
Exploration Bonuses Based on Upper
Confidence Bounds for Sparse Reward Games

Naoki Mizukami1(B), Jun Suzuki2, Hirotaka Kameko1,
and Yoshimasa Tsuruoka1

1 Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
{mizukami,kameko,tsuruoka}@logos.t.u-tokyo.ac.jp

2 NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan
suzuki.jun@lab.ntt.co.jp

Abstract. Recent deep reinforcement learning (RL) algorithms have
achieved super-human-level performance in many Atari games. However,
a closer look at their performance reveals that the algorithms fall short
of humans in games where rewards are only obtained occasionally. One
solution to this sparse reward problem is to incorporate an explicit and
more sophisticated exploration strategy in the agent’s learning process.
In this paper, we present an effective exploration strategy that explicitly
considers the progress of training using exploration bonuses based on
Upper Confidence Bounds (UCB). Our method also includes a mecha-
nism to separate exploration bonuses from rewards, thereby avoiding the
problem of interfering with the original learning objective. We evaluate
our method on Atari 2600 games with sparse rewards, and achieve signif-
icant improvements over the vanilla asynchronous advantage actor-critic
(A3C) algorithm.

1 Introduction

Atari games are one of the most commonly used benchmark environments for
deep RL algorithms [1–3]. Bellemare et al. [1] categorized Atari games by two
properties on their difficulty levels for RL algorithms. The first property is the
ease of exploration, which categorizes games into two types: easy exploration
and hard exploration. In easy exploration games, the agent can find a high-
scoring policy using simple local exploration strategies such as ε-greedy. Hard
exploration games are further categorized based on the density of the rewards.
Recent deep RL algorithms have achieved human-level performance in games
with dense rewards.

However, hard exploration games with sparse rewards remain difficult for the
current deep RL algorithms. In such games, the agent rarely reaches a rewarding
state if it uses purely random exploration strategies that are employed in many
current deep RL algorithms. One potential solution to this problem is to use a
more sophisticated exploration strategy that forces the agent to select actions
that would lead to novel or unknown states. The MBIE-EB algorithm [4] embod-
ies such an exploration strategy using exploration bonuses based on state visit
c© Springer International Publishing AG 2017
M. H. M. Winands et al. (Eds.): ACG 2017, LNCS 10664, pp. 165–175, 2017.
https://doi.org/10.1007/978-3-319-71649-7_14



166 N. Mizukami et al.

counts. It satisfies a PAC-like theoretical guarantee and has proven to be effective
in a simple Markov decision process (MDP) setting. However, the same approach
is not directly applicable to the Atari domain, since games have a huge pixel-
based state space, which greatly reduces the opportunities for the agent to visit
identical states more than once. Recent studies on deep RL address this problem
with such methods for state generalization as hashing or Bayesian models [1,3].

Despite such research efforts, the performance of deep RL algorithms on
sparse reward games still falls short of expert human players. At least two ele-
ments can be improved in the existing approach: (1) how to compute exploration
bonuses and (2) how to use them. Exploration bonuses in the previous work
are calculated by separately using the information on each state. However, we
argue that an agent should explore by considering the relative priority between
states regarding which should be explored first. In this paper, we present novel
exploration bonuses based on the Upper Confidence Bound (UCB) [5] algorithm,
which was originally developed for the multi-armed bandit (MAB) problem. Our
exploration bonuses are defined based on the relative priority between states
instead of actions.

We address the second issue, i.e., how to use exploration bonuses, by pre-
senting novel RL architecture in which the agent is trained with two separate
policies—one for exploration and another for exploitation—using two different
types of rewards. This step is motivated by the fact that an agent rarely receives
rewards in games with sparse rewards, and thus mixing real rewards with explo-
ration bonuses in a single policy is likely to produce suboptimal performance in
the evaluation phase due to the dominant effect from the exploration bonuses.

To evaluate our proposed methods, we implement them by extending the
Asynchronous Advantage Actor-critic (A3C) [6] algorithm, which is a represen-
tative deep RL method that has been successfully applied to Atari games and has
outperformed Deep Q-networks (DQN) [2] except in hard exploration games. We
carry out experiments using several Atari games, focusing on hard exploration
games for which the vanilla A3C struggles to compete with humans. The exper-
imental results show that our methods significantly improve the performance
of hard exploration games, and achieve state-of-the-art scores on “Private Eye”
and “Solaris”.

2 Related Work

Mnih et al. [2] proposed a method called “Deep Q-Network” (DQN) that lever-
ages deep neural networks for training the Q-function to play Atari games. One
notable DQN property is that it directly trains the Q-function only from the
actual game screens that human players basically observe without other addi-
tional information except the current scores, which we refer to “rewards” in RL
literature.

To further improve the performance and training speed of DQN, Mnih
et al. [6] proposed the A3C algorithm, which trains deep neural networks simi-
lar to DQN, but in multiple threads, and asynchronously updates the network



Exploration Bonuses Based on Upper Confidence Bounds 167

Algorithm 1. Training procedure of A3C for each actor-learner thread
// T : global shared counter that initialized by 0
// θπ, θv: global shared parameters, θ′

π, θ′
v: thread specific parameters

// tinterval ← interval for updating parameters, i.e., 5
1: Initialization: t ← 1, and st ← Initial state
2: repeat
3: dθπ ← 0, dθv ← 0, θ′

v ← θv and θ′
π ← θπ // Initializations for each iteration

4: ts ← t
5: repeat
6: Perform action at according to policy π(at|st; θ

′
π)

7: Receive reward rt and next state st+1
8: t ← t + 1
9: T ← T + 1 // synchronous addition for all threads

10: until st is terminal state or t − ts = tinterval
11: R ← 0 If st is terminal state, or R ← v(st; θ

′
v) otherwise

12: foreach i ∈ {t − 1, . . . , ts} do
13: R ← γR + ri

14: dθπ ← dθπ + dθ′
π obtained by Eq. (1) // accumulate gradients dθπ with respect to θ′

π
15: dθv ← dθv + dθ′

v obtained by Eq. (2) // accumulate gradients dθv with respect to θ′
v

16: end for
17: Update asynchronously θπ using dθπ, and θv using dθv

18: until T ≥ Tmax

parameters for faster training. One appealing property of A3C is that it explic-
itly divides the Q-function (used in DQN) into policy and value functions, and
separately updates the parameters. This separation basically leads to a richer
behavior space. However, this separation also often leads to deficient exploration.
To prevent this degradation, A3C generally incorporates an entropy regulariza-
tion term into the objective function of the training since it encourages the agent
to explore novel or unknown states during training.

Algorithm 1 summarizes the training procedure of A3C. Let R be the
weighted sum of the observed reward in a certain interval. Let π and v rep-
resent the policy and the output of the value function, respectively. Similarly, let
θ′

π and θ′
v be parameters for π and v, respectively. Moreover, H(θ′

π) denotes the
entropy term, and βa3c is a coefficient that controls the strength of the entropy
term. Then A3C updates the network based on dθ′

π and dθ′
v, which are calculated

as follows:

dθ′
π = ∇θ′

π
log(π(ai|si; θ′

π))(R − v(si; θ′
v)) + βa3c∇θ′

π
H(θ′

π), (1)

dθ′
v =

∂(R − v(si; θ′
v))2

∂θ′
v

. (2)

The recent deep RL methods developed based on Atari games utilize raw
pixels obtained directly from the game screen as states. This setting makes state
space S extremely large. For example, in a typical setting a state is represented
by a set of the game screens of four consecutive time steps. Each game screen
consists of 84 × 84 pixels with 256 grades for each pixel in general [2]. There-
fore, the naive state space becomes 25684×84×4. Consequently, the probability of
obtaining identical states more than once is very small. This is the main reason
why a naive count-based exploration method does not work well.



168 N. Mizukami et al.

Some exploration methods in deep RL literature have recently been devel-
oped. For example, Tang et al. [3] proposed a count-based exploration method
that utilizes a simple hash function. Hash function φ : S → Z maps state space
S to finite integer space Z, where Z = {1, . . . , N}. For example, let h ∈ Z be an
integer that is converted by hash function φ from state s ∈ S: h = φ(s). Let n(h)
denote the occurrence of index h obtained from hash function φ. n(h) is then
used to compute a reward bonus based on the classic count-based exploration
theory. For example, reward bonus rhash was previously defined as follows [3]:

rhash =
βhash√
n(h)

, (3)

where βhash ∈ R≥0 = {0, 1, 2, . . . } is the bonus coefficient. For every time step t,
n(ht) is increased by one if the state obtained at t is indexed by ht.

Bellemare et al. [1] proposed an exploration bonus using pseudo-counts. A
state pseudo-count, derived from a current recoding probability ρ and ρ′(s) that
new state s occurs, is defined as

ñ(s) =
ρ

ρ′(s) − ρ
, (4)

where ñ(s) is the pseudo-count of state s. Reward bonus rpsc is defined as

rpsc =
βpsc√

ñ(s) + 0.01
, (5)

where βpsc is the bonus coefficient. This method significantly improved the per-
formance of the agent especially in Montezuma’s revenge, which is one of the
hardest Atari games for the current deep RL algorithms available in Arcade
Learning Environment (ALE) [7].

To choose an action that considers the relative relationship between each
action, Lai and Robbins [5] use the total number of trials in the MAB problem.
They proposed upper confidence bounds (UCB) and an algorithm that chooses
the action that maximizes the UCB score at time t. The UCB score is defined
as

UCB = r(at) +

√
2 log(t)
n(at)

, (6)

where r is the estimated reward and n(at) is the number of times action at has
been chosen. The second term represents the value of the information about the
action. The UCB algorithm is guaranteed to choose the best action with infinite
trials.

3 Proposed Method

This section explains our proposed method. Our proposal is a methodology to
effectively explore states with positive rewards, which is particularly suitable for



Exploration Bonuses Based on Upper Confidence Bounds 169

Fig. 1. Overview of proposed method

sparse reward games. Figure 1 illustrates a brief overview that summarizes the
modules and their relations in our proposed method. First, A3C, as explained
in the previous section, is our starting point. Basically, our proposed method
enhances the A3C-based RL framework by incorporating a strong exploration
strategy.

Our method has two major improvements from the baseline A3C. It incor-
porates a module for calculating exploration bonuses from state information
(Sect. 3.1). Then, the calculated bonuses are utilized as pseudo rewards for
updating the network parameters. It also incorporates two distinct policies,
which are trained separately by true rewards and exploration bonuses (Sect. 3.2).
These policies are then used in different purposes; the policy trained by explo-
ration bonuses is used for exploring unseen states in the training phase, and the
other is used for achieving states with positive rewards mainly in the evaluation
phase.

3.1 Exploration UCB Bonus Using Hashing

We define our exploration bonus at t, namely, et, as follows:

et = βucb

√
log(t)
n(ht)

, (7)

where βucb is a coefficient. Conceptually, n(ht) represents the counts of states
indexed by ht, which is the index of the state at time t: st. Initially, counts n(h)
for all h are set to zero. Then, for every time step t, n(ht) is increased by one.
Thus, relation n(h) ∈ R≥0 holds for all h. Clearly, et is influenced by the UCB
score shown in Eq. 6. We modified the original UCB score to fit the situation
for evaluating which states we should select instead of actions. We refer to the
exploration bonus defined by Eq. 7 as the exploration UCB bonus.

Intuitively, if the state indexed by h is unseen or seen with a small number
of occurrences, where n(h) is small, then et takes a relatively large value. In



170 N. Mizukami et al.

Algorithm 2. Procedure for obtaining index h given state s
Input: State s
1: key ← 0
2: b ← g(s) // g: state pre-processor that maps state s into a D-dimensional vector

3: z ← Ab // A ∈ [−1, 1]k×D: a matrix for random projection
4: for i = 1 to k do
5: key ← key × 2
6: if zi > 0 then // z = (z1, . . . , zk)
7: key ← key + 1
8: end if
9: end for

10: h ← key % pr // pr : integer for determining the maximum index number
Output: h

contrast, et becomes relatively small if the state indexed by h appears many
times, where n(h) is large. Moreover, even if n(h) takes a large number, et

might take a relatively large value due to the effect of the ratio between the
numerator and the denominator. This situation may occur if no state with index
h was selected in the last certain time steps since the numerator monotonically
increases along with time step t.

Next, we describe how our method converts each state s into corresponding
index h for calculating n(h). Algorithm 2 shows the procedure for obtaining
h from s. This procedure basically utilizes the technique of locality-sensitive
hashing (LSH) [8], which is essentially identical to a previously described idea [3].
We assume matrix A ∈ R

k×D with random initialization based on a continuous
uniform distribution [−1, 1]. State s is converted into D-dimensional vector b by
pre-defined conversion function g(·). More precisely, we define g(·) to convert the
matrix form of the last input screen into a vector representation by concatenating
every column in the matrix. We also concatenate the difference between the
first and last input screens in the vector representation as explained above.
Consequently, the total length of vector b becomes D = 14, 112 (= 84 × 84 ×
2). Then vector b is (randomly) projected into a k-dimensional vector z by
(randomly initialized) transformation matrix A. Finally, we obtain a binary code
(hash key) from z by converting each element in z into 1 if the element takes a
positive value, or 0 otherwise.

In addition, the value of k controls the granularity; since higher values reduce
collisions, they are more likely to distinguish states. Ideally, the hash keys of the
current and subsequent states should always be different, which makes a large k
more desirable. However, the memory requirement increases in proportion to the
value of k. To reduce the memory requirement, we introduce pr, which represents
the maximum number of indexes. We set pr = 999983 and k = 128.

3.2 Training Two Types of Policies

This section explains the overall learning procedure of our proposed method.
Algorithm 3 describes how to train the agent by our method, which basically
trains it in the same fashion as our baseline method A3C. First, the agent chooses
an action based on the current policy and receives a state, a reward, and an



Exploration Bonuses Based on Upper Confidence Bounds 171

Algorithm 3. Training procedure of A3C + UCB for each actor-learner thread
// T : global shared counter that initialized by 0
// θπ̃, θπ, θv : global shared parameters, θ′

π̃, θ′
π, θ′

v : thread specific parameters
// tinterval ← interval for updating parameters, i.e., 5
// Ith ← # of threads for using π̃ instead of π, i.e., 3 (basically selecting a small number)

1: Initialization: t ← 1, and st ← Initial state
2: repeat
3: dθπ̃ ← 0, dθπ ← 0, dθv ← 0, θ′

π̃ ← θπ̃, θ′
π ← θπ and θ′

v ← θv

4: ts ← t
5: repeat
6: Perform action at according to π̃(at|st; θ

′
π̃) if threadID ≤ Ith, π(at|st; θ

′
π) otherwise

7: Receive reward rt and next state st+1
8: t ← t + 1
9: T ← T + 1 // synchronous addition for all threads

10: until st is terminal state or t − ts = tinterval
11: R ← 0 if st is terminal state, or R ← v(st; θ

′
v) otherwise

12: foreach i ∈ {t − 1, . . . , ts} do
13: R ← γR + ei

14: R′ ← γR′ + ri

15: R̃ ← clip(R′, −1, 1)
16: dθπ̃ ← dθπ̃ + dθ′

π̃ obtained by Eq. (8) // accumulate gradients dθπ̃ with respect to θ′
π̃

17: dθπ ← dθπ + dθ′
π obtained by Eq. (2) // accumulate gradients dθπ with respect to θ′

π
18: dθv ← dθv + dθ′

v obtained by Eq. (1) // accumulate gradients dθv with respect to θ′
v

19: end for
20: Update asynchronously θπ̃ using dθπ̃, θπ using dθπ, and θv using dθv

21: until T ≥ Tmax

exploration UCB bonus. We clip the rewards in the range [−1, 1]. A notable
difference from A3C and other similar exploration methods, such as [1,3], is
that we use two distinct policies, and train them independently either by true
rewards or exploration bonuses.

In general, exploration bonuses are used as additions of rewards in the exist-
ing methods [1,3], namely R = r + e, where r represents the true reward, e
represents the exploration bonus, and R is used for updating the agent’s net-
work instead of r alone. Their methods may cause two problems regarding the
appropriate training of the policy and value functions. The first problem is that
the agent may inappropriately explore in the training phase. This is because
their methods tend to lead the agent to explore states with a positive reward
that they found rather than a novel state. Their method therefore can result in
a locally optimum strategy with which the agent receives positive rewards many
times in the same way. The second problem is that trained policy may not choose
actions that receive positive rewards in the evaluation phase. This is because the
exploration bonus e in training may work as noise from the viewpoint of the eval-
uation. In fact, since the number of updates in training is limited, exploration
bonuses take non-zero values, and so the noise influence cannot be ignored.

Based on the above arguments, we introduce two distinct policies for rewards
and exploration bonuses. We call the first an exploration policy π, which is
trained with exploration bonuses and is employed in the training phase. We
call the second an exploitation policy π̃, which is trained with rewards from the
environment and is employed mainly in the evaluation phase. Although these
two policies are separately trained, they share the convolutional neural networks



172 N. Mizukami et al.

to interact with each other for sharing important information on rewards and
exploration bonuses.

Let θ′
π̃ be a set of parameters for π̃. Then, similar to Eqs. 1 and 2, the agent’s

network is also updated based on dθ′
π̃, which is calculated as follows:

dθ′
π̃ =

{∇θ′
π̃

log(π̃(ai|si; θ′
π̃))R̃ if R̃ > 0,

0 otherwise.
(8)

Even though an agent receives a reward once, it is difficult to choose the
same action again. To overcome this problem, if an agent obtains the highest
score, it memorizes the past states and actions. This history is used for training
data with probability ε. We call this the best score policy and set ε to 0.1.

4 Experiments

We conducted our experiments on the ALE, which provides a simulator for
Atari 2600 games, and has been utilized as a standard benchmark environment
to evaluate recent deep RL algorithms.

4.1 Setting

Our focus is games of hard exploration with sparse reward categorized by a
previous work [1]. We investigated the effectiveness of our proposed method on
the following six games: “Freeway,” “Gravitar,” “Montezuma revenge” (Mon-
tezuma), “Private eye” (Private), “Solaris,” and “Venture” (see [1])1. We selected
one additional game for evaluation, “Enduro” since it also requires the agent to
have a strong exploration strategy since the performance of the baseline A3C
was zero.

Unless otherwise noted, we basically followed the experimental settings used
in A3C experiments [6]. For example, the network architecture is identical to
previous research [9] and consists of two convolutional layers (16 filters of size
8×8 with stride 4, and 32 filters of size 4×4 with stride 2, respectively), and one
fully connected layer (256 hidden units). Moreover, ReLU [10] was selected as
activation functions for all hidden units. The final output layer has two types of
outputs. One is a single linear output unit for evaluating the value function. The
other is a softmax output unit for representing the probabilities for all actions
by one entry per action.

Table 1 summarizes the training and evaluation configurations. In our experi-
ments, we set a few settings differently from previous works [6]. First, we trained
the agents for 200 million time steps to match the experimental conditions of the
most related exploration technique [1] and evaluated their performance at every
one million time steps. This means that we evaluated the performance 200 times
during an entire training procedure. Then at each performance evaluation, the
agents were evaluated 30 times with different initial random conditions in the
“no-op performance measure” (see this work for an example [11]). Additionally,
we trained the agents with 56 threads in parallel instead of 16 [6].
1 We removed the evaluation of “Pitfall” since it ran abnormally in our environment.



Exploration Bonuses Based on Upper Confidence Bounds 173

Table 1. Summary of configurations used for training and evaluation

Training Training steps 200 million steps (800 million frames)

Threads 56

Optimization algorithm RMSProp with a decay factor of 0.99

Discount factor γ 0.99

Coefficient of entropy
regularizer βa3c

0.01

Evaluation Evaluation intervals Every 1 million steps

Evaluations 30 episodes/per each

4.2 Results

Table 2 shows the results of our experiments. We also listed the results of the
baseline and current top-line methods for comparison. For explanation conve-
nience, we categorized the results into four categories (a), (b), (c), and (d). The
rows of category (a) show the results of our experiments. The main purpose of
these rows is for comparing our baseline method (A3C), a previously proposed
exploration method (A3C + psc), and our proposed method (A3C + UCB) in
fair conditions; all the results were evaluated by our implementation. The sec-
ond category (b) shows previous results [1]. Note that we only picked results
whose base algorithm was A3C as well as our proposed method for comparison
with those obtained by our implementation. Category (c) shows the results of
two recently developed exploration methods, psc and SimHash-based methods2.
Finally, category (d) shows the results of the following current top-line deep RL

Table 2. Results of our proposed method and comparison with baseline and current
top-line methods. Boldface numbers indicate best result on each game.

Cat. method Enduro Freeway Gravitar Montezuma Private Solaris Venture

(a) A3C+UCB (Proposed) 28.5 23.0 406.7 126.7 7643.5 4622.7 163.3

A3C (baseline: our impl.) 0.0 0.0 283.3 3.3 160.1 3287.3 0.0

A3C+psc (our impl.) 181.7 22.1 311.7 0.0 1855.7 2612.0 0.0

(b) A3C (baseline: reported [1]) 0.0 0.0 201.3 0.2 97.4 2102.1 0.0

A3C+psc [1] 694.8 30.4 238.7 273.7 99.3 2270.2 0.0

(c) DDQN+psc (taken from [3]) – 29.2 – 3439 – – 369

TRPO+picel-SimHash [3] – 31.6 468 0 – 2897 263

TRPO+BASS-SimHash [3] – 28.4 604 238 – 1201 616

TRPO+AE-SimHash [3] – 33.5 482 75 – 4467 445

(d) DQN [2] 301.8 30.3 306.7 0.0 1788.0 – 380.0

DDQN [11] 319.5 31.8 170.5 0 670.1 – 93.0

Gorila [12] 114.9 11.7 1054.5 4.2 748.6 – 1245.3

Bootstrapped DQN [13] 1591.0 33.9 286.1 100.0 1812.5 – 212.5

Dueling network [14] 2258.2 0.0 588.0 0.0 – 2250.8 497.0

2 Note that the detailed scores of DDQN+psc were not reported in the original
paper [1]. However, we obtained them from a previous work [3].



174 N. Mizukami et al.

algorithms (excluding A3C): DQN [2], double DQN (DDQN) [11], Gorila [12],
Bootstrapped DQN [13], and Dueling network [14]. Note that these methods
basically have no special exploration strategy.

4.3 Discussions

Note the following observations in Table 2:

1. The previous A3C results [1] and those of our implementation (our impl.)
are very close. This implicitly supports that our implementation with our
experimental setting works in a way that resembles previous studies.

2. A3C + UCB (Proposed) consistently outperformed the baseline A3C. This
supports that our UCB-based exploration strategy helps discover new states
with positive rewards that the baseline A3C can hardly reach.

3. A3C + UCB (Proposed) achieved average scores of 7643 and 4622 for “Pri-
vate eye” and “Solaris”, respectively. To the best of our knowledge, these are
the best reported scores for the corresponding games.

Additionally, we investigated behavior of the agent trained with A3C + UCB
on Private Eye to identify the essential advantage for achieving state-of-the-
art performance. We found that Private Eye has a sort of trap that impedes
finding better states. First, several states with small rewards, i.e., r = 100, are
located near the starting point. Then even though a small number of states
with much larger rewards, i.e., r = 5000, exist, they are located far from the
starting point. To reach such states, the agent repeatedly encounters states with
negative rewards, i.e., r = −1. Therefore, it is easy to imagine that agents tend
to avoid such states with negative rewards and explore states with small rewards.
Consequently, an agent will struggle to discover states with large positive rewards
if it is not equipped with a strong exploration strategy. In contrast, the agent
trained with our method, A3C + UCB, successfully conquered such obstacles
and reached states with large rewards based on the power of our UCB-based
exploration strategy. This provides strong evidence that our method works well
even in hard exploration environments.

5 Conclusions

In this paper, we proposed an effective exploration strategy based on Upper
Confidence Bounds (UCBs) that are suitable for recent deep RL algorithms.
Conceptually, our exploration UCB bonus can be interpreted as a score estimated
from a combination of the visit counts of a state and the degree of training
progress. We also proposed a mechanism that effectively leverages exploration
bonuses. Our method incorporates two types of policies, namely, exploration and
exploitation, both of which are simultaneously trained. These policies force the
agent to explore a novel state in the training phase and receive large rewards in
the evaluation phase. As a result, the proposed method significantly improved
the performance of A3C and other similar exploration methods. In addition, our
agent achieved the highest score on “Private Eye” and “Solaris” in Atari games.



Exploration Bonuses Based on Upper Confidence Bounds 175

References

1. Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.:
Unifying count-based exploration and intrinsic motivation. In: Advances in Neural
Information Processing Systems, NIPS, vol. 29, pp. 1471–1479 (2016)

2. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
529–533 (2015)

3. Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J.,
De Turck, F., Abbeel, P.: # exploration: a study of count-based exploration for
deep reinforcement learning. arXiv preprint arXiv:1611.04717 (2016)

4. Strehl, A.L., Littman, M.L.: An analysis of model-based interval estimation for
Markov decision processes. J. Comput. Syst. Sci. 74, 1309–1331 (2008)

5. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv.
Appl. Math. 6, 4–22 (1985)

6. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
Proceedings of the 33rd International Conference on Machine Learning, JMLR
(2016)

7. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environ-
ment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279
(2013)

8. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science, pp. 459–468. IEEE (2006)

9. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. In: NIPS Deep
Learning Workshop, NIPS (2013)

10. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing, Omnipress, pp. 807–814 (2010)

11. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-
learning. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence,
AAAI, pp. 2094–2100 (2016)

12. Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A.,
Panneershelvam, V., Suleyman, M., Beattie, C., Petersen, S., Legg, S., Mnih, V.,
Kavukcuoglu, K., Silver, D.: Massively parallel methods for deep reinforcement
learning. In: ICML Deep Learning Workshop (2015)

13. Osband, I., Blundell, C., Pritzel, A., Van Roy, B.: Deep exploration via boot-
strapped DQN. In: Advances in Neural Information Processing Systems, NIPS 29,
pp. 4026–4034 (2016)

14. Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., de Freitas, N.:
Dueling network architectures for deep reinforcement learning. In: Proceedings of
the 33rd International Conference on Machine Learning, JLMR, pp. 1995–2003
(2016)

http://arxiv.org/abs/1611.04717

	Exploration Bonuses Based on Upper Confidence Bounds for Sparse Reward Games
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Exploration UCB Bonus Using Hashing
	3.2 Training Two Types of Policies

	4 Experiments
	4.1 Setting
	4.2 Results
	4.3 Discussions

	5 Conclusions
	References


