, some protocols (e.g. TLS) force a part of
the nonce (e.g. the IV) to be random in order to thwart multi-key attacks [27].
This leaves the block counter as the only predictable part of the nonce. Therefore,
if this latter is defined on n bits, then a correlation analysis cannot recover more
than 2 · n key bits. As a result, it introduces a protocol-level countermeasure
which protects a large part of the key.

Still, existing protocols are not defined in this way. For instance, the Secure
Shell (SSH) protocol uses the packet sequence number as a 64-bit IV [1] whereas
the remaining 64 bits are used for the block counter, which is reset for each
packet. Consequently, observing an entire SSH session makes it possible to pre-
dict the entire nonce, giving an attacker the opportunity to recover all key words
as soon as enough packets are transmitted.
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Furthermore, another construction that can be encountered in practice is
XChaCha20, which is implemented in the Sodium crypto library [17]. This con-
struction was first proposed for Salsa20 [6] and aims at extending the nonce to
192 bits so that it can be picked at random. The main idea is to encrypt a block
with a fixed key k and 128 bits of the random nonce, without executing the final
block addition. The first and last 16 bytes of the output result in a 256-bit subkey
k′. Finally, the regular ChaCha20 algorithm is executed using the 64 remaining
bits of the 192-bit nonce as IV, and k′ as encryption key. Note that XChaCha20
is intrinsically resistant against attacks from the keystream, since the final block
addition is omitted during the subkey generation. However, the 192-bit nonce
must be transmitted in clear and can be entirely known by the attacker.

These real life case studies introduce the need of dedicated countermeasures
against side-channel attacks when ChaCha is deployed in such conditions.

7 Towards a Secure Implementation

A common approach to thwart side-channel attacks is the use of masking. This
countermeasure consists in blinding the processed values x by means of ran-
dom masks r, so that intermediate variables are impossible to predict. Thus,
an attacker has to analyze multiple point distributions, which exponentially
increases the attack complexity with the number of shares. In this section, we
only discuss first-order masking i.e. the case where a single mask is used to ran-
domize the data. Because of their structures, ARX designs need both boolean
(x′ = x ⊕ r) and arithmetic (x′ = x � r) masking.

To overcome this complication, there are two main approaches. The first
one is to switch from one masking scheme to the other whenever necessary.
The first conversion algorithms, described by Goubin in [20], have complexity
of O(1) for boolean to arithmetic and O(k) for arithmetic to boolean, where
k refers to the addends’ bit size. The latter was then improved by Coron et
al. to O(log k) [15]. The second approach is to directly perform an addition on
the masked values, eliminating the need for conversions [22]. However, secure
adders usually rely on the recursion formulae involved in arithmetic to boolean
conversions. Consequently, they inherit from the same complexity.

The best method, in terms of performance, depends on the algorithm to
be protected. For instance, masks conversions are more efficient when several
arithmetic operations are processed successively, since only one arithmetic to
boolean conversion is ultimately required. Otherwise, secure adders can lead to
better performances as shown by a practical comparison between HMAC-SHA-1
and Speck in [15]. In order to give an insight into the overhead introduced by a
first-order masking, we implemented two secure adders in C language, using the
same compilation options as described in Sect. 4.3. This allowed us to compare,
in terms of performance, our secure implementations of ChaCha20 with the one
from the OpenSSL library. Running times given in Table 1 are expressed in clock
cycles and were computed with the help of debug sessions. Note that these mea-
surements do not take the generation of random numbers into account since this
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operation depends a lot on the computing platform. As these countermeasures
were implemented in C, they do not ensure the absence of memory accesses
within QRs. On the other hand, handling all data in registers during a whole
QR may not be possible, since masking also increases memory requirements. Fur-
ther investigations need to be carried out to determine which algorithms could
minimize memory access within QRs and how to securely manage them.

Table 1. Running time in clock cycles to encrypt a 512-bit block using ChaCha20 on
an ARM Cortex-M3

Time Penalty factor

ChaCha20 unmasked 4 380 1

ChaCha20 with Karroumi et al. SecAdd [22] 121 618 28

ChaCha20 with Coron et al. SecAdd [15] 93 993 22

These practical results point out how difficult it is to effectively secure ARX
ciphers’ implementations. However, masking is not the only answer to side-
channel attacks and is often combined with hiding countermeasures. The princi-
ple of hiding is to randomize an algorithm execution by running its operations at
different moments in time, during each execution [36,39]. This can be achieved
by randomly inserting dummy operations and shuffling. Shuffling intends to ran-
domly change the sequence of operations that can be computed in arbitrary
order. In practice, hiding countermeasures increase the number of traces needed
to carry out an attack [16,33].

Regarding ChaCha, operations within a QR cannot be shuffled as they are
executed sequentially. On the other hand, each QR can be computed indepen-
dently from the other, but this is only true for a single round because of switching
from column to diagonal rounds. However, there are many ways to implement
hiding in practice and further investigations will have to be carried out on the
specific case of ChaCha.

8 Conclusions and Further Work

This paper presents side-channel analyses of ChaCha based on leakages related to
memory accesses. Our study emphasizes that quantifying the signal available to
the attacker at the instruction level could allow to strengthen implementations
without much effort.

We compare, from a side-channel point of view, two different software imple-
mentations of ChaCha20 on a 32-bit processor. As a result, minimizing mem-
ory accesses makes selection functions more complex, to such an extent that
they may lead to collisions. We introduce the bricklayer attack to defeat such
implementations. Our results show that attacking the reverse QRs (i.e. from the
keystream) is more efficient than attacking the regular ones (i.e. from the input
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block). However, we highlight that attacks from the input block are the most
pragmatic threats since the knowledge of the keystream is a strong assumption.
Finally, we discuss possible countermeasures at several levels and highlight how
expensive it is to implement first-order masking for ChaCha20 with practical
measurements. Therefore, further work must be undertaken to propose efficient
secure implementations of ChaCha.
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Abstract. Attrapadung (Eurocrypt 2014) proposed a generic frame-
work called pair encoding to simplify the design and proof of security of
CPA-secure predicate encryption (PE) in composite order groups. Later
Attrapadung (Asiacrypt 2016) extended this idea in prime order groups.
Yamada et al. (PKC 2011, PKC 2012) and Nandi et al. (ePrint Archive:
2015/457, AAECC 2017) proposed generic conversion frameworks to
achieve CCA-secure PE from CPA-secure PE provided the encryption
schemes have properties like delegation or verifiability. The delegation
property is harder to achieve and verifiability based conversion degrades
the decryption performance due to a large number of additional pair-
ing evaluations. Blömer et al. (CT-RSA 2016) proposed a direct fully
CCA-secure predicate encryption in composite order groups but it was
less efficient as it needed a large number of pairing evaluations to check
ciphertext consistency. As an alternative, Nandi et al. (ePrint Archive:
2015/955) proposed a direct conversion technique in composite order
groups. We extend the direct conversion technique of Nandi et al. in
the prime order groups on the CPA-secure PE construction by Attra-
padung (Asiacrypt 2016) and prove our scheme to be CCA-secure in a
quite different manner. Our first direct CCA-secure predicate encryp-
tion scheme requires exactly one additional ciphertext component and
three additional units of pairing evaluation during decryption. The sec-
ond construction requires exactly three additional ciphertext components
but needs only one additional unit pairing evaluation during decryption.
This is a significant improvement over conventional approach for CPA-
to-CCA conversion in prime order groups.

1 Introduction

Predicate encryption (PE) is a new paradigm for public-key encryption that
evaluates a predicate function R : X × Y → {0, 1} in the encrypted domain.
Informally, in a PE system, a ciphertext C is associated with a data-index y ∈ Y,
a secret key K is associated with a key-index x ∈ X and the secret key K can
decrypt the ciphertext C if and only if R(x, y) = 1. The simplest example is
IBE [1] where R is an equality predicate.
c© Springer International Publishing AG 2017
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Waters [2] introduced the dual system technique to construct adaptively
secure predicate encryption schemes. Attrapadung [3] and Wee [4] independently
observed a similarity in the structure of the proofs of dual system technique based
adaptively secure predicate encryption schemes. The notions of pair encoding [3]
and predicate encoding [4] were introduced as abstraction of complex key and
ciphertext structure of available predicate encryptions. Such encodings allowed
them to construct adaptively CPA-secure predicate encryptions using dual sys-
tem technique. This new approach not only allowed them to improve the perfor-
mance of several available predicate encryption schemes but also to instantiate
several completely new schemes. For example, pair encoding allowed the first-
ever construction of PE for regular language, ABE with constant-size ciphertext
etc. as presented in [3]. However, all these CPA-secure predicate encryptions
were constructed in composite order groups.

Later Attrapadung [5] and Chen et al. [6] constructed adaptive CPA-secure
predicate encryption schemes in the prime order groups using pair encoding and
predicate encoding respectively. The construction [6] was even more modular
due to the use of dual system group (DSG) [7]. Agrawal et al. [8,9] integrated
pair encoding and dual system group and introduced different security notions
for pair encoding.

Motivation. All the aforementioned schemes aim at constructing CPA-secure
predicate encryption. In various practical scenarios, however, CCA-security is
assumed to be mandatory. One can use available generic techniques [10–13] to
convert CPA-secure predicate encryption into CCA-secure predicate encryption.
Informally these techniques add new components in the CPA-ciphertext that can
be used later to check if the ciphertext has been tampered in the line. They there-
fore face problems of two-fold – (1) increased length of key-indices and data-
indices which result in a bigger secret key and ciphertext due to index transfor-
mation [10,12] and (2) extra cost to perform verifiability or delegation. We con-
sider verifiability based approach as a benchmark since delegation is not known
for most of the predicate encryptions. For example, verifiability based solution
makes the decryption lot costlier than the cost of decryption in the CPA-secure
scheme in terms of the number of pairings evaluated. Blömer et al. [14] proposed
a direct CCA-secure predicate encryption from pair encodings in composite order
groups.Their verifiability based check requires additional pairing operationswhich
is nearly same as that required in underlying CPA-decryption. As an alternative,
Nandi et al. [15] suggested a direct conversion toCCA-secure predicate encryptions
from pair encodings. Even though that conversion is efficient and generic, it works
in the composite order group. Naturally one would like to construct a direct CCA-
secure predicate encryption in prime order groups from a CPA-secure predicate
encryption without compromising the performance. [16] and its descendants sug-
gested certain frameworks to convert pairing based cryptosystems from composite
order to prime order. However, to the best of our knowledge, such frameworks are
not directly applicable for CPA to CCA conversion.

OurContribution. In thiswork,we consider the pair encoding basedCPA-secure
predicate encryptions construction of [3,5]. We propose two generic constructions
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of direct CCA-secure PE from pair encoding based CPA-secure PE. Both of our
constructions are achieved in prime order group and neither uses the trick called
index transformation [10,12].This results inmore efficientCCA-securePE in terms
of the size of the ciphertext and number of pairing evaluations during decryption.
Roughly speaking, given a CPA-secure predicate encryption, we create a hash of
CPA-ciphertext and extend the idea of injective encoding [17] that adds a new
ciphertext component as a “commitment” of CPA-ciphertext. We call this con-
struction as direct CCA-secure construction aswedonot conform to the traditional
two-step approach of index transformation followed by delegation or verifiability.

Our first construction adds only one additional component to the ciphertext
of [5] at the cost of three additional unit pairing evaluations during decryption.
The second construction however is more efficient in terms of the number of
pairing evaluations during decryption. The ciphertext in this construction adds
exactly three additional components to the ciphertext of [5] namely a (d+1)-tuple
made up of source group elements (i.e. an element of G = G

(d+1)
1 ), an one-time

signature (OTS) verification key and a signature. During decryption this con-
struction needs only one additional unit of pairing evaluation along with an OTS
verification. As we can see in Table 1, our generic techniques to construct CCA-
secure predicate encryptions enjoy smaller (constant) increase in ciphertext size
that naturally results in less number of pairing evaluations during decryption.

Table 1. Comparative study of efficiency (For delegation/verifiability-based conver-
sions, x′ ← T1(x), xvk ← T2(x, vk), yvk ← T3(y, vk) are transformed indices [13] and
usually quite larger than input indices (x or y). Each ciphertext or key-component is a

(d+1)-dimensional vector from G = G
(d+1)
1 and H = G

(d+1)
2 respectively. C denotes the

cost function. The two-columns under “Decryption Cost” follows the convention that
the first cell is underlying CPA-Decryption cost and second cell contains additional
cost to achieve CCA-Decryption.).

Technique |Key| |Ciphertext| Decryption cost

Delegation-based O(|x′|) O(|yvk|)
C(Decrypt(Kxvk ,Cyvk )) C(Delegate(Kx′ , x′, xvk))

Verifiability-based C(Decrypt(Kx′ ,Cyvk )) C(Verify(Cyvk , x′, εvk))

ΠR (Sect. 3.2) O(|x|) O(|y|) C(Decrypt(Kx,Cy)) 3 unit pairing

Π′
R (Sect. 3.4) O(|x|) O(|y|) C(Decrypt(Kx,Cy)) 1 unit pairing

The idea of using OTS (resp. injective encoding) to achieve CCA-secure
PKE/(H)-IBE was first introduced in [18] (resp. [17]). Our approach, while bear-
ing some similarity, differ significantly from [17,18] and their follow-up works
in the context of Id-based encryption. This is because, the structure of pair
encoding based general PE is much more involved than that of simpler equality
predicate in IBE. The primary achievement of this paper over [15] is amalgama-
tion of [17] (resp. [18]) with prime-order matrix-based construction of predicate
encryption [5]. Our techniques (Lemmas 1 and 2) demonstrate that simple prim-
itives like [17,18] can still be deployed to achieve CCA-security even when the
ciphertext/key is of complicated matrix structure.
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Organization of the Paper. Section 2 contains necessary definitions and nota-
tions that are followed in this paper. In Sect. 3 we describe two constructions to
achieve CCA-secure predicate encryption. Section 4 concludes the paper.

2 Preliminaries

Notations. We denote [a, b] = {i ∈ N : a ≤ i ≤ b} and [n] = [1, n]. We assume

vvv is a vector having components v1, . . . , vn. By s
$← S we denote a uniformly

random choice s from set S. 1λ denotes the security parameter for λ ∈ N. Any

x ∈ Sk is a k-dimensional column vector. We use both x ∈ S1×k and x ∈
(
S

)k

to denote k-dimensional row vectors. GLN,� is the group of non-singular matrices
with dimension � × � and the scalars are from ZN .

Predicate Family. The predicate family for an index family κ is R = {Rκ}κ∈κ,
where Rκ : Xκ × Yκ → {0, 1} is a predicate function and Xκ and Yκ are key-
space and data-space respectively. We will often omit κ in the subscript for the
simplicity of representation.

2.1 Predicate Encryption

A predicate encryption (PE) scheme ΠR for predicate function R : X × Y →
{0, 1} consists of following algorithms.

– Setup(1λ, κ) for the security parameter λ ∈ N generates master secret key
msk and public key mpk.

– KeyGen(msk, x) generates secret key K of the given key-index x ∈ X .
– Encrypt(mpk, y,M) takes as input data-index y ∈ Y and a message M ∈ M

and generates ciphertext C.
– Decrypt(K,C) takes a key K corresponding to key-index x and a ciphertext

C corresponding to data-index y and outputs a message M or ⊥.

Correctness. A predicate encryption scheme is said to be correct if for all
(mpk,msk) ← Setup(1λ, κ), all y ∈ Y, all M ∈ M, all C ← Encrypt(mpk, y,M),
all x ∈ X , all K ← KeyGen(msk, x),

Decrypt(K,C) =

{
M if R(x, y) = 1
⊥ if R(x, y) = 0.

Security. Chosen ciphertext security (IND-CCA) of a predicate encryption
scheme ΠR can be modeled as a security game between challenger C and adver-
sary A.

– Setup: C gives out mpk and keeps msk as secret.
– Phase-I Query: Queries are performed to available oracles as follows.
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• Key Query: Keygen oracle OK returns K ← KeyGen(msk, x) for a given
key-index x.

• Dec Query: Given (x,C), decryption oracle OD returns Decrypt(K,C).
– Challenge: A provides challenge data-index y∗ (such that R(x, y∗) = 0 for

all key query x) and two messages (M0,M1) of equal length. C generates

C∗ ← Encrypt(mpk, y∗,Mb) for b
$←{0, 1}.

– Phase-II Query: Queries are performed to available oracles as follows.
• Key Query: Given a key-index x such that R(x, y∗) = 0, keygen oracle OK

returns K ← KeyGen(msk, x).
• Dec Query: Given (x,C), decryption oracle OD returns Decrypt(K,C) if

the conditions R(x, y∗) = 1 and C = C∗ are not satisfied together.
– Guess: A outputs its guess b′ ∈ {0, 1} and wins if b = b′.

For any adversary A the advantage is,

AdvΠR

A (λ) = |Pr[b = b′] − 1/2|.
A predicate encryption scheme is said to be IND-CCA secure if for any efficient
adversary A, AdvΠR

A (λ) ≤ neg(λ). If the decryption oracle is not available to
the adversary, we call such security model as IND-CPA security model.

2.2 Pair Encoding Schemes

Attrapadung [3] introduced the notion of pair encoding scheme which was later
[5] refined with the properties called regularity of pair encoding. Here we recall
the definition of pair encoding [3] and will discuss regular properties of pair
encoding in Sect. 3.1.

A Pair Encoding P for a predicate function Rκ : Xκ × Yκ → {0, 1} indexed
by κ = (N ∈ N,par) consists of four deterministic algorithms:

– Param(κ) → n which is number of common variables w = (w1, . . . ,wn) in
EncK and EncC.

– EncK(x,N) → (k = (k1, . . . , km1);m2) where each kι for ι ∈ [m1] is a polyno-
mial of m2 local variables r = (r1, . . . , rm2), common variables w and private
variable α.

kι (α, r,w) = bια +
∑

j∈[m2]

bιjrj +
∑

j∈[m2]

k∈[n]

bιjkrjwk

where bι, bιj , bιjk ∈ ZN for all ι ∈ [m1], all j ∈ [m2] and all k ∈ [n].
– EncC(y,N) → (c = (c1, . . . , cw1);w2) where each cι̃ for ι̃ ∈ [w1] is a polyno-

mial of (w2 + 1) local variables s = (s0, . . . , sw2) and common variables w.

cι̃ (s,w) =
∑

j∈[0,w2]

aι̃jsj +
∑

j∈[0,w2]

k∈[n]

aι̃jksjwk

where aι̃j , aι̃jk ∈ ZN for all ι̃ ∈ [w1], all j ∈ [0, w2] and all k ∈ [n].
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– Pair(x, y,N) → E ∈ Z
m1×w1
N .

Correctness. A pair encoding scheme is said to be correct if for all N ∈ N, for
all y ∈ Yκ, c ← EncC(y,N), all x ∈ Xκ, k ← EncK(x,N) and E ← Pair(x, y,N),
kEc� = αs0 if R(x, y) = 1.
Security. The pair encoding schemes [3,5] achieve several security properties
like perfect master-key hiding (PMH-Security), co-selective master-key hiding
(CMH-Security) and selective master-key hiding (SMH-Security). For definition,
see [3,5] or the full version of this paper [19].

3 CCA-secure Predicate Encryption from Pair Encoding

Here we present two direct constructions of CCA-secure predicate encryption
scheme in prime-order groups from pair encoding scheme.

3.1 Regular Decryption Pair Encoding

As recalled earlier, the notion of regular properties of pair encoding was intro-
duced in [5, Definition 1]. We also note that the decryption sufficiency property
was discussed in [15, Conditions 3.1]. Here, we need the pair encoding to sat-
isfy both these properties. We call a pair encoding that satisfies all the above
mentioned properties, regular decryption pair encoding. The regular decryption
properties of a pair encoding are listed below. The first four (precisely Properties
P1,P2,P3,P4) denote the regular properties of pair encoding. Note that, these
restrictions are quite natural and are observed in all the available pair encod-
ing based predicate encryption constructions [3–6,8,9]. The regular decryption
properties of pair encoding are noted below:

(P1) : For ι̃ ∈ [w1], ι ∈ [m1], if ∃j′ ∈ [0, w2], k′ ∈ [n], j ∈ [m2], k ∈ [n] such that
aι̃j′k′ �= 0 and bιjk �= 0, then Eιι̃ = 0.

(P2) : For ι ∈ [m1], if ∃j ∈ [m2], k ∈ [n] such that bιjk �= 0 then ∃ι̂ ∈ [m1] such
that kι̂ = rj .

(P3) : For ι̃ ∈ [w1], if ∃j′ ∈ [0, w2], k′ ∈ [n] such that aι̃j′k′ �= 0 then ∃ˆ̃ι ∈ [w1]
such that cˆ̃ι = sj .

(P4) : c1(s,w) = s0.
(P5) : For (x, y) ∈ X × Y, such that R(x, y) = 1, (k;m2) ← EncK(x,N) and

E ← Pair(x, y,N) then k(α,0,0)E = (∗, 0, . . . , 0) ∈ Z
w1
N where ∗ is any

non-zero entry.

Here we give some intuitive idea of regular decryption property of pair encod-
ing. In Attrapadung’s prime-order instantiation of pair encoding based predicate
encryption schemes, a particular type of commutativity was impossible to com-
pute [5, Eq. (8)]. We use Property P1 to restrict such cases. This property has
been used to prove the correctness of the scheme. Property P2 and P3 ensure
that if the key-encoding k (resp. c) contains hkrj (resp. hk′sj′) then rj (resp.
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sj′) has to be be given explicitly. These two properties have been used in the
security proof. We will see in the coming section that we produce a commitment
on the CPA-ciphertext and bind it to the randomness s0. Therefore we fix the
position of polynomial s0 in Property P4. Also to decrypt, given a secret key
K ∈ (G(d+1)

2 )m1 and a pairing matrix E ∈ Z
m1×w1
N (see Sect. 2.2 for description),

the decryptor will compute an altKey K̂ = (K̂0, K̂1, . . . , K̂w1) ∈ (G(d+1)
2 )(w1+1).

We restrict that α used in secret key (K) generation affects only K̂1 via Property
P5. We will be needing this property in the security argument.

Next we describe our first construction and prove its security. Later we
describe another construction that achieves better efficiency during decryption.
Both of the constructions are developed on top of [5] as described in Remark 2.

3.2 Construction ΠR: Smaller Ciphertext

Given a pair encoding scheme P for predicate function R, a predicate encryption
ΠR for the same predicate function R is defined as following.

– Setup(1λ, N): Runs (G1, G2, GT, e, p) ← G(λ) where G is an asymmet-

ric prime-order bilinear group generator. Picks (g1, g2)
$← G1 × G2. Runs

n ← Param(κ). Defines W = (W1, . . . ,Wn+2) where Wi
$← Z

(d+1)×(d+1)
p

for each i ∈ [n + 2]. Chooses (B, D̃,ααα) $← GLp,d+1 × GLp,d × Z
(d+1)
p .

Defines D =
(
D̃ 0
0 1

)
,Z = B−�D, chooses collision resistant hash function

H : {0, 1}∗ → Zp. Keeps msk = (gααα
2 ,B,Z, W) to be secret and computes,

mpk =

(
g
B
�
Id
0

�
1 , g

W1B
�
Id
0

�
1 , . . . , g

Wn+2B
�
Id
0

�
1 , g

Z
�
Id
0

�
2 , g

W�
1 Z
�
Id
0

�
2 , . . . ,

g
W�

n+2Z
�
Id
0

�
2 , e(g1, g2)

ααα�B
�
Id
0

�
,H

)
.

– KeyGen(msk, x): Runs (k = (k1, . . . , km1);m2) ← EncK(x,N). Chooses

r1, . . . , rm2

$←Z
d
p and defines R =

((
r1
0

)
, . . . ,

(
rm2
0

))
∈

(
Z
(d+1)
p

)m2

. Out-

puts K = {gkι(ααα,R,W)
2 }ι∈[m1] ∈

(
G

(d+1)
2

)m1 where for each ι ∈ [m1],

kι(ααα,R, W) = bιααα +
∑

j∈[m2]

bιjZ
(

rj

0

)
+

∑
j∈[m2]
k∈[n]

bιjkW�
k Z

(
rj

0

)
.

– Encrypt(mpk, y,M): Runs (c = (c1, . . . , cw1);w2) ← EncC(y,N). Chooses

s0, . . . , sw2

$← Z
d
p and defines S =

((
s0
0

)
, . . . ,

(
sw2
0

))
∈

(
Z
(d+1)
p

)(w2+1)

.

Computes C = (C1, . . . ,Cw1 ,Cw1+1) where for each ι̃ ∈ [w1], Cι̃ = gcι̃(S,W)
1 ∈

G
(d+1)
1 such that
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cι̃(S, W) =
∑

j∈[0,w2]

aι̃jB
(

sj

0

)
+

∑
j∈[0,w2]

k∈[n]

aι̃jkWkB
(

sj

0

)
for ι̃ ∈ [w1]

and Cw1+1 = M · e(g1, g2)
ααα�B

(
s0
0

)
. It outputs C = (C0,C) where ξ = H(C)

and C0 = g
(ξWn+1+Wn+2)B

(
s0
0

)

1 .

– Decrypt(K,C): Given K and C corresponding to key-index x and data-index
y respectively, if R(x, y) = 0, it aborts. It then computes ξ = H(C). It aborts
if Eq. (1) is not satisfied.

e(C0, g2
Z

(
Id
0

)
) = e(C1, g2

(ξW�
n+1+W�

n+2)Z

(
Id
0

)
). (1)

Then runs E ← Pair(x, y,N). Given K = (K1, . . . ,Km1) and ciphertext C it
computes (K̃1, . . . , K̃w1) where K̃ι̃ =

∏
ι∈[m1]

(Kι)Eιι̃ for each ι̃ ∈ [w1]. Chooses

rrr
$← Z

d
p. Defines modified key K̂ = (K̂0, K̂1, . . . , K̂w1) where K̂0 = g

Z

(
rrr
0

)

2 ,

K̂1 = Φ · K̃1 for Φ = g
(ξW�

n+1+W�
n+2)Z

(
rrr
0

)

2 and ξ = H(C) and K̂i = K̃i for
i ∈ [2, w1]. Outputs M such that

M = Cw1+1 · e(C0, K̂0) ·
⎛
⎝ ∏

ι̃∈[w1]

e(Cι̃, K̂ι̃)

⎞
⎠

−1

. (2)

Correctness. See full version of this paper [19].

Remark 1. Decrypt creates modified key K̂ for a given secret key K and the
pairing matrix E. From now onwards, we will use decryption key or altKey
interchangeably to denote the modified key. We define AltKeyGen(C, x,msk) to
compute modified key K̂ and AltDecrypt(C, K̂) computes RHS of Eq. (2). This
essentially divides the functionality of Decrypt function as composition of these
two functions and helps us to process decryption queries during the proof.

Remark 2. We have extended the CPA-secure predicate encryption construc-
tion of [5]. The common variables W, in our construction, contain n+2 matrices
whereas in [5] it contained n matrices. These extra two common variables Wn+1

and Wn+2 are used to compute a commitment of CPA-ciphertext C. A hash of
C is computed first and is binded to the randomness B

(
s0
0

)
using common vari-

ables Wn+1 and Wn+2. This results in an extra ciphertext component, namely,
C0. We then output C = (C0,C) as ciphertext. Notice that KeyGen algorithm
is exactly the same as [5]. The Decrypt is modified to perform cancellation of
the component C0. To do that, we define altKey K̂ to contain K̂0 and Φ. We
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use associativity [5, Sect. 4.1] to cancel the extra ciphertext component C0 using
K̂0 and Φ. The cancellation is performed by introducing an extra unit of pairing
evaluation e(C0, K̂0) during decryption. Once such cancellation is performed, the
decryption happens exactly like [5].

Efficiency. We introduce an extra check in Eq. (1) to ensure C0 to have a par-
ticular structure. The check in Eq. (1) incurs additional 2× (d + 1) pairing eval-
uations. Therefore our construction incurs 3× (d+1) pairing evaluations during
decryption in addition to pairing evaluation involved in CPA-ciphertext decryp-
tion [5]. This is really efficient as opposed to traditional CPA to CCA conversions
by [10,11,13] that need roughly two times m1×w1× (d+1)× (m2 +1)×d many
pairing evaluations. We have discussed exact cost of such conversions in the full
version [19].

Remark 3. Our construction uses a structure similar to the injective encoding
first introduced in [7] to achieve CCA-secure PKE/(H)IBE from CPA-secure
(H)IBE. However, the application of such a structure is far from straight forward
as the ciphertext consistency check in Eq. (1) above may result in false-positives
due to the complicated matrix-based structures in the ciphertext. We deal with
this issue in Lemma 1.

3.3 Security of ΠR

To prove our predicate encryption construction (ΠR) fully CCA-secure, we
extend the proof technique of Attrapadung [5]. In dual system proof technique,
one needs to add randomness to ciphertext, keys and altKeys to construct semi-
functional ciphertext, semi-functional key and semi-functional altKeys respec-
tively. At the end, one has to show that the randomness of semi-functional
components of ciphertext and keys will blind the message completely. We use
the abbreviation ‘type’ to identify semi-functional type.

Suppose that after receiving challenge ciphertext C
∗

= (C
∗
0,C

∗), adversary
modifies it to C = (C

∗′
0 ,C∗). Lemma 1 emphasizes that such a ciphertext C can

pass Eq. (1) if and only if C
∗′
0 = C

∗
0 · g

B

(
0
τ

)

1 (for some τ ∈ Zp). If adversary
comes up with such C, one can devise an efficient Dd-MatDH solver (described
in Footnote 3 in Lemma 2). Therefore we can assume that the adversary always
query well-formed ciphertext to decrypt oracle. This fact plays a key role in
Lemma 3.

Lemma 1. Let C = (C0,C) be a ciphertext (possibly ill-formed). Then the

ciphertext C will satisfy Eq. (1) if and only if C0 = g
(ξWn+1+Wn+2)c1+B

(
0
τ

)

1

and C1 = gc1
1 for any τ ∈ Zp.

Proof. The sufficiency of this lemma follows from associativity and the relation
( Id 0 )Z�B

(
0
1

)
= 0.
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The necessary part of this lemma is given as follows. The RHS of Eq. (1)
evaluates to e(g1, g2)( Id 0 )Z�(ξWn+1+Wn+2)c1 . A satisfied verification requires the
LHS to evaluate the same. The exponent of the GT element computed in Eq. (1)
can be expressed as a system of linear equations Ax = V where A = ( Id 0 )Z� ∈
Z

d×(d+1)
p , x ∈ Z

(d+1)
p and V = ( Id 0 )Z�(ξWn+1+Wn+2)c1 ∈ Z

d
p. We can write

V = Ax′ where x′ = (ξWn+1 +Wn+2)c1, it simply implies that x′ is a solution
of the system Ax = V.

Suppose there exists a system of linear equations Ax = V where A ∈ Z
m×n
p ,

x ∈ Z
n
p and V ∈ Z

m
p such that Rank(A) = r ∈ N. We define the solution set of

such linear system to be S = {x : Ax = V} and the solution of corresponding
homogeneous equations is S0 = {x : Ax = 0}. Naturally, if a solution x′ ∈ S
is available, then S = {x′ + x : x ∈ S0}. Due to rank-nullity theorem, n =
Rank(A) + dim(S0). Therefore dim(S0) = n − r.

Here, in case of Eq. (1), we see that r = Rank(A) = d as A = ( Id 0 )Z� where
Z ∈ Z

(d+1)×(d+1)
p is invertible and n = (d + 1). Therefore dim(S0) = 1. That

means there exists non-trivial x0 ∈ S0 and it spans the space S0 alone. Now due
to our construction, ( Id 0 )Z�B

(
0
1

)
= 0. Therefore x0 = B

(
0
1

)
is a solution of

homogeneous equation. As dim(S0) = 1, clearly {x0} is the basis of S0. Thus S0 ={
B

(
0
τ

)
: τ ∈ Zp

}
. Therefore S =

{
(ξWn+1 + Wn+2)c1 + B

(
0
τ

)
: τ ∈ Zp

}
. 
�

Theorem 1. Suppose a regular decryption pair encoding scheme P for predi-
cate R is both SMH-Secure and CMH-Secure1 in G, and the Dd-Matrix DH
Assumption holds in G. Then the scheme ΠR is fully CCA-secure encryption
scheme if H is collision resistant hash function. More precisely, for any PPT
adversary A that makes at most q1 key queries before challenge, at most q2 key
queries after challenge and at most Q decryption queries throughout the game,
there exist PPT algorithms B1,B2,B3,B4 such that for any λ,

AdvΠR

A (λ) ≤ (2q1 + 2Q + 3) · AdvDd-MatDH
B1

(λ) + q1 · AdvCMH
B2

(λ) + AdvSMH
B3

(λ)

+ Q · AdvCRH
B4

(λ).

We give a hybrid argument to prove Theorem 1. Probabilistic polynomial
time adversary A is capable of making at most q1 key queries before challenge
phase, at most q2 key queries after challenge phase and at most Q decryption
queries throughout the game.

Game0 is the real security game and Game4 is the game where all secret keys
are type-3 semi-functional keys, all altKeys are type-3 semi-functional altKeys
and the challenge ciphertext is semi-functional ciphertext of random message
(therefore is independent of the message that is to be encrypted). The indistin-
guishability of Game0 and Game4 is proven via the sequence of games of Table 2.

The idea is to change each game only by a small margin and prove
indistinguishability of two consecutive games. First we make the challenge

1 Here SMH means (1, poly)-SMH and CMH means (1, 1)-CMH (see [3,5]).
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Table 2. Outline of proof strategy

Games Difference from previous game Indistinguishability
from previous game

Game0 - -

Game1 Challenge ciphertext is semi-functional [5]

Game2,i−1,3 All the (i − 1) secret keys are type-3 key
(i ≤ q1)

[5]

Game2,i,1 ith secret key is type-1 key (i ≤ q1) [5]

Game2,i,2 ith secret key is type-2 key (i ≤ q1) [5]

Game2,i,3 ith secret key is type-3 key (i ≤ q1) [5]

Game2,q1+1,1 All post-challenge secret keys are type-1
key

[5]

Game2,q1+1,2 All post-challenge secret keys are type-2
key

[5]

Game2,q1+1,3 All post-challenge secret keys are type-3
key

[5]

Game3,i−1,3 All the (i − 1) altKeys are type-3 altKey
(i ≤ Q)

Lemma 2

Game3,i,1 ith altKey is type-1 altKey (i ≤ Q) Lemma 2

Game3,i,2 ith altKey is type-2 altKey (i ≤ Q) Lemma 3

Game3,i,3 ith altKey is type-3 altKey (i ≤ Q) Lemma 4

Game4 Challenge ciphertext is semi-functional
encryption of a random message

Lemma 5

ciphertext semi-functional. Then we modify each ith pre-challenge key to type-j
semi-functional key in Game2,i,j for each i ∈ [q1] and j ∈ {1, 2, 3}. Note that to

answer ith pre-challenge key query, the simulator chooses fresh βi
$← Zp. Then

we modify all the post-challenge keys to type-j keys together in Game2,q1+1,j

for each i ∈ [q1 + 1, q] and j ∈ {1, 2, 3}. Here, however, the simulator uses same

β
$←Zp to answer every post-challenge key query. Then we modify each ith altKey

to type-j semi-functional altKey in Game3,i,j for each i ∈ [Q] and j ∈ {1, 2, 3}.
Note that the simulator uses same η

$← Zp to compute all the altKeys. In the
final game Game4, we show that the ciphertext is completely independent of b.
Therefore the advantage of adversary A in Game4 is 0. Note that Game1 and
Game2,q1+1,3 are also denoted by Game2,0,3 and Game3,0,3 respectively.

As mentioned in Table 2, we have used the proof technique of [5] to argue
indistinguishability of several games. However, the games that deal with changes
in altKey and the final game are primary contributions of this work. We, however,
have included the description of games that we have mimicked (and modified for
our requirement) from [5] in the full version [19]. Here we concentrate only in
Game3,i,1, Game3,i,2, Game3,i,3 for i ∈ [Q] and Game4.
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Note that in Game2,q1+1,3, the challenge ciphertext is semi-functional and all
the secret keys are type-3 semi-functional. However, all the altKeys at this point
are normal. We then change the altKeys to type-3 semi-functional altKey one by
one. For every i ∈ [Q], this is done via changing normal altKey to type-1 altKey
first in Game3,i,1. Subsequently we change it into type-2 altKey in Game3,i,2 and
to type-3 altKey in Game3,i,3. In Game3,i,2 we introduce the randomness η that
hides the master secret key in the final game. This effectively allows us to show
that in the final game, the simulator can simulate all the secret keys and the
altKeys properly and the challenge ciphertext is semi-functional ciphertext of
random message.

Note that in all of these above mentioned games, the decryption query can
only be made on ciphertext C where C0 = g(ξWn+1+Wn+2)c1

1 and C1 = gc1
1 . The

reason is discussed in Footnote 3 in Lemma 2.

3.3.1 Semi-functional Algorithms
Following semi-functional algorithms will be used in the security proof.

– SFSetup(1λ, κ): It runs (mpk,msk) ← Setup(1λ, κ). Additionally it outputs

m̂pkbase, m̂pkb and m̂pkz where m̂pkbase = g
Z(0

1 )
2 ,

m̂pkb =
(

e(g1, g2)α
αα�B( 0

1 ), g
B( 0

1 )
1 , g

W1B( 0
1 )

1 , . . . , g
Wn+2B( 0

1 )
1

)
and

m̂pkz =
(

g
W�

1 Z( 0
1 )

2 , . . . , g
W�

n+2Z( 0
1 )

2

)
.

– SFKeyGen(x,msk, m̂pkz, m̂pkbase, type, β): Runs (k;m2) ← EncK(x,N).

Chooses r1, . . . , rm2

$← Z
d
p and r̂1, . . . , r̂m2

$← Zp. It defines R =
((

r1
0

)
, . . . ,(

rm2
0

))
∈

(
Z
(d+1)
p

)m2

and R̂ =
((

0
r̂1

)
, . . . ,

(
0

r̂m2

))
∈

(
Z
(d+1)
p

)m2

.
Outputs the secret key

K =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

g
k(ααα,R,W)+k(0,�R,W)
2 if type = 1

g
k(ααα,R,W)+k(Z

�
0
β

�
,�R,W)

2 if type = 2

g
k(ααα,R,W)+k(Z

�
0
β

�
,0,W)

2 if type = 3

where k(ααα,R, W) + k(Z
(
0
β

)
, R̂, W) ={

bιααα + bιZ
(
0
β

)
+

∑
j∈[m2]

bιjZ
(

rj

r̂j

)
+

∑
j∈[m2]
k∈[n]

bιjkW�
k Z

(
rj

r̂j

) }

ι∈[m1]

.

– SFEncrypt(y,M,mpk, m̂pkb): It runs (c;w2) ← EncC(y,N). Chooses s0, . . . ,

sw2

$← Z
d
p and ŝ0, . . . , ŝw2

$← Zp. Then it defines S =
((

s0
0

)
, . . . ,

(
sw2
0

))

∈
(
Z
(d+1)
p

)(w2+1)

and Ŝ =
((

0
ŝ0

)
, . . . ,

(
0

ŝw2

))
∈

(
Z
(d+1)
p

)(w2+1)

. It com-
putes the semi-functional ciphertext C = (C1, . . . ,Cw1 ,Cw1+1) where for
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ι̃ ∈ [w1], Cι̃ = gcι̃(S,W)+cι̃(�S,W)
1 = g

(
�

j∈[0,w2]
aι̃jB

(
sj

ŝj

)
+

�
j∈[0,w2]

k∈[n]

aι̃jkWkB

(
sj

ŝj

))

1

and Cw1+1 = M ·e(g1, g2)
ααα�B

(
s0
ŝ0

)
. Then it computes ξ = H(C) and outputs

C = (C0,C).

– SFAltKeyGen(C, x,msk, m̂pkz, m̂pkbase, type, η): Runs (k;m2)← EncK(x,N)

and E ← Pair(x, y,N). Chooses r1, . . . , rm2 , rrr
$← Z

d
p and r̂

$← Zp. Then it

defines R =
((

r1
0

)
, . . . ,

(
rm2
0

))
∈

(
Z
(d+1)
p

)m2

.

Then the normal key is K =
{

g
kι(ααα,R,W)
2

}
ι∈[m1]

∈ (
G

(d+1)
2

)m1 where

kι(ααα,R, W) = bιααα +
∑

j∈[m2]

bιjZ
(

rj

0

)
+

∑
j∈[m2]
k∈[n]

bιjkW�
k Z

(
rj

0

)
for ι ∈ [m1].

Then it computes (K̃1, . . . , K̃w1) where K̃ι̃ =
∏

ι∈[m1]

(Kι)Eιι̃ for ι̃ ∈ [w1].

Defines modified key K̂ = (K̂0, Φ · K̃1, K̃2, . . . , K̃w1) where

(K̂0, Φ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝g

Z

(
rrr
r̂

)

2 , g
(ξW�

n+1+W�
n+2)Z

(
rrr
r̂

)

2

⎞
⎠ if type = 1

⎛
⎝g

Z

(
rrr
r̂

)

2 , g
Z

(
0
ηu

)
+(ξW�

n+1+W�
n+2)Z

(
rrr
r̂

)

2

⎞
⎠ if type = 2

⎛
⎝g

Z

(
rrr
0

)

2 , g
Z

(
0
ηu

)
+(ξW�

n+1+W�
n+2)Z

(
rrr
0

)

2

⎞
⎠ if type = 3

for u =
∑

ι∈[m1]

bιEι1 and ξ = H(C) in case of given ciphertext C = (C0,C).

3.3.2 Sequence of Games
Here we present indistinguishability of Game3,i,1, Game3,i,2, Game3,i,3 and Game4
for 1 ≤ i ≤ Q of Table 2 in the following lemmas.

Lemma 2 (Game3,i−1,3 to Game3,i,1). For i ∈ [Q], for any efficient adversary A
that makes at most q key queries and at most Q decryption queries, there exists
a PPT algorithm B1 such that |Adv3,i−1,3

A (λ) − Adv3,i,1
A (λ)| ≤ AdvDd-MatDH

B1
(λ).

Proof. The algorithm B1 gets input (G, gT2 , g
T

(
y
ŷ

)

2 ) as Dd-MatDH problem

instance where ŷ = 0 or ŷ
$←Zp and T $←Dd, y $←Z

d
p.



98 S. Chatterjee et al.

Setup. B1 chooses B̃ $←GLp,d+1,J
$←GLp,d and sets B = B̃

(
Id M−�c�
0 −1

)
and

D = (MJ 0
0 1 ) where T =

(
M 0
c 1

)
due to Dd-MatDH assumption. Then it defines

Z = B−�D = B̃−�
(

Id 0

cM−1 −1

)
(MJ 0

0 1 ) = B̃−�T
(
J 0
0 −1

)
. It then defines Z̃ =(

J 0
0 −1

)
so that Z = B̃−�TZ̃. B1 therefore can compute the public parameters

as g
B

(
Id
0

)

1 = g
B̃

(
Id
0

)

1 and gZ2 = gB̃
−�TZ̃

2 . Then B1 chooses ααα
$← Z

(d+1)
p and

W = (W1, . . . ,Wn+2)
$←

(
Z
(d+1)×(d+1)
p

)(n+2)

and publishes public key mpk.

Note that B1 cannot compute m̂pkb but can compute m̂pkz as it can compute

m̂pkbase. It chooses β, η
$←Zp uniformly at random.

Key Queries. On jth secret key query x (j ≤ q1), outputs type-3 secret key

K ← SFKeyGen(x,msk,−, m̂pkbase, 3, βj) after choosing βj
$←Zp.

Dec Queries. On jth decryption query (x,C) where C is a ciphertext on data-
index y, if R(x, y) �= 1, aborts. Otherwise B1 computes altKey K̂ and returns
AltDecrypt(C, K̂) to A. Here we emphasize that the decryption queries will follow
a certain structure given in the footnote2. We now describe the altKey generation
procedure.

– If j > i, it is normal altKey. As B1 knows msk, it computes the altKey
K̂ ← AltKeyGen(C, x,msk).

– If j < i, it is type-3 semi-functional altKey. B1 computes type-3 altKey K̂ ←
SFAltKeyGen(C, x,msk, −, m̂pkbase, 3, η).

– If j = i, it runs (k = (k1, . . . , km1);m2) ← EncK(x,N) and E←Pair(x, y,N).

Chooses r1, . . . , rm2

$←Z
d
p and defines R =

((
r1
0

)
, . . . ,

(
rm2
0

))
. It generates

normal key K = (K1, . . . ,Km1) where for each ι ∈ [m1], Kι = g
kι(ααα,R,W)
2 =

g

�
����bιααα+

�
j∈[m2]

bιjZ

(
rj

0

)
+

�
j∈[m2]
k∈[n]

bιjkW
�
k Z

(
rj

0

)
�
			


2 . It then computes (K̃1, . . . , K̃w1)

2 Suppose given ciphertext is C = (C0,C) where C0 = g1
(ξWn+1+Wn+2)c1+B

�
0
τ

�
for

some τ ∈ Zp and C1 = gc1
1 . Note that it satisfies the verification in Eq. (1) as can be

seen in Lemma 1. However, as the simulator knows Wn+1 and Wn+2, it can compute

L = g1
(ξWn+1+Wn+2)c1 . Therefore it gets hold of g

B

�
0
τ

�
1 by computing C0/L. Since,

B and Z are simulated exactly as Lemma 2 (see the Setup of Lemma 2), and B1

implicitly sets Z̃−1
�

y
ŷ

�
=
�

rrr
r̂

�
to compute ith altKey, e

�
g
B

�
0
τ

�
1 , g

Z

�
rrr
r̂

�
2

�
evalua-

tion will allow the simulator to decide the Dd-MatDH problem instance. Thus, under
Dd-MatDH assumption, the adversary can’t make such decryption query. Therefore
any decryption query A makes, to satisfy Eq. (1), the queried ciphertext C must
follow the relation that C0 = g1

(ξWn+1+Wn+2)c1 and C1 = gc1
1 where ξ = H(C).
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where K̃ι̃ =
∏

ι∈[m1]

(Kι)Eιι̃ for each ι̃ ∈ [w1].

Given C = (C0,C), B1 computes ξ = H(C). To compute the altKey, it implic-

itly sets Z̃−1
(

y
ŷ

)
=

(
rrr
r̂

)
. Therefore g

Z

(
rrr
r̂

)

2 = g
B̃−�T

(
y
ŷ

)

2 . The simulator then

computes modified key K̂ = (K̂0, Φ · K̃1, K̃2, . . . , K̃w1) where K̂0 = g
Z

(
rrr
r̂

)

2 ,

Φ = g
(ξW�

n+1+W�
n+2)Z

(
rrr
r̂

)

2 and therefore is efficiently computable. It is evi-
dent from the description that if ŷ = 0, the key is a normal altKey whereas
if ŷ

$←Zp, the key is type-1 altKey.

Challenge. On receiving the challenge (y∗,M0,M1), B1 picks b
$← {0, 1}. It

runs (c = (c1, . . . , cw1);w2) ← EncC(y∗, N). For each j ∈ [0, w2] it chooses(
s′j
ŝ′

j

)
$←Z

(d+1)
p and implicitly sets

(
sj

ŝj

)
= B−1

(
s′j
ŝ′

j

)
. Then B1 computes C∗ as

it knows ααα, W1, . . . ,Wn+2. It evaluates ξ∗ = H(C∗) to compute C
∗

= (C
∗
0,C

∗)

where C
∗
0 = g

(ξ∗Wn+1+Wn+2)

(
s′0
ŝ′
0

)

1 and outputs C
∗
.

Key Queries. Same as Phase-I key queries.

Dec Queries. Same as Phase-I dec queries.

Guess. A halts with output b′. B1 outputs 1 if b′ = b and 0 otherwise. 
�
Lemma 3 (Game3,i,1 to Game3,i,2). For i ∈ [Q], for all adversary A we have
|Adv3,i,1

A (λ) − Adv3,i,2
A (λ)| = 0 if H is Collision Resistant Hash Function.

To prove the indistinguishability of the two games, we use modified SFSetup

namely SFSetup′ that introduces independent randomness in m̂pkb and m̂pkz by
means of security property parameter-hiding [5, Lemma 2] which is undetectable
to the adversary A (see [19] for more details). Note that this newly introduced
randomness does not affect the public key mpk. Then we show that introduction
of such new randomness allows us to argue the indistinguishability. Recall that
the challenge ciphertext is semi-functional and is denoted by C

∗
, the secret keys

K are all type-3 keys and the altKey, computed to answer ith decryption query,
is denoted by K̂. To prove the lemma, note that, it is sufficient to argue that the
joint distribution of semi-functional ciphertext, semi-functional secret keys and
semi-functional altKeys stays identical, independent of if the altKey is type-1
altKey or a type-2 altKey.

Precisely, here we prove that joint distribution of {K,C
∗
, K̂} if

K̂ is type-1 altKey is identical to joint distribution of {K,C
∗
, K̂} if

K̂ is type-2 altKey. Note that C
∗

= (C
∗
0,C

∗) such that C
∗
0 =

g
(ξ∗Wn+1+Wn+2)B

(
s0
ŝ0

)
+B

(
0

(ξ∗ŵn+1+ŵn+2)ŝ0

)

1 where ξ∗ = H(C∗). Now we prove
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our claim that, the joint distributions of {K,C
∗
, K̂} behaves identically for both

type-1 and type-2 altKey K̂.

Claim. The joint distribution of {K,C
∗
, K̂} if K̂ is type-1 altKey is identical to

joint distribution of {K,C
∗
, K̂} if K̂ is type-2 altKey.

Proof. Note that K is type-3 key in both the distributions and can be computed
by the simulator as it knows msk and m̂pkbase. Due to linearity of pair encoding,
the challenge ciphertext C

∗
and the altKey K̂ can be expressed as product of

normal component and semi-functional component. Since the simulator knows
msk and can compute the normal components, it suffices to show that the joint
distributions are identical if the joint distribution of semi-functional components
of C

∗
and K̂ are identically distributed.

Notice that due to the introduction of ŵ (see [19]), the semi-functional cipher-
text component C

∗′
0 and the term Φ′ used in altKey, is affected. To prove our

claim, it suffices to argue that the following two distributions (C
∗′
0 , Φ′) are iden-

tically distributed:

{
g
(ξ∗Wn+1+Wn+2)B

(
0
ŝ0

)
+B

(
0

(ξ∗ŵn+1+ŵn+2)ŝ0

)
1 ,

g
Z

(
0

(ξŵn+1+ŵn+2)r̂

)
+(ξW�

n+1+W�
n+2)Z

(
0
r̂

)
2

}
.

{
g
(ξ∗Wn+1+Wn+2)B

(
0
ŝ0

)
+B

(
0

(ξ∗ŵn+1+ŵn+2)ŝ0

)
1 ,

g
Z

(
0
uη

)
+Z

(
0

(ξŵn+1+ŵn+2)r̂

)
+(ξW�

n+1+W�
n+2)Z

(
0
r̂

)
2

}
.

By natural restriction C
∗ �= C where C

∗
is challenge ciphertext and C is cipher-

text provided for decryption. Therefore (C
∗
0,C

∗) �= (C0,C).
Then any of the following two cases can happen,

1. C
∗
0 �= C0 and C∗ = C: we show that such a case can’t happen. Since C∗ = C,

ξ∗ = ξ and C1 = C∗
1 = gc∗1

1 naturally. This implies C0 = g(ξ∗Wn+1+Wn+2)c
∗
1

1 =
C

∗
0 which is a contradiction.

2. C∗ �= C: the inequality C∗ �= C implies ξ∗ �= ξ (due to collision resistance
of H). Therefore ξ∗ŵn+1 + ŵn+2 and ξŵn+1 + ŵn+2 are pairwise indepen-
dent as ŵn+1 and ŵn+2 are chosen uniformly at random. It implies that the
semi-functional components of the ciphertext and altKey in Game3,i,1 and
Game3,i,2 are identically distributed. 
�

Lemma 4 (Game3,i,2 to Game3,i,3). For i ∈ [Q], for any efficient adversary A
that makes at most q key queries and at most Q decryption queries, there exists
a PPT algorithm B1 such that |Adv3,i,2

A (λ) − Adv3,i,3
A (λ)| ≤ AdvDd-MatDH

B1
(λ).
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Proof. The algorithm B1 gets input (G, gT2 , g
T

(
y
ŷ

)

2 ) as Dd-MatDH problem

instance where ŷ = 0 or ŷ
$←Zp and T $←Dd, y $←Z

d
p.

The simulator description is same as Lemma 2 except while answering ith

decryption query. Here the altKey component K̂1 = Φ · K̃1 where Φ is now mul-

tiplied by g
Z

(
0
ηu

)

2 ∈ H where u =
∑

ι∈[m1]

bιEι1. As B1 knows m̂pkbase, it chooses

η
$←Zp to perform the simulation. In the similar light of Lemma 2, we see that if

ŷ = 0, the altKey is a type-3 altKey whereas if ŷ
$←Zp, it is type-2 altKey. 
�

Lemma 5 (Game3,Q,3 to Game4). For any adversary A, we have |Adv3,Q,3
A (λ)−

Adv4A(λ)| = 0.

Proof. As Z ∈ GLp,d+1, one can express ααα as a linear combination of column

vectors of Z i.e. ααα = Z
(

δδδ
δ̂

)
for δδδ ∈ Z

d
p and δ̂ ∈ Zp. In all the secret keys, δ̂ is

hidden by uniformly random βi (in case of pre-challenge secret key queries) and
by uniformly random β (in case of post-challenge key queries). Note that in case
of altKeys, the presence of ααα is limited only to K̂1 due to regular decryption
property of pair encoding (precisely Property P5) in the form of uααα where u =∑
ι∈[m1]

bιEι1. The term, uZ
(

0
η

)
, appears in the exponent of Φ of type-3 altKeys.

Therefore in all altKeys, δ̂ of ααα will be is hidden by uniformly random η.
Therefore we can replace δ̂ by δ̂ + t for t

$← Zp. Notice that such a change
will affect the ciphertext in only one component namely C∗

w1+1. The resultant

C∗
w1+1 will be Mb · e(g1, g2)

ααα�B

(
s0
ŝ0

)
= Mb · e(g1, g2)

(δδδ� δ̂+t )Z
�B

(
s0
ŝ0

)
= Mb ·

e(g1, g2)
ααα�B

(
s0
ŝ0

)
· e(g1, g2)

( 0 t )Z
�B

(
s0
ŝ0

)
= Mb · e(g1, g2)

ααα�B

(
s0
ŝ0

)
· e(g1, g2)tŝ0 .

Therefore C∗
w1+1 encrypts Mb · e(g1, g2)tŝ0 that is an uniformly random element

of GT as t
$←Zp. 
�

3.4 Construction Π ′
R: More Efficient Decryption

Given a pair encoding scheme P for predicate function R, a predicate encryption
Π ′

R is defined as following.

– Setup(1λ, N): mpk and msk are same as ΠR in Sect. 3.2. Only difference is
mpk now includes a one-time signature scheme OTS of its choice.

– KeyGen(msk, x): Same as KeyGen of ΠR in Sect. 3.2.
– Encrypt(mpk, y,M): Same as Encrypt of ΠR in Sect. 3.2. Only difference being

it runs (vk, sk) ← OTS.Gen(1λ). Then it computes ξ = H(C, vk) where C
is computed exactly the same as presented in Encrypt of ΠR in Sect. 3.2

and outputs C = (C0,C, vk, σ) where C0 = g
(ξWn+1+Wn+2)B

(
s0
0

)

1 and σ ←
OTS.Sign(sk,C0).
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– Decrypt(K,C): It differs from the Decrypt of ΠR in Sect. 3.2. Given K and
C corresponding to key-index x and data-index y respectively, if R(x, y) = 0,
it aborts. Also aborts if OTS.Verify(C0, vk, σ) evaluates to 0. Otherwise runs
E ← Pair(x, y,N). Given K = (K1, . . . ,Km1) and ciphertext C it computes

(K̃1, . . . , K̃w1) where K̃ι̃ =
∏

ι∈[m1]

(Kι)Eιι̃ for each ι̃ ∈ [w1]. Chooses rrr
$← Z

d
p.

Defines modified key K̂ = (K̂0, K̂1, . . . , K̂w1) where K̂0 = g
Z

(
rrr
0

)

2 , K̂1 = Φ · K̃1

for Φ = g
(ξW�

n+1+W�
n+2)Z

(
rrr
0

)

2 and ξ = H(C, vk) and K̂i = K̃i for i ∈ [2, w1].
Outputs M such that

M = Cw1+1 · e(C0, K̂0) ·
⎛
⎝ ∏

ι̃∈[w1]

e(Cι̃, K̂ι̃)

⎞
⎠

−1

. (3)

Correctness. See full version of this paper [19].

Remark 4. This construction is quite similar to the one presented in Sect. 3.2.
However, the ciphertext now has extra two elements. Here, we compute the hash
of (C, vk) first and bind it to the randomness B

(
s0
0

)
using common variables

Wn+1 and Wn+2 where vk is verification key for OTS. This results in an extra
ciphertext component namely C0. We then use the one-time signature OTS to
compute a signature σ on C0 and output C = (C0,C, vk,σ). Use of OTS ensures
integrity of C0 thereby allowing us to get rid of extra verification step (precisely
Eq. (1) in Sect. 3.2) that is needed to check the structure of C0.

Remark 5. Even if our construction uses OTS for CCA-security, the technique
is quite different than that of CHK [18] and its descendants. All those schemes
essentially depends on the key-delegation capability of the underlying CPA-
secure (H)IBE. Yamada et al. [10] formalized this notion as property of delegata-
bility. We note that not all pair encoding based predicate encryptions achieve
this property (see Table 3). Even for schemes that achieve delegatability, one
needs to apply index transformers [12] on both key and data index. This often
makes the resultant ciphertext and secret key significantly large (see [12, Table 1]
for details) thereby degrading the decryption performance.

Efficiency. Our construction increases the ciphertext length by exactly three
components namely C0, vk and σ will be returned along with the CPA-ciphertext
C where C0 ∈ G(d+1)

1 , vk is verification key of OTS and σ is the signature for
C0 with respect to the signing key sk corresponding to vk. As we mentioned
earlier, we have reused KeyGen of [5], therefore the secret key does not change.
However Decrypt has to verify the signature σ and evaluate only one additional
unit of pairing (namely e(C0, K̂0)). As both C0 and K̂0 are group elements having
(d+1)-components, the decryption in our construction incurs an additional cost
of (d + 1) pairing evaluations only. This is more efficient than ΠR (of Sect. 3.2).
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3.5 Security of Π ′
R

Theorem 2. Suppose a regular decryption pair encoding scheme P for predicate
R is both SMH-Secure and CMH-Secure in G, and the Dd-Matrix DH Assump-
tion holds in G. Then the scheme Π ′

R is fully CCA-secure encryption scheme
if H is collision resistant hash function and OTS is strong one-time signature.
More precisely, for any PPT adversary A that makes at most q1 key queries
before challenge, at most q2 key queries after challenge and at most Q decryp-
tion queries throughout the game, there exists PPT algorithms B1,B2,B3,B4,B5

such that for any λ,
Adv

Π′
R

A (λ) ≤ (2q1 + 2Q + 3) ·AdvDd-MatDH
B1

(λ) + q1 ·AdvCMH
B2

(λ) +AdvSMH
B3

(λ)
+Q · AdvCRH

B4
(λ) + Q · AdvsUf-CMA

B5,OTS (λ).

The theorem is formally proved in the full version [19] of this paper.

3.6 Performance Comparison

In this section we provide concrete comparison, outlined in Table 1, of perfor-
mance between conventional conversions [10–13] and our constructions over few
examples. The table below compares delegation-based, verifiability-based and
our (direct) CCA-construction technique on pair encoding based prime-order
instantiation of CP-ABE, KP-ABE [20] and KP-FE for DFA [5].

For all the candidate schemes considered in the table, vk ∈ {0, 1}�. For CP-
ABE and KP-ABE, A denotes attribute set, Γ denotes the access structure such
that I ⊂ A are the attributes that satisfy Γ and dummy attribute set W to accom-
modate vk such that |W | = 2�, where Γ can be expressed as an LSSS matrix [20]
of dimension m × k. In case of KP-FE for DFA, M = (Q,Σ,Tr, q0, F ) denotes

Table 3. Concrete comparison of efficiency (The “dark-gray” (resp. “light-gray”) has
been used to denote delegation (resp. verifiability)-based construction while parameters
and complexity of ΠR and Π ′

R (i.e. direct constructions) are kept uncolored. Precisely,
ΠR is presented at the top among the two uncolored rows for each example. Sometimes,
adjacent cells have been merged if corresponding complexities are same. The two-
columns under “Decryption Cost” follows the same convention as in Table 1 where the
first cell is underlying CPA-Decryption cost and second cell contains additional cost
to achieve CCA-Decryption.).
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the DFA and ω denotes the string. Here [E] and [P] denote number of unit group
multiplication and number of unit pairing evaluations respectively. By unit group
multiplication (resp. pairing evaluation) we mean d + 1 many group multiplica-
tion (resp. pairing evaluations) in a prime-order system of d + 1 dimension. For
standard assumptions like SXDH and D-Linear, d is 1 and 2 respectively.

Note that in Table 3, we considered both KP-ABE and CP-ABE to be small-
universe. The additional cost in CP-ABE and KP-ABE instances mentioned
there, is actually the cost of performing verifiability-1 whereas we presented the
additional cost in case of KP-FE for DFAs is a sort of public verifiability to guaran-
tee verifiability-2 of the underlying CPA-decrypt algorithm (see [11,13] for these
notions of verifiability). Even if, delegation-based conversions are better than
verifiability-based conversions in terms of efficiency, there are several schemes for
which delegation is still unachieved. One such example is KP-ABE construction of
[20] and has been marked NA (i.e. not available) in the above table. Both our direct
constructions (ΠR and Π ′

R) overcome these problems without affecting the per-
formance. We emphasize that even if delegation is available for some CPA-secure
CP-ABE, viz, large universe CP-ABE schemes, the delegation-based conversion is
simply not applicable due to efficiency problem. For example, prime order instan-
tiation ([5]) of large universe CP-ABE schemes for [3, Pair Encoding Scheme 13]
and dual of [3, Pair Encoding Scheme 4] has transformed key-index size exponen-
tially big due to introduction of dummy attribute W = {0, 1}�.

4 Conclusion

In this work, we presented two direct adaptive CCA-secure predicate encryption
constructions to convert adaptive CPA-secure predicate encryption of [5]. The
ciphertext of our first construction contains only one additional component than
in case of adaptive CPA-secure predicate encryption of [5] and decryption needs
exactly three unit (i.e. 3× (d+1)) additional pairing evaluations. The ciphertext
of our second construction, on the other hand, contains exactly three additional
components (a G

(d+1)
1 element, an OTS verification key and a signature) than

in case of adaptive CPA-secure predicate encryption of [5] and decryption needs
only one unit additional pairing evaluations. This is a significant improvement
over the previous generic conversion mechanisms which needed almost double of
m1×w1×(d+1)×(m2+1)×d many pairing evaluations. A possible future work
might be instantiation of our generic CPA-to-CCA conversion on the predicate
encryption resulted from integration of dual system groups with pair encoding
schemes.
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Abstract. Cold boot attacks target memory remanence effects in hard-
ware to secret key material. Such attacks were first explored in the scien-
tific literature by Halderman et al. (USENIX Security Symposium 2008)
and, since then, different attacks have been developed against a range of
asymmetric key and symmetric key algorithms. Such attacks in general
receive as input a noisy version of the secret key as stored in memory,
and use redundancy in the key (and possibly knowledge of a public key)
to recover the secret key. The challenge is to recover the key as effi-
ciently as possible in the face of increasing levels of noise. For the first
time, we explore the vulnerability of lattice-based cryptosystems to this
form of analysis, focussing in particular on NTRU, a well-established and
attractive public-key encryption scheme that seems likely to be a strong
candidate for standardisation in NIST’s post-quantum process. We look
at two distinct NTRU implementations, showing how the attacks that
can be developed depend critically on the in-memory representation of
the secret key. We develop, efficient, dedicated key-recovery algorithms
for the two implementations and provide the results of an empirical eval-
uation of our algorithms.

Keywords: Cold boot attacks · NTRU · Key enumeration

1 Introduction

Cold boot attacks have received significant attention since they were first
described in the literature by Halderman et al. nearly a decade ago [7] (see
also [8]). This class of attack relies on the fact that computer memory nor-
mally keeps information when going through a power-down/power-up cycle, so
an adversary might be able to gain access to confidential information such as
cryptographic keys after a system reboot. Unluckily for such an adversary, once
the power is cut off, the bits in memory will undergo a gradual degradation,
meaning that any information retrieved from the computer memory will proba-
bly be noisy. Thus, once the location of the key in memory has been discovered
(itself a non-trivial task), the adversary’s task becomes the mathematical prob-
lem of recovering a key from a noisy version of that key. The adversary may have
access to reference cryptographic data created using that key (e.g. ciphertexts
for a symmetric key encryption scheme) or have a public key available (in the
asymmetric setting).
c© Springer International Publishing AG 2017
A. Patra and N. P. Smart (Eds.): INDOCRYPT 2017, LNCS 10698, pp. 107–125, 2017.
https://doi.org/10.1007/978-3-319-71667-1_6
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The amount of time for which information is maintained while the power
is off depends on the particular memory type and the ambient temperature.
Experimental results shown in [7] reveal that, at normal operating temperatures,
there is little corruption within the first few seconds, but this phase is then
followed by a rapid decay. The period of mild corruption can be prolonged by
cooling the memory chips. For instance, according to [7], in an experiment at
−50 ◦C (which can be achieved by spraying compressed air onto the memory
chips) less than 0.1% of bits decay within the first minute. At temperatures of
approximately −196 ◦C (achieved by means of the use of liquid nitrogen) less
than 0.17% of bits decay within the first hour. Notably, once power has been
switched off, the memory will be partitioned into regions, and each region will
have a’ground state’ which is associated with a bit, 0 or 1. In a 0 ground state, the
1 bits will eventually decay to 0 bits, while the probability of a 0 bit switching to
a 1 bit is very small, but not vanishing (a common probability is circa 0.001 [7]).
When the ground state is 1, the opposite is true. An attacker can determine
the ground state of a particular region of memory rather easily in an attack by
reading all the bits and determining how many of them are 0 bits and how many
are 1 bits.

The main focus of cold boot attacks after the initial work pointing out their
feasibility [7] has been to develop algorithms for efficiently recovering keys from
noisy versions of those keys for a range of different cryptosystems, whilst explor-
ing the limits of how much noise can be tolerated. Heninger and Shacham [10]
focussed on the case of RSA keys, giving an efficient algorithm based on Hensel
lifting to exploit redundancy in the typical RSA private key format. This work
was followed up by Henecka et al. [9] and Paterson et al. [18], with both papers
also focussing on the mathematically highly structured RSA setting. The lat-
ter paper in particular pointed out the asymmetric nature of the error channel
intrinsic to the cold boot setting and recast the problem of key recovery for
cold boot attacks in an information theoretic manner. Cold boot attacks in the
discrete logarithm setting were considered in [19]. There, the authors empha-
sise the critical role of the format in which the private key is stored in memory
in the development and success of attacks. Several papers have considered cold
boot attacks in the symmetric key setting, including Albrecht and Cid [1] who
focussed on the recovery of symmetric encryption keys in the cold boot setting by
employing polynomial system solvers, and Kamal and Youssef [14] who applied
SAT solvers to the same problem. Further research on the development of cold
boot attacks for specific schemes can be found in [13,15] Cold boot attacks
are also widely cited in the theoretically-oriented literature on leakage-resilient
cryptography, but the relevance there is marginal because the cold boot attack
scenario (direct access to a noisy version of the whole key) does not really apply
in the leakage-resilient setting.

1.1 Our Contributions

In this paper, we examine the feasibility of cold boot attacks against the NTRU
public key encryption scheme [11,12]. We believe this to be the first time that
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this has been attempted. Our work can be seen as a continuation of the trend
to develop cold boot attacks for different schemes (as evinced by the litera-
ture cited above). But it can also be seen as the beginning of the evaluation
of the leading post-quantum candidates against this class of attack. Such an
evaluation should form a small but important part of the overall assessment
of schemes in the soon-to-commence NIST selection process for post-quantum
algorithms.1 In particular, this paper evaluates what seems likely to be a leading
candidate and lays the groundwork for the later study of other likely candidates
in the same broad family of schemes that operate over polynomial rings (such as
NTRUprime [3] and various recently proposed ring-LWE-based schemes [2,5]).

As noted above, the exact format in which the private key is stored is critical
to developing key recovery attacks in the cold boot setting. This is because
the attack depends on physical effects in memory, represented by bit flips in
private key bits, and the main input to the attack is a bit-flipped version of the
private key. For this reason, it is necessary to either propose natural ways in
which keys would be stored in memory in NTRU implementations or to examine
specific implementations of NTRU. We adopt the latter approach, and we study
two distinct implementations. The first, ntru-crypto, is a pair of C and Java
libraries developed by OnBoard Security, a spin off of Security Innovation, the
patent-holder for some NTRU technology.2 The second, tbuktu is a pair of
libraries developed by “Tim Buktu”, and is available in ‘C’ and Java languages.3

A fork of the Java implementation is included in the popular Bouncy Castle Java
crypto library.4

Each of these implementations stores its private keys in memory in slightly
different ways. For example, in Java, tbuktu supports a number of different for-
mats, including a representation where the key is stored as 6 lists of indices, each
index being a 32-bit integer representing a position where a certain polynomial
has a coefficient of value +1 or −1. Meanwhile, ntru-crypto’s C implementa-
tion uses a special representation of polynomial coefficients by trits (three-valued
bits), and then packs 5 trits at a time into octets using base-3 arithmetic.

Each of these different private key formats therefore requires a different app-
roach to key recovery in the cold boot setting. In this paper, we will focus on
just a couple of the more interesting cases, where there is some additional struc-
ture that we can exploit, or where novel approaches are called for. Nevertheless,
we will pose the problem of key recovery in a more general way that makes
it possible to see how to generalise our ideas to cover other cases. Specifically,
each of our analyses involves splitting the (noisy) private key into chunks, and
creating log-likelihood estimates for each candidate value for each of the chunks.

1 See http://csrc.nist.gov/groups/ST/post-quantum-crypto/ for details of the NIST
process.

2 See https://github.com/NTRUOpenSourceProject/ntru-crypto for the code and
https://www.onboardsecurity.com/products/ntru-crypto/ntru-resources for a list of
useful resources related to NTRU.

3 See http://tbuktu.github.io/ntru/.
4 See http://bouncycastle.org/.

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://github.com/NTRUOpenSourceProject/ntru-crypto
https://www.onboardsecurity.com/products/ntru-crypto/ntru-resources
http://tbuktu.github.io/ntru/
http://bouncycastle.org/
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Each such estimate can be regarded as a per chunk score. A log-likelihood esti-
mate (or score) for a candidate for the complete private key can then be com-
puted by summing the per chunk scores across the different chunks. Our problem
then becomes one of efficiently enumerating complete candidates and their scores
based on lists of candidates for chunks and per-chunk scores, so that each com-
plete candidate can then be tested for correctness (for example, by trial encryp-
tion and decryption). It makes sense to perform the enumeration in decreasing
order of score if possible, starting with the most likely candidate. This is a
problem that also arises in the side-channel attack literature, cf. [4,6,16,17,20],
where, for example, one might obtain scoring information for each byte of an
AES key from a power analysis attack and then want to efficiently enumerate
and test a large number of complete16-byte candidates in decreasing order of
score until the correct key is found. We are able to apply standard algorithms
(e.g. depth-first search on a tree with pruning) as well as algorithms from this
literature to solve the key recovery problem in our context.

1.2 Paper Organisation

This paper is organised as follows. Section 2 describes cold boot attacks and
the adversary model in more detail. It also gives a basic statistical approach to
recovering private keys in the face of noise, based on maximum likelihood estima-
tion. Section 3 describes the NTRU public key encryption algorithm and details
of the two implementations that we target. Section 4 describes our algorithms
for attacking these implementations; these are largely based on established key
enumeration techniques from the literature on side-channel attacks. Section 5
describes our implementation of the algorithms and the results of our empirical
evaluation of the performance of the attacks. We conclude in Sect. 6

2 Further Background

2.1 Cold Boot Attack Model

Our cold boot attack model assumes that the adversary can obtain a noisy
version of the original NTRU private key (using whatever format is used to
store it in memory). We assume that the corresponding NTRU public key is
known exactly (without noise). We do not consider here the important problem
of how to locate the appropriate area of memory in which the private key bits
are stored, though this would be an important consideration in practical attacks.
Our aim is then recover the private key. Note that it is sufficient to recover a list
of key candidates in which the true private key is located, since we can always
test a candidate by doing a trial encryption using the known public key and
then decryption using the candidate. It is highly likely that a simple test of
this type will filter out all wrong candidates (especially when the NTRU variant
considered is CCA secure).

We assume throughout that a 0 bit of the original private key will flip to a
1 with probability α = P (0 → 1) and that a 1 bit of the original private key
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will flip with probability β = P (1 → 0). We do not assume that α = β; indeed,
in practice, one of these values may be very small (e.g. 0.001) and relatively
stable over time, while the other increases over time. Furthermore, we assume
that the attacker knows the values of α and β and that they are fixed across
the region of memory in which the private key is located. These assumptions
are reasonable in practice: one can estimate the error probabilities by looking
at a region where the memory stores known values (e.g. where the public key is
located), and the regions are typically large. Moreover, our algorithms will be
fairly robust to mis-estimations of these parameters.

2.2 Log Likelihood Statistic for Key Candidates

Suppose we have a true private key that is W bits in size, and let r =
(r0, . . . , rW−1 denote the bits of the noisy key (input to the adversary in the
attack). Suppose a key recovery algorithm constructs a candidate for the pri-
vate key c = (c0, . . . , cW−1) by some means (to be determined). Then, given the
bit-flip probabilities α, β, we can assign a likelihood score to c as follows:

L[c; r] := Pr[r|c] = (1 − α)n00αn01βn10(1 − β)n11

where n00 denotes the number of positions where both c and r contain a 0 bit,
n01 denotes the number of positions where c contains a 0 bit and r contains a 1
bit, etc.

The method of maximum likelihood estimation5 then suggests picking as c
the value that maximises the above expression. It is more convenient to work
with log likelihoods, and equivalently to maximise these, viz:

L[c; r] := log Pr[r|c] = n00 log(1 − α) + n01 log α + n10 log β + n11 log(1 − β).

We will frequently refer to this log likelihood expression as a score and seek
to maximise its value (or, equally well, minimise its negative).

2.3 Combining Chunks to Build Key Candidates

Now suppose that the true private key r can be represented as a concatenation of
W/w chunks, each on w bits. As we shall see in the specific analyses of different
NTRU implementations, this will be the case in practice. For example, each
chunk might arise from the value of a coefficient of some polynomial making up
the NTRU private key.

Let us name the chunks r0, r1, . . . , rW/w−1 so that r0 = r0r1 . . . rw−1, r1 =
rwrw+1 . . . r2w−1, etc. Suppose also that candidates c can be represented by
concatenations of chunks c0, c1, . . . , cW/w−1 in the same way.

Suppose further that each of the at most 2w candidates for chunk ci (0 ≤ i <
W/w) can be enumerated and given its own score by some procedure (formally,
a sub-algorithm in an overall attack). For example, the above expression for log
5 See for example https://en.wikipedia.org/wiki/Maximum likelihood estimation.

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
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likelihood across all W bits of private key is easily modified to produce a log
likelihood expression for any candidate for chunk i as follows:

L[ci; ri] := log Pr[ri|ci] = ni
00 log(1 − α) + ni

01 log α + ni
10 log β + ni

11 log(1 − β)
(1)

where the ni
ab values count occurrences of bits across the i-the chunks, ri, ci.

Thus we can assume that we have access to W/w lists of scores, each list
containing up to 2w entries. Note that W/w scores, one from each of these
per-chunk lists, can be added together to create a total score for a complete
candidate c. Indeed, this total score is statistically meaningful in the case where
the per-chunk scores are log likelihoods because of the additive nature of the
scoring function in that case.

The question then becomes: can we devise efficient algorithms that traverse
the lists of scores to combine chunk candidates ci, obtaining complete key candi-
dates c having high total scores (with total scores obtained by summation)? As
noted in the introduction, this is a problem that has been previously addressed
in the side-channel analysis literature [4,6,16,17,20], with a variety of different
algorithmic approaches being possible to solving the problem. We shall return
to this question after having described the specific NTRU implementations that
we will attack.

3 NTRU Encryption Scheme and Private Key Formats

In this section we briefly describe the NTRU public key encryption scheme and
explore the various private key formats in the two implementations we will be
working with.

Let N, p, q ∈ Z
+. We define three polynomial rings:

R = Z[x]/(XN − 1), Rp = Zp[x](XN − 1), Rq = Zq[x](XN − 1).

Thus, for example, elements of Rp can be represented as polynomials of
degree at most N − 1 with coefficients from Zp. They can also be represented as
vectors of dimension N over Zp in the natural way, and we will switch between
representations at will.

Definition 1. Let a ∈ Rq The centred lift of a to R is the unique polynomial
a′ ∈ R satisfying a′ mod q = a whose coefficients all lie in the interval − q

2 <
a′
i ≤ q

2 .

Definition 2. Let r be a fixed integer and let Cr be the function that, given
a ∈ R, outputs the number of coefficients of a equal to r. Let d1, d2 ∈ Z

+. We
define T (d1, d2) = {a ∈ R | C1(a) = d1, C−1(a) = d2, C0(a) = N −d1−d2}. Note
that |T (d1, d2)| =

(
N
d1

)(
N−d1
d2

)
. An element a ∈ R is called a ternary polynomial

if and only if a ∈ T (d1, d2) for some d1, d2 ∈ Z
+.
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3.1 NTRU Public Key Encryption Scheme

The NTRU public key encryption scheme is a lattice-based alternative to RSA
and ECC with security that is (informally) based on the problem of finding
the shortest vector in a particular class of lattices. The scheme exists in several
different versions, offering different forms of security (IND-CPA, IND-CCA). The
details of the scheme’s operation matter less to us than the format of private keys
in implementations. However, for completeness, we give an overview of NTRU.
We follow the description in [11].

The scheme relies on public parameters (N, p, q, d) with N and p prime,
gcd(p, q) = gcd(N, q) = 1 and q > (6d + 1)p.

Key generation:

1. Choose f ∈ T (d + 1, d) that is invertible in Rq and Rp.
2. Choose g ∈ T (d1, d2) for some d1, d2 ∈ Z

+.
3. Compute fp, the inverse of f in Rp.
4. Compute fq, the inverse of f in Rp.
5. The public key is h = pfq · g ∈ Rq; the private key is the pair (f , fp).

Encryption: On input message m, which we assume to be a centre-lifted version
of an element of Rp, and public key h:

1. Choose a random r with small coefficients, in particular r can be chosen such
that r ∈ T (d, d).

2. Compute the ciphertext e as e = r · h + m ∈ Rq.

Decryption: On input ciphertext e and private key (f , fp):

1. Compute b = f · e in Rq. (Note that this yields b = pg · r + f · m over Rq.)
2. Centre-lift b modulo q to obtain a, and then compute fp · a ∈ Rp. Centre-lift

the result modulo p to obtain m′.

We omit the correctness proof for this description of the NTRU scheme. Note
that fp can be computed from f on the fly, and so some implementations may
only store f as the private key.

3.2 Private Key Formats for NTRU Implementations

NTRU at first was only available as a proprietary, paid-for library. It was not
until 2011 that the first open-source implementation, tbuktu, appeared under
a BSD licence.6 A fork of this first implementation forms the basis of the
NTRU code in the Bouncy Castle library. Two years later Security Innovation
exempted open source projects from having to obtain a patent license for their
ntru-crypto implementation7 and released an NTRU reference implementation
under the GPL v2 licence. Each of these two implementations is available in
both Java and C. We examine the private key formats for each of these imple-
mentations in turn.
6 See http://tbuktu.github.io/ntru/.
7 See https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/

FOSS%20Exception.md.

http://tbuktu.github.io/ntru/
https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/FOSS%20Exception.md
https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/FOSS%20Exception.md
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3.2.1 The tbuktu/Bouncy Castle Java Implementation
In this implementation, there are four pieces of information that determine how
the private key is stored:

1. A variable t that points to a polynomial and from which variables corre-
sponding to the private key components f and fp are constructed.

2. A variable polyType that indicates the type of polynomial to use. This can
hold two values: SIMPLE or PRODUCT.

3. A boolean sparse that indicates if t is an sparse or dense polynomial. This
variable applies only if polyType has value SIMPLE.

4. A boolean fastFp that indicates the manner in which f is built from t. If
fastFp = true, then p = 3, f = 1 + 3t and fp = 1; otherwise f = t and
fp = t−1 mod p. This relates to an implementation trick for the case p = 3.

When polyType has the value SIMPLE, t will be either a dense ternary poly-
nomial or a sparse ternary polynomial, as determined by the value of sparse.
In the dense case, t is represented as an int array of length N whose entries
have values from {−1, 0, 1}. In memory, each entry is stored as a 32-bit signed
integer, using two’s complement, i.e., +1 is stored as the 32-bit string 000 . . . 01,
0 is stored as 000 . . . 00 and −1 is stored as 111 . . . 11. Meanwhile, in the sparse
case, t is represented as two int arrays, ones and negOnes, where:

1. The array ones contains the indices of the +1 coefficients of t in increasing
order (so that the entries in the area are 32-bit representations of integers in
the range [0, N − 1]).

2. The array negOnes contains the indices of the −1 coefficients of t in increasing
order (with entries having the same bit representation as the entries of ones).

When polyType has the value PRODUCT, t will be a product form polyno-
mial. In this case, t is represented by three different sparse ternary polynomi-
als f1, f2, f3 such that t = f1f2 + f3. All three of f1, f2, f3 are stored in mem-
ory separately in sparse form. This means that, when polyType has the value
PRODUCT, then the private key is represented in memory by a total of 6 int
arrays fi.ones, fi.negOnes, 1 ≤ i ≤ 3.

Note that the private key formats for the tbuktu C implementation are
largely the same as for the Java one, and so we do not detail them further here.

3.2.2 Reference Parameters for tbuktu

The tbuktu implementation includes 10 named reference parameter sets with a
range of choices for N and q, targeting different security levels and optimisations.
These 10 sets are detailed in the EncryptionParameters class.

For example, both APR2011 439 and APR2011 439 FAST parameter sets target
128 bits of security. If the former set is selected, f = t, with t being represented
as a sparse ternary polynomial with df = 146 coefficients set to +1 and with
df − 1 of them set to −1. If the latter set is selected, then f = 1 + 3t, with
t = f1f2 + f3; moreover f1 has df1 = 9 coefficients set to each of +1 and −1, so
f1 ∈ T (9, 9) (while df2 = 8 and df3 = 5 for f2 and f3, respectively).
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3.2.3 The ntru-crypto Java Implementation
Here, the private key f is always of the form 1 + 3t where t is a ternary
polynomial and we have p = 3 (so that fp = 1). In this implementation, f is
stored directly in memory as an array of short integers. That is, the coefficients
f0, f1, . . . , fN−1 of f are stored as a sequence of 16-bit signed two’s complement
integers with f0 ∈ {−2, 1, 4} and fi ∈ {−3, 0, 3}, for 1 ≤ i < N .

3.2.4 The ntru-crypto C Implementation
Here, key generation is carried out by the function ntru crypto ntru encrypt
keygen. During its execution, f (the private key) is initially generated as either
a product of polynomials (f = f1 · f2 + f3) or as a single polynomial. Either way,
f is represented internally as a list of the indices of the +1 coefficients followed
by a list of the indices of the −1 coefficients, where each index is stored in an
unsigned 16-bit integer. This data is then used to construct a packed private
key blob following one of two formats. The information-dense nature of these
formats makes it harder to mount cold boot key recovery attacks that perform
significantly better than a combinatorial search based on searching over low-
weight error patterns. For this reason we do not consider this format any further
in this paper.

3.2.5 Reference Parameters for ntru-crypto

The ntru-crypto implementation includes 12 named reference parameter sets
with a range of choices for N and q, targeting different security levels and opti-
misations. For the Java implementation, these parameter sets are defined in the
KeyParams class. The values of N range from 401 to 1499, with p = 3 and
q = 2048 throughout; the number of +1’s and −1’s in f (resp. g), denoted df
(resp. dg) depends on N ; for example, for the parameter set ees449ep1, we have
N = 449, df = 134, and dg = 149.

4 Mounting Cold Boot Key Recovery Attacks

In this section, we present our cold boot key recovery attacks on the implementa-
tions and corresponding private key formats introduced in the previous section.
First, because of its simplicity, we consider the ntru-crypto Java Implementa-
tion (in which f is stored directly in memory as an array of short integers). We
will then consider the tbuktu Java Implementation in which the PRODUCT form
of private key is used and such that fastFp = true, so that f = 1 + 3t with
t = f1f2 + f3 where all three of f1, f2, f3 are stored in memory in sparse form.

We continue to make the assumptions outlined in Sect. 2. We additionally
assume that all relevant public parameters and private key formatting informa-
tion are known to the adversary.
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4.1 The ntru-crypto Java Implementation

Recall from Sect. 3.2.3 that the coefficients of f are stored directly in memory as
an array of 16-bit, signed two’s complement integers, with f0 ∈ {−2, 1, 4} and
fi ∈ {−3, 0, 3}, for 1 ≤ i < N . For simplicity, we assume that f0 is known (there
are only 3 possible values for f0 and the attack can be repeated for each possible
value). The attacker then receives a noisy version r = (r0, . . . , rW−1) of the array
with entries f1, . . . , fN−1 which is W = 16(N −1) bits in size. In the terminology
of Sect. 2, we set w = 16 and partition the noisy key into W/w = N − 1 chunks
ri, each chunk corresponding to a single, 16-bit encoded coefficient fi+1.

Using Eq. (1), we can compute log-likelihood scores L[ci; ri] for each chunk
i and each candidate ci for that chunk. Note that in each chunk, there are only
3 possible candidates ci, since fi ∈ {−3, 0, 3}. (In the general formulation with
w = 16 there could be up to 216 candidates per chunk.)

Hence we obtain N − 1 lists of scores (log-likelihood values), each list con-
taining 3 values. Alternatively, we can think of this as being an array of size
3 × (N − 1). Our task now is to combine candidates, one per chunk, to generate
complete private key candidates c with high log-likelihoods, which can then be
tested via trial encryption and decryption.

In order to generate complete private key candidates c with high scores,
we employ an algorithm that is closely based on that of [17] from the side-
channel attack literature. Specifically, as in [17], we use a standard depth-first
search across the chunk counter i to enumerate candidates. This employs a stack,
with partial cumulative scores for candidates at “depth” i in the search being
computed by adding the chunk score at depth i to a cumulative score for the
candidates at “depth” i − 1. Once “depth” N − 1 is reached, and a complete
candidate is generated, the candidate can be filtered and then tested. (In fact,
the known restrictions on the number of +3 and −3 coefficients in private keys
for the standard parameters that we are attacking can be used to perform early
aborts on partial candidates.)

As in [17], we can restrict the search space to certain intervals of scores by
appropriate pruning of partial solutions. By representing a complete search space
as a union of intervals, a degree of parallelisation can be achieved (but this may
involve repeated computation). We can also adapt the approaches of [16,17]
to perform enumeration rather than generating candidates – computing how
many candidates have scores in a given interval. This is useful for estimating
the likely performance of the search algorithm. However, a significant difference
with [16,17] arises from the parameters involved – there, typically there are
16 chunks with 256 candidates per chunk (corresponding to AES key bytes),
whereas here we will have on the order of a few hundred chunks and only 3
candidates per chunk.

4.2 The tbuktu Java Implementation

Now we turn our attention to the tbuktu Java implementation in some of its
more interesting cases. Recall from Sect. 3.2.1 that when the PRODUCT form of
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private key is used and when fastFp = true, then we have f = 1 + 3t with
t = f1f2 + f3 where all three of f1, f2, f3 are stored in memory in sparse form.

This means that we have 6 arrays of indices in memory fi.ones, fi.negOnes,
1 ≤ i ≤ 3. Each array is of type int and each entry in each array stores the
position of either a +1 or a −1 coefficient in one of the polynomials fi; moreover
the entries should be in increasing order. We assume the starting positions in
memory, total sizes, and ranges of possible values in each of these tables is
known. We also know that for any pair fi.ones, fi.negOnes, the two tables of
values should be non-intersecting. We let Li denote the common length of the
two arrays fi.ones, fi.negOnes (this is determined by the parameters used to
generate the private key).

We now present a two-phase attack to generate complete private key candi-
dates.

4.2.1 Phase 1
In the first phase, we apply a modified version of the Optimal Key Enumeration
Algorithm (OKEA) of [20]. As in the description in Sect. 2, this algorithm takes
as input a collection of W/w lists of candidates, one list per chunk, and produces
as output a list of lsize complete candidates, each across all W bits. It uses a
dynamic programming version of a list merging strategy to generate complete
candidates in decreasing order of score. The OKEA algorithm has the property
that it is guaranteed to output the lsize highest scoring (i.e. most likely) can-
didates across all the chunks (hence its optimality). It seems to be particularly
effective when W/w, the number of chunks being considered, is moderate – [20]
applied it in the case of reconstructing 16-byte AES keys from their bytes, with
16 chunks.

We perform this step for each of our 6 arrays as follows: we build W/w lists of
candidates, setting w = 32 and W = wLi so that we have Li chunks. Each chunk
corresponds to one int entry in the array, and each list is of size N (since, at the
outset, every chunk could take on any value between 0 and N − 1, these being
the possible indices of a +1 or −1 coefficient). The score for each entry in each
list is obtained using our per-chunk log-likelihood expression (1). We modify
the OKEA algorithm in such a way that it is guaranteed to output the top
lsize candidates by score which additionally respect our ordering requirement
– that is, the entries in a candidate should be in increasing order of size. This
modification is done by adding an extra filtering step in each merge phase of
OKEA which removes candidates that do not respect the ordering constraint.

At the end of this step, then, we obtain 6 lists Ci, 1 ≤ i ≤ 6, the entries
of each list comprising lsize high-scoring candidates for one of the 6 arrays
fi.ones, fi.negOnes, 1 ≤ i ≤ 3.

4.2.2 Phase 2
In the second phase of the attack, we present these 6 lists as inputs to the
algorithm described in Sect. 4.1 above – that is, we perform a stack-based, depth-
first search on the lists, regarding each list as giving a set of candidates on one
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of 6 chunks. Each complete candidate (on 6 chunks) now gives a candidate
for fi.ones, fi.negOnes, 1 ≤ i ≤ 3, these being tables of the indices where the
component polynomials f1, f2, f3 have coefficients +1 and −1. We then apply
the constraint that the pairs of tables be non-intersecting (applying it earlier
in the process is not very efficient, since the probability of a collision of indices
is small for the parameters of interest). If a candidate survives this filter, we
can construct the full private key f = 1 + 3t with t = f1f2 + f3 and test it for
correctness.

As before, this second phase is amenable to parallelisation and to searching
over restricted score intervals. Now the parameters are more akin to those studied
in the prior work [16,17] – we have 6 chunks, and lsize candidates per chunk,
with typical values for lsize in our experiments being 256, 512 and 1024.

5 Experimental Evaluation

5.1 Implementation

All of the algorithms discussed in this paper were implemented in Java. We
choose Java for several reasons. First, the two implementations that we have
studied in this paper were written in Java (as well as C). Second, the Java plat-
form provides the Java Collections Framework to handle data structures, which
reduces programming effort, and increases program speed and quality. Finally,
the Java platform also easily supports concurrent programming, providing high-
level concurrency APIs.

5.1.1 Parallelisation
We made extensive use of parallelisation in our implementations, particularly for
the stack-based, depth-first search that is at the core of both attacks. The first
parallelisation method we used comes directly from [17] and involves splitting
up the range of scores of interest into n disjoint, equal-sized sub-intervals. The
second method involves splitting the list of candidates for the first chunk in our
algorithm into m equal-sized sub-lists, and running the algorithm as a separate
task for each sub-list, thereby constraining solutions from each task to begin
with a chunk from the specified sublist for that task. These two approaches can
be combined, to execute mn threads in parallel. Of course, as soon as one of the
threads completes and successfully finds the private key, the others can all be
aborted.

5.1.2 Search Intervals
Defining appropriate search intervals on which to run our algorithms is impor-
tant in guaranteeing the success of our attacks within a reasonable amount of
running time. Recall that, given a collection of lists as input, each list containing
candidate for chunks and their scores, our algorithms will consider all possible
candidates with total scores in any specified interval [a, b]. We considered two
distinct classes of search interval:
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1. Class I intervals are the form [μ − W,μ + W ], where μ is the average score
of the correct key and W is some real number that is tuned to the maximum
running time available. Here μ can be computed empirically by generating
many private keys, flipping their bits according to the error probabilities α, β,
and then using the usual log-likelihood scoring function. Using such intervals
capture the intuition that it might be better to examine key candidates that
are situated around the average score, since these are more likely to be correct.
This of course violates the principle of the maximum likelihood approach.

2. Class II intervals are of the form [max −W,max], where max is the maximum
possible score and W is again a real number that can be tuned. Here, the value
of max is easily calculated by summing across the highest scoring entries in
each list. Searching in such intervals better matches the approach of maximum
likelihood estimation.

5.1.3 Simulations
To simulate the performance of our algorithms, we generate a private key
(according to some chosen format), flip its bits according to the error proba-
bilities α, β, and then run our chosen algorithm with selected parallelisation
parameters m,n and interval definition [a, b]. We refer to such a run attempting
to recover a single private key as a simulation.

For our experiments, we ran our simulations on a machine with Intel Xeon
CPU E5-2667 v2 cores running at 3.30 GHz; we used up to 16 cores. In order to
run our simulations concurrently, a pool of threads is initialised with a maximum
number of threads given as a parameter. When a simulation is to be run and
tested, it generates its various tasks according to the given parameters, each of
which then is submitted to the main pool in order. After it has finished, a thread
outputs either the recovered private key or null value (indicating failure to find
the key) along with some statistics. Note that having a pool created with a
defined number of threads helps to avoid exhausting and reusing computational
resources, in contrast to creating a new thread per task.

5.2 Results for the ntru-crypto Java Implementation

Here, we only considered Class II intervals, i.e. intervals of the form
[max −W,max]. To calculate suitable values for W , we used random sampling
from the set of possible candidates (by choosing chunks at random from each
list) in order to estimate σ, the standard deviation of the candidate scores. We
then set W as rσ and experimented with different values of r, the idea being
that larger values of r would correspond to bigger intervals, including more can-
didates and giving a higher chance of success at the cost of more computation.
We used 220 candidates in sampling to estimate σ.

After manual tuning, the number of tasks was set to 3, r was set to 0.01 and
the number of subintervals m was set to 1. Hence in our experiments, searches
were conducted over the interval [max −0.01σ,max] with 3 tasks.

Figure 1a shows the success rate of our attack for the ees449ep1 parameters
(N = 449, df = 134, dg = 149, p = 3, and q = 2048). Figure 1b shows the success
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Fig. 1. Success rate of our algorithm (y-axis) against β (x-axis) for a fixed α = 0.001,
using Class II intervals.

rate for the ees677ep1 parameters (N = 677, df = 157, dg = 225, p = 3, and
q = 2048).

It can be seen from the two figures that the success rate is acceptably high
for small values of β, but rapidly reduces as β is increased in size. Increasing
the size of r (and therefore the search interval [max−rσ,max]) would improve
the success rate at the cost of increased running time. For r = 0.01, we saw
running times on the order of minutes to hours. There were a few simulations
with very high running times; these were aborted after 1 day of computation.
We observed this behaviour in particular for high values of β. In this case, the
number of tasks, 3, the number of chunks, 400, and the nature itself of what
was considered a suitable candidate (number of 1’s and −1’s) made it hard to
predict the number of candidates in a given interval. So searching over a given
interval is done somewhat “blindly”, in the sense that searching over the interval
[max −0.01σ,max] will not behave in a consistent manner in terms of the number
of candidates found (and hence the running time needed).

5.3 Results for the tbuktu Java Implementation

Due to the additional structure of private keys compared to the ntru-crypto
implementation, we focussed a greater experimental effort on the tbuktu Java
implementation.

5.3.1 Counting Candidates and Estimating Running Times
Because of the nature of the log-likelihood function employed to calculate scores,
each of the six lists Ci output by Phase I of the attack will have many repeated
score values. This enables us to efficiently compute the number of candidates
that Phase II of the attack will consider in any given interval [a, b]. To do this,
we run a modified version of Phase II in which the lists Ci are replaced by
“reduced” lists which eliminate chunk candidates having repeated score values,
and include the counts (numbers) of such candidates along with their common
score. By simultaneously computing the sums of scores and products of counts
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on these reduced lists, we can compute the total number of candidates that will
have a given score, over all possible scores in any chosen interval.

Because the size of each reduced list is less than 10 on average in our exper-
iments (when lisze is up to 1024), we obtain a very efficient algorithm for
counting the number of candidates in any given interval that our Phase II search
algorithm would need to consider. We can combine this counting algorithm with
the average time needed to generate and consider each candidate to get esti-
mates for the total running time that our algorithm would encounter for a given
choice of interval. We can then also compute the expected success probability
and estimated running time (for the given number of candidates or given interval
considered) without actually running the full Phase II search algorithm.

5.3.2 Parameters
The encryption parameters used for running the simulations are APR2011
439 FAST (N = 439, p = 3, q = 2048, df1 = 9, df2 = 8, df3 = 5, sparse = true,
fastP = true so that t = f1f2 + f3, and f1 ∈ T (9, 9), f2 ∈ T (8, 8), f3 ∈ T (5, 5)).

5.3.3 Results – Complete Enumeration
In our experiments, we set lsize to 2r for Phase I, for r = 8, 9, 10. Thus six
candidate lists each of size 2r will be obtained from Phase I. Let pi denote
the probability that the correct candidate is actually found in the i-list; pi will
be a function of r. It follows that the probability that our Phase II algorithm
outputs the correct private key when performing a complete enumeration over
all 26r candidate keys is given by p =

∏6
i=1 pi. This simple calculation gives us a

way to perform simulations to estimate the expected success rate of our overall
algorithm (Phase I and Phase II) without actually executing the expensive Phase
II. We simply run many simulations of Phase I for the given value of lsize (each
simulation generating a fresh private key and perturbing it according to α, β),
and, after each simulation, test whether the correct chunks of the private keys
are to be found in the lists.

Figure 2 shows the success rates for complete enumeration for values of
lsize = 2r for r ∈ {8, 9, 10}. As expected, the greater the value of lsize,
the higher the success rate for a fixed α and β. Also note that when the noise is
high (for example α = 0.09 and β = 0.09), the success rate drops to zero. This
is expected since it is likely that at least one chunk of the private key will not be
included in the corresponding list coming out of Phase 1 when the noise levels
are high, at which point Phase II inevitably fails.

Note that each data point in this figure (and all figures in section) were
obtained using 100 simulations. Note that the running times for Phase 1 are
very low in average (≤50 ms), since that phase consists of calling the OKEA for
each one of the six lists with lsize in the set {256, 512, 1024}.
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Fig. 2. Expected success rate for a full enumeration for α = 0.001, 0.09. The y-axis
represents the success rate, while the x-axis represents β.

5.3.4 Results – Partial Enumeration
Here, we exploit our counting algorithm to estimate success rates as a function
of the total number of keys considered, K. Specifically, given a value K, and an
interval type (I or II), we can set W accordingly so that the right number of keys
will be considered. Since we can easily estimate the speed at which individual
keys can be assessed, we can also use this approach to control the total running
time of our algorithms.

Figure 3 shows how the success rate of our algorithm varies for different values
of lsize, focussing on Class I intervals. We observe the same trends as for full
enumeration, i.e. the greater is lsize, the higher is the success rate for a fixed
α and β. Also, for larger values of (α, β), the success rate drops rapidly to zero.

Figure 4 shows the success rates for a complete enumeration and partial enu-
merations with 230 keys and 240 keys, for both Class I and Class II intervals.

Fig. 3. Success rate for enumeration with 240 keys over a Class I interval for α =
0.001, 0.09, for different values of lsize. The y-axis represents the success rate, while
the x-axis represents β.
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Fig. 4. Success rates for full enumeration, and partial enumeration with 230 keys, 240

keys for α = 0.001, 0.09 and with lsize = 1024. The y-axis represents the success rate,
while the x-axis represents β.

As expected, the success rate for a full enumeration is greater than for the partial
enumerations (but note that a full enumeration here would require the testing of
up to 260 keys, which may be a prohibitive cost). Note that the closest success
rate to the success rate of a full enumeration is achieved with partial enumera-
tions with 240 keys over a Class II interval, and that partial enumerations over
Class I intervals perform poorly, in the sense that their success rates are even
dominated by the success rate of enumerations with 230 keys over Class II inter-
vals. The superiority of Class II intervals is in-line with the intuition that testing
high log-likelihood candidates for correctness is better than examining average
log-likelihood ones.

5.3.5 Running Times
From our experiments, we find that our code is able to test up to 1200 candi-
dates per millisecond per core during Phase 2. This value may vary in the range
700–1200 when there are multiples tasks running. The reason for this varia-
tion may be the cost associated with the Java virtual machine (particularly, its
garbage collector). Using only a single core, an enumeration of 230 (240) candi-
date keys will take about 14 min (10 days, respectively).

6 Conclusions

We have initiated the study of cold boot attacks for the NTRU public key
encryption scheme, likely to be an important candidate in NIST’s forthcoming
post-quantum standardisation process. We have proposed algorithms for this
problem, with particular emphasis on two existing NTRU implementations and
two private key formats. We have experimented with the algorithms to explore
their performance for a range of parameters, showing how algorithms developed
for enumerating keys in side-channel attacks can be successfully applied to the
problem.
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Our attacks do not exploit the underlying mathematical structure of the
NTRU scheme. It would be interesting to explore whether our techniques can be
combined with other approaches, such as lattice-reduction, to further improve
performance. We also focussed mainly on the two available Java implementa-
tions. It would be interesting to extend our work to consider the ntru-encrypt
C implementation which uses packing techniques to reduce the private key size.
This seems challenging because of the corresponding increase in information
density for these formats; however, there is still some redundancy in the second
of the two formats because of the ordering of indices. It is an interesting open
problem to find ways to exploit this redundancy. Implementations of NTRU may
also compute additional private key values, for example the inverse of f mod p,
in order to speed up decryption operations. Thus these extra values might be
available in a cold boot attack. Finding methods for exploiting this additional
redundancy would be of interest.
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Abstract. The rapid growth of the Internet of Things together with the
increasing popularity of connected objects have created a need for secure,
efficient and lightweight ciphers. Among the multitude of candidates, the
block cipher PRIDE is, to this day, one of the most efficient solutions for
8-bit micro-controllers. In this paper, we provide new insights and a bet-
ter understanding of differential attacks of PRIDE. First, we show that
two previous attacks are incorrect, and describe (new and old) properties
of the cipher that make such attacks intricate. Based on this understand-
ing, we show how to properly mount a differential attack. Our proposal
is the first single key differential attack that reaches 18 rounds out of 20.
It requires 261 chosen plaintexts and recovers the 128-bit key with a final
time complexity of 263.3 encryptions, while requiring a memory of about
235 blocks of 64 bits.

Keywords: Block cipher · PRIDE · Differential cryptanalysis

1 Introduction

We are currently facing a growing need for secure and efficient cryptographic
primitives that aim to protect the myriad of resource-constrained devices that
are more and more part of our daily lives.

Most popular examples of such targeted devices of the Internet of Things
include RFID tags and nodes in sensor networks. For the latter, one of the
preferred platforms are 8-bit micro-controllers. Ciphers dedicated to this plat-
form require to be lightweight and software-oriented, that is, in addition to
being secure will only require a small program memory and have a small execu-
tion time. Examples of ciphers proposed to meet these needs include SEA [11],
KLEIN [5], ITUbee [7], PRIDE [1] and the Feistel ciphers designed by the
National Security Agency (SIMON and SPECK [2]). Among the academic
proposals, the substitution permutation network (SPN) PRIDE proposed by
Albrecht et al. at Crypto 2014 is the most efficient, result that sources from the
designers’ careful analysis of linear layers that reach interesting trade-off between
security and efficiency.

Previous works on PRIDE include a side-channel attack presented at
CRiSIS 2016 [9]. In the black box scenario, Dinur presented at Eurocrypt 2015 [4]
a new cryptanalytic time-memory-data trade-off, while Guo et al. [6] gave obser-
vations on the impact of increasing the number of rounds of the cipher. The more
c© Springer International Publishing AG 2017
A. Patra and N. P. Smart (Eds.): INDOCRYPT 2017, LNCS 10698, pp. 126–146, 2017.
https://doi.org/10.1007/978-3-319-71667-1_7
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powerful attacks published to date are a related-key differential attack of the full
cipher [3] byDai andChen, and twodifferential attacks on 18 [16] and 19 [15] rounds
out of 20. Quoting from the specification document1, the related key attack is out
of scope: “PRIDE does not claim any resistance against related-key attacks (and
actually can be distinguished trivially in this setting)”, so the best type of attack
appears to be single key differential attack.

In this paper we provide insight on the resistance of PRIDE against this type
of attack and give a twofold contribution: first, we show that the two previous
attacks ([15,16]) are erroneous — even when taking into account the corrections
proposed by [13] — due to a miscomputation of the known bits and second we
show how to correctly mount a differential cryptanalysis to attack 18 rounds of
PRIDE.

Our attack requires 261 chosen plaintexts and the equivalent of 263.3 encryp-
tions. Since the security claim of the designers is that the product of data and
time complexity cannot be smaller than 2127, our proposal is a valid attack of
the cipher reduced to 18 rounds.

The paper is organized as follows. Next section gives a short description
of the block cipher PRIDE and introduces our notations. Then, we start our
study with a section reporting old and new properties of PRIDE Sbox and key
schedule. In Sect. 4, we describe our first contribution by disclosing why the two
previous differential cryptanalyses of PRIDE fail to recover the key, even when
the flaws spotted in previous works are corrected. We then put into practice our
comprehension of PRIDE to build high probability differential characteristics
(Sect. 5) and mount an 18-round differential attack in Sect. 6. The paper ends
with a conclusion.

2 PRIDE Block Cipher

2.1 Description of PRIDE

PRIDE [1] is a lightweight block cipher proposed at Crypto 2014 by Albrecht,
Driessen, Kavun, Leander, Paar and Yalçin. The cipher follows an SPN struc-
ture and benefits from an extensive analysis of secure and efficient linear layers,
presented in the same article. It is software-oriented and reaches notable perfor-
mance figures when implemented on 8-bit micro-controllers.

Round Function. PRIDE uses 64-bit blocks and 128-bit keys and makes use
of the FX construction [8] in the following way: the first 64 bits of the master
key k, denoted k0, is used as pre- and post-whitening key, while the other half
k1 is used to compute the round keys. In the following, we denote the whitening
key by K0 and the round key of round i by Ki, 1 ≤ i ≤ 20 (see Fig. 1).

PRIDE encryption routine is made of 20 rounds. The first 19 rounds are
identical and denoted by R, while the last one does not contain the linear layer
and is denoted by R′. The cipher ends (resp. starts) with the application of a

1 Sect. 5.5 of [1].
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Fig. 1. Overall structure of PRIDE block cipher.

Fig. 2. R and R′ round functions of PRIDE. The naming conventions used for the
intermediate states are detailed in Table 2.

bit-permutation (resp. its inverse) for bit-sliced implementation reasons. Since
these operations can easily be inverted, what we call in the following plaintext
and ciphertext are the states before (resp. after) the first (resp. last) whitening
operation. The cipher is based on the following operations2, combined as depicted
in Fig. 2:

– A key addition layer,
– An Sbox layer, which consists in applying the same 4 × 4 Sbox S (given in

Table 1) to each nibble (group of 4 bits) of the state,
– A linear layer, combining:

• The application of bit permutations P and P−1,
• The application of matrices, more precisely the application of matrix Li,

i = 0, · · · , 3 to the ith 16-bit word of the state.

Table 1. Definition of the Sbox of PRIDE.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 0 4 8 f 1 5 e 9 2 7 a c b d 6 3

2 Due to space limitations, we refer to [1] for the details of the linear layer.
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Key-Schedule. The round keys of PRIDE are 64-bit words given by Ki =
P−1(fi(k1)) (1 ≤ i ≤ 20) where fi(k1) is:

fi(k1) = k10 ||g(0)i (k11)||k12 ||g(1)i (k13)||k14 ||g(2)i (k15)||k16 ||g(3)i (k17)

k1i
, 0 ≤ i < 8, is byte number i of k1 and the gi functions are given by:

g
(0)
i (x) = (x + 193i) mod 256, g

(1)
i (x) = (x + 165i) mod 256,

g
(2)
i (x) = (x + 81i) mod 256, g

(3)
i (x) = (x + 197i) mod 256.

2.2 Notations

To ease comprehension of the remainder of the paper, we use the same notation
as in the two previous differential attacks on PRIDE ([15,16]). These notations
are recalled in Table 2. In order to remain consistent with it, we also start count-
ing bits from 1, and more particularly we denote by (x1, x2, x3, x4) the binary
decomposition of the nibble x, where x1 is its most significant bit.

Table 2. Notations.

Symbol Definition

Ir input state of r-th round

Xr state after key addition of r-th round

Yr state after the Sbox layer of r-th round

Zr state after the application of P of r-th round

Wr state after the matrices layer of r-th round

ΔS xor difference of the state S

Sr[i] i-th nibble of the state Sr

Sj
r [i] j-th bit of the i-th nibble of Sr

3 Properties of PRIDE Components

In this section, we present important properties of the Sbox and of the Key-
Schedule that impact a differential attack of PRIDE. These properties are cru-
cial to understand the mistakes made in the previous differential cryptanalyses
as well as to get the techniques used in our new attack.
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3.1 Sbox Properties

We start by recalling the component functions of the Sbox:

Definition 1 (Component functions of PRIDE Sbox). If we denote x =
(x1, x2, x3, x4) the input nibble of the Sbox, then the expressions of the corre-
sponding output nibble S(x) = y = (y1, y2, y3, y4) is given by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 = x1x2 ⊕ x3

y2 = x2x3 ⊕ x4

y3 = x1x2x3 ⊕ x1x2x4 ⊕ x2x3 ⊕ x3x4 ⊕ x1

y4 = x1x2x4 ⊕ x1x4 ⊕ x2x3 ⊕ x3x4 ⊕ x2

We can remark that y1 and y2 depend only on 3 bits out of 4 of the input
and that only two of the input bits are involved in the degree 2 monomials. This
remark turns useful in our attack since it implies that instead of requiring a
complete nibble to get the value of bit number 1 or 2 we only need the value of
3 bits. Note that since PRIDE Sbox is an involution these properties also hold
for its inverse.

What’s more, this observation impacts the possible differential transitions
of the Sbox, a property that was formalized by Tezcan in [12] and applied to
PRIDE in [13].

Definition 2 (undisturbed bit [12]). For a specific input difference of an S-box,
if some bits of the output difference remain invariant, then we call such bits
undisturbed.

For instance, if the input difference of PRIDE Sbox is equal to 8 (1000), its
output difference is of the form ?0?? (see [13]).

In [14], Tezcan and Özbudak introduced the notion of differential factor, that
plays a role in the number of key bits one can recover and on the time complexity:

Definition 3 (differential factor [14]). Let S be a function from F
n
2 to F

m
2 . For

all x, y ∈ F
n
2 that satisfy S(x)⊕S(y) = μ, if we also have S(x⊕λ)⊕S(y⊕λ) = μ,

then we say that the S-box has a differential factor λ for the output difference μ.
(i.e. μ remains invariant for λ).

3.2 Key-Schedule Properties

We introduce here a property of the key schedule that allows to reduce the
number of key-guesses required in our attack:

Property 1 (Difference between round keys). The binary difference between
two round keys Ki and Kj for i and j of different parity is given by the following
expression, where ‘?’ represents an unknown bit:

Ki ⊕ Kj = (00000000||00000000||00000000||00000000||????????||????????||????????||????1111)
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Also, the difference between Ki and K� for i and � of same parity3 is given by:

Ki ⊕ K� = (00000000||00000000||00000000||00000000||????????||????????||????????||????0000).

Proof. The first relation results from the definition of the round key, from which
we obtain that:

Ki ⊕ Kj = P
−1

(00000000||???????1||00000000||???????1||00000000||???????1||00000000||???????1)

where the differences of ‘1’ in bit 16, 32, 48 and 64 of P (Ki ⊕ Ki+1) are easily
explained by the fact that i and j have different parities and that the values
added to k1 in g functions are odd. The second relation results from the fact
that i and � have the same parity.

As described later, we select our characteristic so that when checking the
active Sboxes we have common bits so less guesses to make.

4 Previous Differential Attacks on PRIDE

Two single key differential attacks ([15,16]) have been published prior to our
work. In [13], Tezcan et al. show that the complexities of these attacks are miss-
computed due to the oversight of the impact of differential factor and propose a
correction. Their patch mainly results in an increase of the final time complexity.

In this section, we show that there are more problems in [15,16] than the
ones reported in [13] and that consequently the proposed patches are insufficient.
The problem we disclose and that is common to both attacks is that the attacker
misses information to compute the required internal state bits.

4.1 18-Round Differential Attack of Zhao et al.

In [16], Zhao et al. proposed an attack on 18-round PRIDE. They use a 15-
round characteristic4 of probability 2−58 and add one round to the top and two
rounds to the bottom. Their attack procedure starts by eliminating some wrong
pairs by looking at the ciphertext difference. Then, they guess 10 nibbles of the
whitening key K0 – namely K0[1, 2, 3, 5, 6, 7, 10, 11, 14, 15] – in order to be able
to check that the differences at the input of the corresponding Sboxes of round
18 have the right form (see Table 3).

They next introduce K ′
18, a key that is equivalent to the last round key K18

and is given by: (M ◦ P )−1(f18(k1)). They make a guess on K ′
18[6, 10, 14] in

order to be able to compute the difference entering Sbox number 6, 10 and 14
of penultimate round and access the corresponding sieve.

This attack suffers from several problems: first, as noted in [15] and later in [13],
the authors omitted to take into account the undisturbed bits. In addition to that,
3 Note that simple relations can also be found between other keys; Ki and Ki+16 for

instance.
4 It corresponds to what we name in next section the first characteristic of type (I, a),

see Table 5.
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[13] reveals that the 6Sboxdifferences that are involved in the attack are differential
factors (namely λ = μ = 8), which implies that the attacker cannot obtain infor-
mation on 6 key bits. Quoting [13], this error results in the fact that “the correct
time complexity of this attack is 270 18-round Pride encryptions, not 266”.

The new problem we spotted is a miscomputation of the known bits of the inter-
nal states. Namely: to compute the difference entering Sbox number 6, 10 and 14 of
penultimate round we need the value of Y17[6, 10, 14], but it is impossible to deter-
mine the twomiddle bits of any of these 3 nibbles.This phenomenonappears clearly
if we look at Table 3, where we have depicted the bits of rounds 17 that can be com-
puted from the ciphertext given the key guesses on K0. We clearly see that the 3
highlighted nibbles Y17[6], Y17[10] and Y17[14] are not completely determined.

Table 3. Analysis of 18-round differential attack of PRIDE by Zhao et al. [16]. All
the bit values that are computable are depicted with a ‘1’, while other bits are shown
by ‘0’.

As it is, the sieve offered by these 3 Sboxes cannot be accessed, so each
possible value for the 52 bits of key would be suggested 27 times in average, and
the right value would not be distinguishable. Consequently, the attack fails.

The attack of Zhao et al. has high requirements (260 messages and 266 encryp-
tions), so taking into account the correction from the differential factors already
leads to an attack that does not break the security claim (260 × 270 > 2127). In
addition to that, correcting the problem we spotted in a straightforward manner
would require to make more guesses on K0, that is to guess 22 bits of the nibbles
K0[4, 8, 9, 12, 13, 16], so clearly fixing Zhao et al. paper does not lead to an attack
that threaten the cipher.

The authors’ confusion comes probably from the fact that the linear layer is
not an involution. In the case it was, knowing the bits they name would have
been enough to access the active Sboxes in round 17. Unfortunately, L1 and L2

do not define involutions so more bits are required to find the output of the 3
active Sboxes of round 17.
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4.2 19-Round Differential Attack by Yang et al.

There is a similar mistake in the 19-round attack described by Yang et al. in [15].
They use a 15-round characteristic5 and expand it two rounds to the plaintext

side and two rounds to the ciphertext side. After discarding pairs that for sure
do not follow the characteristic, they guess nine nibbles of key in plaintext side,
namely (K0 ⊕ K1)[1, 2, 3, 5, 7, 9, 10, 13, 14], and partially encrypt the plaintext
pairs through the first Sbox layer. On the ciphertext side, they guess the seven
nibbles 1, 2, 5, 8, 9, 10 and 13 of K0 and partially decrypt the ciphertext pairs
through the last Sbox layer. They next claim that they can also recover nibbles
number 5 and 9 of K2 and nibbles 5 and 9 of K ′

19 = (M ◦ P )−1(f19(k1)).
Similarly to the 18-round attack discussed in previous section and as

described in [13], this attack uses difference transitions that are differential fac-
tors, meaning that it fails to recover 4 bits of the key (each most significant bit
of nibbles number 5 and 9 of K2 and nibbles 5 and 9 of K ′

19).
Moreover, as in previous section, we note that there is a problem upstream

to that one. Namely, the authors simply cannot compute the desired Sbox tran-
sitions given their guesses: they lack information to compute the two middle bits
of I2[5, 9] and Y18[5, 9]. Consequently, they cannot obtain information on these
four nibbles, and the right key cannot be identify (even if the correction given
by Tezcan et al. is applied).

The detail of which bits are computable in first and last two rounds is pro-
vided in Table 4.

Table 4. Analysis of 19-round differential attack of PRIDE by Yang et al. [15]. We
use the same notation as before and depict known bits with ‘1’.

5 The fourth characteristic of type (II, a) given in Table 5.
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The initial attack requires 262 chosen plaintexts and 263 19-round encryp-
tions. To correct the errors we spotted, it is necessary to significantly increase
the number of key guesses. We need the value of 24 bits of nibbles number 3, 4,
7, 11, 12, 15, 16 of K0 to be able to treat the 2 Sboxes of penultimate round,
while we need the value of (K0 ⊕K1)[12, 16] and 3 bits of (K0 ⊕K1)[6] to access
the 2 Sboxes of round 2. Clearly, the straightforward correction does not lead to
a correct attack since the time complexity explodes.

5 Differential Characteristics for PRIDE

5.1 1 and 2-Round Iterative Differential Characteristics

As already shown in [15,16], there are 56 high-probability iterative characteris-
tics on 1 and 2 rounds of PRIDE, each activating only 4 Sboxes on 2 rounds
whose both input and output differences are equal to 8. Hence, the probability
of any of these iterative characteristics is equal to (2−2)4 = 2−8. The 56 possible
input/output differences are given in Table 5, where they are grouped according
to the number of active Sboxes in the first round (line I, II or III) and to
the index of the first active Sbox in the input difference (column a, b, c and d).
Note that all type II characteristics are iterative on 1 round while the others
are iterative on 2 rounds.

Table 5. Hexadecimal value of all the 1 and 2-round iterative differential characteristics
of PRIDE. The characteristic used in our attack is highlighted.

5.2 14-Round Differential Characteristics

Repeating any of the iterative characteristics of Table 5 gives a 14-round charac-
teristic of probability 2−56. To find out if there are other 14-round characteristics
with similar or better probability, we searched for characteristics with up to 3
active Sboxes in each round. Our program returned 168 (new) 14-round charac-
teristics of probability 2−56. Unfortunately, these characteristics are less advan-
tageous than the iterative ones since when we propagate them with probability 1
in the forward and backward direction they activate more Sboxes.
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Assume then that we use a 14-round characteristic (built from one of Table 5)
between round 3 and 17 of the cipher. By inverting the linear layer, we compute
ΔY2 from ΔI3, thus capturing 56 pairs (ΔY2, ΔX17) that hold with probability
2−56. In addition to that, a 14-round characteristic defines a limited number of
possible differences for ΔI2 and ΔY18 that can be computed from the distribution
table of the Sbox (see the full version of the paper ([10]) or Table 2 of [16]).
Namely, each active Sbox of ΔI2 and ΔY17 can only take 4 values, so we obtain
that ΔI2 and ΔY17 can respectively take 4n2 and 4n17 values, where ni represents
the number of active Sboxes in round i.

6 Differential Cryptanalysis of 18-Round PRIDE

This section describes our 18-round differential cryptanalysis of PRIDE. We
start by exposing a differential property of PRIDE Sbox and then show how
to use it in an attack to easily find information on key bits. We then detail the
complexities of our attack.

6.1 PRIDE Sbox Properties for Our Differential Characteristics

As discussed in Sect. 5.2, the difference transitions made by the Sboxes of round
2 and 17 are either from 8 to 2, 3, 8 or a or from 2, 3, 8 or a to 8. For these
configurations, the following property holds:

Property 2 (Relations defined by difference transitions of the Sbox).
If two Sbox inputs differ by 2 (respectively 3, 8 or a) and lead to an output
difference of 8 then the following relations hold:

S(x) ⊕ S(x ⊕ 2) = S(x1x2x3x4) ⊕ S(x1x2x̄3x4) = 8 ⇒ x2 = 0, x4 = 0
S(x) ⊕ S(x ⊕ 3) = S(x1x2x3x4) ⊕ S(x1x2x̄3x̄4) = 8 ⇒ x2 = 1, x3 = x4

S(x) ⊕ S(x ⊕ 8) = S(x1x2x3x4) ⊕ S(x̄1x2x3x4) = 8 ⇒ x2 = 1, x3 = x̄4

S(x) ⊕ S(x ⊕ a) = S(x1x2x3x4) ⊕ S(x̄1x2x̄3x4) = 8 ⇒ x2 = 0, x4 = 1

Proof. The property results from the component functions (Definition 1).

In other words, if we are able to check that the input difference of an active
Sbox is 2, 3, 8 or a and if we expect its output difference to be equal to 8 then
we are able to deduce information on the value of the state entering this Sbox.
Namely, we obtain the value of x2 together with either the value of x4 or a
relation between x4 and x3.

This observation implies that to check if an Sbox executes the right transi-
tion (so to have access to the corresponding filter of probability 2−2) we only
require information on (at most) 3 bits (bits 2, 3 and 4). This can be seen as a
reinterpretation of the undisturbed bits of [12].
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6.2 Overview of the Attack Procedure

In our attack, we use the 14-round differential path obtained by repeating the
characteristic (iterative on 1 round) highlighted in Table 5 and extend it 2 rounds
to the plaintext and 2 rounds to the ciphertext. This extension defines 4 rounds
of key recovery that will allow us to recover 10 bits of key on the plaintext side
and 10 bits of key on the ciphertext side.

The reasons why we decided to use this particular characteristic are the
following. First, among the 224 (168 new and 56 previously found) characteristics
we prefer the ones which imply less active Sboxes on the plaintext and ciphertext
side, and consequently require to make less guesses and computations when
checking that first and last round transitions are correct. This downsizes the set
of candidate characteristics to 24 (8 of each type), each activating a total of 14
Sboxes on the plaintext and ciphertext side. Type I characteristics activate 9
Sboxes on plaintext side and 5 Sboxes on ciphertext side while for type II we
have 7 active Sboxes on each side, and for type III the distribution is of 6 active
Sboxes on plaintext side and 8 on ciphertext side.

Then, among the 24 possible characteristics, we prefer the ones that lead to
smaller amount of possible differences6 when extending the characteristic with
probability 1 in plaintext and ciphertext. We also take into account the number
of key bits that we need to guess.

When looking for minimizing these parameters, both some of the character-
istics of type I and type II seem good. Type I characteristics require 1 more
key bit guess, but lead to less possible differences in plaintext and ciphertext.
Eventually we prefer characteristics of type II since the memory size required
to store a full structure is more reasonable.

This selection is further explained in the full version of the paper [10].
For the selected characteristic, and as explained in Sect. 5.2, ΔX2 can take

42 = 16 possible values, implying that there are also 16 possible values for ΔY1.
As shown in Table 6, we have 7 active nibbles for the 16 possible differences of
ΔY1 (nibbles 4, 5, 6, 8, 9, 12 and 16) while the other 9 nibbles are always inactive.
We use this property to reduce the necessary amount of data by building data
structures: the messages we ask for encryption are organized as sets of 24·7 = 228

plaintexts that are all equal in the corresponding 9 inactive nibbles and take all
possible values in the above mentioned 7 nibbles. So in each structure there is
about 28·7−1 = 255 plaintext pairs that differ in the 7 nibbles of interest.

A pair from this structure has the correct difference in ΔY2 if it reaches one
of the 16 targeted values for ΔY1 and then makes happen the correct transitions
of Sbox 8 and 16 of the Sbox layer of round 2. The probability of this event can
be computed as follows.

Probability that a pair takes one of the 16 targeted values in ΔY1.
Consider a complete structure, that is the set made by all the messages with the
same – fixed – value on our 9 inactive nibbles and taking all possible values on the
other 7 nibbles. There are exactly 228 such plaintexts. Since the key addition step

6 Here we look at real values instead of truncated differences.
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defines a permutation, we still have 228 messages differing on 7 nibbles after the
addition of the whitening key K0 and the first round key K1. The same reasoning
applies to the Sbox layer: the messages in our structure take all possible values
at the input of 7 Sboxes, so since PRIDE Sbox is a permutation the images of
these messages still correspond to 228 messages differing on the same positions.
Consequently, when forming pairs of these messages, every possible non null
difference on the 7 nibbles appears 227 times, so in one structure exactly 16×227

pairs out of 255 are useful for our attack (i.e. a ratio of 1 out of 224).

Probability that one of the 16 differences in ΔY1 leads to the correct ΔY2.
If ΔY1 is as required, the probability that the second round leads to the desired
characteristic is equal to (2−2)2 = 2−4, which corresponds to the probability that
the two active Sboxes of round 2 output a difference of 8 given an entering differ-
ence of 2, 3, 8 or a.

In sum, the total probability that one of our pairs follows the characteristic
is equal to:

2−24 · 2−4 · 2−56 = 2−84

which corresponds to realizing the correct transitions in round 1 and 2, following
the 14-round characteristic7 and finally propagating with probability 1 in the last
2 rounds.

This indicates that we need to encrypt about a · 284 plaintext pairs in order
to obtain a pairs that follow the characteristic (also called right pairs). This
amount can be obtained with a · 284 · 2−55 = a · 229 data structures i.e. with
a · 257 chosen plaintexts.

In the forward extension there are 42 = 16 possible values for ΔY17, so there
are 16 possible values for ΔX18. As shown in Table 6, these 16 possible values
for ΔX16 define at most 7 active nibbles (nibbles 1, 3, 4, 8, 9, 12 and 16) while
other 9 nibbles are always inactive. A common technique to filter out wrong pairs

Table 6. Differential extension of the 14-round characteristic used in our attack.

ΔP = ΔX1 0000 0000 0000 ???? ???? ???? 0000 ???? ???? 0000 0000 ???? 0000 0000 0000 ????

ΔY1 0000 0000 0000 ?00? 00?0 00?0 0000 ?00? 00?0 0000 0000 ?00? 0000 0000 0000 ?0??

ΔZ1 000? 000? 000? 000? 0000 0000 0000 0000 0000 ??00 ?000 000? 000? 000? 000? 000?

ΔW1 0000 000? 0000 000? 0000 0000 0000 0000 0000 000? 0000 000? 0000 000? 0000 000?

ΔI2 = ΔX2 0000 0000 0000 0000 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000 ?0??

ΔY2 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000

· · · · · ·
ΔI17 = ΔX17 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000

ΔY17 0000 0000 0000 0000 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000 ?0??

ΔZ17 0000 000? 0000 000? 0000 0000 0000 0000 0000 000? 0000 000? 0000 000? 0000 000?

ΔW17 000? 000? 000? 000? 0000 0000 0000 0000 ?0?? 0000 ?00? 000? 000? 000? 000? 000?

ΔI18 = ΔX18 00?0 0000 00?0 ?0?? 0000 0000 0000 ?00? 00?0 0000 0000 ?0?? 0000 0000 0000 ?0??

ΔY18 = ΔC ???? 0000 ???? ???? 0000 0000 0000 ???? ???? 0000 0000 ???? 0000 0000 0000 ????

7 Our experiments for up to 7 rounds showed that the probability of the differential
matches the one of the characteristic.
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consists in discarding pairs that have active Sboxes at any of these 9 positions.
Given our harsh restrictions in terms of time complexity, we prefer considering
a stronger filter which consists in checking that the difference observed in both
plaintext and ciphertext differences are consistent with the 16 possible differences
that can take Y1 and X18.

Once we generated enough messages and filtered them according to plaintext
and ciphertext differences, we start making key guesses: we test together a pair
with a possible value for the key by making partial encryptions and checking
that the necessary conditions are fulfilled. We discard all the candidates that do
not follow the characteristic.

We start by considering the ciphertext side and make a guess on the seven
nibbles K0[1, 3, 4, 8, 9, 12, 16]. We partially decrypt each of the pairs through the
matching seven nibbles of the last Sbox layer, and look at the difference that we
obtain: any candidate which difference is not one of the previously computed 16
possible values for ΔX18 is discarded.

We follow a similar procedure in plaintext side: we make a guess on the
28 key bits that intervene in the computation of the 7 active Sboxes ((K0 ⊕
K1)[4, 5, 6, 8, 9, 12, 16]) and partially encrypt the corresponding nibbles. If the
obtained difference is one of the 16 precomputed ones, we keep the candidate as
possible, otherwise we discard it.

At this point, each pair is associated with 28 + 28 = 56 bits of key corre-
sponding to (K0 ⊕ K1)[4, 5, 6, 8, 9, 12, 16] and K0[1, 3, 4, 8, 9, 12, 16]. From these
possible values for parts of (K0 ⊕ K1) and of K0, we deduce possible values for
K1[4, 8, 9, 12, 16]. In addition to that, Property 1 implies that we can deduce
nibble 4, 8 and 16 of any round key Ki.

We now have a look at the Sbox layer of round 2. We know the value of the
differences entering Sbox 8 and 16, together with the value of K2[8, 16]. To check
if the Sboxes execute the right transitions, we lack the value of the two middle bits
of nibble I2[8] and I2[16]. By inverting the linear layer, we can see that these values
depend on the values of 3 unknown bits which are bit 2, 42 and 59 of state Y1 (see
Fig. 3). The ANF description of the Sbox (see Sect. 6.1) indicates that the values
of these 3 bits depend on 10 bits of the plaintext (which is known), together with
10 key bits: (K0 ⊕ K1)2,3,4[1], (K0 ⊕ K1)2,3,4[11] and (K0 ⊕ K1)[15] respectively.
Consequently, the idea would be to make a guess on these 10 key bits, deduce the
value of X2[8] and X2[16] and check whether the transitions are satisfied or not.
The probability that a guess passes this test is 2−4.

We follow a similar procedure to handle the last 2 rounds. Let us recall here
that our 14-round characteristic ends at round 16 and that the difference spreads
freely in rounds 17 and 18, which are respectively of type R and R′. Our goal
here is to check the transitions of Sbox 8 and 16 of round 17 by using Property 2.
To limit the complexity of this step, we only check that the value of x2 is correct
instead of checking both relations, so we are only interested in Y 2

17[8] and Y 2
17[16]

(denoted c2 and d2 in Fig. 4). By referring to the linear layer, we obtain that
their expressions in function of I18 are:{

Y 2
17[8] = I2

18[6] ⊕ I2
18[7] ⊕ I2

18[14],

Y 2
17[16] = I2

18[3] ⊕ I2
18[11] ⊕ I2

18[12].
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The value of I18 depends on ciphertext bits (state C) together with bits of K0

and K18. For instance, Y 2
17[8] can be rewritten as:

Y
2
17[8] = (K

2
18[6] ⊕ X

2
18[6]) ⊕ (K

2
18[7] ⊕ X

2
18[7]) ⊕ (K

2
18[14] ⊕ X

2
18[14])

= (K
2
18[6] ⊕ K

2
18[7] ⊕ K

2
18[14]) ⊕ (Y

4
18[6] ⊕ Y

3
18[6]Y

2
18[6]) ⊕ (Y

4
18[7] ⊕ Y

3
18[7]Y

2
18[7])

⊕ (Y
4
18[14] ⊕ Y

3
18[14]Y

2
18[14])

= (K
2
18[6] ⊕ K

2
18[7] ⊕ K

2
18[14]) ⊕ ((C

4
[6] ⊕ K

4
0 [6]) ⊕ (C

3
[6] ⊕ K

3
0 [6])(C

2
[6] ⊕ K

2
0 [6]))

⊕ ((C
4
[7] ⊕ K

4
0 [7]) ⊕ (C

3
[7] ⊕ K

3
0 [7])(C

2
[7] ⊕ K

2
0 [7])) ⊕ ((C

4
[14] ⊕ K

4
0 [14])

⊕ (C
3
[14] ⊕ K

3
0 [14])(C

2
[14] ⊕ K

2
0 [14])).

Which indicates that we need to make a guess on:

K2,3
0 [6], K2,3

0 [7], K2,3
0 [14], K2

18[6] ⊕ K2
18[7] ⊕ K2

18[14] ⊕ K4
0 [6] ⊕ K4

0 [7] ⊕ K4
0 [14].

We follow a similar procedure for Y 2
17[16] and conclude that we need to guess

another 3 bits, namely:

K2,3
0 [11], K4

0 [11] ⊕ K2
18[3] ⊕ K2

18[11] ⊕ K2
18[12].

To sum up the key guessing process, we started from a set of a · 284 possible
pairs, we guessed 28+28+10+10 = 76 key bits and we had access to a filter of
2−36 · 2−24 · 2−24 · 2−4 · 2−2 = 2−54 (which corresponds respectively to filtering
on the ciphertext difference, checking last and first round and finally second and
seventeenth rounds). The number of candidates remaining in the last step is then
equal to a · 270. So, in average, each of the 76-bit key candidate will be counted
a · 270 · 2−76 = a · 2−6 times, while as we expect to have a right pairs, the right
key candidate will be counted a times. The signal to noise ratio (S/N) will then
be equal to 26, which ensure that we can distinguish the right key candidate
from the wrong ones.

The last step of the attack consists in doing an exhaustive search to find the
correct value for the remaining 128 − 76 = 52 key bits.

6.3 Detailed Description of the Attack and of Its Complexities

In this section, we detail the time, data and memory complexities of our attack.
We show that a naive implementation of the attack procedure described in
Sect. 6.2 would lead to a time complexity overrun, and show how to deal with
this issue.

Data Complexity: As detailed previously, we need about a ·257 chosen plaintexts
in order to successfully achieve the attack. We choose a = 24, which means that
the data complexity of our attack is equal to 261. We recall that the security
provided by PRIDE when the attacker has access to 2d messages is equal to
2127−d. Since our attack requires 261 messages, we are limited to a number of
operations lower than 266 encryptions.
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Time Complexity: To summarize the process described in Sect. 6.2, the attack
is made of 6 main steps:

1. Encrypt 233 structures and filter wrong pairs by looking at their input and
output differences.

2. Make a guess on 28 bits of K0 and check the transitions of the active Sboxes
of last round. Eliminate wrong candidates, (that are associations of a pair
with a key value that do not satisfy the transitions).

3. Make a guess on 28 bits of K0 ⊕ K1 and check the transitions of the active
Sboxes of first round. Eliminate wrong candidates.

4. Make additional guesses on 10 bits of K0 ⊕ K1 to access the value entering
Sbox number 8 and 16 of round 2 and check their transitions.

5. Make additional guesses on 10 bits of K0 and K18 to access the value out-
putting Sbox number 8 and 16 of round 17 and check their transitions.

6. The key guess that is suggested the most is the correct one. Make a guess on
remaining 52 key bits and do trial encryptions to recover the 128-bit master
key.

A naive implementation of this process would lead to several problems. First,
the attack involves many key bit guesses and uses many pairs, which would make
the time complexity exceed our upper bound of 266 PRIDE encryptions as soon
as step 3. Second, detecting which key candidate is the most frequent would
require to keep track of 276 counters, which is clearly not reasonable.

As described next, we solve those two problems by making small guesses at
the time and by studying each possible key guess for all possible pairs instead
of studying each pair one after the other with all the possible key candidates.

First 3 Steps of the Attack. As briefly mentioned in Sect. 6.2, the first step
of the attack consists in filtering the 288 pairs of messages by looking at their
plaintext and ciphertext differences.

Starting from the known 16 possible differences in ΔY1 and ΔX18, we refer
to the difference distribution table and precompute the possible differences in
P and C. A search returns that ΔP can take 170164 = 217.38 values while ΔC
can take 999448 = 219.93 values. This implies that out of the 288 initial pairs of
messages only 288 · (217.38 · 2−28) · (219.93 · 2−64) = 233.31 pairs will remain.

In practice, we start by filtering pairs according to the truncated difference
in the ciphertext. We are left with 252 pairs whose differences on the plaintext
and ciphertext sides are only on (at most) 7 nibbles. We then build two tables
of 228 bits each: the first table indicates if a difference on 28 bits is possible in
the plaintext side (so contains a ‘1’ at the position corresponding to the 217.38

possible ΔP ), while the second indicates which 28-bit differences are valid on
the ciphertext side. Each of the 252 remaining pairs then requires at most two
table look up to be filtered.

Then, we store all these 233.31 pairs and evaluate them with all possible key
values. This change implies that instead of needing 276 counters, we have to save
the 233.31 pairs (so we require 235.31 blocks of 64 bits).
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In step 2, we start by guessing 7 nibbles of K0 (K0[1, 3, 4, 8, 9, 12, 16]). For
each possible value we study the 233.31 pairs, and cancel the ones that do not
fulfill the required conditions. More precisely, the key guess is used to invert last
round Sbox layer and compute the difference ΔX18. We only keep pairs that
lead to one of the 16 valid differences. Since there are 228 possible values for the
7 key nibbles and that we repeat these operations for each of the 233.31 pairs,
this step is made 261.31 times. To express this complexity in terms of PRIDE
encryptions, we can see that it consists in computing two times 7 Sboxes (for a
pair), while 1 full encryption with the cipher requires 18 · 16 = 288 = 28.17 Sbox
computations. Step 2 is then roughly equivalent to 256.95 PRIDE encryptions.

Step 3 consists in the same operations as step 2 but in plaintext side. We
guess the 7 nibbles (K0 ⊕ K1)[4, 5, 6, 8, 9, 12, 16] and compute the corresponding
7 Sboxes of round 1 for all the remaining pairs. The pairs that are processed
in this step correspond to the pairs that remain after step 2, that is on average
233.31 ·(16 ·2−19.93) = 217.38 pairs associated to each possible value for the 28 bits
of key. In its naive form, the number of PRIDE encryptions made in this step
would then be equal to 228 · 228 · 217.38 · 7 · 2 · 2−8.17 = 269.02, which exceeds our
limit of 266 PRIDE encryptions. To solve this problem, we encrypt one Sbox
after the other and immediately check if the conditions are fulfilled. We start
with Sbox number 5, for which the targeted output difference is 2. Given one of
the 24 possible values for (K0 ⊕ K1)[5] fixed, we compute Y1[5] (this requires a
total of 228 · 24 · 217.38 · 2 = 250.38 Sbox operations) and check that the obtained
difference is equal to 2. To compute the number of pairs that pass this test we
need to take into account the proportion of pairs for which Sbox number 5 is
active (equal to 152004

170164 = 2−0.16) together with the probability that an active
Sbox of our pre-filtered set leads to a difference of 2 (which is 1

6 ). We obtain the
following estimate:

217.38 · (
152004
170164

· 1
6

+
18160
170164

· 1) = 217.38 · 2−1.97 = 215.41.

In the same way, we make a guess on the 4 bits of (K0⊕K1)[6], which requires
228 · 24 · 24 · 215.41 · 2 = 252.41 Sbox encryptions. We then filter out wrong pairs
by checking that active Sboxes give a difference of 2. The number of remaining
pairs is then equal to8 213.37. We then process Sbox number 9, which requires
228 · (24)3 · 213.37 · 2 = 254.37 Sbox encryptions and leaves us with an average of
212.33 pairs for each partial key guess. Next, we treat Sbox number 4 and 12,
taking advantage of the fact that they must have the same output difference.
The number of Sbox encryptions is equal to 261.33 and 28.73 pairs remain in
average. We finally handle the last 2 Sboxes together, which requires 265.73 Sbox
encryptions and discard all but 24 pairs in average for each key candidate9. To
sum up, total time complexity of this step is 250.38 + 252.41 + 254.37 + 261.33 +
265.73 = 265.80 which is equivalent to 266.80−8.17 = 257.63 PRIDE encryptions.

8 The computation of the quantities used in this step are detailed in the full version
of the paper [10].

9 217.38 · (16 · 2−17.38) = 24.
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Steps 4 and 5. Next operations (step 4 and 5) consist in checking the transi-
tions of Sbox number 8 and 16 in round 2 and in round 17. As explained before,
we look at the value of only 3 out of their 4 input bits in round 2 and only 1
out of 4 output bits in round 17. In the following, we name these bits ai, bi,
(2 ≤ i ≤ 4) and c2, d2, respectively (see Figs. 3 and 4).

We start by explaining how to check the 2 active Sboxes of round 2. We
remark here that if a2 (respectively b2) defines a condition on its own, the con-
dition that a4 (resp. b4) must fulfill sometimes depends on a3 (resp. b3).

As briefly mentioned in Sect. 6.2 and as illustrated in Fig. 3, a2 and b2 are
given by the following two expressions:

a2 = K2
2 [8] ⊕ Y 2

1 [1] ⊕ Y 2
1 [8] ⊕ Y 2

1 [11]

b2 = K2
2 [16] ⊕ Y 2

1 [8] ⊕ Y 2
1 [11] ⊕ Y 2

1 [12]

that when referring to Definition 1 can be rewritten as:

a2 = K2
2 [8] ⊕ P 4[1] ⊕ (K0 ⊕ K1)

4[1]

⊕(P 3[1] ⊕ (K0 ⊕ K1)
3[1]) · (P 2[1] ⊕ (K0 ⊕ K1)

2[1])

⊕Y 2
1 [8] ⊕ P 4[11] ⊕ (K0 ⊕ K1)

4[11]

⊕(P 3[11] ⊕ (K0 ⊕ K1)
3[11]) · (P 2[11] ⊕ (K0 ⊕ K1)

2[11]) (1)

b2 = K2
2 [16] ⊕ Y 2

1 [8] ⊕ P 4[11] ⊕ (K0 ⊕ K1)
4[11]

⊕(P 3[11] ⊕ (K0 ⊕ K1)
3[11]) · (P 2[11] ⊕ (K0 ⊕ K1)

2[11])

⊕Y 2
1 [12], (2)

for which the only unknown bits are (K0⊕K1){2,3,4}[1] and (K0⊕K1){2,3,4}[11].
Indeed, the plaintext bits are known and K2

2 [8] and K2
2 [16] are deduced from key-

schedule properties, while a2 and b2 are determined by the difference observed
in X2 together with the relations given by Property 2.

Fig. 3. Bits involved in the computation of a2, a3, a4 and b2, b3, b4.
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Consequently, we make a guess on these 6 key bits and check that the relations
given by Eqs. (1) and (2) hold, which happens with probability 2−2.

Since we have an average of 24 candidates for each possibility for the 56 bits
of key guessed so far, this step is repeated 24 × 256 × 26 = 266 times. We expect
that 24 × 256 × 26 × 2−2 = 264 candidates remain after it. Since computing a2

and b2 requires less operations than for an Sbox encryption, the time complexity
of this step is less than 2 · 266−8.17 = 258.83 full cipher encryptions.

We then look at a3, a4, b3 and b4. As can be seen in Fig. 3, the bits that
are necessary to compute a4 and b4 are Y 4

1 [4], Y 4
1 [8], Y 4

1 [12], Y 4
1 [16], K4

2 [8] and
K4

2 [16]. Since all these bits are known from previous computations, we can obtain
a4 and b4 and deduce from the value of ΔY1 and Property 2 the conditions that
they must fulfill on their own or with respect to a3 and b3.

To simplify the explanation, we consider that a3 and b3 are always necessary
to check the Sboxes. Note that this simplification is at the disadvantage of the
attacker and results in an over estimation of the time complexity.

Bits a3 and b3 are given by the following expressions (see also Fig. 3):

a3 = K3
2 [8] ⊕ Y 3

1 [4] ⊕ Y 3
1 [5] ⊕ Y 3

1 [15]

b3 = K3
2 [16] ⊕ Y 3

1 [4] ⊕ Y 3
1 [15] ⊕ Y 3

1 [16]

in which the only unknown bit is Y 3
1 [15]. Since this term appears linearly in both

a3 and b3, we can obtain a relation relying only on known bits by xoring the two
expressions:

a3 ⊕ b3 = K3
2 [8] ⊕ K3

2 [16] ⊕ Y 3
1 [5] ⊕ Y 3

1 [16].

Therefore without any key guessing we can filter our candidates and reduce their
number by a factor of 2−1: as a result, 263 candidates remain at this point, while
the complexity of this step is lower than 264−8.17 = 255.83 encryptions.

For the remaining candidates, we guess (K0 ⊕K1)[15] to be able to compute
Y 3
1 [15] and we check that a3 takes the right value. This requires a guess of 4

bits, and leads to a reduction of the set of possible candidates by a factor of 2−1.
With 267 simple computations (each roughly equal to one Sbox computation, so
with a time complexity that is less than 258.83 PRIDE encryptions), we reduce
the number of candidates to 266.

At this point, we have 266 candidates made of a pair of plaintext/ciphertext
associated to a guessed value for 66 key bits. The average count for a wrong key
is expected to be 1, while we built our messages so that the right key appears
around a = 24 times.

The distribution of keys in the candidates follows a binomial distribution of
parameters n = 266 and p = 2−66 (B(266, 2−66)) that can be approximated by a
Poisson distribution of parameter λ = np = 1 so the probability that a wrong
key appears strictly more than t times in our set of candidates is given by:

Pt = 1 −
t∑

k=0

e−1 · 1k

k!
= 1 − e−1 ·

t∑

k=0

1
k!
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The idea here is to do an additional filtering step (that is checking the 2 active
Sboxes of round 17) only for candidates that are associated with a key that is
suggested t + 1 times or more. Doing so, the ratio of candidates that we have to
study is equal to Pt.

We choose t = 13, meaning that we are now looking at 266 · 2−37.7 = 228.3

candidates. For these, we start by computing the value of c2 and d2, that as can
be seen in Fig. 4 depend on the following unknown bits:

– For c2: K
{2,3}
0 [6], K

{2,3}
0 [7], K

{2,3}
0 [14] and K2

18[6] ⊕ K2
18[7] ⊕ K2

18[14] ⊕ K4
0 [6] ⊕

K4
0 [7] ⊕ K4

0 [14].
– For d2: K

{2,3}
0 [11] and K4

0 [11] ⊕ K2
18[3] ⊕ K2

18[11] ⊕ K2
18[12].

We start by guessing the 3 key bits required to compute d2, and we filter our
guesses by confronting the obtained value with the value given by Property 2.
The filtering ratio is of 2−1, so the number of candidates after this step is:
228.3 × 23 × 2−1 = 230.3.

Next, we repeat the same process by guessing the 7 unknown key bits that
are necessary to compute c2. The number of candidates obtained at this point is:
230.3 × 27 × 2−1 = 236.3, and the time complexity of these two steps is negligible
in comparison to previous ones.

For all the key candidates that are (still) suggested 14 times or more, we
do an exhaustive search to find the value of the 128 − 76 = 52 unknown key
bits and check them by doing a trial encryption. Since we expect 211.3 such key
candidates, this step will at most require 211.3 · 252 = 263.3 encryptions.

To sum up, the total data complexity of our attack is 261 chosen plaintexts, its
time complexity is less than 263.3 18-round PRIDE encryption and its memory
complexity is of 235 64-bit blocks.

Fig. 4. Bits involved in the computation of c2 and d2.
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7 Conclusion

In this paper, we studied the resistance of PRIDE against differential crypt-
analysis. We first proved that two previous differential attacks are wrong since
essential bits are unknown to the attacker, making her unable to succeed. Our
main contribution is a 18-round differential cryptanalysis of the cipher that
results from a careful analysis of its high probability characteristics and of its
diffusion layer. Our attack recovers the full 128-bit master key with 261 cho-
sen plaintexts, a time complexity equivalent to 263.3 encryptions and requires to
store around 235 64-bit blocks.
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Abstract. The Digital Signature Algorithm (DSA) computes a modu-
lar exponentiation with a per-message ephemeral secret. This involves
a sequence of modulo square and multiply operations which, if known,
enables an adversary to obtain the DSA private key. Cache-based side
channel attacks are able to recover only discontiguous blocks of the
ephemeral key thanks to the sliding window optimization implemented
in many crypto libraries. Further, noisy side channels, rarely addressed in
the literature, greatly complicate key retrieval. Through extensive exper-
iments, we obtain estimates of the error rate as a function of block posi-
tion and size. We demonstrate key retrieval in the presence of noise and
model the time complexity of key recovery as a function of error rate.
Our model exposes the tradeoff between number of signature operations
that need to be monitored and the computational requirements for the
attack. By selectively using interior blocks in the ephemeral key, we are
able to retrieve the DSA private key with less than half the number of
signatures required by previous work that use only the rightmost block.

Keywords: Cryptanalysis · Lattice attack · DSA

1 Introduction

The Digital Signature Algorithm (DSA) [1] and its elliptic curve variant, ECDSA
[1] belong to the ElGamal family of signature schemes. Proposed by NIST and
adopted as FIPS 186, these algorithms are part of Digital Signature Standard
(DSS). The security of these algorithms is based on the presumed intractability
of the Discrete Logarithm Problem (DLP). However, they are known to be vul-
nerable to side channel attacks - these include attacks which exploit features of
their software implementations.

There has been much work on cache-based side channel attacks on various
cryptographic algorithms including AES [2], RSA [3,4], DSA [5,6] and EC-DSA
[6–9]. They exploit the fact that access times to main memory are about an order
of magnitude greater than access times to processor cache. Though there are
many variations of cache access attacks, the victim (performing DSA signature
operations) and the attacker or spy typically reside on the same physical machine.
In some attacks, the victim and spy are assumed to be on the same core [2,10].
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However, when two cores share the same lower level cache (L3 cache) as is the
case with many modern processors, it is still possible to implement some cache
attacks [11]. The attacks implemented in this paper use the second scenario.
We target the DSA implementation in the cryptographic library of OpenSSL
version 0.9.8.

A DSA signature operation involves computing a modular exponentiation
where the exponent is a randomly selected per-message secret referred to as
the ephemeral key. Knowing an ephemeral key together with its associated mes-
sage and signature enables an attacker to compute the DSA signing key and
thus forge signatures. The standard way of implementing modular exponentia-
tion is through a series of square and multiply operations - both operations are
performed modulo a large (160 bit or 256 bit) prime. Moreover, most software
implementations of DSA employ Sliding Window Exponentiation to speed up
modular exponentiation.

Using carefully timed accesses to the cache, the spy will be able to record
the SM sequence (squares and multiplies performed by the victim). Even if the
exact SM sequence is obtained, the spy will be able to deduce only some (non-
contiguous) blocks of the ephemeral key, not the complete key. Such blocks,
one or more per signature computation, serve as input to well-researched lattice
problems such as the Shortest Vector Problem (SVP) or Closest Vector Problem
(CVP). Solutions to these problems yield the DSA signing key [5–8,12].

Most previous efforts in DSA key retrieval assume a perfect (noise-free) side
channel. However, despite efforts at improving the accuracy of the side channel
information, our experimental results indicate error rates of over 25% based on
the strict definition of the recovery of the entire SM sequence per signature. The
focus of this paper is to obtain the DSA signing key even in the presence of such
a noisy side channel.

Our main contributions can be summed up as follows. We first outline a
strategy to retrieve the DSA private key with as few as 91 signatures in a perfect
side channel. We then conduct experiments to study the error rate in recovering
the partial ephemeral key through cache-based side channels in a contemporary
processor where the victim and spy are hosted on separate cores. While [12] use
the least significant bits of the ephemeral key as input to a hard lattice problem
to recover the DSA private key, we also use interior blocks of leaked bits to reduce
the number of required signatures to less than half. In addition to implementing
a strategy to recover the DSA key, we present a model to predict the number of
signatures and computation time required as a function of error rate.

The paper is organized as follows. In Sect. 2, we present background infor-
mation. Section 3 describes our experiments in collecting the SM sequences and
estimating the error rates involved. Section 4 outlines a simple approach for
key retrieval assuming, both, a perfect and a noisy side channel. In Sect. 5, we
present our analytical model and results. Section 6 briefly presents related work
and Sect. 7 summarizes and concludes the paper.

1 Typically an attacker obtains a large number of signatures. However only a fraction
of these may actually be used in computing the DSA key.
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2 Preliminaries

2.1 Cache Memories

All modern processors have multiple levels of cache intended to bridge the latency
gap between main memory and the CPU. One of the target machines in this work
is the Intel Core i7 which has three levels of cache. At the highest level is the
L1 instruction (32 KB) and L1 data cache (32 KB). Each of its four cores has a
256 KB L2 cache. The four cores share a 3 MB L3 cache.

The granularity of cache access is a block or line which is 64 bytes in our
target machines. The lines of a cache are organized into sets - a line from main
memory can be placed in exactly one set though it may occupy any position in
that set. The number of lines in a set is the associativity of the cache. The L1
and L2 caches in core i3 and i5 are 8-way set associative while L3 is 12-way set
associative.

The Flush and Reload attack strategy [11] implemented in this paper depends
on the inclusive property of L3 cache. Simply put, L3 is inclusive if it contains
all lines found in L1 and in L2. So, flushing (evicting) a line in L3 guarantees
that it will not be present either in L1 or L2.

2.2 Digital Signature Algorithm

The DSA standard [1] documents the algorithm under the following compo-
nents: Selection of Domain Parameters, Domain Parameter Generation, DSA
Key Pair Generation, DSA Signature Generation and DSA Signature Verifica-
tion and Validation.

Domain Parameter Generation: Primes p, q such that q|(p− 1). g is a generator
of a subgroup of order q in the multiplicative group of GF (p). The sizes of the
p and q used in this paper are 1024 bits and 160 bits respectively.

DSA Key Pair Generation: The per user keys for performing the digital signature
operation are as follows. The private key α, is a randomly chosen integer from the
range [1, q −1]. The public key is y = gα (mod p). The modular exponentiation,
gα (mod p) is performed using efficient algorithms such as exponentiation by
squaring but computing α from y is considered intractable (Discrete Logarithm
Problem). This ensures the security of the private key α.

DSA Signature Generation: The following steps are carried out in signature
generation:

• (Pseudo) Randomly choose integer k, 0 < k < q. k is referred to as an
ephemeral key and is per-signature unique.

• Compute: r = (gk mod p) mod q and

s = (k−1(h(m)) + αr) mod q (1)

where k−1 is the multiplicative inverse of k modulo q and h(m) is the hash of
the message m to be signed. The hash function h is an approved secure hash
function such as SHA-256 or SHA-512.
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In the extremely unlikely case when r = 0 or s = 0, proceed with a different
value of k.

• The pair (r, s) is the signature and is sent along with the message m.

DSA Signature Verification and Validation: The signature is verified as follows.

• Let m′, r′, s′ be the received versions of m, r, s respectively.
• If r′ = 0 or s′ = 0, the signature is considered invalid and is rejected.
• Compute:

� u1 = (h(m′)(s′)−1) mod q

� u2 = r′(s′)−1
mod q

� v = ((gu1yu2) mod p) mod q
• The signature pair is authentic, if v = r′.

3 Side Channel Attacks

3.1 Background

Left-to-right computation of the modular exponentiation, ge mod p consists of a
series of squares and multiplies. Starting from the MSB and with temp = 1, for
each bit scanned, a squaring is performed, i.e., temp ← temp2 (mod p). When
a 1 is encountered, a multiplication by g is also performed (in addition to the
squaring), i.e. temp ← (temp∗g) (mod p). On average, it could be assumed that
half the bits in the ephemeral key are 1′s, so the number of multiplications is
roughly half the bit length of e.

→ → → → −−−−−−−−−−−−−−−−→
← ← ←

EK 1 1 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0

SMs S SM S S S S S SM SM S S S S S S SM S S S S S S S S SM S S S SM S

*3 *11 *1 *5 *7 *3

LB x 1 0 0 x x x 1 1 0 0 0 x x x 1 0 0 0 0 0 x x x 1 x x x 1 0

EK = Ephemeral Key, SMs = SM sequence, LB = Leaked Bits

Fig. 1. Illustrating leaked blocks from an SM sequence

To reduce the number of multiplies, sliding window exponentiation is
employed. Here, a window of w consecutive bits is made to slide down the
ephemeral key, left to right. If the MSB of the window is 1, the bits within the
window are scanned leftward from its LSB end until a 1 is encountered. This is
the point at which a multiply is to be performed, i.e. temp ← (temp∗x) (mod p)
where x is the value whose binary representation is the bit string from the MSB
of the window to this point. The window is made to slide by w or more bits to
the right until a window with MSB = 1 is found. Figure 1 illustrates the sequence
of operations using a toy 31-bit exponent. The first row shows the ephemeral key
while the second row is the corresponding SM sequence obtained from Sliding



DSA Signing Key Recovery with Noisy Side Channels 151

Window Exponentiation with w = 4. The third row shows the integer to be mul-
tiplied by temp. The sliding window technique reduces the number of multiplies
by roughly a factor of (w + 1)/2. In OpenSSL version 0.9.8, w = 4 is used.

The value of x to be multiplied by temp is always gy, where y is an odd integer
ranging between 1 and 2w − 1. Thus, the values g3, g5, ... must be pre-computed
and stored. The reduced number of multiplications during the computation of
the modular exponentiation, however, far outweighs the cost of pre-computation.

The fourth row shows the bits of the ephemeral key that are deduced by
inspection of the SM sequence. There are 5 blocks of known bits. Other than the
rightmost block, we refer to all other blocks (including the leftmost) as interior
blocks. The exact sequence of bits in a block together with its exact position is
a possible input to the lattice problem (Sect. 4).

3.2 Retrieving the SM Sequence

Our experiments were conducted on an Intel(R) Core(TM) i7-3770 CPU @
3.40 GHz with 4 GB memory running Linux kernel 3.16.35. Each core has its
private L1 (8-way 32 KB data and 32 KB instruction caches) and L2 caches (8-
way unified 256 KB). The last level cache (LLC) is a 12-way, 8 MB unified cache
and is shared between all cores. The line size in all cases is 64 bytes. Both the spy
and victim are assumed to be on the same machine but on different cores. The
victim is computing DSA signatures using the Open SSL cryptographic library
version 0.9.8. The OpenSSL code is mapped to the virtual spaces of the victim
and spy, so both can access the code. While the victim is computing a modu-
lar exponentiation with the ephemeral key as exponent, the spy is continually
performing a Flush + Reload attack [10,11].

The code for the modulo multiply and square operations occupy 15 and 11
lines of cache respectively. Each probe by the spy involves accessing a total of
8 cache lines, four each in the multiply and square code. These lines include
one each from the frequently invoked bn mul recursive() and bn sqr recursive()
functions. After accessing these lines, the spy flushes them from all levels of the
cache hierarchy using the clflush instruction. If any of these lines are accessed by
the victim between two probes, they would have been brought into L3 cache from
main memory. So, the spy will be able to determine which line(s) were accessed
by the victim since the access time to main memory is substantially higher
than that to L3 cache. The spy concludes that a multiply (respectively square)
operation has been executed if even a single line in the multiply (respectively
square) code has been found to be accessed by the victim.

The multiply and square operations take roughly 2438 and 2192 nsec. During
a single multiply, the spy probes the cache either twice (63% of the time) or 3
times (30%). The corresponding numbers for the square operation are once (25%)
or twice (72%). Two or more square operations can occur consecutively (this is
not the case with the multiply). Since the number of probes in a square varies,
it is possible to misjudge the number of consecutive squares - and hence zeros in
the ephemeral key. Fortunately, many square/multiply operations are followed
by probes that detect no activity on any of the cached lines.
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Fig. 2. Heat-map showing error rate of blocks

We extracted the SM sequences corresponding to the ephemeral keys used
in several thousand DSA signing operations. Of these roughly 3% were clearly
erroneous - for example, the length of the sequence was too long or too short.
Of the remainder, 75% matched the actual SM sequence perfectly. From the
SM sequence, we reconstructed the partial ephemeral key. A block is in error if
its value and/or position as deduced from the SM sequence differs from that in
the ephemeral key. In estimating the average block error probability, we consid-
ered only large interior blocks (of minimum length 5) and rightmost blocks and
excluded all others since these are the only blocks of interest to the key retrieval
algorithm. Figure 2 shows a heat map of the block error probability as a function
of its distance from the LSB and its size. The average error rate is only about 1%
for rightmost blocks, increases to about 10–15% in the mid section and reaches
a high of around 40% in the extreme left. Hence, we discarded blocks that lie
within 40 bits of the leftmost end of the ephemeral key.

4 DSA Private Key Retrieval

Retrieval of the DSA signing key is formulated as a hard and well-known lattice
problem [5]. The known blocks of the ephemeral key are inputs to this problem.
First, the lattice problem is presented. Then, the key retrieval algorithms which
create and solve instances of the hard lattice problem are presented.

4.1 Lattice Basics

A full-rank n-dimensional lattice is a set L = Zb1 + ...+Zbn, i.e., L is the space
of all integer linear combinations of some linearly independent vectors bi’s in
R

n. The bi’s are a basis of R
n and form a basis of L. The length of a lattice

vector, x ∈ L is computed as the Euclidean norm of the vector and is denoted
||x||. Among many of the lattice-based NP-hard problems, the following are of
importance in the cryptanalysis of digital signature algorithms such as RSA
[3,4], DSA [5,6] and ECDSA [7,8,13].
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Table 1. Symbols used in key recovery algorithms and performance analysis

Symbol Meaning Value

n No. of signatures 100, 140

T Set of top-ranked EKOs -

τ Cardinality of T 70

A Set of EKOs actually used in an instance of SVP -

γ No. of EKOs used in an instance of SVP in Algorithm 3 30 for n = 140,
34 for n = 100

γmin Minimum no. of EKOs used in an instance of SVP in
Algorithm 2

20

γmax Maximum no. of EKOs used in an instance of SVP in
Algorithm 2

50 for n = 140,
60 for n = 100

ρ No. of randomized shufflings of EKOs performed in each
outer loop iteration of Algorithm 3

50 for n = 140,
100 for n = 100

pi,n Probability of success in an iteration of the inner loop of
Algorithm 2 involving i error-free EKOs

-

pi Probability that all the i EKOs participating in an
iteration of the inner loop of Algorithm 2 are error-free

-

Ps Success probability of an attempt (iteration of the outer
loop)

-

ϑ Number of attempts (iterations of the outer loop)
required to achieve success

-

Shortest Vector Problem (SVP): Given the lattice L, the Shortest Vector Problem
is to find a non-zero vector x ∈ L such that ||x|| ≤ ||y||, ∀y ∈ L.

Closest Vector Problem (CVP): Given the lattice L and a non-lattice vector
t ∈ R

n, the Closest Vector Problem aims to compute a lattice vector x ∈ L such
that ||x−t|| = min

y∈L
||y − t||. There are two methods of solving the CVP. The first

is to use exact CVP solvers such as Babai’s algorithms [14]. The second approach
is called the embedding technique, in which the CVP instance is reduced to an
SVP instance which is then solved using a SVP solver such as LLL [15] or BKZ
[16,17]. The embedding technique transforms an n dimensional lattice basis M
into a new basis M ′ which is of dimension n + 1. M ′ is defined as

M ′ =
(

M 0
t q

)
(2)

4.2 Lattice Attack Using CVP/SVP

We assume that we have access to a total of n message, signature pairs
(mi, (ri, si)), and the SM sequences corresponding to each of the ephemeral
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keys ki (obtained from the side channel attack). From the SM sequences, we
derive the partial ephemeral keys. We focus on the case where two substrings of
bits in each ephemeral key are known - one or more consecutive rightmost bits
and an “interior” substring flanked by two unknown substrings. Let ai and ci

respectively denote the values of the two known substrings and di (on the left)
and bi (on the right) denote the two substrings that flank ci. Also let la,i, lb,i, lc,i

denote the bit positions of the rightmost edges of bi, ci and di respectively. So,

ki = di2lc,i + ci2lb,i + bi2la,i + ai, 0 ≤ i < n (3)

Substituting the value of k0 from (3) into (1) and rearranging terms yields an
expression for the private key α. This expression is substituted into (1), which
together with (3) for i = 1, 2, ..., n − 1 yields

bi = w1,ib0 + w2,id0 + uidi − vi + hiq, 1 ≤ i < n (4)

Let Yi = −ri

si
2la,i and Xi = {−h(mi)

ci
+ ci2lb,i + ai}2la,i . So, w1,i = Yi

Y0
, w2,i =

Yi

Y0
2lc,0−la,0 , ui = −2lc,i−la,i and vi = Xi − ( Yi

Y0
)X0. From (4) we construct the

basis matrix, M , for the lattice L(M).

M2n×2n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In+1,n+1

w1,1 w1,2 . . . w1,n−1

w2,1 w2,2 . . . w2,n−1

u1 0 . . . 0
0 u2 . . . 0
...

. . .
...

0 0 . . . un−1

On−1 qIn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the lattice L(M), there exists a lattice vector

w = (b0, d0, d1, . . . , dn−1, h1, . . . , hn−1) × M

= (b0, d0, d1, . . . , dn−1, b0w1,1 + d0w2,1 + d1u1 + h1q, . . . ,

b0w1,n−1 + d0w2,n−1 + dn−1un−1 + hn−1q) (5)

Let b = (b0, d0, d1, . . . , dn−1, d1, . . . , dn−1) be the vector to be computed
where the pair <di, bi> constitute the unknown blocks of the ith ephemeral
key. Thus we have w − v = b where v = (0, 0, . . . , 0, v1, v2, . . . , vn−1) is
the target (non-lattice) vector. The Closest Vector Problem is to find the lattice
vector w. This would retrieve the ephemeral keys and, in turn, the private key.

In general, the positions and lengths of known blocks will be different across
keys. To take into account the variation in the lengths of, both, the rightmost and
interior known blocks, across ephemeral keys, we multiply the basis matrix, M ,
using a weight matrix as in [5]. However, our weight matrix elements are much
smaller. We construct the weight matrix as the diagonal matrix: D(2n×2n) =
[di,i], where di,i is computed based on the difference in block lengths between
the largest block and the ith block.

di,i = 2max block size − max{len(bi), len(di)} (6)

where max block size = max
0≤i<n

max{len(bi), len(di)}.
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The CVP instance is converted into an SVP problem using an embedding

technique. The new basis matrix M of dimension 2n + 1 is M ′ =
(

M 0
v q

)
× D.

4.3 Retrieving the DSA Key from a Noise-Free Side Channel

For each ephemeral key, including an interior block as input to the SVP instance
necessitates an increase by 2 in the number of lattice dimensions but including
only the rightmost block increases the number of dimensions by only 1. Since the
complexity of SVP increases greatly with the number of dimensions, including
the rightmost block of each ephemeral key may be an attractive option. However,
larger blocks leak more bits of the key and the largest interior block is almost
always larger than the rightmost block. This suggests combining a large interior
block with the rightmost block.

Algorithm 1. Key Retrieval using a noise-free side channel
Input: n triplets of <message, signature, SM sequence>
Output: DSA Private Key

1 S = {} //S is a sorted list of EKOs
2 keyNotFound = true
3 foreach signature do
4 Identify all the large interior blocks and the rightmost block from the SM

sequence
5 foreach such block do
6 Create an EKO, e, using the position and value of the interior block and

the position and value of the rightmost block
7 S = S ∪ {e}
8 end

9 end
10 Sort S on the basis of the sum of the lengths of the interior block and the

rightmost block
11 Let γmin be the minimum integer such that the total number of leaked bits in

the top γmin EKOs in S is ≥ 160
12 i = γmin

13 maxIter = |S|
14 while i ≤ maxIter AND keyNotFound = true do
15 Create an SVP instance using the top i EKO’s from S
16 Solve the SVP instance, compute the DSA private key and verify its

correctness
17 if computed key is correct then
18 keyNotFound = false
19 else
20 i ← i + 1

21 end
22 return computed key
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We refer to each input of an SVP instance as an Ephemeral Key Occurrence
(EKO). Each EKO comprises the positions and values of a “large” interior block
and the rightmost one. By large is meant a block size of 5 or more. An ephemeral
key may contribute more than a single EKO to the SVP instance in which case the
rightmost block will be repeated. In the toy example of Sect. 3.1, the ephemeral
key contributes two EKOs since there are two “large” interior blocks, one of size
5 and the another of size 6. Each EKO includes the rightmost block (length = 2).
The total number of bits leaked by these two EKO’s is 5 + 6 + 2 = 13. On average,
an ephemeral key contributes 3–4 EKOs.

Fig. 3. Scatter plot of No. of EKOs required for success and corresponding time
(n = 140) (Algorithm 1)

From each such triplet <message, signature, SMsequence>, we identify all
known “large” blocks and construct a set of EKOs. Blocks that reside in the
leftmost 25% of the ephemeral key are excluded from consideration since the
error probabilities of those blocks average 40% (as discussed in Sect. 3.2). The
remainder of EKOs are sorted in descending order of the sum of the lengths of
the interior block and rightmost block (the sorted list is denoted S).

To obtain the DSA signing key, we draw the top γmin EKOs from S where
γmin is the smallest integer such that the γmin EKOs collectively leak a total of
160 or more bits of their ephemeral keys (Algorithm1). We build an SVP instance
from the input provided by these EKOs, solve the SVP problem, compute the
DSA key and verify its correctness. If we fail, we continue this process but we now
include the next EKO from S while retaining the existing EKOs. This is repeated
until we obtain the correct DSA key. This simple procedure yielded the DSA key
89% of the time with 30 signatures and 100% of the time with 40 signatures with
the number of iterations capped at 100. Figure 3 is a scatter plot showing the
number of EKOs required to obtain the DSA key (using Algorithm1) and the
corresponding execution time.
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Algorithm 2. Key Retrieval using noisy side channel - Approach 1
Input: τ triplets of < message, signature, EKO >, one per EKO in T
Output: DSA Private Key

/* T comprises the top τ EKOs in set S (from Algorithm 1). */

/* A is the set of EKOs actually used in the instance of an SVP,

A ⊆ T. */

1 keyNotFound = true
2 iterMax = 10000 //maximum possible attempts
3 iter = 1
4 do
5 Populate A with the fewest number of randomly selected EKOs from T such

that the total number of bits leaked from the EKOs in A > 160
6 T ′ = T − A
7 do
8 Build an SVP instance using the EKOs from A
9 Solve SVP and compute the DSA key

10 if computed key = correct key then
11 keyNotFound = false
12 return computed DSA key and A

13 else
14 Select a random EKO, e, from T ′

15 A = A ∪ {e}
16 T ′ = T ′ − {e}
17 while keyNotFound = true AND |A| ≤ γmax;
18 iter ← iter + 1

19 while keyNotFound = true AND iter < iterMax ;

4.4 Retrieving the DSA Key from a Noisy Side Channel

Given SM sequences from a noisy side channel, we follow two approaches. In both
cases, we populate a set, T with the top τ EKOs in S (created in Algorithm 1).
The first approach (Algorithm 2) is a direct extension of Algorithm 1.

A single iteration of the outer loop of Algorithm 2 proceeds as follows. First,
a set, A is populated by randomly selecting γmin EKOs from T (as before, γmin

denotes the smallest integer such that the γmin EKOs collectively leak a total of
160 or more bits of their ephemeral keys). An SVP instance is created and solved
and the DSA key is computed. If the correct key is not obtained, another EKO
from the set T is randomly selected and added to the set A (while retaining
the existing ones selected earlier). As before, the DSA key is computed after
solving an SVP instance. This procedure is repeated, each time incrementing
the cardinality of A by 1, until the DSA key is computed or a certain stipulated
maximum number of iterations, γmax of the inner loop are executed. γmax is
experimentally determined from Algorithm 1 and is sufficiently large to virtually
guarantee success with error-free EKOs (Table 1).
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A major difference between Algorithms 1 and 2 is the way the EKOs are
chosen. In the former, the EKOs are chosen sequentially from the list S. In the
latter, they are randomly selected from the set, T . The outer loop is repeated,
each time starting with a random subset of γmin EKOs drawn from T . We
refer to each iteration of the outer loop as an attempt. In Sect. 5.1, we derive a
distribution for the number of attempts, ϑ, required for successful key retrieval.

We next outline an alternative approach to obtain the DSA key given the SM
sequences harvested from a noisy channel (Algorithm 3). In each iteration of the
outer loop, we randomly choose γ EKOs from the set T to be used as input to an
SVP instance. We solve the SVP and compute the DSA key. If the correct key is
not recovered, we work with the same set of EKOs but now these are randomly
shuffled and then input to an SVP instance. This process of randomly shuffling
the EKOs and solving an SVP instance with the shuffled set is repeated ρ times
(or fewer if the DSA key is found earlier). The value of ρ required to guarantee
a sufficiently high probability of success is addressed in the next section.

Algorithm 3. Key Retrieval using a Noisy Side Channel - Approach 2
Input: Triplets <message, signature, SM sequence> one per EKO in T
Output: DSA Private Key

1 keyNotFound = true
2 iterMax = 10000 //maximum possible attempts
3 iter = 1
4 do
5 randomly select γ EKOs from T
6 inner=0
7 do
8 Create an SVP instance using the γ EKOs
9 Solve SVP and compute DSA key and verify correctness

10 if computed key = correct key then
11 keyNotFound = false
12 return computed DSA key

13 else
14 randomly shuffle the γ EKOs
15 inner ← inner + 1

16 while keyNotFound = true AND inner < ρ;
17 iter ← iter + 1

18 while keyNotFound = true AND iter < iterMax ;

If even after ρ shufflings, we do not recover the DSA key, we suspect that
one or more of the participating EKOs is in error. We therefore proceed to the
next iteration of the outer loop but with a fresh set of randomly selected EKOs
from T . The number of attempts (iterations of the outer loop), on average, ϑ
required for success is investigated next.
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5 Modeling, Results and Analysis

The success probabilities of an attempt in Algorithms 2 and 3 are first derived.
This is followed by a comparison of the number of attempts and total execution
time as a function of number of signatures with Algorithms 2 and 3. Experimen-
tally obtained values are also used to compare the various options.

5.1 Modeling Success Probability

Success Probability of Algorithm 2: Algorithm 2 involves creating and solv-
ing a sequence of SVP instances each with inputs from γmin, γmin + 1, ... γmax

EKOs.
Let pi,n be the experimentally determined probability of success in an itera-

tion of the inner loop of Algorithm 2 involving i error-free EKOs (and assuming
that all previous inner loop iterations of this attempt have failed). With error-

free EKOs,
γmax∑

i=γmin

pi,n ≈ 1. However, with SM sequences derived from a noisy

channel, the success of an iteration is conditioned on the probability, pi, that all
the i participating EKOs are error-free. All i EKOs are drawn from the set, T of
τ EKOs. Given that e is the probability that an EKO is in error, the number of
error-free EKOs in T is, on average, τ(1 − e) . There are

(
τ(1−e)

i

)
ways of choos-

ing i EKOs from the set of τ(1 − e) error-free EKOs and
(
τ
i

)
ways of choosing i

EKOs from a set of τ EKOs. So,

pi(γ) =

(
τ(1−e)

i

)
(
τ
i

)
Summing over the success probabilities of each inner loop iteration, we obtain

the success probability of an attempt, Ps

Ps =
γmax∑

i=γmin

pi,n ×
(
τ(1−e)

i

)
(
τ
i

)

=
γmax∑

i=γmin

pi,n ×

i−1∏
j=0

(τ(1 − e) − j)

i−1∏
j=0

(τ − j)

Success Probability of Algorithm 3: Unlike in Algorithm 2, each SVP
instance in Algorithm 3 is constructed using the same number of EKOs, γ. The
randomly selected set of EKOs in each attempt is subjected to the same number
of random shufflings, ρ. The values of γ and ρ are experimentally determined
and represent a tradeoff between higher success probability and lower execution
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time. In particular, for the values of γ and ρ selected in Table 1, the probability
of success assuming error-free EKOs is 0.9.

With the same logic used to analyze Algorithm 2, the success probability of
an attempt (iteration of the outer loop) is

Ps = 0.9 ×
(
τ(1−e)

γ

)
(
τ
γ

)

= 0.9 ×

γ−1∏
j=0

(τ(1 − e) − j)

γ−1∏
j=0

(τ − j)

5.2 Results and Analysis

The notation and values of various parameters used in the algorithms, experi-
ments and model are shown in Table 1. Figure 4 shows the distribution of the
Number of attempts to achieve success, (ϑ) in each of four cases:

(i) Algorithm 2, # signatures (n) = 140
(ii) Algorithm 2, n = 100
(iii) Algorithm 3, n = 140
(iv) Algorithm 3, n = 100

Fig. 4. Distribution of No. of attempts for success (ϑ)
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It is clear that ϑ with 100 signatures is more broadly distributed while ϑ
with 140 signatures is much more narrowly focused at smaller values. With 140
signatures, there is a larger pool of high-quality EKOs (those with larger known
blocks). Such EKOs leak out a larger number of bits in their ephemeral keys
and so fewer EKOs are required to create SVP instances. The probability that
all EKOs in a set are error-free is inversely related to the cardinality of the set
leading to a higher probability of a successful attempt with 140 signatures.

The expected value of ϑ is

ϑ =
∞∑

i=1

iPs (1 − Ps)i−1

=
1
Ps

Given the experimentally observed average error rate, e = 0.128, ϑ is higher
with Algorithm 2 compared to that with Algorithm3 (Table 2). This is because
the average number of EKOs used to build an SVP instance with Algorithm2 is
higher leading to higher probability of error in the ensemble of EKOs and hence
failed attempts.

Table 2. Performance as a function of No. of signatures and algorithm

Metric No. of signatures (n) = 140 No. of Signatures (n) = 100

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

Average No. of attempts
to succeed (Model)

356 264 1157 767

Average No. of attempts
to succeed (Expt.)

418 412 1636 645

Average Time per attempt
in sec. (Expt.)

47.1 37.2 84.5 114.7

Total Time in hours on a
single core (Model)

4.7 2.7 21.2 24.4

We ran Algorithms 2 and 3 on 10–15 samples of 100 and 140 signatures each
and recorded the number of attempts required to obtain the DSA key. The aver-
age values are shown in Table 2. The discrepancy between theoretical and exper-
imental values is not insignificant in two of the four cases. We attribute this, in
part, to the limited set of experiments performed. More important, is the consid-
erable dependence of the model results on experimentally observed/determined
parameters such as e and ρ. For example, while the model uses a single average
error probability, the actual value of e varies from sample to sample. Neverthe-
less, the main conclusions to be drawn from, both, model and experiment results
are similar − ϑ increases greatly with a more limited pool of available signatures
and Algorithm 3 outperforms Algorithm 2.
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In addition to ϑ, the average time per attempt also determines the execu-
tion time for DSA key retrieval (Table 2). These times were measured on an
Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz with 4 GB memory running Linux
kernel 3.16.35. The maximum time per (unsuccessful) attempt is 114.7 s taken by
Algorithm 3 with 100 signatures. In this case, the number of random shufflings
performed is 100 (Table 2) compared to only 50 with 140 signatures. Also, the
number of EKOs used in each attempt is 34 compared to 30 with 140 signatures.

With Algorithm 2 and 100 signatures, the time per attempt is 84.5 s versus
47.1 s with 140 signatures. Each unsuccessful attempt in the former involves solv-
ing 60 SVP instances while the corresponding number in the latter is 50 (Table 2).
Moreover, the 10 extra SVP solutions involve lattices with higher dimensions and
SVP solution time increases superlinearly with increasing number of dimensions
(Fig. 3).

Table 2 also shows the average time to retrieve the DSA key in each case based
on the model estimates of ϑ and the experimentally measured average time per
attempt. Both factors that dictate total execution time increase greatly as the
number of signatures decrease. Hence it is not surprising that total execution
time on a single core with 140 signatures is 2–5 h but it is over 20 h with 100
signatures. Our experiments were performed on cores of machines with diverse
speeds, so comparing such values would be misleading. Nevertheless, the execu-
tion times measured by us corroborate the model estimates of >20 h with 100
signatures and considerably lower times with 140 signatures.

Finally, Fig. 5 shows the extreme sensitivity of ϑ to error probability. The
number of attempts required to achieve success increases exponentially with the
error probability. For example, an increase of e from 0.1 to 0.15 results in a “10-
fold” increase in ϑ with 140 signatures. The increase in ϑ is even more dramatic
with 100 signatures - the number of attempts to achieve success increases from

Fig. 5. Number of attempts for success v/s Error probabilities
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255 to 3571. While Algorithm 3 is conspicuously better than Algorithm 2 at lower
error rates, the difference seems to narrow (and even reverse for n = 140) as e
approaches about 0.2.

6 Related Work

Several attacks have been crafted, in the past on DSA and ECDSA using lattices
when partial information on the per signature random ephemeral key is avail-
able. Howgrave-Smart [5] explained the private key recovery with key size of 160
bits. According to them, when 8 LSB bits of the ephemeral keys are known, with
30 signatures, the private key can be retrieved using the CVP approach. They
also explain the lattice attack using CVP approach when the known informa-
tion is spread across the ephemeral key. In the latter case, [5] when the known
information is available in two blocks, 12 signatures are required with 16 known
bits across these blocks. In a further work Nguyen-Spharlinski [6,13] formulated
the attack using Hidden Number Problem(HNP) as in [18] which again is solved
using CVP solvers such as Babai’s Nearest Plane Algorithm [14]. According to
[6], it requires 5 known LSBs for a 100% successful key retrieval and yielded 90%
success when only 4 LSBs are known. In [19], Liu-Nguyen implemented a method
called GNR Pruning [20] to retrieve the private key when only 2 LSBs are known
with 23% success probability. [7] used HNP to retrieve the ECDSA private key
when variable LSB bits are used per ephemeral key. Similarly, [8] addressed the
problem when the known bits are in the middle blocks. [12] extends the attack
on DSA on real time OpenSSL data by considering only the rightmost(LSB)
blocks of the ephemeral key. They require 280 signatures intercepted from SSH
in successful private key retrieval.

We used Flush + Reload based side channel attack which was first introduced
in [10] for attacking T-table implementation of AES on single core. Later it
was named by [11] to conduct multi-core attack by targeting last level cache
(L3) to extract private encryption key from RSA implementation in GnuPG.
They also demonstrated Flush + Reload attack in Cross-VM scenario with 96.7%
success. The same approach was used by Irazoqui et al. [21] to take advantage
of deduplication mechanism called Transparent Page Sharing and demonstrated
a full key recovery from AES T-table implementation. Lipp et al. [22] performed
Flush + Reload on ARMv8-A and ARMv7-A processors on Android devices and
recovered the AES key.

7 Summary and Concluding Remarks

The SM sequences for multiple signature operations are captured by the spy
through a cache-based side channel attack. From these, we derive discontiguous
known blocks of each ephemeral key. These are then input to an SVP instance
from which the DSA private key is computed. Through experiments, the error
probability in identifying the position and length of such blocks was estimated.
A strong positive correlation between the error probability and distance from
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the LSB end was observed. Based on this observation, it was decided to exclude
blocks within 40 bits of the MSB end as input to an SVP instance.

We sorted all EKOs in descending order of the sum of the lengths of the interior
block and the rightmost block and set aside the top τ for further consideration. We
randomly selected a minimum number of EKO’s from these, incrementally adding
an EKO until solution of an SVP instance retrieved the DSA key or we reached a
stipulated maximum number of EKOs. To handle noise, we implemented multiple
rounds of the above until we retrieved the DSA private key. We developed a model
to predict the number of rounds required as a function of number of signatures and
error rate. The model suggests that the number of rounds increases exponentially
with the error rate. In practice, we were able to recover the DSA key on a single
core with 140 signatures in about 5 h on average.

Our focus in this paper was to retrieve the DSA private key with inputs
received from a noisy side channel with performance being a secondary goal.
Accordingly, the algorithms employed here are a trade-off between simplicity
and efficiency. The total number of bits leaked by the EKOs in a successful
run of our experiments ranges between 250 and 450. This suggest considerable
room for improvement through techniques in [19,23]. We also feel that it is
possible to decrease the error rate of the inputs received from the cache-based
side channel by more refined measurements. Given that the execution time for
key retrieval is critically dependent on error rate, efforts in this direction may
yield big dividends.

Last, as with most side channel attacks, simple countermeasures may prove
highly effective. For example, the edge of the sliding window could be aligned on
static 4-bit boundaries. Thus, the SM sequence would be fixed and reveal noth-
ing about the ephemeral key. The performance advantage of using windowing
would be retained though it would be marginally less than that with the SWE
implementation currently used. It would also be interesting to study the effect
of larger window sizes (say 5 or 6) on the success of these attacks.
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Abstract. A cryptographic hash function is a function H : {0, 1}∗ →
{0, 1}n, that takes an arbitrary long input and transforms it to an n-
bit output, while keeping some basic properties that ensure its security.
Because they are very useful in computer security, cryptographic hash
functions are amongst the most important primitives in the modern cryp-
tography.

The Merkle-Damg̊ard structure is an iterative construction for trans-
forming a compression function f : {0, 1}n × {0, 1}m → {0, 1}n into a
hash function, and it is widely used by different hash functions such
as MD4, MD5, SHA0 and SHA1. Some generic attacks on this structure
were presented in the last 15 years. Some of these attacks use the diamond
structure, first introduced by Kelsey and Kohno in the herding attack.
This structure is a complete binary tree that allows 2k different inputs
to lead to the same hash value, and it used in numerous attacks on the
Merkle-Damg̊ard structure. Following the herding attack, other papers
analyzed and optimized the diamond structure. The best time complex-

ity of constructing a diamond structure to date is about a · 2
n+k

2 +2 for
a ≈ 2.732.

In this work we suggest a new and simple method for construct-

ing a diamond structure with better time complexity of c · 2
n+k
2 +2 for

c ≈ 1.254. We present a pseudo-code for this new method, and a recur-
sive formulation of it. We also present analysis supported by experiments
of our new method.

1 Introduction

Cryptographic hash functions are one of the important basic primitives in cryp-
tography. Their importance is reflected in their wide use: digital signatures,
hashed passwords, message authentication code (MAC), etc.

Design and cryptanalysis of hash functions has become one of the hottest
research topics in the last fifteen years, when a series of groundbreaking works
showed that some of the hash function designs (including Merkle-Damg̊ard con-
struction) are theoretically insecure [1,10,15,17,18], and that most of used hash
functions (including SHA0, SHA1, MD4, MD5, RIPEMD, etc.) are theoretically
(and some of them also practically) insecure [5,19,24–29]. These results called for
rethinking of the hash functions design methodologies, and invited new designs
and their analysis. As part of this rethinking, the National Institute of Standards
c© Springer International Publishing AG 2017
A. Patra and N. P. Smart (Eds.): INDOCRYPT 2017, LNCS 10698, pp. 166–185, 2017.
https://doi.org/10.1007/978-3-319-71667-1_9

http://orcid.org/0000-0001-7177-0473
http://orcid.org/0000-0001-5799-2635


Efficient Construction of Diamond Structures 167

and Technology (NIST) announced a selection process of a new hash function
standard called SHA3, which culminated in the choice of Keccak [4] as SHA3
function in October 2012. The SHA3 process gave rise to numerous new design
methodologies and continuously developing cryptanalytic techniques.

One of the main sources for comparison between design strategies are generic
attacks. While usually non-practical, they point out structural weaknesses in a
strategy that may make us prefer a more conservative (or just a different) design.
One of the basic designs of numerous hash functions is the Merkle-Damg̊ard
structure [9,22], which, given a compression function f : {0, 1}n × {0, 1}m →
{0, 1}n, creates a cryptographic hash function MDHf : {0, 1}∗ → {0, 1}n, so
that the hash function has certain security properties. Numerous generic attacks
were presented against this construction, e.g., Joux’s multicollision attack on
iterative hash functions [15], the expandable messages attack of Kelsey and
Schneier [18] and the herding attack of Kelsey and Kohno [17]. Naturally, generic
attacks are used at complex algorithms and designs, often become used by other
attacks.

This work improves the complexity of attacks based on the diamond struc-
ture, first introduced by Kelsey and Kohno in the herding attack [17]. Kelsey and
Kohno calculated the diamond construction complexity by intuitive reasoning
concluded that building a diamond structure of 2k leaves takes 2

n+k
2 +2 compres-

sion function calls. Blackburn et al. [6] showed that their calculation is wrong,
and the real complexity, by the method presented by Kelsey-Kohno, is actu-
ally

√
k ·2n+k

2 +2 compression function calls. In [21] Kortelainen and Kortelainen
suggested a new method to construct the diamond in a · 2

n+k
2 +2 compression

function calls, for a = 2.732. In this paper we suggest a new method for con-
structing the diamond in c · 2

n+k
2 +2 compression function calls, for 1 ≤ c ≤ 2.

Our experiments show that for our algorithm c = 1.254, suggesting that the
original claims of Kelsey and Schneier were of sufficient percision. The advan-
tage of our work over the previous is not only the time complexity improvement,
but also the algorithmic improvement: While the Kortelainen algorithm is very
complex, our algorithm is simple and intuitive.

This paper is organized as follows: Sect. 2 gives notations and definitions
used in this paper. In Sect. 3 we quickly recall the herding attack, and most
importantly, the construction of diamond structures. We discuss the different
methods to construct a diamond structure in Sect. 4. Our new ideas on how to
efficiently build a diamond structure are given in Sect. 5. Finally, we conclude
the paper in Sect. 6.

2 Notations and Definitions

Definition 1. A cryptographic hash function is a function H : {0, 1}∗ →
{0, 1}n, that takes an arbitrary length input and transforms it to an n-bit output
such that H(x) can be computed efficiently, while the function has three basic
security properties:
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1. Collisions resistance: It is hard to find (with high probability) an adversary
that could find two different messages M,M ′ such that H(M) = H(M ′) in
less than O(2n/2) calls to H(·).

2. Second pre-image resistance: Given h,M such that H(M) = h, an adversary
cannot find (with high probability) an additional message M ′ �= M such that
H(M ′) = h in less than O(2n) calls to H(·).

3. Pre-image resistance: Given a hash value h, an adversary cannot find (with
high probability) any message M such that H(M) = h in less than O(2n)
calls to H(·).

Definition 2 (Merkle-Damg̊ard structure (MDH)). The Merkle-Damg̊ard
structure [9,22] is a structure of an iterative hash function, based on a compres-
sion function f : {0, 1}n × {0, 1}m → {0, 1}n. The compression function takes
an n-bit chaining value and an m-bit message block and transforms them into a
new n-bit chaining value, keeping the three basic properties described above. In
order to hash a whole message M , the following steps are required (let b be the
number of bits in the message, and � be the number of bits used to encode the
message length in bits1):

1. Padding step:
(a) Concatenate ‘1’ to the end of the message.
(b) Pad a sequence of 0 ≤ k < m zeros, such that b + 1 + k + � ≡ 0 (mod m).
(c) Append the message with the original message length in bits, encoded in

� bits.
2. Divide the message to blocks of m bits, so if the length of padded message is

L · m then
M = M0||M1|| . . . ||ML−1.

3. The iterative chaining value hi starts with a constant IV , defined as h−1 of the
hash function, and it updated in every iteration, according to the appropriate
message block Mi, to new chaining value: hi = f(hi−1,Mi).

4. The output of this process is: MDHf (M) = hL−1.

The structure of the Merkle-Damg̊ard hash function is depicted in Fig. 1.
Merkle [22] and Damg̊ard [9] proved that if the compression function is collision-
resistant then the whole structure (when the padded message includes the orig-
inal message length) is also collision-resistant.

Fig. 1. The Merkle-Damg̊ard structure

1 It is common to set 2� − 1 as the maximal length of a message.
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3 The Herding Attack and the Diamond Structure

A well known generic attack on the Merkle-Damg̊ard structure is the Kelsey-
Kohno herding attack [17]. This attack has two phases. In the first phase, the
adversary performs some precomputation and commits to a hash value h. In the
second phase, given a prefix P , he finds a suffix S s.t. H(P||S) = h.

In the precomputation the adversary constructs a complete binary tree called
a diamond structure. This structure allows 2k sequences of k message blocks to
iteratively lead to the same chaining value. This may seem related to Joux’s
multicollision attack [15] where 2k different message blocks result in the same
chaining value. However, in the case of Joux’s multicollision attack, all these 2k

options start from the same chaining value, whereas in the diamond structure,
there are 2k different starting chaining values.

To construct the diamond structure, the adversary starts with 2k different
chaining values, and looks for collisions between pairs of these chaining values to
map them down to 2k−1 chaining values. In Sect. 4 we discuss different methods
to do so. He repeats this process k times, s.t. in every iteration 1 ≤ i ≤ k he
maps the 2k−i+1 chaining values he received at the end of the previous iteration
down to 2k−i chaining values. The output of this process, after k iterations, is
a single hash value h. Figure 2 illustrates this structure for k = 3, when the
arrows represent message blocks, and the values hi,j represent chaining values.
This structure generates a multicollision of 2k messages, when k is the diamond
width. After the construction of the diamond structure the adversary commits
the output h.2 According to Kelsey and Kohno, the work done to construct
the diamond structure is about 2

n+k
2 +2 compression function calls, and we will

discuss it later in Sect. 4.

Fig. 2. Diamond structure for k = 3

In the second phase, the adversary is challenged with a prefix P , and he has
to find a suffix S yielding the desired result H(P ||S) = h. To do so, he looks

2 He should consider the length of the prefix P , or at least the maximum length of
it, and if the real length is less than he considered, he can add some blocks to the
Mlink block, which will defined in the second phase.
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for a message block Mlink that links the chaining value yielded from the prefix
P to one of the leaves {h0,i} of the diamond structure. Given a chaining value
h0,i0 , traversing the tree from this leave to the root, appending the message
blocks from each edge, leads the string Q, which creates, together with Mlink,
the desired suffix S = Mlink||Q. Since the diamond has 2k leaves, the work done
to find the Mlink block is about 2n−k compression function calls, and thus the
total work (according to Kelsey and Kohno) is about

2
n+k

2 +2 + 2n−k.

We note that the diamond structure was later used in [1,3] to offer second
pre-image attacks against Merkle-Damg̊ard hash functions, including dithered
hash functions [23].

4 Previous Methods for Constructing Diamond Structure

After Kelsey and Kohno published their attack based on the diamond structure
and suggested their method and its analysis [17], several papers were published
on methods for constructing and analyzing the diamond structure. We now dis-
cuss them.

4.1 Kelsey-Kohno’s Method

In [17] Kelsey and Kohno suggest a method for constructing a diamond struc-
ture. We now describe their method for the first level of the diamond, and the
application for the other levels is immediate.

Given 2k starting chaining values, {h0,0, h0,1, · · · , h0,2k−1}, the adver-
sary should find 2k−1 collisions between pairs of them to map them down
to 2k−1 new chaining values. i.e., he should find a partition to pairs of
{h0,0, h0,1, · · · , h0,2k−1}, and for each pair (h0,i, h0,j)i�=j he should find message
blocks M,M ′ (not necessarily different) such that f(h0,i,M) = f(h0,j ,M

′).
If he fixes pairs of them, like {(h0,0, h0,1), (h0,2, h0,3), . . . , (h0,2k−2, h0,2k−1)},

then he should generate about 2
n
2 candidate message blocks for each pair to find

a collision, and thus the work done to find 2k−1 collisions is about 2k−1 · 2
n
2 =

2
n
2 +k−1 compression function calls.

Instead, he generates about 2
n−k+1

2 candidate message blocks from each start-
ing chaining value h0,i, and then looks for collisions between all the possibility
pairs dynamically. When he finds a collision, i.e., two starting chaining values
h0,i, h0,j and two message blocks M,M ′ s.t. f(h0,i,M) = f(h0,j ,M

′) = h, he
chooses these message blocks for these chaining values, and takes the new chain-
ing value h for the next level of the diamond.

Kelsey and Kohno expected to find 2k−1 such collisions (we present their
computation in Sect. 4.2), i.e., 2k · 2

n−k+1
2 = 2

n+k+1
2 message blocks should be

sufficient to map all the 2k starting chaining values into 2k−1 new chaining values
will be in the next level of the diamond.
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4.2 Kelsey-Kohno’s Original Analysis

Kelsey and Kohno calculate the complexity of the diamond construction, and
conclude the following:

“The work done to build the diamond structure is based on how many mes-
sages must be tried from each of 2k starting values, before each has collided
with at least one other value. Intuitively, we can make the following argu-
ment, which matches experimental data for small parameters: When we try
2

n
2 + k

2+
1
2 messages spread out from 2k starting hash values (lines), we get

2
n
2 + k

2+
1
2−k messages per line, and thus between any pair of these starting

hash values, we expect about (2
n
2 + k

2+
1
2−k)2×2−n = 2n+k+1−2k−n = 2−k+1

collisions. We thus expect about 2−k+k+1 = 2 other hash values to collide
with any given starting hash value” [17].

According to [17], if the adversary generates 2
n−k+1

2 message blocks for each
starting chaining value then the probability of a collision between any two start-
ing chaining values is 2−k+1. Thus, given a starting chaining value, since it could
collide with any other starting chaining value, he expects about 2−k+1+k = 2
collisions. Since for any starting chaining value he expects at least one collision,
he expects to map all the 2k starting chaining values down to 2k−1 new chaining
values.

Now, to construct the whole diamond he should repeat this work k times,
for every 1 ≤ i ≤ k, and thus the total complexity is about

k∑

i=1

2
n+i+1

2 ≈ 2
n+k

2 +2.

4.3 On the Inaccuracy of Kelsey-Kohno’s Analysis

Blackburn et al. [6] show that although this calculation is correct, their con-
clusion is wrong. They suggest to model the Kelsey-Kohno’s method by the
Erdös-Rényi random graph G(n, p). The G(n, p) is a random graph with n ver-
tices, and there is an edge between any two vertices with probability p inde-
pendently of other edges. In Kelsey-Kohno’s case we get G(2k, 2−k+1), where
V = {h0,0, h0,1, . . . , h0,2k−1} and (h0,i, h0,j) ∈ E if and only if there exist two
message blocks M,M ′ s.t. f(h0,i,M) = f(h0,j ,M

′), and it happens with proba-
bility of 2−k+1, as described in Kelsey-Kohno’s calculation. In this perspective,
mapping the 2k starting chaining values into 2k−1 new chaining values is equal
to the existence of a perfect matching in G. In [11–13] Erdös and Rényi show
that for a random graph G(n, p), if p > (1+ε) lnn

n then G will almost surely be
connected and will contain a perfect matching, and if p < (1−ε) lnn

n then G will
almost surely contain isolated vertices and thus it will not contain any perfect
matching. It means that p = lnn

n is a sharp threshold for the existence of a
perfect matching in G(n, p). In Kelsey-Kohno’s case we get that (for k > 2)

p = 2−k+1 < k · ln 2 · 2−k =
ln(2k)

2k
.
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Thus, the graph will almost surely contain isolated vertices and thus it will not
contain any perfect matching.

Hence, despite of the correct conclusion of Kelsey and Kohno that about
2−k+k+1 = 2 edges for each vertex are expected, there will be many isolated
vertices.3

To fix the problem, Blackburn et al. [6] conclude that we should generate
about

√
k · 2n−k

2 message blocks from each vertex. Thus, to construct the entire
diamond structure about

k∑

i=1

√
i · 2

n+i
2 ≈

√
k · 2

n+k
2 +2

message blocks are needed.4

4.4 Kortelainen-Kortelainen’s Method

In [21] Kortelainen and Kortelainen suggest a new method to construct the
diamond structure. Their general idea is to divide the construction into steps
such that in every step exactly two vertices are matched to a single chaining
value. If a vertex is matched they stop generating more message blocks for it.
We describe here their algorithm for the first level of the diamond, the application
for the other levels is immediate.

They divide the process into k phases (in reduced order), such that in every
phase 2 ≤ j ≤ k they match exactly 2j−1 vertices, and in the last phase j = 1
they match the two remaining vertices, so at the end of these phases all the
vertices are matched. Every phase 2 ≤ j ≤ k is divided into 2j−2 steps, such
that in every step they match exactly two vertices to a new chaining value. The
last step is done by finding a collision between the last two remaining vertices.
Before the process, an initialization phase is performed as follow: Given the initial
hash values (denoted by Ak,0), create a set Mk,0 of 2

n−k
2 −1 message blocks, such

that the cardinality of Hk,0 := f(Ak,0,Mk,0) = {f(a,m)|a ∈ Ak,0,m ∈ Mk,0} is
2

n+k
2 −1, i.e., there are no collisions by these message blocks.5 In Addition, they

3 The degree of each vertex follows a Poisson distribution with a mean of 2. Thus, for
each vertex, the probability that it is an isolated vertex is e−2, and thus we expect
to about 2k · e−2 isolated vertices.

4 Blackburn et al. [6] discuss another model to represent the diamond construction:
Sampling With Replacement Random Intersection Graph GSWR(ν, m, L) random
graph, defined as follow: Let V be a set of vertices where |V | = ν (in our case
ν = 2k), and F be a colors set where |F | = m (in our case m = 2n). For each vertex
v ∈ V generate a subset Fv ⊂ F by sampling uniformly with replacement L colors

from F (in Kelsey-Kohno’s case L = 2
n−k+1

2 ). Finally, (v, u) ∈ E ⇐⇒ Fv ∩Fu 	= φ.
They achieve from this model the same results as from the G(n, p) model.

5 Although usually we are looking for collisions, this requirement about the cardinality
of Hk,0 is needed for their analysis. Later, by our method, we will show how to use
such collisions. If there are collisions, they replace the appropriate message blocks
one by one until the required cardinality is obtained.
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initialize a pairing set, denoted by Bk, as an empty set. This set contains pairs
of the form (hi,Di) where hi is a chaining value, and Di is a message block such
that f(hi,Di) will be in the next layer of the diamond structure.

For the algorithm they define the following integers:

Let r ≥ 2, n be positive integers. Define the integers sr,0, sr,1, . . . sr,2r−2 as
follow:

sr,0 =
⌈
2

n−r
2 −1

⌉
, sr,j+1 = sr,j +

⌈
2

n−r
2 +1

2r − 2j

⌉
, j = 0, 1, . . . 2r−2 − 1

They prove that:

∀j ∈ {0, 1, . . . 2r−2} : sr,j ≥ 2
n−r
2 −1

2r − 2j

Let i ∈ {k, k − 1, . . . , 3, 2}, j ∈ {0, 1, . . . , 2i−2 − 1}, The input for the step j in
the phase i, denoted by S(i, j), is the set Ai,j of the 2i − 2j unmatched vertices,

the set Mi,j of the si,j ≥ 2
n+i
2 −1

2i−2j message blocks generated until now, and the
set Hi,j = f(Ai,j ,Mi,j) = {f(a,m)|a ∈ Ai,j ,m ∈ Mi,j}, such that

|Hi,j | = |Ai,j | · |Mi,j | = (2i − 2j) · si,j ≥ (2i − 2j) · 2
n+i
2 −1

2i − 2j
= 2

n+i
2 −1

Now, they create a set M ′
i,j of si,j+1 − si,j message blocks such that

|f(Ai,j ,M
′
i,j)| ≥ 2

n−i
2 +1. They look for a collision, i.e., hij , h

′
ij ∈ Ai,j ,mij ∈

Mi,j ,m
′
ij ∈ M ′

i,j such that f(hij ,mij) = f(h′
ij ,m

′
ij). Note, that since |Hi,j ×

f(Ai,j ,M
′
i,j)| ≥ 2n the expected number of collisions is at least one, and

they assume that it is exactly one.6 Let Ai,j+1 := Ai,j � {hij , h
′
ij},Mi,j+1 :=

Mi,j ∪ M ′
i,j , and Hi,j+1 := f(Ai,j+1,Mi,j+1). In addition set up Bk = Bk ∪

{(hij ,mij), (h′
ij ,m

′
ij)}. These sets are the output of this step, and the input for

the next step. The pseudo-code for this algorithm is given in Algorithm 1.
They concluded that the total message complexity of the whole diamond

construction is

a ·
(

k∑

i=2

2 · 2
n+i
2 + 4 · 2

n
2

)
≤ a · 2

n+k
2 +2

for a = 1
4 ·

[
1 + 1√

2
+ 2 e

e−1

(
1 + 1√

2

)2
]

≈ 2.732 (the detailed analysis is in [20]).7

5 Our New Method

In Sect. 4.3 we discussed the time complexity when all the messages are generated
simultaneously and uniformly between all vertices. If we generate about 2

n−k+1
2

6 If not, they replace some message blocks one by one until it is obtained.
7 We note that the analysis of [20] uses a slightly different definition of a, but for more

natural comparison with previous methods, we took a as the coefficient of 2
n+k

2 +2.
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Algorithm 1. Kortelainen-Kortelainen’s method
1: Input: Hk ⊆ 0, 1n, |Hk| = 2k

2: Ak,0 ← Hk

3: Create a set Mk,0 of 2
n−k

2 −1 message blocks s.t. |f(Ak,0, Mk,0)| = 2
n−k

2 −1. (Ini-
tialization part)

4: Hk,0 ← f(Ak,0, Mk,0)
5: Bk ← φ
6: for i = k downto 2 do
7: for j = 0 to 2i−2 − 1 do
8: Create a set M ′

i,j of si,j+1 − si,j message blocks s.t. Mi,j ∩ M ′
i,j = φ and

|f(Ai,j , M
′
i,j)| ≥ 2

n−i
2 +1.

9: look for a collision: hi,j , h
′
i,h ∈ Ai,j , mi,j ∈ Mi,j , m

′
i,j ∈ M ′

i,j s.t.
f(hi,j , mi,j) = f(h′

i,j , m
′
i,j).

10: Ai,j+1 ← Ai,j � {hi,j , h
′
i,j}

11: Mi,j+1 ← Mi,j ∪ M ′
i,j

12: Hi,j+1 ← f(Ai,j+1, Mi,j+1)
13: Bk ← Bk ∪ {(hi,j , mi,j), (h

′
i,j , m

′
i,j)}

14: end for
15: end for

message blocks per vertex, the expected number of collisions for a vertex is 2. In
this case the G(2k, 2−k+1) random graph contains some isolated vertices (about
2k · e−2), and thus it does not contain any perfect matching. The conclusion of
Blackburn et al. [6] is that about

√
k ·2n−k

2 message blocks per vertex are needed
for the existence of a perfect matching in the graph. The disadvantage of this
method is that we need to generate many message blocks for each vertex to get
a perfect matching, of which only a small portion of the found collisions is used.

We now suggest a new method to construct the diamond. Our method is
based on two ideas, described in the next sections:

1. Messages-Layers Trade-off: We generate less than
√

k · 2
n−k

2 message blocks.
Since we expect to have isolated vertices, we expect to have more than 2k−1

vertices in the next layer. Thus, we should add some layers to the construction
to reach a single chaining value at the root of the diamond structure. We
show that by generating less message blocks in each layer in exchange for
more layers in the construction, we can reduce the total time complexity.

2. Match While Generate (MWG): We generate the message blocks one by one
and look for collision after every generation. If two vertices collide with each
other, we match them and do not generate more message blocks for them.
We show that by this method we can further reduce the time complexity.

After their description, we show how to use them together to obtain the best
time complexity for constructing the diamond structure.
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5.1 Messages-Layers Trade-Off

The first idea, which we call “Messages-Layers Trade-off” is that we can weaken
the requirement of a perfect matching in each layer exchange for more layer in
the construction of the diamond. Instead of generating

√
k ·2n−k

2 message blocks
per vertex, we generate fewer messages. The result is that in the G(2k, p) graph
we get that p < lnn

n , and thus it does not contain a perfect matching. We then
match all vertices we can (e.g., by a greedy algorithm like Karp-Sipser [16] or
its variants [2]) and for the remaining vertices we choose an arbitrary message
block to get an arbitrary chaining value in the next layer. Since G does not
contain a perfect matching, the number of vertices in the second layer is greater
than 2k−1. Similarly, the number of vertices in any layer 1 ≤ i ≤ k is greater
than 2k−i. Thus, we need to add some layers to get a single chaining value at
the end of this process. We note that our experiments show that the number of
layers does not increase by much. Moreover, the additional layers have almost no
affect on attacks on Merkle-Damg̊ard hash functions, and have a small impact
on dithered hash functions.

We tested this idea on the Kelsey-Kohno’s case, i.e., when we generate
about 2

n−k+1
2 message blocks per vertex. In this case we get the G(2k, 2−k+1)

model, and we know that the degree of each vertex follows Poi(2) distribu-

tion. According to the handshaking lemma we know that
|V |∑
i=1

deg(vi) = 2|E|,
where E is the edges’ set. We also know that if X1, . . . Xt ∼ Poi(λ) then

t∑
i=1

Xi ∼ Poi(t · λ). Thus, in our graph we get |E| ∼ Poi(|V |).8 We gener-

ated such a graph G = (V,E) where |V | = 2k and the edges’ set E determined
by sampling the |E| according to Poi(|V |), and for each edge sampling its two
vertices uniformly between all vertices. Now we match the vertices to each other
according to their degrees from low to high as follow: Let M = φ be an empty
set. We run over the vertices and if deg(v) = 1 we add v and its single connected
vertex u to the matching, i.e., M = M ∪ {v, u}. In addition, we remove the
vertices (and all their edges) from the graph, i.e., G = G � {u, v}. We repeat it
until the graph has no edges. Now we move on to the next layer with 2k − |M |

2
vertices. Clearly, this method has no advantage when |V | is quite small. Thus,
for the sake of simplicity, we repeat this method until |V | ≤ 16 and then we use
the Blackburn et al. [6] computation.9

We tested this algorithm on some different parameters for k and n. We per-
formed 100 experiments for each pair (k, n). The output of each experiment is
the number of message blocks required to construct a diamond structure with
2k leaves, using a compression function of n bits, and the diamond’s length.

8 We tested this idea on more cases: when |E| ∼ Poi(a · |V |), a = 0.5 + t
20

, ∀t ∈
{0, 1, 2, . . . , 19}. The difference between the results in the Kelsey-Kohno’s case and
the best results is quite small (less than one standard deviation).

9 It is easy to see that if we switch to the Blackburn et al. process earlier, the expected
length of the diamond will decrease.
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Table 1. The number of required message blocks (represented by their log2), and the
diamond’s length, using the Messages-Layers Trade-off method.

n\k 14 16 18 20 22

28 Blocks Average 223.681 224.683 225.683 226.682 227.683

S.D. 216.374 216.395 216.413 216.418 216.566

Min 223.662 224.668 225.677 226.68 227.68

Max 223.717 224.695 225.689 226.685 227.685

Length Average 20.13 22.85 25.8 28.34 31.35

S.D. 1.522 1.41 1.583 1.32 1.424

Min 18 21 24 26 30

Max 26 31 32 34 36

32 Blocks Average 225.683 226.683 227.682 228.683 229.683

S.D. 218.117 218.267 218.553 218.237 218.541

Min 225.666 226.665 227.677 228.679 229.681

Max 225.709 226.692 227.689 228.686 229.684

Length Average 20.39 22.8 25.81 28.67 31.39

S.D. 1.984 1.443 2.043 1.735 1.435

Min 18 21 24 26 29

Max 29 27 35 37 36

36 Blocks Average 227.682 228.682 229.683 230.683 231.683

S.D. 220.126 220.262 220.455 220.411 220.51

Min 227.661 228.667 229.677 230.68 231.681

Max 227.697 228.694 229.689 230.685 231.685

Length Average 20.24 22.76 25.68 28.62 31.43

S.D. 1.525 1.443 1.723 1.523 1.416

Min 18 21 24 27 29

Max 27 30 33 34 36

We present here the average of these outputs from the 100 experiments and the
sample standard deviation. Table 1 lists the number of message blocks (log2 of
them) and the diamond’s length.

5.2 Match While Generate (MWG)

Intuitive Explanation of the Idea. As we discussed earlier, when we gener-
ate all the message blocks and then look for collisions, about

√
k · 2

n+k
2 message

blocks are required such that the G(2k, p) graph contains a perfect matching. In
this case the expected number of collisions for each vertex is k, but in the match-
ing we use only one of them. Our second idea, named “Match While Generate
(MWG)”, is to look for collisions throughout the process, i.e., after we generate a
message block Mj for vi we check if the candidate f(vi,Mj) is already generated
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by another vertex u. If yes, we match them and do not generate any additional
message blocks for them. Our second idea is inspired by Hoch’s thesis [14]. The
process is as follow:

We keep in a Boolean array, denoted by isMatched, the state of each vertex,
i.e., isMatched[i] = True ⇐⇒ vi is already matched. The set of the chain-
ing values for the next level is denoted by nextV . We start with an empty set
Candidates ⊆ {0, 1}n×V where {0, 1}n is the set of all available chaining values,
and V is the set of all vertices (initial values). In each iteration j we generate a
new message block Mj , and run over the vertices to calculate the chaining value
candidate hcandidate = f(vi,Mj) for each vertex vi. If hcandidate is already gener-
ated by another vertex, i.e., ∃0 ≤ r �= i ≤ 2k − 1 : (hcandidate, vr) ∈ Candidates,
then match vi and vr, add hcandidate to nextV , and do not generate any addi-
tional message blocks for them. Otherwise, add (hcandidate, vi) to Candidates.

Algorithm 2 presents the Match While Generate algorithm.

Algorithm 2. Match While Generate (MWG)
1: Candidates ← φ
2: nextV ← φ
3: for i = 0 to 2k − 1 do
4: isMatched[i] ← False
5: end for
6: j ← 0
7: nmatched ← 0
8: while nmatched < 2k do
9: Generate a message block Mj

10: for i = 0 to 2k − 1 do
11: if isMatched[i] then
12: Go to 10
13: end if
14: Calculate hcandidate = f(vi, Mj)
15: if ∃0 ≤ r ≤ 2k − 1, r 	= i : (hcandidate, vr) ∈ Candidatesa ∧ ¬isMatched[r]

then
16: nextV ← nextV ∪ {hcandidate}
17: isMatched[i] ← True
18: isMatched[r] ← True
19: nmatched ← nmatched + 2
20: else
21: Candidates ← Candidates ∪ {(hcandidate, vi)}
22: end if
23: end for
24: j ← j + 1
25: end while

a We can use a hash table to keep the Candidates elements, to maintain a con-
stant search time.
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Analysis of the Algorithm. Here we suggest a recursive presentation for the
diamond structure construction. We present here the construction of the first
layer of the diamond structure (the application for the other layers is immediate).
For the reading convenience we fix an arbitrary order of the vertices v0, . . . v2k−1.
Let us define some random variables, depending on the process “time” t, i.e.,
the generation of the t’th candidate:

– m(t) := The number of matched vertices at time t.
– c(t) := The number of candidates available for matching at time t.
– bu(t) := The number of candidates generated from the current vertex at time

t, i.e., sum of values in Candidates of the form (hi, v).
– be(t) := The number of unmatched vertices before the current vertex at time t.
– af(t) := The number of unmatched vertices after the current vertex at time t.
– We also use a counter variable to count the number of self-collisions, denoted

by sc.

The initialization of the variables is: sc = m(0) = c(0) = bu(0) = be(0) = 0, and
af(0) = 2k − 1. At time t + 1 we generate a new candidate, and we compute the
value of all the variables, given the values of all variables at time t. When we
generate a new candidate from a vertex vi, there are four possible cases:

1. The new candidate leads to a self-collision. In this case we continue to generate
new candidates from the current vertex until it is not a self-collision. For each
new message block, we increment the sc counter by one. This case happens
with probability bu(t)

2n .
2. The new candidate leads to a matching with vj , for j < i. We have a match-

ing, and since j < i we match a vertex whose position is before the cur-
rent position. In addition, we remove these two vertices, where vi with bu(t)
candidates, and vj with bu(t) + 1 candidates. Finally, we move to the next
vertex. Thus, the updating of the variables is as follow: m(t + 1) = m(t) + 2,
be(t + 1) = be(t) − 1, af(t + 1) = af(t) − 1 and c(t + 1) = c(t) − 2 · bu(t) − 1.
This case happens with probability be(t)·(bu(t)+1)

2n .
3. The new candidate leads to a matching with vj , for j > i. We have a matching,

and since j > i, we match a vertex whose position is after the current position.
In addition, we remove these two vertices, both with bu(t) candidates. Finally,
we move to the next vertex. Thus, the updating of the variables is as follow:
m(t + 1) = m(t) + 2, af(t + 1) = af(t) − 2, be(t + 1) = be(t) and c(t + 1) =
c(t) − 2 · bu(t). This case happens with probability af(t)·bu(t)

2n .
4. The new candidate does not lead to any matching. There is no matching,

and we add the new candidate. In addition, we move to the next vertex, so
that the current vertex is added to the vertices that before the next, and
the next removed from the vertices that are after it. Thus, the updating of
the variables is as follow: m(t + 1) = m(t), be(t + 1) = be(t) + 1, af(t +
1) = af(t) − 1 and c(t + 1) = c(t) + 1. This case happens with probability
1 − bu(t)

2n − be(t)·(bu(t)+1)
2n − af(t)·bu(t)

2n .

Finally, if af(t + 1) < 0 (after the above updates), it means that we finished an
iteration over the unmatched vertices, and at time t+1 we start a new iteration.
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Thus, be(t + 1) = 0, af(t + 1) = 2k − m(t + 1) − 1 and bu(t + 1) = bu(t) + 1. If
af(t+1) ≥ 0 it means that we remain at the same iteration and thus bu(t+1) =
bu(t).

Using this recursion, we tested the MWG algorithm with some parameters for
k and n. We performed 100 experiments for each pair (k, n). The output of each
experiment is the number of message blocks required to construct a diamond
structure with 2k leaves, using a compression function of n bits. We present in
Table 2 the average of these numbers from the 100 experiments and the sample
standard deviation.

Table 2. The number of required message blocks (represented by their log2), using the
MWG algorithm.

n\k 14 16 18 20 22

28 Average 223.399 224.411 225.418 226.423 227.43

S.D. 216.175 216.289 216.65 216.67 216.666

Min 223.374 224.396 225.411 226.42 227.428

Max 223.425 224.423 225.428 226.428 227.431

32 Average 225.4 226.411 227.417 228.421 229.423

S.D. 218.245 218.683 218.839 218.795 218.881

Min 225.375 226.389 227.403 228.417 229.421

Max 225.429 226.427 227.426 228.424 229.425

36 Average 227.399 228.41 229.416 230.419 231.422

S.D. 220.237 220.465 220.831 220.788 220.975

Min 227.371 228.397 229.406 230.416 231.419

Max 227.425 228.429 229.426 230.423 231.424

Actual Experiments. In addition to the simulations which are based on the
mathematical model, we tested this algorithm on a diamond structure with
218 leaves, using a 28-bit compression function (we used the 28 first bits of
SHA1), i.e., k = 18, n = 28. According to Kelsey and Kohno [17] we should
generate about 2

28+18
2 +2 = 225 message blocks. Blackburn et al. [6] prove that

by Kelsey-Kohno’s method about
√

18 · 2
28+18

2 +2 > 227 message blocks are
needed. According to Kortelainen and Kortelainen we should generate about
a·2 28+18

2 +2 > 226 message blocks. We constructed a diamond structure 100 times
with different initial values. The mean value of the number of required message
blocks was μ = 45672583.18 ≈ 225.445, and the sample standard deviation was
σ = 104866.202 ≈ 216.678. Figure 3 illustrates the distribution of the number of
message blocks required to construct it (the numbers are represented by their
log2). According to the t-Test, the data follows Norm(μ, σ2) distribution, with
statistical significance of 2.5091 · 10−14.10

10 We note that the mean value of the experiment is greater than those of the recursion
by a few standard deviation units. This difference is a subject for a future research.
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Fig. 3. Sampled distribution of the number of message blocks (represented by its log2)
required to construct a diamond structure with 218 leaves, and compression function
of 28 bits, using the MWG algorithm.

5.3 Combining These Two Ideas Together

It is possible to improve the MWG algorithm, using the method described in
Sect. 5.1. Before we present the improvement, we want to look at the number
of message blocks required for each collision, throughout the construction of a
diamond structure’s first layer. Intuitively, at the beginning of the construction
there are only a few candidates for matching, and thus we need to generate
many message blocks for a collision. Similarly, near the end of the layer, since
only a few unmatched vertices remain, i.e., only a few candidates for matching
exist, we need to generate many message blocks for a collision. In the middle
part of the layer, on the one hand we already generated a significant amount of
message blocks per vertex, and on the other hand still have a significant amount
of unmatched vertices, so we have enough candidates, thus, we expect a collision
after fewer messages. We tested this intuition, and Fig. 4 shows an example for
the average number of message blocks generated between 256 collisions using
the MWG algorithm, where k = 18, n = 28.

As we discussed above, the investment of the beginning is needed to ensure
we have enough candidates. At the same time, the last matchings require a lot of
message blocks in return of a small benefit. Thus, we can stop the construction
near the end, as was discussed in Sect. 5.1, and move to the next layer. As a result
we will have to add some layers. To do so, we improve the MWG algorithm by
adding a boundary on the number of message blocks. Clearly, this method has
no advantage over the previous when |V | is quite small, and it may even be
the case that it is less efficient. Thus, for the sake of simplicity, we repeat this
method until |V | ≤ 16 and then we use the original MWG algorithm.
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Fig. 4. Average number of compression functions calls needed for 256 collisions during
the construction of the first layer of the diamond structure (for k = 18, n = 28)

We tested this improved algorithm by bounding the number of message blocks
by 2

n+k+1
2 (Kelsey-Kohno’s number) for n = 28, k = 18. We adapted the recur-

sion presented in Sect. 5.2 to this improved algorithm, and using the adapted
recursion we tested the improved MWG algorithm on some parameters for k and
n. We performed 100 experiments for each pair (k, n). The output of each experi-
ment is the number of message blocks required to construct a diamond structure
with 2k leaves, using a compression function of n bits, and the diamond’s length.
We present here the average of these outputs from the 100 experiments and the
sample standard deviation. Table 3 lists the number of message blocks (log2 of
them) and the diamond’s length.

In addition to the simulations which are based on the mathematical model,
we also tested this improved algorithm on a diamond structure with 218 leaves,
using a 28-bit compression function (we used the 28 first bits of SHA1), i.e.,
k = 18, n = 28. We constructed a diamond structure 100 times with different
initial values. The mean value of the number of required message blocks was μ =
42078721.93 ≈ 225.327, and the sample standard deviation was σ = 58941.064 ≈
215.847. Figure 5 illustrates the distribution of the number of message blocks
required to construct it (the numbers are represented by their log2). According to
the t-Test, the data follows Norm(μ, σ2) distribution, with statistical significance
of 4.0967 ·10−14.11 The experiments suggest that for our method of constructing
diamond structures c = 1.254.

11 We note that the mean value of the experiment is greater than those of the recursion
by a few s.d. units. This difference is a subject for a future research.
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Table 3. The number of required message blocks (represented by their log2), and the
diamond’s length, using the improved MWG algorithm.

n\k 14 16 18 20 22

28 Blocks Average 223.304 224.309 225.313 226.315 227.318

S.D. 215.946 215.688 215.672 215.842 215.945

Min 223.279 224.301 225.308 226.313 227.317

Max 223.323 224.321 225.317 226.318 227.32

Length Average 15.01 17 19.01 21.07 23.11

S.D. 0.1 0 0.1 0.256 0.314

Min 15 17 19 21 23

Max 16 17 20 22 24

32 Blocks Average 225.304 226.309 227.312 228.314 229.315

S.D. 217.667 217.627 217.678 217.776 217.865

Min 225.282 226.3 227.306 228.311 229.314

Max 225.323 226.318 227.315 228.317 229.316

Length Average 15.01 17.02 19.03 21.01 23.07

S.D. 0.1 0.141 0.171 0.1 0.256

Min 15 17 19 21 23

Max 16 18 20 22 24

36 Blocks Average 227.303 228.309 229.312 230.313 231.314

S.D. 219.639 219.893 219.756 219.67 219.765

Min 227.287 228.296 229.308 230.311 231.313

Max 227.322 228.319 229.317 230.315 231.315

Length Average 15 17.03 19.02 21.02 23.1

S.D. 0 0.171 0.141 0.141 0.302

Min 15 17 19 21 23

Max 15 18 20 22 24

6 Summary

In this paper we showed a time complexity optimization for the construction of
diamond structures. We presented two ideas to optimize the construction:

1. Messages-Layers Trade-off: We generate less message blocks in each layer in
exchange for more layers in the construction.

2. Match While Generate (MWG): We generate the message blocks one by one
and look for collision after every generation.

We also showed how to combine these two ideas together to improve the MWG
algorithm. Using the improved MWG we got the best results to date with respect
to time complexity.
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Fig. 5. Sampled distribution of the number of message blocks (represented by its log2)
required to construct a diamond structure with 218 leaves, and compression function
of 28 bits, using the improved MWG algorithm.

For comparison, we present in Table 4 the number of required message blocks
using the previous methods and using our improved MWG algorithm, for each
(k, n).

Table 4. Comparing the time complexity of the different methods.

Method Time complexity

Kelsey-Kohno [17]a 2
n+k

2 +2

Blackburn et al. [6]
√

k · 2
n+k

2 +2

Kortelainen-Kortelainen [21]
1+ 1√

2
+2 e

e−1

(
1+ 1√

2

)2

4
· 2

n+k
2 +2 ≈ 2.732 · 2

n+k
2 +2

Improved MWG 1.254 · 2
n+k

2 +2

a We remind the reader that Kelsey-Kohno’s analysis is inaccurate.
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Abstract. Following the emergence of Kim and Barbulescu’s new
number field sieve (exTNFS) algorithm at CRYPTO’16 [21] for solv-
ing discrete logarithm problem (DLP) over the finite field; pairing-based
cryptography researchers are intrigued to find new parameters that con-
firm standard security levels against exTNFS. Recently, Barbulescu and
Duquesne have suggested new parameters [3] for well-studied pairing-
friendly curves i.e., Barreto-Naehrig (BN) [5], Barreto-Lynn-Scott (BLS-
12) [4] and Kachisa-Schaefer-Scott (KSS-16) [19] curves at 128-bit secu-
rity level (twist and sub-group attack secure). They have also concluded
that in the context of Optimal-Ate pairing with their suggested para-
meters, BLS-12 and KSS-16 curves are more efficient choices than BN
curves. Therefore, this paper selects the atypical and less studied pairing-
friendly curve in literature, i.e., KSS-16 which offers quartic twist, while
BN and BLS-12 curves have sextic twist. In this paper, the authors opti-
mize Miller’s algorithm of Optimal-Ate pairing for the KSS-16 curve by
deriving efficient sparse multiplication and implement them. Further-
more, this paper concentrates on the Miller’s algorithm to experimen-
tally verify Barbulescu et al.’s estimation. The result shows that Miller’s
algorithm time with the derived pseudo 8-sparse multiplication is most
efficient for KSS-16 than other two curves. Therefore, this paper defends
Barbulescu and Duquesne’s conclusion for 128-bit security.

Keywords: KSS-16 curve · Optimal-Ate pairing · Sparse multiplication

1 Introduction

Since the inception by Sakai et al. [25], pairing-based cryptography has gained
much attention to cryptographic researchers as well as to mathematicians. It
gives flexibility to protocol researcher to innovate applications with provable
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security and at the same time to mathematicians and cryptography engineers
to find efficient algorithms to make pairing implementation more efficient and
practical. This paper tries to efficiently carry out the basic operation of a specific
type of pairing calculation over certain pairing-friendly curves.

Generally, a pairing is a bilinear map e typically defined as G1 × G2 → GT ,
where G1 and G2 are additive cyclic sub-groups of order r on a certain elliptic
curve E over a finite extension field Fpk and GT is a multiplicative cyclic group
of order r in F

∗
pk . Let E(Fp) be the set of rational points over the prime field

Fp which forms an additive Abelian group together with the point at infinity
O. The total number of rational points is denoted as #E(Fp). Here, the order r
is a large prime number such that r|#E(Fp) and gcd(r, p) = 1. The embedding
degree k is the smallest positive integer such that r|(pk−1). Two basic properties
of pairing are

– bilinearity is such that ∀Pi ∈ G1 and ∀Qi ∈ G2, where i = 1, 2, then e(Q1 +
Q2, P1) = e(Q1, P1).e(Q2, P1) and e(Q1, P1 + P2) = e(Q1, P1).e(Q1, P2),

– and e is non-degenerate means ∀P ∈ G1 there is a Q ∈ G2 such that e(Q,P ) �=
1 and ∀Q ∈ G2 there is a P ∈ G1 such that e(P,Q) �= 1.

Such properties allows researchers to come up with various cryptographic appli-
cations including ID-based encryption [8], group signature authentication [7], and
functional encryption [24]. However, the security of pairing-based cryptosystems
depends on

– the difficulty of solving elliptic curve discrete logarithm problem (ECDLP) in
the groups of order r over Fp,

– the infeasibility of solving the discrete logarithm problem (DLP) in the mul-
tiplicative group GT ∈ F

∗
pk ,

– and the difficulty of pairing inversion.

To maintain the same security level in both groups, the size of the order r and
extension field pk is chosen accordingly. If the desired security level is δ then
log2 r ≥ 2δ is desirable due to Pollard’s rho algorithm. For efficient pairing, the
ratio ρ = log2 pk/ log2 r ≈ 1, is expected (usually 1 ≤ ρ ≤ 2). In practice, elliptic
curves with small embedding degrees k and large r are selected and commonly
are knows as “pairing-friendly” elliptic curves.

Galbraith et al. [15] have classified pairings as three major categories based
on the underlying group’s structure as

– Type 1, where G1 = G2, also known as symmetric pairing.
– Type 2, where G1 �= G2, known as asymmetric pairing. There exists an effi-

ciently computable isomorphism ψ : G2 → G1 but none in reverse direction.
– Type 3, which is also asymmetric pairing, i.e., G1 �= G2. But no efficiently

computable isomorphism is known in either direction between G1 and G2.

This paper chooses one of the Type 3 variants of pairing named as Optimal-Ate
[29] with Kachisa-Schaefer-Scott (KSS) [19] pairing-friendly curve of embedding
degree k = 16. Few previous works have been done on this curve. Zhang et al. [31]
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have shown the computational estimation of the Miller’s loop and proposed
efficient final exponentiation for 192-bit security level in the context of Optimal-
Ate pairing over KSS-16 curve. A few years later Ghammam et al. [16] have
shown that KSS-16 is the best suited for multi-pairing (i.e., the product and/or
the quotient) when the number of pairing is more than two. Ghammam et al.
[16] also corrected the flaws of proposed final exponentiation algorithm by Zhang
et al. [31] and proposed a new one and showed the vulnerability of Zhang’s
parameter settings against small subgroup attack. The recent development of
NFS by Kim and Barbulescu [21] requires updating the parameter selection for
all the existing pairings over the well known pairing-friendly curve families such
as BN [5], BLS [13] and KSS [19]. The most recent study by Barbulescu et al.
[3] have shown the security estimation of the current parameter settings used in
well-studied curves and proposed new parameters, resistant to small subgroup
attack.

Barbulescu and Duquesne’s study finds that the current parameter settings
for 128-bit security level on BN-curve studied in literature can withstand for
100-bit security. Moreover, they proposed that BLS-12 and surprisingly KSS-16
are the most efficient choice for Optimal-Ate pairing at the 128-bit security level.
Therefore, the authors focus on the efficient implementation of the less studied
KSS-16 curve for Optimal-Ate pairing by applying the most recent parameters.
Mori et al. [23] and Khandaker et al. [20] have shown a specific type of sparse
multiplication for BN and KSS-18 curve respectively where both of the curves
supports sextic twist. The authors have extended the previous works for quartic
twisted KSS-16 curve and derived pseudo-8 sparse multiplication for line eval-
uation step in the Miller’s algorithm. As a consequence, the authors made the
choice to concentrate on Miller’s algorithm’s execution time and computational
complexity to verify the claim of [3]. The implementation shows that Miller’s
algorithm time has a tiny difference between KSS-16 and BLS-12 curves. How-
ever, they both are more efficient and faster than BN curve.

2 Fundamentals of Elliptic Curve and Pairing

2.1 Kachisa-Schaefer-Scott (KSS) Curve

In [19], Kachisa, Schaefer, and Scott proposed a family of non super-singular
pairing-friendly elliptic curves of embedding degree k = {16, 18, 32, 36, 40}, using
elements in the cyclotomic field. In what follows, this paper considers the curve
of embedding degree k = 16, named as KSS-16, defined over extension field Fp16

as follows:
E/Fp16 : Y 2 = X3 + aX, (a ∈ Fp) and a �= 0, (1)

where X,Y ∈ Fp16 . Similar to other pairing-friendly curves, characteristic p,
Frobenius trace t and order r of this curve are given by the following polynomials
of integer variable u.
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p(u) = (u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2

+ 2398u + 3125)/980, (2a)
r(u) = (u8 + 48u4 + 625)/61255, (2b)
t(u) = (2u5 + 41u + 35)/35, (2c)

where u is such that u ≡ 25 or 45 (mod 70) and the ρ value is ρ =
(log2 p/ log2 r) ≈ 1.25. The total number of rational points #E(Fp) is given
by Hasse’s theorem as, #E(Fp) = p+1− t. When the definition field is the k-th
degree extension field Fpk , rational points on the curve E also form an additive
Abelian group denoted as E(Fpk). Total number of rational points #E(Fpk) is
given by Weil’s theorem [30] as #E(Fpk) = pk + 1 − tk, where tk = αk + βk. α
and β are complex conjugate numbers.

2.2 Extension Field Arithmetic and Towering

Pairing-based cryptography requires performing the arithmetic operation in
extension fields of degree k ≥ 6 [28]. Consequently, such higher degree extension
field needs to be constructed as a tower of sub-fields [6] to perform arithmetic
operation cost efficiently. Bailey et al. [2] have explained optimal extension field
by towering by using irreducible binomials.

Towering of Fp16 extension field: For KSS-16 curve, Fp16 construction
process given as follows using tower of sub-fields.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fp2 = Fp [α]/(α2 − c),
Fp4 = Fp2 [β]/(β2 − α),
Fp8 = Fp4 [γ]/(γ2 − β),
Fp16 = Fp8 [ω]/(ω2 − γ),

(3)

where p ≡ 5 mod 8 and c is a quadratic non residue in Fp. This paper considers
c = 2 along with the value of the parameter u as given in [3].

Towering of Fp12 extension field: Let 6|(p−1), where p is the characteristics
of BN or BLS-12 curve and −1 is a quadratic and cubic non-residue in Fp since
p ≡ 3 mod 4. In the context of BN or BLS-12, where k = 12, Fp12 is constructed
as a tower of sub-fields with irreducible binomials as follows:

⎧
⎪⎨

⎪⎩

Fp2 = Fp [α]/(α2 + 1),
Fp6 = Fp2 [β]/(β3 − (α + 1)),
Fp12 = Fp6 [γ]/(γ2 − β).

(4)
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Extension Field Arithmetic of Fp16 and Fp12 . Among the arithmetic opera-
tions multiplication, squaring and inversion are regarded as expensive operation
than addition/subtraction. The calculation cost, based on number of prime field
multiplication Mp and squaring Sp is given in Table 1. The arithmetic opera-
tions in Fp are denoted as Mp for a multiplication, Sp for a squaring, Ip for an
inversion and m with suffix denotes multiplication with basis element. However,
squaring is more optimized by using Devegili et al.’s [11] complex squaring tech-
nique which cost 2Mp + 4Ap + 2mα for one squaring operation in Fp2 . In total
it costs 54Mp for one squaring in Fp16 . Table 1 shows the operation estimation
for Fp16 .

Table 1. Number of arithmetic operations in Fp16 based on Eq. (3)

Mp2 = 3Mp + 5Ap + 1mα → 3Mp Sp2 = 3Sp + 4Ap + 1mα → 3Sp

Mp4 = 3Mp2 + 5Ap2 + 1mβ → 9Mp Sp4 = 3Sp2 + 4App2 + 1mβ → 9Sp

Mp8 = 3Mp4 + 5Ap4 + 1mγ → 27Mp Sp8 = 3Sp4 + 4Ap4 + 1mγ → 27Sp

Mp16 = 3Mp8 + 5Ap8 + 1mω → 81Mp Sp16 = 3Mp8 + 4Ap8 + 1mω → 81Sp

Table 2 shows the operation estimation for Fp12 according to the towering
shown in Eq. (4). The algorithms for Fp2 and Fp3 multiplication and squaring
given in [12] have be used in this paper to construct the Fp12 extension field
arithmetic.

Table 2. Number of arithmetic operations in Fp12 based on Eq. (4)

Mp2 = 3Mp + 5Ap + 1mα → 3Mp Sp2 = 2Sp + 3Ap → 2Sp

Mp6 = 6Mp2 + 15Ap2 + 2mβ → 18Mp Sp6 = 2Mp2 + 3Sp2 + 9Ap2 + 2mβ → 12Sp

Mp12 = 3Mp6 + 5Ap6 + 1mγ → 54Mp Sp12 = 2Mp6 + 5Ap6 + 2mγ → 36Sp

2.3 Ate and Optimal-Ate on KSS-16, BN, BLS-12 Curve

A brief of pairing and it’s properties are described in Sect. 1. In the context
of pairing on the targeted pairing-friendly curves, two additive rational point
groups G1,G2 and a multiplicative group GT of order r are considered. G1, G2

and GT are defined as follows:

G1 = E(Fp)[r] ∩ Ker(πp − [1]),
G2 = E(Fpk)[r] ∩ Ker(πp − [p]),
GT = F

∗
pk/(F∗

pk)r,

e : G1 × G2 → GT , (5)

where e denotes Ate pairing [9]. E(Fpk)[r] denotes rational points of order r and
[n] denotes n times scalar multiplication for a rational point. πp denotes the
Frobenius endomorphism given as πp : (x, y) �→ (xp, yp).
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KSS-16 Curve: In what follows, we consider P ∈ G1 ⊂ E(Fp) and Q ∈ G2 ⊂
E(Fp16) for KSS-16 curves. Ate pairing e(Q,P ) is given as follows:

e(Q,P ) = ft−1,Q(P )
p16−1

r , (6)

where ft−1,Q(P ) symbolizes the output of Miller’s algorithm and log2(t − 1)�
is the loop length. The bilinearity of Ate pairing is satisfied after calculating the
final exponentiation (pk − 1)/r.

Vercauteren proposed more efficient variant of Ate pairing named as Optimal-
Ate pairing [29] where the Miller’s loop length reduced to log2 u�. The previous
work of Zhang et al. [31] has derived the optimal Ate pairing on the KSS-16
curve which is defined as follows with fu,Q(P ) is the Miller function evaluated
on P :

eopt(Q,P ) = ((fu,Q(P ) · l[u]Q,[p]Q(P ))p3 · lQ,Q(P ))
p16−1

r . (7)

The formulas for Optimal-Ate pairing for the target curves are given in Table 3.

Table 3. Optimal Ate pairing formulas for target curves

Curve Miller’s Algo. Final Exp.

KSS-16 (fu,Q(P ) · l[u]Q,[p]Q(P ))p3 · lQ,Q(P ) (p16 − 1)/r

BN f6u+2,Q(P ) · l[6u+2]Q,[p]Q(P ) · l[6u+2+p]Q,[−p2]Q(P ) (p12 − 1)/r

BLS-12 fu,Q(P ) (p12 − 1)/r

The naive calculation procedure of Optimal-Ate pairing is shown in
Algorithm 1. In what follows, the calculation steps from 1 to 11, shown in
Algorithm 1, is identified as Miller’s Algorithm (MA) and step 12 is the final expo-
nentiation (FE). Steps 2-7 are specially named as Miller’s loop. Steps 3, 5, 7 are the
line evaluation together with elliptic curve doubling (ECD) and addition (ECA)
inside the Miller’s loop and steps 9, 11 are the line evaluation outside the loop.
These line evaluation steps are the key steps to accelerate the loop calculation.
The authors extended the work of [20,23] for KSS-16 curve to calculate pseudo 8-
sparse multiplication described in Sect. 3. The ECA and ECD are also calculated
efficiently in the twisted curve. The Q2 ← [p]Q term of step 8 is calculated by
applying one skew Frobenius map over Fp4 and f1 ← fp3

of step 10 is calculated by
applying one Frobenius map in Fp16 . Step 12, FE is calculated by applying Gham-
mam et al.’s work for KSS-16 curve [16].

2.4 Twist of KSS-16 Curves

In the context of Type 3 pairing, there exists a twisted curve with a group
of rational points of order r, isomorphic to the group where rational point
Q ∈ E(Fpk)[r] ∩ Ker(πp − [p]) belongs to. This sub-field isomorphic rational
point group includes a twisted isomorphic point of Q, typically denoted as
Q′ ∈ E′(Fpk/d), where k is the embedding degree and d is the twist degree.
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Algorithm 1. Optimal Ate pairing on KSS-16 curve

Input: u, P ∈ G1, Q ∈ G
′
2

Output: (Q, P )
f ← 1, T ← Q1

for i = �log2(u)� downto 1 do2

f ← f2 · lT,T (P ), T ← [2]T3

if u[i] = 1 then4

f ← f · lT,Q(P ), T ← T + Q5

if u[i] = −1 then6

f ← f · lT,−Q(P ), T ← T − Q7

Q1 ← [u]Q, Q2 ← [p]Q8

f ← f · lQ1,Q2(P )9

f1 ← fp3
, f ← f · f110

f ← f · lQ,Q(P )11

f ← f
p16−1

r12

return f13

Since points on the twisted curve are defined over a smaller field than Fpk ,
therefore ECA and ECD become faster. However, when required in the Miller’s
algorithm’s line evaluation, the points can be quickly mapped to points on
E(Fpk). Since the pairing-friendly KSS-16 [19] curve has CM discriminant of
D = 1 and 4|k; therefore, quartic twist is available.

Quartic Twist. Let β be a certain quadratic non-residue in Fp4 . The quartic
twisted curve E′ of KSS-16 curve E defined in Eq. (1) and their isomorphic
mapping ψ4 are given as follows:

E′ : y2 = x3 + axβ−1, a ∈ Fp,

ψ4 : E′(Fp4)[r] �−→ E(Fp16)[r] ∩ Ker(πp − [p]),

(x, y) �−→ (β1/2x, β3/4y), (8)

where Ker(·) denotes the kernel of the mapping and πp denotes Frobenius map-
ping for rational point.

Table 4 shows the vector representation of Q = (xQ, yQ) =
(β1/2xQ′ , β3/4yQ′) ∈ Fp16 according to the given towering in Eq. (3). Here, xQ′

and yQ′ are the coordinates of rational point Q′ on quartic twisted curve E′.
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Table 4. Vector representation of Q = (xQ, yQ) ∈ G2 ⊂ E(Fp16)

1 α β αβ γ αγ βγ αβγ ω αω βω αβω γω αγω βγω αβγω

xQ 0 0 0 0 b4 b5 b6 b7 0 0 0 0 0 0 0 0

yQ 0 0 0 0 0 0 0 0 0 0 0 0 b12 b13 b14 b15

3 Proposal

3.1 Overview: Sparse and Pseudo-Sparse Multiplication

Aranha et al. [1, Sect. 4] and Costello et al. [10] have well optimized the Miller’s
algorithm in Jacobian coordinates by 6-sparse multiplication1 for BN curve.
Mori et al. [23] have shown the pseudo 8-sparse multiplication2 for BN curve by
adapting affine coordinates where the sextic twist is available. It is found that
pseudo 8-sparse was efficient than 7-sparse and 6-sparse in Jacobian coordinates.

Let us consider T = (γxT ′ , γωyT ′), Q = (γxQ′ , γωyQ′) and P = (xP , yP ),
where xp, yp ∈ Fp given in affine coordinates on the curve E(Fp16) such that
T ′ = (xT ′ , yT ′), Q′ = (xQ′ , yQ′) are in the twisted curve E′ defined over Fp4 . Let
the elliptic curve doubling of T + T = R(xR, yR). The 7-sparse multiplication
for KSS-16 can be derived as follows.

lT,T (P ) = (yp − yT ′γω) − λT,T (xP − xT ′γ), when T = Q,

λT,T = 3x2
T ′γ2+a

2yT ′γω = 3x2
T ′γω−1+a(γω)−1

2yT ′ = (3x2
T ′+ac−1αβ)ω

2yT ′ = λ′
T,T ω,

since γω−1 = ω, (γω)−1 = ωβ−1, and
aβ−1 = (a + 0α + 0β + 0αβ)β−1 = aβ−1 = ac−1αβ, where α2 = c.

Now the line evaluation and ECD are obtained as follows:

lT,T (P ) = yp − xpλ
′
T,T ω + (xT ′λ′

T,T − yT ′)γω,

x2T ′ = (λ′
T,T )2ω2 − 2xT ′γ = ((λ′

T,T )2 − 2xT ′)γ
y2T ′ = (xT ′γ − x2T ′γ)λ′

T,T ω − yT ′γω = (xT ′λ′
T,T − x2T ′λ′

T,T − yT ′)γω.

The above calculations can be optimized as follows:

A = 1
2yT ′ , B = 3x2

T ′ + ac−1, C = AB,D = 2xT ′ , x2T ′ = C2 − D,

E = CxT ′ − yT ′ , y2T ′ = E − Cx2T ′ ,
lT,T (P ) = yP + Eγω − CxP ω = yP + Fω + Eγω,

(9)

where F = −CxP .
The elliptic curve addition phase (T �= Q) and line evaluation of lT,Q(P ) can

also be optimized similar to the above procedure. Let the elliptic curve addition
of T + Q = R(xR, yR).
1 6-Sparse refers the state when in a vector (multiplier/multiplicand), among the 12

coefficients 6 of them are zero..
2 Pseudo 8-sparse refers to a certain length of vector’s coefficients where instead of 8

zero coefficients, there are seven 0’s and one 1 as coefficients..
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lT,Q(P ) = (yp − yT ′γω) − λT,Q(xP − xT ′γ), T �= Q,

λT,Q = (yQ′−yT ′ )γω

(xQ′−xT ′ )γ = (yQ′−yT ′ )ω
xQ′−xT ′ = λ′

T,Qω,

xR = (λ′
T,Q)2ω2 − xT ′γ − xQ′γ = ((λ′

T,Q)2 − xT ′ − xQ′)γ
yR = (xT ′γ − xRγ)λ′

T,Qω − yT ′γω = (xT ′λ′
T,Q − xR′λ′

T,Q − yT ′)γω.

Representing the above line equations using variables as following:

A = 1
xQ′−xT ′ , B = yQ′ − yT ′ , C = AB,D = xT ′ + xQ′ ,

xR′ = C2 − D,E = CxT ′ − yT ′ , yR′ = E − CxR′ ,
lT,Q(P ) = yP + Eγω − CxP ω = yP + Fω + Eγω,

F = −CxP ,

(10)

Here all the variables (A,B,C,D,E, F ) are calculated as Fp4 elements. The
position of the yP , E and F in Fp16 vector representation is defined by the basis
element 1, γω and ω as shown in Table 4. Therefore, among the 16 coefficients
of lT,T (P ) and lT,Q(P ) ∈ Fp16 , only 9 coefficients yP ∈ Fp, CxP ∈ Fp4 and
E ∈ Fp4 are non-zero. The remaining 7 zero coefficients leads to an efficient
multiplication, usually called sparse multiplication. This particular instance in
KSS-16 curve is named as 7-sparse multiplication.

3.2 Pseudo 8-Sparse Multiplication for BN and BLS-12 Curve

Here we have followed Mori et al.’s [23] procedure to derive pseudo 8-sparse
multiplication for the parameter settings of [3] for BN and BLS-12 curves. For
the new parameter settings, the towering is given as Eq. (4) for both BN and
BLS-12 curve. However, the curve form E : y2 = x3 + b, b ∈ Fp is identical for
both BN and BLS-12 curve. The sextic twist obtained for these curves are also
identical. Therefore, in what follows this paper will denote both of them as Eb

defined over Fp12 (Table 5).

Sextic Twist of BN and BLS-12 Curve: Let (α + 1) be a certain quadratic
and cubic non-residue in Fp2 . The sextic twisted curve E′

b of curve Eb and their
isomorphic mapping ψ6 are given as follows:

E′
b : y2 = x3 + b(α + 1), b ∈ Fp,

ψ6 : E′
b(Fp2)[r] �−→ Eb(Fp12)[r] ∩ Ker(πp − [p]),

(x, y) �−→ ((α + 1)−1xβ, (α + 1)−1yβ2γ). (11)

The line evaluation and ECD/ECA can be obtained in affine coordinate for
the rational point P and Q′, T ′ ∈ E′

b(Fp2) as follows:

Elliptic curve addition when T ′ �= Q′ and T ′ + Q′ = R′(xR′ , yR′)

A = 1
xQ′−xT ′ , B = yQ′ − yT ′ , C = AB,D = xT ′ + xQ′ ,

xR′ = C2 − D,E = CxT ′ − yT ′ , yR′ = E − CxR′ ,

lT ′,Q′(P ) = yP + (α + 1)−1Eβγ − (α + 1)−1CxP β2γ, (12a)
y−1

P lT ′,Q′(P ) = 1 + (α + 1)−1Ey−1
P βγ − (α + 1)−1CxP y−1

P β2γ, (12b)
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Table 5. Vector representation of Q = (xQ, yQ) ∈ G2 ⊂ E(Fp12) vector representation

1 α β αβ β2 αβ2 γ αγ βγ αβγ β2γ αβ2γ

xQ 0 0 0 0 b4 b5 0 0 0 0 0 0

yQ 0 0 0 0 0 0 0 0 b8 b9 0 0

Elliptic curve doubling when T ′ = Q′

A = 1
2yT ′ , B = 3x2

T ′ , C = AB,D = 2xT ′ , x2T ′ = C2 − D,

E = CxT ′ − yT ′ , y2T ′ = E − Cx2T ′ ,

lT ′,T ′(P ) = yP + (α + 1)−1Eβγ − (α + 1)−1CxP β2γ, (13a)
y−1

P lT ′,T ′(P ) = 1 + (α + 1)−1Ey−1
P βγ − (α + 1)−1CxP y−1

P β2γ, (13b)

The line evaluations of Eqs. (12b) and (13b) are identical and more sparse than
Eqs. (12a) and (13a). Such sparse form comes with a cost of computation over-
head. But such overhead can be minimized by the following isomorphic mapping,
which also accelerates the Miller’s loop iteration.

Isomorphic mapping of P ∈ G1 �→ P̂ ∈ G1
′ :

Ê : y2 = x3 + bẑ,

Ê(Fp)[r] �−→ E(Fp)[r],

(x, y) �−→ (ẑ−1x, ẑ−3/2y), (14)

where ẑ ∈ Fp is a quadratic and cubic residue in Fp. Equation (14) maps rational
point P to P̂ (xP̂ , yP̂ ) such that (xP̂ , y−1

P̂
) = 1. The twist parameter ẑ is obtained

as:
ẑ = (xP y−1

P )6. (15)

From the Eq. (15) P̂ and Q̂′ is given as

P̂ (xP̂ , yP̂ ) = (xP z−1, yP z−3/2) = (x3
P y−2

P , x3
P y−2

P ), (16a)

Q̂′(xQ̂′ , yQ̂′) = (x2
P y−2

P xQ′ , x3
P y−3

P yQ′). (16b)

Using Eqs. (16a) and (16b) the line evaluation of Eq. (13b) becomes

y−1

P̂
lT̂ ′,T̂ ′(P̂ ) = 1 + (α + 1)−1Ey−1

P̂
βγ − (α + 1)−1CxP̂ y−1

P̂
β2γ,

l̂T̂ ′,T̂ ′(P̂ ) = 1 + (α + 1)−1Ey−1

P̂
βγ − (α + 1)−1Cβ2γ. (17a)

The Eq. (12b) becomes similar to Eq. (17a). The calculation overhead can be
reduced by pre-computation of (α + 1)−1, y−1

P̂
and P̂ , Q̂′ mapping using x−1

P

and y−1
P as shown by Mori et al. [23].

Finally, pseudo 8-sparse multiplication for BN and BLS-12 is given in
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Algorithm 2. Pseudo 8-sparse multiplication for BN and BLS-12 curves

Input: a, b ∈ Fp12

a = (a0 + a1β + a2β
2) + (a3 + a4β + a5β

2)γ, b = 1 + b4βγ + b5β
2γ

where ai, bj , ci ∈ Fp2(i = 0, · · ·, 5, j = 4, 5)
Output: c = ab = (c0 + c1β + c2β

2) + (c3 + c4β + c5β
2)γ ∈ Fp12

c4 ← a0 × b4, t1 ← a1 × b5, t2 ← a0 + a1, S0 ← b4 + b51

c5 ← t2 × S0 − (c4 + t1), t2 ← a2 × b5, t2 ← t2 × (α + 1)2

c4 ← c4 + t2, t0 ← a2 × b4, t0 ← t0 + t13

c3 ← t0 × (α + 1), t0 ← a3 × b4, t1 ← a4 × b5, t2 ← a3 + a44

t2 ← t2 × S0 − (t0 + t1)5

c0 ← t2 × (α + 1), t2 ← a5 × b4, t2 ← t1 + t26

c1 ← t2 × (α + 1), t1 ← a5 × b5, t1 ← t1 × (α + 1)7

c2 ← t0 + t18

c ← c + a9

return c = (c0 + c1β + c2β
2) + (c3 + c4β + c5β

2)γ10

3.3 Pseudo 8-Sparse Multiplication for KSS-16 Curve

The main idea of pseudo 8-sparse multiplication is finding more sparse form
of Eqs. (9) and (10), which allows to reduce the number of multiplication of
Fp16 vector during Miller’s algorithm evaluation. To obtains the same, y−1

P is
multiplied to both side of Eqs. (9) and (10), since yP remains the same through
the Miller’s algorithms loop calculation.

y−1
P lT,T (P ) = 1 − CxP y−1

P ω + Ey−1
P γω, (18a)

y−1
P lT,Q(P ) = 1 − CxP y−1

P ω + Ey−1
P γω, (18b)

Although the Eqs. (18a) and (18b) do not get more sparse, but 1st coefficient
becomes 1. Such vector is titled as pseudo sparse form in this paper. This
form realizes more efficient Fp16 vectors multiplication in Miller’s loop. However,
the Eq. (18b) creates more computation overhead than Eq. (10), i.e., comput-
ing y−1

P lT,Q(P ) in the left side and xP y−1
P , Ey−1

P on the right. The same goes
between Eqs. (9) and (18a). Since the computation of Eqs. (18a) and (18b) are
almost identical, therefore the rest of the paper shows the optimization tech-
nique for Eq. (18a). To overcome these overhead computations, the following
techniques can be applied.

– xP y−1
P is omitted by applying further isomorphic mapping of P ∈ G1.

– y−1
P can be pre-computed. Therefore, the overhead calculation of Ey−1

P will
cost only 2 Fp multiplication.

– y−1
P lT,T (P ) doesn’t effect the pairing calculation cost since the final exponen-

tiation cancels this multiplication by y−1
P ∈ Fp.

To overcome the CxP y−1
P calculation cost, xP y−1

P = 1 is expected. To obtain
xP y−1

P = 1, the following isomorphic mapping of P = (xP , yP ) ∈ G1 is intro-
duced.
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Isomorphic Map of P = (xP , yP ) → P̄ = (xP̄ , yP̄ ). Although the KSS-16
curve is typically defined over Fp16 as E(Fp16), but for efficient implementation
of Optimal-Ate pairing, certain operations are carried out in a quartic twisted
isomorphic curve E′ defined over Fp4 as shown in Sect. 2.4. For the same, let
us consider Ē(Fp4) is isomorphic to E(Fp4) and certain z ∈ Fp as a quadratic
residue (QR) in Fp4 . A generalized mapping between E(Fp4) and Ē(Fp4) can be
given as follows:

Ē : y2 = x3 + az−2x,

Ē(Fp4)[r] �−→ E(Fp4)[r],

(x, y) �−→ (z−1x, z−3/2y),
where z, z−1, z−3/2 ∈ Fp. (19)

The mapping considers z ∈ Fp is a quadratic residue over Fp4 which can be
shown by the fact that z(p

4−1)/2 = 1 as follows:

z(p
4−1)/2 = z(p−1)(p3+p2+p+1)/2

= 1(p
3+p2+p+1)/2

= 1 QR ∈ Fp4 . (20)

Therefore, z is a quadratic residue over Fp4 .
Now based on P = (xP , yP ) be the rational point on curve E, the considered
isomorphic mapping of Eq. (19) can find a certain isomorphic rational point
P̄ = (xP̄ , yP̄ ) on curve Ē as follows:

y2
P = x3

P + axP ,

y2
P z−3 = x3

P z−3 + axP z−3,

(yP z−3/2)2 = (xP z−1)3 + az−2xP z−1, (21)

where P̄ = (xP̄ , yP̄ ) = (xP z−1, yP z−3/2) and the general form of the curve Ē is
given as follows:

y2 = x3 + az−2x. (22)

To obtain the target relation xP̄ y−1
P̄

= 1 from above isomorphic map and rational
point P̄ , let us find isomorphic twist parameter z as follows:

xP̄ y−1
P̄

= 1

z−1xP (z−3/2yP )−1 = 1
z1/2(xP .y−1

P ) = 1
z = (x−1

P yP )2. (23)

Now using z = (x−1
P yP )2 and Eq. (21), P̄ can be obtained as

P̄ (xP̄ , yP̄ ) = (xP z−1, yP z−3/2) = (x3
P y−2

P , x3
P y−2

P ), (24)
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where the x and y coordinates of P̄ are equal. For the same isomorphic map we
can obtain Q̄ on curve Ē defined over Fp12 as follows:

Q̄(xQ̄, yQ̄) = (z−1xQ′γ, z−3/2yQ′γω), (25)

where from Eq. (8), Q′(xQ′ , yQ′) is obtained in quartic twisted curve E′.
At this point, to use Q̄ with P̄ in line evaluation we need to find another

isomorphic map that will map Q̄ �→ Q̄′, where Q̄′ is the rational point on curve
Ē′ defined over Fp4 . Such Q̄′ and Ē′ can be obtained from Q̄ of Eq. (25) and
curve Ē from Eq. (22) as follows:

(z−3/2yQ′γω)2 = (z−1xQ′γ)3 + az−2z−1xQ′γ,

(z−3/2yQ′)2γ2ω2 = (z−1xQ′)3γ3 + az−2z−1xQ′γ,

(z−3/2yQ′)2βγ = (z−1xQ′)3βγ + az−2z−1xQ′γ,

(z−3/2yQ′)2 = (z−1xQ′)3 + az−2β−1z−1xQ′ .

From the above equations, Ē′ and Q̄′ are given as,

Ē′ : y2
Q̄′ = x3

Q̄′ + a(z2β)−1xQ̄′ . (26)

Q̄′(xQ̄′ , yQ̄′) = (z−1xQ′ , z−3/2yQ′),

= (xQ′x2
P y−2

P , yQ′x3
P y−3

P ). (27)

Now, applying P̄ and Q̄′, the line evaluation of Eq. (18b) becomes as follows:

y−1
P̄

lT̄ ′,Q̄′(P̄ ) = 1 − C(xP̄ y−1
P̄

)γ + Ey−1
P̄

γω,

l̄T̄ ′,Q̄′(P̄ ) = 1 − Cγ + E(x−3
P y2

P )γω, (28)

where xP̄ y−1
P̄

= 1 and y−1
P̄

= z3/2y−1
P = (x−3

P y2
P ). The Eq. (18a) becomes the

same as Eq. (28). Compared to Eq. (18b), the Eq. (28) will be faster while using
in Miller’s loop in combination of the pseudo 8-sparse multiplication shown in
Algorithm 2. However, to get the above form, we need the following pre-
computations once in every Miller’s Algorithm execution.

– Computing P̄ and Q̄′,
– (x−3

P y2
P ) and

– z−2 term from curve Ē′ of Eq. (26).

The above terms can be computed from x−1
P and y−1

P by utilizing Montgomery
trick [22], as shown in Algorithm 3. The pre-computation requires 21 multipli-
cation, 2 squaring and 1 inversion in Fp and 2 multiplication, 3 squaring in
Fp4 .

The overall mapping and the curve obtained in the twisting process is shown
in the Fig. 1.

Finally the Algorithm4 shows the derived pseudo 8-sparse multiplication.
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Fig. 1. Overview of the twisting process to get pseudo sparse form in KSS-16 curve.
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Algorithm 3. Pre-calculation and mapping P �→ P̄ and Q′ �→ Q̄′

Input: P = (xP , yP ) ∈ G1, Q
′ = (xQ′ , yQ′) ∈ G

′
2

Output: Q̄′, P̄ , y−1
P , (z)−2

A ← (xP yP )−1
1

B ← Ax2
P2

C ← AyP3

D ← B2
4

xQ̄′ ← DxQ′5

yQ̄′ ← BDyQ′6

xP̄ , yP̄ ← DxP7

y−1
P ← C3y2

P8

z−2 ← D2
9

return Q̄′ = (xQ̄′ , yQ̄′), P̄ = (xP̄ , yP̄ ), y−1
P , z−2

10

Algorithm 4. Pseudo 8-sparse multiplication for KSS-16 curve

Input: a, b ∈ Fp16

a = (a0 + a1γ) + (a2 + a3γ)ω, b = 1 + (b2 + b3γ)ω
a = (a0 + a1ω + a2ω

2 + a3ω
3), b = 1 + b2ω + b3ω

3

Output: c = ab = (c0 + c1γ) + (c3 + c4γ)ω ∈ Fp16

t0 ← a3 × b3 × β, t1 ← a2 × b2, t4 ← b2 + b3, c0 ← (a2 + a3) × t4 − t1 − t01

c1 ← t1 + t0 × β2

t2 ← a1 × b3, t3 ← a0 × b2, c2 ← t3 + t2 × β3

t4 ← (b2 + b3), c3 ← (a0 + a1) × t4 − t3 − t24

c ← c + a5

return c = (c0 + c1γ) + (c3 + c4γ)ω6

3.4 Final Exponentiation

Scott et al. [27] show the process of efficient final exponentiation (FE) fpk−1/r

by decomposing the exponent using cyclotomic polynomial Φk as

(pk − 1)/r = (pk/2 − 1) · (pk/2 + 1)/Φk(p) · Φk(p)/r. (29)

The 1st two terms of the right part are denoted as easy part since it can be easily
calculated by Frobenius mapping and one inversion in affine coordinates. The
last term is called hard part which mostly affects the computation performance.
According to Eq. (29), the exponent decomposition of the target curves is shown
in Table 6.

This paper carefully concentrates on Miller’s algorithm for comparison and
making pairing efficient. However, to verify the correctness of the bilinearity
property, the authors made a “not state-of-art” implementation of Fuentes
et al.’s work [14] for BN curve case and Ghammam’s et al.’s works [16,17] for
KSS-16 and BLS-12 curves. For scalar multiplication by prime p, i.e., p[Q] or
[p2]Q, skew Frobenius map technique by Sakemi et al. [26] is adapted.
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Table 6. Exponents of final exponentiation in pairing

Curve Final exponent Easy part Hard part

KSS-16 p16−1
r

p8 − 1 p8+1
r

BN, BLS-12 p12−1
r

(p6 − 1)(p2 + 1) p4−p2+1
r

4 Experimental Result Evaluation

This section gives details of the experimental implementation. The source code
can be found in Github3. The code is not an optimal code, and the sole purpose
of it compare the Miller’s algorithm among the curve families and validate the
estimation of [3]. Table 7 shows implementation environment. Parameters chosen
from [3] is shown in Table 8. Table 9 shows execution time for Miller’s algorithm
implementation in millisecond for a single Optimal-Ate pairing. Results here
are the average of 10 pairing operation. From the result, we find that Miller’s
algorithm took the least time for KSS-16. And the time is almost closer to
BLS-12. The Miller’s algorithm is about 1.7 times faster in KSS-16 than BN
curve. Table 12 shows that the complexity of this implementation concerning the
number of Fp multiplication and squaring and the estimation of [3] are almost
coherent for Miller’s algorithm. Table 12 also show that our derived pseudo 8-
sparse multiplication for KSS-16 takes fewer Fp multiplication than Zhang et
al.’s estimation [31]. The execution time of Miller’s algorithm also goes with this
estimation [3], that means KSS-16 and BLS-12 are more efficient than BN curve.
Table 10 shows the complexity of Miller’s algorithm for the target curves inFp

operations count.

Table 7. Computational Environment

CPUa Memory Compiler OS Language Library

Intel(R)
Core(TM)
i5-6500 CPU
@ 3.20 GHz

4GB GCC 5.4.0 Ubuntu
16.04 LTS

C GMP v 6.1.0 [18]

aOnly single core is used from two cores

The operation counted in Table 10 are based on the counter in implementa-
tion code. For the implementation of big integer arithmetic mpz t data type of
GMP [18] library has been used. For example, multiplication between 2 mpz t
variables are counted as Fp multiplication and multiplication between one mpz t
and one “unsigned long” integer can also be treated as Fp multiplication. Basis
multiplication refers to the vector multiplication such as (ao + a1α)α where
a0, a1 ∈ Fp and α is the basis element in Fp2 .

3 https://github.com/eNipu/pairingma128.git.

https://github.com/eNipu/pairingma128.git
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Table 8. Selected parameters for 128-bit security level [3]

Curve u HW(u) �log2 u� �log2 p(u)� �log2 r(u)� �log2 pk�
KSS-16 u = 235 − 232 − 218 + 28 + 1 5 35 339 263 5424

BN u = 2114 + 2101 − 214 − 1 4 115 462 462 5535

BLS-12 u = −277 + 250 + 233 3 77 461 308 5532

Table 9. Comparative results of Miller’s Algorithm in [ms].

KSS-16 BN BLS-12

Miller’s Algorithm 4.41 7.53 4.91

Table 10. Complexity of this implementation in Fp for Miller’s algorithm [single pair-
ing operation]

Multiplication Squaring Addition/Subtraction Basis multiplication Inversion

mpz t * mpz t mpz t * ui

KSS-16 6162 144 903 23956 3174 43

BN 10725 232 157 35424 3132 125

BLS-12 6935 154 113 23062 2030 80

Table 11. Final exponentiation time (not state-of-art) in [ms]

KSS-16 BN BLS-12

Final exponentiation 17.32 11.65 12.03

Table 12. Complexity comparison of Miller’s algorithm between this implementation
and Barbulescu et al.’s [3] estimation [Multiplication + Squaring in Fp]

KSS-16 BN BLS-12

Barbulescu et al. [3] 7534Mp 12068Mp 7708Mp

This implementation 7209Mp 11114Mp 7202Mp

As said before, this work is focused on Miller’s algorithm. However, the
authors made a “not state-of-art” implementation of some final exponentia-
tion algorithms [14,16,17]. Table 11 shows the total final exponentiation time
in [ms]. Here final exponentiation of KSS-16 is slower than BN and BLS-12. We
have applied square and multiply technique for exponentiation by integer u in
the hard part since the integer u given in the sparse form. However, Barbulescu
et al. [3] mentioned that availability of compressed squaring [1] for KSS-16 will
lead a fair comparison using final exponentiation.
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5 Conclusion and Future Work

This paper has presented two major ideas.

– Finding efficient Miller’s algorithm implementation technique for Optimal-
Ate pairing for the less studied KSS-16 curve. The author’s presented pseudo
8-sparse multiplication technique for KSS-16. They also extended such mul-
tiplication for BN and BLS-12 according to [23] for the new parameter.

– Verifying Barbulescu and Duquesne’s conclusion [3] for calculating Optimal-
Ate pairing at 128-bit security level; that is, BLS-12 and less studied KSS-
16 curves are more efficient choices than well studied BN curves for new
parameters. This paper finds that Barbulescu and Duquesne’s conclusion on
BLS-12 is correct as it takes the less time for Miller’s algorithm. Applying the
derived pseudo 8-sparse multiplication, Miller’s algorithm in KSS-16 is also
more efficient than BN.

As a prospective work authors would like to evaluate the performance by finding
compressed squaring for KSS-16’s final exponentiation along with scalar multi-
plication of G1, G2 and exponentiation of GT . The execution time for the target
environment can be improved by a careful implementation using assembly lan-
guage for prime field arithmetic.
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Abstract. This paper considers efficient scalar multiplication of elliptic
curves over binary fields with a twofold purpose. Firstly, we derive the
most efficient 3P formula in λ-projective coordinates and 5P formula
in both affine and λ-projective coordinates. Secondly, extensive exper-
iments have been conducted to test various multi-base scalar multipli-
cation methods (e.g., greedy, ternary/binary, multi-base NAF, and tree-
based) by integrating our fast formulas. The experiments show that our
3P and 5P formulas had an important role in speeding up the greedy,
the ternary/binary, the multi-base NAF, and the tree-based methods
over the NAF method. We also establish an efficient 3P formula for
Koblitz curves and use it to construct an improved set for the optimal
pre-computation of window TNAF.

Keywords: Binary elliptic curves · Point multiplication
Lambda coordinates · Efficient formulas · DBNS · MBNS

1 Introduction

Koblitz and Miller first introduced the use of an elliptic curve in public key
cryptography [19,26]. An elliptic curve cryptosystem is attractive for use because
it has a shorter key length, and it is as secure as the larger key length in other
public key cryptosystems. For instance, the shorter key length 283 bits in an
elliptic curve cryptosystem is regarded as secure as the larger key length 3072
bits in an RSA cryptosystem [21].

The dominant operation in elliptic curve cryptography (ECC) cryptographic
schemes is the scalar multiplication, which is an operation that adds a point to
itself a large number of times. The research to increase the speed of this operation
has attracted considerable attention ever since the discovery of the ECC. Many
proposed methods have improved general exponentiation algorithms. The idea
of presenting a scalar in a non-adjacent form (NAF) with signed coefficients
has been a basic method to use. The sparse property of NAF participates in
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minimizing the total number of point addition operations. Furthermore, the
NAF method can be used with window width. The binary width-w NAF allows
coefficients to be in {0,±1,±3, · · · ,±2w−1 −1}, which makes the representation
sparser. See [6,17] for more details of the NAF and the window NAF methods.

Another faster method for scalar multiplication is to express the scalar in
the double-base number system (DBNS). The DBNS with ternary and binary
bases for scalar n is represented such that n =

∑
s 2a 3b where a, b � 0, s ∈

{−1,+1}. A natural extension of DBNS is multi-base number system (MBNS).
The main advantage of using MBNS is that the scalar has a shorter average
expansion length than its single-base average expansion length. As a result, the
total number of point additions are minimized and that leads to faster scalar
multiplication. A greater computational speed can be achieved if an efficient
formula is available for scalar multiplication by an integer in the base. There are
several methods for representing an integer in MBNS, including greedy method
first proposed by Dimitrov et al. [8], ternary/binary method developed by Ciet
et al. [7], tree-based method given by Doche and Habsieger [10], and multi-base
NAF introduced by Longa in [22]. A scalar multiplication using MBNS expansion
has been further researched in [2,3,9,11,23,25,27,33].

In [18], Koblitz proposed a class of binary curves, what are now called Koblitz
curves, for cryptographic use. Also Koblitz in [18] initiated a study of NAF of
some algebraic integers using the Frobenius map τ . A very important extension
to Koblitz’s result was the window TNAF by Solinas [29] which reduces the
computation for scalar multiplication dramatically. More computational prop-
erties of the window TNAF have been revealed by Blake et al. [4,5]. Recently,
Trost and Xu formulated and constructed an optimal pre-computation for win-
dow TNAF [30]. Some new formulas have been derived in [30] that require a
fewer number of field operations.

Inversion operation is a very expensive operation in finite fields. The inver-
sion to multiplication (I/M) ratio over binary fields is not fixed, and it gets
affected by the inversion algorithm used and also the computing platform [16].
We usually assume the low I/M ratio is 5, and the high I/M ratio is 8 as sug-
gested in [17]. Much effort on elliptic curve arithmetic has been made in working
on different coordinate systems to avoid field inversion and achieve efficiency.
A common way of avoiding expensive division is to change to projective coordi-
nate systems. Besides standard projective coordinates, Jacobian and Chudnosky
projective coordinate systems are also used for general curves. For curves over
binary fields, López-Dahab (LD) coordinates [24] is a very efficient alternative.
Recently, Oliveira, López, Aranha, and Rodŕıguez-Henŕıquez proposed a more
efficient coordinate system for binary elliptic curves—the lambda representation
(λ-coordinates) [28].

Devising efficient elliptic curve operations with small scalars have been of
significant interest, e.g., reducing number of field operations for computing 3P
and 5P for an elliptic curve point P . These operations are key to the fast compu-
tation by using DBNS and multi-base number representation. In [7], Ciet, Joye,
Lauter, and Montgomery presented an efficient formula for 3P for both prime
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curves and binary curves, and it takes 1 field inversion (I), 4 squarings (S), and 7
multiplications (M): 1I+7M+4S. A ternary/binary algorithm was also designed
in [7] that utilizes 3P with an improved speed over the NAF method. For curves
over a binary field, Dimitrov, Imbert, and Mishra gave an improved 3P formula
that requires 1I+6M+3S [8]. The most efficient formulas for computing 3P were
given by Yu et al. in [32], their formula for binary field only needs 1I+5M+2S.
In [27], Mishra and Dimitrov proposed the Multi-Base Number Representation
for scalar multiplication. They derived an efficient 5P formula for binary curves
with a small number of operations: 1I+13M+5S. Some concise formulas for
Koblitz curves can be found in [30], e.g., for (1 − τ)P and (1 + τ)P .

1.1 Our Contribution

In this paper, we consider the problem of fast scalar multiplication for binary
elliptic curves. The main contribution of the paper is twofold. In the first part,
we derive 3P and 5P efficient formulas for binary elliptic curves. In affine coor-
dinates, our improved 5P formula uses 1I+11M+6S. Under the very promising
λ-projective coordinate systems, we are able to set up efficient computation for
3P and 5P and their formulas cost 8M+1Ma+5S and 13M+1Ma+8S respec-
tively, here Ma denotes the cost of multiplication of a general field element with
a fixed field element a (which is usually a coefficient of elliptic curve and has a
small size). The derivation techniques for our 3P and 5P efficient formulas in
λ-projective coordinates are not based on the 3P and 5P efficient formulas in
affine coordinates. λ-coordinates system has its own affine coordinates, which is
called λ-affine coordinates. Thus, it is necessary to find first a formula in λ-affine
coordinates that leads to an efficient formula in λ-projective coordinates. The
derived 3P and 5P efficient formulas in this paper are state of the art, and to
the best of our knowledge, we are the first to present them in λ-projective coor-
dinates. More precisely, our 3P λ-projective coordinates greatly improves that
using LD projective coordinates [31] and Jacobian projective coordinates [8]. A
projective coordinate formula for 5P seems not available in literature.

The second part of our contribution is conducting extensive performance
comparison tests for the MBNS methods in λ-coordinates. The MBNS methods
are one of the best applications that shows the importance of our 3P and 5P
formulas in speeding up scalar multiplication operations. The investigated MBNS
methods are the greedy, the ternary/binary, the multi-base NAF, and the tree-
based [7,8,10,23]. Our tests compare these methods using our efficient formulas
with respect to three characteristics: the expansion length, the total number
of multiplications, and the running time. Other comparison tests in [7,8,10,23]
emphasize the expansion length and the total number of multiplications. We
include the running time test since it takes into account the time of converting
integer n to a multi-base chain. To the best of our knowledge, we are the first
study that compares the performance of the MBNS methods with the NAF
method in λ-coordinates.

Our comparison test in terms of the total number of multiplications shows
the greedy, the ternary/binary, the multi-base NAF, and the tree-based methods
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speed up to 10%, 8%, 12%, and 15% over the NAF method. Our running time
test shows they speed up to 7%, 9%, 12%, and 15% over the NAF method. The
running time test of the greedy method gives less percentage of improvement
than the comparison test in terms of the total number of multiplications. The
reason for that is the running time test considers the time of converting integer n
to a multi-base chain, which implies the greedy method has a higher conversion
cost than other MBNS methods.

Some of the ideas for computing 3P also lead an improvement of the optimal
pre-computation of window TNAF for Koblitz curves [30]. By efficient formulas
for the pre-computed points in the forms of P − τ(P ), P + τ(P ), P − τ2(P ) and
3P and working with the λ-projective coordinates, we show the performance of
the optimal pre-computation of window TNAF with these efficient formulas gets
48%, 24% and 11% faster for window width 4, 5 and 6 respectively.

The rest of the paper is organized into five sections. Efficient formulas for 3P
and 5P are given in Sect. 2. In Sect. 3, we briefly review several existing MBNS
methods, and we conduct comparison tests for these methods using our efficient
formulas. In Sect. 4, we briefly review the optimal pre-computation of window
TNAF for Koblitz curves, and we propose 3P efficient formula to the improved
set of the optimal pre-computation of window TNAF with experiments. Finally,
the paper is concluded in Sect. 5.

2 Formulas for 3P and 5P on Binary Elliptic Curves

A non-supersingular elliptic curve E over a binary field F2m can be represented
by the simplified Weierstrass equation

E : y2 + xy = x3 + ax2 + b, (1)

where a, b ∈ F2m and b �= 0. We denote E(F2m) to be the set of all points (x, y)
with x, y ∈ F2m that satisfy the Eq. (1) together with the point at infinity O.
E(F2m) forms an abelian group under the “+” operation. The identity of the
abelian group is the point at infinity O. Point addition can be computed by the
chord and tangent method.

One of the main advantages of using binary elliptic curves over prime elliptic
curves is that squaring is a linear operation in binary fields. This is the reason
for having a low squaring to multiplication (S/M) ratio in binary fields, and it is
close to a free operation. In prime fields, the S/M ratio is higher, and it is close to
the cost of one multiplication operation [16]. It is noted that the most expensive
operation for binary fields as well as prime fields is the inversion operation. The
ratio (I/M) can be quite big (e.g. 8). One solution for reducing the cost of the
inversion operation is to use projective coordinates over affine coordinates. We
shall choose to derive efficient formulas in λ-projective coordinate systems as it
has been proved to be better than other projective coordinates as Table 2 shows.

Another solution for reducing the cost of the inversion operation is to use
efficient formulas. Efficient formulas in affine coordinates are based on the idea
of trading an inversion with multiplication operations for faster performance.
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Several efficient formulas for Weierstrass equation in affine coordinates have
been proposed. In our case, we emphasize the 3P and 5P efficient formulas
since these formulas are frequently used with MBNS methods as discussed in
the next section. For affine coordinate systems, the 3P formula given in [32]
has a very small cost of 1I+5M+2S and seems hard to be further improved. In
the first subsection, we are able to derive an efficient affine formula for 5P . For
λ-projective coordinate systems, fast formulas for 3P and 5P seem not available
in the literature. In the second subsection of the paper, we develop efficient
λ-projective coordinate formulas for 3P and 5P , and these formulas will be
incorporated later into MBNS methods to achieve a greater efficiency for scalar
multiplication operations.

2.1 A 5P Formula in Affine Coordinates

As mentioned earlier, an efficient 5P formula under affine coordinate systems
for binary elliptic curves has been proposed in [27], with a cost of 1I+13M+5S
[27]. We propose an improved efficient computation of 5P in affine coordinate
system. The precise formula of 5P is presented by the following theorem.

Theorem 1. Let P = (xP , yP ) ∈ E(F2m) and 6P �= O. Set
⎧
⎨

⎩

α = x4
P + x3

P + b
β = α2 + x2

P (x4
P + b)

γ = α2(x4
P + b) + x3

P β
.

Then 5P = (x5P , y5P ) is given by

x5P = xP + x3
P β
γ +

(x3
P β
γ

)2

y5P = yP + xP + (x5P + xP )
(x3

P β
γ + x2

P + a
)

+ xP βα2(β+(x4
P+b)(x4

P+b+y2
P+x2

P ))
γ2 .

Remark 1. 1. The proof of the Theorem1 is presented in AppendixA.1.
2. Our 5P efficient formula in affine coordinates costs 1I+11M+6S. Operation

counts for our 5P efficient formula are given in Table 1. The least costly way
for computing 5P without using such a formula is through 4P + P and this
way costs 2I+8M+6S. With our 5P efficient formula, we trade 1I with 3M
for a faster performance. Our 5P formula in affine coordinates saves 2M (but
with an extra S whose cost is low for binary fields) over the proposed 5P
efficient formula in [27].

2.2 3P and 5P Formulas in λ-Projective Coordinates

The λ-coordinates system is introduced in [28] for elliptic curves over binary
fields. λ-coordinates represent affine point (x, y) ∈ E(F2m) by (x, λ) where λ =
x + y

x . λ-coordinates represent a projective point by (X,L,Z) and Z �= 0. λ-
affine point (xP , λP ) is converted to λ-projective point (XP , LP , ZP ) by using
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Table 1. Operation counts for our 5P in affine coordinates

Computing term Operation counts

α = x4
P + x3

P + b 1M+2S

β = α2 + x2
P (x4

P + b) 1M+1S

γ = α2(x4
P + b) + x3

P β 2M

x5P = xP +
x3
P β

γ
+
(x3

P β

γ

)2
1I+1M+1S

y5P = yP + xP + (x5P + xP )
(x3

P β

γ
+ x2

P + a
)

1M

+
xP βα2(β+(x4

P+b)(x4
P+b+y2

P+x2
P ))

γ2 5M+2S

1I+11M+6S

the relation (xP , λP ) = (XP

ZP
, LP

ZP
). This representation for λ-coordinates led to

an efficient P +Q formula. The Weierstrass equation for λ-projective coordinates
is given in [28] by

(L2 + LZ + aZ2)X2 = X4 + bZ4.

The authors in [28] presented 2P, P + Q, and 2Q + P formulas for λ-
coordinates system. In this subsection, we derive efficient formulas for 3P and
5P in λ-projective coordinates.

Theorem 2. Let P = (XP , LP , ZP ) ∈ E(F2m). Then 3P = (X3P , L3P , Z3P )
using λ-projective coordinates is given by

T = L2
P + LP ZP + aZ2

P

A = (T + XP ZP )2

B = TZ2
P + A

X3P = XP ZP B2

Z3P = Z2
P AB

L3P = T (A + B)2 + (LP ZP + Z2
P )AB.

Remark 2. 1. The proof of Theorem 2 is presented in AppendixA.2.
2. The cost of our 3P efficient formula in λ-projective coordinates, as Table 3

shows, is 8M+1Ma+5S. The least costly way for computing 3P in λ-
projective coordinates without the 3P efficient formula is through 2P + P
with cost 15M+1Ma+6S. With our concise 3P formula, we save 7M over
2P + P . Our 3P formula saves 3M over the proposed 3P efficient formula in
LD-projective coordinates in [31]. It saves 6M over the proposed 3P efficient
formula in Jacobian projective coordinates in [8]. Table 2 compares the cost
of 3P in different coordinate systems over binary fields.
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Table 2. The cost for efficient formulas in different projective coordinates over binary
fields

λ-projective LD projective Jacobian projective

2P 4M+1Ma+4S [28] 4M+1Ma+4S [20] 4M+1Mb+5S [1]

P + Q 11M+2S [28] 13M+4S [20] 15M+1Ma+3S [1]

3P 8M+1Ma+5S (this work) 10M+2Ma+7S [31] 13M+2Ma,b+7S [8]

5P 13M+1Ma+8S (this work) N/A N/A

Table 3. Operation counts for our 3P in λ-projective coordinates

Computing term Operation counts

T = L2
P + LP ZP + aZ2

P 1M+1Ma+2S

A = (T + XP ZP )2 1M+1S

B = TZ2
P + A 1M

X3P = XP ZP B2 1M+1S

Z3P = Z2
P AB 2M

L3P = T (A + B)2 + (LP ZP + Z2
P )AB 2M+1S

8M+1Ma+5S

Theorem 3. Let P = (XP , LP , ZP ) ∈ E(F2m). Then 5P = (X5P , L5P , Z5P )
using λ-projective coordinates is given by

T = L2
P + LP ZP + aZ2

P

A = (T + XP ZP )2

B = TZ2
P + A

C = (T (A + B))2 + AB2

D = A2B + AB2 + C
X5P = XP ZP D2

Z5P = Z2
P CD

L5P = T (C + D)2 + (LP ZP + Z2
P )CD + Z2

P (AB)3.

Remark 3. 1. The proof of Theorem 3 is presented in AppendixA.3.
2. The cost of our 5P efficient formula in λ-projective coordinates, as Table 4

shows, is 13M+1Ma+8S. The least costly way for computing 5P in λ-
projective coordinates without the 5P efficient formula is through 4P + P
with cost 19M+2Ma+10S. With our 5P efficient formula, we save 6M+1Ma

over 4P +P in λ-projective coordinates. To the best of our knowledge, this is
the first proposed 5P efficient formula in projective coordinates over binary
fields, and it is the most efficient 5P formula for binary elliptic curves.
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Table 4. Operation counts for our 5P in λ-projective coordinates

Computing term Operation counts

T = L2
P + LP ZP + aZ2

P 1M+1Ma+2S

A = (T + XP ZP )2 1M+1S

B = TZ2
P + A 1M

C = (T (A + B))2 + AB2 2M+2S

D = AB2 + A2B + C 1M +1S

X5P = XP ZP D2 1M+1S

Z5P = Z2
P CD 2M

L5P = T (C + D)2 + (LP ZP + Z2
P )CD + Z2

P AB2A2B 4M+1S

13M+1Ma+8S

3 MBNS Methods

The simplest and most studied form of the MBNS is the DBNS with {2, 3}-
integers. A positive integer n is represented in the DBNS with {2, 3}-integers in
the form of

n =
l∑

i=1

si 2ai 3bi

where ai, bi � 0, si ∈ {−1,+1}, and l is the length of the expansion. The MBNS
with {2, 3, 5}-integers is a natural extension to the DBNS with {2, 3}-integers.
A positive integer n in the MBNS with {2, 3, 5}-integers is represented by

n =
l∑

i=1

si 2ai 3bi 5ci

where ai, bi, ci � 0, si ∈ {−1,+1}, and l is the expansion length. An MBNS
expansion for integer n always exists, but it is not unique [8]. What is important
to ECC is the property that under MBNS, an integer n has a short average
expansion length compared to that of its single-base average expansion length,
hence it minimizes the total number of point addition during the point multipli-
cation operation.

In application, when an integer n is represented in MBNS, it has to be rep-
resented as a multi-base chain for efficiency reasons. The double-base chain with
{2, 3}-integers is decreasing sequences of the exponents ai and bi such that
a1 � a2 � · · · � al � 0 and b1 � b2 � · · · � bl � 0. The highest exponents
term 2amax 3bmax of a double-base chain is called a leading factor. The leading
factor and the expansion length of a double-base chain determine the total num-
ber of operations. Thus, they have an important role for minimizing the total
number of operations.

Doche in [9] defines an optimal double-base chain with {2, 3}-integers by
the following three requirements. It represents given integer n. It has a leading
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factor that divides given 2amax 3bmax . It has minimum length. For example, let
n = 935811 and 220 313 is given. Then these chains

n = 212 35 − 28 35 + 25 34 + 25 3 + 3

n = 27 38 + 27 36 + 25 34 + 25 3 + 3

n = 24 310 − 22 37 − 35 + 33 − 32

are optimal for the following reasons. They have leading factors that divide the
given 220 313. The length 5 is the shorter double-base chain with {2, 3}-integers
that represents n according to the enumeration approach in [9].

Converting integer n to a double-base chain that has an optimal length on-
the-fly is still an open problem [3,9]. However, efforts were made to propose
methods that convert integer n to a shorter double-base chain. One of the earliest
methods that converts an integer n to a double-base chain is the greedy method
with restricted exponents [8]. The multi-base NAF was proposed in [23], and it
is a generalization of the single-base NAF method. The ternary/binary method
was proposed in [7] as an efficient scalar multiplication method that outperforms
the NAF method. The tree-based method is generalized of the ternary/binary
method as proposed in [10].

3.1 Experiments

Our goal in these experiments is to compare the MBNS methods with the
NAF method in λ-coordinates. The tested MBNS methods are the greedy, the
ternary/binary, the multi-base NAF, and the tree-based [7,8,10,23]. Our con-
cise 3P and 5P formulas in λ-coordinates are utilized in all the tested methods.
We denote (2, 3)greedy to be the greedy method with restricted exponents in
terms of {2, 3}-integers [8]. (2, 3)NAF is the multi-base NAF method with {2, 3}-
integers, and (2, 3, 5)NAF is the multi-base NAF method with {2, 3, 5}-integers
[23]. (2, 3)tree is the tree-based method with {2, 3}-integers, (2, 3, 5)tree is the
tree-based method with {2, 3, 5}-integers, and B is the bound size [10].

The environment specifications are in the following descriptions. We used
C programming language with GNU C Compiler (GCC) version 4.2. We used
Intel Core i7 processor with speed 2.3 GHz. We utilized the binary field opera-
tions including: squaring, fast reduction modulo, Extended Euclidean inversion,
and right-to-left comb multiplication in [17]. We used GNU Multiple Precision
(GMP) library version 6.1 to generate random integers of different sizes [35]. For
better accuracy, we recorded the average after trying 1000 random integers in
each reading result. We used the NIST binary elliptic curves B-283, B-409, and
B-571 [34].

Tables 5 and 6 show that the tested MBNS methods with our efficient for-
mulas succeed in outperforming the NAF method. Table 5 shows the greedy, the
ternary/binary, the multi-base NAF, and the tree-based methods speed up to
10%, 8%, 12%, and 15% over the NAF method. These speed-up results in Table 5
are achieved by comparing only the total number of multiplications with the
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Table 5. Theoretical comparison between NAF and MBNS methods in λ-coordinates

B-283 B-409 B-571

l m % l m % l m %

NAF 94.77 2173.13 136.57 3136.67 190.77 4381.11

(2, 3)greedy 64.72 1945.81 10.46 92.66 2810.05 10.41 128.32 3925.59 10.39

Ternary/binary 65.03 1990.21 8.42 93.92 2883.57 8.06 130.53 4028.01 8.05

(2, 3)NAF 67.89 1960.33 9.79 98.09 2834.3 9.63 136.7 3956.86 9.68

(2, 3, 5)NAF 57.77 1903.77 12.39 83.56 2752.62 12.24 116.81 3846.46 12.2

(2, 3)treeB=1 61.52 1923.25 11.49 88.39 2779.69 11.38 123.43 3889.15 11.22

(2, 3, 5)treeB=1 50.81 1869.46 13.99 73.07 2707.51 13.68 101.81 3784.64 13.61

(2, 3, 5)treeB=2 47.89 1839.99 15.32 68.85 2662.99 15.1 95.79 3723.41 15.01

l: The average length of the scalar expansion.

m: The average of the total number of multiplications.

%: The speed-up percentage in term of m.

Table 6. Running time comparison between NAF and MBNS methods in λ-coordinates

B-283 B-409 B-571

Time in ms % Time in ms % Time in ms %

NAF 32.31 78.96 198.69

(2, 3)greedy 29.83 7.67 72.87 7.71 184.24 7.27

Ternary/binary 29.23 9.53 71.73 9.15 179.55 9.63

(2, 3)NAF 29.17 9.71 70.57 10.62 177.03 10.9

(2, 3, 5)NAF 28.16 12.84 69.03 12.57 173.21 12.82

(2, 3)treeB=1 28.43 12.01 69.86 11.52 174.62 12.11

(2, 3, 5)treeB=1 27.83 13.86 68.52 13.22 171.54 13.66

(2, 3, 5)treeB=2 27.36 15.32 66.81 15.38 168.11 15.39

NAF method. It does not consider the cost of converting integer n to a multi-base
chain. The conversion cost may affect the overall performance for some methods.
The running time test in Table 6 considers the cost of converting n to a multi-
base chain. Table 6 shows the running time of the greedy, the ternary/binary,
the multi-base NAF, and the tree-based methods are up to 7%, 9%, 12%, and
15% faster than the NAF method. It shows only the running time of the greedy
method has less percentage of improvement than the comparison test in Table 5.
It implies converting integer n to a multi-base chain in the greedy method has
a higher cost than the ternary/binary, the multi-base NAF, and the tree-based
methods.

Table 5 also shows if a method has a shorter expansion length, that does
not guarantee it has a lesser number of multiplications. For example, let n =
1118848774838, the ternary/binary method returns this chain that represents
n as

216315 + 215314 + 214313 − 213312 − 21039 + 2938 − 2837 + 2734 − 2333 + 223 + 2.
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Table 7. The cost of greedy method with different values of (amax, bmax) in λ-
coordinates

B-283 B-409 B-571

amax bmax l m amax bmax l m amax bmax l m

140 91 75.95 2100.73 205 129 108.02 3020.44 285 181 153.14 4251.62

160 79 65.42 1964.21 230 113 94.14 2841.52 325 155 130.04 3954.89

170 72 64.72 1945.81 245 104 92.66 2810.05 345 143 129.09 3923.85

180 65 66.29 1951.83 260 95 95.16 2822.14 365 130 133.01 3945.73

200 53 71.22 1985.8 290 75 103.78 2884.58 405 104 144.96 4034.8

220 40 77.06 2028.37 320 57 111.42 2938.09 445 79 155.84 4113.04

240 27 82.43 2066.38 350 38 119.57 2996.4 485 54 166.89 4192.71

260 15 87.83 2105.48 380 18 128.26 3059.8 525 28 177.83 4270.8

l: The average length of the scalar expansion.

m: The average of the total number of multiplications.

The length of this chain is 11, and it costs in λ-coordinates 16×4+15×8+10×
11 = 294M. See Table 2 for the cost of P + Q, 2P , and 3P efficient formulas in
λ-coordinates. The multi-base NAF with {2, 3}-integers returns this chain that
represents n as

23235 + 23034 − 22734 − 22533 − 22132 − 21932 − 21432 − 21132 − 293 + 263 − 23 − 2.

The length of this chain is 12, and it costs in λ-coordinates 289M. This exam-
ple explains, as Table 5 shows, the ternary/binary method has a shorter aver-
age length than the multi-base NAF method with {2, 3}-integers. However, the
multi-base NAF with {2, 3}-integers method has a lesser average number of mul-
tiplications than the ternary/binary method. In Table 5, the tree-based succeeds
in generating a shorter average length than other tested MBNS methods. The
tree-based method with bound size B = 1 does not always produce an optimal
chain. For example, let n = 1118848774838, the tree-based with {2, 3}-integers
and B = 1 returns this chain that represents n as

221312 + 21839 − 21738 + 21437 + 2837 + 2734 − 2333 + 223 + 2.

The length of this chain is 9, and it costs in λ-coordinates 268M. According
to the enumeration approach in [9], the optimal chain with {2, 3}-integers that
represents n is

221312 + 213312 − 21337 + 2837 + 2734 − 2333 + 223 + 2.

The optimal chain length is 8, and it costs in λ-coordinates 257M.
Table 5 also shows the greedy method with {2, 3}-integers has a shorter

average length and a lesser average number of multiplications than the
ternary/binary and the multi-base NAF method with {2, 3}-integers. However,
the greedy method result in Table 5 does not consider the conversion cost nor the
effort to select the best upper bound (amax, bmax) as Table 7 shows. In Table 7, we
tried values from log2 n

2 to log2 n for amax such that amax + bmax log2 3 ≈ log2 n.
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We selected (amax = 170, bmax = 72), (amax = 245, bmax = 104), and
(amax = 345, bmax = 143) for the irreducible polynomials of degree 283, 409,
and 571 respectively. We used a line search algorithm to find the best approxi-
mation for integer n in term of a {2, 3}-integer [32]. We did not find it a practical
to use a look-up table as proposed in [11]. The look-up table contains off-line
pre-computation for all integers n and their corresponding in term of a {2, 3}-
integer.

4 The Window TNAF for Koblitz Curves

Koblitz introduced in [19] an efficiently computable endomorphism with a special
class of elliptic curves. Koblitz defined the special class of curves Ea over binary
fields F2m by

Ea : y2 + xy = x3 + ax2 + 1, (2)

where a ∈ {0, 1}. We denote Ea(F2m) to be the set of all points (x, y) that satisfy
the Eq. (2), plus the point at infinity O. The properties of Koblitz curves allow
a scalar multiplication to use the Frobenius map instead of point doubling. The
Frobenius map τ : Ea(F2m) → Ea(F2m) is defined by τ(x, y) = (x2, y2), τ(O) =
O. One property of Ea is that τ2(P ) + 2P = μτ(P ), for all P ∈ Ea(F2m),
where μ = (−1)1−a. This means τ can be considered to be a complex number
that satisfies τ2 + 2 = μτ . By solving τ2 − μτ + 2 = 0, there is a choice for
τ = μ+

√−7
2 . Solinas in [29] showed the window TNAF method can be used with

Koblitz curves. It needs to perform an online pre-computation for 2w−2−1 points
where w is the selected window width.

4.1 A 3P Formula for the Optimal Pre-computation of Window
TNAF

Trost and Xu in [30] established an optimal arrangement setting for the pre-
computed points of window TNAF. The optimal pre-computation of window
TNAF, as Table 8 shows, costs one point addition and two evaluations of τ at
most for each pre-computed point. Also in [30] they proposed improvements
for the optimal pre-computation of window TNAF by replacing point additions
with the efficient formulas in λ-coordinates. The efficient formulas are for the
pre-computed points in the forms of P − μτ(P ), P + μτ(P ), and P − τ2(P ).

Our contribution in this section has two parts. Frist, we propose a 3P efficient
formula that can be used together with the already proposed efficient formulas
for further speed-up of the optimal pre-computation of window TNAF. Secondly,
we conduct experiments to measure the achieved improvement for the optimal
pre-computation of window TNAF by using these proposed efficient formulas.
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Table 8. The optimal pre-computation of window TNAF when a = 0.

Width Pre-computed points

4 Q3 = −P + τ2P Q5 = −P − τP Q7 = P − τP

5 Q3 = −P + τ2P Q5 = −P − τP Q7 = P − τP

Q9 = Q3 − τP Q11 = Q5 − τP Q13 = Q7 − τP

Q15 = −Q11 + τP

6 Q29 = P − τ2P Q3 = Q29 − τP Q31 = Q3 − τ2P

Q5 = Q31 − τP Q7 = −Q31 − τP Q9 = −Q29 − τP

Q27 = P + τP Q11 = −Q27 − τP Q25 = −P + τP

Q13 = −Q25 − τP Q15 = −Q11 + τP Q17 = −Q9 + τP

Q19 = −Q7 + τP Q21 = −Q17 − τP Q23 = −Q3 + τP

When a = 1, Qj can be obtained by changing only the sign of τ .

Recall that the proposed efficient formulas for the pre-computed points in
the forms of P − μτ(P ) and P + μτ(P ) are given in [30] by

A = XP (XP + ZP )2

B = X4
P + XP ZP + Z4

P

XP−μτ(P ) = (XP + ZP )4

LP−μτ(P ) = LP A + X3
P ZP

ZP−μτ(P ) = ZP A

XP+μτ(P ) = B2

LP+μτ(P ) = X7
P ZP + LP AB

ZP+μτ(P ) = ZP AB.

The pre-computed point in the form of P − τ2(P ) can be computed by letting
Q = P + μτ(P ). Then, we have P − τ2(P ) = Q − μτ(Q). The pre-computed
point 3P can be computed by Theorem 2 and it can be recognized in the optimal
pre-computation of window TNAF by the following proposition.

Proposition 1. Let P = (xP , yP ) ∈ Ea(F2m) for Koblitz curve Ea. Then

3P = P − τ2(P ) + μτ(P ).

Proof. We know (τ2+2)P = μτ(P ) for all P ∈ Ea(F2m). It means 2P = μτ(P )−
τ2(P ). It implies 2P +P = μτ(P )− τ2(P )+P . Thus, 3P = P − τ2(P )+μτ(P ).

For example, consider the optimal pre-computation of window TNAF with
w = 6. Then, the pre-computed point Q3 can be computed by the 3P efficient
formulas. To explain, Q3 = Q29 + μτ(P ) = P − τ2(P ) + μτ(P ) = 3P .
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As mentioned earlier, the improvement of the optimal pre-computation of
window TNAF is achieved by replacing point additions with the efficient formu-
las. Recall that the point addition in λ-projective coordinates costs 11M+2S.
The efficient formulas for the pre-computed point in the form of P − μτ(P )
costs 5M+3S. The efficient formulas for the pre-computed point in the form of
P +μτ(P ) costs 7M+5S. The efficient formulas for the pre-computed point 3P
costs 8M+6S. Thus, the pre-computed points for the above cost less than point
addition in λ-projective coordinates.

4.2 Experiments

The goal for these experiments are to measure the improvement for the optimal
pre-computation of window TNAF with the efficient formulas. We replaced the
pre-computed points in the forms of P − μτ(P ), P + μτ(P ), P − τ2(P ), and 3P
of the optimal pre-computation of window TNAF with the efficient formulas.
For simplicity, we denote OPT to be the optimal pre-computation of window
TNAF without the efficient formulas. We denote OPT+ to be the optimal pre-
computation of window TNAF with the efficient formulas. We used two tests to
measure the performance of OPT and OPT+. In the first test, we compare OPT
and OPT+ in terms of the number of multiplications, as Table 9 shows. In the
second test, we did a software implementation, as Table 10 shows, for OPT and
OPT+. We used the NIST Koblitz curves K-283, K-409, and K-571 [34]. The
environment specifications for these experiments are similar to the experiments
in Sect. 3.1.

Table 9 shows OPT+ speeds up to 48%, 24% and 11% over OPT for window
width 4, 5 and 6 respectively. In Table 9, we counted the number of inversions,
multiplications of OPT and OPT+ in different window width. We converted an
inversion to multiplication based on the ratio I/M assumption. We presented
two cases for the I/M ratio in affine coordinates. The first case is the number of
multiplications for OPT when the I/M ratio = 5. The second case is the number
of multiplications for OPT when the I/M ratio = 8. A squaring operation was
ignored in this method since squaring is almost a free operation over binary
fields.

Table 10 shows the running time of OPT+ in λ-projective coordinates per-
forms faster than OPT. However, the percentage of improvement is different for

Table 9. Theoretical comparison in terms of the number of multiplications

Affine coordinates λ-projective coordinates

OPT: I/M=5 OPT: I/M=8 OPT OPT+ %

w = 4 21 30 33 17 48.48

w = 5 49 70 77 58 24.67

w = 6 105 150 165 146 11.51

OPT: The optimal pre-computation without the efficient formulas.
OPT+: The optimal pre-computation with the efficient formulas.
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Table 10. Running time comparison between OPT and OPT+

Coordinates Affine λ-projective

OPT OPT OPT+ %

K-283 w = 4 0.58 ms 0.517ms 0.281 ms 45.64

w = 5 1.34 ms 1.113ms 0. 901ms 19.04

w = 6 2.92 ms 2.401ms 2.188 ms 8.87

K-409 w = 4 1.05 ms 0.844ms 0.461 ms 45.37

w = 5 2.54 ms 1.615ms 1.993 ms 18.96

w = 6 5.34 ms 4.101ms 3.694 ms 9.92

K-571 w = 4 1.94 ms 1.553ms 0.834 ms 46.29

w = 5 4.55 ms 3.565ms 2.893 ms 18.84

w = 6 9.74 ms 7.488ms 6.794 ms 9.26

OPT: The optimal pre-computation without the efficient formulas.
OPT+: The optimal pre-computation with the efficient formulas.

each window width. It shows OPT+ in λ-projective coordinates gives up to a
46%, 19%, and 9% speed-up over OPT if the selected window width is 4 , 5, and
6 respectively.

5 Conclusion

In this paper, we present the most efficient 3P and 5P formulas for binary elliptic
curves. We are the first to derive efficient formulas for 3P and 5P in λ-projective
coordinates. We also derived the most efficient 5P formula in affine coordinates.
Our efficient formulas have an important role in speeding up scalar multiplica-
tion operations based on MBNS. We investigated the following MBNS methods:
the greedy, the ternary/binary, the multi-base NAF, and the tree-based. We
conducted performance comparison tests to these methods using our formulas
with respect to the expansion length, the total number of multiplications, and
the running time. The total number of multiplications test shows the greedy, the
ternary/binary, the multi-base NAF, and the tree-based methods speed up to
10%, 8%, 12%, and 15% over the NAF method. Our running time test shows
that the greedy method has a lower percentage of improvement since this test
considers the time of converting integer n to a multi-base chain. It implies the
greedy method has a higher conversion cost than other MBNS methods.

We proposed a 3P efficient formula for the optimal pre-computation of
window TNAF for Koblitz curves. Our 3P formula can be used with the
already proposed efficient formulas to the pre-computed points in the forms
of P − μτ(P ), P + μτ(P ), and P − τ2(P ). Our experiments show the optimal
pre-computation of window TNAF using the efficient formulas speed up to 48%,
24%, and 11% if the used window width is 4, 5, and 6 respectively.
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A Appendix: Proofs

A.1 Theorem 1

Proof. Let P = (xP , yP ) ∈ E(F2m) and 6P �= O. Otherwise, if 6P = O then
5P = −P . We shall prove Theorem 1 by the fact

(x5P , λ5P ) = (x2P , λ2P ) + (x3P , λ3P ).

By using the P + Q λ-affine formula given in [28], we have

x5P =
x3P x2P

(x3P + x2P )2
(λ3P + λ2P ). (3)

λ5P =
x3P (x5P + x2P )2

x5P x2P
+ λ2P + 1. (4)

We apply x3P = xP + x3
P

α +
(x3

P

α

)2 and x2P = x4
P+b

x2
P

in Eq. (3). We have

x5P =
x3

P (α2 + x2
P (x4

P + b))α2(x4
P + b)

(
α2(x4

P + b) + x3
P (α2 + x2

P (x4
P + b))

)2 (λ3P + λ2P ) (5)

=
x3

P βα2(x4
P + b)

γ2
(λ3P + λ2P ) (6)

We note that

λ3P + λ2P =
xP γ2

x3
P βα2(x4

P + b)
+ 1. (7)

By applying Eq. (7) in Eq. (6), we have

x5P = xP +
x3

P βα2(x4
P + b)

γ2
(8)

= xP +
x3

P β

γ
+

(x3
P β

γ

)2
. (9)

We have derived x5P . Next, we want to derive y5P . From Eq. (4), we have

λ5P =
x3P

x2P
x5P +

x3P x2P

x5P
+ λ2P + 1. (10)

We apply Eq. (10) to the fact y5P = x5P (λ5P + x5P ). We have

y5P = x5P (
x3P

x2P
x5P + λ2P + 1 + x5P ) + x3P x2P . (11)



222 S. Al Musa and G. Xu

We apply x3P , x2P , and λ2P = x4
P

x4
P+b

+ λ2
P + a + 1 in Eq. (11). We have

y5P = x5P

( x3
P β

α2(x4
P + b)

x5P +
x4

P

x4
P + b

+
y2

P

x2
P

+ x2
P + a + x5P

)
+

(x4
P + b)β
xP α2

= x5P

((x3
P β

γ

)2 + x2
P + a + x5P

)
+

(x4
P + b)β
xP α2

+
x4

P β

α2(x4
P + b)

x5P

+
x6

P + y2
P (x4

P + b)
x2

P (x4
P + b)

x5P

= yP + xP + (x5P + xP )
((x3

P β

γ

)2 + x2
P + a + x5P + xP

)

+
xP βα2(x6

P + y2
P (x4

P + b))
γ2

.

We note that x6
P = β + (x4

P + b)2 + x2
P (x4

P + b) and
(x3

P β
γ

)2 = x3
P β
γ + x5P + xP .

We have

y5P = yP + xP + (x5P + xP )
(x3

P β
γ + x2

P + a
)

+ xP βα2(β+(x4
P+b)(x4

P+b+y2
P+x2

P ))
γ2 .

A.2 Theorem 2

Proof. We shall prove Theorem 2 by the fact

(x3P , λ3P ) = (xP , λP ) + (x2P , λ2P ). (12)

By using the P + Q λ-affine formula given in [28], we have

x3P =
xP x2P

(xP + x2P )2
(λP + λ2P ). (13)

λ3P =
x2P (x3P + xP )2

x3P xP
+ λP + 1. (14)

We apply the relation λP + λ2P = (xP+x2P )2

x2P
+ 1 in Eq. (13). We have

x3P = xP +
xP x2P

(xP + x2P )2
(15)

=
xP

(
x2P + (x2P + xP )2

)

(xP + x2P )2
. (16)

We convert λ-affine point (xP , λP ) to λ-projective point (XP , LP , ZP ) by
using the relation (xP , λP ) = (XP

ZP
, LP

ZP
). Thus, the equations above become

x2P =
L2

P + LP ZP + aZ2

Z2
P

=
T

Z2
P

.
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x3P =
XP

ZP

(
T

Z2
P

+ (T+XP ZP )2

Z4
P

)

(T+XP ZP )2

Z4
P

=
XP

(
TZ2

P + (T + XP ZP )2
)

ZP (T + XP ZP )2

=
XP B

ZP A
.

λ3P =
T

Z2
P

(
XP B
ZP A + XP

ZP

)2

X2
P B

Z2
P A

+
LP ZP + Z2

P

Z2
P

=
T (A + B)2

Z2
P AB

+
LP ZP + Z2

P

Z2
P

=
T (A + B)2 + (LP ZP + Z2

P )AB

Z2
P AB

.

A.3 Theorem 3

Proof. We shall proof x5P by the fact

(x5P , λ5P ) = (x2P , λ2P ) + (x3P , λ3P ).

By using the P + Q λ-affine formula given in [28], we have

x5P =
x2P x3P

(x2P + x3P )2
(λ2P + λ3P ). (17)

We apply the relation λ2P + λ3P = xP (x2P+x3P )2

x2P x3P
+ 1 to Eq. (17). We have

x5P = xP +
x2P x3P

(x2P + x3P )2
(18)

=
xP (x2P + x3P )2 + x2P x3P

(x2P + x3P )2
. (19)

Next, we shall derive λ5P by the fact

(x5P , λ5P ) = (xP , λP ) + (x4P , λ4P ).

By using the P + Q λ-affine formula, we have

λ5P =
x4P (x5P + xP )2

x5P xP
+ λP + 1. (20)
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We convert λ-affine point (xP , λP ) to λ-projective point (XP , LP , ZP ) by
using the relation (xP , λP ) = (XP

ZP
, LP

ZP
). Thus, the equations above become

x2P =
L2

P + LP ZP + aZ2

Z2
P

=
T

Z2
P

.

x3P =
XP

(
TZ2

P + (T + XP ZP )2
)

ZP (T + XP ZP )2
=

XP B

ZP A
.

x4P =
L2
2P + L2P TZ2

P + a(TZ2)2

(TZ2
P )2

=
T2

(TZ2
P )2

.

x5P =
XP

ZP

(
T

Z2
P

+ XP B
ZP A

)2 + TXP B
Z3

P A

( T
Z2

P
+ XP B

ZP A )2

=
XP

(
(TA + XP ZP B)2 + TZ2

P AB
)

ZP (TA + XP ZP B)2

=
XP D

ZP C
.

λ5P =
T2

(TZ2
P )2

(
XP D
ZP C + XP

ZP

)2

X2
P D

Z2
P C

+
LP ZP + Z2

P

Z2
P

=
T2(C + D)2

(TZ2
P )2CD

+
LP ZP + Z2

P

Z2
P

=
Z2T2(AB)2 + (LP ZP + Z2

P )CD

Z2
P CD

.

We note the following relations

Z2
P T2 = T (A + B)2 + Z2

P AB.

C = (TA + XP ZP B)2 = (T (A + B))2 + AB2.

D = TZ2
P AB + C = A2B + AB2 + C.

Thus, we have

L5P = T (C + D)2 + (LP ZP + Z2
P )CD + Z2

P (AB)3.
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Abstract. Most Multivariate Quadratic (MQ) signature schemes have
a very large public key, which makes them unsuitable for many appli-
cations, despite attractive features such as speed and small signature
sizes. In this paper we introduce a modification of the Unbalanced Oil
and Vinegar (UOV) signature scheme that has public keys which are an
order of magnitude smaller than other MQ signature schemes. The main
idea is to choose UOV keys over the smallest field F2 in order to achieve
small keys, but to lift the keys to a large extension field, where solving
the MQ problem is harder. The resulting Lifted UOV signature scheme
is very competitive with other post-quantum signature schemes in terms
of key sizes, signature sizes and speed.

Keywords: Post-quantum cryptography · Multivariate cryptography
Signature schemes · Unbalanced oil and vinegar · Key size reduction

1 Introduction

When large scale quantum computers are built, they will be able to break
nearly all public key cryptography that is being used today, including RSA [25],
DSA [17] and ECC. This is because these schemes rely on the hardness of number
theoretic problems such as integer factorization and finding discrete logarithms,
which can be solved efficiently by Shor’s Algorithm [26]. Even if it would take
10 or 20 years to build large scale quantum computers, upgrading our current
systems may be very slow and some stored data requires long term protection (in
particular for confidentiality). To avert a potential catastrophe, post-quantum
cryptography should be designed, implemented and deployed well before large
scale quantum computers are built.

During recent years, the research on post-quantum cryptography has been
accelerating. One of the goals of the EU-funded PQCRYPTO project is to
develop and standardize post-quantum algorithms [1]. Recently NIST, the US
National Institute for Standards and Technology, has started the process of
selecting post-quantum algorithms for standardization [19]. According to both
PQCRYPTO and NIST, multivariate cryptography is one of the major candi-
dates for providing post-quantum security. Multivariate cryptography is based
on the hardness of some problems related to multivariate polynomials over finite
c© Springer International Publishing AG 2017
A. Patra and N. P. Smart (Eds.): INDOCRYPT 2017, LNCS 10698, pp. 227–246, 2017.
https://doi.org/10.1007/978-3-319-71667-1_12
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fields, such as solving multivariate polynomial equations. In general, multivariate
cryptography is very fast and requires only moderate computational resources,
which makes it attractive for applications in low-cost devices. However, a dis-
advantage of multivariate cryptography is its large public keys, which can be
prohibitive for many applications. Some work in mitigating this problem in
the case of the UOV and Rainbow signature schemes has been published by
Petzoldt [22], who managed to reduce the key size by a factor of 8 in the case of
UOV and a factor of 3 in the case of the Rainbow signature scheme. His proposal
makes a small modification to the key generation algorithm and exploits the fact
that a large part of the public key can be freely chosen by the user. One can
then choose to generate this part using a Pseudo-Random Number Generator
(PRNG), and to only store the seed for the PRNG. In this paper we introduce
a new idea to reduce the size of the public keys of UOV dramatically, by lifting
the public and central maps to an extension field. The new idea is compatible
with the ideas of Petzoldt and together they provide public keys that are up to
10 times smaller than if we were to use only Petzoldt’s modification of UOV.

Before introducing the Lifted UOV signature scheme in Sect. 5, we present
an overview of the MQ problem in Sect. 2 and the UOV signature and how it
was improved by Pezoldt in Sects. 3 and 4. We finish with a brief description of
our software implementation in Sect. 6 and conclude in Sect. 7.

2 The MQ Problem

The security of an MQ signature scheme relies on the hardness of the MQ-
problem. We give a brief discussion of the problem here.

MQ Problem. Given a quadratic polynomial map P : Fn
q → F

m
q over a finite

field Fq, find x ∈ F
n
q that satisfies P(x) = 0.

It is known that the MQ problem is NP-hard [18]. Therefore it is unlikely
that there are (quantum) algorithms that solve the hardest instances of the MQ
problem in polynomial time. The problem is also believed to be hard on average
in the case n ≈ m. Only exponential time algorithms are known to solve random
instances of the problem for these parameters.

Systems with n = m are called determined systems; these are the most
difficult systems to solve. When n < m a system is called overdetermined, and
when n > m the system is called underdetermined. Thomae et al. showed that
finding a solution for an underdetermined system with n = αm can be reduced
to finding a solution of a determined system with only m+1−�α� equations [27].
This means that as a system becomes more underdetermined it becomes easier
to solve. This fact will become important in the security analysis of UOV.
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2.1 Classical Algorithms

The best known classical algorithms to solve the MQ-problem for generic deter-
mined systems over finite fields use the hybrid approach [5,6]. This approach
combines exhaustive search with Gröbner basis computations. In this approach
k variables are fixed to random values and the remaining n − k variables are
found with a Gröbner basis algorithm such as F4, F5 or XL. If no assignment
to the remaining n − k variables exists that solves the system, the procedure
starts again with a different guess for the first k variables. We require on aver-
age roughly qk Gröbner basis computations until a solution is found. As a result,
the optimal value of k decreases as q increases. The complexity of computing a
Gröbner basis for a system of polynomials depends critically on the degree of reg-
ularity (dreg) of that system. Though it is of little importance to the rest of the
paper, we refer to Bardet [2] for a precise definition of the degree of regularity.
The complexity of the F5 algorithm is given by

CF5(n, dreg) = O

((
n + dreg

dreg

)ω)
,

where 2 ≤ ω < 3 is the constant in the complexity of matrix multiplication.
Therefore the complexity of the hybrid approach is

CHybridF5(n,dreg,k) = O

(
qk

(
n − k + dreg(k)

dreg(k)

)ω)
, (1)

where dreg(k) stand for the degree of regularity of the system after fixing the
values of k variables.

Determining the degree of regularity for a specific polynomial system is dif-
ficult, but for a certain class of systems, called semi-regular systems, it is known
that the degree of regularity can be deduced from the number of equations m and
the number of variables n [2,8]. In particular, for quadratic semi-regular systems
the degree of regularity is the degree of the first term in the power series of

Sm,n(x) =
(1 − x2)m

(1 − x)n

with a non-positive coefficient. This gives a practical method to calculate the
degree of regularity of any semi-regular system. Empirically, polynomial systems
that are randomly chosen have a very large probability of being semi-regular and
it is conjectured that most systems are semi-regular systems. For the definition
and the theory of semi-regular systems we refer to Chap. 3 of the PhD thesis of
Bardet [2].
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2.2 Quantum Algorithms

Currently, there are no specialized quantum algorithms that solve polynomial
systems over finite fields. However, Grover’s algorithm [13] can be used to speed
up the brute force part of the hybrid approach. This approach gives a quadratic
speedup for the brute force part of the attack, so the new complexity would be

CHybridF5(n,dreg,k) = O

(
qk/2

(
n − k + dreg(k)

dreg(k)

)ω)
, (2)

where the difference with (1) is that we have the factor qk/2 instead of qk.
However it should be noted that this approach requires sequentially running
qk/2 Gröbner basis computations on a quantum computer. This would be an
incredible feat because even for moderately sized polynomial systems this would
require gigabytes worth of qubits and days of computation without decoherence.
Also, note that the gains of parallelizing Grover search grow only with the square
root of the number of independent computers used, instead of a linear growth
for the classical brute force search [28]. Nevertheless, in the security analysis of
the signature scheme proposed in this paper we will be cautious and assume
that these kinds of attacks on the MQ problem are possible and we will make
our parameter choices accordingly. This has the additional benefit of providing
a large safety margin against classical attacks.

Remark 1. Typically the optimal value of k, i.e. the number of variables that is
guessed by brute force, is quite small (eg. 2, 3 or 4), this does not mean that
the hybrid approach is only a marginal improvement over a direct Gröbner basis
computation. Guessing only a few variables can drastically reduce the degree of
regularity of a system. For example, guessing only one variable in a determined
semi-regular system of polynomials roughly reduces the degree of regularity by
half! The idea of lifting a public key to an extension field is a countermeasure to
the hybrid approach. By working in a large extension field (eg. F264) we ensure
that guessing even a single variable is computationally too expensive.

3 The UOV Signature Scheme

The UOV or Unbalanced Oil and Vinegar digital signature scheme is a mul-
tivariate quadratic (MQ) signature scheme. It is a slightly modified version of
the original Oil and Vinegar signature scheme that was proposed by Patarin in
1997 [20]. With the right parameter choices UOV has withstood all cryptanalysis
since 1997 and it is one of the best studied and most promising MQ signature
schemes.

3.1 Description of UOV

The UOV signature scheme uses a one-way function P : Fn
q → F

m
q , which is a

multivariate quadratic polynomial map over some finite field Fq. The trapdoor
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is a factorization P = F ◦T , where T : Fn
q → F

n
q is an invertible linear map, and

F : Fn
q → F

m
q is a quadratic map whose components f1, · · · , fm are of the form

fk(x) =
v∑

i=1

n∑
j=i

αi,j,kxixj +
n∑

i=1

βi,kxi + γk,

where v = n − m. We say that the first v variables x1, · · · , xv are the vinegar
variables, whereas the remaining m variables are the oil variables. The compo-
nents of F are quadratic polynomials in the variables xi such that there are no
quadratic terms which contain two oil variables. One could say that the vinegar
variables and the oil variables are not fully mixed, which is where their names
come from.1

How does the trapdoor P = F ◦ T help to invert the function P? Given a
target x ∈ F

m
q a solution y for P(y) = x can be found by first solving F(y′) =

x for y′ and then computing y = T −1(y′). The system F(y′) = x can be
solved efficiently by randomly choosing the values of the vinegar variables. If
we substitute these values in the equations the remaining system only contains
linear equations, because every quadratic term contains at least one vinegar
variable and thus turns into a linear or constant term after substitution. The
remaining linear system can be solved using linear algebra. In the event that
there are no solutions we can simply try again with a different choice for the
vinegar variables.

The trapdoor function is then combined with a collision resistant hash func-
tion H : {0, 1}∗ → F

m
q into a signature scheme using the standard hash-and-sign

paradigm. The resulting key generation, signature generation and verification
algorithms of the UOV signature scheme are described in Algorithms 1, 2 and 3.

1 However it is not a very good name because in reality oil mixes with oil and vinegar
mixes with vinegar but no mixing happens between oil and vinegar, and this is not
what happens in UOV polynomials. A better name would have been hen variables
and rooster variables because hens can get along with hens and roosters, but two
roosters start a fight when they appear in the same term. Moreover, this foreshad-
ows the fact that in order for the signature scheme to be secure, the number of
hen (vinegar) variables should be larger than the number of rooster (oil) variables.
Nevertheless, we will stick to the traditional naming of oil and vinegar variables.
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3.2 Attacks Against UOV

Direct Attack. This attack tries to forge a signature s for a message M by
solving the polynomial system P(s) = H(M). An attacker can use the trick of
Thomae and Wolf [27] to reduce this to finding a solution of a polynomial system
with m+1−�n/m� equations. The best known algorithms to solve this problem
use the hybrid approach [5] which was briefly described in Sect. 2. Empirically,
the systems that have to be solved behave like semi-regular systems [12], there-
fore we can calculate the degree of regularity and use this to estimate the com-
plexity of the hybrid approach. Petzoldt [22] uses a similar method to estimate
the complexity of a direct attack against UOV, the only difference being that we
have used an updated estimate of the complexity of F5 [6]. In Petzoldt’s thesis
it was shown that the estimated complexity of a direct attack agrees very well
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with the measured complexity of a direct attack against small instances of UOV.
These experiments justify ignoring the big-O notation in formula (1) and treat-
ing the formula as an estimate for the concrete hardness of the hybrid approach.

Example 1. We will estimate the complexity of a direct attack against UOV
with the parameter set (q = 31,m = 52, v = 104); this set is proposed in [22]
as a set that achieves 128-bit security. Using the trick of Thomae et al. we can
reduce finding a solution to this underdetermined system to finding a solution of
a determined system with 52 + 1 − �(52 + 104)/52� = 50 equations. We assume
this system to be semi-regular. If we fix k extra variables the degree of regularity
is equal to the degree of the first term in the power series of

S50,50−k(x) =
(1 − x2)50

(1 − x)50−k

which has a non-positive coefficient. For k = 0 we have S50,50(x) = (1 + x)50, so
the degree of regularity is 51. For k = 1 we have

S50,49(x) = 1 + 49x+ 1175x3 + · · ·+ 4861946401452x25 − 4861946401452x26 +O(x27) ,

where all the omitted terms have positive coefficients, so the degree of regularity
is 26. We can now use (1) to estimate the complexity of the hybrid approach.
We prefer to err on the side of caution, so we have chosen ω = 2 for the value of
the linear algebra constant. For k equal to 0 and 1 this is equal to

(
50 + 51

51

)2

≈ 2194.7 and 31
(

50 − 1 + 26
26

)2

≈ 2137.8

respectively. Continuing this for higher values of k we eventually see that the
optimal value of k is 6, the corresponding degree of regularity is 16 and the
complexity of the direct attack is 2123.9.

In the example we concluded that the complexity of the attack is less than
2128 which was supposed to be the security level of the parameter set (q =
31,m = 52, v = 104) according to [22]. Even though we have used roughly the
same method of estimating the complexity as the method used by Petzoldt [22]
we arrive at a slightly different value because we have used a tighter bound on the
complexity of F5 coming from an improved analysis of the hybrid approach [6].

With this method we can calculate the minimal number of equations that is
needed in a determined semi-regular system in order to guarantee that the com-
plexity of finding a solution is larger than a targeted security level. For quantum
attackers, we can follow the same method with (2) instead of (1) for estimating
the complexity of the hybrid approach. The result of these calculations for the
security levels of 2128 and 2256 for different finite fields of size up to q = 2100 are
plotted in Fig. 1.
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Fig. 1. The minimal sizes of determined semi-regular systems to reach 128-bit security
and 256-bit security for different finite fields.

UOV Attack. Patarin [20] suggested in the original version of the Oil and
Vinegar scheme to choose the same number of vinegar and oil variables, or
v = m. This choice was cryptanalyzed by Kipnis and Shamir [16]: they showed
that an attacker can find the inverse image of the oil variables under the map
T . This is enough information to find an equivalent secret key, so this breaks
the scheme. This approach generalizes for the case v > m; the complexity then
increases to O(qv−mn4) [15] and is thus exponential in v − m. Typically one
chooses v = 2m or v = 3m to preclude the UOV attack.

UOV Reconciliation Attack. Similar to the UOV attack, the UOV reconcili-
ation attack proposed by Ding et al. [9] tries to find an equivalent secret key. We
present a brief summary. In this section we will make a distinction between m,
the number of polynomials in the public and private system, and o, the number
of oil variables. In the UOV signature scheme these numbers are the same, which
explains why we did not need to make this distinction before. It turns out that
for a public key P there exists with a very high probability a private key (F , T )
such that the matrix representation of T is of the form

MT =
(
Iv T
0 Io

)
.

This means that an attacker only has to find the v × o matrix T to get an
equivalent key. The UOV reconciliation attack tries to find T algebraically by
solving a quadratic system. If the choice of T is correct (i.e. there exists a private
key of the form (F , T ), then we have that the matrix representation Pi of the
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quadratic part of each polynomial in the public key satisfies for all 1 ≤ i ≤ m

(
∗v×v ∗o×v

∗v×o 0o×o

)
=

(
Iv 0

−T Io

)
Pi

(
Iv −T
0 Io

)
. (3)

The condition that the lower right o×o submatrices of the private system consist
of zeroes give quadratic equations in the entries of T. It looks like we have o2

equations for each component, but since the matrix representations are only
defined up to the addition of a skew symmetric matrix this gives only o(o+1)/2
equations per component. In total we have a system of mo(o+1)/2 equations in
vo variables. The reconciliation attack tries to recover T by solving this system
of equations.

The reconciliation system has a structure that makes it much easier to solve
compared to a random system of the same size. In fact, Ding et al. argue that
the complexity of this attack for UOV variants with v ≤ m (like Rainbow and
TTS) is the same as the complexity of solving a system of m equations in v
variables [9].

In the case v ≥ m the complexity of the attack is more difficult to estimate,
but we can formulate a lower bound to the complexity of the attack. The rec-
onciliation system has mo(o + 1)/2 equations in ov variables. For all parameter
choices of UOV this is a heavily overdetermined system, so it should not be a
surprise that there is only one matrix T that satisfies (3). Computer experi-
ments have shown that there is a unique solution for T as soon as the number
of equations of the reconciliation system exceeds the number of variables. Let
Rec[v, o,m] denote the complexity of a key reconciliation attack against a UOV
public system with v vinegar variables, o oil variables and m polynomials in
the public key. Increasing m only makes the reconciliation attack easier. Indeed,
increasing the number of equations can only make the attack easier, because
an attacker could just ignore the extra equations and still find the same unique
solution. In other words, if m < m′, then we have Rec[v, o,m] ≥ Rec[v, o,m′],
provided that mo(o + 1)/2 > ov, which is the case for all good UOV parameter
choices.

We can now derive a lower bound on the complexity of a reconciliation attack
when v > m = o. According to the above observation, we can increase m, the
number of equations, until it matches the number of vinegar variables v, and
this would make solving the system easier, i.e. we have

Rec[v,m,m] ≥ Rec[v,m, v] . (4)

We can now use the argument of Ding et al. which says that when m ≥ v, the
complexity of the reconciliation attack is equal to the complexity of solving a
system of m quadratic equations in v variables, so Rec[v,m, v] is equal to the
complexity of solving a system of v quadratic equations in v variables.

We conclude that a UOV reconciliation attack on a UOV system with m
equations and v ≥ m vinegar variables is at least as difficult as solving a system
of v quadratic variables in v equations, but it is expected to be more difficult,
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because a lot of hardness is lost in the inequality (4). In particular, the reconcil-
iation attack is less effective against the UOV scheme than attacking the system
P(s) = H(M) directly.

Quantum Attacks. There are no known specialized quantum algorithms that
solve multivariate quadratic equations. However, as described in Sect. 2, Grover’s
algorithms can be used to speed up the exhaustive search part of hybrid solution
finding algorithms. This quantum version of the hybrid approach algorithm can
be used to speed up a direct attack and a reconciliation attack.

Grover search could be used to speed up the UOV attack from O(qv−mn4)
to O(q

v−m
2 n4). This requires repeatedly running an algorithm that calculates

the common eigenspaces of a set of matrices and checks whether any of these
eigenspaces lies within the oil subspace in superposition. In comparison with
the classical algorithm this has the disadvantage that it cannot be parallelized
without a significant amount of overhead.

4 Improving UOV

In [22] Petzoldt presented a new method to reduce the public key size of UOV
by roughly a factor 8. The key generation algorithm was adapted to make it
possible to choose a large part of the public key. One can generate this part with
a pseudo-random number generator and replace a large part of the public key
by a seed. Also, it is possible to choose part of the public key in such a way such
that signatures can be verified faster [21].

Usually, during key generation, a UOV system F and an invertible linear
map T are chosen randomly, and then P is determined as P = F ◦ T . With
this strategy we have full control over F , but no control over the public key P.
Instead, Petzoldt proposed to first pick T and v(v+1)/2+mv coefficients of each
polynomial of P. Then we solve the system P = F ◦ T to find the coefficients of
F , and the remaining coefficients of P. This is a linear system of equations, so
this can happen efficiently. With a small probability this system does not have
any solutions, but in that case we can simply try again with a different choice
of T . For the details of this method we refer to [22].

With this approach the public key size is decreased with m(v(v +1)/2+mv)
field elements, at the negligible cost of including the seed for the random number

Table 1. The effect of Petzoldt’s method on the public key size

security level q (m, v) public key (kB) public key with Petzoldt’s method (kB)

100-bit 28 (36,72) 207 23

128-bit 28 (47,94) 460 52

192-bit 28 (72,144) 1648 185

256-bit 28 (98,196) 4150 464
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generator. The public key size is now m2(m+1)/2 log2(q)+ |seed|. Table 1 shows
that this method drastically reduces the size of the public key. However, the
public key remains much larger than the signature schemes that are in use today
such as RSA [25] and DSA [17], which typically stay well under 1 kB. Note that
if Petzoldt’s method is used, the size of the public key is independent of v, the
number of vinegar variables.

5 Lifting P to an Extension Field

In this section we will work with UOV over a finite field F2r of characteristic 2.
The parameter r is quite important for the security of the scheme, the signature
size and key sizes. It can be seen in Fig. 1 that by choosing a larger value of r
we can put a smaller number of equations in the system and still reach the same
level of security. Since the number of field elements in the public key and secret
key is O(m3) it is desirable to have a small value of m. However, since it costs
r bits to store a field element r should not be too big either. We must make a
trade-off between large r and large m. In this section we propose a scheme that
gets some security benefits of a high value of r, but has a public and private key
with coefficients in F2, greatly reducing the key sizes.

5.1 Description of the New Scheme

As usual, the public key of the scheme represents a quadratic system over F2r ,
given by

P = F ◦ T .

When we want to sign a message m we use a hash function to generate a digest
of mr bits which represents a vector h of m elements of F2r . Then we use
the knowledge of the private key to solve the system P(s) = h to get a valid
signature s. However, the difference with standard UOV is that we now choose
all the coefficients of F ,P and T in F2. Therefore the key generation process
is identical to the key generation process of a regular UOV scheme over F2. In
particular, we can use the approach of Petzoldt [22] as explained in Sect. 4 to
reduce the size of the public key. Contrary to the key generation, the signature
generation and verification still happen over the field F2r as usual.

To summarize, we simply take a key pair of the UOV scheme over F2, and
use it as a key pair for the UOV scheme over F2r . The public key is thus approx-
imately a factor r smaller than if we were to use the regular UOV scheme over
F2r since we only use one bit to represent each coefficient instead of r bits. Fur-
thermore, we can now choose r to be much larger than what would otherwise its
optimal value. This in turn allows for a smaller value of m (See Fig. 1), reducing
the public key size even more.

The public key consists of a seed for a pseudorandom number generator and
the part of the public map which cannot be generated. The total size of the
public key is therefore

|seed| +
m2(m + 1)

2
bits.



238 W. Beullens and B. Preneel

Storing the private maps F and T would take

m
v(v + 1)

2
+ m2v bits and n2 bits

respectively, but they do not need to be stored, because they can be calculated
using the key generation algorithm each time they are needed. A signature con-
sists of n = m + v elements of F2r , so the size of the signature is nr bits.

Remark 2. Though we have presented this scheme with a finite field of charac-
teristic 2 and with the subfield F2 ⊂ F2r , it is easy to see that we can use this
scheme with any field extension of finite fields K ⊂ K ′. In such a scenario we
generate a key pair with coefficients in the small field K, and the signing and
verifying is done with elements of the big field K ′.

5.2 Security Analysis of the New Scheme

Direct Attack. This attack tries to forge a signature for a certain message M
by trying to find a solution s ∈ F

n
2r for the system F(s) = H(M). The best

known methods for this use the hybrid approach as described in Sect. 2.
For a direct attack against the new scheme all the coefficients of the system

that needs to be solved lie in F2, except those of the constant terms, because
those coefficients come from the message digest. We claim that this does not
significantly reduce the hardness of finding solutions relative to the case where
the coefficients are generic elements of F2r . It has been noticed by Faugère and
Perret [12] that the polynomial systems that result from fixing ≈ v variables
in a UOV system behave like semi-regular systems. The degree of regularity of
a quadratic semi-regular system is given by the degree of the first term in the
power series of

(1 − x2)m

(1 − x)n

with a non-positive coefficient. In particular the degree of regularity does not
depend on q for semi-regular systems. Hence, the degree of regularity for a direct
attack against the modified UOV scheme is identical to the degree of regular-
ity of an attack against the regular UOV scheme. Therefore a Gröbner basis
computation against the modified scheme is not significantly more efficient than
a Gröbner basis computation against regular UOV with the same parameters.
This argument is confirmed by the experimental data in Table 2. There we see
that a direct attack is slightly faster against the modified scheme than against
the original UOV scheme, but only by a small constant factor. Even though
the Gröbner basis is computed over F2r , the largest part of the arithmetic only
involves the field elements 0 and 1, so the arithmetic is faster than with generic
elements of F2r . This is where the difference observed in Table 2 comes from. If
we do the same experiment with a smaller extension field such as F28 there is no
observed difference between the running time of a direct attack against a regular
UOV scheme and our modified scheme.
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Table 2. Running time of a direct attack against the regular UOV scheme over F264

and the modified UOV scheme, with the MAGMA v2.22-10 implementation of the F4
algorithm. We did not implement the method of Thomae and Wolf [27].

(m,v) Regular UOV (s) Lifted UOV (s) difference

(7,35) 0.43 0.21 −52%

(8,40) 1.56 0.76 −51%

(9,45) 7.00 3.21 −54%

(10,50) 33.50 17.44 −48%

(11,55) 132.88 76.60 −42%

(12,60) 828.31 588.33 −29%

Remark 3. In a direct attack one fixes ≈ v variables randomly to make the
system a slightly overdetermined system. In our experiments we have fixed these
variables to values in F2 to make sure that we do not introduce linear terms with
coefficients in F2r instead of F2 in the case of the modified UOV scheme.

Remark 4. It might seem tempting to decompose the equations over F2r into
equations over F2 to make a direct attack more efficient. This decomposition is
done by fixing some basis β1, · · · , βr of F2r over F2 and replacing each variable
xi by

∑r
j=1 x̂i,jβj , where the x̂i,j are nr new variables in F2. Each equation of

the original system is then decomposed into r equations, resulting in a total of
mr equations in nm variables over F2. The problem with this approach is that
the number of equations and variables is increased by the factor r, which makes
the naive approach of solving the decomposed system with a generic boolean
solver hopelessly slow. However, the decomposed system has a specific structure
which could potentially be exploited to solve the system more efficiently. We
investigated this possibility, but we were not able to make any progress. It should
be pointed out that this idea does not only apply to our scheme, but to any
multivariate cryptosystem over a field of non-prime order. Still, no such attacks
are reported in literature. One could say that the idea of decomposing a system
to make it easier to solve is not very promising because in big-field schemes
such as Gui [24] and medium-field schemes such as HMFEv [23] the systems are
decomposed with the objective of making them harder to solve for an attacker.

Key Recovery Attacks. In contrast to a direct attack, the modified scheme is
more vulnerable to a key recovery attack. Since the key pair used in the Lifted
UOV scheme is identical to the key pair of regular UOV over the field F2 it is
clear that a key recovery attack against the Lifted UOV scheme is equivalent
to a key recovery attack against a regular UOV scheme over F2, which is much
easier than a key recovery attack against UOV over F2r . Luckily, key recovery
attacks against UOV have been investigated ever since the invention of the oil
and vinegar scheme in 1997 [20], so it is well understood which attacks are
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possible (see Sect. 3.2) and what the complexities of these attacks are. It is also
clear that we can make key recovery attacks harder by increasing the number of
vinegar variables.

The UOV attack attempts to recover an equivalent private key by searching
for the oil subspace. This attack has complexity qv−m−1 ·n4. Since a UOV attack
on the Lifted UOV scheme is equivalent to a UOV attack over F2, we have that
the complexity of a UOV attack against the Lifted UOV scheme is 2v−m−1 · n4.

The reconciliation attack against the lifted UOV scheme is equivalent to the
UOV reconciliation attack against UOV over the field F2. A lower bound on the
complexity of this attack is given by the complexity of solving a quadratic system
of v variables and v equations over F2, but we expect the problem to be harder.
There exists specialized algorithms for solving polynomial systems over F2 that
are more efficient than the generic hybrid approach. One method is a smart
exhaustive search, which requires approximately log2(n)2n+2 bit operations [7].
The BooleanSolve algorithm [3] combines an exhaustive search with sparse lin-
ear algebra to achieve a complexity of O(20.792n). However the method only
becomes faster than the exhaustive search method when n > 200. Recently, Joux
et al. proposed a new algorithm that was able to solve a boolean system of
146 quadratic equations in 73 variables in one day [14]. The algorithm beats
the exhaustive search algorithm, even for small systems. The complexity of this
algorithm is still under investigation, but a rough estimate based on the reported
experiments suggests that it scales like 2αn with α between 0.8 and 0.85 and with
a small constant factor. For choosing the parameters of our signature scheme,
we have assumed that a determined system of n quadratic boolean equations
provides 0.75n bits of security, even though this is likely to seriously overesti-
mate the capabilities of the state of the art algorithms. Quantum attackers can
use Grover search to solve systems over F2 with complexity O(2n/2).

5.3 Choice of Parameters

For convenience and efficiency we will work with binary finite fields whose ele-
ments are represented by a number of bits that is a multiple of 16, i.e. the finite
fields we want to use are F216 ,F232 ,F248 and so on.

When designing a signature scheme of security level l, we choose a finite field
that is large enough such that the minimal number of equations in a determined
regular system that is needed to reach the security level l is minimized. Figure 1
shows that for 128-bit and 256-bit security the chosen fields are F248 and F280

respectively, and the minimal number of equations is 34 and 66 respectively or
40 and 81 when considering quantum attacks. For 100-bit and 192-bit security
the chosen fields are F232 and F264 , and the minimal number of equations is 27
and 50 for classical attackers or 33 and 60 for quantum attackers.

We now consider the constraints on the parameters due to the different
attacks against our scheme. In order to be safe against a direct attack we require

m − �v/m� ≥ mmin ,
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Table 3. Parameter choices and corresponding public key and signature sizes for dif-
ferent security levels

Security level (r,m, v) |pk| (kB) |sig| (kB) classical security

100-bit
classical (32,31,134) 1.9 0.6

quantum (32,37,200) 3.2 0.9 115 bit

128-bit
classical (48,38,171) 3.4 1.2

quantum (48,45,256) 5.7 1.8 153 bit

192-bit
classical (64,54,256) 9.8 2.4

quantum (64,65,384) 17.0 3.5 224 bit

256-bit
classical (80,70,341) 21.2 4.0

quantum (80,87,526) 40.7 6.0 296 bit

with mmin equal to 27, 34, 50 or 66 if the desired security level is 100 bits, 128
bits, 192 bits, or 256 bits respectively. For quantum attackers mmin is equal to
33, 40, 60 and 81 respectively. In order to be safe against the UOV attack we
require

2v−m−1n4 > 2l or 2(v−m−1)/2n4 > 2l ,

depending on whether we want l bits of security against classical, or quantum
adversaries. To be secure against the UOV reconciliation attack it suffices that an
attacker cannot solve a determined system with v equations over F2. Therefore
it suffices to have

20.75v > 2l or 2v/2 > 2l

for classical and quantum attackers respectively. The parameter sets displayed
in Table 3 satisfy all the constraints for the targeted security level and minimize
the size of the public key, i.e. they minimize m. In the last column of the table,
the bit complexity of the best known classical attack against the parameter set
is calculated. For all the proposed parameters the best known classical attack is
a direct Groebner basis attack.

5.4 Trade-Off

In comparison to regular UOV, Lifted UOV has much smaller public keys, but
also larger signatures. In the discussion above, we have chosen the parameter r
very large in order to minimize the size of the public key, without considering the
size of the signatures. It is possible to make a trade-off between the size of the
public key and the size of the signature by choosing a smaller value of r. Having
a smaller value of r requires a larger value of m to reach the same security level,
resulting in a larger public key, but since the signature consists of n elements of
F2r it also leads to smaller signatures. Figure 2 compares public key sizes and
signature sizes of the Lifted UOV scheme with different values of the parameter
r with some other MQ signature schemes [22], the lattice-based signature scheme
BLISS-II [10] and SPHINCS, a hash-based signature scheme [4]. Note that even
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Fig. 2. Comparison of different signature schemes providing 128 bits of post-quantum
security.

though the MQ schemes UOVRand and RainbowLRS2 claim to provide 128-bit
of post-quantum security, their parameters are not chosen to resist quantum
attacks on the MQ problem or quantum versions of the UOV attack. So we are
not comparing schemes with the same security level. Ignoring quantum attacks,
the Lifted UOV signature scheme with r = 48 in the comparison achieves 153
bits of security.

Example 2. For some application on a low-cost device it might be desirable to
have a signature scheme that provides 128 bits of post-quantum security with
minimal signature sizes subject to the condition that the public key is smaller
than, say, 10 kB. If we choose the parameters as in the discussion above, we
would have a public key of 5.7 kB and signatures of 1.8 kB. However, we can
do better by choosing r = 12. The lowest values of m and v providing 128 bits
of security are then m = 54 and v = 256. This leads to a public key of 9.8 kB
(< 10 kB) and a signature of 0.45 kB.

6 Implementation and Results

We developed an ANSI C implementation of the Lifted UOV signature scheme.
The large fields are implemented as extension fields of F216 and the arithmetic
in F216 is done using log tables. We have a table that maps each nonzero element
x to the number y such that x = ay, where a is some generator of the group
F

×
216 . Conversely, we also have a table that maps a number y to the element ay.

Multiplication in F216 is then computed with three table lookups and an addition
modulo 216 −1. Note that this approach could make our implementation vulner-
able to cache timing attacks. Newer CPUs support the CLMUL instruction set
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Table 4. Running times for the key generation, signing and verification algorithms on
a single thread on an IntelR©CoreTM i7-4710MQ CPU at 2.5 GHz

Security level key gen (ms) sig gen (ms) verification (ms)

100-bit
classical 4 6 3

quantum 13 16 7

128-bit
classical 10 14 7

quantum 26 34 15

192-bit
classical 32 46 21

quantum 148 156 54

256-bit
classical 125 149 55

quantum 366 410 144

which could be used to perform the field arithmetic efficiently without the need
for lookup tables, eliminating the possibility of this attack. Two field elements
are added using a XOR operation. During the key generation phase we only use
elements of F2, so we have used bit slicing whenever possible to speed up the
algorithm. The running times of the key generation, signature generation and
the verification algorithms are displayed in Table 4.

Please note that the implementation uses naive implementations of matrix
multiplication, polynomial multiplication and Gaussian reduction, and the code
was not heavily optimized. Therefore, it can be expected that the running times
reported in Table 4 are nowhere near optimal. Some techniques that can speed
up the code very significantly include writing cache friendly code, using paral-
lelization and using Karatsuba’s algorithms for the field arithmetic. Moreover,
it is possible to use a method of Petzoldt to structure part of the public key
in such a way that the verification algorithm is faster [22]. In order to avoid
storing the large private key, part of the key generation algorithm is run each
time a signature is generated to generate the private key. If a batch of messages
is signed together this step only has to happen once. Alternatively, if storing the
private key is not an issue, this part can be omitted altogether to speed up the
signing algorithm significantly.

7 Conclusion

The simple idea of lifting a UOV key pair from F2 to an extension field F2r

increases the security against direct attacks without affecting the size of the
public key. At the same time, thanks to the method of Petzoldt, we can increase
the number of vinegar variables to protect against key recovery attacks without
increasing the size of the public key. These two ideas come together to create
a secure signature scheme whose public key is an order of magnitude smaller
than other MQ signature schemes, with slightly larger signatures. The signa-
ture scheme is very competitive with other post-quantum signature schemes.
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By choosing the parameter r it is possible to make a trade-off between larger
public keys and smaller signatures or vice versa. We developed a rudimentary
ANSI C implementation of the Lifted UOV signature scheme which shows that
key generation, signing and verification takes only a few milliseconds for 100-bit
security instantiations of the scheme and up to a few hundred milliseconds for
256-bit security instantiations. However it is very likely that these times can be
improved significantly with an optimized implementation.

The idea of lifting keys to a large extension field can be applied to any
MQ signature scheme, but it might not always be useful to produce smaller
public keys. We believe that the idea could be used to improve the Rainbow
signature scheme, but not HFE or C∗. This is because the public keys of signature
schemes such as HFE and C∗ are not semi-regular maps [11] and have a much
smaller degree of regularity than random maps of the same dimensions. This
means that guessing a few variables does not necessarily reduce the degree of
regularity, like it does in the case of semi-regular systems. This makes the hybrid
approach unsuitable for attacking these systems, since solving the system with
one big Gröbner basis computation is more efficient. Therefore there is no point
in lifting the system to a larger field, because the complexity of a Gröbner basis
computation is largely independent of the size of the finite field.
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Paris VI (2004)

3. Bardet, M., Faugère, J.C., Salvy, B., Spaenlehauer, P.J.: On the complexity of
solving quadratic Boolean systems. J. Complex. 29(1), 53–75 (2013)

4. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

5. Bettale, L., Faugere, J.C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)

6. Bettale, L., Faugère, J.C., Perret, L.: Solving polynomial systems over finite fields:
improved analysis of the hybrid approach. In: Proceedings of the 37th International
Symposium on Symbolic and Algebraic Computation, pp. 67–74. ACM (2012)

7. Bouillaguet, C., Chen, H.-C., Cheng, C.-M., Chou, T., Niederhagen, R., Shamir,
A., Yang, B.-Y.: Fast exhaustive search for polynomial systems in F2. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 203–218. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 14

http://pqcrypto.eu.org/
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-15031-9_14


Field Lifting for Smaller UOV Public Keys 245

8. Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30539-2 23

9. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-
algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0 15

10. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 3

11. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
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Abstract. In this paper we propose a new method to hide the structure
of Gabidulin codes for cryptographic applications. At the difference of
previous cryptosystems based on Gabidulin codes, we do not try to mask
the structure of Gabidulin codes by the use of some distortion methods,
but we consider matrix codes obtained from subcodes of binary images
of Gabidulin codes. This allows us to remove the properties related to
multiplication in the extension field. In particular, this prevents the use
of Frobenius for cryptanalysis. Thus, Overbeck’s attack can no longer
be applied. In practice we obtain public key with a gain of a factor of
order ten compared to the classical Goppa-McEliece scheme with still a
small cipher text of order only 1 kbits, better than recent cryptosystems
for which the cipher text size is of order 10 kbits. Several results used
and proved in the paper are of independent interest: results on structural
properties of Gabidulin matrix codes and hardness of deciding whether
a code is equivalent to a subcode of a matrix code.

Keywords: McEliece public key cryptosystem · Rank metric
Gabidulin codes

1 Introduction

Mceliece introduced cryptography based on error-correcting codes in 1978. There
are two main concerns regarding this type of cryptosystems, namely the size of
the public keys and the fact that the system is not reduced to a regular well
known hard problem such as the Syndrome Decoding problem for random codes.
Over the years several approaches were attempted to decrease the size of the
public keys. Two main approaches give potential interesting results allowing to
potentially decrease the size of the key from megabits to kilobits using compact
public keys like in [5,21,22] using a group action on the public matrix or using
another metric as the rank metric [13]. Using the rank metric was the first
approach proposed in 1991. The gain comes from the fact that attacking the
generic decoding problem for rank metric is practically harder (in term of best
known attacks) than for Hamming metric [16], which leads to smaller key size
for the same security.

Previous Work. There is a large literature on McEliece like public key cryp-
tosystems based on rank metric and Gabidulin codes (a rank metric analog of
c© Springer International Publishing AG 2017
A. Patra and N. P. Smart (Eds.): INDOCRYPT 2017, LNCS 10698, pp. 247–266, 2017.
https://doi.org/10.1007/978-3-319-71667-1_13
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Reed-Solomon codes) [13,18,26]. Most of the times, the designers of such cryp-
tosystems try to mask the structure using distortion techniques. Unfortunately,
there exists a cryptanalysis method essentially based on the action of the Frobe-
nius map on Gabidulin code, the so-called Overbeck attack. This attack uses
the very special structure of Gabidulin codes to distinguish modified Gabidulin
codes from random codes. Overall this attack led to the cryptanalysis of most
of cryptosystem based on Gabidulin codes (see [24,25] and its generalizations
[23]). The core of this attack is a distinguisher on Gabidulin codes which is
directly derived from the application of the Frobenius map on this code. All
the cryptosystems using Gabidulin codes are defined over an extension field and
the Frobenius map can be applied to the public code. Notice that there is an
equivalent type of distinguishing attack on Reed-Solomon codes, the so-called
“square attack” [9].

The Overbeck’s distinguisher attack is the main obstacle to the use of Gabi-
dulin codes for a cryptographic purpose in a McEliece type setting. Recently
a new approach was proposed by Loidreau [18], mixing Gabidulin codes with
LRPC codes [15]. This approach seems to sufficiently hide the Gabidulin struc-
ture. This leads to public keys with sizes not as low as the original GPT system,
where a factor 100 could be gained compared to the classical McEliece using
Goppa codes, but to a smaller by an order of 10.

Besides the McEliece approach, the RQC system based on decoding random
quasi-cyclic codes in rank metric was also proposed in [1]. This approach, based
on Alekhnovich approach [2], has the advantage to rely on decoding random
(quasi-cyclic) codes without hidden structure, but the decoding efficiency of the
considered LRPC codes is in O(

√
n) for cryptographic purposes, when it is in

O(n) for Gabidulin codes, so that these systems lead to rather small public
keys but with cipher of approximatively the same size (of order 5–10 Kbits) of
the public key. The same type of phenomenon appears for Hamming metric for
MDPC and HQC cryptosystems [1,22].

Hence using Gabidulin codes has the potential to reach very small cipher
text (as for McEliece) of only a few thousand bits. To sum up, the McEliece
classical approach leads to cryptosystem where the public key is very large but
the cipher can be very small. The approaches using quasi-cyclic lead to the same
small parameters (but not *very* small) for both the public key AND the cipher.
Although all these quasi-cyclic approaches are of clear interest in terms of general
security (there is almost no hidden structure (MDPC) or no hidden structure at
all (HQC)), it is of independent interest to obtain cryptosystems with very small
size of ciphers (of order 1 Kbits) (comparable to classical McEliece and smaller
than quasi-cyclic based approaches) but at the cost of a larger public key.

Our Contribution and Main Idea. In this paper we propose a new approach
to hide the structure of the Gabidulin code in order to resist to Overbeck’s
distinguishing attack. We obtain parameters with public key size gain of order
10 compared to classical McEliece scheme but with very small ciphers (1 Kbits)
comparable to McEliece (with Goppa codes) but better by a factor of 5 to 10
compared to Loidreau recent approach (for similar public key size).



Gabidulin Matrix Codes and Their Application 249

Our main idea to prevent the use of the Frobenius map and Overbeck’s attack,
is to consider Gabidulin codes not as linear codes over the large extension field
(the way they are defined by Gabidulin) but as linear over the base field GF (q)
(the way Gabidulin codes were originally described by Delsarte [10]), the code
is then considered as a matrix code over the base field. This approach has two
consequences: firstly, it breaks the linearity over the large field leads to a larger
way to describe the code in itself (and hence a larger key size), secondly, it makes
the structure of the Gabidulin code harder to recover, especially when not all
the matrix code is given but only a subcode of the Gabidulin matrix code.

The approach, hence permits to hide the Gabidulin structure (at the cost of
loosing a factor on the size of the key) but preserves the very good decoding
properties of Gabidulin codes. The security analysis of our system relies on the
indistinguishability of equivalent Gabidulin matrix subcodes with random matrix
codes.

Paper Organization. The paper is organized as follows: Sect. 2 gives the nec-
essary background on matrix codes and Gabidulin codes, Sect. 3 describes our
new protocol based on subcodes of Gabidulin matrix codes, Sect. 4 considers the
security of the protocol, and at last Sect. 5 gives practical instantiations for our
protocol.

2 Background on Matrix Codes, Gabidulin Codes
and Gabidulin Matrix Codes

We will use the following notations:

– GF (q) is the finite field with q elements. For most applications, q = 2, how-
ever, in the last section q = 2u for a small u.

– GF (qm) is an extension of GF (q) of degree m.
– GL(m, q) is the General Linear Group of the m × m invertible matrices with

entries in GF (q).

2.1 Matrix Codes

In this section, we will recall some classical results on matrix codes in rank
metric, q-ary image of a code over GF (q)m and Gabidulin codes. Section 2.2
contains also a new efficient method that allows to rebuild a code over GF (qm)
from one of its q-ary image.

Definition 1. An m×n-matrix code C is a subspace of the GF (q)-vector space
of m × n matrices over GF (q).

Let E = GF (q)m be the set of m-tuple over GF (q).

Definition 2. [4] A q-ary E-code of length n is a GF (q) subspace of En.
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Clearly, an E-code of dimension k can be considered as an [nm, k] GF (q)-
linear code. Moreover, there is a natural bijection between matrix codes and
E-codes, which consists in writing the coefficients of an E-code in column.

Such a code can be also considered as a GF (q)-linear code of length n over
GF (qm). We fix a basis B = (b1, ..., bm) of GF (qm) over GF (q) and denote by
φB the corresponding GF (q)-linear isomorphism GF (qm) �→ GF (q)m. Applying
φ−1

B to each coordinate of an E-codeword, or equivalently to each column of
an m × n matrix over GF (q), the codewords can be considered as elements of
GF (qm)n.

Note that the image of an matrix code by φ−1
B is a GF (q)-linear code over

GF (qm), but a priori, it is not a GF (qm)-linear code since such codes has no
special properties with respect to product by elements of GF (qm).

In the sequel, we will use indifferently the representation of codewords as
m × n matrices or as elements of En. The first one is best suited to properties
related to the rank of elements, the second one allows to use the background
techniques of Coding Theory, in particular those that are related to generator
matrices.

Rank Distance of Matrix Codes. As explained in [4], the advantage of an
E-code is its ability to correct burst errors. Consequently, we want to look at its
block-error correcting capacity.

For instance, the Hamming weight of the matrix representation of a codeword
is the number of its non-zero columns. In the sequel, we are not interested by the
Hamming metric, but by the rank metric. We give the definitions in the context
of the matrix representation of codewords, because it is the most natural for the
notion of rank metric.

Definition 3. Let c ∈ En be a codeword, and Mc the corresponding m × n
matrix with entries in GF (q). The rank weight of c is the rank of Mc.

Definition 4. The minimum distance of an matrix code C is the minimum of
the rank-weight of its non-zero elements.

Remark that determining a codeword of minimum distance in such a code is
exactly solving the min-rank problem for the corresponding matrix code.

An important question is those of isometries for the rank distance. Let B0 ∈
GL(q,m) and B1 ∈ GL(q, n) be two invertible matrices with entries in GL(q) of
respective sizes m and n. If c is a codeword, then rank(B0McB1) = rank(Mc).
In consequence, we can define the notion of equivalent matrix codes.

If B0 and B1 are defined as previously, we denote by ΨB0,B1 the map c �→ c′

such that Mc′ = B0McB1.

Definition 5. Two E-codes C and C ′ are equivalent for the rank metric if there
exists a map ΨB0,B1 such that C ′ = ΨB0,B1(C).

The following proposition describes the action of the rank-distance equiva-
lence on the E-code representation of matrix codes.
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Proposition 1. Let C ′ = ΨB0,B1(C). If G is an km × nm generator matrix of
C, then G′ = G × (BT

0 ⊗ B1) is a generator matrix of C ′.

Proof. This is a direct consequence of the fact that the action Mc �→ B0Mc is
a multiplication of each column of Mc by B0 which is transposed in the E-code
representation as a multiplication of each m-tuple of E by the transposed matrix
BT

0 on the right.

2.2 q-Ary Image of a GF (qm)-Linear Code

From a GF (qm)-linear code, it is possible to derive an E-code using the map φB
defined in Sect. 2.1.

Definition 6. Let B = (b1, ..., bm) be a basis of GF (qm) over GF (q) and denote
by φB the corresponding isomorphism GF (qm) �→ GF (q)m. If ΦB is the action
of φB on each coordinates of codewords in GF (qm)n, the q-ary image Imq(C)
relative to B of a GF (qm)-linear code of length n is the image of C by ΦB.

Notice that the definition of q-ary image depends on the choice of the basis
B. The main difference between C and Imq(C) is the fact that, if B is not known,
Imq(C) is no more GF (qm)-linear but only GF (q)-linear. If the dimension of C
is k, those of Imq(C) is km.

Even when the basis B is known, for practical implementation in the context
of error correcting codes, q = 2 and the more efficient way to encode binary
messages with a code over GF (2m) is to use a generator matrix of Imq(C). As
a consequence, the size of this GF (q) generator matrix is m times greater than
those of the original code over GF (qm).

There exists an efficient way to construct a GF (q)-generator matrix G of
Imq(C) from a GF (qm)-generator matrix G of C. Let α be a primitive root of
GF (qm)∗. The map σα : x �→ αx is a GF (q)-linear automorphism of GF (qm).
The image of σα by the map φB is a linear isomorphism of E = GF (q)m. We
denote by Mα ∈ GL(q,m) the corresponding matrix. Note that Mα depends
on the choice of B. For instance, if we choose for the basis B the multiplicative
basis (1, α, ..., αm−1), then Mα is nothing else than the companion matrix of the
minimal polynomial of α.

For an element β = αi ∈ GF (qm)∗, the corresponding matrix is Mβ = M i
α.

In addition, M0 is the m × m zero matrix.

Proposition 2. If G = (βi,j) is an k × n generator matrix of C, then the block
matrix G = (Mβi,j

) is an km × nm generator matrix of Imq(C).

The following proposition describes the link between the duality over GF (q)
and the duality over GF (qm).

Proposition 3. Let C be a code over GF (qm) and C⊥ be its GF (qm)-dual. The
dual of the q-ary image of C relative to the basis B is the q-ary image of its dual
C⊥ relative to the dual basis B∗ of B.
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Proof. Let G = (βi,j) and H = (γi,j) be respectively be a generator matrix of C
and its GF (qm) dual C⊥. This implies G × HT = 0.

Using the injection β ∈ GF (qm) �→ Mβ ∈ GLqm ∪ {M0), we obtain the
relation

Mβi,j
× (MT

γi,j
)T = 0.

The set of matrices {MT
β | β ∈ GF (qm)} is another matrix representation of

the finite field GF (qm) which corresponds to the choice of the dual basis of B.

Reconstruction of a qm-Linear Code from Its q-Ary Image. Given a
GF (q)-generator matrix of the q-ary image of a code, a natural problem is to
recover the GF (qm) structure even if the basis B is not known.

Let C be the original linear code over GF (qm). Up to a permutation of its
coordinates, we can suppose that C admits a generator matrix under systematic
form G = (Ik|R), R = (βi,j)1≤i≤k,1≤j≤n−k. A first consequence is that, for all its
q-ary image, up to a permutation of its m-tuple coordinates (which corresponds
to a permutation of the columns in matrix representation), this code admits a
systematic generator matrix G = (Ikm | Rkm,(n−k)m).

We suppose that we know G and we want to recover B and C (or an equivalent
representation).

The q-ary image of G relative to B is the block matrix G = (Ikm|R) with
R = (Mβi,j

). Since the systematic generator matrix of a code is unique, from
one can recover the matrices Mβi,j

. All the non-zero matrices Mβi,j
represents

an element of the same cyclic group of order qm − 1.
Suppose that there is at least one matrix Mβ of order qm − 1, then we can

construct a representation of GF (qm) = GF (q)(β), where β is a root of the
minimal polynomial of Mβ and we can identify each coefficient Mβi,j

= Mv
β to

βv. This leads to a GF (qm) generator matrix G′ which is not necessary G but
such that G can be considered as a q-ary image of G′.

If we do not found a generator matrix of the cyclic group of order qm − 1,
there are only two possibilities: if all the matrices are in a cyclic group of order
qm′ − 1 for a divisor m′ of m, the code G is a code over a subfield GF (qm′

) of
GF (qm) with an extension of scalars from GF (qm′

) of GF (qm). If this condition
is not verified, at least one matrix has a minimal polynomial of degree m and can
be used by linear combination to reconstruct the full finite field representation.

2.3 Gabidulin Codes

In [12], Gabidulin introduced the notion of rank metric. In this article he gave a
bound analogous to that of Singleton in the context of Hamming metric. For a
code C of length n ≤ m over the finite field GF (qm), the rank bound is equal to
the Singleton bound, i.e.k +d = n+1, where d is the minimum rank distance of
C. In addition, he presented a family of MRD (Maximum Rank Distance) which
meet this bound. These codes are known as Gabidulin codes.
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Definition 7. Let G = (g1, g2, . . . , gn) be an ordered set of n ≤ m elements of
GF (qm), which are linearly independent over GF (q). The Gabidulin code GabG,k

of support G and dimension k is the code generated by the generator matrix

GabG,k =

⎛
⎜⎜⎜⎜⎝

g
[0]
1 g

[0]
2 · · · g

[0]
n

g
[1]
1 g

[1]
2 · · · g

[1]
n

...
...

. . .
...

g
[k−1]
1 g

[k−1]
2 · · · g

[k−1]
n

⎞
⎟⎟⎟⎟⎠

with the convention g
[i]
j = gqi

j .

These codes can be viewed as evaluation of linearized polynomials of linear
degree strictly less than k over a set of linearly independent points. Using a
similar reasoning than for Reed Solomon codes, it is easy to show that these
codes are MRD (and so are MDS). There is an algorithm in polynomial times
which corrects any error of rank weight up to 	(n − k)/2
.

A first remark is the fact that the support G of a Gabidulin code is defined
up to a scalar multiplication of G. So, it is always possible to fix g1 = 1.

In addition, it is easy to recover the support (i.e. G) of a Gabidulin from a
generator matrix of this code.

Let θq be the Frobenius map acting on GF (qm) and Θq its extension on
codewords of GF (qm)n. One can notice that the inverse of θq is the map θqm−1 :
β �→ βqm−1

. Let Θqm−1(GabG,k) be the image of GabG,k by Θqm−1 . We have
the following property Θqm−1(GabG,k) ∩ GabG,k = GabG,k−1. By iterating this
process k − 1 times, we obtain GabG,1 and any non-zero element of GabG,1 gives
G up to a scalar multiplication.

There has been a lot of attempt to use these codes and rank metric in cryptog-
raphy [7,13,14,18]. Unfortunately, due to the high GF (qm) linearity of Gabidulin
codes, most of them, except [18], were cryptanalyzed.

Our aim is to use the q-ary images of Gabidulin codes to destroy the GF (qm)
underlying structure. The main payload of our approach is the fact that it
increases the public key of a factor m, since it is no more possible to describe
our codes over GF (qm).

Maximum-Rank Array Codes. In [27] Roth introduced a notion of
maximum-rank array codes, which is nothing else than q-ary images of Gabidulin
codes. As the notion of matrix code is more general, we will use the following
definition.

Definition 8. A Gabidulin matrix code (a GM code) is a m × n matrix code
which is equivalent to the q-ary image of a Gabidulin code in the meaning of
Definition 5.

A first remark is the fact that, if the parameters of construction of a GM
code are known, the decoding algorithm of Gabidulin codes holds for GM codes.

In addition, applying results of Sects. 2.2 and 2.3, it is easy to recover the
structure of an underlying Gabidulin code and the basis B from a generator
matrix of a GM code.



254 T. P. Berger et al.

2.4 From GM Codes to Gabidulin Codes

A natural problem related to GM codes is the following:

Problem 1. Given a generator matrix of a GM code C, recover a Gabidulin code
GabG,k, a basis B of GF (qm) over GF (q), a matrix B0 ∈ GL(q,m) and a matrix
B1 ∈ GL(q, n) such that C is equivalent by ΨB0,B1 to the q-ary image of GabG,k

relative to the basis B.

The problem of equivalence of Gabidulin codes has been studied in [3]. In
particular, it is easy to see that the matrix B1 ∈ GL(q, n) in Definition 5 cor-
responds to a change of support G′ = GB1 of the Gabidulin code. So the choice
of B1 can be interpreted as the choice of a basis of the GF (q)-vector space
generated by G.

Without loss of generality, one can reformulate the previous problem as fol-
lows:

Problem 2. Given a generator matrix of a GM code C, recover a Gabidulin code
GabG,k, a basis B of GF (qm) over GF (q) and a matrix B0 ∈ GL(q,m) such that
C is equivalent by ΨB0,In

to the q-ary image of GabG,k relative to the basis B.

Let G = (Mβi,j
) be the generator matrix of Imq(GabG,k) as defined in

Proposition 2.
The matrix G′ = G× (B0 ⊗In) = (Mβi,j

B0) is a generator matrix of the GM
code. We deduce that the matrix (B−1

0 ⊗Ik)×G′ = (B−1
0 Mβi,j

B0) is a generator
matrix of the GM code. For β ∈ GF (qm) we define M ′

β = B−1
0 MβB0. The set

{M ′
β | β ∈ GLqm} is another matrix representation of the finite field GF (qm)

corresponding to a change of basis associated to B0.
We have proved the following theorem:

Theorem 1. Let C be the GM code defined by a Gabidulin code GabG,k, a basis
B and a map ΨB0,B1 . Let VG be the GF (q)-vector space of dimension n generated
by G. There is a basis G′ of VG and a basis B′ of GF (qm) such that C is the q-ary
image of the Gabidulin code GabG′,k relative to the basis B′.

The problem is now the following: given a generator matrix G of a GM code
of dimension km, recover G and B such that C is the q-ary image relative to B
of the Gabidulin code GabG,k.

It can be done in two steps:

1. Recovering the GF (qm)-structure of the q-ary image. This can be done using
the method described in Sect. 2.2.

2. Reconstruction of the parameters of a Gabidulin code from a GF (qm)-
generator matrix of this code. This second problem is solved in Sect. 2.3.
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3 A New Cryptosystem Based on Equivalent Subcodes
of Gabidulin Matrix Codes

This section presents our new proposition of McEliece like cryptosystem. We
saw in the previous section that recovering the structure of a Gabidulin code
directly from matrix code structure is easy, hence in order to hide this structure
it is necessary to break the regular structure of the Gabidulin matrix code by
considering a subcode of it. The core idea of our proposal is then to use subcodes
of q-ary images of Gabidulin in order to destroy the multiplicative structure on
the extension field and to stop classical attacks such as Overbeck.

Our proposition is a McEliece like cryptosystem which uses GF (q)-subcodes
of GM codes. By taking a GF (q)-subcode of a matrix code, we destroy the
underlying GF (qm) structure inherited from the original GF (qm)-linear code.

In order to facilitate the implementation and to allow a simpler enumera-
tion, we limit ourself to codes C which admit a systematic generator matrix,
and subcodes of q-ary codes which also admit a systematic generator matrix
without additional permutation. This restriction does not decrease the security
of our protocol. Indeed, up to a permutation of coordinates any code admits a
systematic generator matrix.

If G = (Ikm|R) is a GF (q) generator matrix of a q-ary image code of para-
meters [nm, km], then H = (−RT |I(n−k)m) is a generator matrix of the dual.
Let s be an integer which corresponds to the targeted loss of dimension. In order
to construct any subcode of C, we randomly choose a s × km − s matrix L with
coefficients in GF (q). Set U = (L|Is|0s,(n−k)m). The matrix U is a s × n matrix

of rank s. We construct a parity matrix H ′ =
(

U
H

)
.

In the sequel, we fix n = m, which leads to Gabidulin codes having the
greatest possible length. In practical application, q = 2 or q = 2u for small u
(typically 1 ≤ u ≤ 5).

Algorithm 1. Derivation Key Algorithm
– Choose a random matrix B0 ∈ GL(q, n).
– Choose a random matrix B1 ∈ GL(q, n).
– Compute G′ = ΨB0,B1(G). Let Gsyst = (Ikn |R) be the systematic generator matrix

of the code C′ generated by G′. Set H = (BT | I(n−k)n).
– Choose a random s × kn − s q-ary matrix L. Set U = (L | Is | 0s,(n−k)n). Set

H ′ =

(
U

H

)
.

– Public key: the systematic generator matrix Gpub of the code Cpub with parity
check matrix H ′.

– Secret keys: B0 and B1

Note that the matrix L is not secret, since it can be computed from the
inverse systematic form of the dual of Cpub. However, its knowledge does not
allow to recover H.



256 T. P. Berger et al.

The code Cpub is an n × n matrix code of q-ary dimension k′ = km − s =
(k − 1)n. The knowledge of B0 and B1 (and indeed those of G and B) allows to
decode up to t rank errors on Cpub.

Algorithm 2. Encryption
– Let x ∈ GF (2)km−s be the message to encrypt.
– Using Gpub, compute the corresponding matrix codeword c.
– Choose randomly a n × n matrix e of rank t.
– Output the cipher text y = c + e.

Algorithm 3. Decryption
– Using the secret parameters and the Gabidulin decoder, recover e from y.
– Recover x from c = y + e.

4 Security Analysis

In this section, we consider the security of our problem. First we consider the
general problem of subcode equivalence problem for rank metric that is proven
hard, then we define our security assumption that the Gabidulin matrix subcodes
are indistinguishable from random matrix codes. There are essentially two fam-
ilies of attacks: the structural attacks, where the attacker tries to find the secret
key or an equivalent secret key, and the decoding brute force attacks, which use
decoding techniques for random codes. Under our security assumption the best
brute force attacks correspond to attacking the MinRank problem (the Rank
Syndrome problem in the case of matrix codes with rank metric), and we give
security arguments for our assumption regarding recovering the structure of the
Gabidulin equivalent subcode.

4.1 Subcode Equivalence of Matrix Codes Is NP-complete

We are interested in the following problem: given two linear codes C and D, is
there a linear isometry for rank metric f such that f(D) is a subcode of C?

We will first have a look on this problem in the context of Hamming met-
ric. Let K be a finite field. A monomial transformation is a permutation of
coordinates followed by a scalar multiplication of each coordinate by a non-zero
element of K. If K = GF (2), a monomial transformation is simply a permutation
of coordinates of codewords. It is well-known (see e.g. [17]) that the isometries
of K-linear codes for the Hamming metric are exactly the monomial transfor-
mations.
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The subcode Hamming metric equivalence code for binary codes is as follows:

Problem 3 (Subcode equivalence of binary codes, SEBC). Given two binary codes
C and D of parameters [n; k] and [n; k′], k′ ≤ k, is there exists an isometry for
the Hamming metric π such that π(D) is a subcode of C?

Recently, it was proved in [6] that for binary codes and Hamming metric,
this problem is NP-complete, even if checking if a code is a subcode of another
is easy, and the equivalence problem itself is easy in most of cases.

The corresponding decision problem for binary array codes and rank metric
is the following:

Problem 4 (Subcode equivalence of matrix codes, SEMC). Given two binary n×n
matrix codes C and D. Is there exist an isometry ΨB0,B1 such that ΨB0,B1(D) is
a subcode of C?

In this section, we will prove that this problem is also NP-complete.
A binary code C of length n can be embedded in a n × n matrix code by

identifying codewords of length n with diagonal matrices of size n×n. We denote
by Diag(C) the corresponding rank code. The most important fact is that the
Hamming weight of a codeword is the rank of the corresponding diagonal matrix.

Before proving our result we will recall the MacWilliams extension theorem.
The original proof of this theorem is in her thesis [19], another reference is [8].

Theorem 2. Let C and C ′ be two linear codes of length n over a finite field K.
If there exists a linear isometry for the Hamming distance f such that f(C) = C ′,
this isometry can be extended to the whole space Kn. In other words there exists
a monomial transformation ξ of Kn such that f is the restriction of ξ to C.

Note that this extension theorem is for the Hamming metric. To our knowl-
edge, it was not studied in the context of rank metric.

Theorem 3. Subcode rank metric equivalence of binary matrix codes is NP-
complete.

Proof. It is sufficient to reduce this problem to the binary codes for the Hamming
distance. Suppose that we are able to solve SEMC. Let C and D be the entries of
the subcode equivalence problem for binary codes and Hamming distance SEBC.
We apply SEMC to their diagonal n × n matrix representations Diag(D) and
Diag(C).

Suppose that there exists an isometry ΨB0,B1 which solve this problem. Let
Δ′ = ΨB0,B1(Diag(D)) be the image of Diag(D) by ΨB0,B1 . Since Δ′ is a subcode
of Diag(C), its elements are diagonal matrices and there exists a binary code D′

such that Diag(D′) = Δ′. Clearly, D′ is a subcode of C. The most important
point of the demonstration is the fact that the rank metric isometry ΨB0,B1

between Diag(D) and Diag(D′) induces a Hamming metric isometry f between
D and D′. Applying the MacWilliams extension theorem to f , it can be extended
to a permutation of GF (2)n and the answer to the problem is “yes”.

Reciprocally, if there exists a permutation π of GF (2)n which solves the
problem for the binary codes, the rank metric isometry ΨΠ−1,Π is a solution of
the SEMC problem for the corresponding diagonal matrix codes.
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4.2 Security Assumption

Our security assumption can be written as follows:

Assumption 1. It is hard to distinguish an array code C which is equivalent for
the rank metric (in the meaning of Definition 5) to a Gabidulin matrix subcode
from a random matrix code with the same length and dimension.

We saw in the previous section that the general matrix subcode equivalence
problem was hard for rank metric, the previous assumption permits to consider
the special subcase of equivalent Gabidulin matrix subcodes. In practice the
equivalent Gabidulin matrix subcode structure corresponds to the public key
of our cryptosystem. In the following we consider several attacks on the equiv-
alent Gabidulin matrix subcode structure to justify our assumption. The next
two sections consider the case of the Overbeck’s distinguishing attacks, we then
consider algebraic and classical MinRank attacks.

4.3 Reconstruction of a Subcode of a q-Ary Image

Even if the subcode equivalence problem is NP-complete for matrix codes, we
have more information since our starting point is the q-ary image. In this context,
we can define the following problem:

Let C be a subcode over GF (q) of a q-ary image of a code C of parameters
[n; k]qm relative to a basis B. The dimension of C is k′ = km−s, thus s is the loss
of dimension of the subcode. In addition, without loss of generality, we suppose
that both C and C admit a generator matrix under systematic form.

Problem 5 (Reconstruction of a subcode of a q-ary image). Given the systematic
generator matrix G = (Ik′ | Rk′,nm−k′) in the E-code representation of C, the
integers n, m, k and s, recover C and B, or equivalent parameters such that C
is a subcode of the q-ary image of C relative to the basis B.

We propose two algorithms to solve this problem.

Enumeration of Basis B. A first idea is to enumerate all the GF (qm) linear
codes with required parameters, their q-ary images, and then to test if the public
code is a subcode of this q-ary image. One can notice that, in order to construct
all the q-ary images of a code, it is necessary to try almost all possible basis B.

In fact, it is easy to avoid the enumeration of GF (qm) linear codes. Suppose
we have found the right base B. Using the inverse of ΦB (cf. Definition 6), from
any codeword of C one obtains a codeword of C. If we compute all the codewords
associated to the rows of a generator matrix of C, we obtain km−s codewords of
C, which generate by GF (qm) linearity the code C, or at least a GF (qm) subcode
of C. Following this remark, we propose an algorithm to solve our problem. The
code C is defined by a systematic generator matrix G = (Ik′ | R).

For a practical implementation, one can compute Φ−1
B on each row of G and

perform simultaneously the Gaussian elimination. If B is not a good candidate,
the test needs in average to test the rank of k + l rows for a small l (typically,
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Algorithm 4. Enumeration of basis
– Input: m, n, k, s and G = (Ik′ | R).
– For all B, compute G′ = Φ−1

B (G), i.e. apply Φ−1
B to each row of G.

– If rankGF (qm)(G
′) ≤ k then return B and G′ (a generator matrix of C).

l = 1 or 2). In addition, from the fact that G is under systematic form, there is
no additional Gaussian elimination for k + l ≤ k′, but just a normalization of
the leading coefficient of each row.

Without going into the technical details, the fact that the rank of the matrix
does not increase in a generic way can be observed as soon as we apply Φ−1 to
the second row of G′.

From a given code C, a fixed q-ary image is obtained by a basis B up to a scalar
multiplication in GF (qm), i.e.if α is a multiplicative generator of GF (qm)∗, any
basis M i

αB, 0 ≤ i ≤ qm − 1, leads to the same q-ary image.
In addition, we have to look at the action of Frobenius map on GF (qm)-linear

codes. We denote by Mq the matrix representation of θq relative to the basis B.
It is easy to verify that the q-ary image of C relative to MqB is equal to the q-ary
image of Θq(C) relative to the basis B.

We can now evaluate the cost of our algorithm.

Let Nq,m =
m−1∏
i=0

(qm − qi) be the size of the linear group GL(q,m).

The full cost of this algorithm is cNq,m/(m(qm−1) where c is twice the cost of
an inversion and nm−k′ multiplications in GF (qm): c ≈ 2(nm−k′)m×(q−1)/q
where (q − 1)/q is the expectation for a coefficient to be nonzero. In addition,
Nq,m ≈ const qm(m+1)/2 with (q − 1)/q ≤ const ≤ 1.

One can notice that the value of s has practically no effect on this complexity.
For our practical implementation, m = n = s, k  m/2 and q = 2, thus our

complexity is approximatively m2/4 × 2m(m−1)/2.

Reconstruction of the Special Form of the Parity Check Matrix. From
G we deduce an anti-systematic (i.e.a systematic matrix for the inverse order)
parity check matrix H ′′ = (RT | Inm−k′). A first remark is the fact that the s
first rows of matrix H ′′ gives directly the matrix U in the subcode construction
given in Sect. 3. So the matrix L cannot be secret.

To solve our problem, we naturally try to recover the generator matrix of the

dual of the form H ′ =
(

U
H

)
.

In a first step we will focus on recovering only one block of m rows of H
corresponding to the GF (qm) structure. Looking at the m last rows of H ′′, we
know that, for each of these m rows, there exist a linear combination of the rows
of L which corresponds to the difference between the m last rows of H and of
H ′′.

We deduce the following algorithm.
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Algorithm 5. Reconstruction of parity check matrix
– Input: m, n, k, s and H ′′ = (RT | Inm−k′).
– Let L and M be respectively the matrix corresponding to the s first rows, respec-

tively the m last rows, of H ′. Set V the code generated by L. For all element
(�1, ..., �m) ∈ V m, compute M ′ = M − (�1, ..., �m)T .

– Extract the first m columns of M ′. Set Mβ be the corresponding m × m matrix.

If Mqm−1
β = Im, then we have found with hight probability a suitable matrix

representation of GF (qm) and we can construct a corresponding basis B
– return B and the corresponding element (�1, ..., �m) ∈ V m.

We do not specify all details and possible improvements in order to recover
completely the code C. Clearly, the cost of this algorithm is qms tests. We neglect
some marginal operations and consider only the computation of Mqm−1

β for each
test, which leads to a cost of m2 products of matrices of size m. The full cost of
this algorithm is about m4qms operations.

In our implementation, we choose s = m, thus, for this value of s, this attack
is more expensive than the previous one.

In conclusion of this paragraph, following Sect. 4.1, we assume that Problem
5 is difficult.

4.4 Reconstruction of Subcodes of GM Codes

Clearly, the methods described in Sect. 4.3 can be directly applied to subcodes of
GM codes. The parameters for cryptographic applications must take in account
this kind of attack.

The additional problem for subcodes of GM codes is the possibility to use
some specific property of Gabidulin codes. The specific properties of Gabidulin
codes are derived from the use of the Frobenius map in their construction. It
is not surprising that the only known distinguisher against Gabidulin codes is
those of Overbeck, which is based on the use of the Frobenius map [24].

Overbeck’s Distinguisher for Gabidulin Codes

– For a random code C of length n and dimension k, the dimension of the code
generated by C ∪ Θq(C) is close to min(2k, n)

– For a Gabidulin code, this dimension is k + 1.

Note that this is the dual property we used in Sect. 2.3 in order to recover
the support of a Gabidulin code from a generator matrix of the code.

Our problem now is to identify the action of the Frobenius map on a subcode
of a GM code. A first remark is that if we identify the action of the Frobenius
map on our code, the Overbeck distinguisher holds for subcodes of a GM codes,
since the rank of C∪Θq(C) is overbounded by (k+1)m instead of 2k′ = 2km−2s
in the general case.
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The Frobenius map is a GF (q)-linear isomorphism of GF (qm). It admits a
matrix representation in GL(m, q). In addition, if the basis B is a normal basis,
this matrix is those of the circular shift. We denote by S ∈ GL(m, q) the matrix
of this circular permutation.

To identify the Frobenius map in a random basis B, we have to test the
action of the conjugates of S by the elements of GL(m, q), and then to apply
the Overbeck distinguisher.

Algorithm 6. Overbeck distinguisher on subcodes of GM codes
– Input: m, n, k, s and C given by a generator matrix G = (Ik′ | R).
– For all B ∈ GL(m, q), compute B′ = B−1SB.
– Compute a generator matrix G′ of C + ΨB,In(C).
– If rank(G′) ≤ km, then return B (which gives the underlying GL(qm) structure).

As previously, a good candidate B is obtained up to the action of a multiple
of a Frobenius map and the action of the cyclic matrix group of order qm − 1
corresponding to the scalar multiplications in GF (qm). Note that each iteration
requires a matrix inversion and two matrix multiplications.

The cost of this algorithm is 3m2Nq,m/(m(qm − 1)) which is a bit greater
than those of Algorithm4.

In consequence, for s ≥ m/2, the structural security can be underbounded
by the cost of Algorithm 4.

4.5 Algebraic Attacks

We consider the equations obtained from the multiplication of G′ by H ′. Here,
the algebraic attack consists in solving a bihomogeneous system of bidegree (1, 1).
We directly apply results from [11] in order to evaluate the complexity of the
approach and to test security parameters with respect to this attack. The system
has two sets of variables, namely the entries of the matrix B0 and the entries of
the matrix B1 respectively and the system is homogeneous and of degree at most
1 with respect to these sets of variables. The matrix B0 has size m × m and it
has m2 entries and B1 has size n×n and it has n2 entries. Applying bound given
in [11], the regularity dreg of the ideal associated to the system is bounded by
min(m2 +1, n2 +1) ([11] Theorem 6). Then the complexity of solving is bounded
by O

((
m2+n2+min(n2+1,m2+1)ω

min(n2+1,m2+1)

))
where ω is the exponent of the linear algebra.

This is an upper bound of the cost of solving the system, but we implement in
magma some tests and the growth of the regularity of the system is closed to the
bound even if you had to stop to m = 8 because computations did not finished
for higher values.
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4.6 Decoding Random Matrix Codes for Rank Metric

Decoding a random m × n matrix code of dimension k′ corresponds to solve the
problem MinRank on the matrix code to which the encrypted word has been
added. The MinRank problem is a well-known NP-hard problem. The cost of
the best algorithms to solve this problem is c × qtk′/n, where t is the rank of the
error and c  n2.3 is the cost of the linear algebra [16].

For our parameters, n = m, s = m, q = 2, k′ = m(k−1) and t = 	(n − k)/2
,
which gives m2.32t(k−1).

5 Practical Applications

In this section, we will first derive directly from Sect. 4 some parameters suitable
for cryptographic applications in McEliece like public key encryption schemes.

We also present a variant using an intermediate subfield in order to decrease
significantly the size of the public key.

5.1 Parameters for Binary Subcodes of GM Codes

We choose the following parameters: q = 2, n = m, k = m/2 and s = m. We fix
a basis G of GF (2m) over GF (2). We construct a generator matrix of GabG,k.

The minimum rank distance of this code is d = n−k +1, its error correcting
capacity is t = 	(d − 1)/2
.

We choose a basis B of GF (2n over GF (2) and compute a generator matrix
G of the q-ary image C of GabG,k relative to B.

The matrix G can be public, since the choices of G and B are randomized in
the derivation key algorithm.

The size of the public key under systematic form is k′(nm − k′) = (km −
s)((m − k)m.

Practical Instantiation. We propose two sets of instantiation, with a respec-
tive level of security greater than 128 bits and 256 bits.

The cost of the structural attack is those of the basis enumeration, which is
m2/4 × 2m(m−1)/2. The cost of the brute decoding attack is those of MinRank,
which is m2.32t(k−1).

m k Message Cipher text MinRank Structural Public key

32 16 480 bits 1024 bits 2131 2504 31.8 KB

46 24 1058 bits 2116 bits 2265 21044 136.6 KB
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Table 1. Security: 128 bits

u m k Message Cipher text MinRank Structural Public key

1 32 16 480 bits 1024 bits 2131 2504 31.8 KB

2 34 18 544 bits 1156 bits 2139 2279 20.3 KB

3 36 16 468 bits 1296 bits 2141 2204 15.7 KB

4 36 16 432 bits 1296 bits 2131 2150 11.3 KB

5 40 15 400 bits 1600 bits 2132 2145 11.7 KB

5.2 Intermediate Subfield

The payload for masking the GF (2m) structure of a code is the fact that it
becomes a GF (2)-linear code. In consequence, it implies a multiplicative factor
m on the size of the public key.

A possible compromise to decrease this factor is the following: the starting
point remains a Gabidulin code over GF (2m), however, the q-ary image can be
taken on q = 2u, where u is a small divisor of m, typically 2 ≤ u ≤ 6. It allows
to describe the public code as a linear code over GF (q), which decreases the size
of the key of a factor u. Obviously, all security settings must be adjusted to this
context.

The most important fact is a change in the decoding algorithms for random
codes. Indeed, the matrix codewords have entries in GF (2u) while the rank these
matrices is a binary rank. Clearly, the attacks derived from the MinRank prob-
lem remains effective, however, we have also to look at the attacks on decoding
GF (q)-linear code for binary rank metric. In practice, for our choice of para-
meters, decoding attacks are no more effective than solving the corresponding
binary MinRank problem.

For the Overbeck attack, the action of the Frobenius must be found by apply-
ing the Frobenius x �→ x2 to the coordinates of matrix codewords (i.e.to elements
of GF (2u), end then by searching a matrix representation of x �→ x2u

in GL2u(v).

So the number of possibilities becomes Nv,2u/v(2m − 1) = v−1
v−1∏
i=1

(qm − qi)with

q = 2u. Note that we do not take in account the cost of a verification. So this
security level is not a tight lower bound. In addition, we checked that the action
of the Frobenius map without a complementary search of the matrix represen-
tation of the second frobenius map does not allow a distinguisher similar to the
Overbeck one.

The following tables show some possible parameters having a security level
respectively greater than 128 bits and 256 bits. As previously, we fix m = n and
s = m. We have incorporated our previous proposition into these tables (Tables 1
and 2).

The cost for MinRank remains unchanged: m2.32t(k−1). k′. The cost of the
structural attack becomes (v(q − 1)/q)2 × 2m(v−1)/2.
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Table 2. Security: 256 bits

u m k Message Cipher text MinRank Structural Public key

1 46 24 1058 bits 2116 bits 2265 21044 136.6 KB

2 48 23 1008 bits 2304 bits 2264 2560 79.7 KB

3 48 24 1008 bits 2304 bits 2264 2367 53.1 KB

4 52 21 884 bits 2704 bits 2268 2319 49.0 KB

5 55 21 880 bits 3025 bits 2285 2281 46.0 KB

5.3 Comparison with Other Proposals

For the same level of security (at least 128 bits), the original McEliece cryptosys-
tem must use a binary Goppa code of parameters [4096,3556,91] which leads to
a public key of size 938 KB. The size of the message must be 3556 bits and the
size of the ciphertext 4096 bits.

The only non-broken McEliece like cryptosystem based on rank metric is
those presented in [18]. The size of public key are similar to our results. For
instance the first proposition of parameters with a security level greater than
128 has the following values: n = 64, m = 96, k = 40, decoding security  2139,
key recovery security:  2188, size of public key: 11.5 KB.

The main advantages of our proposition is a smaller length of cipher text
(1296 bits versus 6144) and a more efficient decoding algorithm, since we work
in the finite field GF (2m) with m ≤ 40 instead of m = 96 (Table 3).

Table 3. Comparison with other McEliece like PKC, security: 128 bits

McEliece like PKC Cipher text Public key

Our proposal 1296 its 11.3 KB

Hiden Gabidulin codes [18] 6144 bits 11.5 KB

Classical Goppa Codes [20] 4096 bits 938 KB

6 Conclusion

In this paper we described a new approach to use the good properties of Gabi-
dulin codes in a McEliece encryption setting. The results we obtain is a good
tradeoff for a cryptosystem with a small ciphertext size. We succeed in obtaining
a ciphertext of the same order than the classical Goppa-McEliece scheme but
with a gain of a factor of order 10 on the size of the public key. Our system is the
code-based cryptosystem with the smaller public key size for a cipher text of size
of order only 1 Kbit. The paper also presents results of independent interests for
code-based cryptography on structural properties of matrix Gabidulin codes or
on the hardness of the subcode equivalence matrix codes problem.
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Abstract. Serial matrices are a preferred choice for building diffusion
layers of lightweight block ciphers as one just needs to implement the
last row of such a matrix. In this work we analyze a new class of serial
matrices which are the lightest possible 4 × 4 serial matrix that can be
used to build diffusion layers. With this new matrix we show that block
ciphers like LED can be implemented with a reduced area in hardware
designs, though it has to be cycled for more iterations. Further, we sug-
gest the usage of an alternative S-box to the standard S-box used in LED

with similar cryptographic robustness, albeit having lesser area footprint.
Finally, we combine these ideas in an end-end FPGA based prototype of
LED. We show that with these optimizations, there is a reduction of 16%
in area footprint of one round implementation of LED.

Keywords: MDS matrix · Serial matrix · Recursive diffusion layer
Lightweight · S-box · LED

1 Introduction

Lightweight Cryptography is an area that is focused on research and development
of cryptographic algorithms suitable for resource constrained devices like RFID
tags, wireless sensors, etc. These kind of devices have very low resource, and
as such the usual cryptographic algorithms like AES, RSA etc. are not suitable
therein. Internet of Things (IoT) is a network of devices like RFIDs/sensors.
Therefore, lightweight cryptography plays a crucial role in securing the data that
flows in IoT network. IoT has wide applications, for example, health monitoring,
supply chain, defense, etc. Thus low area footprint and high throughput are two
key areas of focus in lightweight cryptography. Some known lightweight block
ciphers include PRESENT [3], PRINCE [4], CLEFIA [20].

Maximum Distance Separable (MDS) matrices are popular choice to build
diffusion layers of block ciphers as they have maximal branch number. Block
ciphers such as AES, Twofish, SHARK are some of the well known block cipher
using MDS matrices for diffusion. For a square matrix to be MDS it needs to
c© Springer International Publishing AG 2017
A. Patra and N. P. Smart (Eds.): INDOCRYPT 2017, LNCS 10698, pp. 267–281, 2017.
https://doi.org/10.1007/978-3-319-71667-1_14
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satisfy the condition that its every possible square sub matrix has to be non
singular. This requirement makes it challenging to find MDS matrices having
efficient implementation in hardware.

In [11] the metric XOR count that measures the implementation cost of a dif-
fusion matrix is introduced. Using this metric one can find MDS matrices which
can be efficiently implemented in resource constrained environment. In the recent
document produced by NIST [14], the requirement of simpler rounds as a light-
weight design principle was emphasized wherein a simple round is iterated over
multiple cycles to achieve the desired security. This idea popularized by the light-
weight hash function, PHOTON [6] and block cipher, LED [7]. However, it is an
open research problem of striving to find further lightweight constructions which
can be iterated multiple times to obtain the desired security levels. This method
provides an effective mechanism of obtaining lightweight implementations, while
not compromising on security, albeit at the cost of extra clock cycles. While for
lightweight applications, the gate count of the design is of utmost priority, which
can be achieved at the penalty of extra clock cycles, in some applications it may
be also a constraint to ensure that the latency does not blow up significantly.
This may be important specifically in those environments where energy is also
of utmost importance. Hence, it is an interesting research problem of finding
lightweight primitives, like linear layers, S-boxes, which can be iterated or cas-
caded to obtain the same security. On the other hand, the architecture should
also amortize the extra latency by employing suitable techniques, which we also
strive to find in this work.

In this paper we first explore lightweight recursive MDS layers and show that
these diffusion layers can be constructed in terms of serial matrices which have very
low XOR count. Known use of 4×4 serial matrices like [6,7] involve matrices S such
that S4 is MDS. We extend this idea by finding new lightweight serial matrices S for
which Si are MDS for i > 4. First we characterize the MDS property of 4 × 4 ser-
ial matrices, where the last row has three 1’s (Theorems 1 and 2). We show specific
constructions of these lightweight serial matrices (Theorem 2), and show that there
exist a matrix with XOR count of 13 (Corollary 1), which is lesser than that of the
lightest serial matrix (used for LED), where the XOR count is 16. However, this new
matrix needs to be iterated 8 times, while that for LED needs to be repeated for 4
times. In the subsequent part of the paper, we strive to develop a lightweight design
of a LED round in hardware, wherein the twice increase in cycles is amortized by a
multiple-clock design. In this design, the linear layer which has much lesser critical
path compared to the overall critical path (which also includes the S-box), can be
operated by a faster clock compared to the overall cipher. Furthermore, we show
that ensuring the same cryptographic strength as that of the LED S-box, one can
replace with compositions of smaller non-linear S-boxes which have similar robust-
ness, though at a lesser hardware cost. Finally, we combine these ideas and show
that the area can be saved by 16% as compared to the original design. However, our
design has 30%higher latency.Note that amajor application of lightweight encryp-
tion is to secure data in IoTnetwork,where lowarea footprint is always a key factor.
requirement of the other lightweight features like throughput, energy, etc., depends
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on the applications. For example, if we consider environment monitoring as an IoT
application, then we can afford some latency in the encryption algorithm, as this
application does not require immediate action upon receiving the data from the
environment. However, as the devices are low resourced, it becomes important to
decrease the area footprint as low as possible.

Rest of the paper is organized as follows: in Sect. 2 we recall some intro-
ductory results on serial matrices, XOR counts followed by Sect. 3 in which we
present some new recursive MDS matrices defined by extremely lightweight ser-
ial matrices. In Sect. 4 we describe details of implementation of or new primitives
in LED block cipher and the resulting optimizations.

2 Preliminaries

Here we briefly recall some basic facts about linear diffusion layers and MDS
matrices. Denote by F2m finite field of size 2m. For any x = (x0, . . . , xn−1) ∈ F

n
2m

its m-weight wtm(x) (or simply wt(x) when there no ambiguity) is the count of
non zero elements in x. An n × n linear diffusion layer over m-bit words is a
linear map T : Fn

2m −→ F
n
2m . Diffusion property of T is measured in terms of

differential branch number, which is defined as

BN(T ) = min
x∈F

n
2m ,x �=0

{wt(x) + wt(T x)}.

It is well known [5, Chap. 9] that BN(T ) ≤ n + 1 and a diffusion layer that
attains the maximum is known as perfect diffusion layer1. Linear diffusion layers
are closely connected with MDS codes. Let C = [2n, n] be a linear code defined
over F2m . Suppose that [I|C] is a generator matrix of C, where I is n×n identity
matrix and C is a non singular matrix of the same size. Such a code is MDS
if the minimum distance of the code attains Singleton bound [13], i.e., if the
minimum distance is 2n − n + 1 = n + 1. Note that the matrix C can be used
to define an n × n linear diffusion layer over F2m and the code C is MDS if and
only if BN(C) = n + 1. Extending the notion of MDS codes to matrices, we say
that the matrix C is MDS if the code C is MDS. Another independent way of
characterizing an MDS matrix is given below which we will be using to check if
a given square matrix is MDS:

Fact 1 [13, Chap. 4]. An n × n matrix M over F2m is MDS if and only if every
square submatrix of M is nonsingular.

2.1 XOR Counts

The finite field F2m is also a m dimensional vector space over F2. This vec-
tor space has several bases but we use only the polynomial basis given by
1 The term “perfect diffusion layer” was coined by Vaudenay in [22] wherein he sug-

gested for the first time that MDS matrices can be used to design linear diffusion
layers.
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{α, α2, . . . , αm−1} where α is the root of the irreducible polynomial that defines
F2m over F2. The notion of XOR count defined below, was introduced in [11] to
measure the cost of field multiplication in F2m .

Definition 1. Let B be a vector space basis of F2m over F2. For any a ∈ F2m

the XOR count of a with respect to B is denoted by XOR (a) and is defined as
the number of XOR s needed to implement the field multiplication of a with an
arbitrary element b ∈ F2m .

Though the XOR count of a depends on basis of F2m , we simply denote it by
XOR (a) whenever there is no ambiguity. Using this metric one can find diffusion
matrices which can be efficiently implemented.

The linear diffusion layers in block ciphers are defined by MDS matrices. In
[11] the notion of XOR count of an element was extended to XOR count of a
row of a matrix. Suppose Ri is a row Ri = (βi,0, . . . , βi,n−1) ∈ F

n
2m of a matrix.

Denote by ρi the number of non zero entries in Ri, then the XOR s needed to
implement row Ri is given by

n−1∑

j=0

XOR (βi,j) + (ρi − 1) · m. (1)

This notion of XOR count was further extended to the full matrix in [18] as

XOR (M) =
n∑

i=0

n−1∑

j=0

XOR (βi,j) +
n∑

i=0

(ρi − 1) · m, (2)

where M is an n × n matrix over F2m . In this paper we are mainly focused on
Serial matrices, in which we only need to know the cost of the last row (1).

Based on the notion of XOR count several works followed [12,17,21] in order
to obtain MDS matrices with low XOR counts. For instance, [18] showed the
minimum value of XOR count that 4 × 4 MDS matrices can have over F24 and
F28 . Recently [19] presented 8 × 8 MDS matrices with the lowest known XOR
counts over F24 and F28 .

3 Recursive MDS Matrices

A serial matrix of order n × n over F2m is a matrix of the form

S =

⎡

⎢⎢⎢⎢⎢⎣

0 1 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 1
a0 a1 . . . an−1

⎤

⎥⎥⎥⎥⎥⎦
, (3)
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which is usually denoted by S = Serial (a0, . . . , an−1). The matrix S is companion
matrix of the monic polynomial a0+a1X + . . .+an−1X

n−1+Xn ∈ F2m [X] with
a0 �= 0. One can easily see that inverse of S is

S−1 =

⎡

⎢⎢⎢⎢⎢⎣

a1
a0

a2
a0

. . . an−1
a0

1
a0

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

0 0 . . . 1 0

⎤

⎥⎥⎥⎥⎥⎦
. (4)

By a recursive MDS matrix we mean a MDS matrix M such that M = Si

for some serial matrix S and positive integer i. Recursive MDS matrices are a
preferred choice for diffusion layers in lightweight cryptography as only the last
row of such a matrix needs to be implemented. However, the downside is that
it causes latency since the output of diffusion layer is obtained by applying S
recursively as

(y0, . . . , yn−1) = S . . . (S︸ ︷︷ ︸
i times

(x0, . . . , xn−1)) . . .). (5)

An additional advantage of using recursive MDS matrix in block cipher is that
its inverse also has simple form (as in (4)) and can be implemented efficiently.

Several techniques have been proposed to construct recursive diffusion layers.
In [1,16,23] authors presented construction of recursive diffusion layers using
binary linear maps instead of matrices defined over F2m . Later Augot and Finiasz
constructed recursive MDS matrices from shortened BCH codes [2] following
which more general characterization of Recursive MDS matrices is presented in
[8,9]. In [10] authors discussed construction of 4 × 4 MDS matrices from serial
matrices defined over sets of the form {1, α, α2, α + 1} ⊂ F2m .

3.1 Lightweight Recursive MDS Matrices

If S = Serial (a0, . . . , an−1) is an n × n serial matrix defined over F2m then it
is easy to see that the least possible value of i for which Si is MDS is i = n.
Consequently while constructing such MDS matrices the usual practice is to
find an n × n serial matrices S for which Sn is MDS. This is done mainly to
minimize throughput latency: If Si is MDS then we need i iterations to compute
the output y = (Si) ·x (see (5)) and hence optimal throughput is achieved when
i = n. However, it is possible to find new lightweight serial matrices S such that
Si is MDS if we assume i ≥ n.

In this section we present some new lightweight recursive MDS matrices which
have not been analyzed so far. To begin we briefly recall some terminology from [2]
which will be useful in presenting new results. Suppose S = Serial (a0, . . . , an−1) be
the companion matrix of the polynomial f(X) = a0+a1X+. . .+ an−1X

n−1+Xn

defined over F2m . We can interpret the matrix S as
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S =

⎡

⎢⎢⎢⎢⎢⎣

0 1 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 1
a0 a1 . . . an−1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

X
X2

...
Xn−1

Xn mod f(X)

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(∗)

(6)

where elements of each row in the matrix (∗) consists of coefficients of the poly-
nomial given in that row. With these notations it is easy to see that for any
i ≥ 1 the matrix Si is given by

Si =

⎡

⎢⎢⎢⎣

Xi mod f(X)
Xi+1 mod f(X)

...
Xi+(n−1) mod f(X)

⎤

⎥⎥⎥⎦. (7)

Recall that in general one is interested in n × n serial matrices S for which Sn

is MDS in order to optimize the throughput. However in many cases it is not
possible to obtain such MDS matrices. In the following we identify two such
classes.

Lemma 1. Let n ≥ 4 and S = Serial (a0, . . . , an−1), be defined over F2m . Then
Sn is not MDS if an−1 = an−2 = 1 or an−1 = an−3 = 1.

Proof. Suppose f(X) = a0 + . . . + an−1X
n−1 + Xn be the the polynomial asso-

ciated with the matrix S. We define c, ci as follows. Let c = a2
n−1 + an−2 and for

i = 0, . . . , n − 3,
ci = ai · an−1 + ai−1, (8)

where we use the convention that ai = 0 for i < 0. Using these notations one
can check that

Xn+2 mod f(X) = a0 · c +
n−2∑

i=1

(ai c + ci−1)Xi + (a3
n−1 + an−3)Xn−1. (9)

From (7) it follows that the coefficients occurring in above polynomial form
third row in the matrix Sn. If an−1 = an−2 = 1 then we get that c = 0 and
consequently the matrix Sn is not MDS. Similarly if an−1 = an−3 = 1 then the
coefficient of Xn−1 in (9) becomes zero and the matrix Sn is not MDS. 	

Lemma 2. Let S = Serial (a0, . . . , an−1) be a matrix defined over F2m . Then Sn

is not MDS if ai−1 = ai = an−1 = 1 for any i = 1, . . . , n − 2

Proof. Using ci as in (8) we have

Xn+1 mod f(X) = a0an−1 +
n−2∑

i=1

ciX
i + (a2

n−1 + an−2)Xn−1 (10)
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coefficients of which occur as second row in the matrix Sn. Here we have defined
cn−2 precisely as in (8). If ai−1 = ai = an−1 = 1 for any i = 1, . . . , n − 2 then
ci = 0 and hence the matrix Sn is not MDS. 	

While searching for lightweight recursive MDS matrices one would like to con-
sider the lightest possible serial matrix, S = Serial (1, . . . , 1) which consists of
only ‘1’ as entries. However, one can easily check that in this case Si is not MDS
for any i ≥ 1. We state this observation as a fact:

Fact 2. Let S = Serial (1, . . . , 1) be an n × n be defined over F2m . Then Si is
not MDS for any i ≥ 1.

Following Fact 2, the lightest possible recursive matrix could be of the form
S = Serial (a0, . . . , an−1) where ai �= 1 for some 0 ≤ i ≤ n − 1 and aj = 1 for
every 0 ≤ j �= i ≤ n−1. Our objective is to find the lightest possible such matrix
for which Si is MDS with the minimum i ≥ n.

In practice size of the diffusion matrix used in a lightweight block cipher is
4×4. Keeping this in mind we fix n = 4 in the remaining part of this Section. In
[10] authors show that if S = Serial (a0, a1, a2, a3) is such that ai = 1 for more
than 2 values of i then S4 is never MDS over F2m . If we relax the condition that
S4 need to be MDS and consider matrices such that Si is MDS for i > 4, then
we get new serial matrices which are the lightest possible. In the following we
analyze MDS property of Si, where S = Serial (a0, a1, a2, a3) such that ai = 1
for 3 values of i.

Theorem 1. Let S = Serial (a0, a1, a2, a3) be a serial matrix defined over F2m

in which ai = 1 for precisely 3 values of i. For 1 ≤ i ≤ 8 the matrices Si are not
MDS if

(i) S = Serial (a, 1, 1, 1)
(ii) S = Serial (1, a, 1, 1)
(iii) S = Serial (1, 1, 1, a),

where a /∈ {0, 1}.

Proof. Let S = Serial (a0, a1, a2, a3) be a serial matrix defined over F2m . From
(7) it follows directly that for i = 1, 2, 3 the matrix Si has 0 entries and hence
cannot be MDS. Remains to show that Si is not MDS for 4 ≤ i ≤ 8 whenever S
is in any of the form (i), (ii), (iii) as given in theorem. We do this by considering
each form separately. In the following we denote the polynomial associated with
the serial matrix S by f(X).

Case 1. S = Serial (a, 1, 1, 1), a /∈ {0, 1}.
The polynomial corresponding to the serial matrix S is f(X) = a + X + X2 +
X3 + X4 from which it follows that

X7 mod f(X) = 0 + 0 · X + aX2 + (a + 1)X3.

Note that this polynomial has zero coefficients and that these coefficients form a
row in the matrices Si for 4 ≤ i ≤ 7 as can be seen from (7). Consequently none
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of these matrices can be MDS. Using same argument we see that the matrix S8

cannot be MDS because the coefficients of

X10 mod f(X) = a2 + 0 · T + (a2 + 1) · T 2 + 0 · T 3.

form a row in this matrix.

Case 2. S = Serial (1, a, 1, 1), a /∈ {0, 1}.
In this case we see that

X7 mod f(X) = (a + 1) + (a2 + a) · X + a · X2 + 0 · X3, and (11a)

X8 mod f(X) = 0 + (a + 1) · X + (a2 + a) · X2 + a · X3. (11b)

Using the argument as in Case 1 we see that the matrices Si cannot be MDS
for 4 ≤ i ≤ 7 because of zero coefficients in (11a) and the matrix S8 cannot be
MDS because of zero coefficients in (11b).

Case 3. S = Serial (1, 1, 1, a), a /∈ {0, 1}.
Unlike previous cases, here all the matrices Si contain non zero entries for 4 ≤
i ≤ 8. However each of this matrix has a 2× 2 singular submatrix. To prove this
first note that

X7 mod f(X) = a3 + 1 + (a3 + a2)X + (a3 + a2 + a)X2 + (a4 + a2)X3 (12a)

X8 mod f(X) = a4 + a2 + (a4 + a3 + a2 + 1)X + (a4 + a3)X2 + (a5 + a2 + a)X3

(12b)

For i ≥ 1 let Ri = (ri,0, ri,1, ri,2, ri,3) where ri,j is the Coefficient of Xj in
the polynomial (Xi mod f(X)). Using (7) we know that R7, R8 occur as two
consecutive rows in the matrices Si for i = 5, 6, 7. From (12a) and (12b) it is
easy to see that r7,0r8,2 + r8,0r7,2 = 0 which implies that the matrices Si have a
2 × 2 singular submatrix for i = 5, 6, 7 and hence are not MDS matrices. Finally
it remains to show that S8 is also not MDS. We have

X10 mod f(X) = (a6 + a4 + a2) + (a6 + a5 + a4 + a)X

+ (a6 + a5 + a2 + a)X2 + (a7 + a4 + a + 1)X3
(13)

and
X11 mod f(X) = a7 + a4 + a + 1 + (a7 + a6 + a2 + a + 1)X

+ (a7 + a6 + a5 + 1)X2 + (a8 + a6)X3
(14)

The rows R10, R11 occur in the matrix S8 and from (13) and (14) we see that
the sub matrix [

r10,1, r10,2
r11,1, r11,2

]
(15)

is a singular submatrix of S8 making it non MDS. 	

Theorem 2. Let S = Serial (1, 1, a, 1) be defined over F2m , then Si is not MDS
for 1 ≤ i ≤ 7. Further, S8 is MDS precisely in either the following two cases:
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(1) If the minimal polynomial of a over F2 is X4 + X + 1
(2) If the degree of the minimal polynomial of a over F2 is ≥ 5 and the minimal

polynomial is not in the set {X5 + X4 + X2 + X + 1, X5 + X3 + X2 + X +
1, X5 + X4 + X3 + X2 + 1}

Proof. Let f(x) = 1 + x + a x2 + x3 + x4 be the associated polynomial of the
serial matrix S = Serial (1, 1, a, 1) from which we can easily see that

x7 mod f(x) = 0 + (a + 1)x + a x2 + (a2 + a)x3.

Using the argument as in Case 1 of Theorem 1 we conclude that Si is not MDS
for 1 ≤ i ≤ 7.

To prove the remaining part of the theorem denote by S(x) the matrix of
the form Serial (1, 1, x, 1) where x is an indeterminate. Let Δi be the set of
determinants of all of the i × i submatrices of S8(x). We have

Δ1 = {x3 + x2 + x, x3 + x2 + x + 1, x4 + 1, x2, x2 + 1, x,

x4 + x2, x2 + x, x3 + x + 1}
Δ2 = {x6 + x5 + x + 1, x5 + x4 + x, x5 + x3 + x2 + 1, x5 + x3 + x,

x6 + x4 + 1, x6 + x2, x4 + x2, x4 + x3, x7 + x6 + x5 + x3 + x + 1,

x5 + x, x6 + x4 + x3 + x2 + x, x6, x4 + 1, x6 + x5 + x4 + x,

x7 + x5 + x3 + x, x5 + x4 + x3 + x, x8 + x6 + x2 + 1, x7 + x6 + x3 + 1}
Δ3 = {x3 + x2 + x, x3 + x2 + x + 1, x4 + 1, x2, x2 + 1, x, x4 + x2, x2 + x, x3 + x + 1}

and Δ4 = {1}.

Denote by Δ the set of irreducible factors of polynomials in Δ1 ∪ Δ2 ∪ Δ3. It is
easy to see that,

Δ = {x, x + 1, x2 + x + 1, x3 + x + 1, x3 + x2 + 1,

x4 + x3 + 1, x4 + x3 + x2 + x + 1,

x5 + x4 + x2 + x + 1, x5 + x3 + x2 + x + 1, x5 + x4 + x3 + x2 + 1}

Now, if we consider the matrix S(a) for some a ∈ F2m then S(a)8 is MDS
if and only if δ(a) �= 0 for every δ(x) ∈ Δ. One can check that this happens
precisely in either the two cases (1), (2) stated in statement of theorem. 	

Corollary 1. The matrix S = Serial (1, 1, α, 1) defined over F24 , where α is a
root of irreducible polynomial X4 + X + 1 is the lightest serial matrix such that
S8 is MDS, and XOR (S) = 13.

Proof. As Serial (1, 1, 1, 1) can never be MDS for any (Serial (1, 1, 1, 1))i, thus
the next possibility that (Serial (a0, a1, a2, a3))8 is MDS when it is of the form
Serial (1, 1, a, 1) for some a /∈ {0, 1}. The element α which is a root of X4+X+1 =
0 has the lowest nonzero XOR count which is 1. This results in that S is the
lightest serial matrix such that S8 is MDS, and XOR (S) = 13. 	
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4 Lightweight Architecture for Block Ciphers: A Case
Study on LED

In this section, we will describe the hardware implementation of datapath of typ-
ical AES-like block ciphers. We consider the particular instance of LED, though
the idea can be generalized for a larger class of block ciphers having an MDS
block as diffusion layer. Along with implementing the above discussed lightweight
linear layer, we focus on two other important aspects: (1) the design of the non-
linear S-box, and (2) the overall composition of the layers to ensure that the
two-fold increase in the iteration requirement of the modified linear layer does
not lead to a double increase in the latency. We start with discussion on the the
non-linear S-box.

We have implemented the datapath of LED, using an ASIC design flow. We
have used Synopsys Design Compiler (version: vI-2013.12-SP5-4) for synthe-
sis and Synopsys VCS (version: I-2014.03-SP1-1) for simulation. Standard cell
library (TSL18FS120) on 180 nm technology from TowerSemiconductor Ltd. is
used during synthesis, which is characterized using SiliconSmart Software (ver-
sion: 2008.02-SP1p1) under Fast-Fast process (P), 1.98V voltage(V) and −40 ◦C
temperature (T).

4.1 Choosing an Efficient 4 × 4 S-box

The 4 × 4 S-box that is used in LED has nonlinearity 4, differential uniformity 4,
and algebraic degree 3. The polynomial expression over F24 of this S-box is

(α3 + α2 + 1)x14 + (α3 + α2 + 1)x13 + (α3 + α2)x12 + (α3 + α2 + α)x11

+ (α3 + 1)x10 + (α3 + 1)x9 + (α2 + α + 1)x8 + α2x7 + (α3 + α2)x6

+ (α3 + α)x5 + (α3 + α2 + α)x4 + (α2 + α + 1)x3 + (α2 + α + 1)x2 + α3 + α2,

where α is a primitive root of X4+X+1 = 0. Instead an S-box which is monomial
would have low hardware footprint. The monomials X �→ Xi for i = 7, 11, 13, 14,
are such that the associated 4×4 S-box has nonlinearity 4, differential uniformity
4, and algebraic degree 3. We consider such monomial with the least i, i.e.,
X �→ X7. As this S-box has fixed points: 0 �→ 0, 1 �→ 1, etc., we consider
X �→ X7 + 1. The associated S-box will thus not have any fixed points, while
the other cryptographic properties like nonliearity, differential uniformity, degree
remain invariant. The proposed S-box values are shown in Table 1.

We also evaluate that the implementation cost of this S-box is lesser than that
of LED. We implement the proposed S-box function as X7 = X4×X2×X, which

Table 1. S-box defined by X �→ X7 + 1

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 1 0 A C 8 F 7 6 D 4 9 2 E 3 5 B
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Table 2. S-box properties as evaluated by S-box evaluation tool

Property Proposed S-box LED S-box

Nonlinearity 4 4

Algebraic degree 3 3

Algebraic immunity 2 2

Differential uniformity 4 4

Robustness to differential cryptanalysis 0.750 0.750

Silicon area 359 um2 391 um2

requires 2 nibble wise multiplication operation, 1 square and 1 fourth power
calculation followed by one bit XOR . We did not not choose X7 = X4 × X3,
as X3 is heavier than the 2 multiplication operations in case of the former
decomposition. Our proposed 4 × 4 S-box occupies 359 um2 area, which is 28.6
GE. Here 1 GE is the area required for one 2-input NAND gate. A 2-input lowest
drive NAND gate of our library occupies 12.544 um2 area. This design may
be compared with the standard look-up table based LED S-box implementation
occupies 391 um2, which is 31.2 GE, which is 9% more than the proposed S-box.
We compare the two designs with respect to both cryptographic strengths and
area requirement using the S-Box Evaluation Tool (SET) [15] tool in Table 2. It
may be observed that we have reduced the hardware overhead of the non-linear
layer using our proposed method without compromising on security parameters
like non-linearity, differential uniformity and degree of a typical 4 × 4 S-box as
used in LED.

4.2 Implementing Lightweight Serial Matrix

In this section we describe the implementation strategy of our new lightweight
MDS matrix and compare it with existing MDS matrix used in LED. Denote by S1

the serial matrix Serial (α2, 1, α, α) which is the existing diffusion matrix of LED
block cipher. This matrix is considered to be lightest which has XOR (S1) = 16
with S4

1 being MDS. We implemented S1 × X, where X = [x1, x2, x3, x4]t is a
column vector, each element xi of the vector is a nibble. This implementation
has hardware footprint 387.5 um2 (31 GE) comprising of six 3-input XOR gates
and two 2-input XOR gates.

Next consider the serial matrix S2 = Serial (1, 1, α, 1) as given in Corollary 1.
This serial matrix is lighter than S1 with XOR cost 13, using which MDS matrix is
calculated as S8

2. Similar to the implementation of S1, we implemented S2×X, and
hardware footprint reported by the synthesis tool is 365.4 um2 (29 GE) comprising
of five 3-input XOR gates and three 2-input XOR gates.

We design the entire data-path of LED using proposed transformation and the
overall design results show compaction. The critical path length and the overall
area of the linear layer and the entire data-path is shown in Table 3 below. From
the table it can be seen that there is saving of 16% area in the proposed datapath
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Table 3. Area and critical path time comparison for one round implementation of our
design and LED

Design Crdatapath(ns)a Crlinearlayer (ns) Adatapath (GE) Alinearlayer (GE)

LED 3.08 0.61 1244.2 123.56

Our design 2.24 0.61 1044.6 116.5
aThis latency is due to one iteration of serial matrix along with S-box implemen-
tation and shift row operation.

CLK1

CLK2

Inner
Round
Done

ShiftRow
   +
S−Box

PlainText

Round Output

Serial Matrix

Fig. 1. Datapath design of our proposed method

(1044.6 GE) compared to the original LED datapath (1244.2 GE). However, one
may argue that in the proposed linear layer result obtained by computing S8

2×X,
(X is the state matrix) requiring 8 clock cycles, whereas in the original LED design
the linear layer result is obtained from S4

1×X which requires only 4 clock cycles.
So it may seem that the new design incurs twice latency compared to the original
design for one round implementation. Our proposed S-box takes lesser time to
execute, notably, delay for the S-box and shift row combined is 2.47 ns for LED,
whereas for the new design it is just 1.63 ns. This helps reduce the overall delay
in our design not reaching the double the delay of LED. Then overall latency
of the LED is 0.61 × 4 + 2.47 = 4.91 ns, while that for the new design it is
0.61 × 8 + 1.63 = 6.51 ns. Thanks to lower latency incurred by the S-box, the
overall increase in latency of the new design is capped at 30%.
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In IoT applications low area footprints is always a factor, whereas in some
applications like environment monitoring some latency is affordable. So, for these
class of applications our design has very high impact.

4.3 Restraining Latency by Double Clock Architecture

The new lightweight MDS matrix S2 requires 8 iterations to compute the full
effect of diffusion layer since S8

2 is MDS. Compared to original matrix S1 which
needs 4 iterations the matrix S2 increases latency. We now describe a solution
for reducing the latency caused by our serial matrix implementation. If the user
wants to have very low area footprint like our design, and also wants to have low
latency, then following is our suggestion. One can use double clock architecture
to check the latency of the new design. We present this in Fig. 1. The figure
shows the operation of the serial matrix is done at a clock clk2 which is faster
than clk1, rests of the operations are done at clk1. With this architecture we can
curb the latency and at the same time can benefit from the low area cost.

5 Conclusions

Latency is inherent to the block ciphers whose diffusion layer is based on serial
matrices. In this work we have shown that if we relax latency slightly, then
we can further reduce the implementation cost of the diffusion layer. We have
applied our newly discovered matrix in the diffusion layer of LED, and on top of
that we also have proposed a lighter S-box. The combining effect of these two
is that we have obtained a variant of LED which is lighter than the original one.
We also have proposed a multi-clock design of the LED data-path which can be
used to restrain increase in the latency.

Our diffusion matrix opens up the applicability of an n × n serial matrix S
in lightweight block ciphers, such that Si is MDS for i > n. On the other hand,
the proposed multi-clock architecture is also interesting to explore further.

References

1. Augot, D., Finiasz, M.: Exhaustive search for small dimension recursive MDS diffu-
sion layers for block ciphers and hash functions. In: 2013 IEEE International Sym-
posium on Information Theory Proceedings (ISIT), pp. 1551–1555. IEEE (2013)

2. Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion lay-
ers using shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014.
LNCS, vol. 8540, pp. 3–17. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46706-0 1

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

https://doi.org/10.1007/978-3-662-46706-0_1
https://doi.org/10.1007/978-3-662-46706-0_1
https://doi.org/10.1007/978-3-540-74735-2_31


280 S. Sarkar et al.
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Abstract. In this paper, we investigate the efficiency of FPGA imple-
mentations of AES and AES-like ciphers, specially in the context of
authenticated encryption. We consider the encryption/decryption and
the authentication/verification structures of OCB-like modes (like OTR

or SCT modes). Their main advantage is that they are fully parallelis-
able. While this feature has already been used to increase the through-
put/performance of hardware implementations, it is usually overlooked
while comparing different ciphers. We show how to use it with zero area
overhead, leading to a very significant efficiency gain. Additionally, we
show that using FPGA technology mapping instead of logic optimization,
the area of both the linear and non linear parts of the round function of
several AES-like primitives can be reduced, without affecting the run-time
performance. We provide the implementation results of two multi-stream
implementations of both the LED and AES block ciphers. The AES imple-
mentation in this paper achieves an efficiency of 38 Mbps/slice, which is
the most efficient implementation in literature, to the best of our knowl-
edge. For LED, achieves 2.5 Mbps/slice on Spartan 3 FPGA, which is
2.57x better than the previous implementation. Besides, we use our new
techniques to optimize the FPGA implementation of the CAESAR can-
didate Deoxys-I in both the encryption only and encryption/decryption
settings. Finally, we show that the efficiency gains of the proposed tech-
niques extend to other technologies, such as ASIC, as well.

Keywords: AES · FPGA · Authenticated encryption
Logic optimization · Technology mapping · Deoxys · LED

1 Introduction

In September 2016, the CAESAR competition committee announced the selec-
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candidates for round 3 of the CAESAR competition [1]. This competition signi-
fies the current need for practical, secure and efficient AEAD schemes. An AEAD
scheme typically consists of two routines. The first one is encryption EK(AD,M)
which takes as input a shared key K, public associated data AD and the mes-
sage to be encrypted M and returns a tagged ciphertext C. The second one is
decryption/verification DK(AD,C), which either returns an invalid symbol ⊥
if the received ciphertext, associated data and the authentication data do not
match, or the decrypted message M , otherwise.

An important aspect of the study of AEAD schemes is the evaluation of their
hardware performance, which clearly needs more efforts. So far, nearly all candi-
dates have been supported with a basic hardware implementation [2]. However,
the implementations are done on various platforms, for different interfaces and
thus, a comprehensive evaluation is still missing. Furthermore, several designs
have unique advantages to offer in some platforms, e.g., Field Programmable
Gate Array (FPGA), which is not fully exploited. This is one of the prime moti-
vations for this manuscript.

In the survey presented in [3], the authors classified the round 2 candidates of
the CAESAR competition into five families according to their base constructions:
block cipher-based, stream cipher-based, key-less permutations, hash-function-
based and dedicated schemes. In this paper, we focus on the block cipher-based
family. Specifically, we focus on optimizations for algorithms that allow block-
level parallelism while using the underlying block cipher, such as the Offset Code
Book mode (OCB) [4–6], the Synthetic Counter-in-Tweak mode (SCT) [7] and the
Offset Two-Round mode (OTR) [8].

All the available hardware implementations of the CAESAR competition
candidates on the ATHENa hardware evaluation website [2] are fully sequential
implementations, i.e. to start processing a new block, all the previous blocks
have to be finished. These implementations do not take full advantage of the
specific characteristics of the schemes based on the aforementioned modes.

Generally, circuit optimization consists of two phases: logic synthesis and
technology mapping. For certain target technologies, such as FPGA, logically
optimized circuits do not provide the optimal mapping to the underlying tech-
nology, leaving behind a lot of under-utilized hardware resources. This phenom-
enon is obvious in the AES Sbox circuits proposed by Boyar [9,10], which are
logical optimizations of the circuit proposed by Canright [11]. These circuits are
much smaller than the straight-forward ROM-based Sbox in terms of gate count
and circuit depth. These two features make them the natural choice for low area
Application-Specific Integrated Circuits (ASIC) implementations of AES. Inter-
estingly, on the other hand, practical results show that one can achieve a smaller
area on FPGA by using the ROM approach [12]. By analyzing this result, it
appears that due to the specific details of these circuits [9–11], it is hard to map
them efficiently to look-up tables (LUTs) that the FPGA is constructed from,
leading to a lot of under-utilized/unusable logic gates inside the FPGA.

In Fig. 1, the number of LUTs required for implementing two 8-bit to
8-bit ROM-based Sboxes (which are both the forward and inverse AES Sboxes)
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Fig. 1. Evolution of the AES Sbox/ISbox area vs. Xilinx FPGA families

is compared with the implementation of Boyar’s shared encryption/decryption
Sbox [9]. These results are plotted against the technology evolution of Xilinx
FPGAs as an example. Analysing the chart, it is clear that after the intro-
duction of the Virtex 5 family, logic optimization of the Sbox stopped being
beneficial. The reason for that was the introduction of the 6-input LUTs, which
enabled implementing an 8-to-1 look-up table using only four 6-input LUTs and
three dedicated multiplexers, or five 6-input LUTs. In other words, the ROM-
based Sbox has become both faster and smaller than the logic-based Sbox, even
when both encryption and decryption are implemented using a shared data path.
While the technology seems to be saturated around the 6-input LUT structure,
a hypothetical family has been added to the chart assuming 8-input LUT struc-
ture, showing that such a family will make the cost of both logic-based and
ROM-based implementations exactly the same (8 LUTs). While these results
may seem specific to Xilinx FPGAs, other vendors, e.g. Altera, also use 6-input
LUTs as their building blocks and will follow the same trend. Besides, the FPGA
industry seems to be saturated around this building block and we believe that
the same trend will follow for the upcoming years.

In a nutshell, the current implementations for multiple designs in the CAE-
SAR contest do neither exploit the underlying block-level parallelism and
nor consider the FPGA-specific optimizations. Both of these shortcomings are
addressed in the current manuscript, achieving significant gain in area-efficiency,
run-time performance or both.

Our Contributions. In this article, we propose new improvements for FPGA
implementations of AEAD schemes based on AES-like primitive. These improve-
ments are twofold.
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Firstly, we provide a new efficient hardware architecture for OCB-like AEAD
modes (Sect. 2). The architecture uses a generic multi-stream AES-like cipher,
such as AES or Deoxys-BC (the tweakable block cipher used in CAESAR compe-
tition candidate Deoxys [13]) as an underlying primitive. This architecture can
be easily modified to support the OTR or SCT AEAD modes for example.

Secondly, we improve the implementation efficiency of several AES-like
ciphers, such as AES, LED and Deoxys-BC. In particular, the problem of FPGA
mapping and under-utilized hardware discussed earlier is studied in details for
two applications (Sect. 3):

– we show how to design low-area logic primitives optimized for FPGA LUTs
instead of the number of logic gates (Sect. 3.2).

– we explain how to select the locations of pipelining registers to accommodate
as many independent streams as possible without any additional area cost
compared to the single stream architecture (Sect. 3.3).

Eventually, as practical results, following these implementation strategies we
obtained very efficient LED and AES implementations (Sect. 4). For example, our
AES implementation achieves an efficiency of 38 Mbps/slice, which is the most
efficient AES FPGA implementation in the literature to the best of our knowledge.
We also applied our techniques to Deoxys, and we obtained the current best
Deoxys-I FPGA implementation, improving their efficiency by a factor ∼1.7
with almost the same area. Table 1 shows a summary of our results compared to
state of the art implementations.

2 OCB Multi-stream Architecture

2.1 OCB Mode Description

Notation. mi is the ith plaintext message block. ci is the ith ciphertext block.
ADi is the ith AD block. Ti is the tweak value related to the ith block of the
message or AD. K is the shared secret key. EK,Ti

is the bock cipher used by the
AEAD algorithm.

∑
mi is the XOR checksum of the message.

This section includes a simplified description of the OCB mode. An interested
reader may refer to [4] for a full description. The OCB AEAD mode consists
of two parts, shown in Figs. 2 and 3. In the original proposal [4–6], first the
associated data is processed using the PMAC [19] structure shown in Fig. 3. Second,
the message is encrypted using the structure in Fig. 2, computing the message
checksum in parallel. Finally, the message checksum in encrypted and XOR-ed
to the associated data tag to produce the final tag. These two structures, with
minor changes, appear also in other encryption modes, such as OTR, SCT, CTR
etc. Therefore, the ideas and techniques presented in this paper can be also to
beneficial for these other modes. Before describing the architecture, we present
observations that inspired the architecture:
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Table 1. Summary of our results compared to the state-of-the-art implementations

Algorithm Family Impl. Throughput
(Gbps)

Slices Efficiency
(Mbps/Slice)

AES encryption Virtex 5 Sect. 4.1 8.0 347 23.00

[14] 4.5 400 11.20

[15] 46.0 3,579 12.88

Virtex 6 Sect. 4.1 9.5 247 38.46

[15] 64.1 3.121 20.55

AES decryption Virtex 5 Sect. 4.1 6.1 294 20.7

[14] 4.5 550 7.6

Deoxys-I-128 Virtex 6 Sect. 4.2 3.8 861 4.5

[16] 2.2 946 2.57

Deoxys-I-128
encryption
only

Virtex 6 Sect. 4.2 3.5 566 6.2

[17] 1 920 1.12

LED Spartan 3 Sect. 4.3 0.51 204 2.5

[18] 0.19 204 0.97

Fig. 2. The parallel encryption structure

Fig. 3. The encrypt-then-xor construction
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1. The first and second parts of execution do not depend on each other. Con-
sequently, following the implementation from Poschmann and Stöttinger on
the ATHENa website [2], the order can be reversed. This enables one to use
the same storage for both the checksum and tag computation.

2. In Fig. 2 the computations are completely independent, while in Fig. 3, there
is an output dependency between different blocks. Since there is no input
dependency, both the structures are fully parallelisable. Additionally, a small
temporal shift saves the temporary storage needed. For example, the first
block starts at time t = 0 and the second block starts at t = Δt. At t = T the
first block is finished and stored in the tag storage. Finally, at time t = T +Δt
the second block is finished and XOR-ed with tag, in-place.

2.2 Related Work

The Cryptographic Engineering Research Group (CERG) at George Mason Uni-
versity (GMU), USA, runs and maintains the online platform ATHENa [16]
aimed at fair, comprehensive, and automated evaluation of hardware crypto-
graphic cores targeting FPGAs, All Programmable Systems on Chip, and ASICs.
One of their on-going projects is the comparison of FPGA implementations of the
CAESAR competition candidates. They have also provided high-speed round-
based implementations of round 2 candidates. Among these candidates, several
use OCB-like modes: OCB v1.1 [20] and AES-OTR v3.1 [21] (which use AES as under-
lying cipher), and Deoxys-I v1.41 [13] (which uses an AES-like tweakable block
cipher Deoxys-BC). Deoxys-BC uses the same data path as AES but defines a
new tweak/key-schedule that requires a smaller number of gates to evaluate
when compared to AES (but with an additional 128-bit tweak input). It also
requires a higher number of rounds compared to AES.

The implementations provided by the CERG team are round-based imple-
mentations that compute one cipher round per cycle. These implementations are
compliant with the CAESAR Hardware API [22], developed for fair comparison
among CAESAR candidates. On the other hand, a round-based implementation
of Deoxys-I (encryption only) was provided by Poschmann and Stöttinger, that
is not compliant with the required API. One of the requirements of the CAE-
SAR Hardware API is to load the encryption/decryption key into the hardware
core at most once per message. Since the implementation from Poschmann and
Stöttinger [17] does not follow the API, it permits loading the key again with
every message block, allowing the designers to get rid of the master key storage,
saving 128 flip-flops. They also save 128 extra flip-flops by noticing that during
the tag computation, the encryption of checksum can be computed before the
associated data. This enables using the same storage for the message checksum
and the intermediate tag value, saving 128 more flip flops. We follow the later
approach in our implementation due to its obvious area advantage. We will see
later in Sect. 4.2 that even though we target the CAESAR Hardware API com-
pliance, our implementation of the Deoxys-I-128 encryption-only algorithm has
better results compared to both the previous implementations.
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2.3 Proposed Architecture

The proposed high level architecture is shown in Fig. 4. For simplicity, only the
encryption data path is drawn. However, a similar data path for decryption can
also be included. The architecture consists of a single round of the underly-
ing block cipher, which is divided into N stages, each stage takes one cycle to
be processed. If the block cipher requires r rounds, the architecture loads and
processes N blocks, every r ·N rounds, which leads an average latency of r cycles,
equivalent to a simple single round implementation. The selection of N depends
on several considerations:

Fig. 4. Multi-stream OCB hardware architecture

1. This architecture is intended for high speed over long messages. It is noticeable
that any number of blocks less than N requires the time to be encrypted.
Consequently, a very large N leads to a huge overhead for short messages or
for messages whose block length is not divisible by N .

2. In order to minimize the key scheduling overhead, it is performed in only one
pipeline stage and then shifted N cycles. This is based on the SRL feature
of the FPGA LUTs, which allows the utilization of very compact serial shift
registers using logic LUTs. For most FPGAs, a single LUT can implement
either a 16-bit or 32-bit SRL, which we consider as the upper bound on the
value of N .
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3. The pipeline registers can add a huge overhead over the simple round imple-
mentation. Therefore, in Sect. 3.3 we describe a technique to select the optimal
locations of the pipeline registers in the FPGA implementation.

From these three considerations, we concluded that the optimal value for
N is between 2 and 4, neglecting the control overhead. This leads to a speed-
up between 2x and 4x. Additionally, for applications that require ultra high
speed over very long messages, e.g. disk encryption, high speed multimedia
interfaces, etc., and do not care about the area, the same architecture can be
unrolled into a fully pipelined implementation. This can lead to a huge increase of
the throughput. Specifically, the single round multi-stream architecture requires
about r ·N ·�B

N � cycles to compute B blocks. On the other hand, a fully unrolled
architecture has an initial latency of r · N and a new block is generated every
cycle, leading to a total number of cycles of r · N + B − 1. The speed up over
the round implementation is given by

G =
r · B

r · N + B − 1

and for very long messages, the unrolled architecture has a speed up of r times.
Since the area increases less than r times (only the round part is replicated
while the tag and control part almost have the same area), the efficiency remains
unchanged. In Sect. 4.1 we show that an AES round can be implemented with a
clock frequency greater than 700 MHz on FPGA, with almost the same number
of slices/LUTs. Therefore, we estimate that this variant can be suitable for
applications that require very high speed authenticated encryption.

3 Multi-stream AES-like Ciphers

3.1 AES Data Path State-of-the-Art FPGA Implementations

AES [23] is a 128-bit block cipher, standardized in 2001 by NIST. It is based
on the Substitution-Permutation Network (SPN). The internal state of the
cipher can be viewed as a 4 × 4 matrix of bytes. It consists of 10 SPN rounds.
Each round includes a SubBytes operation for the non-linear part, ShiftRows
and MixColumns for the linear permutation and AddRoundKey for key addition.
SubBytes consists of 16 independent 8-bit Sboxes, ShiftRows shifts the bytes
in each row, independently, and MixColumns applies a diffusion matrix to each
column, independently. All byte operations are done in GF(28).

In this section, we quickly review state-of-the-art high speed AES-128 FPGA
implementations (we only discuss full width round-based and unrolled implemen-
tations). A detailed survey on AES data paths for FPGA is provided in [12]. Full-
width FPGA implementations of AES are either unrolled implementations [15],
round-based single stream [24,25] or round-based multi-stream [14]. Although
the scope of this paper is round-based multi-stream implementations, the opti-
mizations described in this section can be used for any of the aforementioned
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Fig. 5. The AES encryption data path from [14]

implementations. In [14], the authors proposed the AES data path shown in Fig. 5.
Each box in Fig. 5 represents a pipeline stage, and it can be noticed that the
selection of the pipeline stages is based on the functionality of each stage, which
leads to two very fast stages in the beginning, then two slow stages afterwards.
This limits the maximum possible frequency. In the next sections, we will show
why this architecture might not be optimal and describe a new four-stream data
path designed for FPGA to achieve higher performance efficiency.

3.2 LUT-Based Optimization of Linear Transformations

Notation. a, b, c and d are the four bytes that compose one column of the AES
state. ai is the ith bit of a, where a0 is the least significant bit. Upper-case letters
A,B,C,D,E, F are the hexadecimal representations of the decimal values 10,
11, 12, 13, 14 and 15, respectively. · and ⊕ are multiplication and addition over
GF(28).

The AES MixColumns circuit is a matrix multiplication operation of the AES
state byte matrix by a constant matrix M given by

⎡

⎢
⎢
⎣

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤

⎥
⎥
⎦

which is a circulant MDS matrix. For AES 128-bit architectures, the MixColumns
operation can be viewed as 16 dot-products of the vector

[
2 3 1 1

]
and a vector

composed by a permutation of 4 state words. It can also be viewed as four 32-bit
to 32-bit mappings (four matrix-vector products over state vectors). The later
view is favorable for ASIC implementations, as it allows reducing the required
number of gates by sharing many intermediate results of the computation. Specif-
ically, only 108 XOR gates are required for implementing the 32-bit mapping [26].
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However, as discussed earlier, since modern FPGAs use big 6/5 input LUTs to
implement logic circuits, having a lot of small shared 2/3-input gates is not the
most efficient solution. Synthesizing the circuit used in [26] or [27] for Virtex-6
FPGA requires 41 LUTs for low area and 44 LUTs for high speed. On the other
hand, the dot-product view is given by

p = 2 · a ⊕ 3 · b ⊕ c ⊕ d

which can be decomposed into
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a6 a5 a4 a3 a2 a1 a0 0
0 0 0 a7 a7 0 a7 a7

b6 b5 b4 b3 b2 b1 b0 0
0 0 0 b7 b7 0 b7 b7
b7 b6 b5 b4 b3 b2 b1 b0
c7 c6 c5 c4 c3 c2 c1 c0
d7 d6 d5 d4 d3 d2 d1 d0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

where the elements of each column represent the inputs of one output function.
From this perspective, it can be seen that 5 outputs can be implemented using
one 5-input LUT, while 3 outputs can be implemented using 7-input LUT, which
can be implemented using two 6-input LUTs. That sums to a total of 11 LUTs
per output coefficient, 44 LUTs per output column. This shows that logic opti-
mization does not offer much gain over the straightforward implementation of the
transformation. Besides, a deeper look at the view given by the decomposition
in (1) shows that the three outputs that need 7-input LUTs share two inputs
bits, namely a7&b7. Decomposition (1) can be written as decomposition (2),
where x = a7 ⊕ b7. This decomposition can be implemented using eight 6-input
LUTs and one 2-input LUT, a total of 9 LUTs per output coefficient, 36 LUTs
per output column (which is smaller than the best-reported implementations)
or 1.125 LUTs per output bit. It is worth mentioning that this number is near-
optimal for any linear transformation over 32 bits, as the optimal number is 1
LUT/bit, which corresponds to transformation where each output bit depends
on n bits, where 2 ≤ n ≤ 6 (the case where n = 1 corresponds to an identity
function and can be neglected, w.l.o.g.)1.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a6 a5 a4 a3 a2 a1 a0 a7

b6 b5 b4 b3 b2 b1 b0 b7
0 0 0 x x 0 x 0
b7 b6 b5 b4 b3 b2 b1 b0
c7 c6 c5 c4 c3 c2 c1 c0
d7 d6 d5 d4 d3 d2 d1 d0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

1 In fact, each 6:1 LUT can be implemented as a 5:2 LUT with shared inputs. Using
this feature, our circuit can be indeed implemented using only 8 LUTs, which is
the optimal figure. However, in this paper we are handling the optimization at the
front-end stage and this feature is incorporated automatically by the placement and
routing tool.
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The optimization of the AES inverse MixColumns circuit is less straightfor-
ward, as M−1 includes larger coefficients. M−1 is given by

⎡

⎢
⎢
⎣

E B D 9
9 E B D
D 9 E B
B D 9 E

⎤

⎥
⎥
⎦

A lot of work has been done on how to reuse the same circuit from M
to implement M−1 with minimal overhead. This is done by using any of the
following relations M−1 = M3, M−1 = M · N or M−1 = M ⊕ K, where N
and K are matrices with low coefficients. In that direction, the circuit given by
decomposition (2) will also be the smallest and the same reasoning can be used to
achieve small area for both K and N . However, this approach is most useful for
low area serial implementations with shared encryption/decryption data path.
They do not achieve the best results for high speed round implementations with
dedicated decryption data path. For example, using M−1 = M3 requires 3.375
LUTs/bit and produces a large-depth circuit (low performance), while using
M−1 = M ⊕ K is even larger. The most promising approach is M−1 = M · N
which requires 288 LUTs/block, corresponding to 2.25 LUTs/bit, which is still
far from optimal. On the other hand, the straightforward implementation of
M−1 leads to output functions that include 19 input bits, which can lead to
very low performance. Here, we give a circuit that requires 60 LUTs per output
column, corresponding to 1.875 LUTs/bit. First, we use the same dot product
view mentioned earlier, which is given by Eq. (3).

p′ = E ·a⊕B ·b⊕D ·c⊕9 ·d = F ·(a⊕b⊕c⊕d)⊕(a⊕4 ·b⊕2 ·c⊕4 ·d⊕2 ·d) (3)

Second, two observations are made

1. F · (a ⊕ b ⊕ c ⊕ d) is constant across any output column.
2. 4 · (a⊕ c) is shared by two output coefficients. The same is valid for 4 · (b⊕d).

Using these two observations, a circuit that requires only 60 LUTs per out-
put column can be implemented. The circuit diagram is given in Fig. 6. This
is 17% smaller than the best reported implementation. Given that MixColumns
is the main difference between the AES encryption and decryption data paths,
optimizing this primitive is crucial. On the other hand, since 1.875 LUTs/bit is
still far from the optimal 1 LUT/bit figure, there may be some room for further
optimization.

3.3 Zero Area Overhead Pipelining

Pipelining has been used by hardware designers/architects as a tool to increase
throughput/run-time performance for a long time. However, a fully pipelined
block cipher implementations can be costly, due to the large area requirements.
A more realistic approach is to use multi-stream implementations. These imple-
mentations start from a sequential implementation that processes one block in
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Fig. 6. FPGA-friendly inverse MixColumns circuit

C cycles, and divides it into N pipeline stages. This leads to computing x blocks
in N ·C cycles, where x ∈ {1, 2, ..., N}. x depends on the number of independent
block streams the user can leverage. However, this is a double-edged weapon,
due to the following reasons:

1. The time required to process one block in a sequential implementation is
∼ C · T , where T is the critical path delay of the implementation. If the N
pipeline stages divide the critical path evenly into segments of T

N delay, the
time required to process N blocks becomes T + t, where t is a small overhead,
leading to ∼ Nx speed-up. Unfortunately, the critical path is usually not
evenly divided, leading to a sub-optimal speed-up (<N).

2. Modern FPGA families consist of a basic building block called LUT6, which
is a 6-input single-output look-up table. Additionally, each unit of this build-
ing block has an associated Flip-Flop, which the designer/synthesis tool can
choose to either use it or not. In Fig. 7, we show the optimal utilization of a
LUT6 unit in a pipelined architecture, where it is used to implement a 6-input
circuit followed by storing the output. On the other hand, in Fig. 8, a poor
selection of the location of pipeline stage is in-place, leading to the utilization
of 3 look-up tables, instead of 1 in the case of Fig. 7. In other words, the poor
choice of where to place the pipeline registers leads to a significant increase
in area.

While the impact of moving the flip-flops 1 logic level forward in the previous
example is obvious, the designers usually do not have an accurate estimation of
the exact LUT utilization before synthesis. Consequently, the designers choose
the pipeline stages based on the logical functions, e.g. Sbox, MixColumns, input
selection, etc. In our work, we follow a different approach. First, we synthesize a
single stream sequential implementation of the required block cipher. Second, we
study the output layout to determine the precise distribution of pipeline stages
without affecting the structure of the utilized LUTs.2

2 The term zero overhead refers to the number of LUT-FF pairs, as this is the impor-
tant metric, not the number of LUTs or FFs.
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Fig. 7. Optimal pipeline selection

Fig. 8. Sub-optimal pipeline selection

4 Implementations and Results

4.1 Two-Stream and Four-Stream AES Implementations

Using the techniques described in Sects. 3.2 and 3.3, we have implemented two
multi-stream AES data path (two and four streams), shown in Fig. 9. In addi-
tion to the use of the low area MixColumns circuit and ROM-based Sbox, the
locations of the pipelining registers have been selected specifically to ensure as
efficient LUT utilization as possible. In other words, both the two-stream and
four-stream implementations use the same number of logical LUTs (944 LUTs,
without key scheduling), out of which 95% (896 LUTs) are 6-input LUTs. The
results are given in Table 2. The comparison is restricted to full-width imple-
mentations that do not utilize any BRAMs. For that reason, the implementation
in [28] is not included. While it has a very high efficiency (yet smaller than ours,
∼30 Mbps/slice), this number is biased due to the use of BRAMs to reduce the
number of slices. It can be observed that our data path, with only two-streams,
outperforms the data path from [14] (with four streams) in terms of both effi-
ciency and area and reaches the same throughput. This result is achieved due
to more than one factor:
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Fig. 9. Two/Four-Stream AES round data path implementation

1. The critical path in the implementation from [14] consists of three levels
of logic inside the Sbox used (one LUT6 followed by MUX7 and MUX8).
In our design, the critical path also consists of three levels of logic (Sbox part
2 (LUT6) and the MixColumns circuit proposed in Sect. 3.2 (LUT3 + LUT6)).

2. The MixColumns circuit used is smaller.
3. The first two pipeline stages in Fig. 5 necessitate the use of 256 LUTs. The

two stages altogether can be viewed as a 6-input function, which can be easily
merged into a single stage of 128 LUTs (of type LUT6).

This implies that our proposed implementation achieves the same perfor-
mance as [14] for lower latency and using only independent two streams (easier
to achieve). In fact, following the architecture in Sect. 2, it can be used even for
slightly dependent streams (even and odd blocks of an OCBmessage). Additionally,
by choosing to add two more stages at the output of the Sbox 2 and key addition
circuits, the performance and efficiency can be further enhanced without any addi-
tional increase in the area occupied, as shown in Table 2. The results shows that
our four-stream implementation outperforms all the AES FPGA implementations
in the literature in terms of efficiency, to the best of our knowledge. In Table 3, we
show the implementation results of the AES decryption data path. It is shown that
it has a speed-up of around 2x over the similar implementation from [14].

4.2 Round-Based Two-Block Deoxys-I-128

As mentioned earlier, the Deoxys-I CAESAR candidate uses an underlying
tweakable block cipher called Deoxys-BC. This cipher is similar to AES, with
three major differences:

1. It consists of 14 rounds instead of 10.
2. The final round includes a MixColumns operation, as opposed to AES.
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Table 2. Implementation results of AES on Virtex-5/6 FPGA (encryption only)

Family Implementation Key
schedule

Number
of slices

Max.
freq.
(MHz)

Throughput
(Gbps)

Efficiency
(Mbps/Slice)

Virtex 5 Ours/2 streams Offline 347 350 4.5 12.90

Ours/4 streams Offline 347 625 8.0 23.00

[14]/4 streams Offline 400 350 4.5 11.20

[15]/unrolled Offline 3579 360 46.0 12.88

Virtex 6 Ours/4 streams Offline 347 752 9.6 27.66

Ours/4 streams No 247 752 9.5 38.46

[15]/unrolled Offline 3121 501 64.1 20.55

Table 3. Implementation results of AES on Virtex-5 FPGA (decryption only)

Implementation Key
schedule

Number
of slices

Max.
freq.
(MHz)

Throughput
(Gbps)

Efficiency
(Mbps/Slice)

Ours/4 streams No 294 477 6.1 20.7

Ours/4 streams Offline 445 477 6.1 13.7

[14]/4 streams Offline 550 350 4.5 7.6

3. It uses a different key schedule, which is smaller than the AES key schedule,
but uses an extra public tweak value.

Based on the architecture proposed in Sect. 2 and the AES data paths pro-
posed in Sect. 4.1, we have implemented two complete data paths for Deoxys-I.
They include two and four pipeline stages, respectively. They also consist of four
parts: the encryption data path, the decryption data path, the key schedule and
the tweak schedule. Using the pipeline selection technique, both implementations
consume the same area, except for the decryption data path which we implement
only for 4 streams. In Table 4, it is shown that the bottleneck of the design, not
considering the control overhead, is the decryption data path.

Table 4. Results of the Deoxys-I-128 data path implementation on Virtex-6 FPGA

Block Number of LUT-FF pairs Max. freq. (2-stream) Max. freq. (4-stream)

Enc. data path 1455 492 MHz 785 MHz

Dec. data path 1170 - 665 MHz

Key schedule 442 724 MHz 724 MHz

Tweak schedule 413 620 MHz 620 MHz

Based on this datapath, a full implementation of Deoxys-I-128 has been
implemented on Xilinx Virtex-6 FPGA (xc6vlx75tff784-3). The overall utiliza-
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tion is ∼3800 LUT-FF pairs and maximum operating frequency is 454 MHz.
This 27% performance degradation from the datapath estimated clock frequency
comes from two reasons:

1. While the datapath is very fast, there is still optimization required to the
control unit to cope with such speed.

2. Although we choose a small FPGA from the Virtex 6 family, the design
is still small compared to the FPGA size, which leads to it becoming I/O
dominated. leading to a lot of wiring delays related to the I/O pins. This will
not be applicable if the design is used as a part of a larger on-chip system.

To verify the second problem as part of the reason for performance degrada-
tion, we also implemented the design for the small Spartan-6 (xc6slx9ftg256-3)
FPGA. The maximum operating frequency is 273 MHz vs. 333 MHz pre-layout
(only 18% degradation). The results of the Virtex-6 implementation are sum-
marized in Table 5. For fair comparison, we have also downloaded and imple-
mented the Deoxys-I-128 implementation reported on the ATHENa website [2]
by CERG team. We only compare the cipher circuits without the overhead of the
hardware API. Our results show an efficiency gain of 75% (1.75x) for Virtex 6
and 74% (1.74x) for Spartan-6. Table 6 shows the results for the encryption-only
implementation. Our implementation is 5.536x more efficient than the imple-
mentation by (Poschmann and Stöttinger).

Table 5. Post-layout results of the Deoxys-I-128 implementation on FPGA

FPGA Impl. Number
of slices

Max. freq.
(MHz)

Throughput
(Mbps)

Efficiency
(Mbps/Slice)

Virtex 6 Ours 861 454 3,874 4.5

[16] 946 285 2,432 2.57

Spartan 6 Ours 1,010 273 2,329 2.31

[16] 1,032 161 1,373 1.33

Table 6. Post-layout results of the Deoxys-I-128 encryption only implementation on
Virtex 6 FPGA

Impl. Number
of slices

Max. freq. (MHz) Throughput (Mbps) Efficiency (Mbps/Slice)

Ours 566 416 3,549 6.2

[17] 920 161 1.030 1.12
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Relevance to the CAESAR Competition. The goal of this section is not
to show that Deoxys-I is faster than other CAESAR candidates. The goal is to
show that parallelism can actually increase the efficiency of parallelisable ciphers
by significant factors. Since we are comparing two different architectures and
implementations of the same cipher, it makes more sense to focus the comparison
on the cipher itself. While the API provides a fair methodology for comparing
different ciphers, it can hide the potential of enhancement for a certain cipher.
This is exactly true for FPGA in our case, as a custom control unit that is
both compliant with the CAESAR API and the 4-stream architecture has to
be designed. This leads to 50% decrease in the performance of the proposed
architecture during the CAESAR Competition Round 3 benchmarking stage.
We emphasize that this is not the goal of the proposed architecture, as in real-
life applications faster APIs can be designed, such as the one we used in the
previous comparison.

Extending the Results to Other Technologies (ASIC). Since it can be
argued that the techniques and optimizations in this paper are limited because
they are limited to a certain technology (Xilinx FPGA), we have synthesized
both the proposed implementation and the implementation from [16] for ASIC
using Synopsys Design Compiler and the TSMC 65 nm technology. The results
show that even with full API compliance, the proposed implementation has
54% higher throughput and is 38% more efficient. These results are summarized
in Table 7. We are currently in the process of preparing the HDL code to be
provided publicly soon so that other researchers can verify our results.

Table 7. Synthesis results of the Deoxys-I-128 implementation using TSMC 65 nm
technology

Impl. Area
(KGE)

Max. freq.
(MHz)

Throughput
(Mbps)

Efficiency
(Mbps/KGE)

Ours 59.53 847 7,227 121.40

[16] 53.37 549 4,684 87.76

4.3 Three-Stream LED Implementation

LED [29] is a 64-bit block cipher based on an AES-like SPN. Its state is a 4 × 4
matrix of 4-bit nibbles. In this paper we focus on the 64-bit key version LED-
64. However, the same results can extend to the other variants of LED, since
the only difference is the key scheduling part, which can be easily adjusted for
this architecture. The (χ4) round implementation from [18], Sect. 3.1, has been
replicated for Spartan-3 Xilinx FPGA. Using the guidelines from Sect. 3.3, we
have been able to add two extra pipeline stages at the outputs of the Sbox and
the MixColumns operations, as shown in Fig. 10. In Table 8, it is shown that
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Fig. 10. Three-Stream (χ4) LED-64 round implementation

Table 8. Results of the three-stream LED-64 implementation compared to the single
stream counterpart on Spartan 3 FPGA.

Implementation Number
of slices

Number
of FFs

Max. freq.
(MHz)

Throughput
(Mbps)

Efficiency
(Mbps/Slice)

[18]/1 stream 204 74 98.7 197.35 0.97

Ours/3 streams 204 202 257 514 2.5

almost all the available flip-flops has been used, increasing both the throughput
and efficiency by 2.57x at no additional area cost.
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Abstract. Nachef et al. used differential cryptanalysis to study four
types of Generalized Feistel Scheme (GFS). They gave the lower bound of
maximum number of rounds that is indistinguishable from a random per-
mutation. In this paper, we study the security of several types of GFS by
exploiting the asymmetric property. We show that better lower bounds
can be achieved for the Type-1 GFS, Type-3 GFS and Alternating Feis-
tel Scheme. Furthermore, we give the first general results regarding to
the lower bound of the Unbalanced Feistel Scheme.
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1 Introduction

1.1 Background

The Feistel Network is a widely-used method used to construct iterated block
ciphers. It has similar operations in encryption and decryption process which
is hardware efficient and the round function is not required to be a bijective
function. It has been applied in many block ciphers such as DES, DEAL [9] and
Camellia [2]. The structure was generalized to allow more branches and different
relations between the branches to form Generalized Feistel Network (GFN) [13].
Before the term GFN was proposed, Zheng et al. [24] described 3 types of trans-
formations which were in fact Type-1, Type-2 and Type-3 Generalized Feistel
Schemes. Anderson and Biham [1] and Lucks [11] proposed block cipher designs
using Alternating Feistel Network. Another type of GFN is the Unbalanced Feis-
tel Scheme, which was designed by Schneier and Kelsey [19]. Many block cipher
designs employed the GFN, such as CLEFIA [20], Skipjack and Simpira [6]. The
advantage of using a Generalized Feistel Network is that it allows for a design
to handle a larger block size with a relatively small round function.

1.2 Previous Work

Many analysis on Feistel network and Generalized Feistel Network have been
done [7,10,12,14,15,22]. However, as mentioned in [7], most analysis is special-
ized in some types instead of analysing many types at once.
c© Springer International Publishing AG 2017
A. Patra and N. P. Smart (Eds.): INDOCRYPT 2017, LNCS 10698, pp. 302–324, 2017.
https://doi.org/10.1007/978-3-319-71667-1_16
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Nachef et al. [12] used differential cryptanalysis to study four types of GFS
using Known Plaintext Attack (KPA) and Chosen Plaintext Attack (CPA)
model. They established lower bounds of the maximum number of rounds dis-
tinguishable in Type-1, Type-2, Type-3 and Alternating Feistel Scheme in the
two models.

Provable-security analysis has been applied to Feistel Networks in [7,10].
Luby and Rackoff [10] analysed the classical Feistel Networks which is then
improved and generalised by Hoang and Rogaway in [7] to analyse Classi-
cal, Unbalanced, Alternating, Type-1, Type-2 and Type-3 Generalized Feistel
Scheme. The theoretical analysis of Generalized Feistel also plays an impor-
tant role in design and analysis of practical ciphers. In the design of DEAL [9],
Knudsen considers this theoretical attack to provide a security bound for any
key schedule that is used.

An interesting property existed in many the GFS designs is that the encryp-
tion and decryption are not exactly the same, which sometimes makes the dif-
ferential propagation slower in the decryption than in the encryption. In the
analysis on Skipjack [4,5], the difference in the decryption has been considered.
Recently, Tjuawinata et al. [21] showed that the analysis of Simpira [6] can be
improved by considering the asymmetry of Type-1 Generalized Feistel Scheme.
While this property is exploited in cryptanalysis, it is undesired for the designer.
In the design criterion of Keccak [3], it mentioned the property that the same
permutation function is used in both encryption and decryption.

1.3 Our Contribution

In this paper, we study the asymmetric property in the Generalized Feistel
Schemes. We provide better lower bounds of the maximum number of rounds
distinguishable in 3 different types of Generalized Feistel Networks given in [12],
which are Type-1 Feistel Scheme, Type-3 Feistel Scheme and Alternating Feistel
Scheme.1 We also provide a lower bound of the maximum number of rounds
distinguishable in another type of Generalized Feistel Network, the Unbalanced
Feistel Network. As far as we know, this is the first result on Unbalanced Feistel
Network that is applicable to different values of k′. We exploit the asymmetry
of certain types of GFS by observing that the backward differential diffusion is
slower than the forward differential diffusion. This leads to the improvements on
the lower bounds.

For Type-1 Feistel Scheme, we provide a chosen ciphertext distinguisher
which distinguishes k − 1 more rounds than the distinguisher given in [12] with
the same complexity. Furthermore, when the number of rounds to distinguish
is fixed to ak − 2 rounds for some integer a in the range 4 ≤ a ≤ k − 1, the
distinguisher in this paper has complexity 1/2n of the distinguisher given in the
CPA model in [12], from

√
2 · 2(a−2)n to

√
2 · 2(a−3)n.

1 We also examine Type-2 Feistel Scheme, but we cannot improve the previous results
since it does not have asymmetric property.
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In Type-3 Feistel Scheme, [12] only provides lower bound for the case when
the number of branches is at least 6. We propose a distinguisher which can be
used for any number of branches and can distinguish up to k +2 rounds in both
KPA and CCA model with complexity

√
2 ·2(k−1)n and

√
2 ·2(k−2)n respectively.

When k is at least 6, in the CCA model, a distinguisher for one more rounds
than the one given in [12] is constructed.

In Alternating Feistel Scheme, our analysis shows that lower complexity can
be achieved in some special cases. More specifically, when the number of rounds
is odd, the complexity is improved by a factor of 2

3n
2 from the distinguisher

proposed in [12].
In our analysis of Unbalanced Feistel Scheme, let k be the total number of

sub-blocks and k′ be the number of sub-blocks that are used as the output of the
round function. In this paper, we consider two special cases when k′ or k − k′

divides k. When k′ = 1, we can distinguish up to (k2 + k − 1) rounds with
complexity less than 2kn in the KPA model. In the CCA model, the number
of rounds that can be distinguished is up to 2k rounds with complexity less
than 2n. When k′ ≥ 1, a lower bound of the maximum number of rounds that
is distinguishable from random permutation is given. In the KPA model, the
bound is k2

k′ − k
2 + k

k′ when k′ is even and k2

k′ − k(k−1)
2k′ when k′ is odd. In the CCA

model, the bound is k
2 + 2 k

k′ when k′ is even and k(k′+3)
2k′ when k′ is odd. To the

best of our knowledge, this is the first analysis on Unbalanced Feistel Scheme
for any values of k.

1.4 Organization

We give some preliminaries in Sect. 2. The attack overview is then dis-
cussed in Sect. 3. The analysis on Type-1 Feistel Scheme is presented in
Sect. 4. Sections 5 and 6 contains analysis of Type-3 and Alternating Feistel
Scheme. The Unbalanced Feistel Scheme is analysed in Sect. 7. In Sect. 8, we
conclude this paper.

2 Preliminaries

2.1 Generalized Feistel Schemes

A Generalized Feistel Scheme of branch k is defined as a (keyed)-permutation
Π : (F2n)k → (F2n)k. For the m input-output pairs of Π, for all i ∈ {0, · · · ,m −
1}, the i-th input and output of Π are denoted by (I0(i), · · · , Ik−1(i)) and
(S0(i), · · · , Sk−1(i)) respectively. Since the analysis is on the inverse of Π, in
the remaining of the paper, “input” refers to (S0(i), · · · , Sk−1(i)) while “out-
put” refers to (I0(i), · · · , Ik−1(i)). In this paper, four types of Generalized Feistel
schemes are considered in details:

Type-1 Feistel Schemes. Π is an r-round Type-1 Feistel scheme if Π consists
of r repetitions of μ1 : (F2n)k → (F2n)k where μ1(x0, · · · , xk−1) = (x1 ⊕
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Fi(x0), x2, · · · , xk−1, x0). Assume that Fi : F2n → F2n is a function from
from n-bit input to n-bit output which may vary depending on the round
where it is being called. Here i = 1, · · · , r. Illustration of round i of Type-1
Feistel Scheme can be found in Fig. 1.

Type-3 Feistel Schemes. Π is an r-round Type-3 Feistel scheme if Π consists
of r iterations of μ3 : Fk

2n → F
k
2n . Given (x0, · · · , xk−1), μ3 maps

(x0, · · · , xk−1)

to
(x1 ⊕ F(i,0)(x0), x2 ⊕ F(i,1)(x1), · · · , xk−1 ⊕ F(i,k−2)(xk−2), x0).

Figure 2 illustrates the i-th round of Type-3 Feistel Scheme.
Alternating Feistel Schemes. For this scheme, consider two different round

functions μA,0, μA,1 : Fk
2n → F

k
2n which are used alternatingly for each round.

– μA,0(x0, · · · , xk−1) = (x0 ⊕ Fi(x1, · · · , xk−1), x1, · · · , xk−1) where Fi :
F

k−1
2n → F2n is called in round 2i−1. μA,0 is called the contracting round.

– μA,1(x0, · · · , xk−1) = (x0, x1 ⊕ F(i,1)(x0), · · · , xk−1 ⊕ F(i,k−1)(x0)). Here
Fi,j : F2n → F2n is the function called in the j-th component in round 2i.
These rounds are called the expanding rounds.

Illustration of round 2i−1 and 2i of Alternating Feistel Scheme can be found
in Fig. 3. Note that round number and index i starts from 1 instead of 0.
Alternatively, μA,1 can be used in odd rounds and μA,0 in even rounds but
in this paper a contracting round is always used at round 1. Note that if
μA,1 is used in the first one instead, the backward analysis on this variant is
equivalent to the forward analysis discussed in [12].

Unbalanced Feistel Schemes. This is a special case of the UFN defined in
Fig. 1 of [7]. Let k′ = 1, · · · , k − 1 and Fs : F

k−k′
2n → F

k′
2n be a map from

(k−k′)n bit to k′n bit with component functions denoted as Fs,0, · · · , Fs,k′−1

with the round number s as its parameter. Then Π is an r-round UFN(k′, k)
if it contains r repetitions of μU : F

k
2n → F

k
2n . In round s, given an input

(x0, · · · , xk−1), μU maps it to

(xk′ , · · · , xk−1, x0 ⊕ Fs,0(xk′ , · · · , xk−1), · · · , xk′−1 ⊕ Fs,k′−1(xk′ , · · · , xk−1)).

Figure 4 provides an illustration of round s of UFN(k′, k).

In this paper, differential analysis on the inverse of Π is considered. So the
attack starts with the image (S0(i), · · · , Sk−1(i)) and the differential path is
built to the preimage, (I0(i), · · · , Ik−1(i)).

2.2 Random Variable

Given a random variable X, denote by E(X), V (X), σ(X) the expected value,
variance and standard deviation of X respectively. Note that V (X) = E(X2) −
E(X)2 and σ(X) =

√
V (x).
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Fig. 1. Round i of Type-1 Feistel Scheme

Fig. 2. Round i of Type-3 Feistel Scheme

Fig. 3. Round 2i − 1 and Round 2i of Alternating Feistel Scheme

Now given n random variables X1, · · · ,Xn, define the covariance of Xi and
Xj as Cov(Xi,Xj) = E(XiXj) − E(Xi)E(Xj). A simple calculation of the def-
inition yields V (

∑n
i=1 Xi) =

∑n
i=1 V (Xi) +

∑
i�=j,1≤i,j≤n Cov(Xi,Xj).
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Fig. 4. Round s of Unbalanced Feistel Scheme

Proposition 1 [12]. Let X and Y be two random variables. X is said to be
distinguishable from Y if |E(X) − E(Y )| ≥ max(σ(X), σ(Y )).

More specifically, let EX , EY be the expected values of X and Y respectively
while σX , σY being the standard deviations of X and Y respectively. Without loss
of generality, let EX < EY . Then, if EY − EX ≥ max(σ(X), σ(Y )):

1. Pr
(
X ≥ EX+EY

2

) ≤ 0.30854
2. Pr

(
Y ≤ EX+EY

2

) ≤ 0.30854.

Proof. We only prove the first claim since the second one can be proved by using
the same method. A simple calculation tells us that:

Pr

(
X ≥ EX + EY

2

)
= Pr

(
X − EX ≥ EY − EX

2

)

≤ Pr
(
X − EX ≥ σX

2

)

= Pr

(
X − EX

σX
≥ 1

2

)
.

Assuming that X is sampled large enough time, we can use the Central Limit
Theorem to approximate X−EX

σX
by a standard normal distribution. Hence by

using this approximation and the standard normal distribution table, we get the
upper bound claimed.

Remark 1. When we use Proposition 1, the random variables are actually the
number of plaintext-ciphertext pairs that satisfy some equations. Now since the
number of plaintext-ciphertext pairs is O(2αn) for some constant α, we can
apply Central Limit Theorem here. So if the random variable is X with mean
μ and standard deviation δ, we can approximate X−μ

δ by the standard normal
distribution.
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3 Attack Overview

In this paper, as we have discussed in Sect. 1.2, we exploit the asymmetry of the
scheme by considering the backward differential diffusion.

We will discuss two types of improvements:

Unconstrained environment. We aim for a better lower bound for the max-
imum number of rounds distinguishable than the bound given in [12]. By
unconstrained environment, we mean that analysis considered in this envi-
ronment aims to distinguish more rounds than the previous results with com-
plexity strictly less than 2kn where k is the number of sub-block and n is
the number of bits in each sub-block. Throughout this paper, the complexity
of the attack is measured by the number of queries performed to make the
attack possible.

Constrained environment. There are two possible forms of this improvement.
Firstly, we aim to improve the number of rounds that can be distinguished in
the backward direction given the same complexity as the distinguisher given
in [12]. Secondly, given the same number of rounds, we aim to reduce the
complexity to distinguish the GFS from a random permutation.

Our analysis uses m plaintext-ciphertext pairs and considers the expected
number of pairs N that satisfies certain conditions depending on the scheme
analysed. Let Nperm be the value of N for a random permutation and NF be the
value N for F , the r-round Generalized Feistel Scheme. We use this information
to calculate the maximum number of rounds such that Nperm is distinguishable
from NF .

The functions Fi (or F(i,j)) used in the round function of GFS are assumed
to be ideal keyed functions. Given the input, the output is a random n-bit string.
Similarly, since it is ideal, given a nonzero input difference, the output difference
is uniformly distributed.

Furthermore, let I1 and I2 be two distinct indices of the round function in
the same cryptosystem (Ij can be a single integer or a pair or integers depending
on the GFN we are considering). Given two different indices values I1 and I2,
we also assume that FI1 and F(I2) are independent from each other. Hence given
the same input (or output) difference ΔS of FI1 and FI2 , we can further assume
that FI2(ΔS) is uniformly distributed even assuming that FI1(ΔS) is already
known.

First we give an intuitive description on how to launch the attack. Suppose
that given a Generalized Feistel Scheme f of r rounds, we denote the differences
in each stage as ΔI − Δ1 − · · · − Δr−1 − ΔO. The first step of the attack is done
by expressing ΔI as a function of Δ1, · · · ,Δr−1 and ΔO. We are choosing the
express ΔI as a function of ΔO instead of the other way around since we want
to use the expression we get to launch a backward differential trail instead of
the forward trail. To enable this, for each Δ, we partition Δ into k sub-blocks.
Since each round function takes one of these sub-blocks as input, we can easily
find the expression that we need.
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Having these expressions, we can then choose carefully the input and output
difference (truncated differences) to maximize the probability for the specified
input difference focusing in some of the sub-blocks to lead to the output difference
chosen. To calculate the success probability, we consider the number of ciphertext
pairs with specified difference that can lead to the plaintext pairs with the chosen
input difference in two scenarios; when the function is a random permutation,
denoted by Nperm and when the function is in the form of the Generalized Feistel
Network considered, denoted by NF .

Now having the expected values and variances of both Nperm and NF , those
four values will be functions of the round number r and number of ciphertext
pairs with the chosen difference m. By Definition 1, NF is distinguishable from
Nperm if |E(NF ) − E(Nperm)| ≥ max(σ(NF ), σ(Nperm)). So using this inequal-
ity, we obtain a relation between the number of rounds r and the number of
ciphertext pairs m. This will give us a lower bound of m given r. Since we want
the distinguisher to be useful, we require m to be less than the total number
of possible ciphertext pairs. In the case of known ciphertext attack, this means
that we need m ≤ 2kn. This gives us an upper bound for the round number, r,
such that F is distinguishable from a random permutation using this backward
differential attack.

As we described above, in fact the main idea of the attack is exactly the
same for all the types of Generalized Feistel Scheme. We first calculate a rela-
tion between ciphertext and plaintext differences which is closely related to the
structure of the scheme. Once the relation is established, the calculation of the
expectation and standard deviation will be very similar and they will be indepen-
dent of the scheme. Because of this similarity, we will just describe the calculation
once and omit the others. In the following sections of this paper, we perform this
attack on different types of Generalized Feistel Networks discussed in Sect. 2.1.

4 Type-1 Feistel Schemes

4.1 Analysis of the Type-1 Feistel Schemes

For this analysis, we assume the number of rounds is r = ak + b where k is the
number of branches in the scheme and a and b are non-negative integers where
0 ≤ b ≤ k−1 and k ≥ 3. We will be using the notation described in the previous
section for our analysis, namely I0, · · · , Ik−1 for the k sub-blocks pre-image of Π
while S0, · · · Sk−1 is used to denote the k sub-blocks image of Π. In this section
we discuss in detail how we build the relations between the sub-blocks, then
we discuss how we choose the differential trail. Having the differential trail, the
expected value and the variance of the trail when Π is random permutation and
a type-1 Generalized Feistel Scheme are calculated. This in turns tells us the
maximum number of rounds that is distinguishable from a random permutation
using the chosen differential.
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Let Xi be the intermediate variables obtained in the second branch (indexed
as 1) after the i-th round in the backward direction. By definition of the round
function of Type-1 Feistel Scheme, we have the following relations:

X0 = Sk−1,
X1 = S0 ⊕ Fak+b(Sk−1),
For t = 2, · · · , k − 1,Xt = Sk+1−t ⊕ Fak+b−(t−1)(Sk−t),
For t ≥ k,Xt = Xt−k ⊕ Fak+b−(t−1)(Xt−(k−1)), Note that Fr is always used
with input Xak+b−r−k+2.
For r ≥ k − 1, the input of the r-th round in the backward direction is
(Xr−(k−1),Xr,Xr−1, · · · ,Xr−(k−2)).

After r = ak + b rounds, the state becomes (I0, · · · , Ik−1) where I0 =
X(ak+b)−(k−1) and for i = 1, · · · , k − 1, Ii = X(ak+b)−(i−1). The following equal-
ities can then be derived using the relations established above:

I0 = Xb+1 ⊕ ⊕a−2
i=0 F(a−i−1)k(Xik+b+2),

For j ∈ {1, · · · ,min(k − 1, b + 1)},

Ij = Xb+1−j ⊕
a−1⊕

i=0

F(a−i−1)k+j(Xik+(b+2−j)),

For j ∈ {min(k − 1, b + 1) + 1, · · · , k − 1},

Ij = Xk+b+1−j ⊕
a−2⊕

i=0

F(a−i−2)k+j(Xik+(k+b+2−j)).

In particular, for I1,

I1 = Xb ⊕
a−1⊕

i=0

F(a−i−1)k+1(Xik+(b+1))

= Xb ⊕
a−2⊕

i=0

F(a−i−1)k+1(Xik+(b+1)) ⊕ F1(I0)

=

⎧
⎪⎪⎨

⎪⎪⎩

S1 ⊕ ⊕a−2
i=0 F(a−i−1)k+1(Xik+1) ⊕ F1(I0) if b = 0

S0 ⊕ Fak+1(Sk−1) ⊕ ⊕a−2
i=0 F(a−i−1)k+1(Xik+2) ⊕ F1(I0) if b = 1

Sk+1−b ⊕ Fak+1(Sk−b) ⊕ ⊕a−2
i=0 F(a−i−1)k+1(Xik+(b+1))

⊕F1(I0) otherwise.

We can further expand the sum by noting that when i = 0, the summand is
F(a−i−1)k+1(Xb+1) and

Xb+1 =

⎧
⎨

⎩

S0 ⊕ Fak(Sk−1) if b = 0
Sk−b ⊕ Fak(Sk−b−1) if 1 ≤ b ≤ k − 2

S1 ⊕ Fak(S0 ⊕ Fak+(k−1)(Sk−1)) if b = k − 1.
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So in any value of b ∈ {0, · · · , k − 1, }, we can express I1 as a function
of several sub-blocks of the output Sj , F1(I0) and a − 2 terms determined by
intermediate variables. More specifically, for b ∈ {0, · · · , k − 1}, we have:

1. When b = 0,

I1 ⊕ S1 ⊕ F1(I0)

=
a−2⊕

i=1

F(a−i−1)k+1(Xik+1) ⊕ F(a−1)k+1(S0 ⊕ Fak(Sk−1)), (1)

2. When b = 1,

I1 ⊕ S0 ⊕ F1(I0)

=
a−2⊕

i=1

F(a−i−1)k+1(Xik+2) ⊕ F(a−1)k+1(Sk−1 ⊕ Fak(Sk−2)), (2)

3. When 2 ≤ b ≤ k − 2,

I1 ⊕ Sk+1−b ⊕ F1(I0)

=
a−2⊕

i=1

F(a−i−1)k+1(Xik+2) ⊕ F(a−1)k+1(Sk−b ⊕ Fak(Sk−b−1)), (3)

4. When b = k − 1,

I1 ⊕ S2 ⊕ F1(I0)

=

a−2⊕

i=1

F(a−i−1)k+1(Xik+1) ⊕ F(a−1)k+1(S1 ⊕ Fak(S0 ⊕ F(a+1)k−1(Sk−1))). (4)

To choose the truncated differential for each case, we try to utilize Eqs. (1),
(2), (3) and (4). We will describe how we choose it for the case when b = 0. The
same idea can then be applied to all the other cases.

Note that for this case, for any ciphertext and its plaintext, we have the
relation

I1 ⊕ S1 ⊕ F1(I0)

=
a−2⊕

i=1

F(a−i−1)k+1(Xik+1) ⊕ F(a−1)k+1(S0 ⊕ Fak(Sk−1)),

Now for any two ciphertexts C = (S0, · · · , Sk−1), C ′ = (S′
0, · · · , S′

k−1) that
we choose (and their corresponding plaintexts P = (I0, · · · , Ik−1), P ′ =
(I ′

0, · · · , I ′
k−1)), we can only determine the value in the left hand side of Eq. (1).

So based on this relation, we try to find the probability that I1 ⊕ S1 ⊕ F1(I0) =
I ′
1 ⊕ S′

1 ⊕ F1(I ′
0). Since F1 is always assumed to be ideal, after some rearrange-

ment, this probability is the same as the probability that:

1. I0 = I ′
0

2. I1 ⊕ I ′
1 = S1 ⊕ S′

1.
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So we will use this as the truncated differential for the case of Type-1 Scheme
with b = 0. As mentioned before, this is done by collecting m ciphertexts with
their respective plaintexts and we compute the number of ciphertext pairs (along
with their corresponding plaintexts) that satisfies the above conditions. The same
analysis is done to all the other cases.

Now to find a theoretical approximation for the probability of these con-
ditions to be satisfied in various cases, we use the fact that if I0 = I ′

0 and
I1 ⊕ I ′

1 = S1 ⊕ S′
1, we must have

a−2⊕

i=1

F(a−i−1)k+1(Xik+1) ⊕ F(a−1)k+1(S1 ⊕ Fak(S0 ⊕ F(a+1)k−1(Sk−1)))

is equal to

a−2⊕

i=1

F(a−i−1)k+1(X ′
ik+1) ⊕ F(a−1)k+1(S′

1 ⊕ Fak(S′
0 ⊕ F(a+1)k−1(S′

k−1))).

Now note that in this last equation, we have terms that are just functions
of S0, Sk−1, S

′
0 and S′

k−1. So in the chosen ciphertext attack, to increase the
probability, we can make sure that these terms are equal in both sides by making
sure that S0 = S′

0 and Sk−1 = S′
k−1. So in the chosen ciphertext attack, instead

of choosing m random ciphertexts, we choose them with their first and last
sub-blocks being fixed to a predetermined value.

In summary, out of the m plaintext-ciphertext pairs, we count the number
of (s, t), 1 ≤ s < t ≤ m such that

1. I0(s) = I0(t)

2. I1(s) ⊕ I1(t) =

⎧
⎨

⎩

S1(s) ⊕ S1(t) if b = 0
S0(s) ⊕ S0(t) if b = 1

Sk+1−b(s) ⊕ Sk+1−b(t) if 2 ≤ b ≤ k − 1.

(5)

Note that in any of the equations that we have, we still have one term con-
taining some sub-blocks of the ciphertext. To increase the probability that the
equation is satisfied, we can set it to have no difference in any of the plaintext-
ciphertext pairs. So in particular, in the CCA model, pick m different ciphertext
such that:

If b = 0, pick all the ciphertext with fixed values of S0(s) and Sk−1(s). Hence in
the CCA attack, m ≤ 2(k−2)n.

If b = 1, · · · , k−2, fix the values of Sk−b(s) and Sk−b−1(s) for all s = 0, · · · ,m−1.
Again, in the CCA attack, m ≤ 2(k−2)n.

If b = k − 1 and k ≥ 4, fix the values of S0(s), S1(s) and Sk−1(s) for s =
0, · · · ,m−1. In this case, the CCA attack must have m to be at most 2(k−3)n.
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So in summary, the differential trail for r = ak + b rounds where b ∈
{0, · · · , k − 1}is as follows:

1. In the KPA setting, the input (ciphertext) differential is (∇0, · · · ,∇k−1) while
the output (plaintext) differential is (Δ0, · · · ,Δk−1) where it satisfies the
following equations:

– Δ0 = 0.
– Δ1 = ∇(k+1−b) (mod k)

– All other sub-blocks difference is arbitrary, which we denote by �.
2. In the CCA setting, the differential is the same, however, we impose some

requirement to the ciphertext that we pick:
– If b = 0, we fix the value of S0(s) and Sk−1(s).
– If b = 1, · · · k − 2, the values of Sk−b(s) and Sk−b−1(s) are fixed.
– If b = k − 1, we fix the values of S0(s), S1(s) and Sk−1(s).

Let NF,M be the random variable representing the number of sets of two
plaintext-ciphertext pairs that satisfy the conditions given by (5) for F rep-
resenting the function used, which has value in the set {perm,F}, and M ∈
{KPA,CCA}. F = perm is used for the random permutation while F = F is
used for the r-round Type-1 Feistel Scheme.

Now it is easy to see that the probability that the requirement set above to
be true is equal to the probability that the right hand side of the equations to
agree, which can be computed since we can assume all the Xi is uniformly and
independently distributed by the ideality of the round function (which has been
discussed in Sect. 3).

Calculating the expected values and variance of the random variables,

E(N(perm,KPA)), E(N(perm,CCA)), V (N(perm,KPA)), V (N(perm,CCA))

are all approximately m2

2·22n . Calculating the random variables corresponding to
F , the expected values and variances are summarised in Table 3 which can be
found in Appendix A. The details on the calculation of the expected values and
variances of NF,CCA for b = 0 can be found in the full version and is omitted
here due to its similarity with the calculation done in [12]. The other results can
be calculated using the same method.

Using the proposition of distinguishability of two random variables given in
the preliminaries, the result is provided in Table 1.

In the KPA model, the maximum number of rounds is k2 where from k(k −
1)+1 up to k2 rounds, the complexity is

√
2 · 2(k−1)n. Furthermore, in the CCA

model, the maximum number of rounds distinguishable is k(k−1)+k−2 = k2−2
rounds with complexity

√
2 · 2(k−3)n.

4.2 Comparison with Existing Result from [12]

To compare with the result given in [12] first note that there are some constant
multipliers that are omitted in [12]. More specifically, all the expected values and
variances should be multiplied by 1

2 . This constant adjustment comes from the
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Table 1. Summary of distinguishability of Type-1 Feistel Scheme

b Model Complexity of distinguishing ak + b rounds Maximum a

0 KPA
√

2 · 2(a−1)n k

CCA
√

2 · 2(a−2)n k − 1

1 ≤ b ≤ k − 2 KPA
√

2 · 2an k − 1

CCA
√

2 · 2(a−2)n k − 1

k − 1 KPA
√

2 · 2an k − 1

CCA
√

2 · 2(a−2)n k − 2

fact that given m plaintext-ciphertext pairs, the number of sets of 2 distinct pairs
should be m(m−1)

2 ≈ m2

2 instead of m2. Although the constant multiplier is very
close to one compared to 2n, it affects the maximum number of rounds that can
be distinguished in the KPA and CPA model. This is because all the complexities
of distinguishers should be multiplied by a factor of

√
2. The existence of this

factor makes it impossible for a to reach the maximum number given in [12]. For
ak−2 rounds distinguished in KPA model, the complexity should be

√
2·2(a−2)n.

Hence the maximum number of rounds that can be distinguished in the KPA
model is k2+k−2 rounds instead of k2+2k−2 rounds. Similarly, for ak−1 rounds
to be distinguishable in CPA, the complexity is again

√
2 ·2(a−2)n. Therefore, the

maximum number of rounds that is distinguishable in CPA model to be k2 − 1
rounds instead of k2 + k − 1.

Note that in both cases, the maximum number of rounds distinguishable
without any complexity constraint is still better in the forward direction. So
in this section, the advantage of using the backward direction analysis in a
constrained environment is discussed.

We compare the results in the CCA model presented above with the CPA
model.

1. When the complexity is fixed to
√

2·2tn, in CPA model, the maximum number
of rounds that is distinguishable is (t + 2)k − 1 while in CCA model, the
maximum number of rounds that is distinguishable is (t + 2)k + (k − 2) =
(t + 3)k − 2 = (t + 2)k − 1 + k − 1 which is an increase of k − 1 rounds.

2. Suppose that we want to distinguish r rounds for some positive integer r.
Table 3 of [12] (after the adjustment by a factor of

√
2) tells us that when

pk − (p − 2) = (p − 1)k + k − p + 2 ≤ r ≤ (p + 1)k − p = pk + k − p, the
complexity is

√
2 · 2(p−2)n. Using the same bound for r, the complexity is√

2 · 2(p−3)n =
√

2 · 2(p−2)n · 2−n when r ≤ pk − 1 and
√

2 · 2(p−2)n when
r ≥ pk (see Table 1). So the complexity is reduced by a factor of 1

2n when
(p − 1)k + k − p + 2 ≤ r ≤ pk for any value of p.

Now for all the following sections, since the method that is being used is
exactly the same, we will not discuss in detail on how to choose the differential,
the expected values and the distinguishability. Instead, only the final results will
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be stated and compared. We note that since we are using Proposition 1, which
is also used in the analysis in [12], has success probability at least 70 %.

5 Type-3 Feistel Scheme

5.1 Analysis of the Type-3 Feistel Scheme

As before, we denote the input as S0, · · · , Sk−1. Define intermediate variables
Xi such that (Xtk, · · · ,Xtk+k−1) is the state value after t rounds. Assuming the
number of rounds is r, for 0 ≤ s ≤ k − 1,Xs = Ss and Xrk+s = Is. Given the
input of round c, 1 ≤ c ≤ r, by definition:

Xck = X(c−1)k+k−1

Xck+s = X(c−1)k+(s−1) ⊕ F(r+1−c,s−1)(Xck+s−1), ∀1 ≤ s ≤ k − 1.

Let r = ak + b for 0 ≤ b ≤ k − 1. In this paper, we only consider a = 1 and
b > 0. Expanding the equation for X(k+b)k+s using the equation given above,
the following can then be derived:

• When b = s,

X(k+b)k+s =
b−1⊕

i=0

F(i+1,s−1−i)(X(k+b−i)k+(s−1−i)

⊕
k−2⊕

i=0

F(i+b+2,k−2−i)(X(k−1−i)k+(k−2−i)) ⊕ S0.

• When b = s + 1 ≤ k − 1,

X(k+b)k+s =
s−1⊕

i=0

F(i+1,s−1−i)(X(k+b−i)k+(s−1−i)) ⊕ F(b+1,k−2)(X(k)k+k−2)

⊕
k−3⊕

i=0

F(i+b+2,k−3−i)(X(k−1−i)k+k−3−i) ⊕ Sk−1.

• When s + 1 < b ≤ k − 1,

X(k+b)k+s =
s−1⊕

i=0

F(i+1,s−1−i)(X(k+b−i)k+(s−1−i))

⊕
b−s−1⊕

i=0

F(s+i+2,k−2−i)(X(k+b−s−1−i)k+k−2−i)

⊕
k−b+s−2⊕

i=0

F(i+b+2,k−b+s−2−i)(X(k−1−i)k+k−b+s−2−i)

⊕
b−s−2⊕

i=0

F(k+s+i+2,k−2−i)(X(b−s−1−i)k+(k−2−i)) ⊕ Sk−1.
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• When s = b + 1 ≤ k − 1,

X(k+t)k+b =
b⊕

i=0

F(i+1,b−i)(X(k+b−i)k+b−i)

⊕
k−3⊕

i=0

F(i+3,k−2−i)F (X(k−2−i)k+(k−2−i) ⊕ S1.

• When b + 1 < s ≤ k − 1,

X(k+b)k+s =
b⊕

i=0

F(i+1,b−i)(X(k+b−i)k+b−i)

⊕
s−b−2⊕

i=0

F(b+i+2,s−b−2−i)(X(k−1−i)k+s−b−2−i)

⊕
k−s+b−2⊕

i=0

F(s+2+i,k−2−i)(X(k−s+b−1−i)k+(k−2−i)) ⊕ Ss−b.

Let b ∈ {1, · · · , k−1}. For the m plaintext-ciphertext pairs, the distinguishing
attack counts the number of sets of two pairs (j, j′), 1 ≤ j < j′ ≤ m that satisfies
the following two conditions:

1. I(r−1)(j) = I(r−1)(j′)
2. Ir(j) ⊕ Ir(j′) = S0(j) ⊕ S0(j′). (6)

In the CCA model, fix the value of Sk−1(j) of all the m ciphertexts. Hence
m ≤ 2(k−1)n.

Calculating the random variables with the same method, E(N(perm,KPA)),
V (N(perm,KPA)), E(N(perm,CCA)), V (N(perm,CCA)), V (N(F,KPA)) and V (N(F,

CCA)) are all approximately m2

2·22n while

E(N(F,KPA)) =
m2

2

(
1

22n
+

1
2(k+r−2)n

)

and

E(N(F,CCA)) =
m2

2

(
1

22n
+

1
2(k+r−3)n

)
.

In both KPA and CPA model, F is distinguishable from a random permutation
when there are up to k+2 rounds and the complexity to distinguish k+b rounds
are

√
2 · 2(k+b−3)n and

√
2 · 2(k+b−4)n respectively.

5.2 Comparison with Existing Result from [12]

Now we compare our result with the one given in [12]. First of all, note that
in [12], there is a restriction that

⌊
k
2

⌋ ≥ 3. This means that k needs to be at



Improved Differential Cryptanalysis on Generalized Feistel Schemes 317

least 6 while the distinguisher proposed above can be used for all k ≥ 2. So in
any attack model, this analysis provides a new lower bound of the maximum
number of distinguishable round for 2 ≤ k ≤ 5. Furthermore, when k ≥ 6, in
KPA model, in both k + 1 and k + 2 rounds proposed above, the complexity is
higher than the one given in [12]. The same thing happen in the distinguisher for
k +1 rounds in the CCA model. However, the lower bound of maximum number
of rounds distinguishable from random permutation in CCA model is increased
to k + 2 from k + 1 proposed in [12].

6 Alternating Feistel Scheme

6.1 Analysis of Alternating Feistel Scheme

We divide this section into two cases based on the parity of the number of rounds.
This is required due to the different round function in odd and even rounds.

Even Number of Rounds. Suppose that the number of rounds is 2r. Let Xi

be intermediate variables such that after 2t rounds the state value is

(Xtk, · · · Xtk+k−1).

For any 0 ≤ s ≤ k−1, (Is, Ss) = (Xrk+s,Xs). Then, given the state value after 2t
rounds, (Xtk, · · · Xtk+k−1) where 0 ≤ t ≤ r − 1, we have the following relations:

• X(t+1)k = Xtk ⊕ F(r−t)((Xtk+s ⊕ F(r−t,s)(Xtk))k−1
s=1 ) where

(Ya)s
a=r := (Yr, Yr+1, · · · Ys).

• X(t+1)k+s = Xtk+s ⊕ F(r−t,s)(Xtk), ∀s = 1, · · · , k − 1.

Then expand the equation for Is:

• I0 = S0 ⊕ ⊕r−1
i=0 F(r−i)((Xik+s ⊕ F(r−i,s)(Xik))k−1

s=1 )
• ∀s ∈ {1, · · · , k − 1},

Is = Ss ⊕
r−1⊕

i=0

F(r−i,s)(Xik) = Ss ⊕ F(r,s)(S0) ⊕
r−1⊕

i=1

F(r−i,s)(Xik).

The distinguishing attack finds the number of sets of two plaintext-ciphertext
pairs (p, q), 1 ≤ p < q ≤ m such that they satisfy the following conditions:

1. I0(p) = I0(q)
2. ∀s = 1, · · · k − 1, Ib(p) ⊕ Ib(q) = Sb(p) ⊕ Sb(q).

(7)
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Furthermore, in the CCA model, all the ciphertexts are chosen such that they
have the same fixed value in S0(p). So we have, m ≤ 2(k−1)n.

Using the same calculation as before, E(N(perm,KPA)), V (N(perm,KPA)),
E(N(perm,CCA)), V (N(perm,CCA)), V (N(F,KPA)) and V (N(F,KPA)) can all be
approximated by m2

2·2kn . Furthermore,

E(N(F,KPA)) =
m2

2

(
1

2kn
+

1
2rn

)
and E(N(F,CCA)) =

m2

2

(
1

2kn
+

1
2(r−1)n

)
.

Simplifying this, to distinguish 2r rounds, the complexity is
√

2 · 2(r− k
2 )n for

KPA and
√

2 · 2(r− k
2 −1)n for CCA. So when k is even, in both models, F can

be distinguished from a random permutation when the round number is up to
3k−2 with complexity

√
2 ·2(k−1)n and

√
2 ·2(k−2)n respectively. When k is odd,

F can be distinguished from a random permutation when the round number
is up to 3k − 1. In this case, the complexity is

√
2 · 2(k− 1

2 )n and
√

2 · 2(k− 3
2 )n

respectively.

Odd Number of Rounds. Suppose that the number of rounds is 2r + 1 for
some non-negative integers r. Let Xi be intermediate variables such that for any
non-negative integer t, after 2t+1 rounds, the state value is (Xtk, · · · ,Xtk+k−1).
So Is = Xrk+s for all 0 ≤ s ≤ k − 1 while

Xs =
{

Ss, if s = 1, · · · , k − 1,
S0 ⊕ Fr+1(S1, · · · , Sk−1) if s = 0.

Following the expansion done before, the following equalities can be found:

• I0 = S0 ⊕ Fr+1(S1, · · · , Sk−1) ⊕ ⊕r−1
i=0 F(r−i)((Xik+s ⊕ F(r−i,s)(Xik))k−1

s=1 )
• ∀s = 1, · · · , k − 1, Is = Ss ⊕ ⊕r−1

i=0 F(r−i,s)(Xik) = Ss ⊕ F(r,s)(S0) ⊕
⊕r−1

i=1 F(r−i,s)(Xik).

Because of this, all the distinguisher and calculation considered in the even
number of rounds case can still be used in this case. Hence the complexity
to distinguish 2r + 1 rounds is

√
2 · 2(r− k

2 )n for KPA and
√

2 · 2(r− k
2 −1)n for

CCA. When k is even, in both models, F can be distinguished from a random
permutation when the round number is up to 3k−1 with complexity

√
2 ·2(k−1)n

and
√

2 ·2(k−2)n respectively. When k is odd, we can distinguish up to 3k rounds
with complexity

√
2 · 2(k− 1

2 )n and
√

2 · 2(k− 3
2 )n respectively.

6.2 Comparison with Existing Result from [12]

We compare the result of previous subsection with the one given in Sect. 4.4 in
[12]. As before, note all the expected values and variance should be multiplied
by 1

2 , all the complexities should be multiplied by
√

2 and hence the maximum
number of rounds, in this case, should be decreased by 2. After this adjustment,
to distinguish t rounds, the complexities are summarised in Table 2:
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Table 2. Summary of comparison of Alternating Feistel Schemes with fixed number
of rounds t.

Parity of t Attack model Complexity [12] Complexity (This Paper)

Odd (t = 2p − 1) KPA
√

2 · 2(p− k
2 )n · 2n

2
√

2 · 2(p− k
2 )n · 2−n

CPA/CCA
√

2 · 2(p− k
2 )n · 2n

2
√

2 · 2(p− k
2 )n · 2−2n

Even (t = 2p) KPA
√

2 · 2(p− k
2 )n

√
2 · 2(p− k

2 )n

CPA/CCA
√

2 · 2(p− k
2 )n

√
2 · 2(p− k

2 ) · 2−n

In both models, when the number of rounds is odd, the complexity is better
than the forward direction, which is a reduction by a factor of 2

3n
2 . However,

when the number of rounds is even, backward direction requires the same com-
plexity in the KPA model. In the CCA model, the complexity of backward
direction is reduced by a factor of 2n.

Note that after the adjustment to the result in [12], backward differential
analysis achieves 2 more rounds in both models, from 3k−2 rounds to 3k rounds.

7 Unbalanced Feistel Scheme

7.1 Analysis of Unbalanced Feistel Scheme

In this section we only consider two special cases of UFN(k′, k). We discuss the
analysis of the case when k is divisible by k′. This is a generalization of the UFN
discussed in Sect. 6 of [16] where k is set to be 3 and k′ is set to be 1. It can also be
seen as a generalization of the UFN discussed in [17] where k′ = 1. In Appendix
D of the full version2, the case when k−k′ is a factor of k is also considered. Due
to the similarity of the technique used and also the page restriction, the detail
of the analysis is omitted. This second case is a generalization of the analysis of
UFN(k′, k) when k′ = k − 1 in [8,18,23].

Analysis of UFN(k ′,k) when k ′ divides k. Let A be a positive integer such
that k = Ak′. Define intermediate variables Xi such that (Xsk, · · · Xsk+(k−1)) is
the state value after s rounds. So

(X0, · · · ,Xk−1) = (S0, · · · , Sk−1).

Suppose that the number of rounds is r = pA + q where 0 ≤ q ≤ A − 1. So
(Xrk, · · · ,Xrk+k−1) = (I0, · · · , Ik−1). Given the state value after s − 1(s ≥ 1)
backward rounds (X(s−1)k, · · · ,X(s−1)k+k−1), the output of the s-th backward
round can be computed by:

• Xsk+t = X(s−1)k+(t−k′) if k′ ≤ t ≤ k − 1,

2 The full version will be uploaded to Cryptology ePrint archive soon.
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• Xsk+t = X(s−1)k+(k−k′+t) ⊕ Fr+1−s,t(X(s−1)k, · · · X(s−1)k+k−k′−1) =
X(s−1)k+(k−k′+t) ⊕ Fr+1−s,t(Xsk+k′ , · · · ,Xsk+k−1) if 0 ≤ t ≤ k′ − 1.
Now for 0 ≤ t ≤ k′ − 1, expanding the relation given above, we get:

• If q = 0,

It = St ⊕
p−1⊕

s=1

FsA+2,t(X(r−sA)k+k′ , · · · ,X(r−sA)k+k−1)

⊕ F2,t(Ik′ , · · · , Ik−1),

• Otherwise,

It = S(A−q)k′+t ⊕
p⊕

s=1

FsA+2,t(X(r−sA)k+k′ , · · · ,X(r−sA)k+k−1)

⊕F2,t(Ik′ , · · · , Ik−1).

The distinguisher counts the number of set of two plaintext ciphertext pairs
(i, j), 1 ≤ i < j ≤ m such that

∀t = 0, · · · , k′ − 1, It(i) ⊕ It(j) = S(a−q)k′+t(i) ⊕ S(a−q)k′+t(j).

In the CPA model, pick ciphertexts with a fixed value in Ik′ , · · · , Ik−1. In other
words, the maximum number of plaintext-ciphertext pairs is m ≤ 2k′n.

The expected values and variances of the random variables can be found in
Table 4 in Appendix A.

Using the definition of distinguishable, the complexity and maximum number
of rounds distinguishable are summarised in Tables 5 and 6 which can be found
in Appendix B.

A distinguisher for backward direction UFN(k′, k) can be constructed by
considering the forward propagation of the equation. Hence, given the value of
Xsk, · · · ,Xsk+k−1, we have:

• Xsk+t = X(s+1)k+(t+k′) if 0 ≤ t ≤ k − k′ − 1,
• Xsk+t = X(s+1)k+(t−k+k′) ⊕ Fr−s,t(X(s+1)k+k′ , · · · X(s+1)k+k−1)

= X(s+1)k+(t−k+k′) ⊕ Fr−s,t(Xsk, · · · ,Xsk+k−k′−1) if k − k′ ≤ t ≤ k − 1.

Expanding St, the following equalities can be obtained:

• If q = 0,

St = It ⊕
p−1⊕

s=1

Fr−sA,t(XsAk, · · · ,XsAk+k−k′−1) ⊕ Fr,t(S0, · · · , Ik−k′−1),

• Otherwise,

St = It−(A−q)k′ ⊕
p⊕

s=1

Fr−sA,t(XiAk, · · · ,XiAk+k−k′−1)

⊕Fr,t(S0, · · · , Sk−k′−1).
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The distinguisher finds the number of sets of two plaintext-ciphertext pairs
(i, j) such that ∀t = k −k′, · · · k − 1, St(i)⊕St(j) = It−(A−q)k′(i)⊕ It−(A−q)k′(j)
where S0, · · · Sk−k′−1 are fixed in the CCA model. It is easy to see that with this
model, we have exactly the same expected values, variances and distinguishabil-
ity as the ones found in Tables 4, 5 and 6.

8 Conclusion

In this paper, differential analysis on the inverse function of four different types of
generic Generalized Feistel Scheme, namely Type-1, Type-3, Alternating Scheme
and UFN(k′, k) was considered. We show that for Type-1 Feistel Scheme, back-
ward distinguisher performs better especially in the chosen ciphertext attack
compared to the results in [12]. Using the same complexity, we can distinguish
k − 1 more rounds while distinguishing the same number of rounds requires
smaller complexity with factor of 1

2n .
In Type-2 and Alternating Feistel scheme, although there are some difference

in the complexity, both directions can achieve almost the same number of rounds.
This shows that these two types can be seen as almost symmetric from both
direction.

We improve the differential cryptanalysis in Type-3 Feistel Scheme in several
cases. In the KPA model with low number of branches, 2 ≤ k ≤ 5, our analysis
provides a lower bound of the number of rounds that is indistinguishable from
random permutation. Secondly, in the CCA model, the lower bound of maximum
number of rounds distinguishable is increased by 1 round, from k + 1 obtained
in [12] to k + 2.

In Alternating Feistel Scheme, we achieve 2 more rounds than the one claimed
in [12]. The complexity is reduced by a factor of 2

3n
2 when distinguishing the

same odd number of rounds.
Lastly, a lower bound for the maximum number of rounds that is distin-

guishable from random permutation in UFN(k′, k) scheme is given through the
forward direction distinguisher. To the best of our knowledge, this is the first
bound given in a rather general case in which k′ is arbitrary as long as k′ is a
divisor of k for any integer k.

A Expected Value and Variance of Random Variables
Concerning Type-1 Feistel Scheme and UFN(k′, k)
When k′ Divides k.

The following table summarises the expected value and variance of the random
variables used in the analysis of Type-1 Feistel Schemes.

The next table summarises the expected values and variances for random
variables used in the analysis of UFN(k′, k) when k′ divides k.
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Table 3. Expected value and variance of random variables concerning Type-1 Feistel
Schemes

b Attack model Expected value Variance Maximum value of m

0 KPA m2
2

(
1

22n
+ 1

2an

)
m2

2·22n 2kn

CCA m2
2

(
1

22n
+ 1

2(a−1)n

)
m2

2·22n 2(k−2)n

1 ≤ b ≤ k − 2 KPA m2
2

(
1

22n
+ 1

2(a+1)n

)
m2

2·22n 2kn

CCA m2
2

(
1

22n
+ 1

2(a−1)n

)
m2

2·22n 2(k−2)n

k − 1 KPA m2
2

(
1

22n
+ 1

2(a+1)n

)
m2

2·22n 2kn

CCA m2
2

(
1

22n
+ 1

2(a−1)n

)
m2

2·22n 2(k−3)n

Table 4. Expected value and variance for various cases of UFN(k′, k)

Attack model q value Π E V σ

KPA 0 Perm m2

2·2k′n
m2

2·2k′n
m

√
2·2

k′
2 n

F m2
2 ·
(

1
2k′n + k′

2(k
′+p−1)n

)
m2

2·2k′n
m

√
2·2

k′
2 n

1 ≤ q ≤ A − 1 Perm m2

2·2k′n
m2

2·2k′n
m

√
2·2

k′
2 n

F m2
2 ·
(

1
2k′n + k′

2(k
′+p)n

)
m2

2·2k′n
m

√
2·2

k′
2 n

CPA 0 Perm m2

2·2k′n
m2

2·2k′n
m

√
2·2

k′
2 n

F m2
2 ·
(

1
2k′n + k′

2(k
′+p−2)n

)
m2

2·2k′n
m

√
2·2

k′
2 n

1 ≤ q ≤ A − 1 Perm m2

2·2k′n
m2

2·2k′n
m

√
2·2

k′
2 n

F m2
2 ·
(

1
2k′n + k′

2(k
′+p−1)n

)
m2

2·2k′n
m

√
2·2

k′
2 n

B Distinguishability Table for UFN(k′, k)

The following tables contain the summary of distinguishability of UFN(k′, k)
from a random permutation.

Table 5. Complexity of Unbalanced Feistel Scheme

k′ q value Attack model Complexity of distinguishing pA + q rounds

1 0 KPA
√

2 · 2(p− 1
2 )n

CPA/CCA
√

2 · 2(p− 3
2 )n

1 ≤ q ≤ A − 1 KPA
√

2 · 2(p+
1
2 )n

CPA/CCA
√

2 · 2(p− 1
2 )n

k′ ≥ 2 0 KPA
√

2
k′ · 2(

k′
2 +p−1)n

CPA/CCA
√

2
k′ · 2(

k′
2 +p−2)n

1 ≤ q ≤ A − 1 KPA
√

2
k′ · 2(p+

k′
2 )n

CPA/CCA
√

2
k′ · 2(p+

k′
2 −1)n
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Table 6. Summary of distinguishability of Unbalanced Feistel Scheme

k′ q value Attack model Maximum p distinguishable→Maximum round distinguishable

1 0 KPA k → k2

CPA/CCA 2 → 2k

1 ≤ q ≤ A − 1 KPA k → k2 + k − 1

CPA/CCA 1 → k + k − 1

k′ ≥ 2 0 KPA

⎧
⎨

⎩
k − k′

2 + 1 → k2
k′ − k

2 + k
k′ if k′ is even

k − k′−1
2 → k2

k′ − k(k′−1)
2k′ if k′ is odd

CPA/CCA

⎧
⎨

⎩

k′
2 + 2 → k

2 + 2 k
k′ if k′ is even

k′+3
2 → k(k′+3)

2k′ if k′ is odd

1 ≤ q ≤ A − 1 KPA

⎧
⎨

⎩
k − k′

2 → k2
k′ − k

2 + k
k′ − 1 if k′ is even

k − k′+1
2 → k2

k′ − k(k′+1)
2k′ + k

k′ − 1 if k′ is odd

CPA/CCA

⎧
⎨

⎩

k′
2 + 1 → k

2 + k
k′ + k

k′ − 1 if k′ is even

k′+1
2 → k(k′+1)

2k′ + k
k′ − 1 if k′ is odd
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Abstract. Garbled circuits have been highly optimized for practice over
the last several years. Today’s most efficient constructions treat different
types of gates (e.g., AND vs. XOR) differently; as such, they leak the
type of each gate. In many applications of garbled circuits, the circuit
itself is public, so such leakage is tolerable. In other settings, however, it
is desirable to hide the type of each gate.

In this paper we consider optimizing garbled circuits for the gate-
hiding case. We observe that the best state-of-the-art constructions sup-
port only a limited class of gate functions, which turns out to undermine
their improvements in several settings. These state-of-the-art construc-
tions also require a non-minimal hardness assumption.

We introduce two new gate-hiding constructions of garbled circuits.
Both constructions achieve the same communication complexity as the
best state-of-the-art schemes, but support a more useful class of boolean
gates and use only the minimal assumption of a secure PRF.

1 Introduction

Garbled circuits were first proposed by Yao in the 1980s [25] and have since
become the target of many improvements. Garbled circuits form the basis of
secure two-party computation protocols and many other applications in cryp-
tography.

In a typical scenario involving two-party computation, both parties agree on
some circuit f that they wish to evaluate. Since f is public, the garbled circuits
in these protocols do not need to hide anything about f ; they need to hide only
the inputs to f . However, in some applications like private function evaluation
(PFE) [1,10,18] it is useful for the garbled circuit to hide information about the
circuit itself.

In this work, we study garbled circuit constructions that are gate-hiding—
that is, they leak only the topology of the circuit, while hiding the type of each
gate (e.g., AND, XOR, NOR).

Comparing efficiency of garbling schemes. With the ubiquity of native AES
instructions on modern CPUs, applications of garbled circuits are rarely CPU-
bound but are usually network-bound (cf. [26]). Hence, the most important metric
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for measuring the efficiency of garbled circuits is their size (typically bits per gate).
In all of the schemes we will discuss, the difference in garbled circuit size is only in
the constant factors.All these schemesproduce garbled gateswith size cλ+d,where
c and d are small constants and λ is the computational security parameter.

1.1 State of the Art

It is folklore that the “textbook” Yao garbling scheme is gate-hiding. Indeed, in
the security proof for Yao’s protocol from [16], there is a hybrid in which each
garbled gate is replaced by a garbled “always-zero” gate. Since every garbled
gate is indistinguishable from such a constant gate, the scheme hides the type of
gate. The same property holds for simple improvements like garbled row reduction
(GRR3) [19]; that is, they hide the type of each gate. These two schemes garble
each gate at a cost of 4λ + 4 and 3λ + 4 bits, respectively.1

The most efficient constructions of garbled circuits are derived from the Free
XOR optimization [15] (including [7,14,26]). These constructions are not gate-
hiding because the evaluator must behave very differently for XOR gates vs.
non-XOR gates. This is what allows XOR gates to be garbled more efficiently
than other gates in these constructions. These schemes therefore leak whether a
gate is XOR or not, while typically hiding all further distinctions.

Two recent papers, one by Kempka et al. [11] (hereafter KKS) and one by
Wang and Malluhi [24] (hereafter WM), each describe a gate-hiding garbling
scheme in which each garbled gate costs only 2λ + O(1) bits. Both schemes use
the same representation of truth values as garbled wire labels, but otherwise use
very different techniques for garbled gates.2 These two schemes are currently
the most lightweight gate-hiding schemes.3 We discuss them in more detail in
Sect. 3.

A summary of the state of the art for gate-hiding garbling schemes is given
in Fig. 1.

1.2 What Kinds of Gates Are Supported, and Why Does It Matter?

Closer inspection of Fig. 1 reveals that these constructions are not entirely inter-
changeable. In particular, they support different classes of gate functionalities.
We identify three different classes of gate functionalities below:
1 The “extra” 4 bits come from using the point-permute optimization. In practice

one would typically use the underlying cryptographic primitive (e.g., AES) in a way
that gives security λ = 127, and then the garbled gates become a clean multiple
of 128 bits in length. All of the constructions in this work use the point-permute
optimization, which we discuss in greater detail in Sect. 2.4.

2 KKS also show how to reduce the size of garbled gates at the input layer of a circuit.
In this work we focus on internal gates of a circuit, and assume that the input gates
represent only a small fraction of the circuit.

3 In this paper we restrict our attention to constructions based on symmetric-key
primitives only. There exist garbled circuit constructions based on very expensive
primitives (functional encryption, FHE) where the cost of every garbled gate is
constant.
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Fig. 1. Comparison of gate-hiding garbling schemes. All costs are listed per-gate. “H”
refers to calls to a symmetric-key primitive (see Sect. 2.3 for the required primitive).
“interp” refers to interpolations of degree-2 polynomials over GF (2λ). “circ+RK” refers
to a circularity+related-key assumption on H.

Gall: all gates g : {0, 1}2 → {0, 1}
Gsymm: all gates satisfying g(0, 1) = g(1, 0)

Gnon-const: all gates except for the degenerate ones (a, b) �→ 0 and (a, b) �→ 1

As mentioned above, it is not hard to see that textbook Yao and GRR3 support
Gall-gates and are gate-hiding with respect to this class. That is, they can garble
literally any boolean gate functionality, in a way that hides the choice of gate.

However, the KKS and WM schemes—the schemes with smallest garbled gate
size—support only Gsymm-gates. While this seems like a minor limitation, we
point out two reasons it can be problematic:

NOT gates. When dealing with fan-in-2 gates, one can usually think of any
unary NOT gates being “absorbed” into all downstream (in the direction of
evaluation) gates.4 This leads to non-symmetric gates like (a, b) �→ a∧ b. Almost
all garbling schemes support “absorbed” negations at no additional cost, and
in a way that hides the presence of the negations. Unfortunately, the glaring
exceptions to this rule are in fact the KKS and WM schemes, which cannot
garble these non-symmetric gates at all (we elaborate in Sect. 3)!

This raises the question of how to deal with a circuit containing NOT gates.
While it is possible to express any circuit just in terms of NAND gates (which
are symmetric), one will obtain smaller circuits by using a larger class of gates.
Indeed, most of the available boolean circuits used for MPC are expressed as
AND/XOR/NOT gates [9,22]. In Sect. 3 we argue that NOT gates inherently
have extra cost in the KKS & WM schemes, due to the structure of wire labels
in these schemes. In contrast, a garbling scheme that is gate-hiding for Gnon-const

would not suffer from the same limitation, since this class of gates is closed under
“absorbed” NOT gates.

4 Absorbing the NOT gate into its “upstream” gate may not always work, since the
upstream gate may have multiple fan-out.
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In short, closure under “absorbed NOT gates” is important since it implies
that NOT gates will always be free. But schemes that support only Gsymm do not
have this property.

Multiplexers, pass-through gates. A multiplexer has three inputs and com-
putes (x0, x1, s) �→ xs. A pass-through gate is simply a multiplexer whose selec-
tion input s has been fixed, corresponding to either (a, b) �→ a or (a, b) �→ b.
These kinds of gates are clearly not in Gsymm, but are vital in most applica-
tions of gate-hiding garbled circuits. Garbling a pass-through gate in a gate-
hiding way is therefore equivalent to garbling a multiplexer with its selection
bit secretly fixed by the garbler. This is an approach used by Paus et al. [20]
in an application to semi-private function evaluation, where the function being
evaluated is hidden within a known class of functions. Constructions of universal
circuits [8,13,17,23] likewise use significant amount of multiplexers, and when
the garbler is the party who programs the universal circuit, the multiplexer is
meant to be replaced by a pass-through gate. Other variants of universal cir-
cuits [12] explicitly use pass-through gates as a fundamental concept in their
constructions.

1.3 Hardness Assumptions

In the non-gate-hiding setting, the best garbling schemes use the Free XOR opti-
mization [15] to eliminate communication for XOR gates. Choi et al. [6] showed
that the Free XOR construction inherently relies on a nonstandard assumption:
namely, that the underlying symmetric-key primitive have circular security and
related-key security. For comparison, the minimal hardness assumption for gar-
bled circuits is the existence of a PRF (equivalently, the existence of a one-way
function). The best known way for garbling XOR gates from standard assump-
tions is due to Gueron et al. [7], who garble XOR gates at a cost of λ bits each,
using a standard PRF.

It is reasonable to use a stronger assumption to achieve efficiency that we
do not know how to achieve otherwise. In the case of non-gate-hiding garbled
circuits, a nonstandard assumption allows XOR gates to be garbled for free.

However, in the gate-hiding case we cannot expect to garble XOR gates for
free, since we cannot expect to garble all gates for free (for evidence, see the lower
bound of Zahur et al. [26]). When XOR gates are not free, it is not clear that
a stronger hardness assumption is necessary. Yet the best existing gate-hiding
schemes (KKS and WM) both rely on a free-XOR-like hardness assumption that
involves correlated keys and circularity. A natural question is whether this flavor
of assumption is necessary for highly efficient, gate-hiding garbled circuits.

1.4 Our Contributions

In this work we present three main results:
In Sect. 3 we show how to extend the KKS & WM constructions from a Gsymm-

scheme to a Gall-scheme. This comes at a price, however: the garbled gates must
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increase in size from 2λ + O(1) to 3λ + O(1), and evaluation requires an extra
cryptographic operation. We give evidence that this extra cost is inevitable—
i.e., the KKS & WM approaches cannot be extended beyond symmetric gates
for free.

In Sect. 4 we revisit a scheme of Pinkas et al. [21] that garbles non-constant
gates (Gnon-const) for 2λ + 4 bits. Their scheme, however, uses different methods
to garble gates of even vs. odd parity (a gate has even parity if the number of 1’s
in its truth table is even). That is, the construction leaks the parity of a gate. We
show that their odd-parity method can be adapted to work for even-parity gates
as well, resulting in a gate-hiding scheme for Gnon-const-gates with cost 2λ + 4
bits per gate. While evaluation requires only a single cryptographic operation,
it requires an additional polynomial interpolation step over GF (2λ), which in
practice can cost roughly half of an AES evaluation (cf. [7]).

In Sect. 5 we present a new and novel gate-hiding scheme, inspired by a
garbling technique of Gueron et al. [7]. This scheme supports Gnon-const-gates,
and results in garbled gates of size 2λ + 8 bits. Evaluation involves just one
cryptographic operation, and otherwise uses only XOR operations (in particular,
no interpolation or finite field multiplications).

Our new constructions improve the concrete cost of applications of gate-
hiding garbled circuits, by supporting circuits expressed over a more natural
class of gates. Additionally, our new constructions require only the minimal
hardness assumption of the existence of a PRF. As mentioned above, KKS &
WM require a circularity/related-key assumption.

2 Preliminaries

2.1 Circuits

We represent circuits in the following way. All wires in the circuit (including
input wires) are indexed in a topological ordering. For a circuit f , we define:

– inputs(f): the set of indices of input wires
– gates(f): the set of indices of non-input wires (i.e., wires that emanate from

some internal gate)
– outputs(f): the set of indices of output wires (not necessarily disjoint from

the other sets).

For each gate with index i ∈ gates(f), we define:

– left(i): the index of the gate’s left input wire
– right(i): the index of the gate’s right input wire
– type(i): the functionality of the gate; i.e., a function g : {0, 1}2 → {0, 1}
For a circuit f , we let topo(f) denote all of the above information except for
type(i).

Let G be a set of boolean gates (e.g., Gall, Gsymm). We say that a circuit f is
a G -circuit if type(i) ∈ G for every i ∈ gates(f).
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2.2 Garbled Circuits

We use the security definitions of Bellare et al. [4]. A garbling scheme is a col-
lection of algorithms (Garble,Encode,Eval,Decode), with the following semantics:

– Garble(1λ, f) → (F, e, d), where f is a boolean circuit, F is a garbled circuit, e
is input-encoding information, and d is output-decoding information. Garbleis
a randomized algorithm, but the others are deterministic.

– Encode(e, x) → X, where x is a plaintext circuit input, and X is a corre-
sponding garbled input.

– Eval(F,X) → Y , where Y is a garbled output.
– Decode(d, Y ) → y, where y is a plaintext output.

We say that the garbling scheme is a G-scheme, if it supports f that are G-
circuits.

Several properties are useful, and here we state the relevant security proper-
ties for the case of gate-hiding G-schemes:

– Correctness: For all (F, e, d) ← Garble(1λ, f), we have

Decode(d,Eval(F,Encode(e, x))) = f(x).

– Gate-Hiding Privacy: There exists a simulator S, such that for all G-
circuits f and all inputs x, the following two distributions are indistinguish-
able:

PrivReal(1λ, f, x):
(F, e, d) ← Garble(1λ, f)
X := Encode(e, x)
return (F,X, d)

PrivSimS(1λ, f, x):
return S(1λ, topo(f), f(x))

In other words, (F,X, d) leaks no information beyond topo(f) and f(x).
– Gate-Hiding Obliviousness: There exists a simulator S, such that for all

G-circuits f and all inputs x, the following two distributions are indistinguish-
able:

OblivReal(1λ, f, x):
(F, e, d) ← Garble(1λ, f)
X := Encode(e, x)
return (F,X)

OblivSimS(1λ, f, x):
return S(1λ, topo(f))

In other words, (F,X) (without d) leaks no information beyond topo(f).
– Authenticity: For any G-circuit f , input x, and efficient adversary A, the

following game outputs 1 with negligible probability:

AuthA(1λ, f, x):
(F, e, d) ← Garble(1λ, f)
X := Encode(e, x)
Ỹ ← A(F,X)
if Decode(d, Ỹ ) �∈ {f(x),⊥} then return 1 else return 0
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2.3 Dual-Key Hash

Our constructions require a function with type H : {0, 1}∗ ×{0, 1}λ ×{0, 1}λ →
{0, 1}�. To define the required notion of security, we introduce a related function:

OK(t, a,X) =

{
H(t;X,K) if a = 0
H(t;K,X) if a = 1

We say that H is a dual-key hash if, for random choice of K ← {0, 1}λ, oracle
access to OK is indistinguishable from oracle access to a random function, against
distinguishers who query OK with distinct t-values.

Intuitively, one can think of H as a PRF with two keys. The outputs of H
look random as long as one of the two keys is random and secret (the other
key can be chosen by the adversary). This notion is similar to the “dual PRF”
definition in [5], however the additional and non-repeating t-input in our setting
makes realizing our notion easier.

One can instantiate H as a random oracle. In practice, one might simply
use H = sha256. In the standard model, one can use H(t;A,B) = F (A, t) ⊕
F (B, t), where F is a secure PRF. The fastest garbling schemes in practice use
fixed-key AES as an ideal permutation, following [3], to take best advantage of
AES hardware support. We think it likely that the schemes in this work can be
adapted naturally to this setting. But since our focus is in part to minimize the
hardness assumption of the schemes, we focus on the dual-key hash abstraction
which can be instantiated from a plain PRF.

2.4 Basics of Garbled Circuit Techniques

We review several basic and standard techniques for garbled circuits. Readers
familiar with the internals of recent garbled circuit constructions can skip this
section.

Textbook Yao. Suppose a gate has input wire labels (A0, A1) and (B0, B1), and
output wire labels (C0, C1). Here the subscripts correspond to the truth value
(so A0 is the wire label encoding false on that wire). Suppose we wish to garble
an AND gate as an example, then we generate the following encryptions:

G1 = Enc(A0,Enc(B0, C0)) G3 = Enc(A1,Enc(B0, C0))
G2 = Enc(A0,Enc(B1, C0)) G4 = Enc(A1,Enc(B1, C1))

However, position in this list clearly leaks the truth value on each wire. So the list
is randomly permuted. The evaluator, who receives just a single garbled input
combination Aa, Bb is expected to perform trial decryption of each ciphertext.
Hence, the encryption scheme must give some indication of whether decryption
is successful.
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Point-permute. Beaver et al. [2] introduced a point-and-permute technique that
is now used in essentially every practical garbling scheme. The idea is to append
to each wire label a color bit. The two wire labels on each wire will have opposite
color bits. The association between color bits and truth values is random and
known only to the garbler. The evaluator, who sees only one label per wire, sees
only a random color bit that is distributed independently of the truth value it
represents.

As before, let a gate have input wire labels (A0, A1) and (B0, B1), and output
wire labels (C0, C1). Unlike before, let the subscript denote the color bit of the
wire label. The evaluator holds one label from each wire, and is allowed to use
their (public) color bits to decide how to proceed. Suppose for example that A0,
B1, and C1 correspond to true on their respective wires. Then the garbled gate
consists of four ciphertexts:

G1 = Enc(A0,Enc(B0, C0)) G3 = Enc(A1,Enc(B0, C0))
G2 = Enc(A0,Enc(B1, C1)) G4 = Enc(A1,Enc(B1, C0))

The ciphertexts can be arranged in precisely this order, since the order depends
only on the (public) color bits and not the (secret) truth values. The evaluator
can use the color bits to identify exactly which ciphertext to decrypt. There is
no need for the evaluator to perform trial decryption on each ciphertext, and
therefore no need to detect “correct decryption.” This allows the scheme to use
a simple encryption, namely:

G1 = H(A0, B0) ⊕ C0 G3 = H(A1, B0) ⊕ C0

G2 = H(A0, B1) ⊕ C1 G4 = H(A1, B1) ⊕ C0

Here H is a dual-key hash, defined in Sect. 2.3 (a unique nonce should also be
given as input to each invocation of H, but we have omitted it from the notation).

Simple garbled row reduction. Naor et al. [19] introduced a method to reduce
the size of garbled gates from 4 to 3 ciphertexts, called garbled row reduction
(GRR). The idea is to exploit the freedom in choosing the output wire labels
C0, C1, which are not yet fixed at the time this gate is garbled. In particular,
we can always make the first ciphertext G1 equal to 0λ. In the example above,
we do so by choosing C0 = H(A0, B0). Since G1 is always 0λ, it does not need
to be included in the garbled gate—the evaluator can “imagine” G1 = 0λ and
proceed as above.

3 Extending the KKS and WM Schemes

Kempka et al. [11], and independently Wang and Malluhi [24], give constructions
of a gate-hiding garbling scheme for the class of symmetric gates. We now
review their schemes and discuss in more detail their limitation to the class of
symmetric gates.
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3.1 Overview of the Constructions

In a symmetric gate, we have g(0, 1) = g(1, 0). The main idea in both KKS and
WM is for the false wire label A0 and true wire label A1 on a wire to satisfy the
relationship A1 = A0 + Δ (mod 2λ), where Δ is a global secret constant common
to all wires. Suppose the evaluator has a wire label Aa and Bb, corresponding to
input combination (a, b) on some gate. Adding these wire labels mod 2λ results
in one of {A0 + B0, A0 + B0 + Δ,A0 + B0 + 2Δ}. Importantly, adding the wire
labels “collapses” the two input combinations (0, 1) and (1, 0) to the same value.

Both the KKS and WM construction use this idea. That is, the evaluator’s
first step is to add the input wire labels and use the result as input to a crypto-
graphic hash, to obtain one of {H(A0+B0),H(A0+B0+Δ),H(A0+B0+2Δ)}.
The corresponding result is used as a key that allow the receiver to learn the
correct output wire label. The two schemes diverge significantly in their tech-
niques at this point (specifically, WM uses polynomial interpolations), but the
most important idea is this method for encoding truth values as wire labels with
a global correlation by Δ.

In WM, each garbled gate requires 2λ + 2 bits. In the general case of KKS,
each garbled gate requires 2λ + 8 bits (but see the note below about optimiza-
tions for some special cases).

Hardness assumptions. Because of the way truth values are encoded into wire
labels, these schemes require a non-standard assumption. To understand why,
consider that an evaluator learns one of the keys {H(A0 + B0),H(A0 + B0 +
Δ),H(A0 + B0 + 2Δ)}. The security proof will have to argue that the other
two keys look random. Since for all gates, the keys are related by a common
secret Δ, a related-key-type assumption is used. Furthermore, since these keys
are used to encrypt other wire labels in the system, which are also related by
the same Δ, a circularity assumption is necessary as well. We point the reader
to the KKS/WM papers for more details, and to [6] who describe the analogous
situation that occurs when using Free-XOR.

Optimizations for input gates. The authors of KKS show further how to garble
gates at the input level of the circuit for just λ+8 bits, exploiting the extra free-
dom available for choosing input wire labels. In this work we focus only on the
general case of internal gates of the circuit, whose input labels will be already
fixed by the time the gate is being garbled. We justify this choice with the obser-
vation that the number of input wires is typically an extremely small fraction
of the total wires in a circuit (e.g., the SHA-256 circuit has 256 inputs but over
130,000 gates [7]), so these optimizations have a relatively small effect. Certainly
the difference between internal gates costing 3λ vs. 2λ bits is significantly more
important.
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3.2 The Limitation to Symmetric Gates, and How to Overcome It

As mentioned in Sect. 1.1, the KKS and WM schemes can garble only symmet-
ric gates—those g where g(0, 1) = g(1, 0). In contrast, our new constructions
can garble any gate except for the two constant gates (x, y) �→ 0 and (x, y) �→ 1.

Is there a trivial modification to these schemes that avoids this limitation? We
argue that the limitation to Gsymm is inherent to these schemes, and cannot be
avoided for free.

Consider an asymmetric gate g(a, b) = a ∧ b above. In order to express this
gate in terms of a symmetric gate, one needs to incorporate the logic of a NOT-
gate somehow. But looking closely at the choice of wire labels in KKS/WM, it
seems that a NOT-gate can never be free. In particular, the wire labels satisfy
A1 = A0 +Δ (mod 2λ) for a global Δ, and this relationship between wire labels
is not symmetric! Contrast this with other garbling paradigms:

– In free-XOR [15] and its derivatives, the wire labels satisfy A1 = A0 ⊕ Δ,
where ⊕ denotes bitwise XOR. This relation is symmetric, so A0 = A1 ⊕ Δ
as well.

– In textbook Yao, the GRR3 scheme of [19], and the GRR2 scheme of [21], wire
labels are unconstrained. A vacuous relation between wire labels is obviously
symmetric.

In both of these cases, one can implement a NOT gate for free (obliviously) by
simply having the garbler change which label he/she considers as the false one.5

With wire labels in the KKS/WM paradigm, however, the two wire labels
simply have their truth values “baked-in”, in a fundamental way. Their truth
values cannot be swapped simply by the garbler changing his/her internal per-
spective.

The garbler could consider (−Δ mod 2λ) to be the local wire-label-difference,
just for this gate. But this would invert the truth value on both input wires, leav-
ing the resulting gate functionality still symmetric. To realize a non-symmetric
gates it must be necessary to negate only one of the two input wires.

Supporting non-symmetric gates via unary gates. We observe that every gate
g ∈ Gall can be expressed as g(a, b) = f(h(a), b) where f is symmetric and h is a
unary gate. For example, a non-symmetric gate like g(a, b) = a∧b can be written
using DeMorgan’s laws as g(a, b) = nor(not(a), b). Hence, an obvious way to
extend KKS/WM beyond Gsymm-gates is to incorporate unary gates. In the full
version we show a simple way to garble unary gates—in a way that hides the
choice of the unary gate and is compatible with KKS/WM wire labels—using
only λ bits per gate, 2 additional calls to H for the garbler, 1 additional call to
H for the evaluator. Now every Gall gate can be garbled with a gadget of the
form f(h(a), b), costing 3λ + O(1) bits.

5 This fact is explicitly mentioned in [7].
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4 Construction Based on Polynomial Interpolation

We review a garbling scheme of Pinkas et al. [21] (hereafter PSSW), that results
in garbled gates of 2λ + 4 bits. The scheme uses different garbling/evaluation
approaches depending on whether the gate has even/odd parity (the parity of a
gate is even if its truth table contains an even number of 1s). We then show that
a simple modification allows the scheme to be gate-hiding for all Gnon-const-gates
(i.e., gates of either parity).

4.1 Overview of PSSW Garbling Scheme

The PSSW approach is based on polynomial interpolation. We describe only
the method they propose for odd-parity gates, since that is the method we will
extend to the even-parity case as well.

Suppose a gate has input wire labels (A0, A1) and (B0, B1). Here, the sub-
scripts will denote the color bits (see Sect. 2.4) of the wires. This means that
the evaluator will be able to behave differently depending on the subscripts of
the input wire labels he/she has.

For each input combination, we define an associated “key” value:

K1 = H(A0, B0); K3 = H(A1, B0);
K2 = H(A0, B1); K4 = H(A1, B1).

The evaluator learns only one combination of input wire labels, and hence learns
one of the Ki values (and knows the subscript of this Ki value, as it is determined
by the input wires’ color bits). The property we require of H is that the other
three Ki values look random.

For an AND gate, we want to arrange things so that learning Ki allows the
evaluator to learn the corresponding output wire label of the gate. For instance,
depending on the color bits, we might need to arrange for the evaluator to learn
the following:

knowing K1 lets you learn C0 knowing K3 lets you learn C0

knowing K2 lets you learn C1 knowing K4 lets you learn C0

For this example, the garbler can proceed as follows. First, use polynomial inter-
polation to find the unique degree-2 polynomial P passing through the points
{(1,K1), (3,K3), (4,K4)}. These are the cases for which the evaluator should
learn C0. Here we take the Ki values to live in Zp for some prime p, and P is
a polynomial over Zp. In practice, one would instead use a finite field GF (2λ),
but a prime field makes the notation a little simpler.

Now the garbler finds the unique degree-2 polynomial Q passing through the
points {(2,K2), (5, P (5)), (6, P (6))}. Hence, we have:

– interpolating a polynomial through (1,K1), (5, P (5)), (6, P (6)) results in P
– interpolating a polynomial through (2,K2), (5, P (5)), (6, P (6)) results in Q



336 M. Rosulek

– interpolating a polynomial through (3,K3), (5, P (5)), (6, P (6)) results in P
– interpolating a polynomial through (4,K4), (5, P (5)), (6, P (6)) results in P

This suggests to make the garbled gate consist of values P (5), P (6) and to set
P (0) and Q(0) to be the false/true output wire labels. The evaluator will compute
Ki, interpolate a polynomial using the garbled gate values, and then evaluate
that polynomial at point 0.

Dealing with color bits. Recall that each wire label is associated with an addi-
tional color bit. The garbled gate must also contain information that tells the
evaluator the color bit of the output wire label.

To do so, we interpret H as a function of the form H : {0, 1}∗ → {0, 1}λ+1,
and write Ki‖κi = H(A,B), where Ki ∈ {0, 1}λ and κi ∈ {0, 1}. The garbler
can choose random color bits for the output wire labels. Then for each i, he/she
can encrypt the color bit of the appropriate output wire label, using κi as a
one-time pad. This adds an additional 4 bits to the garbled gate. The evaluator
will choose which 1-bit ciphertext to decrypt based on the color bits of the input
wires.

4.2 Modification to Support Both Even/Odd Gates

Our main contribution in this section is to simply point out that the PSSW
technique for odd gates can be extended to work for even gates as well.

We keep the same evaluation algorithm as in PSSW. Recall that the evaluator
interpolates a polynomial through points P (5) and P (6) (which comprise the
garbled gate information) and evaluates that polynomial at point 0 to obtain
the output wire label. In order for this same evaluation procedure to work for
an even gate, it suffices to arrange the polynomials so that 2 of the points are
on P and 2 are on Q. As an example, suppose we want K1,K2 to lie on P and
K3,K4 to lie on Q. Then we require polynomials that satisfy:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P (1) = K1

P (2) = K2

Q(3) = K3

Q(4) = K4

P (5) − Q(5) = 0
P (6) − Q(6) = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⇐⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

10 11 12

20 21 22

30 31 32

40 41 42

50 51 52 −50 −51 −52

60 61 62 −60 −61 −62

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

p0
p1
p2
q0
q1
q2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

K1

K2

K3

K4

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

where we write P (x) = p0 + p1x + p2x
2 and Q(x) = q0 + q1x + q2x

2.
Note that the Ki values are fixed (the generator has no control over them,

since the input wire labels are already fixed). Hence, the generator will compute
the Ki values and solve for polynomials P and Q using the above linear equation.
Clearly it suffices for the 6 × 6 matrix to be invertible.
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In the general case, the garbler will consider the following 6 × 6 matrix:⎡
⎢⎢⎢⎢⎢⎢⎣

τ0010 τ0011 τ0012 τ0010 τ0011 τ0012

τ0120 τ0121 τ0122 τ0120 τ0121 τ0122

τ1030 τ1031 τ1032 τ1030 τ1031 τ1032

τ1140 τ1141 τ1142 τ1140 τ1141 τ1142

50 51 52 −50 −51 −52

60 61 62 −60 −61 −62

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

for some (τ00, τ01, τ10, τ11) ∈ {0, 1}4 \ {0000, 1111} (corresponding to a non-
constant gate). One can verify by hand that the above matrix is invertible in
all cases. This is also true in GF (2λ) if we replace integers {1, . . . , 6} with finite
field elements whose representations in hex are {0x1, . . . , 0x6}.

Fig. 2. Generic template for garbling scheme. GbGate and EvGate subroutines to be
specified later. Notation type(i) (used in Garble) refers to the gate functionality of the
gate with index i (see Sect. 2.1).
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4.3 Details

In Fig. 2 we give a generic template for a garbling scheme. Both of our new
constructions will instantiate this template. In the template for the garbler, we
use W b

i as the wire label representing truth value b on wire i, and σi to denote
the color bit on W 0

i . For the evaluator, we use W ∗
i as the “active” wire label

Fig. 3. Our gate-hiding garbling scheme based on polynomial evaluation.
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(representing unknown truth value) on wire i, and χi to denote its color bit
(known to the evaluator).

We give the specific procedure for garbling & evaluating gates of this scheme
in Fig. 3. Departing from the (simplified) discussion above, we include the color
bits in the input to H to ensure that all “nonce” arguments to H are glob-
ally unique (as required by the dual-key hash definition); e.g., Kab‖κab :=
H(idx, a, b; · · · ).

The scheme is written to involve an explicit matrix inverse, as in Eq. 1 above.
In practice, there are only 16 − 2 = 14 possible matrices (one for each non-
constant setting of the τab bits), and their inverses would all be easily hard-coded
into a lookup table.

In the full version we prove the following

Theorem 1. The construction in Figs. 2 and 3 satisfies the gate-hiding pri-
vacy, obliviousness (both with respect to Gnon-const), and authenticity properties
(Sect. 2.2), if H is a dual-key hash.

5 Construction that Avoids Polynomial Interpolation

5.1 Overview of GLNP Garbling Scheme

In [7], Gueron et al. describe a different way to garble gates (in their case,
odd-parity gates only) at a cost of 2 ciphertexts. While the construction of [21]
involves polynomial interpolation, the construction of [7] involves only cheap
XOR operations, making it preferable both in performance and ease of imple-
mentation.

The main idea is to start with the classical point-and-permute Yao scheme, in
which the garbled gate consists of 4 ciphertexts. Suppose a gate has input wire
labels (A0, A1) and (B0, B1), and output wire labels (C0, C1). As before, the
subscripts correspond to the visible color bits. Consider the following example
odd-parity gate in the textbook Yao scheme:

G1 = H(A0, B0) ⊕ C0 G3 = H(A1, B0) ⊕ C0

G2 = H(A0, B1) ⊕ C1 G4 = H(A1, B1) ⊕ C0

The high level idea is to exploit the two degrees of freedom in the choice of output
labels C0 and C1, which are not yet chosen at the time this gate will be garbled.
The first step is to apply the GRR3 row reduction of [19], setting G1 = 0λ. In
this example, we can do so by choosing C0 in a special way: C0 = H(A0, B0).

After fixing one of the output wire labels, the next step is to fix the other
output label so that G2 ⊕ G3 ⊕ G4 = 0λ. In this example, we can do so by
choosing C1 = H(A0, B1) ⊕ H(A1, B0) ⊕ H(A1, B1).

By choosing C0 and C1 in this way, the garbler has guaranteed that G1 =
G2 ⊕ G3 ⊕ G4 = 0λ. Hence, G1 does not need to be sent (it is always all zeroes),
and neither does G4 (it can always be reconstructed by the receiver as G2 ⊕G3).
In this way, only two ciphertexts actually need to be sent.
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The problem of even-parity gates. One can check that the GLNP technique works
for any odd-parity gate, but does not work when the gate has even parity. We
illustrate with an example. Consider the following classical-Yao garbled gate for
an even-parity truth table:

G1 = H(A0, B0) ⊕ C0 G3 = H(A1, B0) ⊕ C1

G2 = H(A0, B1) ⊕ C1 G4 = H(A1, B1) ⊕ C0

To achieve G1 = 0λ we must set C0 = H(A0, B0) as before. But now observe
that G2 ⊕ G3 ⊕ G4 = H(A0, B1) ⊕ H(A1, B0) ⊕ H(A1, B1) ⊕ C0, a value that
is already fixed! Because of the even parity of the gate, the C1 terms cancel out
in this expression. There is no way to choose C1 so that G2 ⊕ G3 ⊕ G4 = 0λ as
before.

5.2 Our Construction

Let us look a little more abstractly at the GLNP scheme. The evaluator computes
K (the hash of the two wire labels) and then obtains the final wire label as
K ⊕ αG ⊕ βG′, where G and G′ are the two “ciphertexts” in the garbled gate,
and α and β are bits that depend on color bits of the wire labels. The mapping
between color bits and α, β coefficients is fixed for the entire scheme.

Our approach is to randomize and partially hide this mapping of color bits
to α, β coefficients. In our scheme, evaluation works as follows:

– The evaluator hashes the input wire labels to compute a key K.
– The evaluator uses K to decrypt a 2-bit ciphertext containing α‖β. There

are four such 2-bit ciphertexts, arranged according to color bits. The evalu-
ator uses the color bits of the input labels to determine which of these 2-bit
ciphertexts to decrypt.

– Having obtained the appropriate α, β, the evaluator computes the output wire
label as K ⊕ αG ⊕ βG′.

So each garbled gate consists of the following:

– G and G′ (2λ bits)
– four 2-bit ciphertexts that encrypt α, β values (8 bits total)
– four 1-bit ciphertexts that encrypt the color bit of the output wire label (4

bits total)

The real power of the scheme comes from the indirection in conveying the evalu-
ator’s final linear combination. The evaluator uses his/her color bits to decrypt a
constant-sized ciphertext, which tells him/her what linear combination to finally
apply. A similar kind of indirection also appears in the construction of [11], where
they use it to circumvent a lower bound for “linear garbling” from [26] (the model
for the lower bound implicitly assumes a direct, fixed correspondence between
color bits and the evaluator’s final linear combination).

Now let us consider how the garbler can arrange for all of this to happen.
Let C0 and C1 denote the false/true output wire labels (yet to be determined).
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Let K1, . . . ,K4 be the four possible input hashes, as before. Let αi, βi denote the
coefficients that the evaluator will use when he/she has Ki. Below is an example
of the correctness conditions required for an example gate:

C0 = K1 ⊕ α1G ⊕ β1G
′

C0 = K2 ⊕ α2G ⊕ β2G
′

C1 = K3 ⊕ α3G ⊕ β3G
′

C0 = K4 ⊕ α4G ⊕ β4G
′

⇐⇒

⎡
⎢⎢⎣

K1

K2

K3

K4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 α1 β1

1 0 α2 β2

0 1 α3 β3

1 0 α4 β4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

C0

C1

G
G′

⎤
⎥⎥⎦ (2)

We let the garbler choose {αi, βi} values uniformly subject to the matrix in
Eq. 2 being invertible. Importantly, for different gate types, this is a different
distribution over the αi, βi values! In particular, when the gate has odd parity
(i.e., the parity of the first column is odd), there are 96 ways to choose αi, βi

coefficients to make the matrix invertible. When the gate has even parity, there
are 104 ways. Beyond that, the distributions are different even for different gates
of the same parity. Below we discuss in more detail how this difference affects
security.

In summary, the garbler computes K1, . . . ,K4 (these are fixed by the choice
of the input wire labels), chooses random αi, βi values that make the appropri-
ate matrix invertible, and finally solves for consistent C0, C1, G,G′ according to
Eq. 2. The C0, C1 values will be the output wire labels and (G,G′) will be the
garbled gate (along with the 12 bits of encryptions mentioned above).

Why it hides the gate type. From the evaluator’s perspective, every kind of gate
is handled the same way—decrypt the correct α, β and output K ⊕ αG ⊕ βG′.

However, the garbler’s behavior depends on the choice of gate. In particular,
he/she uses a different distribution over the αi, βi values for different gates.
We must ensure that this difference is not noticeable to the evaluator. The
key point is that the evaluator sees only a single αi, βi pair while the other
coefficients remain encrypted.6 Furthermore, all possible garbling distributions
have the property that for every i, the marginal distribution of (αi, βi) is uniform.
Hence, the evaluator sees only a uniform αi, βi, regardless of the gate type.

To see why this is true, take any vector v ∈ {0, 1}4\{0000, 1111} and consider
any invertible matrix (over Z2) of the following form:⎡

⎢⎢⎣
v1 v1 α1 β1

v2 v2 α2 β2

v3 v3 α3 β3

v4 v4 α4 β4

⎤
⎥⎥⎦ (3)

Note that flipping every bit in the 3rd column is an elementary matrix operation,
since the first two columns sum to the all-ones vector. Hence this modification
has no effect on the determinant. This modification is also invertible. Thus, for

6 If all the coefficients were to be made public, then we are back in the original situation
of [7], and leaking the parity of the gate seems inevitable for this choice of evaluation
equation.
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any i, we have an 1-to-1 correspondence between the set of invertible matrices
with (αi, βi) and those with (αi, βi). Of course, the same can be said for the
mappings that flip every bit in the 4th column, or in both the 3rd and 4th
columns. Hence, after fixing v, the number of ways to complete the matrix in an
invertible way does not depend on the choice of a particular (αi, βi).

Fig. 4. Our gate-hiding garbling scheme that uses only XOR
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More details about evaluation. Similar to the previous construction, we assume
a cryptographic hash function of the form H : {0, 1}∗ → {0, 1}λ+3. When the
evaluator has input wire labels A and B, he/she evaluates K‖κ‖κ̂ ← H(A,B),
where K ∈ {0, 1}λ, κ ∈ {0, 1}, and κ̂ ∈ {0, 1}2. Then:

– κ̂ is used as a one-time pad key to decrypt the α, β coefficients.
– K is used to compute the output wire label as K ⊕ αG ⊕ βG′.
– κ is used as a one-time pad key to decrypt the output wire label’s color bit.

As in the previous scheme, some of the garbler’s computations can be hard-
coded into lookup tables in an implementation. Each possible value of τ00 · · · τ11
(14 choices) can index a list of valid αab, βab values along with the inverse of
the appropriate matrix from Eq. 3. These lookup tables will clearly be more
extensive for this scheme than for the previous one, but overall have reasonable
constant size.

5.3 Formal Details

In Fig. 4 we give the formal details of the construction. It follows the high-level
discussion above. In the full version we prove the following:

Theorem 2. The construction in Figs. 2 and 4 satisfies the gate-hiding pri-
vacy, obliviousness (both with respect to Gnon-const), and authenticity properties
(Sect. 2.2), if H is a dual-key hash.

Saving 4 bits. As described, this scheme requires 2λ + 12 bits per gate. In the
full version we show how to modify the construction to require only 2λ + 8 bits.
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Abstract. Several recent cryptographic constructions – including a
public key encryption scheme, a fully homomorphic encryption scheme,
and a candidate multilinear map construction – rely on the hardness of
the short generator principal ideal problem (SG-PIP): given a Z-basis
of some principal (fractional) ideal in an algebraic number field that is
guaranteed to have an exceptionally short generator, find a shortest gen-
erator of the principal ideal. The folklore approach to this problem is
to first, recover some arbitrary generator of the ideal, which is known
as the principal ideal problem (PIP) and second, solve a bounded dis-
tance decoding (BDD) problem in the log-unit lattice to transform this
arbitrary generator into a shortest one. The PIP can be solved in polyno-
mial time on quantum computers for arbitrary number fields under the
generalized Riemann hypothesis due to Biasse and Song. Cramer et al.
showed, based on the work of Campbell et al., that the second problem
can be solved in polynomial time on classical computers for cyclotomic
fields of prime-power conductor.

In this work, we extend the work of Cramer et al. to cyclotomic fields
K = Q(ξm) of conductor m = pαqβ , where p, q are distinct odd primes.

In more detail, we show that the BDD problem in the log-unit lattice
can be solved in classical polynomial time (with quantum polynomial
time precomputation) under some sufficient conditions, if (p, q) is an
(α, β)-generator prime pair, a new notion introduced in this work.

Keywords: Lattice-based cryptography · Principal ideal lattices
SG-PIP · Cryptanalysis

1 Introduction

Over the past decade, lattice-based cryptography [23] has emerged as one of
the most promising candidates for post-quantum cryptography [18]. The secu-
rity of lattice-based schemes relies on the hardness of lattice problems such as
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finding a shortest non-zero vector of a lattice. In order to boost the efficiency or
achieve additional functionality, more structured lattices have been taken into
consideration, for example lattices induced by (principal) fractional ideals in
algebraic number fields, called ideal lattices [16,17]. Some recent cryptographic
constructions – including a public key encryption scheme [6], a fully homomor-
phic encryption scheme [26], and a candidate multilinear map construction [11] –
rely on the hardness of the short generator principal ideal problem (SG-PIP) [8]:
Given a Z-basis of a principal fractional ideal a in some algebraic number field
K that is guaranteed to have an exceptionally short generator, find a shortest
generator of a.

The folklore approach to solve this problem, as sketched by Bernstein [2] and
Campbell et al. [6] is to split it into the following two problems.

1. Recover some arbitrary generator g′ ∈ K of the ideal a, which is known as
the principal ideal problem (PIP).

2. Transform this generator into some shortest generator. In more detail, let
g = ug′ for some unit u ∈ O×

K be a shortest generator of a with respect to
the logarithmic embedding. In this case it holds that Log(g′) ∈ Log(g) +
Log(O×

K), where Log denotes the logarithmic embedding. Since Log(g) is
short, we can therefore find Log(g) (and hence g) by solving a closest vector
problem in the Dirichlet log-unit lattice Log(O×

K).

The PIP can be solved in polynomial time on quantum computers for cyclotomic
fields K = Q(ξm) of prime-power conductor m = pα [4,6,10] and, under the
generalized Riemann hypothesis, also for arbitrary number fields [5]. Following
the sketch of Campbell et al. [6], Cramer et al. [8] proved that the second problem
can be solved in classical polynomial time for cyclotomic fields K = Q(ξm) of
prime-power conductor m = pα, under some conjecture concerning the class
number h+

m of K+ = Q(ξm + ξ−1
m ). Their algorithm relies on the fact that the

units ξj
m−1

ξm−1 ∈ Z[ξm]× for j ∈ Zm/{±1} form a well suited basis of the so called
cyclotomic units, a subgroup of finite index in the unit group O×

K = Z[ξm]×

in the prime-power case m = pα. The success of their algorithm relies on the
following two facts.

1. The index of the group of cyclotomic units in Z[ξm]× is sufficiently small,
i.e., bounded by some constant (or at least by some polynomial in n = ϕ(m))
if m is a prime-power.

2. The norm of the dual vectors Log
(

ξj
m−1

ξm−1

)∗
for all j ∈ Zm/{±1} is small

enough if m is a prime-power.

The proofs given in [8] heavily use that the underlying cyclotomic number fields
have prime-power conductor.

In this work, we extend the work of Cramer et al. to cyclotomic number fields
K = Q(ξm) of conductor m = pαqβ , where p, q are distinct odd primes. We show
that in this case, under some conditions, the BDD problem in the log-unit lattice
can efficiently be solved if (p, q) is an (α, β)-generator prime pair, a new notion
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introduced in this work. We further provide experimental evidence that suggests
that roughly 35% of prime pairs are (α, β)-generator prime pairs for all α and
β. Combined with the results of Biasse and Song [5] our results show that under
sufficient conditions, the SG-PIP can be solved in quantum polynomial time in
cyclotomic number fields of composite conductor of the form pαqβ .

In consequence, we extend the quantum polynomial time key-recover attacks
[6,8] on the cryptographic schemes of [6,11,26] to the case of cyclotomic number
fields Q(ξm) of conductor m = pαqβ for (α, β)-generator prime pairs (p, q).

Outline. This work is structured as follows. In Sect. 2, we provide the necessary
mathematical background for this work. In Sect. 3, we sketch the algorithmic
approach and sufficient success conditions presented in [2,6,8] to find a shortest
generator of some principal fractional ideal, given an arbitrary generator. In
Sect. 4, we derive sufficient conditions, under which the algorithmic approach
described in the previous section is successful in the case of cyclotomic fields of
conductor m = pαqβ .

2 Preliminaries

We denote N := {1, 2, 3, . . .} and N0 := {0, 1, 2, 3, . . .}. The set of primes is
denoted by P. We denote the real and imaginary part of a complex number
z ∈ C by �(z) and �(z), respectively. We use the common notation “iff” for
“if and only if”. We denote vectors by lower-case bold letters, e.g., x ∈ R

n, and
matrices by upper-case bold letters, e.g., X ∈ R

n×m. For x1, . . . ,xk ∈ R
n we

write (x1, . . . ,xk) =: X ∈ R
n×k for the n × k matrix X whose columns are the

vectors x1, . . . ,xk. The canonical inner product and the Euclidean norm over
R

n are denoted by 〈·, ·〉 and || · ||2. The common rounding function is denoted
by �x� = �x + 1

2	 ∈ Z. For a vector v = (v1, . . . , vn)T ∈ R
n we define �v� :=

(�v1�, . . . , �vn�)T ∈ Z
n component wise.

2.1 Lattices

A lattice L is an additive subgroup of an n-dimensional R-vectorspace V such
that there exists R-linearly independent vectors v1, . . . ,vk ∈ V with L = Zv1 +
. . . + Zvk. The vectors v1, . . . ,vk ∈ V are called basis of the lattice L. If
V = R

n, we write L(B) := Zb1 + . . . + Zbk for the lattice whose basis is given
by the columns of a matrix B ∈ R

n×k. The dimension of a lattice is defined as
dim L := k. A full rank lattice is a lattice with n = k = dimL. A sublattice
L′ of L is a lattice with L′ ⊆ L. The dual basis B∗ = (b∗

1, . . . ,b
∗
k) ∈ R

n×k of
a lattice basis B ⊆ R

n is defined as the R-basis of span
R
(B) with 〈b∗

i ,bj〉 = δi,j

for all i, j ∈ {1, . . . , k}, i.e., BT · B∗ = (B∗)T · B = Ik. It is easy to see that the
unique dual basis B∗ is given by B∗ = B(BT B)−1.
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2.2 Algebraic Number Fields

Let L be a field and K ⊆ L a subfield of L. We denote the index of K in L
by [L : K] := dimKL. An algebraic number field K is an extension field of
Q of finite index. For an algebraic number field K we define the (finite) group
of roots of unity as μ(K) := {x ∈ K| xn = 1 for some n ∈ N} and its ring of
integers OK as

OK := {α ∈ K| ∃p ∈ Z[X]\{0} : p is monic and p(α) = 0}.

We say α ∈ K is integral iff α ∈ OK . Without loss of generality it is sufficient to
consider K ⊆ C for an algebraic number field K, since there is only one algebraic
closure of Q up to isomorphisms, so we assume Q ⊆ C. Note that OK is a subring
of K, see for example [22, p. 7]. A principal fractional ideal in K is a subring
of K of the form gOK for some g ∈ K×. The class group ClK = IK/PK of
K is the quotient of the abelian multiplicative group of fractional ideal IK and
the subgroup of principal fractional ideals PK . The class number hK of an
algebraic number field K is hK := |ClK | < ∞, see [22, Sect. 3. Ideals].

2.3 Logarithmic Embedding

Let K be an algebraic number field of degree n = [K : Q]. Moreover, let r be the
number of real embeddings δ1, . . . , δr : K → R of K and s the number of non
real embeddings (up to complex conjugation) σ1, σ1, . . . , σs, σs : K → C. Note
that n = r + 2s holds. In this case, we call (r, s) the signature of the number
field K. We define the logarithmic embedding as

Log : K× → R
r+2s

x �→ (
log(|δ1(x)|), . . . , log(|δr(x)|), log(|σ1(x)|), . . . , log(|σs(x)|)),

This mapping defines a group homomorphism from the multiplicative group K×

to the additive group R
r+2s = R

n. If the number field K has no real embedding,
i.e., r = 0 and therefore n = 2s, it is sufficient to use the reduced logarithmic
embedding of K×:

Logr(x) :=
(
log (|σ1(x)|) , . . . , log (|σs(x)|) ) ∈ R

n/2

for all α ∈ K×, where σ1, σ1, . . . , σs, σs : K → C are the different embeddings of
K into C. The following is known as Dirichlet’s unit theorem [22, Theorem (7.3)].

Theorem 2.1 (Dirichlet’s Unit Theorem). Let K be an algebraic number field
of degree n = [K : Q] with signature (r, s). The group Γ := Log(O×

K) is a lattice
of dimension k := r + s − 1, orthogonal to the vector 1 := (1, . . . , 1) ∈ R

r+2s.
We call Γ the log-unit lattice.

Lemma 2.2 ([22, (7.1) Proposition]). For an algebraic number field K it holds
that ker

(
Log|O×

K

)
= μ(K).
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Theorem 2.1 and Lemma 2.2 imply the following corollary.

Corollary 2.3. Let K be an algebraic number field of degree n = [K : Q] with
signature (r, s). The group of units O×

K is isomorphic to μ(K) × Z
r+s−1, i.e.,

there are units η1, . . . , ηk ∈ O×
K (where k := r + s − 1), such that each α ∈ O×

K

can be written as α = ζηe1
1 · · · ηek

k with unique e1, . . . , ek ∈ Z and ζ ∈ μ(K).

Such sets {η1, . . . ηk} ⊆ O×
K of multiplicative independent units which gen-

erates O×
K up to roots of unity like in Corollary 2.3 are called fundamental

systems of units of OK . We now define a “short generator” of a principal
fractional ideal.

Definition 2.4. Let K be an algebraic number field and g ∈ K×. Then g′ ∈ K×

is called a shortest generator of the principal fractional ideal gOK if g′OK =
gOK and

||Log(g′)||2 = min
u∈O×

K

||Log(g · u)||2 = min
u∈O×

K

||Log(g) + Log(u)||2.

This means g′ is a generator of gOK with minimal norm in the logarithmic
embedding.

2.4 Cyclotomic Fields

A cyclotomic field Km is an algebraic number field of the form Km = Q(ξm) for
some primitive m-th root of unity ξm ∈ C, i.e., ord(ξm) = m. If m �≡ 2 mod 4,
the number m is called the conductor of Km. The field extension Km/Q is
Galois with index [Km : Q] = ϕ(m), where ϕ(·) is the Euler totient function.
The automorphisms σi(·) of Km are characterized by σi(ξm) := ξi

m for i ∈ Z
×
m.

Therefore, the Galois group Gal(Km/Q) is isomorphic to Z
×
m. From now on we

fix ξm := e2πi/m and Km := Q(ξm) and define Om := OKm
. If m = 2 · k for some

odd k ∈ N, we have ξm = −ξk and therefore Q(ξm) = Q(ξk). Hence, without
loss of generality it is sufficient to assume m �≡ 2 mod 4. The ring of integers is
given by Om = Z[ξm] (e.g. [22, Proposition (10.2)]).

Lemma 2.5. For a cyclotomic field Km we have μ(Km) = 〈±ξm〉 ={±ξi
m| i ∈ Z

}
.

A proof of the previous lemma can be found in the extended version of this
paper [13]. The m-th cyclotomic polynomial Φm(X) ∈ Z[X] is defined as the
minimal polynomial of the m-th root of unity ξm ∈ C over Q. It is given by
Φm(X) =

∏
i∈Z

×
m

(
X − ξi

m

)
. We need the value of the cyclotomic polynomials in

X = 1.

Lemma 2.6. Let m ∈ N with m ≥ 2. Then the following holds.

Φm(1) =

{
p, if m = pl for some prime p and l ∈ N

1, else.

This lemma is a direct consequence of [12, Corollary 4].
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2.5 Circulant Matrices and Characters

We follow along [8, Sect. 2.2] and present some facts about circulant matrices
and characters of finite abelian groups.

Definition 2.7 (Circulant matrices). Let G be a finite abelian group and a =
(ag)g∈G ∈ C

G a complex vector indexed by G. The G-circulant matrix asso-
ciated with a is the G × G matrix

A :=
(
ai·j−1

)
(i,j)∈G×G

∈ C
G×G.

Notice that the transposed matrix of a G-circulant matrix A associated to
a = (ag)g∈G is again a G-circulant matrix associated to a′ = (ag−1)g∈G.

Definition 2.8 (Characters). Let G be a finite abelian group. A character of G
is a group homomorphism χ : G → S

1 := {z ∈ C| |z| = 1}, i.e., χ(g · h) = χ(g) ·
χ(h) for all g, h ∈ G. The set of all characters of G is denoted by Ĝ and forms a
group with the usual multiplication of functions, i.e., (χ ·Ψ)(g) := χ(g) ·Ψ(g) for
all χ, Ψ ∈ Ĝ and g ∈ G. The inverse of a character χ ∈ Ĝ as a group element
is given by χ, the composition of the complex conjugation and χ. The constant
character χ ≡ 1 is the identity element of Ĝ and is called trivial character.
Each finite abelian group G is isomorphic to Ĝ. In particular, |G| = |Ĝ|, see
[27, Lemma 3.1].

Theorem 2.9. Let G be a cyclic group of order n with generator g ∈ G. Then all
characters of G are given by χh(b) := ξ

h·logg(b)
n for 0 ≤ h ≤ n−1, where ξn ∈ C

is a primitive root of unity of order n and logg(b) ∈ Z with glogg(b) = b ∈ G.

Proof. Let χ ∈ Ĝ be a character, then 1 = χ(1) = χ(gn) = χ(g)n holds. There-
fore χ(g) has to be an n-th root of unity. It is easy to see that the functions χh

are well defined and n different characters. Since there are only |Ĝ| = |G| = n
different characters, that are all characters of G. ��

A Dirichlet character χ mod n is a character of the group G = Z
×
n , for

some n ∈ N. If n|m, the character χ of Z
×
n induces a character of Z

×
m via

concatenation of the natural projection π : Zm → Zn and χ, i.e., χ ◦ π. The
conductor of a character χ ∈ Ẑ×

n is defined as the smallest number fχ ∈ N

with fχ|n, such that χ is induced by some character Ψ ∈ Ẑ
×
fχ

. If n = fχ for some

character χ mod n, then χ is called primitive character. A character χ ∈ Ẑ
×
n

is said to be even if χ(−1) = 1, else we say χ is odd. A non-trivial character
χ with Im(χ) ∈ {±1} is called quadratic. We extend a Dirichlet character
χ : Z

×
n → S

1 of conductor fχ to a multiplicative function χ′ : Z → S
1 ∪ {0}

by χ′(z) := χfχ
(z) if gcd(z, fχ) = 1 and zero else, where χfχ

: Z
×
fχ

→ S
1 is a

primitive character which induces χ. We just write χ instead of χ′, when needed.
We identify characters χ of an arbitrary finite abelian group G with the complex
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vector (χ(g))g∈G ∈ C
G. This allows for geometrical calculations on characters

and provides coherence between circular matrices and characters. For a proof of
the following lemma see [8, Sect. 2.2] and use the fact, that G ∼= Ĝ holds for all
finite abelian groups G.

Lemma 2.10. Let G be a finite abelian group. Then the following holds.

(1) For all χ ∈ Ĝ we have
∑

g∈G χ(g) = |G| if χ ≡ 1 and 0 else.
(2) All characters χ ∈ Ĝ have Euclidean norm ||χ||2 =

√〈χ, χ〉 =
√|G|.

(3) Different characters χ, Ψ ∈ Ĝ are pairwise orthogonal, i.e. 〈χ, Ψ〉 = 0.
(4) For all g ∈ G we have

∑
χ∈ ̂G χ(g) = |G| if g is the identity element of G

and 0 else.

Definition 2.11. The circulant matrix of a finite abelian group G is defined as

PG := |G|−1/2 · (χ(g))(g,χ)∈G× ̂G ∈ C
G× ̂G.

It follows directly from Lemma2.10 that PG is unitary, i.e., P−1
G = PG

T
.

Lemma 2.12 ([8, Lemma 2.4]). Let G be a finite abelian group and A ∈ C
G×G

be a complex G × G matrix. The matrix A is G-circulant if and only if the
Ĝ × Ĝ matrix P−1

G · A · PG is diagonal; equivalently the columns of PG are the
eigenvectors of A. If A is the G-circulant matrix associated with a = (ag)g∈G,
its eigenvalues corresponding to χ ∈ Ĝ is λχ = 〈a, χ〉 =

∑
g∈G ag · χ(g).

The following statement is a direct consequence of the previous lemma.

Theorem 2.13. Let G be a finite abelian group, a = (ag)g∈G ∈ C
G be a complex

vector with associated G-circulant matrix A. The norm of the vector a is given by

||a||22 = |G|−1 ·
∑

χ∈ ̂G
|λχ|2,

where λχ = 〈a, χ〉 =
∑

g∈G ag · χ(g) is the eigenvalue of A corresponding to the
eigenvector χ.

Proof. Since PG and therefore P
T

G is unitary, which means that it is norm pre-
serving, we have

||a||22 =
∣∣∣∣PT

G · a∣∣∣∣2
2

=
∑

χ∈ ̂G

∣∣∑
g∈G

ag · |G|−1/2χ(g)
∣∣2 = |G|−1

∑

χ∈ ̂G
|λχ|2. ��
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2.6 Dirichlet L-Series

Definition 2.14. Let χ be any Dirichlet character, then the Dirichlet L-function
L(·, χ) is defined as

L(·, χ) : H → C, s �→ L(s, χ) :=
∑
n∈N

χ(n)
ns

,

where H := {s ∈ C| �(s) > 1}.
Since the sum in the definition is absolutely convergent for every s ∈ H, the

sum converges uniformly on every Ht := {s ∈ C| �(s) > t} with t > 1. Hence,
L(·, χ) is an analytic function on H. If χ is the trivial character mod 1, i.e.,
χ(n) = 1 for all n ∈ Z, the Dirichlet L-function L(·, χ) is given by the Riemann
zeta function ζ(s) =

∑
n∈N

1
ns . If χ is a non-trivial character mod m ∈ N,

the Dirichlet L-function L(·, χ) can be extended uniquely to the whole complex
plane, see for example [21, Theorem 10.7. ff]. Therefore, L(1, χ) is well defined
in this case.

Theorem 2.15. There exists a constant C > 0, such that for every non
quadratic Dirichlet character χ mod m ∈ N of conductor fχ > 1

|L(1, χ)| ≥ 1
C log(fχ)

,

and for every quadratic character χ mod m ∈ N of conductor fχ > 1

|L(1, χ)| ≥ 1
C
√

fχ

.

In particular, L(1, χ) �= 0 if χ is a non-trivial Dirichlet character.

The first inequality was proven by Landau, see [15, p. 29]. For the second
inequality, see [25] or [14] for concrete results on the constant C > 0.

3 General Algorithmic Approach

In this section we sketch the algorithmic approach and sufficient success condi-
tions presented in [2,6,8] to find a shortest generator of some principal fractional
ideal, given an arbitrary generator.

A standard approach for recovering a short generator of a principal fractional
ideal is shifting this problem to a closest vector problem with requirements to the
distance of the target point to the lattice, called bounded-distance decoding
(BDD).

Problem 3.1 (BDD). Given a lattice L = L(B) and a target point t ∈ span(B)
with the property minv∈L ||v − t||2 ≤ r for some r < 1

2λ1(L), where λ1(L) :=
minv∈L\{0} ||v||2, find the unique vector v ∈ L with ||v − t||2 ≤ r.
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We will use the following Round-off Algorithm [1] for solving this problem
in our setting.

Algorithm 1. Round-off Algorithm
1 Input: B, t.
2 Output: A lattice vector v ∈ L.
3 a ← �(B∗)T · t�
4 v ← B · a
5 return (v,a)

Lemma 3.2 (Correctness Round-off Algorithm, [8, Claim 2.1]). Let L(B) ⊆ R
n

be a lattice and t := v + e ∈ R
n for some v ∈ L(B) and e ∈ R

n. If 〈e, b∗
j 〉 ∈

[− 1
2 , 1

2 ) holds for all j ∈ {1, . . . , k}, the Round-off Algorithm1 outputs v = B · a
on input B, t.

Note that in general the condition 〈b∗
j , e〉 ∈ [− 1

2 , 1
2

)
for all j ∈ {1, . . . , k}

does not guarantee that the vector v is in fact the closest vector in L(B) to
t = v + e. Therefore, one needs a “sufficiently good” basis B of the lattice.

Provided that the input basis is sufficiently well suited, Algorithm2 recovers a
shortest generator of a principal fractional ideal in some algebraic number field K.

Algorithm 2. Recovering a short generator with given basis of O×
K

1 Input: A generator g′ ∈ K× of some principal fractional ideal a and
b1, . . . , bk ∈ O×

K such that B := {Log(b1), . . . ,Log(bk)} is a basis of
Γ = Log(O×

K).
2 Output: A generator ge ∈ K of a.
3 (a1, . . . , ak)T ← �(B∗)T · Log(g′)� (Round-off-Step)
4 u′ ← ∏k

i=1 bai
i

5 ge ← g′
/u′

6 return ge

Lemma 3.3 (Correctness of Algorithm 2, [8, Theorem 4.1]). Let a be a principal
fractional ideal in some algebraic number field K of degree n = [K : Q] with
signature (r, s) and k := r + s − 1 and let b1, . . . , bk ∈ O×

K be a fundamental
system of units of O×

K . Assume that there exists some generator g ∈ K× of a
satisfying ∣∣〈Log(g),Log(bi)∗〉∣∣ <

1
2

for all i ∈ {1, . . . , k}.

Then for any input generator g′ ∈ K× of a Algorithm2 outputs a generator ge

of a with same norm as g, i.e., ||Log(g)||2 = ||Log(ge)||2.
Theorem 3.4. Algorithm2 has (classical) polynomial running time in
n = [K : Q].
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Proof. Since k = r+s−1 ≤ n, the algorithm only computes the n×k matrix B,
the dual basis B∗, which includes computing the inverse of a k × k matrix, and
some matrix and vector multiplications of matrices and vectors of size k, which
is all polynomial in n. ��

One natural question arises: If we draw a generator g ∈ K× from a distrib-
ution D over K (without loss of generality we ignore the case g = 0), does the
condition

∣∣〈Log(g),Log(bi)∗〉∣∣ < 1
2 hold for all i ∈ {1, . . . , k} with non-negligible

probability ω > 0 for a fixed basis b1, ..., bk? Lemma 3.3 gives rise to the following
definition.

Condition 3.5. Let D be a probability distribution over some algebraic number
field K and M > 0. If the probability that for all vectors v1, . . . , vk ∈ R

n of
Euclidean norm 1 orthogonal to the all-one vector 1 ∈ R

n the inequalities
∣∣〈Log(g), vi〉

∣∣ <
1

2M
for all i ∈ {1, . . . , k}

are satisfied is at least ω ∈ (0, 1), where g ∈ K is drawn from D, we say D
satisfies Condition 3.5 with parameters M and ω.

Condition 3.5 can be seen as a sufficient success condition on Algorithm 2, as
shown in the following theorem.

Theorem 3.6. If D is a distribution over an algebraic number field K satisfy-
ing Condition 3.5 with parameters M = max{||Log(b1)∗||2, . . . , ||Log(bk)∗||2} and
ω ∈ (0, 1) for the input basis b1, ..., bk ∈ O×

K and g ∈ K is chosen from D, then
for any input generator g′ of a = gOK , Algorithm2 outputs a generator ge ∈ K
of a with Euclidean norm at most the norm of g with probability at least ω > 0.

Proof. We set vi := Log(bi)
∗
/||Log(bi)

∗||2, which have norm 1 and are orthogonal to
the all-one vector 1 ∈ R

n, where n = [K : Q]. Since the distribution D satisfies
Condition 3.5 with parameters M and ω > 0 for b1, ..., bk ∈ O×

K , we conclude
that

∣∣〈Log(g),Log(bi)∗〉∣∣ = ||Log(bi)∗||2 · ∣∣〈Log(g),vi〉
∣∣ < M

1
2M

=
1
2

holds with probability ω. ��
As shown in [8, Sect. 5] for arbitrary cyclotomic fields Q(ξm) a natural dis-

tribution satisfying Condition 3.5 with a not too small parameter ω > 0 for the
basis discussed in Sect. 4.2 is the continuous Gaussian distribution. This is a
consequence of the following theorem (for more details see [8, 5 Tail Bounds]).

Lemma 3.7 ([8, Lemma 5.4]). Let n ∈ N, X1, . . . , Xn,X ′
1, . . . , X

′
n be i.i.d.

N(0, σ2) variables for some σ > 0, and let X̂i =
(
X2

i + (X ′
i)

2
)1/2 for i ∈

{1, . . . , n}. Then for any set of l ∈ N vectors a(1), . . . ,a(l) ∈ R
n of Euclid-

ean norm 1 that are orthogonal to the all-one vector 1 ∈ R
n and every t ≥ Cσ

for some universal constant Cσ (that only depends on σ) it holds that

Pr
[
∃j :

∣∣∣
〈 (

log(X̂1), ..., log(X̂n)
)T

,a(j)
〉∣∣∣ ≥ t

]
≤ 2l exp

(
− t

4

)
.
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Applied to our setting of cyclotomic number fields, we obtain that
Condition 3.5 is satisfied for Gaussian distributions if the norms of the basis
elements in the logarithmic embedding are sufficiently short.

Corollary 3.8. Let m ∈ N, m ≥ 3, n = ϕ(m), and k = n/2 − 1. If
M := max{||Log(bj)∗||2, . . . , ||Log(bk)∗||2} is small enough, i.e., 1/2M ≥ Cσ,
Condition 3.5 is satisfied for Gaussian distributions (with standard deviation σ)
with parameters M and ω(m) = 1 − 2k exp

(− 1
8M

)
, if ω(m) > 0.

There is one issue with this approach. Algorithm 2 uses a basis b1, . . . , bk

of O×
K (up to roots of unity), i.e., a fundamental set of units, with sufficiently

short dual vectors. However, in general, given a number field K, such basis
is not known. Instead, for special instances of cyclotomic number fields K =
Q(ξm), namely if m is a prime-power or a product of two prime powers (as
analyzed in the next section), only a well suited basis b1, . . . , bk ∈ O×

m of a
subgroup F with finite index in O×

m is known. This can be compensated for
by computing a fundamental system of units of O×

K and afterwards a set of
representatives u1, . . . , uf ∈ O×

K of O×
K/μ(K)F , using classical [3] or quantum [10]

algorithms. The quantum algorithm has running time polynomial in n = [K : Q]
and log(|dK |), where dK denotes the discriminant of K. Notice, if K = Q(ξm)
is a cyclotomic field, we obtain |dK | ∈ O(n log(m)) as a direct consequence of
[27, Proposition 2.7]. Hence, the quantum algorithm runs in polynomial time
in m. Note that the calculation of the set of representatives u1, . . . , uf ∈ O×

K

of O×
K/μ(K)F has to be done only once for each cyclotomic field K = Q(ξm)

and can therefore be seen as precomputation cost. If one has computed such a
set of representatives u1, . . . , uf ∈ O×

K , we can enumerate over all of them and
apply Algorithm2 for each g′

/ui, increasing the running time only by the factor
f := |O×

K/μ(K)F |. The detailed algorithm if one has precomputed such a set of
representatives can be found in the extended version of this paper [13].

In this work, we show that for cyclotomic number fields Q(ξm) the index of
the basis presented in Sect. 4.2 is polynomial in m, if m = pαqβ for some suitable
odd primes p and q. This yields a polynomial running time in m of Algorithm 2
in this case.

4 Finding Shortest Generators in Cyclotomic Fields
of Conductor m = pαqβ

In this section we study the SG-PIP in cyclotomic fields of composite conductor
m = pαqβ for distinct odd primes p, q.

4.1 Generator Prime Pairs

In the next section we investigate the group generated by the elements ξu
m−1

ξm−1 ∈
O×

m with j ∈ Z
×
m in the case where m = pαqβ has only two distinct odd prime

factors. We show that the index of this group in the full group of units is finite iff
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p is a generator of Z
×
qβ or a square of a generator and q is a generator of Z

×
pα or

a square of a generator. Therefore, we introduce the following notion and derive
several results surrounding it.

Definition 4.1. Let α, β ∈ N and p, q ∈ P be two distinct odd primes with the
following properties:

(i) • If q − 1 ≡ 0 mod 4: p is a generator of Z
×
qβ .

• If q − 1 �≡ 0 mod 4: p is a generator of Z
×
qβ or has order

ϕ(qβ)
2 =

qβ−1 · q−1
2 in Z

×
qβ .

And
(ii) • If p − 1 ≡ 0 mod 4: q is a generator of Z

×
pα .

• If p − 1 �≡ 0 mod 4: q is a generator of Z
×
pα or has order ϕ(pα)

2 =
pα−1 · p−1

2 in Z
×
pα .

We call such a pair (p, q) an (α, β)-generator prime pair ((α, β)-GPP).
If (p, q) is an (α, β)-generator prime pair for every α, β ∈ N, we just say that
(p, q) is a generator prime pair (GPP).

The definition of generator prime pairs is useless for testing given prime pairs
on this property, since infinitely many pairs of α and β have to be checked. To
obtain a better criterion, we use the following result.

Theorem 4.2 ([7, Lemma 1.4.5]). Let p be an odd prime, and let g ∈ Z be a
primitive root modulo p. Then either g or g + p is a primitive root modulo every
power of p.

In particular, if g ∈ Z is a generator of Z
×
p2 and therefore also for Z

×
p , then

g is a generator for all Z
×
pl with l ∈ N.

A direct consequence of Theorem 4.2 is that Z
×
pl is cyclic for every l ∈ N and

odd prime number p ∈ P, which implies the following corollaries. The proofs can
be found in the extended version of this paper [13].

Corollary 4.3. Let p be an odd prime, l ∈ N and g ∈ Z
×
pl be a generator. Then

the even Dirichlet characters of Z
×
pl are given by χh(b) := ξ

h·a(b)
ϕ(pl)

for 0 ≤ h ≤
ϕ(pl) − 1 and h is even, where ξϕ(pl) ∈ C is a primitive root of unity of order
ϕ
(
pl
)

and a(b) ∈ Z with ga(b) = b ∈ Z
×
pl .

Corollary 4.4. Let (p, q) be an (α, β)-GPP for some α, β ∈ N and β ≥ 2. Then
(p, q) is an (α, l)-GPP for every l ∈ N. Analogously, the same results follows if
we swap p and q.

In particular, (p, q) is a GPP iff it is a (2, 2)-GPP.

With Corollary 4.4 we can easily check prime pairs if they are generator prime
pairs by testing if they are a (2, 2)-GPP.
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In the extended version of this paper [13] we provide some examples and
numerical data of generator prime pairs. By computation, more than 35% of all
odd prime pairs up to 32600 are generator prime pairs, see Fig. 1. An interesting
fact is that a similar notion of prime pairs was used in the proof of Catalan’s
conjecture by Mihailescu [19], namely double Wieferich prime pairs (p, q),
which satisfy

pq−1 ≡ 1 mod q2 and qp−1 ≡ 1 mod p2,

see [24, Chap. 1]. More information about their relation can be found in the
extended version of this paper [13].

Fig. 1. Values of the quotient Q(x) = Number of GPP (p,q) with 2 < p < q ≤ x
Number of prime pairs (p,q) with 2 < p < q ≤ x

4.2 Suitable Units in the Case m = pαqβ

Let m ∈ N with m ≥ 3. For the rest of this section, for j ∈ Z
×
m let

bj :=
ξj
m − 1

ξm − 1
∈ O×

m and bj := Logr(bj) ∈ R
n/2, (1)

where n = ϕ(m). Further, let Gm := Z
×
m/{±1} (one can identify the group Gm

with the set of representatives {l ∈ N| 1 ≤ l < m
2 with gcd(l,m) = 1}) and let

Sm denote the group generated by {bj | j ∈ Gm\{1}} and ±ξm, i.e., we collect
the vectors bj for j ∈ Gm\{1} in the matrix

B :=
(

log
(∣∣∣ξ

ij
m − 1

ξi
m − 1

∣∣∣
))

i∈Gm

j∈Gm\{1}
. (2)

Notice that b−j = ξa
m · bj for some a ∈ Zm, hence it is sufficient to consider a

set of representatives of {bj | j ∈ Gm\{1}} as generators of Sm. The characters of
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Gm = Z
×
m/{±1} correspond to the even characters of Z

×
m via concatenation with

the canonical projection Z
×
m → Z

×
m/{±1}. We identify the characters of Gm with

the even characters of Z
×
m.

If [O×
m : Sm] is finite, the elements bj for j ∈ Gm\{1} have to be a basis of the

group Sm, by comparing the Z-rank of Sm and O×
m, which is ϕ(m)

2 −1 = |Gm\{1}|.

4.3 Index of the Subgroup in the Full Unit Group

We determine the index of Sm in the full group of units O×
m in the case m = pαqβ

with α, β ∈ N and distinct odd primes p, q. As we show in this work, the index is
finite iff (p, q) is an (α, β)-generator prime pair. Moreover, in this case the index
is bounded by the product of the class number h+

m and a factor, which is linear
in m.

The next lemma provides an explicit expression for the index of Sm in the
full group of units O×

m, which is a direct consequence of [27, Corollary 8.8].

Lemma 4.5. Let m ∈ N with m ≥ 3 and m �≡ 2 mod 4. If m is not a prime-
power, i.e., has at least two distinct prime factors, the index of Sm in O×

m is
given by

[O×
m : Sm] = 2h+

m

∏

χ∈̂Gm
χ�≡1

∏
p|m
p∈P

(1 − χ(p))

if the right hand side is not equal 0, else the index is infinite. The factor h+
m is

the class number of Q(ξm)+ := Q(ξm + ξ−1
m ).

For m ∈ N we define

βm :=
∏

χ∈̂Gm
χ�≡1

∏
p|m
p∈P

(1 − χ(p)) .

Theorem 4.6. Let p, q be two distinct odd primes and m = pαqβ for some
α, β ∈ N. Then

βm =
ϕ(m)

4
=

(p − 1)(q − 1)
4pq

m

iff (p, q) is an (α, β)-GPP, and βm = 0 otherwise. In particular, the index is
finite and bounded by [O×

m : Sm] = h+
m

(p−1)(q−1)
2pq m ≤ h+

m · m
2 , iff (p, q) is an

(α, β)-GPP.

Proof. Assume that (p, q) is an (α, β)-generator prime pair. Since m is only
divisible by the primes p, q, we obtain

βm =
∏

χ∈̂Gm
χ�≡1

∏
t|m
t∈P

(1 − χ(p)) =

( ∏

χ∈̂Gpα

χ�≡1

(1 − χ(q))

)
·
( ∏

χ∈̂G
qβ

χ�≡1

(1 − χ(p))

)
,
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because χ(p) = χ(q) = 0 and therefore (1 − χ(p)) (1 − χ(q)) = 1 if pq|fχ. Hence
it is sufficient to prove

∏

χ∈̂G
qβ

χ�≡1

(1 − χ(p)) =
ϕ
(
qβ
)

2
.

Let g be a generator of Z
×
qβ , and a ∈ Z with ga ≡ p mod qβ . Since (p, q) is an

(α, β)-generator prime pair, we conclude gcd
(

a,
ϕ(qβ)

2

)
= 1 by comparing the

order of p in Z
×
qβ , independent whether q − 1 ≡ 0 mod 4 or q − 1 �≡ 0 mod 4.

The even characters of Z
×
qβ are given by Corollary 4.3, which implies

∏

χ∈ ̂G
qβ

χ �≡1

(1 − χ(p)) =
∏

1≤h≤ϕ
(

qβ
)

−1
h even

(

1 − ξ
ha

ϕ(qβ)

)

=
(1)

∏

1≤k≤ ϕ(qβ)
2 −1

(

1 − ξ
k

ϕ(qβ)
2

)

=
(2)

X
ϕ
(

qβ
)

2 − 1

X − 1

∣

∣

∣

X=1
=

⎛

⎝X
ϕ
(

qβ
)

2 −1
+ X

ϕ
(

qβ
)

2 −2
+ . . . + 1

⎞

⎠

∣

∣

∣

X=1
=

ϕ
(

qβ
)

2
,

where we used in equality (1) that multiplying with a is a permutation of Z ϕ(qβ)
2

with 0 · a ≡ 0 mod ϕ(qβ)
2 , since gcd

(
a, ϕ(qβ)

2

)
= 1, and in (2) we used X l − 1 =∏

0≤k≤l−1

(
X − ξk

l

)
for all l ∈ N.

Conversely, assume that (p, q) is not an (α, β)-generator prime pair, i.e.,

without loss of generality p is not a generator of Z
×
qβ and has not order

ϕ(qβ)
2

in Z
×
qβ if q − 1 �≡ 0 mod 4. Again, let g be a generator of Z

×
qβ , and a ∈ Z with

ga ≡ p mod ql. We conclude that gcd
(
a, ϕ(qβ)

2

)
> 1 holds. Hence, there exists

a prime number t ∈ P such that t| gcd
(
a, ϕ(qβ)

2

)
holds. Then h :=

ϕ(qβ)
t ∈ N

is even and 1 ≤ h ≤ ϕ
(
qβ
) − 1. By Corollary 4.3, there is a non-trivial, even

Dirichlet character χh of Z
×
qβ with

χh(p) = ξah
ϕ(qβ) = ξ

a
t ϕ(qβ)
ϕ(qβ)

= 1,

which implies βm = 0 in this case. ��
We have proven that the factor βm is sufficiently small, if m = pαqβ for some

(α, β)-generator prime pair (p, q). The second factor of the index [O×
m : Sm] is

given by the class number h+
m, which has to be sufficiently small, too.
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Theorem 4.7 ([20, Theorem 1.1]). Let m be a composite integer, m �≡ 2
mod 4, and let Q(ξm)+ denote the maximal real subfield of the m-th cyclotomic
field Q(ξm). Then the class number h+

m of Q(ξm)+ is

h+
m =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ϕ(m) ≤ 116 and m �= 136, 145, 212,

2 if m = 136,

2 if m = 145,

1 if m = 256,

where ϕ(·) is the Euler phi function. Furthermore, under the generalized Rie-
mann hypothesis (GRH), h+

212 = 5 and h+
512 = 1.

Remark 4.8. In our case, m = pαqβ for some (α, β)-generator prime pair
(p, q). Since we want a polynomial running time in m of Algorithm2 for cyclo-
tomic fields Km = Q(ξm), we need a polynomial bound of the index [O×

m : Sm] =
2h+

mβm. The factor βm ∈ N is bounded by m
4 , hence it is sufficient if h+

m is
bounded by some polynomial in m, if m = pαqβ, at least for a fixed gener-
ator prime pair (p, q). We do not know if such a bound holds. However, by
Theorem4.7 one could conjecture that the class number h+

m is bounded by some
polynomial. In [9] this is presented as a reasonable conjecture.

4.4 Norms of the Basis Elements

We determine the norm of the dual vectors b∗
j for j ∈ Gm\{1} in the case, that

m = pαqβ , for some α, β ∈ N and (p, q) is an (α, β)-generator prime pair. Again,
we follow along [8, Chap. 3].

Let m ∈ N with m ≥ 2. We define

zj := ξj
m − 1 ∈ Om and zj := Logr(zj) ∈ R

n/2

for all j ∈ Z
×
m (again, n = ϕ(m)). Note that zj is well defined since ξ−j

m − 1 is
the complex conjugate of ξj

m − 1. We collect all the vectors zj−1 for j ∈ Gm in
the matrix Z ∈ R

n/2×n/2, i.e.,

Z :=
(
log

(∣∣ξi·j−1

m − 1
∣∣))

i,j∈Gm

.

Since the entry with index (i, j) ∈ Gm × Gm only depends on i · j−1, the matrix
Z is Gm-circulant and associated with z1. Notice that the vectors zj and the
matrix Z only depend on m.

Our first goal is to prove that only the eigenvalue of Z corresponding to the
trivial character of Z

×
m is zero, in the case that m = pαqβ , for some α, β ∈ N

and distinct primes p and q.

Lemma 4.9. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N.
Then the eigenvalue λχ of Z corresponding to the trivial character 1 ≡ χ ∈ Gm

is λχ = 0.
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Proof. By Theorem 2.13, the eigenvalue of the Gm-circulant matrix Z corre-
sponding to the trivial character 1 ≡ χ ∈ Gm is given by

λχ = 〈z1, 1〉 =
1

2

∑

j∈Z
×
m

log
(∣∣ξj

m − 1
∣∣) = 1

2
log

⎛

⎜⎝
∣∣∣
∏

j∈Z
×
m

(
ξj
m − 1

) ∣∣∣

⎞

⎟⎠ =
1

2
log
(∣∣Φm(1)

∣∣) =
(1)

0,

where (1) follows from Lemma 2.6. ��
Lemma 4.10. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N.
Furthermore, let χ ∈ Ĝm be an even character of conductor fχ > 1 with pq|fχ.
Then the eigenvalue λχ of Z corresponding to χ is given by

λχ =
1
2

∑

a∈Z
×
fχ

χ(a) · log(|1 − ξa
fχ

|).

This can be proven similar to the prime power case in [8, Corollary 3.4], a
proof can be found in the extended version of this paper [13].

Lemma 4.11. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N.
Furthermore, let χ ∈ Ĝm be an even character of conductor fχ > 1 with q � fχ.
Then the eigenvalue λχ of Z corresponding to χ is given by

λχ =
1
2

(1 − χ(q))
∑

a∈Z
×
fχ

χ(a) · log(|1 − ξa
fχ

|).

Analogously, the same results hold if we swap p and q.

Proof. Let f := fχ > 1 be the conductor of χ, i.e., f = pe for some
1 ≤ e ≤ α. Further, let π : Z

×
m → Z

×
f be the canonical projection. For

a ∈ Z
×
f and a fixed integer representative a′ ∈ Z of a ∈ Z

×
f we have π−1(a) =

Ψ−1
({

a′ + k · f ∈ Z
×
pα

∣∣ 0 ≤ k < pα

f

}
× Z

×
qβ

)
⊆ Z

×
m by Chinese remainder the-

orem, where Ψ : Zm → Zpα × Zqβ , a �→ (a mod pα, a mod qβ). There exists
r1, r2 ∈ Z such that r1q

β ≡ 1 mod pα and r2p
α ≡ 1 mod qβ , which yields

π−1(a) =
{

(a′ + k · f) · r1q
β + y · r2p

α ∈ Z
×
m

∣∣ 0 ≤ k <
pα

f
, y ∈ Z

×
qβ

}
⊆ Z

×
m

(3)

for a fixed integer representative a′ ∈ Z of a ∈ Z
×
f . We obtain

∏

j∈Z
×
m

π(b)=a

(
1 − ξj

m

)
=
∏

y∈Z
×
qβ

∏

0≤k< pα

f

(
1 − ξkr1

pα

f

· ξyr2
qβ · ξa′r1

pα

)
=
(1)

∏

y∈Z
×
qβ

(
1 − ξ

yr2
pα

f

qβ · ξ
a′r1 pα

f

pα

)

=
(2)

∏

y∈Z
×
qβ

(
1 − ξ

y pα

f

qβ · ξar1
f

)
=
(3)

1 − ξar1qβ

f

1 − ξar1qβ−1

f

=
(4)

1 − ξa
f

1 − ξar1qβ−1

f

.
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In equation (1) we have used again the identity Xn − Y n =
∏

0≤k<n

(
X − ξk

nY
)

for n := pα

f , X := 1 and Y := ξyr2
qβ · ξar1

pα , where r1 ∈ Z
×
pα

f

and therefore

multiplication with r1 is a permutation of Z pα

f
. The same permutation argu-

ment implies equation (2), since r2 ∈ Z
×
qβ . In (3) we have used the identity

∏
a∈Z

×
qβ

(
X − ξa

qβ Y
)

= Xqβ −Y qβ

Xqβ−1−Y qβ−1 for X = 1 and Y = ξar1
f . The hypothesis

r1q
β ≡ 1 mod pα implies r1q

β ≡ 1 mod f and therefore equation (4).
Finally, we can calculate the eigenvalue λχ.

λχ = 〈z1, χ〉 =
1
2

∑

j∈Z
×
m

χ(j) · log
(∣∣1 − ξj

m

∣∣) =
1
2

∑

a∈Z
×
f

χ(a)
∑

j∈Z
×
m

π(j)=a

log
(∣∣1 − ξj

m

∣∣)

=
1
2

∑

a∈Z
×
f

χ(a) log

(∣∣∣∣∣
∏

j∈Z
×
m

π(j)=a

(
1 − ξj

m

)
∣∣∣∣∣

)
=

1
2

∑

a∈Z
×
f

χ(a) log

(∣∣∣∣∣
1 − ξa

f

1 − ξar1qβ−1

f

∣∣∣∣∣

)

=
1
2

∑

a∈Z
×
f

χ(a) log
(∣∣1 − ξa

f

∣∣)− 1
2

∑

a∈Z
×
f

χ(a) log
(∣∣∣1 − ξar1qβ−1

f

∣∣∣
)

=
(5)

1
2

∑

a∈Z
×
f

χ(a) log
(∣∣1 − ξa

f

∣∣)− 1
2

∑

a∈Z
×
f

χ(a · q) log
(∣∣1 − ξa

f

∣∣)

=
1
2
(1 − χ(q))

∑

a∈Z
×
f

χ(a) log
(∣∣1 − ξa

f

∣∣) ,

where we used in (5) the substitution a for ar1q
β−1 and the fact, that r1q

β ≡ 1
mod pα implies r1q

β−1 · q ≡ r1q
β ≡ 1 mod f , i.e., q is the multiplicative inverse

of r1q
β−1 mod f . ��

The next theorem provides a connection between the occurring sum in the
eigenvalues λχ and the Dirichlet L-function.

Theorem 4.12 ([27, Lemma 4.8. and Theorem 4.9]). Let χ be an even Dirichlet
character mod m ∈ N of conductor fχ > 1. Then

∣∣∣
∑

a∈Z
×
fχ

χ(a) · log
(∣∣1 − ξa

fχ

∣∣)
∣∣∣ =

√
fχ · |L(1, χ)|.

We collect the previous results in the following theorem. A proof can be found
in the extended version of this paper [13].

Theorem 4.13. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N.
Further, let χ ∈ Ĝm be an even Dirichlet character mod m of conductor fχ > 1.
Then the eigenvalue λχ = 〈z1, χ〉 of Z corresponding to χ is given by

|λχ| =
1
2

∣∣ (1 − χ(p)) (1 − χ(q))
∣∣ ·√fχ · |L(1, χ)|.
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In particular, if p, q are odd primes, all eigenvalues λχ corresponding to some
non-trivial even character χ ∈ Ĝm are non-zero iff (p, q) is an (α, β)-generator
prime pair.

We are now prepared to express the norm of the dual vectors b∗
j in terms of

the eigenvalues λχ. Notice that this is the same result as in the prime-power case,
but is more complicated to prove since Z is not invertible, see [8, Lemma 3.2].

Lemma 4.14. Let (p, q) be an (α, β)-generator prime pair, and m := pαqβ.
Then the norm of b∗

j for all j ∈ Gm\{1} is given by

||b∗
j ||22 = |Gm|−1 ·

∑

χ∈̂Gm
χ�≡1

|λχ|−2,

where λχ = 〈z1, χ〉 denotes the eigenvalue of Z corresponding to χ. In particular,
all dual vectors b∗

j have the same norm.

Proof. Our goal is to prove the claim by defining a “pseudo inverse” D of ZT

and show that b∗
j is the j-th column of D.

For simplification, we fix an order of Ĝm, i.e., Ĝm = {χ1, . . . , χn} with n =
ϕ(m)

2 and χ1 ≡ 1 is the trivial character mod m. This allows us to represent
Ĝm × Ĝm matrices by n×n matrices. Notice that the characters χj are different
from the characters of Theorem 2.9, we only used a similar notation. The order of
Ĝm yields an order of the eigenvalues λ1, . . . , λk of Z, where λ1 = 0 by Lemma 4.9
and λj �= 0 for 2 ≤ j ≤ n by Theorem 4.13. Since Z is a Gm-circulant matrix,
Lemma 2.12 implies

Z = PGm

⎛

⎜⎜⎜⎝

0 0 . . . 0
0 λ2 . . . 0
.
.
.

.

.

.
. . .

.

.

.
0 0 . . . λn

⎞

⎟⎟⎟⎠P−1
Gm

.

We define

DT := PGm

⎛

⎜⎜⎜⎜⎝

0 0 . . . 0

0 1
λ2

. . . 0

.

..
.
..

. . .
.
..

0 0 . . . 1
λn

⎞

⎟⎟⎟⎟⎠
P−1

Gm
and ZM

1 := Z

⎛

⎜⎜⎜⎝

1 1 . . . 1
0 0 . . . 0
.
.
.
.
.
.

.

.

.
0 0 . . . 0

⎞

⎟⎟⎟⎠ = (z1, . . . , z1) ∈ R
Gm×Gm ,

where the first row of the matrix, which only has ones in the first row and zeroes
elsewhere, corresponds to 1 ∈ Gm.

Let dj be the j-th column of D for j ∈ Gm. We claim that dj = b∗
j for all

j ∈ Gm\{1}. Since span (B) ⊆ R
Gm ∼= R

n is the subspace orthogonal to the
all-one vector 1, we have to prove 〈dj ,1〉 = 0 or all j ∈ Gm\{1}, first. The
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components of the vector dj just differ by the order of the entries of d1, since
D is a Gm-circulant matrix associated to d1 by Lemma 2.12. Hence,

〈dj ,1〉 = 〈d1,1〉 = 0,

since 〈d1,1〉 is the eigenvalue of D corresponding to the trivial character 1 ≡
χ ∈ Ĝm.

Now, we only have to prove 〈di,bj〉 = δi,j for all i, j ∈ Gm\{1}. Since
bj = zj − z1 for all j ∈ Gm\{1}, we have

〈di,bj〉 =
(

D
T
B
)

i,j
=
(

D
T
Z − D

T
Z

M
1

)

i,j

=

⎛

⎜

⎜

⎜

⎜

⎝

PGm

⎛

⎜

⎜

⎜

⎜

⎝

0 0 . . . 0

0 1 . . . 0

.

.

.
.
.
.
. . .

.

.

.

0 0 . . . 1

⎞

⎟

⎟

⎟

⎟

⎠

P
−1
Gm

︸ ︷︷ ︸

=:M

− PGm

⎛

⎜

⎜

⎜

⎜

⎝

0 0 . . . 0

0 1 . . . 0

.

.

.
.
.
.
. . .

.

.

.

0 0 . . . 1

⎞

⎟

⎟

⎟

⎟

⎠

P
−1
Gm

︸ ︷︷ ︸

=M

⎛

⎜

⎜

⎜

⎜

⎝

1 1 . . . 1

0 0 . . . 0

.

.

.
.
.
.

.

.

.

0 0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

i,j

= Mi,j − Mi,1

for all i, j ∈ Gm\{1}. The entry Mi,j of M is given by Mi,j =
1

|Gm|
∑

χ∈̂Gm
χ�≡1

χ
(
i · j−1

)
. Together with Lemma 2.10 (4) we obtain

Mi,j − Mi,1 =
1

|Gm|

(

∑

χ∈ ̂Gm
χ �≡1

χ
(

ij
−1
)

−
∑

χ∈ ̂Gm
χ �≡1

χ (i)

)

=
1

|Gm|

(

∑

χ∈ ̂Gm

χ
(

ij
−1
)

︸ ︷︷ ︸

=|Gm|, if i=j
=0, else

−
∑

χ∈ ̂Gm

χ (i)

︸ ︷︷ ︸

=0
since i�=1

)

= δi,j .

By the uniqueness of the dual basis, this implies b∗
j = dj for all j ∈ Gm\{1}.

Therefore, Theorem 2.13 implies

||b∗
j ||22 = ||dj ||22 = ||d1||22 = |Gm|−1 ·

∑

χ∈̂Gm\{1}
|λχ|−2

for all j ∈ Gm\{1}, since the eigenvalues of D are given by 0, 1
λ2

, . . . , 1
λn

and,
again, the components of dj are just a permutation of the components of d1. ��

The following theorem summarizes the presented results and provides an
upper bound for ||b∗

j ||2. It can be proven similar to the prime power case in [8,
Sect. 3], we only need to bound the new occurring factor |(1 − χ(p))(1 − χ(q))|.
Therefore we just sketch the proof of the following theorem, for a detailed version
see the extended version of this paper [13].

Theorem 4.15. Let (p, q) be an (α, β)-generator prime pair, and m := pαqβ.
Then the norm of all b∗

j for j ∈ Gm\{1} is equal and bounded by

||b∗
j ||22 ≤ 15C ′

m
+ C2 log2(m) ·

(
15αβ

2m
+

55(α + β)
8m

+
5β

12pα
+

5α

12qβ

)
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without the GRH, and

||b∗
j ||22 ≤ C2(log ◦ log)2(m) ·

(
15αβ

2m
+

55(α + β)
8m

+
5β

12pα
+

5α

12qβ

)
,

if the GRH holds, for some constants C,C ′ > 0, where C ′ depends on p, q and C
is independent of m. Note that log(m) = α log(p)+β log(q) holds for m = pαqβ.

Proof. Without loss of generality we just consider the inequality without the
GRH. Like in the prime power case, we distinguish between the quadratic and
non quadratic characters. Since Z

×
pα is cyclic, there is exactly one non-trivial

quadratic character of Z
×
pα

∼= Ẑ
×
pα with conductor p. Therefore Ẑ

×
m

∼= Ẑ
×
pα × Ẑ

×
qβ

has only three non-trivial quadratic characters of Z
×
m of conductor p, q and pq.

Hence, there exists a constant C ′ > 0, such that
∑

χ∈Ĝ
pl1 ql2 \{1}

χ is quadratic

|λχ|−2 ≤ C ′

for all l1, l2 ∈ N, since the bound of the eigenvalues λχ only depends on the
conductor fχ by Theorems 2.15 and 4.13. This implies

||b∗
j ||22 = |Gm|−1 ·

( ∑

χ∈̂Gm\{1}
χ is quadr.

|λχ|−2 +
∑

χ∈̂Gm\{1}
χ is not quadr.

|λχ|−2

)

≤ 15C ′

m
+

15
m

· l2(m)
∑

χ∈̂Gm
χ�≡1

1∣∣ (1 − χ(p)) (1 − χ(q))
∣∣2 · fχ

with l(m) := C log(m) ≥ C log(fχ) for some constant C > 0 by Theorem 2.15.
Hence, we have to bound the occurring sum. We split the sum into three sums over
the characterswith pq|fχ, q � fχ and p � fχ. If pq|fχ, then

∣∣ (1 − χ(p)) (1 − χ(q))
∣∣ =

1, therefore

∑

χ∈̂Gm
pq|fχ

1
∣∣ (1 − χ(p)) (1 − χ(q))

∣∣2 · fχ

=
∑

χ∈̂Gm
pq|fχ

1

fχ
=
∑

pq|t|m

1

t

∑

χ∈̂Gm
fχ=t

1 ≤
∑

pq|t|m

1

t
· t

2
=

1

2
α · β,

where we used that there at most |Ĝt| = ϕ(t)
2 ≤ t

2 characters of conductor t

in Ĝm.
For the case q � fχ = pe we use the inequality

∑n−1
k=1

1
|1−ξk

n|2 ≤ 1 + n
4 + 1

9n2,
which can be proven by basic analysis, see the extended version of this paper [13].
This and Corollary 4.3 implies

∑

χ∈ ̂Gm
1<fχ|pα

1
∣

∣ (1 − χ(p)) (1 − χ(q))
∣

∣
2 · fχ

≤
α
∑

e=1

1

pe

∑

χ∈ ̂Gpe

χ �≡1

1
∣

∣1 − χ(q)
∣

∣
2 =

α
∑

e=1

1

pe

ϕ(pe)
2 −1
∑

k=1

1
∣

∣1 − ξk
ϕ(pe)

2

∣

∣
2

≤
α
∑

e=1

1

pe
·
(

1 +
ϕ(pe)

8
+

ϕ(pe)2

36

)

≤ α

p
+

α

8
+ αp

α−2 (p − 1)2

36
,
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Analogously follows the same bound for the case p � fχ. Altogether we have

||b∗
j ||22 ≤ 15C1

m
+

15

m
· l2(m)

(
α

p
+

β

q
+

1

2
α · β +

α + β

8
+ βqβ−2 (q − 1)2

36
+ αpα−2 (p − 1)2

36

)

≤ 15C1

m
+ l2(m)

(
15αβ

2m
+

55(α + β)

8m
+

5β

12pα
+

5α

12qβ

)
,

where l(m) = C log(m) for some constant C > 0. We have used that α
p + β

q ≤
α
3 + β

5 ≤ α+β
3 . ��

The upper theorem implies ||b∗
j ||22 ∈ O

(
l3 · pl+ql+c

plql+c

)
, where α = l and β =

l + c for some constant c ∈ N0. The following corollary is a direct consequence
of this fact and shows, that the basis b1, . . . ,bk for m = pαqβ is well suited for
BDD, if (p, q) is a generator prime pair and the distance between α and β is
bounded. A proof can be found in the extended version of this paper [13].

Corollary 4.16. Let (p, q) be a generator prime pair and c ∈ N0. Further, let
αl := l, βl := l + c and ml := pαlqβl for all l ∈ N. Then ||b∗

j ||2 → 0 for l → ∞
and all j ∈ Gm\{1} and

ml · exp
(

− 1
8||b∗

j ||2

)
→ 0 for l → ∞.

In particular, for every ω ∈ (0, 1) Condition 3.5 holds with parameters M =
||Log(bj)∗||2 for all j ∈ Gm\{1} and ω for large enough ml, if the generator
g ∈ Kml

is drawn from a continuous Gaussian.
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Abstract. Lookup-table based side-channel countermeasure is the
prime choice for masked S-box software implementations at very low
orders. To mask an n-bit to m-bit S-box at first- and second- orders,
one requires a temporary table in RAM of size m · 2n bits. Recently,
Vadnala (CT-RSA 2017) suggested masked table compression schemes
at first- and second-orders to reduce the table size by (approximately) a
factor of 2l, where l is a parameter. Though greater compression results
in a greater execution time, these proposals would still be attractive for
highly resource constrained devices.

In this work, we contradict the second-order security claim of the
second-order table compression scheme by Vadnala. We do this by
exhibiting several pairs of intermediate variables that jointly depend on
the bits of the secret. Motivated by the fact that randomness is also a
costly resource for highly resource constrained devices, we then propose
a variant of the first-order table compression scheme of Vadnala that has
the new randomness complexity of about l instead of 2l for the original
proposal. We achieve this without inducing any noticeable difference in
the overall execution time or memory requirement of the original scheme.
Finally, we show that the randomness complexity of l is optimal in an
algebraic sense.

Keywords: Side-channel attack · Masking · Block cipher
Implementation

1 Introduction

Side-channel attacks on cryptographic implementations exploit physical charac-
teristics of an execution such as timing, power consumption or electromagnetic
emission pattern, to name but a few [Koc96,KJJ99]. Block cipher implemen-
tations have been a major target for these attacks. Over the years, a number
of countermeasures against these attacks have been developed too. Of these,
(boolean) masking is one of the very first and still a popular technique to protect
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block cipher implementations [CJRR99,ISW03]. The basic idea behind masking
is to split every sensitive variable into one or more shares and process them in
such a way that intermediate variables do not reveal information about these sen-
sitive variables. An implementation is said to be secure against t-th order attacks
in the probing leakage model if any subset of t intermediate variables (including
the input and output shares) jointly is statistically independent of the secret
variables [ISW03]. Hence at least t + 1 shares are needed for each of the secret
inputs to achieve t-th order security. As the number of shares increase so does
the complexity of the side-channel attacks [CJRR99,PR13,DDF14]. Moreover,
since the processing of affine functions is straightforward, the main challenge in
masking block ciphers is the masking of the non-linear operations, in particular,
the S-box functions.

Recent years have witnessed an increased focus on the design and improve-
ment of higher-order (boolean/arithmetic) masking schemes for S-boxes. For
instance, see [CGPZ16,GR16,PV16,CRZ17,GR17,GRVV17,JS17] and the ref-
erences within. These masking schemes can roughly be categorised into polyno-
mial/ arithmetic-circuit based masking schemes (including the bit-sliced masking
technique) on one hand, and look-up table-based masking schemes on the other.
As the above works have shown, at higher orders, polynomial-based schemes
have been more efficient than table-based schemes in terms of time, memory
and randomness complexity. In spite of the above advancement of polynomial-
based masking schemes, at very low orders, such as first- and second-orders,
table-based masking schemes are the most effective due to low overheads. Unsur-
prisingly, vast majority of the commercial implementations opt just for first- or
second-order masked implementations due to efficiency concerns.

Original Look-up Table-based Masking. The original table-based first-
order masking of an (n,m)-S-box S consists of creating a temporary table
T : {0, 1}n → {0, 1}m in RAM [CJRR99]:

T (a) = S(x1 ⊕ a) ⊕ y1 ∀ 0 ≤ a ≤ 2n − 1,

where x1 and x2 are the input shares such that the secret x = x1 ⊕x2 ∈ {0, 1}n,
and y1 and y2 are the output shares such that S(x) = y1 ⊕ y2 ∈ {0, 1}m. Using
T , y2 can simply be computed as y2 = T (x2). The RAM memory requirement
for the table T is m · 2n bits.

Prouff and Rivain [PR07] suggested a first-order S-box masking scheme that
mainly requires only two m-bit registers, hence doing away with the need to
store the table T . Though this method only requires (essentially) a constant
amount of memory, the overhead induced is a factor of about 30–35, while it
is just 2 - 3 for the original method [Vad17]. Moreover, in the original method,
the table T can be computed “offline” hence significantly reducing the “online”
computation time. But in the method of [PR07], the whole table is computed
(on the fly) during the online phase and hence the relatively large overhead.

The second-order S-box masking schemes of Schramm and Paar [SP06], and
Rivain, Dottax and Prouff [RDP08] also require a temporary table of size m · 2n
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bits, while the scheme of Coron [Cor14] requires 3 · m · 2n bits [CRZ17]. The
authors of [RDP08] also suggest a second-order scheme that requires only two
m-bit registers and 2n bits of RAM memory.

Masked Table Compression. In order to reduce the RAM memory require-
ment for highly resource constrained devices, Rao et al. [RRST02] suggested a
table compression scheme for first-order masking that requires only ≈ m · 2n−1

bits for the temporary table. For the case of AES, one now needs only 128 bytes
for the table instead of 256 bytes for the original table-based method. In gen-
eral, one can improve the memory complexity of the method of [RRST02] to
≈ m · 2n/l bits, for a parameter l such that 1 ≤ l ≤ m.

Inspired by the method of [RRST02], Vadnala [Vad17] suggested masked
table compression techniques that achieve better compression for both the first-
and second-order S-box masking. It is shown that the memory requirement for
the first-order case can be reduced to ≈ m · 2n−l + (n − l) · 2l bits, where l
is a parameter, called compression level, such that 1 ≤ l ≤ n. For the second-
order case, it is shown to be ≈ m · 2n−l + (n − l + 1) · 2l bits. The author also
investigated the (online-)time and (RAM) memory trade-off in between the two
extremes mentioned above for the original method. Reasonably efficient first-
and second-order masked implementations of AES-128 were obtained using only
about 40 bytes of RAM memory [Vad17]. The proposed schemes were argued to
be secure in the probing leakage model [ISW03].

Let us very briefly illustrate the technique of [Vad17] for the first-order case.
The main idea is to “pack” 2l table entries of the original randomised table into
a single entry of table T1:

T1(a(1)) =

(
⊕

0≤i≤2l−1
S((a(1) ⊕ ri) || i)

)
⊕ y1, ∀ 0 ≤ a(1) ≤ 2n−l − 1,

where ri ∈ {0, 1}n−l are uniform random and independently sampled. One needs
to carefully access this table to produce another table (that need not be stored)
which is then securely accessed with the shares of the remaining l-bits of the
secret x (cf. Sect. 2.1). Note that for the given compression level l, one needs to
make 2l calls to a random number generator to generate the ris.

1.1 Our Contribution

We contradict the second-order security claim of the second-order masked table
compression scheme(s) of [Vad17]. We exhibit a second-order attack on the
scheme(s) by demonstrating the existence of several pairs of intermediate vari-
ables that jointly depend on the secret (cf. Lemma 1). Our attack is, in spirit,
similar to the third-order attack suggested by Coron, et al. [CPR07] on the
higher-order masking scheme of Schramm and Paar [SP06].

Motivated by the fact that the generation of quality randomness is possibly
a costly operation on highly resource constrained devices, we then revisit the
first-order scheme(s) of [Vad17] and propose a variant (first-order) scheme(s)
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that requires only about l calls to a random number generator instead of 2l

required for the original scheme(s) (cf. Sect. 2.2). Our main idea is to generate
the 2l values ri using only l +1 random values γ0, . . . , γl ∈ {0, 1}n−l. We do this
by setting ri to a subset (xor) sum of the γjs. Other than this difference, the
rest of our method is the same as in [Vad17]. This implies that apart from the
difference in the time to compute the ris at the very beginning, there is hardly
any noticeable difference in the time and memory complexity of our method
and that of [Vad17]. We too prove the first-order security of our scheme in the
probing leakage model (cf. Theorem 1). It may be noted that it is straightforward
to securely compose first-order secure schemes in a bigger construction.

Finally, we show that the randomness complexity of l that we achieved is
(nearly) optimal in an algebraic sense (cf. Sect. 2.3). Specifically, our computa-
tion model assumes that the only arithmetic operations allowed are xors, i.e.,
F2 -linear operations. This is a reasonable assumption since nearly all the known
table-based masking schemes satisfy this assumption [CJRR99,RRST02,SP06,
PR07,RDP08,Cor14,CRZ17,Vad17].

Organisation of the Paper. To gradually introduce the techniques of masked
table compression, we first describe our contributions for the first-order case in
Sect. 2 before presenting our attack on the second-order scheme in Sect. 3.

2 Improved First-Order Table Compression Scheme

2.1 Original First-Order Scheme

Before we present our improved first-order masked table compression scheme,
let us first briefly recollect the original first-order proposal from [Vad17, Sect. 2].
The notation we use here is somewhat different from that in [Vad17, Sect. 2], and

we summarise the changes in Remark 1. Throughout the paper, by b
$← {0, 1}k

we denote a uniform random and independent sampling of a k-bit string.
Consider an (n,m)-S-box S : {0, 1}n → {0, 1}m, where n ≥ m. The task is

to securely evaluate S(x), given the input shares x1
$← {0, 1}n and x2 such that

x = x1 ⊕ x2 ∈ {0, 1}n, ensuring that no intermediate variable is statistically

dependent on the “secret” x. The outputs are two shares y1
$← {0, 1}m and y2

such that S(x) = y1 ⊕ y2 ∈ {0, 1}m.
Let 1 ≤ l ≤ n be the compression level. Define the functions Si : {0, 1}n−l →

{0, 1}m (0 ≤ i ≤ 2l − 1) as

Si(a(1)) := S(a(1)||i), ∀ 0 ≤ a(1) ≤ 2n−l − 1, (1)

where i is represented using l bits. The main idea in [Vad17] is to “pack” 2l

table entries of the original randomised table into a single entry of table T1.
More precisely, let

T1(a(1)) =

(
⊕

0≤i≤2l−1
Si(a(1) ⊕ ri)

)
⊕ y1, ∀ 0 ≤ a(1) ≤ 2n−l − 1, (2)
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where
ri

$← {0, 1}n−l, ∀ 0 ≤ i ≤ 2l − 1, (3)

are uniform random and independently sampled.
Let

x =: x(1) ||x(2), where x(1) ∈ {0, 1}n−l, x(2) ∈ {0, 1}l. (4)

Similarly, let

x1 =: x1
(1) ||x1

(2), where x1
(1) ∈ {0, 1}n−l, x1

(2) ∈ {0, 1}l, (5)

and

x2 =: x2
(1) ||x2

(2), where x2
(1) ∈ {0, 1}n−l, x2

(2) ∈ {0, 1}l. (6)

In [Vad17, Sect. 2] it is mentioned that x1
(1) = ⊕ ri (0 ≤ i ≤ 2l − 1). But this

is not a necessity and we assume that x1 is independently chosen. The next
step is to compute a table U : {0, 1}l → {0, 1}m comprising of all the values
Si(x(1)) ⊕ y1, where 0 ≤ i ≤ 2l − 1, by securely accessing the tables T1 and Si

as follows:

Si(x(1))⊕y1 = T1((x1
(1)⊕ri)⊕x2

(1)) ⊕ ⊕
0≤j≤2l−1, j �=i

Sj(((x1
(1)⊕ri)⊕x2

(1))⊕rj).

For security considerations, the expression inside the parentheses above and
elsewhere must be evaluated with higher precedence. To compute the second
output share y2 = S(x) ⊕ y1, the table U needs to be accessed at x(2). But
if one directly accesses the table U as mentioned, then it would leak l-bits of
the secret x. Therefore, instead of creating the table U , a randomised table T2

corresponding to U shifted by x1
(2) is created as follows:

T2(a(2)) =T1((x1
(1) ⊕ r(a(2)⊕x1(2))) ⊕ x2

(1)) ⊕

⊕
0≤j≤2l−1, j �=(a(2)⊕x1(2))

Sj(((x1
(1) ⊕ r(a(2)⊕x1(2))) ⊕ x2

(1)) ⊕ rj), (7)

where 0 ≤ a(2) ≤ 2l − 1. Finally, compute

y2 = T2(x(2)).

The above scheme is proven to be first-order secure in the probing leakage
model [ISW03]. Namely, every intermediate variable (including the input and
output shares) is shown to be independent of the secret x. Note that the table
T1 can be computed offline. As the value of the compression level l increases,
then so does the online computation time. The table T1 has 2n−l m-bit entries,
while the table T2 has 2l m-bit entries. Hence the combined size of the two



374 S. Vivek

tables is
(
2n−l + 2l

) · m bits compared to the 2n · m bits needed for the original
randomised table-based (first-order) masking scheme. But in the above scheme
we now need to also store the 2l random values ri each n − l bits long.

It is suggested in [Vad17] how to do away with the need to store the table T2.
This is based on a first-order S-box masking scheme from [PR07] that mainly
uses only two registers (instead of a table) to compute the output shares y1 and
y2. The only (implicit) requirement to apply the method of [PR07] in different
contexts is that random access must be possible for the table that is being
masked. Since the entries of the table T2 can be computed in any arbitrary
order, one can straightforwardly apply the technique of [PR07] in the current
context. Hence the RAM memory complexity of the first-order table compression
scheme from [Vad17] is approximately 2n−l · m + 2l · (n − l) bits.

Remark 1. The variables x1, x1
(1), x1

(2), x2, x2
(1), x2

(2), y1, and a(1), in this
section correspond to, respectively, r, r(1), r(2), x1, x1

(1), x1
(2), s, and u, in

[Vad17, Sect. 2]. The final step that computes y2 is also slightly different com-
pared to [Vad17].

2.2 Our Method

Our main idea to reduce the randomness complexity of the first-order scheme
from [Vad17] is as follows. Instead of choosing 2l random values ri

$← {0, 1}n−l

(cf. (3)), we compute the required ri using only l + 1 random values

γj
$← {0, 1}n−l ∀ 0 ≤ j ≤ l

by xoring different subsets of this smaller set of random values. By

bitsl(i) ∈ F
l
2 ∀ 1 ≤ i ≤ 2l − 1

we mean an l-bit vector consisting of the bits in the binary representation of i.
Let bitsl(i)[0] denote the least significant bit and, consequently, bitsl(i)[l − 1]
denotes the most significant bit of i (which could possibly be 0). Define

r0 := γl,

ri :=
l−1∑
j=0

bitsl(i)[j] · γj , ∀ 1 ≤ i ≤ 2l − 1.
(8)

Hence each of r1, . . ., r2l−1 is computed as the xor of the subset of γjs defined
by the binary representation of their indices. When i = 0, the subset xor of γjs
is zero. Hence r0 is set to a fresh random value. This procedure is summarised
in Algorithm 1.

Once the values ri are generated and stored, then the rest of the procedure is
the same as in the original scheme recollected in Sect. 2.1 (but also see Remark 2).
Hence the proof of correctness for our improved method follows automatically.
For completeness, we summarise the complete (improved) first-order masked
table compression scheme in Algorithm 4.
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Algorithm 1. Computing {r0, . . . , r2l−1} according to (8).

Input: γ0, . . . , γl ∈ {0, 1}n−l.
Output: r0, . . . , r2l−1 ∈ {0, 1}n−l.
1: r0 ← γl

2: for i ← 1 to 2l − 1 do
3: ri ← 0
4: for j ← 0 to l − 1 do
5: if bitsl(i)[j] �= 0 then
6: ri ← ri ⊕ γj

7: end if
8: end for
9: end for

10: return r0, . . . , r2l−1

Algorithm 2. Computing table T1 for first-order masked table compression (cf.
(2)).
Input: (n, m)-S-box table S, an output share y1 ∈ {0, 1}m, {r0, . . . , r2l−1} from Algo-

rithm 1.
Output: Table T1.
1: define Si(a

(1)) := S(a(1)||i) (cf. (1))
2: for a(1) ← 0 to 2n−l − 1 do
3: z ← y1

4: for i ← 0 to 2l − 1 do
5: z ← z ⊕ Si(a

(1) ⊕ ri)
6: end for
7: T1(a

(1)) ← z
8: end for
9: return T1

Remark 2. In Algorithm 3, the variable z is initialised to T1(ind1) and then
xored with ⊕Sj(ind2). But in [Vad17, Sect. 2], the variable z is initialised to 0
and the above xor was computed at the end. The latter approach could lead to
a first-order security flaw for our method due to the “random” values ri being
related in our method.

Remark 3. The execution time for our method (Algorithm 4) and that of [Vad17]
is the same except for the time required to generate the values ri. In the latter
method it requires 2l calls to the random number generator, while for our method
it needs only l + 1 calls plus the computation of l · 2l−1 xors.

Remark 4. The RAM memory complexity is the same for both our method and
for [Vad17] since the extra variables γj in our method can be discarded right after
computing and storing the values ri. The RAM memory complexity for both the
methods is approximately 2n−l · m + 2l · (n − l) bits (in spite of computing the
table T2 on the fly).
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Algorithm 3. Computing table T2 for first-order masked table compression
(cf. (7)).
Input: (n, m)-S-box table S, two input shares x1 and x2 such that x1 ⊕ x2 = x ∈

{0, 1}n, an output share y1 ∈ {0, 1}m, {r0, . . . , r2l−1} from Algorithm 1, table T1

from Algorithm 2.
Output: Table T2.
1: define Si(a

(1)) := S(a(1)||i) (cf. (1)), x1 =: x1
(1) || x1

(2) (cf. (5)), x2 =: x2
(1) || x2

(2)

(cf. (6))
2: for a(2) ← 0 to 2l − 1 do
3: k ← a(2) ⊕ x1

(2)

4: ind1 ← (x1
(1) ⊕ rk) ⊕ x2

(1)

5: z ← T1[ind1]
6: for j ← 0 to 2l − 1 do
7: if j �= k then
8: ind2 ← ind1 ⊕ rj
9: z ← z ⊕ Sj(ind2)

10: end if
11: end for
12: T2(a

(2)) ← z
13: end for
14: return T2

Remark 5. The randomness complexity of our method in terms of the number
of calls to a random number generator is l + 3 instead of 2l + 2 for [Vad17]. In
terms of the number of random bits generated, it is (l + 1) · (n − l) + n + m for
ours instead of 2l · (n − l) + n + m for [Vad17].

The above complexity estimates are exclusively for the masked computation
of a single S-box and hence does not include the processing of the full cipher.
We refer to [Vad17, Sect. 4] for a concrete performance evaluation of masked
AES-128 on a 32-bit ARM Cortex-M3 based micro-controller. We expect that
on such relatively big architectures the execution times for our method and that
of [Vad17] will not differ significantly.

Theorem 1. Algorithm 4 is first-order secure in the probing leakage model.

Security Proof. To this end, we just need to show that every intermediate
variable is independent of the secret input x. It is obvious that all the interme-
diate values appearing until (including) Step 7 of Algorithm 4 are independent
of x since they can be computed offline. These intermediate variables can simply
be simulated by picking suitable random values. Out of the intermediate vari-
ables occurring in the remaining Steps 8, 9 and 10 of Algorithm 4, the variables
x2

(2) = x(2) ⊕ x1
(2), y1, and y2 = T2(x2

(2)) = S(x) ⊕ y1 in Steps 9 and 10 are
clearly independent of x. This leaves us to deal with only the variables (including
the inputs and outputs) occurring in the computation of table T2 in Algorithm 3.

The (probability distribution of the) variable k = a(2) ⊕ x1
(2) is uniform

random and independent of x due to x1. Since each ri ∈ {0, 1}n−l (0 ≤ i ≤ 2l−1)
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Algorithm 4. Improved first-order masked table compression
Input: (n, m)-S-box table S, two input shares x1 and x2 such that x1 ⊕ x2 = x ∈

{0, 1}n.
Output: Two output shares y1 and y2 such that y1 ⊕ y2 = S(x) ∈ {0, 1}m.
1: define x2 =: x2

(1) || x2
(2) (cf. (6))

2: y1 ← {0, 1}m

3: for j ← 0 to l do

4: γj
$← {0, 1}n−l

5: end for
6: Compute r0, . . . , r2l−1 ← Algorithm 1 (γ0, . . . , γl)
7: Compute table T1 ← Algorithm 2 (S, y1, {r0, . . . , r2l−1})

{ All the above steps may be computed offline.}
8: Compute table T2 ← Algorithm 3 (S, x1, x2, y1, {r0, . . . , r2l−1}, T1)

9: y2 ← T2(x2
(2))

10: return y1, y2

is uniform random and independent of x and x1 (because ris are xors of uniform
random and independent γjs), the variables x1

(1) ⊕ rk and ind1 = x(1) ⊕ rk

are uniform random and independent of x. Because each entry of the table T1

is masked with y1, hence they too are uniform random and independent of x.
This implies that the initial value of z = T1(ind1) is also uniform random and
independent of x.

Consider the values assumed by the variable ind2 = x(1)⊕rk⊕rj . Since j 
= k
and if j, k 
= 0, it is easy to see that rk ⊕ rj = rk⊕j . Since all the ris are uniform
random and independent of x, so is ind2. If j = 0, then ind2 = x(1) ⊕ rk ⊕ γl,
and if k = 0, then ind2 = x(1) ⊕ γl ⊕ rj , and the above conclusion follows
easily. This also means that Sj(ind2) occurring in Step 9 of Algorithm 3 is also
independent of x. Finally, we need to show that all the values of z from Step
9 (including the Step 12) are independent of x. As reasoned above, the initial
value of z = T1(ind1) is masked with y1. Since each of the values Sj(ind2) is
also independent of y1, this implies that all the values assumed by z are always
uniform random and independent of x. This completes the security proof. ��

2.3 Lower Bound on Randomness Complexity

We next show that the randomness complexity of our method from Sect. 2.2
has (nearly) optimal randomness complexity in an algebraic sense. Precisely, we
prove that one needs to make at least l calls to a random number generator
to compute the values r0, . . . , r2l−1 ∈ {0, 1}n−l used to compute table T2 (cf.
Remark 5). Needless to say, this lower bound is also applicable to the original
scheme from [Vad17, Sect. 2]. To prove our lower bound, we assume that the only
arithmetic operations performed are xors, i.e., only F2 -linear operations, which
indeed is a typical scenario for table-based masking schemes.
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Theorem 2. Algorithm 4 needs at least l · (n − l) uniform randomly gener-
ated bits to be first-order secure in the probing leakage model if only F2-linear
operations are performed.

Proof. Let us assume that fewer than l calls are made to the random num-
ber generator to compute the ris. Then we will exhibit an intermediate value
that depends on the secret x. Let the generated random values be ν1, . . . , νt ∈
{0, 1}n−l, where t ≤ l − 1. In the assumed computation model, all the computed
values r0, . . . , r2l−1 will be of the form

ri = ci ⊕
1≤j≤t

bj · νj , where bj ∈ F2 , ci ∈ {0, 1}n−l,

for 0 ≤ i ≤ 2l −1. This implies that there exist some rp and rq (p 
= q) such that

rp ⊕ rq = cp ⊕ cq

is a constant. The variable ind2 = x(1) ⊕ cp ⊕ cq in Step 8 of Algorithm 3 when
a(2) = p and j = q. Hence this value is correlated with the n − l most significant
bits of x. This proves our claim. ��

3 Attack on the Second-Order Masked Table
Compression Method of [Vad17]

3.1 Original Second-Order Scheme

Before we present our attack on the second-order masked table compression
scheme from [Vad17, Sect. 3], let us first recollect the original scheme. To be
consistent with the notation in Sect. 2, we will use a slightly different notation
here than that in [Vad17, Sect. 3], and we summarise the changes in Remark 6.

The second-order table compression scheme from [Vad17] is based on the
second-order S-box masking scheme from [RDP08, Sect. 3.1]. Consider again
an (n,m)-S-box S : {0, 1}n → {0, 1}m, where n ≥ m. On input three shares

x1
$← {0, 1}n, x2

$← {0, 1}n and x3 such that x = x1 ⊕ x2 ⊕ x3 ∈ {0, 1}n, the

task is to compute the three output shares y1
$← {0, 1}m, y2

$← {0, 1}m and y3
such that S(x) = y1 ⊕ y2 ⊕ y3 ∈ {0, 1}m. In order for the scheme to be second-
order secure in the probing model, the requirement is that the joint probability
distribution of any pair of intermediate variables (including the input and the
output shares) is statistically independent of the secret x. At a high level the
main technique behind the second-order table compression scheme is similar to
that of the first-order compression scheme presented in Sect. 2. First, create a
table T1 that “packs” 2l randomised S-box values:

T1(b(1)) :=

((
⊕

0≤i≤2l−1
Si(x3

(1) ⊕ a(1) ⊕ ri)

)
⊕ y1

)
⊕ y2, (9)
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where
b(1) = a(1) ⊕ ((x1

(1) ⊕ v(1)) ⊕ x2
(1)), (10)

for all 0 ≤ a(1) ≤ 2n−l − 1, Si(a(1)) := S(a(1)||i) as in (1), v(1) $← {0, 1}n−l, and

ri
$← {0, 1}n−l as in (3).
Let us recollect the notations x =: x(1) ||x(2), x1 =: x1

(1) ||x1
(2), x2 =:

x2
(1) ||x2

(2) from (4) to (6). Similarly, let x3 =: x3
(1) ||x3

(2). The next step is
to compute a table U : {0, 1}l → {0, 1}m consisting of the values Si(x(1)) ⊕ y1,
where 0 ≤ i ≤ 2l − 1, by carefully accessing the tables T1 and Si. We have

Si(x(1)) ⊕ y1 ⊕ y2 = T1(v(1) ⊕ ri) ⊕ ⊕
0≤j≤2l−1, j �=i

Sj(x(1) ⊕ ri ⊕ rj).

Now the final output share y3 = S(x) ⊕ y1 ⊕ y2 can be computed by access-
ing the table U at x(2). Of course, this cannot be done as x(2) must never be
computed explicitly. Instead of computing the table U , a second-order masked
table T2 is created that is accessed with the shares of x(2).

Let

T2(b(2)) :=T1(v(1) ⊕ r(x3(2)⊕a(2))) ⊕

⊕
0≤j≤2l−1, j �=a(2)

S(x3(2)⊕j)(x
(1) ⊕ r(x3(2)⊕a(2)) ⊕ r(x3(2)⊕j)), (11)

for all 0 ≤ a(2) ≤ 2l − 1, where

b(2) := a(2) ⊕ ((x1
(2) ⊕ v(2)) ⊕ x2

(2)), (12)

and v(2) $← {0, 1}l. Once the table T2 is computed, the output share y3 can
simply be computed as

y3 = T2(v(2)).

We will not recollect here the exact details of how the tables T1 and T2 are
computed since it is not necessary to present our attack. We refer to [Vad17,
Algorithm 8] for these details. As observed in [Vad17], it is not necessary to
store the table T2. Instead, it can be computed “on the fly” by making use of
the technique from [RDP08, Algorithm 3].

Remark 6. The variables x(1), x(2), x1
(1), x1

(2), x2
(1), x2

(2), x3, x3
(1), x3

(2), y1,
y2, v(1), and v(2), in this section correspond to, respectively, y, b, y1, b1, y2, b2,
x′, y′, b′, s1, s2, y3, and b3, in [Vad17, Sect. 3]. The pairs of variables (a(1), b(1))
and (a(2), b(2)) in our description both correspond, in different contexts, to (a,
a′) in [Vad17, Sect. 3].
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3.2 Our Attack

We now present a second-order security flaw in the second-order masked table
compression scheme from [Vad17, Sect. 3]. Our attack is, in spirit, similar to the
third-order attack suggested in [CPR07] on the higher-order masking scheme
of [SP06]. More precisely, we prove the following lemma that establishes the
existence of many pairs of intermediate variables that jointly depend on the bits
of the secret x.

Lemma 1. Let β1, β2 ∈ {0, 1}l. Then

T2(β1) ⊕ T2(β2) = S(β1⊕x(2)⊕v(2))(x
(1)) ⊕ S(β2⊕x(2)⊕v(2))(x

(1)).

Proof. From (11), we have

T2(β1) =T1(v(1) ⊕ r(x3(2)⊕α1(2))) ⊕

⊕
0≤j≤2l−1, j �=α1(2)

S(x3(2)⊕j)(x
(1) ⊕ r(x3(2)⊕α1(2)) ⊕ r(x3(2)⊕j)), (13)

where, from (12),

α1
(2) := β1 ⊕ ((x1

(2) ⊕ v(2)) ⊕ x2
(2)). (14)

From (9), (10) and (14), we have

T1(v(1) ⊕ r(x3(2)⊕α1(2))) = y1 ⊕ y2 ⊕

⊕
0≤j≤2l−1

Sj(x(1) ⊕ rβ1⊕x(2)⊕v(2) ⊕ rj).

From (14) and by a change of index, we obtain

T1(v(1) ⊕ r(x3(2)⊕α1(2))) = y1 ⊕ y2 ⊕ S(β1⊕x(2)⊕v(2))(x
(1))⊕

⊕
0≤j≤2l−1, j �=α1(2)

S(x3(2)⊕j)(x
(1) ⊕ r(x3(2)⊕α1(2)) ⊕ r(x3(2)⊕j)).

On substituting the above equation in (13), we get

T2(β1) = S(β1⊕x(2)⊕v(2))(x
(1)) ⊕ y1 ⊕ y2.

Similarly, we obtain

T2(β2) = S(β2⊕x(2)⊕v(2))(x
(1)) ⊕ y1 ⊕ y2.

Finally,

T2(β1) ⊕ T2(β2) = S(β1⊕x(2)⊕v(2))(x
(1)) ⊕ S(β2⊕x(2)⊕v(2))(x

(1)).

This proves the claim. ��



Revisiting a Masked Lookup-Table Compression Scheme 381

The above result suggests that every pair of values in the table T2 jointly
depends on n− l bits of the secret x. In particular, if the compression level l = 1,
this means that each pair of values will jointly “leak” all but one bit of the secret.

Remark 7. Our attack only exploits the values in the table T2 and not the means
by which it is computed. Hence our attack is also applicable to the variant scheme
in [Vad17, Sect. 3] where T2 is not stored but only computed on the fly.

Remark 8. For our attack the compression level can be any value l such that
1 ≤ l ≤ n − 1. Note that our attack is not applicable when l = 0, which
corresponds to the scheme from [RDP08, Sect. 3.1], and when l = n. Our attack
also does not work for those functions S that depend only on the least significant
l bits of its input as this part of the input is randomised. But such functions are
of little interest for use as cryptographic S-boxes.

Remark 9. In side-channel experiments one hardly gets the values of inter-
mediate variables without any error. Instead, a noisy function of the bits is
observed, for e.g., noisy Hamming weight values. We refer to the techniques in
[PRB09,SVO+10] to extract the bits of the secret from the noisy experimental
data.

Acknowledgements. We would like to thank Srinivas Karthik and Yan Yan for help-
ful discussions, and also the anonymous reviewers of INDOCRYPT 2017 for helpful
comments.
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Abstract. Threshold implementation is a masking technique that pro-
vides provable security for implementations of cryptographic algorithms
against power analysis attacks. In recent publications, several different
threshold implementations of AES have been designed. However in most
of the threshold implementations of AES, the Canright S-Box has been
used. The Boyar-Peralta S-Box is an alternative implementation of the
AES S-Box with a minimal circuit depth and is comparable in size to the
frequently used Canright AES S-Box. In this paper, we present several
versions of first-order threshold implementations of the Boyar-Peralta
AES S-Box with different number of shares and several trade-offs in area,
randomness and speed. To the best of our knowledge these are the first
threshold implementations of the Boyar-Peralta S-Box. Our implemen-
tations compare favourably with some of the existing threshold imple-
mentations of Canright S-Box along the design trade-offs, e.g. while one
of our S-Boxes is 49% larger in area than the smallest known threshold
implementation of the Canright AES S-Box, it uses 63% less random-
ness and requires only 50% of the clock cycles. We provide results of a
practical security evaluation based on real power traces to confirm the
first-order attack resistance of our implementations.

Keywords: AES · Boyar-Peralta S-box · Countermeasure · DPA
Masking · SCA · Threshold Implementations

1 Introduction

In a black box model, embedded devices have been shown to be secure using
modern ciphers. However, when naively implemented, side-channel information
like power consumption, electromagnetic radiations or timing of the device’s
computations can leak secret information unintentionally. Attacks based on var-
ious side channels were presented in [16,23,24] and their mitigation has been the
subject of a great deal of research ever since.

Masking is an efficient way to strengthen cryptographic implementations
against such physical side-channel attacks [10,18]. Masking detaches leaked side-
channel information from secret dependent intermediate values by carrying out
c© Springer International Publishing AG 2017
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computations on randomized values. It offers provable security [29] and can be
implemented on the algorithmic level, making it a flexible Side-Channel Analysis
(SCA) countermeasure. The underlying principle of masking relies on splitting
each variable into a set of random values using secret sharing techniques and
using a certain multi-party computation protocol on the resulting random val-
ues for secure computations. Once the secret values are masked, they are in no
way combined until the end of the algorithm, i.e. the sensitive values are not
leaked at any point during the execution of the cryptographic algorithm. Only
at the end of the computation, when the cipher’s outputs are valid, the output
masks are combined to reconstruct the unmasked output.

The security of masking schemes is inherently tied to an adversary model.
An attacker who observes the dth-order statistical moment of e.g. a power trace
or combines observations from d points in time nonlinearly in that power trace is
said to be an attacker mounting a dth-order attack. To prevent a dth-order attack,
a masking scheme of order (d+1) is required. Fortunately, the number of readings
needed for a higher-order attack to become successful grows exponentially with
the noise standard deviation and therefore it is reasonable to guarantee practical
security up to a certain order.

Implementing masking in hardware in a secure manner is not trivial. It is
a delicate job since all the assumptions made on the leakage behavior of the
underlying platform do not always hold in practice. For example, glitches are
a known predominant threat [25] to the security of masked implementations
in CMOS technologies. Some masking schemes like Threshold Implementations
(TI) work under assumptions which are more achievable in a practical scenarios.
In addition to these relaxed assumptions on the underlying leakage, TI offers
provable security and allows to construct secure circuits which are realistic in
size, all without requiring much intervention from a designer or many design iter-
ations. For this reason, TI has been applied to many well-known cryptographic
algorithms like KECCAK, AES and PRESENT [3,14,26,28].

The Canright S-Box [9] and Boyar-Peralta S-Box [8] are two of the smallest
implementations of the AES S-Box. As a starting point for threshold implemen-
tations and Side-Channel Analysis (SCA) secure designs, the Canright S-box
has been used predominantly [5,20,26], whereas the Boyar-Peralta S-box has
received little to no attention. The S-box introduced by Boyar and Peralta [8]
is based on a novel logic minimization technique, which can be applied to any
arbitrary combinational logic problems and even circuits that have been opti-
mized by standard methodologies. The authors described their techniques as a
two-step process: a reduction of nonlinear gates and a reduction of linear gates.
Using their method they came up with an S-Box for AES which has the smallest
combinational circuit depth known till date.

The aim of this paper is to develop secure masked implementations of the
Boyar-Peralta AES S-Box using TI. The Boyar-Peralta S-Box is one of the small-
est circuits implementing the AES S-box in unmasked form. We explore whether
it is also one of the smallest masked S-Box of AES. For this purpose we explore
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several different masking styles of the Boyar-Peralta S-Box, focusing on various
trade-offs between area, randomness and the number of clock cycles.

Contributions. We present the first threshold implementations of the Boyar-
Peralta AES S-Box. More precisely, we show TIs of the Boyar-Peralta AES S-Box
with 3 and 4 shares, both with various trade-offs related to the circuit area, the
consumed randomness and the required clock cycles. We consider two approaches
to mask the S-Box. The first approach involves masking the AND gates alone
using uniform sharing of the individual AND gates. The second approach is
based on sharing a larger algebraic function, the GF(24) inverter as a whole.

Our smallest implementation is 2.75% larger in area than the smallest Can-
right S-Box presented in [6] but reduces randomness required by 37.5% and
takes the same number of clock cycles. This implementation of ours which is
the smallest in area takes as many clock cycles as the fastest known Thresh-
old Implementation of the Canright S-Box. The Canright S-Box in [15] is the
smallest known TI of the AES S-Box so far. Our smallest implementation is
47% larger in area but reduces randomness by 63% and increases speed by 50%.
One of our implementations uses no randomness at all while all known threshold
implementations of the Canright S-Box need randomness. We show the results
of leakage detection tests of our implementations on a low noise FPGA platform
to back up the theoretical security.

Organization. In Sect. 2, we provide the notation and the theory behind the
threshold implementations masking scheme and the Boyar-Peralta AES S-Box.
In Sect. 3, we develop the various secure implementations of the Boyar-Peralta
S-Box by successively reducing either the number of shares, or the required ran-
domness when the number of shares is kept constant. We present the results of
the side-channel analysis in Sect. 4. In Sect. 5, we discuss the implementation cost
of our resulting designs and compare them with costs of related previously pub-
lished threshold implementations. We conclude the paper and propose directions
for future work in Sect. 6.

2 Preliminaries

2.1 Notation

We use lowercase regular and bold letters to describe elements of GF(2n) and
their sharing respectively. Any sensitive variable x ∈ GF(2n) is split into s shares
(x1, ....., xs) = x, where xi ∈ GF(2n), in the initialization phase of the crypto-
graphic algorithm. A possible manner of performing this initialization, which we
employ, is as follows: the shares x1, x2, ...., xs−1 are selected randomly from an
uniform distribution and xs is calculated such that x =

⊕
i∈{1,2,....,s} xi. We refer

to the jth bit of x as xj unless x ∈ GF(2). We use the same notation to share a
function f into s shares f = (f1, ....., fs). The number of input and output shares
of f are denoted by sin and sout respectively. We refer to field multiplication as
×, to addition as ⊕ and denote negation of all bits in a value x using x.
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2.2 The Boyar-Peralta Implementation of the AES S-Box

The Boyar-Peralta S-Box, is a circuit of depth 16 introduced by Boyar and
Peralta [8]. It uses a total of 128 2-input gates to construct the S-Box: 94 gates
are linear operations (XOR and XNOR gates) and 34 gates are nonlinear (AND
gates or 1-bit multiplications).

The circuit is divided into 3 layers:

1. the top linear layer
2. the middle nonlinear layer
3. the bottom linear layer

The equations involved are listed below. The 8 input bits are given by u0, u1,
u2, u3, u4, u5, u6 and u7 with u0 being the most significant bit and u7 being
the least significant bit. Similarly, the 8 output bits are given by s0, s1, s2, s3,
s4, s5, s6 and s7, with s0 being the most significant bit and s7 being the least
significant bit.

The set of equations for the top linear layer are:

t1 = u0 ⊕ u3

t2 = u0 ⊕ u5

t3 = u0 ⊕ u6

t4 = u3 ⊕ u5

t5 = u4 ⊕ u6

t6 = t1 ⊕ t5
t7 = u1 ⊕ u2

t8 = u7 ⊕ t6
t9 = u7 ⊕ t7

t10 = t6 ⊕ t7
t11 = u1 ⊕ u5

t12 = u2 ⊕ u5

t13 = t3 ⊕ t4
t14 = t6 ⊕ t11
t15 = t5 ⊕ t11
t16 = t5 ⊕ t12
t17 = t9 ⊕ t16
t18 = u3 ⊕ u7

t19 = t7 ⊕ t18
t20 = t1 ⊕ t19
t21 = u6 ⊕ u7

t22 = t7 ⊕ t21
t23 = t2 ⊕ t22
t24 = t2 ⊕ t10
t25 = t20 ⊕ t17
t26 = t3 ⊕ t16
t27 = t1 ⊕ t12

The set of equations for the middle nonlinear layer are given by:

m1 = t13 × t6
m2 = t23 × t8
m3 = t14 ⊕ m1

m4 = t19 × u7

m5 = m4 ⊕ m1

m6 = t3 × t16
m7 = t22 × t9
m8 = t26 ⊕ m6

m9 = t20 × t17
m10 = m9 ⊕ m6

m11 = t1 × t15
m12 = t4 × t27
m13 = m12 ⊕ m11

m14 = t2 × t10
m15 = m14 ⊕ m11

m16 = m3 ⊕ m2

m17 = m5 ⊕ t24
m18 = m8 ⊕ m7

m19 = m10 ⊕ m15

m20 = m16 ⊕ m13

m21 = m17 ⊕ m15

m22 = m18 ⊕ m13

m23 = m19 ⊕ t25
m24 = m22 ⊕ m23

m25 = m22 × m20

m26 = m21 ⊕ m25

m27 = m20 ⊕ m21

m28 = m23 ⊕ m25

m29 = m28 × m27

m30 = m26 × m24

m31 = m20 × m23

m32 = m27 × m31

m33 = m27 ⊕ m25

m34 = m21 × m22

m35 = m24 × m34

m36 = m24 ⊕ m25

m37 = m21 ⊕ m29

m38 = m32 ⊕ m33

m39 = m23 ⊕ m30

m40 = m35 ⊕ m36

m41 = m38 ⊕ m40

m42 = m37 ⊕ m39

m43 = m37 ⊕ m38

m44 = m39 ⊕ m40

m45 = m42 ⊕ m41

m46 = m44 × t6
m47 = m40 × t8
m48 = m39 × u7
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m49 = m43 × t16
m50 = m38 × t9
m51 = m37 × t17
m52 = m42 × t15
m53 = m45 × t27

m54 = m41 × t10
m55 = m44 × t13
m56 = m40 × t23
m57 = m39 × t19
m58 = m43 × t3

m59 = m38 × t22
m60 = m37 × t20
m61 = m42 × t1
m62 = m45 × t4
m63 = m41 × t2

The set of equations for the bottom linear layer consist of:

l0 = m61 ⊕ m62

l1 = m50 ⊕ m56

l2 = m46 ⊕ m48

l3 = m47 ⊕ m55

l4 = m54 ⊕ m58

l5 = m49 ⊕ m61

l6 = m62 ⊕ l5
l7 = m46 ⊕ l3
l8 = m51 ⊕ m59

l9 = m52 ⊕ m53

l10 = m53 ⊕ l4
l11 = m60 ⊕ l2
l12 = m48 ⊕ m51

l13 = m50 ⊕ l0
l14 = m52 ⊕ m61

l15 = m55 ⊕ l1
l16 = m56 ⊕ l0
l17 = m57 ⊕ l1
l18 = m58 ⊕ l8
l19 = m63 ⊕ l4
l20 = l0 ⊕ l1
l21 = l1 ⊕ l7
l22 = l3 ⊕ l12
l23 = l18 ⊕ l2
l24 = l15 ⊕ l9
l25 = l6 ⊕ l10

l26 = l7 ⊕ l9
l27 = l8 ⊕ l10
l28 = l11 ⊕ l14
l29 = l11 ⊕ l17
s0 = l6 ⊕ l24
s1 = l16 ⊕ l26
s2 = l19 ⊕ l28
s3 = l6 ⊕ l21
s4 = l20 ⊕ l22
s5 = l25 ⊕ l29
s6 = l13 ⊕ l27
s7 = l6 ⊕ l23

Masked software implementations using bitslicing of the Boyar Peralta AES
S-Box were studied in [19,22]. A modified version of the Boyar Peralta S-Box
has been masked using the ISW AND gate [21] in [19].

2.3 Threshold Implementations

The threshold implementations (TI) masking technique was proposed by Nikova
et al. [27] as a countermeasure against Differential Power Analysis (DPA) attacks.
It is secure even in non-ideal circuits where glitches have shown to result in
leakage in more conventional masking schemes [25]. The original proposal, which
only dealt with first-order DPA security, was later extended to protect against
higher-order DPA attacks as well [4,30].

TI is based on multi-party computation and secret sharing, and must satisfy
the following properties in order to achieve the mentioned security:

1. Uniformity. Uniformity requires all intermediate shares to be uniformly dis-
tributed. It ensures state-independence from the mean of the leakages, which
is a requirement to thwart first-order DPA. As mentioned in [2] it suffices
to check uniformity at the inputs and the outputs of each of the functions.
Uniformity can be either achieved through correction terms by using more
input shares, or by adding randomness after the non-uniform computation.

2. Non-completeness. To achieve dth-order non-completeness, any combina-
tion of d or less component functions fi of f must be independent of at least
one input share xi. For protection against first-order DPA, 1st-order non-
completeness is required, i.e. every function must be independent of at least
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one input share. Non-completeness ensures that the side-channel security of
the final circuit is not affected by glitches.

3. Correctness. This property simply states that applying the sub-functions to
a valid shared input must always yield a valid sharing of the correct output.

In addition to TI’s algorithmic properties, the physical leakage of each share
or sub-function should be independent of all other shares or sub-functions, i.e. no
coupling is present between the shares or sub-functions. Violating this assump-
tion has shown to induce leakage in masked implementations [13].

3 Several SCA Secure Implementations
of the Boyar-Peralta AES S-Box

In this section we present several different threshold implementations of the
Boyar-Peralta AES S-Box. Applying TI to linear functions is straightforward
due to the linearity of the XOR and XNOR operations. Masking the nonlinear
functions on the other hand is known to pose more of a challenge. As mentioned
in the previous section the only nonlinear functions in the Boyar-Peralta AES S-
Box are the AND gates. In order to apply TI to these AND gates we need to make
sure the resulting sharings are non-complete and correct, and that their outputs
are uniform. In our first approach, we therefore consider the uniform sharing
of an AND gate and formulate several 1st-order non-complete TI sharings for
this S-box. We additionally investigate a second approach: instead of masking
each AND gate individually, we combine several AND gates to form an inversion
in GF(24). In both cases, to avoid first-order leakages from glitches and early
propagation of signals, each masked nonlinear function must be followed by a
set of registers.

The middle layer is the nonlinear layer in the Boyar-Peralta AES S-Box. The
top and the bottom layer are composed of linear functions only. When we mask
each gate individually, the outputs of every AND gate in the middle layer must
be registered before the next operation starts. Hence, we divide the middle layer
into stages such that at each stage, the outputs produced by the AND gates are
put into registers before proceeding for the operation in the next stage.

On inspection of the set of equations, we divide the circuit into 4 stages where
each stage ends with a set of AND operations. Note that there may be other
ways to divide the nonlinear layer into stages. The top linear layer was combined
with the first stage of the nonlinear layer and the outputs of the AND gates from
the 4th and final stage of the middle nonlinear layer are fed into the bottom layer
directly, which causes no problem since this layer is linear. Therefore, we divide
our circuit into 4 stages with a set of registers after the first three stages. A
total of 4 clock cycles are required to complete the computation of the S-Box.
The entire circuit of the nonlinear middle layer is shown in Fig. 1. The set of
equations after division into stages are given below.
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Fig. 1. Division of the nonlinear layer into stages.

Stage 1

t1 = u0 ⊕ u3

t2 = u0 ⊕ u5

t3 = u0 ⊕ u6

t4 = u3 ⊕ u5

t5 = u4 ⊕ u6

t6 = t1 ⊕ t5
t7 = u1 ⊕ u2

t8 = u7 ⊕ t6
t9 = u7 ⊕ t7
t10 = t6 ⊕ t7
t11 = u1 ⊕ u5

t12 = u2 ⊕ u5

t13 = t3 ⊕ t4
t14 = t6 ⊕ t11
t15 = t5 ⊕ t11
t16 = t5 ⊕ t12
t17 = t9 ⊕ t16
t18 = u3 ⊕ u7

t19 = t7 ⊕ t18
t20 = t1 ⊕ t19
t21 = u6 ⊕ u7

t22 = t7 ⊕ t21
t23 = t2 ⊕ t22
t24 = t2 ⊕ t10

t25 = t20 ⊕ t17
t26 = t3 ⊕ t16
t27 = t1 ⊕ t12
m1 = t13 × t6
m2 = t23 × t8
m4 = t19 × u7

m6 = t3 × t16
m7 = t22 × t9
m9 = t20 × t17
m11 = t1 × t15
m12 = t4 × t27
m14 = t2 × t10

Stage 2

m3 = t14 ⊕ m1

m5 = m4 ⊕ m1

m8 = t26 ⊕ m6

m10 = m9 ⊕ m6

m13 = m12 ⊕ m11

m15 = m14 ⊕ m11

m16 = m3 ⊕ m2

m17 = m5 ⊕ t24
m18 = m8 ⊕ m7

m19 = m10 ⊕ m15

m20 = m16 ⊕ m13

m21 = m17 ⊕ m15

m22 = m18 ⊕ m13

m23 = m19 ⊕ t25

m24 = m22 ⊕ m23

m25 = m22 × m20

m27 = m20 ⊕ m21

m31 = m20 × m23

m34 = m21 × m22
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Stage 3

m26 = m21 ⊕ m25

m28 = m23 ⊕ m25

m29 = m28 × m27

m30 = m26 × m24

m32 = m27 × m31

m33 = m27 ⊕ m25

m35 = m24 × m34

m36 = m24 ⊕ m25

Stage 4

m37 = m21 ⊕ m29

m38 = m32 ⊕ m33

m39 = m23 ⊕ m30

m40 = m35 ⊕ m36

m41 = m38 ⊕ m40

m42 = m37 ⊕ m39

m43 = m37 ⊕ m38

m44 = m39 ⊕ m40

m45 = m42 ⊕ m41

m46 = m44 × t6
m47 = m40 × t8
m48 = m39 × u7

m49 = m43 × t16
m50 = m38 × t9
m51 = m37 × t17
m52 = m42 × t15
m53 = m45 × t27
m54 = m41 × t10
m55 = m44 × t13
m56 = m40 × t23
m57 = m39 × t19
m58 = m43 × t3

m59 = m38 × t22
m60 = m37 × t20
m61 = m42 × t1
m62 = m45 × t4
m63 = m41 × t2
l0 = m61 ⊕ m62

l1 = m50 ⊕ m56

l2 = m46 ⊕ m48

l3 = m47 ⊕ m55

l4 = m54 ⊕ m58

l5 = m49 ⊕ m61

l6 = m62 ⊕ l5
l7 = m46 ⊕ l3
l8 = m51 ⊕ m59

l9 = m52 ⊕ m53

l10 = m53 ⊕ l4
l11 = m60 ⊕ l2
l12 = m48 ⊕ m51

l13 = m50 ⊕ l0
l14 = m52 ⊕ m61

l15 = m55 ⊕ l1
l16 = m56 ⊕ l0

l17 = m57 ⊕ l1
l18 = m58 ⊕ l8
l19 = m63 ⊕ l4
l20 = l0 ⊕ l1
l21 = l1 ⊕ l7
l22 = l3 ⊕ l12
l23 = l18 ⊕ l2
l24 = l15 ⊕ l9
l25 = l6 ⊕ l10
l26 = l7 ⊕ l9
l27 = l8 ⊕ l10
l28 = l11 ⊕ l14
l29 = l11 ⊕ l17
s0 = l6 ⊕ l24
s1 = l16 ⊕ l26
s2 = l19 ⊕ l28
s3 = l6 ⊕ l21
s4 = l20 ⊕ l22
s5 = l25 ⊕ l29
s6 = l13 ⊕ l27
s7 = l6 ⊕ l23

For the second approach, where we mask the circuit using the inversion
in GF(24) instead of masking each individual AND gate. m20m21m22m23 are
inputs to the GF(24) inverter and m36m32m39m28 being the output where m20

and m36 are the most significant bits of the input and output respectively.
m20,m21,m22,m23 become available in Stage 2. The part of the circuit in Stage
2 to obtain m20,m21,m22,m23 is linear. Hence we can put the inverter right
after m20,m21,m22,m23 become available without using a register. The outputs
of the inverter m36,m32,m39,m28 were the outputs of Stage 3. Therefore, we
combine Stage 2 and 3 to isolate the inverter. The modified set of equations are
given below:
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Stage 1

t1 = u0 ⊕ u3

t2 = u0 ⊕ u5

t3 = u0 ⊕ u6

t4 = u3 ⊕ u5

t13 = t3 ⊕ t4
t5 = u4 ⊕ t13
t6 = t5 ⊕ u5

t7 = u1 ⊕ u2

t8 = u7 ⊕ t6
t9 = u7 ⊕ t7
t10 = t6 ⊕ t7
t14 = t5 ⊕ u1

t15 = t14 ⊕ t1

t16 = t7 ⊕ t15
t17 = t9 ⊕ t16
t19 = t9 ⊕ u3

t20 = t1 ⊕ t19
t22 = t9 ⊕ u6

t23 = t2 ⊕ t22
t24 = t2 ⊕ t10
t25 = t20 ⊕ t17
t26 = t3 ⊕ t16
t27 = t10 ⊕ t15
m1 = t13 × t6
m2 = t23 × t8
m3 = m2 ⊕ m1

m4 = t19 × u7

m5 = m4 ⊕ m1

m6 = t3 × t16
m7 = t22 × t9
m8 = m7 ⊕ m6

m9 = t20 × t17
m10 = m9 ⊕ m6

m11 = t1 × t15
m12 = t4 × t27
m13 = m12 ⊕ m11

m14 = t2 × t10

Stage 2

m15 = m14 ⊕ m11

m16 = m3 ⊕ m13

m17 = m5 ⊕ m15

m18 = m8 ⊕ m13

m19 = m10 ⊕ m15

m20 = m16 ⊕ t14

m21 = m17 ⊕ t24
m22 = m18 ⊕ t26
m23 = m19 ⊕ t25

m20m21m22m23 are inputs to the GF(24) inverter and m36m32m39m28 being
the output where m20 and m36 are the most significant bits of the input and
output respectively.

Stage 3

m40 = m39 ⊕ m36

m41 = m28 ⊕ m32

m42 = m28 ⊕ m39

m43 = m32 ⊕ m36

m44 = m40 ⊕ m41

z0 = m43 × t6
z1 = m36 × t8
z2 = m32 × u7

z3 = m42 × t16
z4 = m39 × t9
z5 = m28 × t17
z6 = m41 × t15
z7 = m44 × t27
z8 = m40 × t10
z9 = m43 × t13
z10 = m36 × t23
z11 = m32 × t19

z12 = m42 × t3
z13 = m39 × t22
z14 = m28 × t20
z15 = m41 × t1
z16 = m44 × t4
z17 = m40 × t2
l1 = z15 ⊕ z16
l2 = z10 ⊕ l1
l3 = z9 ⊕ l2
l4 = z0 ⊕ z2
l5 = z1 ⊕ z0
l6 = z3 ⊕ z4
l7 = z12 ⊕ l4
l8 = z7 ⊕ l6
l9 = z8 ⊕ l7
l10 = l8 ⊕ l9
l11 = l6 ⊕ l5

l12 = z3 ⊕ z5
l13 = z13 ⊕ l1
l14 = l4 ⊕ l12
s3 = l3 ⊕ l11
l16 = z6 ⊕ l8
l17 = z14 ⊕ l10
l18 = l13 ⊕ l14
s7 = z12 ⊕ l18
l20 = z15 ⊕ l16
l21 = l2 ⊕ z11
s0 = l3 ⊕ l16
s6 = l10 ⊕ l18
s4 = l14 ⊕ s3
s1 = s3 ⊕ l16
l26 = l17 ⊕ l20
s2 = l26 ⊕ z17
s5 = l21 ⊕ l17
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The circuit of the middle nonlinear layer using an inverter is shown in Fig. 2.

Fig. 2. Division of the nonlinear layer into stages when centered around the inversion
in GF(24).

Using these two different approaches for division into stages of the circuit,
we design the following secure implementations of the Boyar-Peralta S-Box:

1. Threshold implementation with 4 shares and no randomness in Sect. 3.1
2. Threshold implementation with 3 shares and 68 bits randomness in Sect. 3.2
3. Threshold implementation with 3 shares and 34 bits of randomness in Sect. 3.3
4. Threshold Implementation using 3 shares and using sharing with sin = 5 and

sout = 5 for a GF(24) inverter in Sect. 3.4
5. Threshold Implementation using 3 shares and using sharing with sin = 4 and

sout = 4 for a GF(24) inverter in Sect. 3.5

3.1 Threshold Implementation with 4 Shares and No Randomness

As previously mentioned, the sharing for the linear operations is trivial. For the
nonlinear AND gate we first use the following uniform 4-to-4 sharing. This is a
novel modification of a 4-to-3 uniform sharing of the AND gate used in [5].
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a = x × y

x = (x1, x2, x3, x4)
y = (y1, y2, y3, y4)
a = (a1, a2, a3, a4)
a1 = (x2 ⊕ x3 ⊕ x4) × (y2 ⊕ y3) ⊕ y3

a2 = ((x1 ⊕ x3) × (y1 ⊕ y4)) ⊕ (x1 × y3) ⊕ x4

a3 = (x2 ⊕ x4) × (y1 ⊕ y4) ⊕ x4 ⊕ y4

a4 = (x1 × y2) ⊕ y3

The complete computation of the S-Box will take 4 clock cycles and will not
consume any randomness.

3.2 Threshold Implementation with 3 Shares and 68 Bits
Randomness

Having designed a threshold implementation for the Boyar-Peralta AES S-Box
which uses no randomness, we now aim to reduce the size of our circuit. This
can be achieved by reducing the number of shares.

There is however no 3-to-3 uniform sharing for a 2-input AND gate. To keep
the uniformity of sharing property intact, we introduce some randomness to
remask the shares as shown in [26]. We use the following 3-to-3 sharing of the 2
input AND gate. r1, r2 are the 2 bits of randomness.

a = x × y

x = (x1, x2, x3)
y = (y1, y2, y3)
a = (a1, a2, a3)
a1 = (x2 × y2) ⊕ (x2 × y3) ⊕ (x3 × y2) ⊕ r1 ⊕ r2

a2 = (x3 × y3) ⊕ (x1 × y3) ⊕ (x3 × y1) ⊕ r2

a3 = (x1 × y1) ⊕ (x1 × y2) ⊕ (x2 × y1) ⊕ r1

One masked AND gate consumes 2-bits of randomness. The whole S-Box circuit
requires 2 × 34 = 68 bits of randomness in total. The complete computation of
the S-Box will take 4 clock cycles.

3.3 Threshold Implementation with 3 Shares and 34 Bits
Randomness

We now reduce the amount of randomness required in our circuit by using the
technique of virtual sharing as used in [7]. This sharing uses 1 bit of randomness
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per 2-input AND gate. The following is the resulting 3-to-3 sharing of the 2-input
AND gate using 1 bit of randomness. r denotes a bit of randomness.

a = x × y

x = (x1, x2, x3)
y = (y1, y2, y3)
a = (a1, a2, a3)
a1 = (x2 × y2) ⊕ (x2 × y3) ⊕ (x3 × y2) ⊕ r

a2 = (x3 × y3) ⊕ (x1 × y3) ⊕ (x3 × y1) ⊕ (x1 × r) ⊕ (y1 × r)
a3 = (x1 × y1) ⊕ (x1 × y2) ⊕ (x2 × y1) ⊕ (x1 × r) ⊕ (y1 × r) ⊕ r

This S-Box circuit requires 34 bits of randomness. The complete computation of
the S-Box will again take 4 clock cycles.

3.4 Threshold Implementation Using 3 Shares and Using Sharing
with sin = 5 and sout = 5 for a GF(24) Inverter

As stated earlier, we can isolate an inverter in GF(24) within the Boyar-Peralta
S-Box. As shown in [5] we can use a 5-to-5 uniform sharing for this GF(24)
inverter. We use 3 shares for the linear and nonlinear gates that fall outside the
inverter. In order to increase the number of shares from 3 to 5 at the input of
the inverter we use 4 extra bits of randomness. To reduce the number of shares
at the output from 5 to 3 we use 2 bits of randomness to combine the output
shares just after the register. As mentioned in [2] uniformity is necessary only
for the input of nonlinear functions. The part of the circuit before the inverter
in Stage 2 is linear. In order increase in the number of shares before input to
the inverter, the shares are remasked using randomness. Therefore before input
to the nonlinear part of Stage 2, the inverter, the shares are uniform due to
remasking. Hence inputs to stage 2 i.e. outputs of Stage 1 need not be uniform.
Also all the outputs of the AND operations in stage 3 are inputs linear functions,
hence they need not be uniform. This version has 27 2-input AND gates. All of
them are in stages 1 and 3. Since the outputs of Stages 1 and 3 need not be
uniform, none of the AND gates need to be uniform. So, we may use any non-
complete and correct 3 sharing without using randomness for these AND gates.
The total amount of randomness required is 4 × 4 × 4 + 2 × 4 = 24 bits.

3.5 Threshold Implementation Using 3 Shares and Using Sharing
with sin = 4 and sout = 4 for a GF(24) inverter

Similar to the previous implementation, we again use the threshold implementa-
tion of the GF(24) inverter. There is 4-to-4 sharing of the GF(24) inverter which
is not uniform. We observe that for decreasing the output shares from 4 to 3,
we add randomness to the outputs, which essentially remasks the outputs and
provides uniformity.
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The circuit differs from the previous one only in the aspects that the shares
are increased from 3 to 4 and decreased from 4 to 3, and that the sharing for
the inverter itself is different. It takes the same number of clock cycles as the
previous one, i.e. 3, but requires 3 bits of randomness for increasing the number
of shares from 3 to 4 and then 2 bits of randomness for reducing the shares back
from 4 to 3. The argument to not use a uniform sharing of AND gates used in the
previous implementation is applicable here too. Hence a total of 3×4+2×4 = 20
bits of randomness is required.

4 Side-Channel Analysis Evaluation

First, we describe the circuit that we used for the sequential evaluation of the
S-Boxes. All the S-Boxes have separate input ports for the input shares and
the randomness, and separate output ports for the output shares. Each S-Box
has an enable signal and a reset signal as input. The execution of the S-Box
begins when the enable signal is set to high. The values at the ports having the
input shares and randomness for the corresponding S-Box, at the time enable
goes high, are the ones used as the input to the S-Box. The reset signal is used
to reset the S-Box to a known state. Each S-Box has an output done signal
which goes high after the execution of the S-Box is complete and the outputs at
the corresponding ports of output shares are the results of the execution of the
S-Box.

There is an outer wrapper encapsulating the 5 S-Boxes. The wrapper has
a control module. The control module of the wrapper has an enable as input
signal and a complete signal as an output signal. The enable signal is needed
to start the sequence of S-Boxes. The start signal of the first S-Box is set to
high on the positive edge of clock following the enable signal going high. When
the done signal of the S-Box goes high, the control waits for a few clock cycles
before setting the start signal of the next S-Box high. After the done signal of
the last S-Box goes high, the complete signal of the wrapper is set to high. The

Fig. 3. Structure of circuit for sequential evaluation of the S-Boxes
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wrapper has a reset signal as an input which is sent as the reset signal of the
S-Boxes when set to high resets all S-Boxes to known states. Figure 3 shows the
structure of the wrapper.

The design was implemented on a SASEBO-G measurement board using
Xilinx ISE 10.1 in order to analyze their leakage characteristics.

The SASEGO-G board has two Xilinx Virtex-II Pro FPGA devices. Our
design, was implemented on the crypto FPGA(xc2vp7). In order to prevent
optimizations over module boundaries, the “Keep Hierarchy” constraint was
kept on while generating the programming file. The control FPGA (xc2vp30)
is responsible for the I/O with the measurement PC and generation of random
bits. The PRNG which the control FPGA uses to generate the input sharings
and random masks for the S-boxes is an AES-128 in OFB mode.

We evaluate the security of our first order secure implementations of the
Boyar Peralta AES S-Boxes. We use leakage detection tests [1,11,12,17,24] to
test for any power leakage of our masked implementations. The fix class of the
leakage detection is chosen as the zero plaintext in all our evaluations.

We follow the standard practice when testing a masked design i.e. first turn
off the PRNG to switch off the masking countermeasure. The design is expected
to show leakage in this setting, and this serves to confirm that the experimental
setup is sound (we can detect leakage). We then proceed by turning on the
PRNG. If we do not detect leakage in this setting, the masking countermeasure
is deemed to be effective. Figures 4, 5, 6, 7 and 8 show the result of the first
order leakage detection tests on the S-Boxes.

Fig. 4. First Order leakage detection test for the S-Box with 4 shares.

Fig. 5. First Order leakage detection test for the S-Box with 3 shares, 68 bits of ran-
domness
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Fig. 6. First Order leakage detection test for the S-Box with 3 shares, 34 bits of ran-
domness

Fig. 7. First Order leakage detection test for the S-Box with 3 shares and using sharing
with sin = 5 and sout = 5 for a GF(24) inverter

Fig. 8. First Order leakage detection test for the S-Box with 3 shares and using sharing
with sin = 4 and sout = 4 for a GF(24) inverter

5 Implementation Cost

Here we give a comparison of the area, the required randomness and the number
of clock cycles for our implementations. The results of area have been obtained
using Synopsys 2013.12 and NanGate 45 nm Open Cell Library.

In Table 1, we observe a trade-off between randomness, area and clock cycles.
As we reduce the area, the randomness per S-box lookup increases or the number
of clock cycles required increase. In our implementation with smallest area, where
we share a large algebraic function, the GF(24) inverter as a whole, both the
number of clock cycles and the area are reduced.

In Table 2 we compare our implementation with smallest area to some masked
implementations based on Canright S-Box.



Several SCA Secure Implementations of the Boyar-Peralta AES S-Box 399

Table 1. Area, Randomness and Clock cycles required per S-box implementation.

Area [GEs] Randomness [bits] Clock cycles

Unprotected 269 0 1

sin = 4, sout = 4 4609 0 4

sin = 3, sout = 3, 68 random bits,
individual AND gates masked

3630 68 4

sin = 3, sout = 3, 34 random bits,
individual AND gates masked

3798 34 4

sin = 3, sout = 3, inverter masked
with sin = 5, sout = 5

3344 24 3

sin = 3, sout = 3, inverter masked
with sin = 4, sout = 4

2913 20 3

Table 2. Area, Randomness and Clock Cycles required per S-box for related Imple-
mentations.

Area [GEs] Randomness [bits] Clock cycles

sin = 3, sout = 3, inverter masked
with sin = 4, sout = 4, Boyar Peralta

2914 20 3

sin = 3, sout = 3, Canright S-Box
in [5]

3708 44 3

sin = 3, sout = 3, Canright S-Box
in [26]

4244 48 4

sin = 3, sout = 3, Canright S-Box
in [6]

2835 32 3

sin = 2, sout = 2, Canright S-Box
in [15]

1977 54 6

We can summarize the comparison of our implementations with related
implementations as follows:

– We achieve an implementation that consumes no randomness.
– Two of our implementations, which use the sharing for inversion in GF(24),

take 3 clock cycles, which is faster than implementations in [15,26]
– Our implementation that uses the 4-sharing of an inverter needs the same

number of clock cycles as the smallest one in [6], while consuming less ran-
domness for an increase in area of only 2.75%.

– The S-Box in [15] is the smallest known TI of the AES S-Box. Our imple-
mentation is 47% larger in comparison but we obtain a 63% reduction in
randomness of and 50% reduction in number of clock cycles required.
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6 Conclusion

In this paper, we present the first threshold implementations of the Boyar-Peralta
AES S-Box. Since this AES S-Box is of minimum known depth, the critical path
might be smaller which would allow clocking the core at higher frequencies mak-
ing it highly important for secure high-speed and high-throughput applications.
We go through an iterated design process, starting from a straightforward app-
roach where we mask each gate individually to arrive at a more efficient imple-
mentation by masking the larger algebraic structure of the inversion in GF(24).

Our smallest implementation is 49% larger in area compared to the smallest
known threshold implementation of the Canright AES S-box but reduces the
randomness by 63% and number of clock cycles by 50%. Moreover, we achieve
a secure implementation of the AES S-Box that requires no randomness at all.
The set of secure implementations we present gives the hardware designer more
options for tailoring their implementations according to their specifications.

A future direction of research can investigate the result of starting from a
masked Canright AES S-Box and using the optimizations mentioned in [8] to
arrive at a small and secure implementation of the Boyar-Peralta S-Box. Masking
the Boyar Peralta S-Box with d+1 shares as shown in [30] is a possible direction
for future work. Another future work would be designing circuits for this S-Box
with higher-order security levels, as a determined adversary can still break the
first-order masking scheme with a second order attack.
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