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Abstract. Gloop is a tile-based combinatorial puzzle game with a
strong topological basis, in which the player is assigned a number of chal-
lenges to complete with a particular set of tiles. This paper describes the
computer-based analysis of a number of representative Gloop challenges,
including the computer-assisted solution of a difficult problem that had
stood for over a decade.

1 Introduction

Gloop is a tile-based combinatorial puzzle game by renowned Dutch game
designer Fred Horn. It is based on the simple mathematical premise shown in
Fig. 1: given a square tile with two equidistant vertices along each side (left),
in how many topologically distinct ways can non-intersecting paths be drawn to
connect different vertices? Figure 1 (right) shows one such possible tile.

Fig. 1. Square tile with two vertices per side and non-intersecting paths between them.

The Gloop tile set consists of the complete set of distinct tiles that satisfy this
premise, and the Gloop game consists of a number of solitaire puzzle challenges
that the player can attempt to solve using this tile set. This paper examines
four representative Gloop challenges, from the simplest to the most difficult,
and demonstrates how computer analysis can provide a deeper understanding of
such problems and yield key insights into them. It outlines one particular insight
that led to the answer of a combinatorial challenge that had stood for over a
decade.

Gloop was devised by Fred Horn for the Convention of Puzzlers held in The
Hague, Holland, in 1995, where it was distributed on leaflets as “Puzzle 95”
along with Challenges I, II and III listed below. The puzzle was not officially
published until Dutch journal Natuur & Techniek presented it as their “Grote
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Zomerpuzzel” (‘Big Puzzle for the Summer’) in 2003 [1,2] along with additional
challenges from Horn including Challenge IV below.

Horn introduced me to the puzzle at the 2016 Computer and Games con-
ference in Leiden. It has since been published as a physical set [3], for which it
was renamed from “Puzzle 95” to “Gloop” (for “Get LOnger Or Perish” and
the organic-looking shapes it produces). Further challenges were added for its
release, and a domino-like two-player strategy game played with the tiles devised
by Horn to supplement the solitaire puzzle challenges. This paper will focus on
the solitaire puzzle version of the game.

2 Challenge I: Number of Tiles

The first challenge proposed by Horn in 1995 was:

How many distinct tiles are there?

There are T = 91 distinct Gloop tiles, as shown in Fig. 2, including reflections
but not rotations. This number includes the blank tile with 0 paths (upper left).
This set was enumerated manually by Horn at the time and has been verified
by computer enumeration.

Fig. 2. The complete set of 91 Gloop tiles.

Note that if symmetry is ignored, then the total number of tiles is 323. This
is the Motzkin number M8, which indicates the number of different ways that
non-intersecting chords can be drawn between 8 points on a circle [4]. However,
we are only interested here in the unique set of T = 91 distinct tiles excluding
rotations.
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3 Challenge II: Valid Packings in a Rectangle

The second challenge proposed by Horn in 1995 was:

How to pack the tiles in a rectangle such that neighboring tile edges match?

Definition 1. A packing of Gloop tiles is valid if adjacent tiles align exactly in
a square grid, and every path segment end meets a neighbouring path segment
end such that the final packing forms a set of closed contours.

The dimensions of the target rectangle can be easily determined. There are
two rectangles that fully pack T = 91 square tiles: 1 × 91 and 7 × 13. A 1 × 91
rectangle will obviously not allow a valid packing, since tiles with path ends on
more than two sides would necessarily leave open contours, hence valid packings
can only fill a 7 × 13 rectangle.

3.1 Complexity

Gloop belongs to the same class of unsigned edge-matching puzzles as the noto-
riously difficult Eternity II puzzle, which Demaine and Demaine have shown to
be NP-hard [5]. Eternity II remains unsolved today, except by its inventor.

Ansótegui et al. distinguish between a generic edge-matching puzzle (GEMP)
and a framed generic edge-matching puzzle (GEMP-F) [6]. Gloop is a GEMP but
not a GEMP-F; while there is an outer frame formed by the boundary of the
packing region which must contain edge tiles (i.e., tiles with at least one blank
side), these can also be validly placed at interior cells in Gloop, which violates
the frame condition. Ansótegui et al. further distinguish between one-set and
two-set GEMPs, depending on whether the tile set can be separated into two
subsets: those with edge colors specific to the frame set and those with edge
colors specific to the interior set. Gloop is a one-set GEMP.

Denoting the absence or presence of path ends along a tile side as 0 and 1,
respectively, then each tile side must show one of the following four patterns: {00,
01, 10, 11}. These are the ‘colors’ on the tile sides that must match neighboring
colors. This low color count means that for any given exposed tile edge there will
typically be many potential matching neighbors. This makes the task of finding
a valid Gloop packing orders of magnitude easier than solving Eternity II, which
involves many more tiles (T = 256 as opposed to T = 91) and many more edge
colors (19 as opposed to 4).

Valid Gloop packings should therefore be relatively easy to find, and the
solution shown in Fig. 3 was indeed soon submitted by Dutch puzzlist J.A.M.
Mes in response to the 2003 publication of [1]. Note, however, that this solution
was produced by a computer program and that no valid packing by hand has
yet been recorded.
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Fig. 3. A valid 7 × 13 packing by Mes [2].

3.2 Approach

To investigate the ease with which valid packings can be found, depth-first search
(DFS) – the simplest form of combinatorial search – was implemented over var-
ious grid sizes C = 4, 5, . . . , 91. Starting with an empty grid, each cell was filled
with a valid tile placement in a random order, backtracking as necessary. For
grid sizes with less than C = 91 cells, the most square n× n or n× (n− 1) grid
containing the required number of cells was chosen, even if it meant having one
ragged or incomplete side. This choice of dimensions was made to minimize the
number of exterior and corner tiles in each case, which were observed to be a
limiting factor in achieving packings.

However, while DFS has the benefit of enumerating all possible solutions
with the option of exiting early on the first solution found, it is highly sensitive
to processing order [7]. DFS was found to produce valid packings either very
quickly for a given placement order (within milliseconds), or very slowly once
dead-end branches of the solution space had to be explored. It is quicker in the
long run to halt such dead-end searches and try for a more amenable placement
order.

For this reason, an improved depth-first search with random restarts (DFS-
RR) was implemented. This involves performing DFS from the empty state, then
shuffling the tile placement order and restarting if a solution is not found before
a specified time limit is reached, until a solution is found.

The search was further optimized by heuristics including:

– Pre-ordering cell fill order from most constrained to least constrained cell.
– Backtracking if any unfilled cell has no possible tile placements, i.e., not just

the next cell in the fill order.
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– Backtracking if any unfilled region has an odd number of path ends opening
onto it.

3.3 Results

DFS-RR was applied to all grid sizes C = 4, 5, . . . , 91 with a default timeout of
0.1s, which proved most effective over most cases. Figure 4 shows solution times
in seconds using DFS-RR with a timeout of 0.1s, averaged over 100 packings per
grid size for Challenges II, III and IV. All timings were made on a single thread
of standard laptop machine with a 2 GHz i7 processor.
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Fig. 4. Average solution times using DFS-RR (0.1 s) for the various challenges.

Valid packings are found very quickly using DFS-RR, in typically less than
1 s for grid sizes up to C = 82, to around 20 s for complete T = 91 packings on
the full 7×13 rectangle. This challenge is very amenable to automated solution.

Note that timings decrease slightly at certain grid sizes against the general
upwards trend: 49, 56, 64, 72, 81 and 90. These are the grid sizes that completely
fill an n × n square or n × (n − 1) rectangle without a ragged edge, indicating
that grids with simpler boundaries are easier to pack.

4 Challenge III: Mixed Packings in a Rectangle

The third challenge proposed by Horn in 1995 was:

How to pack the tiles in a rectangle to form a single contour plus circles?
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Definition 2. A closed circular contour formed by two semi-circular path seg-
ments is described as trivial and all other closed contours as non-trivial.

Definition 3. A mixed packing of Gloop tiles is a valid packing formed by
exactly one non-trivial contour and any number of trivial contours.

For example, Fig. 5 shows a mixed solution consisting of one large non-trivial
contour and six trivial circle contours, generated using DFS-RR with an addi-
tional heuristic:

– Backtracking if more than one non-trivial contour is closed.

Fig. 5. Mixed solution with one non-trivial contour and six trivial (circular) contours.

This task proved almost as amenable to solution by DFS-RR as finding valid
packings, as shown in the timings in Fig. 4. It can be seen that there is very
little difference between the average time taken to find valid packings and mixed
packings. The example shown in Fig. 5, with six trivial contours, has the lowest
contour count of any mixed packing found so far.

5 Challenge IV: Perfect Packings in a Rectangle

An additional challenge was proposed by Horn in 2003 [1]:

How to pack the tiles in a rectangle to form a single closed contour?
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Definition 4. A packing of Gloop tiles is perfect if it is valid and consists of
a single closed contour (which must necessarily be non-trivial).

Finding perfect packings is the most difficult Gloop challenge, as tiles must
not only satisfy the local constraint of matching their immediate neighbors, but
must also now satisfy the global constraint that all path segments of all tiles
eventually join to form part of the same contour. This global constraint elevates
the puzzle from something simple to something much more difficult – impossible,
as it turns out – and the question of perfect Gloop packings had remained an
open one until this study.

5.1 Approach

DFS-RR was enhanced with the following heuristic:

– Eliminate placements that would create a trivial contour.

This enhancement was motivated by the fact that no perfect packing can ever
contain a trivial contour, as that would constitute at least a second contour. The
test for trivial placements is efficient to implement, and involves simply checking
whether any given placement would make two tile sides with semi-circular path
segments meet.

Additional search algorithms were implemented for this more difficult task:

– A*: A* is a best-first search of neighbors in the state space, ordered in a
priority queue by a cost function and a domain-specific heuristic function [7].
The heuristic function here was based on the number of potential future
placements that each placement allowed.

– Monte Carlo Tree Search (MCTS): Standard UCT [8] was implemented, with
each playout consisting of a series of random valid placements in the pre-
defined cell order until no more such placements could be made, and returning
as reward value the ratio of filled cells to total grid size. A default UCB
exploration constant of 0.25 was used. The Single-player Monte Carlo Tree
Search (SP-MCTS) variant [9], which proved effective for other solitaire puzzle
domains, did not provide any benefit over standard UCT in this case.

– Iterated local search (ILS): ILS is a simple metaheuristic for tackling problems
of high complexity by iteratively generating random states then perturbing
them and hill-climbing to superior neighbors in the state space [10].

The ILS search implemented here exploits the fact that one valid packing
can be transformed into another by swapping tiles with identical path end dis-
tributions. For example, Fig. 6 shows a sequence of tile swaps that reduces the
contour count of a valid packing with each iteration to produce a perfect packing.
The cells highlighted at each step show which tiles are swapped, and the con-
tour highlighted is the one being merged with neighboring contours. Toulis [11]
describes a similar tile swapping mechanism as a means of hill-climbing for the
Eternity II puzzle.
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Fig. 6. A sequence of compatible tile swaps from a valid to a mixed to a perfect packing.

5.2 Results

The timings shown in Fig. 4 reveal that perfect packings are found almost as
quickly as valid and mixed packings for smaller grid sizes using DFS-RR (0.1 s),
but show a sudden exponential increase in solution time from around C = 72.
No perfect packings were found beyond C = 87.

A* and MCTS were then applied to find perfect packings but performed so
badly that their results are not worth reporting. This is probably due to the
additional overhead required to perform these searches outweighing any benefit.
ILS was found to significantly reduce search time for the C = 87 case, as shown
in Table 1, but again could not find any perfect packings beyond C = 87. Timings
are averaged over 100 attempts.

Table 1. Solution times for larger perfect packings (in seconds).

C Mean Min Max

DFS-RR (0.1s) 83 21.89 ± 8.90 0.17 108.11

84 312.16 ± 91.83 1.37 946.33

85 387.44 ± 108.24 10.93 1293.13

86 1751.53 ± 544.42 41.38 6682.91

87 11459.62 ± 3076.93 823.77 29821.78

ILS 83 251.03 ± 102.75 4.79 1279.57

84 318.44 ± 178.52 1.49 2006.11

85 616.07 ± 226.77 6.75 2325.19

86 980.19 ± 382.84 19.20 3890.20

87 4042.94 ± 1214.84 188.69 11304.94

5.3 Discussion

Valid and mixed packings proved highly amenable to a simple search, while
larger perfect packings remained unobtainable using all methods tried. So why
did perfect packings become so intractable at C = 88?
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The answer to this question came after the game’s publisher, Néstor Romeral
Andrés, suggested checking for “problem” tiles that tended to be excluded
from solutions, and it was indeed found that the tiles shown in Fig. 7 were
excluded more often from larger perfect packings than other tiles. Further, the
leftmost tile, which contains the maximum number of side-centred semicircles,
was excluded from almost every perfect packing for larger grid sizes. This insight
led to the following proof that the full T = 91 tile set does not allow a perfect
packing.

Fig. 7. Tiles typically missing from larger perfect packings.

5.4 Proof of No T = 91 Perfect Packings

This section provides a simple geometric proof that no perfect T = 91 is possible.

Definition 5. Two path segment ends that terminate at vertices on the same
tile side constitute an end pair.

There are four basic end pair types (Fig. 8).

1. A cap is a side-centered semicircle that connects the two vertices on a side.
2. An extension is a pair of parallel path segments that connect the two vertices

of a side to the two vertices of another side.
3. A split is a pair of path segments that connect the two vertices of a side to a

vertex on each of two different sides.
4. A junction occurs when three (or four) end pairs create a common region

defined by their three (or four) path segments.

Cap Extension Split Junction

Fig. 8. Examples of the four basic end pair types.

More than one end pair type can co-exist on the same tile. The full set of
T = 91 tiles, shown in Fig. 2, contains 58 caps, 13 extensions, 44 splits, 2 triple
junctions and 1 quadruple junction.
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Caps and Anticaps. Caps exist in a state of atari,1 as they are one placement
away from forming trivial closed contours. For example, Fig. 9 (a) shows a cap
being closed by another cap, which can only occur if at least one of the tiles
involved contains at least one other path segment, as shown (since no tile can
be duplicated). Figure 9 (b) shows that extending a cap does not affect its state
of atari; the contour it creates is still under threat of immediate closure.

a b c d

Fig. 9. The effect of each end pair type on caps.

Fortunately, splits defuse caps by deviating the open end pair to path ends
on different tile sides (c), to remove the immediate threat of closure. Similarly,
junctions inflate a cap’s open end pair to two or more open end pairs that can
not both be closed by a single tile placement (d). Splits and junctions therefore
represent anticaps that negate a cap’s immediate threat of closure.

There are a total of 48 anticaps in the T = 91 tile set, shown in Fig. 2, made
up of 44 splits and 4 anticaps provided by the three junction tiles. This leads to
a simple proof that the full T = 91 tile set does not allow a perfect packing.

Lemma 1: No perfect packing can contain any cap pairs.

Proof: At least one of the tiles containing the semi-circular path segments of
the cap pair (or extended cap pair) must contain at least one other path segment,
which will create at least one other contour in addition to the cap pair.

Lemma 2: Every cap in a perfect packing must have a corresponding anticap.

Proof: Every contour in a valid packing must be closed. However, any cap closed
by another cap, either directly or through extension, would violate Lemma1 and
disallow a perfect packing. Every cap in a perfect packing must therefore have
a corresponding anticap, to separate it from all other caps.

Theorem: The T = 91 tile set does not allow a perfect packing.

Proof: The full T = 91 tile set contains 58 caps but only 48 anticaps. There
are not enough anticaps to separate all caps, hence at least one cap pair (or
extended cap pair) must occur. This violates Lemma 2, hence the full T = 91
tile set does not allow a perfect packing. QED.
1 To borrow a term from the board game Go.
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5.5 Gloop Arithmetic

This analysis gives rise to a simple Gloop arithmetic that can be applied to any
subset of tiles that allows a valid packing, to indicate whether they potentially
also allow a perfect packing. Let c denote the number of caps, s denote the
number of splits, and j denote the total anticap value of junctions within the
subset. The cap sum (CS ) of the tile set is then given by CS = c − s − j. For
example, the cap sum of the perfect 3 × 3 packing shown in Fig. 10 is CS =
4 − 3 − 1 = 0. Extensions do not affect the cap sum so are not counted.

1

1

1

1

-1-2

-1

0
0

CS = 4 - 3 - 1 = 0

Fig. 10. This perfect 3×3 packing has a cap sum of 0.

The cap sum for any valid packing must be even, as each end pair must have
a corresponding end pair. The theoretical upper limit on cap sums for perfect
packings, CS = 2, cannot be achieved in practice (the single-cap tile would have
to be duplicated). The cap sum of a tile set must therefore be an even number
≤ 0 if it is to allow a perfect packing, which provides a simple test. For example,
the full T = 91 tile set has a cap sum of CS = 58 − 44 − 4 = 10, hence does not
allow a perfect packing. T = 87 is the largest tile subset whose cap sum can be
reduced to CS = 0 if the most cap-heavy tiles are judiciously removed, hence is
the largest subset of Gloop tiles that allows a perfect packing.

6 Conclusion

This study demonstrates a successful collaboration between human and
computer-based approaches to solving a difficult problem – the question of perfect
Gloop packings had stood for over a decade – where neither approach had suc-
ceeded in isolation. Modeling the puzzle mathematically allowed the automated
search for solutions, which revealed the unexpected C = 87 limit, which inspired
the questions leading to the manual proof of no perfect packing for the complete
tile set. This negative answer required the revision of the puzzle challenges for its
recent release [3] so that players were not set an impossible task.
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While the experimental results were initially disappointing, with valid and
mixed packings amenable to simple search and complete perfect packings not
achieved by any method tried, the resulting geometric proof of no complete per-
fect packing was satisfying to derive. The ‘no trivial contour’ heuristic described
in Sect. 5.1 forecast this proof by implementing the fact that no two caps can
ever meet in a perfect packing. This could also be considered an inspiration for
the proof, and shows that simply analyzing a problem for implementation can
yield useful insights into it. As Perlis observes: We measure our understanding
(and control) by the extent to which we can mathematize an activity [12].

An interesting question for further investigation is the following: could the
‘no complete perfect packing’ proof have been derived through purely automatic
means, e.g., as a constraint satisfaction or SAT problem?
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10. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover,
F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, vol. 57, pp. 321–
353. Kluwer Academic Publishers, Dordrecht (2003). https://doi.org/10.1007/
0-306-48056-5 11

11. Toulis, P.: The eternity puzzle. Technical report, Harvard University (2009)
12. Perlis, A.: Epigrams on programming. SIGPLAN Not. 17, 7–13 (1982)

http://nestorgames.com/#gloop_detail
http://nestorgames.com/#gloop_detail
https://doi.org/10.1007/978-3-540-87608-3_1
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/0-306-48056-5_11

	Analysis of Fred Horn's Gloop Puzzle
	1 Introduction
	2 Challenge I: Number of Tiles
	3 Challenge II: Valid Packings in a Rectangle
	3.1 Complexity
	3.2 Approach
	3.3 Results

	4 Challenge III: Mixed Packings in a Rectangle
	5 Challenge IV: Perfect Packings in a Rectangle
	5.1 Approach
	5.2 Results
	5.3 Discussion
	5.4 Proof of No T=91 Perfect Packings
	5.5 Gloop Arithmetic

	6 Conclusion
	References


