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Abstract. Distributed residential solar power forecasting is motivated
by multiple applications including local grid and storage management.
Forecasting challenges in this area include data nonstationarity, incom-
plete site information, and noisy or sparse site history. Gaussian process
models provide a flexible, nonparametric approach that allows probabilis-
tic forecasting. We develop fully scalable multi-site forecast models using
recent advances in approximate Gaussian process methods to (probabilis-
tically) forecast power at 37 residential sites in Adelaide (South Aus-
tralia) using only historical power data. Our approach captures diurnal
cycles in an integrated model without requiring prior data detrending.
Further, multi-site methods show some advantage over single-site meth-
ods in variable weather conditions.

1 Introduction

Solar power forecasting is motivated by several areas of application, including
grid management, load shifting (demand management) and energy storage man-
agement. As small scale residential solar penetration grows, challenges to fore-
casting power for multiple distributed small scale sites, in particular forecasting
with incomplete site information and noisy power data, become of interest.

Challenges in this context include nonstationarity in the data,1 and develop-
ing useful probabilistic forecasts. Many forecasting methods assume it is possible
to detrend power data prior to stochastic modelling in order to ‘flatten’ the data
and remove diurnal cyclical trends associated with cycles in solar radiation. How-
ever, methods to do so rely on comprehensive site information [7], or site history
as in [5,17]. Overall, existing methods have high data demands, constraining
their usefulness for new or unseen sites.

For certain applications it is desirable to work with a probabilistic distrib-
ution of forecasts that quantifies forecast uncertainty. Statistically-based meth-
ods, such as vector autoregressive (VAR) models, typically allow probabilistic
forecasts however are constrained in their application to unflattened data and
sites for which no training data is available. Machine learning methods such as

1 Stationarity here refers to the property that distribution parameters remain stable
(and finite) over time.
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neural networks (ANNs) are more widely applicable but do not generally allow
probabilistic forecasts. Gaussian process models are advantageous in this regard,
providing a flexible, nonparametric forecast approach that is also probabilistic
in nature.

Transfer learning over distributed sites may assist in addressing site data
limitations as well as improve prediction of weather-related power fluctuations.
The literature suggests cross site data can be helpful in modelling cloud condi-
tions to improve site level forecasts, as in [3,12,23], with evidence that cross site
information in a dense network can be relevant from timescales of a few minutes,
as in [27], to multi-hour horizons in a widely distributed network, as in [3].

A key constraint often associated with multisite approaches is scalability to
large numbers of sites. Within the Gaussian process literature, several approxi-
mate methods have been developed that support stochastic parameter optimisa-
tion, thus maintaining scalability to large datasets and feasibility for real world
application.

The current study considers the problem of short term (less than 30 min)
power forecasting for large distributed networks of residential rooftop solar sys-
tems. We apply sparse variational Gaussian process (gp) approaches for proba-
bilistic forecasting across multiple solar sites in Adelaide, Australia. Our aim is
to test whether scalable gp methods can be applied to short term distributed
forecasting to provide useful, probabilistic forecasts at the site level with limited
site history and information.

1.1 Related Work

The literature around solar forecasting is extensive, including studies that inves-
tigate both solar irradiance and power forecasting over multiple forecast horizons
(a few minutes to multiple days) using approaches that range from physics-based
models to statistical and machine learning methods. Studies to date also examine
multiple inputs including irradiance or power measurements, ground and satellite
based weather data and meteorological forecasts. Several reviews [10,14,18,25]
provide a thorough coverage of recent methods.

In the sphere of short term forecasting, stochastic models utilising only his-
torical power data have been shown to perform relatively well in the past [18],
although recent advances suggest highly accurate forecasts can be produced
by including comprehensive climate data [16]. Predominant statistical meth-
ods include adaptively estimated VAR, autoregressive integrated moving aver-
age (ARIMA) and generalised autoregressive conditional heteroskedasticity
(GARCH) models, for example as in [3,9]. These methods allow for weather-
related nonstationarity and at shorter horizons (up to one hour) have been
found to be competitive in forecasting clearness indices (i.e. flattened irradi-
ance data) [9,15]. In a number of cases models are applied in a multisite setting
as in [3,5,11,27].

The major machine learning methods explored for short term solar forecast-
ing are neural networks and support vector machines (SVMs). Recent examples
of ANNs for short term horizons include [12,20]. ANNs have been explored in
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a multisite setting in irradiance forecasting [25], although at time of writing no
examples were identified of multivariate prediction at horizons less than one hour
ahead.

Gaussian process and related models have been explored to a limited extent
in solar forecasting. [9,15] include univariate gp models applied to clearness
indices as comparative models. [4] also uses a gp model to forecast clearness
index values over an irradiance field in 30 min increments. The authors apply
probabilistic principal components dimension reduction to improve feasibility of
real time adaptive gp modelling over multiple locations (by reducing the number
of ‘locations’ for which a gp is estimated), and further assume independence
between models, thus respecifying the multivariate problem as several univariate
problems. However, even with these adaptations, scalability is still constrained
by non-stochastic optimisation of the exact gp as described in Sect. 2.

Several studies use a closely related method, kriging, to predict clearness
indices in a multisite setting [2,22,23,26]. Building on [22,26] develops one-hour-
ahead clearness index forecasts using one month of hourly data from a group of
10 meteorological stations in Singapore. In [23], the authors ‘nowcast’ clearness
index values for 25 sensor locations covering an approximately 30 km radius area
in Osaka.

2 Theory

Gaussian process (gp) models provide a flexible nonparametric Bayesian app-
roach to machine learning problems such as regression and classification [21] and
have proved successful in various application areas involving spatio-temporal
modeling [8]. Formally, a gp is a prior over functions for which every subset
of function values f(x1), . . . , f(xn) follows a Gaussian distribution. We denote
a function drawn from a gp with mean function μ(x) and covariance function
κ(·, ·) by f(x) ∼ GP(μ(x), κ(x,x′)).

One of the most widely used gp models is the standard regression setting
with a zero-mean gp and i.i.d. Gaussian noise:

yt ∼ N (f(xt), σ2
y) with f(xt) ∼ GP(0, κ(xt,xt′)), (1)

where xt denote features at time t and σ2
y is the noise variance.

Given a set of observations {(xt, yt)}N
t=1, we wish to learn a model in order to

make predictions at a new datapoint x∗. Given the likelihood and prior models
in Eq. (1), the predictive distribution over f(x∗) is a Gaussian with mean and
variance given by:

μ∗ = κ(x∗,X)(K + σ2
yI)

−1y, σ∗ = κ(x∗,x∗) − κ(x∗,X)(K + σ2
yI)

−1κ(X,x∗),

where X and y denote all the training features and outputs, respectively; K
is the covariance matrix induced by evaluating the covariance function at all
training datapoints; and I is the identity matrix.
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Although computing the exact predictive distribution above is appealing
from the theoretical perspective and in a small-data regime, these computa-
tions become unfeasible for large datasets as their time and space complexity
are O(N3) and N2 respectively.

Much of the research efforts in gp models have been devoted to this issue [19]
with significant breakthroughs achieved over the last few years [13,24]. Indeed,
here we study the variational approach to inference in gp models, which relies
upon reformulating the prior via the so-called inducing variables [24].

2.1 Scalable Gaussian Process Regression via Variational Inference

Full details of the variational approach to scalable gp regression is out of the
scope of this paper and we refer the reader to [6,13,24] for further reference.
Here it suffices to explain that we introduce a set of M inducing variables u =
(u1, . . . , uM ), which lie in the same space as the original function values and
are drawn from the same gp prior. For these inducing variables we have their
corresponding inputs Z = (z1, . . . , zM ), where each zj is a D-dimensional vector
in the same space as the original features x.

The variational approach to gp inference involves a reformulation of the
prior via the inducing variables and the proposal of an approximate posterior
over these using q(u) = N (m,S), which is estimated via the optimization of the
so-called evidence lower bound (elbo):

Lelbo(m,S) = KL(q(u)‖p(u)) − Eq(f)[log p(y|f)], (2)

where KL(q‖p) denotes the Kullback-Leibler divergence between distributions q
and p; p(u) = N (0, κ(Z,Z)) is the Gaussian prior over the inducing variables;
Eq(f)[log p(y|f)] is the expectation of the conditional likelihood (given in Eq. (1))
over q(f) =

∫
u

q(u)q(f |u)du; and q(u) the approximate posterior given above.
Using simple properties of the Gaussian distribution it is possible to show that
Eq. (2) can be solved analytically and, more importantly, Lelbo decomposes as
a sum of objectives over the training data. This readily allows the application
of stochastic optimization methods rendering the time and space complexity of
the algorithm as O(M3) and O(M2), respectively, hence independent of N and
applicable to very large datasets.

2.2 Gaussian Processes for Solar Power Forecasting

A key advantage of gp models is their flexibility to express potentially nonlin-
ear relationships and nonstationary processes through various kernel forms. gp
models have the capacity to account for nonstationarity associated with diurnal
cycles through appropriate kernel functions. Further, their nonparametric nature
allows models to flexibly reflect variable volatility i.e. nonstationarity associated
with weather effects.

In the present study, we propose several Gaussian process model specifi-
cations for application to the residential solar forecasting problem where site
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information is unknown. Kernels are structured to capture both cyclical and
autoregressive processes in the power data. We compare results under both
‘site-independent’ approaches, where Gaussian process models are applied to
sites individually, and multi-site approaches, where forecasting for multiple sites
is performed via collaborative Gaussian process models.

Site-Independent Models. Consider the timeseries of power observations for
a single site p, denoted yp, at times t = 0, . . . , N . As in (1), let

ypt = fp(xpt) + εpt, fp(x) ∼ GP(0, κp(xpt,xps)) (3)

εpt ∼ iidN (0, σ2
yp

). Under the gp specification, observed power ypt is a func-
tion of a latent Gaussian process, fp(xpt), plus idiosyncratic noise εpt. The covari-
ance between power at time t and time s, s �= t is thus given by the kernel function
κp(xpt,xps). The likelihood function is given by ypt|fpt ∼ N (fpt, σ

2
yp

).
In the site-independent setting, the feature vector xpt is comprised of two

main elements: a time index t and a set of lagged power observations at pre-
specified five minute intervals denoted g. In order to forecast power at t + δ for
δ steps ahead, lag features are current observed power and past observed power
at 5 and 10 min prior. Thus xpt = (t,gpt), gpt = (ypt−δ, ypt−δ−1, ypt−δ−2). Lags
were selected in line with previous studies that find immediate lags are relevant
for short term forecasting (see e.g. [26]).

Additional, ‘extended site-independent’ models are estimated using an aug-
mented set of lag features. The feature vector is extended to include power obser-
vations of nearby sites, that is gpt = (ypt−δ, ypt−δ−1, ypt−δ−2, y−pt−δ, y−pt−δ−1,
y−pt−δ−2), where y−p denotes all sites near to site p. Utilising cross-site features
in the form of lags allows separate site model estimation and has been applied in
several studies including [3,12]. We define ‘near’ as being within a 10 km radius.2

Kernel functions for site-independent and extended site-independent models
are comprised of several separable kernel elements. A periodic kernel is applied
to the time index to capture daily cyclical trends in output and is defined as

κPer.(t, s) = θ exp

⎡

⎣−0.5

(
sin

(
π
T (t − s)

)

l

)2
⎤

⎦ (4)

where θ governs cycle amplitude, T denotes cycle period (fixed at one day),
and lengthscale, l, governs rate of decay in covariance as the time-span between
observations increases.

A linear kernel is applied to lag features gi ∈ g to capture short term varia-
tions from the regular diurnal trend:

κLin.(gpt,gps) =
∑

i

σigpti, gpsi (5)

2 A fixed radius is applied to provide local regularisation, which has been found to
reduce overfitting in multisite settings [11,27]. The 10 km threshold aims to limit
‘neighbours’ to sites most likely to be relevant given historic local windspeed.
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where σi are in effect weight coefficients. The overall kernel structure for all
site-independent models is:

κp(xpt,xps) = κPer.(t, s)κLin.(gpt,gps). (6)

Multi-site Models. Values for proximate sites would be expected to covary,
due to both synchronous diurnal cycles in unflattened data and shared weather
systems. Some efficiency would thus be expected from exploiting the shared
covariance structure through collaborative learning.

Two separate multi-site gp model structures are estimated for site-level
power forecasting. The first is a pooled structure, where (standardised) site data
are used in a joint specification with shared kernel parameter values. The second
structure is the linear coregionalisation model or LCM. This structure assumes
site observations covary through a lower dimension set of shared latent processes.

For each multi-site model structure, two alternative kernel specifications are
explored. These four model specifications are detailed below.

Pooled Model. The pooled, or ‘joint’, model is a pooled Gaussian process
model where all site observations share a common kernel that includes an addi-
tional kernel element defining a spatial covariance factor.

The first pooled model kernel (‘Joint Model 1’) is defined as a multiplicative,
separable spatiotemporal kernel added to a shared linear kernel applied to lagged
power values. Feature vector x is extended to include h = (latitude, longitude)
i.e. xpt = (t,gpt,hp). A radial basis function (RBF) kernel is applied to hi ∈ h
to capture spatial dependencies, thus for sites p and q,

κ(xpt,xqs) = κPer.(t, s)κRBF (hp,hq) + κLin.(gpt,gqs). (7)

where

κRBF (hp,hq) = σ2exp
{ − 1

2

2∑

i=1

((hpi − hqi)/li)2
}
. (8)

In the RBF kernel, σ2 governs maximum covariance between points hp and
hq, and lengthscale, li, governs the rate of decay in covariance as distance between
observations along the relevant axis increases.

The second joint model (‘Joint Model 2’) is similarly specified however
replaces the shared linear kernel with separately parameterised linear kernels
for each site. Specifically, κLin.(gpt,gqs) becomes

κLin.,p(gpt,gqs) =
∑

i

σpigpti, gqsi, κLin.,p = 0 for p �= q (9)
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Coregional Model. The linear coregional model (LCM) assumes yp is a func-
tion not of a single latent process fp(xp) but a linear combination of several inde-
pendent latent Gaussian processes. Covariance between sites arises from these
shared latent processes. Weights defining the linear combination for a given site
are site-specific,3 fp(x) =

∑Q
j=1 wpjuj(x).

We assume three latent processes u(x)j , j = 1, ..., 3 in the first LCM model
(‘LCM Model 1’) and two latent processes in the second model (‘LCM Model 2’).
Each latent process has an associated kernel, κj , giving rise to a shared covariance
structure across sites driven by both kernel elements and weight matrices.

Let Bj = WjW′
j +κj where Wj is a p×1 matrix of weights wpj , and κj is a

diagonal matrix of isotropic noise. We define κ1 = κPer.(t, s) and κ2 = κRBF (t, s)
respectively as periodic and RBF kernels applied to time indices. The third latent
process kernel is defined as κ3 = κLin.(gt,gs). The shared kernel structure in
LCM Model 1 is thus given by:

K(fp(xpt), fq(xqs)) =
3∑

j=1

[Bj ]pq κj(xpt,xqs). (10)

The second coregional model is similar to the above, however again the linear
kernel component is treated slightly differently. In LCM Model 2, Q = 2 with
κ1 and κ2 defined as above, and lag features are included in a separate kernel
component defined as in (9). Thus

K(fp(xpt), fq(xqs)) =
2∑

j=1

[Bj ]pq κj(xpt,xqs) + κLin.,p(gpt,gqs). (11)

The specification in (11) allows a slightly more expressive parameterisation
of the linear kernel than (10).

Benchmark Models. Without clear sky normalisation and under the assump-
tion of short site history, there are few existing models for comparison. One
feasible benchmark prevalent in the literature is the persistence model,4 which
forecasts the next observation as the current observation i.e. yt+1 = yt. Persis-
tence models are estimated for each site separately.

In addition, the site-independent Gaussian process models serve as a bench-
mark. These are approximately equivalent to linear Bayesian regression models
assuming a standard Gaussian prior distribution over regression coefficients. As
such they are closely related to VAR models as applied to flattened data.

3 Experiments

The analysis makes use of a sample of 37 residential photovoltaic systems
installed within an approximately 10 by 15 km ‘box’ in the central Adelaide area.
3 A useful exposition of coregional models can be found at [1].
4 The persistence model in the present study is applied to unflattened data.
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Most sites have an installed capacity of 2 to 5 kW. The dataset is comprised of
5-minute average power readings over a 30 day period in January 2017 (specifi-
cally 30 days ending 28 January 2017). Days were defined as 7 am to 7 pm, yield-
ing a total of 144 observations for a site over a day. This accounts for a total of
159,840 observations, which is clearly unfeasible for standard (non-scalable) gp
models.

The goal of the experiments is to test whether gp models estimated under a
sparse variational framework can be applied to forecast distributed power output
at the site level for multiple distributed sites. In particular, whether (a) combined
kernel forms can be used to model nonstationary data characteristics, and (b)
collaborative learning can improve forecast accuracy or reduce data requirements
compared to independent site forecasts.

The four multisite models set out above are used to forecast output for each
site. These are compared to results under the site-independent and persistence
models. Models are trained for forecasting horizons from five to thirty minutes
at five minute intervals. The forecast target in each case is five minute average
power at that horizon. Models were trained using the first 60% of observations
(18 days). Forecasts were then generated for a test set of the following 40% of
observations (12 days) for each site.

All models are estimated via the sparse, variational approach described in
Sect. 2. Inducing points are initialised at cluster centroids and optimised within
the model. To illustrate the scalability of the approach, we use 2300 inducing
points for joint models, or approximately 2.4% of the data dimension. Maintain-
ing the same ratio, 63 inducing points per site were used for individual models.

3.1 Accuracy Metrics

Forecast accuracy is assessed for each site for each model using three mea-
sures: mean absolute error (MAE) in kilowatts, standardised mean squared error
(SMSE) and standardised mean log loss (SMLL), as defined in [21]. Specifically,

SMSE =
1

Nte

Nte∑

i=1

(
y − ŷ

σyte

)2

(12)

MAE =
1

Nte

Nte∑

i=1

|y − ŷ| (13)

SMLL =
1

Nte

Nte∑

i=1

(nlpdi − nlli), where (14)

nlpdi =
1
2

[

ln(2π) + lnσ2
ŷi

+
(

yi − ŷi

σŷi

)2
]

,

nlli =
1
2

[

ln(2π) + lnσ2
ytr

+
(

yi − μytr

σytr

)2
]

.
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Subscripts te and tr refer to training and test sets respectively and ŷ denotes
the predicted value of y. SMSE is standardised by reference to test set variance
σ2

yte
. Values less than one indicate the model improves on a simple mean forecast.

SMLL measures the (negative log) likelihood of the test data under the model,
denoted nlpd, relative to (negative log) likelihood under the trivial normal dis-
tribution with parameters (ytr, σ2

ytr
), denoted nll. More negative metric values

indicate better relative performance of the model.5

3.2 Results

Forecast Accuracy. Results at the site level suggest the site-independent
model performs as well as or better than the joint (pooled) model in terms
of average site accuracy (Fig. 1). SMSE for both the site independent and joint
models ranges from 0.05–0.12 over 5–30 forecast horizons, however MAE and
SMLL are consistently improved under the site-independent model over all fore-
cast horizons e.g. MAE of 0.14–0.26 kW versus 0.17–0.29 kW under site and joint
models respectively. The LCM specifications perform poorly on all measures rel-
ative to the joint and basic site-independent models. At all forecast horizons, the
better performing models (joint and site-independent) are more accurate than
the persistence benchmark.

Additional expressiveness in the kernel due to the more flexible linear lag
kernel structure does not significantly improve forecast accuracy in the joint or
LCM models, and in some cases tends to contribute to higher forecast variability
across sites (Fig. 1). Interestingly, the extended site-independent model performs
very poorly relative to other models, however forecast error remains fairly stable
over 10–30 min horizons. This result may indicate overspecification of this (very
flexible) kernel structure.

Estimation of Daily Power Curve. It is difficult to evaluate the current
approach as an alternative to those that require flattening the data without a
direct (flattened) benchmark for the given dataset. However, examining fore-
cast accuracy on clear6 days provides some insight into how the approach
accounts for clear sky curves. Table 1 summarises forecast accuracy under the
site-independent and joint model 1 specifications for clear (or mostly clear) and
cloudy days in the test set, which each represent 50% of the test data.

Forecast accuracy appears competitive on clear days, with mean MAE across
sites of 50 Watts on clear days at the five minute horizon, rising to 130 Watts
at the 30 min horizon. Given mean power for the full dataset set across clear
and cloudy days of 2.1 kW, MAE represents around 2.4 (6.2)% of mean power at

5 Note that SMLL does not apply to the non-probabilistic persistence model.
6 Clear days are defined as those where daily global horizontal irradiance (GHI) was
more than 90% of mean maximum daily GHI for the month of January. Measure-
ments are from the Adelaide (West Terrace) Australian Bureau of Meteorology
weather station. GHI for clear (cloudy) days ranges from 93–97 (36–90)% of the
mean January maximum.
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Fig. 1. Site forecast mean error and error variability
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Table 1. Mean site forecast accuracy on clear versus cloudy days

Model Horizon Clear days Cloudy days

MAE (kW) SMSE MSLL MAE (kW) SMSE MSLL

joint model 1 5 0.091 0.003 −2.01 0.253 0.051 −1.03

site-independent 5 0.050 0.002 −2.10 0.238 0.052 −1.04

joint model 1 10 0.100 0.005 −1.77 0.308 0.066 −0.89

site-independent 10 0.078 0.005 −1.88 0.311 0.077 −0.85

joint model 1 15 0.122 0.007 −1.65 0.340 0.076 −0.83

site-independent 15 0.096 0.006 −1.77 0.341 0.085 −0.78

joint model 1 20 0.150 0.009 −1.56 0.359 0.080 −0.81

site-independent 20 0.109 0.007 −1.69 0.361 0.093 −0.77

joint model 1 25 0.171 0.011 −1.49 0.378 0.085 −0.79

site-independent 25 0.124 0.008 −1.63 0.380 0.100 −0.75

joint model 1 30 0.184 0.012 −1.44 0.389 0.087 −0.78

site-independent 30 0.133 0.009 −1.59 0.390 0.103 −0.73

the 5 (30) min horizon. Similarly, SMSE of 0.002 to 0.009 (for site-independent
results) over 5 to 30 min horizons implies that average mean squared error is less
than one percent of total power variation on clear days.

Considering transfer learning more generally, it is relevant to note the better
performance of the joint model on cloudy days, which contrasts with the bet-
ter performance of the site-independent models on clear days (Table 1). On all
measures, the best performing joint model performs consistently better during
variable weather, while the opposite is true for sunny weather periods (not-
ing accuracy is significantly diminished for both models on cloudy days). This
suggests ‘negative’ transfer effects with respect to forecasting diurnal cycles,
while forecast errors are somewhat moderated during cloudy periods by the
joint model.

4 Discussion

The scalable, approximate Gaussian process methods appear to have significant
potential in the distributed forecasting setting. We are able to produce prob-
abilistic site level forecasts using a flexible, nonparametric method in a large
scale setting. Further, the approach seems to incorporate diurnal cycles within
an integrated model successfully without exogenous site information.

Gaussian process based models produce a strong level of accuracy on sunny
days for forecasts out to the 30 min horizon. Overall, however, accuracy of models
during cloudy conditions appears low. Given the absence of feature data beyond
location, time and output, however, it is possible accuracy can be substantially
improved (as in [16]) via inclusion of weather or other external data, including
site features where available.
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Overall accuracy of forecasts is not improved by jointly estimated models
(pooled and coregional) compared to site-independent models. Performance in
cloudy versus clear weather, however, illustrates that there may be potential for
transfer learning benefits during more variable weather.

One possible factor affecting model performance is the spatial covariance ker-
nel, which is a stationary function resulting in sites equally distant along a fixed
axis being assigned an equal covariance regardless of current weather direction.
Ideally, a spatial kernel would more specifically reflect current cloud velocity.
Further, the stationary kernel assigns higher weight to closer sites, which may
not be optimal as forecast horizons increase. A more refined kernel or adap-
tive model structure may thus assist in identifying relevant cloud-related data
features for transfer learning in a forecast setting.
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