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Abstract. Motivated by recent activity in using machine learning tech-
niques to game programming we present a study of applying these tech-
niques to the game of Breakthrough. Specifically, we show that by using
temporal difference learning in an MCTS setting we are able to achieve
results almost equal to those obtained by Wanderer, a very strong pro-
gram with a highly tuned evaluation function. We also show that con-
volutional neural networks trained by using Wanderer as a provider of
expert moves can produce a program much stronger than the original.
Even in an environment with very slow execution speeds, we can achieve
excellent results.

1 Introduction

Breakthrough is a fairly new game, invented in 2000 by Dan Troyka and was
the winner of the 2001 about.com 8 × 8 Game Design Competition. It provides
an interesting mix of strategy and tactics and so is a popular game for games
researchers [1–5].

It is played on an 8×8 board. The first two rows are populated with White’s
pieces and the last two rows with Black’s. The first row is White’s home row
and the eighth row is White’s goal. White moves their pieces towards their goal,
one square forward at a time, either straight or diagonally. White may not move
to a square already occupied by a white piece and may only capture a black
piece if it is a diagonal move. White cannot move straight forward to a square
occupied by a black piece. Black moves similarly. The first player to reach their
goal row or capture all the opponent’s pieces is the winner. A draw is impossible
in Breakthrough.

Figure 1 shows two Breakthrough positions, both with White to move.1 The
one on the left is the starting position and the one on the right is after 22 moves
have been played. From the second position the white piece on g2 may move
either to g3 or h3, the piece on f3 may either move to g4 or capture on e4, and
the piece on f4 may make either diagonal move.

Starting with Wanderer, a strong MCTS/EPT (Monte-Carlo Tree Search
with Early Playout Termination) based program that plays Breakthrough [3], we
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Fig. 1. Sample Breakthrough positions.

created two new versions: Wan-TDL uses temporal difference learning (TDL)
techniques to create an evaluation function and Wan-CNN uses convolutional
neural networks (CNNs) to generate a probability distribution over moves with
respect to an expert Wanderer given a particular board configuration.

Machine learning techniques have long been used in game programming.
In 1995 Tesauro used TDL to create a world class Backgammon playing pro-
gram [7] and over the years many other game playing programs have used TDL
in one form or another [8,9]. We use a straightforward implementation of TDL
to train an evaluation function that replaces the hand-tuned evaluation function
in Wanderer in order to create Wan-TDL. In Sect. 2 we describe the various
patterns (n-tuples) we worked with, our reasons for choosing those patterns, and
the results associated with each pattern choice.

Last year DeepMind famously created AlphaGo, a program that uses CNNs
and played the game of Go at a level even higher than the world’s best human
players [10,11]. In Sect. 3 we explain how we apply these ideas to create Wan-
CNN. First we created CNNs for policy networks that can rank the possible
moves from any board position. This was done by using moves generated by
Wanderer as there are insufficient publicly available games played by strong
players to draw from. Then we created a new MCTS program in Python that
could use the policy net in an MCTS setting.

Finally in Sect. 4 we summarize our results and discuss future work.

2 Temporal Difference Learning and Breakthrough

TDL is an unsupervised reinforcement learning technique whose history goes
back at least to Samuel’s checker program [12,13]. Indeed, in 1959 Samuel cap-
tured the spirit of TDL when he said that a strong program to play a game (of
checkers) can be produced using machine learning “...when given only the rules
of the game, a sense of direction, and a redundant and incomplete list of para-
meters which are thought to have something to do with the game, but whose
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correct signs and relative weights are unknown and unspecified” [12]. It is in this
spirit that we used TDL to program Breakthrough. To be a bit more precise, we
employed TD(λ) a more recent and probably the most used version of TDL in
game programming [14].

2.1 TDL Parameters

Corresponding to the parameters mentioned in the above quote we use patterns
of board squares on the Breakthrough board. This technique is usually referred
to as the n-tuple approach, however we feel the term pattern is more suggestive
in this context.

We experimented with numerous pattern shapes, but all were simply small
rectangular regions. For example, one pattern shape we used was the 3 × 3
rectangle. We considered every possible 3×3 rectangle on the board, for a total of
36 different rectangles. However, there is vertical symmetry on the Breakthrough
board, e.g., the rectangle in the lower left corner is the same as the reflected
rectangle in the lower right corner. This means there are actually only 18 unique
rectangles.

Continuing this example, each rectangle contains 9 board squares and each
board square can either be occupied by White or Black, or can be empty. Hence
each 3 × 3 rectangle defines a total of 39 = 19, 683 distinct patterns. Since there
are 18 different rectangles, there are a total of 36 × 19, 683 = 354, 294 different
patterns and thus the same number of parameters. The board evaluation is
then calculated simply as the sum of all the weights of all the patterns that
appear on the board. We store the weights for all of these patterns as a file of
float variables. In this case all of the weights required approximately 2 MB of
memory (see Table 1).

Besides the weights on the patterns there are three other parameters that
control the behavior of TD(λ). TDL updates the parameter weights of patterns
seen in previous board states based on the evaluation of the current board state.
The trace decay parameter, λ, determines how many previous board states get
updated. In our experiments we always set λ = 0, that is, only parameters from
the previous board state are updated.

The second parameter, α, sometimes called the learning rate, is a multiplica-
tive constant for the update values thus regulating the speed in which parameters
can change. After experimenting with different values and changing schemes we
settled on a constant value of α = 0.01 for all of our experiments.

Finally, the standard method of ensuring sufficient exploration in the learn-
ing process is to use an ε-greedy policy where a random action is taken with
probability ε. We chose ε = 0.1 for all of our tests.

One of the difficulties with TDL is determining if and when the weights have
converged. The larger the pattern size the longer it will take because (1) there
are more weights to train and (2) training games take longer due to the extra
time required to calculate the evaluation with so many weights. Empirically, we
found that training with one hundred million games worked well, though that
by no means guarantees that the weights have to (or ever will) converge. For the



Machine Learning in the Game of Breakthrough 143

smallest pattern size this would take about an hour while for the largest it would
take about 2 days. Pattern sizes are discussed in detail in the next section.

2.2 TDL Wanderer

Our goal is to see how TDL performs in an MCTS setting. Wanderer is a very
strong program that uses MCTS with EPT. Specifically, Wanderer playouts
run for 6 moves and then an evaluation function is called to determine the
status of the position. In our experiments we simply replaced the finely tuned,
hand coded evaluation with the one created using TDL. When testing, the first
two moves of both programs are random. This, along with the nondeterminism
inherent to MCTS provides sufficient variety in the games.

As can be seen in Table 1 we experimented with eight different rectangular
patterns of various shapes of type m × n where m is the number of rows and n
is the number of columns. If two sizes are mentioned that means all rectangles
of both sizes were used. For example, 5 × 3 & 3 × 5 means that all rectangles of
both size 5×3 and size 3×5 that fit on the board were used where all weights for
every pattern are treated equally. It is worth comparing the number of patterns
in this second example with the 3 × 3 case. Recalling the vertical symmetry, for
3×5 rectangles there are 2×6 = 12 possible placements and 3×4 = 12 possible
placements of 5 × 3 rectangles. These rectangles contain 15 squares, each with
3 possible values, for a total of 12 × 12 × 315 = 172, 186, 884 weights compared
with 354,294 in the 3 × 3 case, making it about 500 times bigger.

From a human point of view there are three main strategic concepts that
one must know to play the game well: (1) Pieces are important – do not give
them away; (2) Pieces in your home row in columns b, c, f, and g should not
move until absolutely necessary because they play an important defense role; (3)
Do not trade pieces on the opponent’s side of the board because that usually
means you have given up important tempo. We were surprised to see that even
with the smallest patterns Wan-TDL was able to learn these concepts. We find
this quite remarkable considering the abstract and global nature of these rules
compared with the size and local nature of the patterns.

Still, 3 × 3 patterns were insufficient to produce a player as strong as
Wanderer so we added more patterns. We did this using the obvious idea
of increasing the size of the rectangle, by allowing multiple sized rectangles, and
by differentiating patterns according to what phase the game was in. For eight
variations of these ideas we ran tests against basic Wanderer. In each case we
played 1000 games, where each player was white half the time and both play-
ers were given 10 secs/move. Table 1 summarizes our results and is explained in
more detail below.

We have included a column showing the actual size of the weights file to
show that in some cases we are approaching the limits of reasonable file sizes.
The win rate column shows the percentage of games won by Wan-TDL and the
95% confidence bounds.

Game progress means that a different collection of weights are given depend-
ing on the stage of the game. Stages are defined according to how many pieces
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Table 1. Basic Wanderer vs. TDL with various patterns at 10 secs/move

Pattern shape File size Win rate of TDL version

3 × 3 2 MB 23.5% ± 2.7

3 × 5 557 MB 34.9% ± 3.0

4 × 3 35 MB 43.0% ± 3.1

5 × 3 490 MB 43.9% ± 3.1

5 × 3 & 3 × 5 1.1 GB 44.8% ± 2.9

4 × 4 1.9 GB 46.1% ± 3.1

4 × 3 & 3 × 4 + game progress 418 MB 46.3% ± 3.1

4 × 3 & 3 × 4 81 MB 46.6% ± 3.1

are on the board for a total of seven stages with piece count cutoffs at 32, ≥30,
≥28, ≥24, ≥20, ≥16, and <16.

Though it is difficult, if not impossible, to articulate what additional strategic
concepts have been learned when using more patterns, we can see from the table
that the program has clearly improved. It seems that patterns of sizes 4 × 3 &
3 × 4 provide the best results, especially relative to their size.

3 Convolutional Neural Networks and Breakthrough

Traditional MCTS induces a policy from a directed search of the state space.
While MCTS is a flexible approach that has been shown to converge to an
optimal policy in the limit [15], it seldom yields such a policy in scenarios that
require real-time decision making.

Conversely, heuristic models such as CNNs have the benefit of producing
predictions in far less time. The main drawback with these models is that the
value of the prediction may be specious, heavily dependent on its architecture,
how it is trained, and what data it is trained on.

While these two methods have been used in different domains with varying
levels of success, the combination of both has produced powerful agents that
rival expert human players [10] or far more sophisticated programs [16] in the
game of Go. However, the neural networks used in these agents were trained on
data from expert human players. As Breakthrough is fairly nascent, there is an
absence of readily available human generated data from which to train a neural
network.

Related work by Guo et al. [17] remedied the data dearth problem in the
context of Atari games, by training neural networks on data generated by an
external agent that utilized MCTS. They found that this data was sufficient to
produce neural networks that could successfully play games such as Breakout,
Pong, and Q*bert. Based on these findings, we sought to investigate whether
this same approach would hold true in the domain of Breakthrough.
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3.1 Methods

We began by training two four-layer CNNs to play Breakthrough by classifying
which move an expert Wanderer would make in a given position. The player
neural network, which predicts the player’s moves, would be trained only on
moves from winning players while the opponent neural network, which predicts
the opponent’s moves, would be trained on all moves.

Training Data. Training data consisted of Breakthrough games played between
two instantiations of Wanderer, allowing the training set to consist of moves
from both players. Each search expanded 93, 750, 000 nodes, taking between
180 and 420 s. This specific number of nodes was chosen due to the fact that
experiments at higher numbers of nodes (up to 200, 000, 000) would typically
(∼90% of the time) converge to an optimal move at approximately 93, 000, 000
nodes. Limiting Wanderer to 93, 750, 000 nodes ensured that a dataset could
be generated in a reasonable amount of time while not sacrificing move quality.

Next, 80 instances of self-play were run in parallel for approximately two
months, yielding 3, 735, 662 moves from 37, 688 games. As Breakthrough boards
exhibit vertical symmetry, reflected moves were added to the training set, dou-
bling the original number of training examples for a final training set total of
7, 471, 324 moves (3, 735, 662 of which were winning moves). Horizontal symme-
try was also exploited, explained further in Sect. 3.1.

Data Pre-processing. For each game, moves were used to generate a sequence
of board states, with each board state having an associated transition (move) to
the next state. To take advantage of horizontal symmetry, we transformed the
board representations so that the player’s pieces started in the first two rows
while the opponent’s pieces started in the last two rows, and moves were made
relative to the player’s location on the board. We will refer to this representation
as the player point-of-view representation. This had the benefit of minimizing
the amount of information the neural net had to learn (viz. color differentiation)
and cut the number of possible classes in half (e.g., a1–a2 and h8–h7 map to the
same move, relative to the player).

For neural network input, we transformed each board representation into a
one-hot tensor with dimensions 8 × 8 × 4, with an on-value of 1 for positions that
correspond to player, opponent, empty, or bias positions, respectively. The bias
is an on-value for every position.

For labeling of training examples, each move is mapped to a unique numerical
index in the range 0 to 154, and this index serves as the label for the associated
board representation. (With a player point-of-view representation, there are a
total of 154 possible moves, according to start square and destination square
plus a no-move position if the game is over.)

Network Architecture. The network’s input layer takes in a b × 8 × 8 × 4
tensor where b is the mini-batch size, or the number of samples to be evaluated
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in parallel. Each hidden layer has 192 3× 3 filters, with the exception of the
final hidden layer which has a single 1× 1 filter, and uses a rectified linear unit
(ReLU) activation function [18]. As input is passed to each hidden layer, it
is zero padded to the dimensions that ensure the resulting output volume has
8 × 8 planes. Hidden layer weights were randomly initialized with 0 mean and
standard deviation

√
2/nl as described by He et al. [19, p. 4], where nl is the

number of incoming connections for that layer. The biases were initialized to
0.01 to ensure all ReLUs fired in the beginning [20]. The output layer is a fully-
connected layer which uses a Softmax activation function [21] to produce the
predicted probability distribution over the 155 possible moves. The output layer’s
weights were initialized by the Xavier initialization algorithm [22] and biases were
initialized to 0. The network was implemented in TensorFlow, Google’s machine
learning framework, as TensorFlow offers a high level of performance, portability,
and an interface that facilitates quick debugging and iterative development [23].

Network Training. The network was trained for five epochs via adaptive
moment estimation, also known as Adam [24], using cross entropy with a learn-
ing rate of 0.1 and a mini-batch size of 128. Training took approximately one
hour on an Nvidia GTX 1080 GPU.

3.2 Results

Figure 2 shows the player policy network’s accuracy throughout training (the
opponent policy network’s training showed a similar pattern).2 On a held-out
test set3, the player policy network achieves 50.6% accuracy, with the correct
move being in the networks top ten predictions 95.3% of the time. The opponent
policy network achieves 50.9% accuracy, with the correct move being in the net-
work’s top ten predictions 96.0% of the time. The four-layer network with 192
filters per layer represented an optimal tradeoff between accuracy and complex-
ity. Experiments with larger networks (up to 12 hidden layers and 512 filters)
did not yield significantly higher accuracy and came at the expense of increased
memory demands and computation time.

Simply using the policy net to suggest moves produces a player of nearly
equivalent strength, achieving a 44.0% ±3.14 win-rate against Wanderer at 10
seconds/move (approximately 800,000 playouts).4 This is impressive given the
fact that the policy net takes approximately 2 ms to generate a prediction.

2 The training accuracy graph was generated from Tensorboard, TensorFlow’s data
visualization package [25].

3 roughly 5% of the size of our training set, consisting entirely of moves from games
excluded from the test set.

4 Unless otherwise noted, all games are out of 1000, 500 as White and 500 as Black,
with 95% confidence intervals.
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Fig. 2. Training accuracy over the number of training steps.

3.3 Integration into MCTS

In our CNN/MCTS paradigm, Wan-CNN utilizes a Synchronous Replace by
Threshold [16, p. 20] expansions with T = 0 and a thread pool (minimal lock-
ing) for tree-level parallelism.5 Our implementation is basically UCT, with some
differences in how moves are chosen, the expansion policy, and the rollout policy.

Selection. For move selection, we use the PUCT variant described in [10] where

we choose action a at state s where a = argmax
a′

(
wa′

1+va′ + cpuctP (a′|s)
√∑

b wb

1+va′

)
,

with wn and vn corresponding to the total wins and visits passing through node
n,

∑
b wb to the wins over all sibling node of n, and cpuct to the exploration

constant.

Expansion and Pruning Policy. For a given iteration, the tree is searched
as in normal MCTS. Once we find a node to expand, we evaluate it with the
respective neural network (while this thread is waiting for results from the GPU,
another search thread can continue its execution). Once the neural network
predictions are returned, only children that meet specified threshold criteria are
retained – all other nodes are taken out of consideration.6 This corresponds to
the top two actions for the player, the top ten for the opponent.7 The neural net

5 Note: As Wan-CNN was implemented in Python, it does not utilize true paral-
lelism (Python’s Global Interpreter Lock prevents multiple threads from running in
the same process simultaneously). The advantage of multithreading is that threads
waiting for I/O (viz. GPU) can yield the processor to other idle search threads.

6 These children are added back into consideration if the initial set of children are
solved for a loss.

7 Parameters chosen based on relative performance.
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output is then used to set the prior values on a node’s children, with probability
of move selection corresponding to a child’s number of losses. All visits are
initialized to 100.

Rollout Policy. Wan-CNN utilizes quasi-rollouts where, immediately after
expansion, the highest-ranking child is marked for expansion. This continues at
each subsequent level until a terminal state is reached and the resulting win/loss
value is backpropagated up the tree.

3.4 Wan-CNN Performance

In games against Wanderer, Wan-CNN achieved a 63.4% ± 2.99 win-rate,
meaning Wan-CNN’s exceeds that of Wanderer’s, despite the poor execution
performance that Python offers. This result was directly attributable to our
move selection and expansion policies. Without these modifications, Wan-CNN
yielded a disappointing 21.6% ± 4.31 win-rate.

3.5 Limitations

As the policy network was trained on games played by Wanderer, it may be
overfitting to Wanderer’s policy. In other words, its win-rate may be due to
the fact that it was trained to emulate Wanderer’s playstyle. In the future, we
plan to play it against a broader array of expert players to validate our findings.

Additionally, as the maximum search time of our tests was 10 s, our results
may not hold at higher search times.

4 Conclusions and Future Work

Using an unsupervised learning paradigm (TDL) and starting with no domain
knowledge we were surprised that we could create a Breakthrough evaluation
function that was on par with the mature, hand-tuned one in Wanderer, giving
a 46.6% win rate when played against normal Wanderer.

Using a supervised learning paradigm (CNN), we trained four-layer CNNs to
classify Breakthrough moves made by Wanderer. When these networks were
used to directly dictate a policy, they rivaled Wanderer at search times of
up to 10 seconds/move. This is impressive given the CNNs’ inference speed (2
ms). Integrating the neural network into a simple MCTS (no domain knowl-
edge) yielded a program that exceeded the performance of normal Wanderer,
achieving a 63.4% ± 2.99 win-rate.

Going forward, to improve Wan-TDL we plan to try refinements on our
game progress idea which creates patterns based on the state of the game. Other
global properties such the left/right relative balances of the pieces between the
two sides, piece counts on black vs. white squares, etc. could provide further
benefit, keeping in mind the tradeoff between the number patterns and memory
and training time constraints.
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We also plan to generate a neural network to act as a value function approx-
imation and compare against both our simplified evaluation function as well as
Wanderer’s full evaluation function.
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