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Abstract. Due to the huge costs associated with wind energy development, this
makes wind farms maintenance and production reliability are of high necessity
to ensure sustainability. The continuous evolution of turbines industry has a
serious impact on the operation and maintenance costs. Thus, monitoring wind
turbines performance and early deterioration prediction are highly required.
During the operational life of turbines, some components are persistently
exposed to extreme environmental influences that result in their edge erosion.
Sensors can be deployed in wind farms to detect such factors, where vast
quantities of incomplete, heterogeneous and multi-sourced data are rapidly
generated. Hence, wind-related data have been considered as big data that
necessitate the intervention of big data analytics for accurate data analysis,
which become severely hard to process using traditional approaches. In this
paper, we propose the Wind Turbine Erosion Predictor (WTEP) System that
uses big data analytics to handle the data volume, variety, and veracity and
estimate the turbines erosion rate, in addition to the total power loss. WTEP
proposes an optimized flexible multiple regression technique. Experiments show
that WTEP achieves high erosion rate prediction accuracy with fast processing
time. Thus, it effectively evaluates the accompanied percentage of power loss for
wind turbines.

Keywords: Big data analytics � Data mining � Regression analysis �
Association rules � Apriori. Principal component analysis � Wind farms
reliability � Wind farms maintenance � Erosion. Power prediction

1 Introduction

Wind energy has become a popular source of energy around the world, where its
development plants cost huge investments. This requires a keen management of their
economic efficiency to ensure higher yields for energy cost reduction [1]. The wind
turbine reliability is a critical factor in the success of a wind energy project, which
implicates reducing the expensive operation and maintenance (O&M) costs that affect
the project’s revenue [2]. During the wind turbine’s operation, some components,
principally the rotor blades, are continuously exposed to certain environmental con-
ditions over time, such as rain, temperature and sand. This results in the deterioration of
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the blade’s material surface and the increase of its surface roughness if unprotected,
leading to its erosion after an average of 2 years of turbines installation and to per-
formance decrease. This requires that in-service maintenance should be performed on
the turbine for at least 12 years of operation if it meets its design life, which results in
huge maintenance costs [3]. For significant erosion rates (5%–20%), O&M costs are
expected to be within $27–54/MWh. Rain erosion occurs during the processing of
turbines in heavy rain. During the high velocity of fallen liquid on a solid target, a high
pressure is developed between the solid and liquid, where it varies over many locations
[4]. On the other hand, sand erosion exists in the desert environments with the movable
dirt and airborne particles affecting turbines’ blades, which increase roughness and
decrease aerodynamic performance [5, 6]. The high temperature affects wind turbines
because the erosion rate increases when the viscosity of liquid reduces [7]. In addition,
the increase of wind speed and air density has a positive impact on power production.
However, when it exceeds 6 m/s over dry soils, it carries sand and dust towards
turbines, leading to erosion. Wind direction is highly effective as well if it is like the
sand direction. Whilst a slope that is greater than 20 m affects the angle between the
surface and sand/dust, resulting in surface erosion [8]. Sensors can be deployed in the
desired location of wind energy plants to monitor such environmental turbines erosion
causes, by collecting sensors’ data that could be heterogeneous and incomplete massive
data [9].

The nature of such wind energy data enforces the desperate need to utilize big data
analytics to handle such issues effectively. Big data refers to the collections of so huge
and heterogenous datasets that are critically sophisticated to process using customary
approaches [10]. This is due to the mainly characterized 4Vs of big data, representing
Velocity, Veracity, Variety, and Volume. Big data analytics refers to the usage of
advanced analytic techniques against these 4Vs [11]. Wind farm engineers can use big
data analytics to manage the risks in order to achieve production goals and recommend
activities to address shortfall detected [12]. Thus, the prediction of erosion rate is an
efficient way to manage the cost impacts of wind farms through the power usage
prediction and the achievement of the supply on demand concept.

In this paper, we introduce the Wind Turbine Erosion Predictor (WTEP) System
that uses big data analytics to handle the data volume, variety, and veracity in order to
predict turbines’ erosion rate. WTEP is built on the top of Trio-V Wind Analyzer
system, which is a generic integral system that analyzes the land suitability of a
potential location and recommends a distribution layout design, in addition to power
prediction using big data analytics prior to wind farms development. WTEP can predict
the erosion rate and evaluate its resultant power loss at any spatial region under study
based on its environmental factors data rather than other customizable studies. The
remaining parts of the paper are organized as follows: Sect. 2 overviews the related
works in wind farm reliability, data reduction and power prediction in the wind energy
domain. Section 3 presents the proposed system, with a detailed discussion of its
architecture. Section 4 explains the experimental approach and the study area. Sec-
tion 5 discusses the different applied experiments and the associated results. Lastly,
Sect. 6 summarizes the conclusion and the future work.
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2 Related Work

2.1 Wind Farm Reliability Approaches

Many researches have considered analyzing wind turbines data to maintain wind
plants. Most of these studies were done to ensure the reliability of wind farms through
extracting the failure history of wind turbines and monitoring their status in order to
reduce downtime and increase availability. Authors in [13] monitored the performance
of wind farm turbines to detect their downtimes by integrating SCADA system with the
turbine’s control system and controlling the detected turbines to manage the require-
ments of power consumption and turbine efficiency. In [14], a platform was developed
using the National Reliability Database for turbines’ failure detection. Another platform
in [15] aimed to discover the hidden patterns in the turbine statuses using the random
forest multiclass classification model. SCADA monitoring system was considered in
[16] to detect failures by applying an anomaly detection technique. In [17], SCADA
data were used to classify the failure events of turbines into severity categories and
apply a statistical methodology for each category to decide the wind farm reliability.
Since the previous researches have tackled the problem from the engineering per-
spective, a minimal research effort was dedicated for analyzing the operational and
environmental data of wind turbines to raise their performance and reduce the asso-
ciated maintenance costs. Moreover, most of these studies were poor to process scal-
able and variable data, since SCADA data are static with a specific format.

2.2 Data Reduction Techniques

Traditional data mining techniques were investigated to fit big data processing. Near
Filter Classifier (NFC) upgrades K-Nearest Neighbor (KNN) classification by adding a
dimensionality reduction step [18]. It computes the class distribution per every dataset
parameter, then sorts the parameters by the calculated value. In [19], Parallel pro-
cessing was used in the decision tree data mining technique to mine a huge amount of
data streams. In addition, “Scalable Advanced Massive Online Analysis (SAMOA)”
technique used parallel processing with distributed decision trees for data mining
classification over big data [20]. Another upgrade was applied to reduce big data
volume using parallel processing by applying K-means on several nodes and com-
bining the results [21]. Although these researches were dedicated to reducing data
volume, but they were poor to reach high accuracy that doesn’t exceed 60%, with high
processing time that reaches 100s with five neighbors [18]. This is in addition to the
extra communication time between nodes in the parallel processing approaches, which
leads to excessive processing time [19].

2.3 Prediction Techniques for Wind Energy

Several prediction techniques were dedicated for wind energy domain. In [22], the
weather prediction used genetic programming. The wind speed and generated power
were predicted in [23] using a fuzzy expert system. Artificial neural networks were
used in [24] to predict electrical power generated from wind farms. However, such
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prediction techniques have just reached 85% accuracy [22] and 20% error rate [24].
The fuzzy system consumes much processing to learn the model that cannot fit big data
processing [23].

The contributions in this proposed research can be summarized as follows. (1) We
propose the Wind Turbine Erosion Predictor (WTEP) as an integral system for pre-
dicting the erosion rate of wind turbines from the data analytical perspective to decrease
turbines failure rate. (2) It uses big data analytics to handle wind turbines data volume,
variety and veracity, where Double-Reduction Optimum Apriori (DROA) approach is
proposed. (3) It presents a new Optimized Flexible Multiple Regression (OFMR)
approach to fit big data processing to predict wind turbines erosion rate, taking into
consideration the different affecting environmental factors that can be adapted and
generalized to wherever the study area is located. Hence, it can fit to evaluate any wind
farm irrespective of its location rather than any customized systems to study certain
territories, which is one of the main strengths of this proposed system. (4) It predicts the
power loss accompanied by the predicted erosion rate.

3 The Proposed Solution

In this section, we present the proposed Wind Turbine Erosion Predictor (WTEP)
system. As shown in Fig. 1 representing the system architecture, WTEP is developed in
accordance with Trio-V Wind Analyzer system to achieve WTEP functionalities. The
study presents the complete work of the proposed system, providing its architecture, the
detailed explanation and implementation of all its components, and the associated
experimentations. WTEP deals with the data layer managing the factors data of wind
farms, in addition to the presentation layer that is connected to the sensors and Google
map to manage the user selections and to display the analytical results plotted on the
map or generated in reports. WTEP works as shown in Fig. 2. The system user
determines the wind farm location and the reduction method to apply on the sensed
factors data. WTEP collects the factors data from the sensors in the defined location
and then manages their biases and noises using the Variety-Veracity WA Handler [25].

Next, the selected reduction method is applied on the data using the Volume WA
Handler. The resultant processed data is then used to analyze the erosion rate and
evaluate the associated power loss using Trio-V Power Loss Analyzer in a detailed
report, showing each cell with its corresponding erosion and power loss rates. Data
velocity, in terms of data processing in the form of a stream, is not handled in this
system since it doesn’t require real-time processing. Sensors data are accumulated in
the data layer, taking into consideration the time representation of data as another data
dimension for offline processing and analysis, where the collected data are strongly
related to the recording time. Thus, a data stream handler is not required. The main
components of WTEP are further explained hereinafter.

3.1 Presentation Layer

This layer provides the User Interface (UI) of the system, which enables the user to
determine the wind farm’s location and collect the associated environmental factors’
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data from the deployed sensors. It then divides the land into cells of equal size as per a
user-defined cell size parameter. In addition, it allows the user to choose a reduction
method to manage the huge size of data. Finally, WTEP prediction results are displayed
in a detailed report with the suitable graphs per cell, visualizing the expected erosion
rate and the corresponding predicted power loss rate.

3.2 Trio-V Wind Analyzer Application Layer

This layer handles the huge Volume, Veracity and Variety (Trio-V) features of the
collected environmental factors’ data, which are generated from the sensors deployed at
the land under study. Then, it evaluates the suitability of this land to establish a wind
farm and suggests a distribution layout for the turbines. The main components are
explained as follows.

Variety-Veracity WA Handler. This module manages the biases and noise detected
in the sensors data while considering its big data nature. It validates the data quality and
data inconsistencies before storage into the data layer through several data cleansing
processes, including noisy data deletion and filling in missing data with the mean value.

Fig. 1. The proposed system architecture
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Fig. 2. Wind Turbine Erosion Predictor (WTEP) system flowchart
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Encoding-decoding processes are considered as well to transform specific factors’ data
into a certain format to be processed [25].

Volume WA Handler. The deployed sensors generate enormous amounts of data.
Thus, this module applies the reduction method that has been selected from the pre-
sentation layer. The data layer structure includes different environmental factors to
identify each cell, where each factor has excessive amount of data per one cell. WTEP
provides several alternative reduction methods merged from different reduction tech-
niques to apply on the cells’ factors data. Some of these techniques are responsible for
reducing the number of cell factors used for analytics, like Principle Component
Analysis (PCA) and Association Rules (ARs) (i.e. column reduction), while others
reduce the amount of cell data, like aggregations. PCA is a data reduction technique
that uses a mathematical approach to reduce many correlated parameters into a small
set of uncorrelated parameters called principal components (PCs). WTEP uses the
correlation approach to match the resultant PCs to their corresponding factors in the
original dataset by calculating the correlation coefficient between every PC(x) and each
factor (y) in the original data using Eqs. (1), (2), (3), and (4) [26]. The factor having the
highest correlation coefficient represents the PC.

Sxx ¼
X

x2 �
P

xð Þ2
n

ð1Þ

Syy ¼
X

y2 �
P

yð Þ2
n

ð2Þ

Sxy ¼
X

xy�
P

xð Þ P
yð Þ

n
ð3Þ

CorrelationCoff ¼ Sxyffiffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

p ð4Þ

Where n represents the number of records for the cell’s factors, x represents the
resultant PC; and y is the cell’s factors data needed to be reduced [26]. The higher the
result means that this PC is most correlated to this factor. As for the ARs, we enhanced
the original version of the Apriori technique to fit the big data processing by intro-
ducing our optimized Apriori algorithm named “Double-Reduction Optimum Apriori”
(DROA) to extract the most informative relationships between the factors using the
criteria of support and confidence according to Eqs. (5) and (6) [27]. The proposed
DROA ARs optimizes the Apriori algorithm to support big data volume by applying
two phases before running the basic Apriori; (1) using database scanning time
reduction that saves a screenshot of the desired transactions between erosion factors
related to a certain area in a supportive map data structure, which decreases the tra-
ditional Apriori processing time. (2) Using transactions reduction that reduces trans-
actions by discarding the unsuitable ones that violate erosion values constraints [25].
This allows DROA ARs to work efficiently on a huge number of transactions.
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Supporti ¼
FPi
TFP

ð5Þ

Confidence ðA ! BÞ ¼ supportðA[BÞ
supportðAÞ � 100 ð6Þ

Where supporti is the support of the ith factor, FPi is the number of times the ith
factor is found, and TFP is the total number of factors found. Confidence (A ! B)
represents the confidence of occurrence; if A occurs, then B will occur too. For more
processing efficiency, WTEP allows merging several approaches of reduction methods
to additionally reduce data. Thus, the reduction alternatives are: Aggregation functions
only, Aggregation followed by PCA, Aggregation followed by DROA ARs, PCA
followed by Aggregation, or DROA ARs followed by Aggregation. For instance,
aggregation only would be sufficient for small datasets, whereas DROA ARs and PCA
are more appropriate for huge datasets.

Trio-V Wind Analyzer Engine. This module is the core of Trio-V Wind Analyzer. It
uses big data analytic techniques to perform land suitability analysis for wind farms
prior to development. Trio-V determines land suitability through evaluating its envi-
ronmental factors. Upon the positive evaluation, Trio-V Wind Analyzer recommends
the optimum wind farm design that avoids the wake effect problem of turbines and
maximizes the generated power by suggesting the suitable turbines’ specifications and
their distribution layout depending on the analyzed factors of the potential location.
Accordingly, it then predicts the expected generated power from this recommended
design [25].

3.3 Wind Turbine Erosion Predictor (WTEP)

This module explains the main WTEP functionalities in the following sub-modules:

Trio-V Erosion Rate Analyzer. This module is responsible for determining the ero-
sion rate per one turbine for each land cell by evaluating specific environmental factors;
rain, sand, wind speed, slope, wind direction, air density, and temperature [4–7, 33].
These environmental factors have variable values over time per year, where severe edge
erosion can be caused if certain thresholds were exceeded as clarified in Table 1. WTEP
considers the influence of such variance of values on erosion. For example, the dust
storms could be very erosive compared to daily wind. However, the continuous direct
exposure of everyday wind can even affect turbines erosion. Thus, all variances of the
different factors are considered in the data analytics process to determine the erosion rate
with an acceptable accuracy. WTEP aggregates all the previous erosion factors data from
the collected sensors data for each cell at the potential land under study. Since WTEP
processes one turbine at a time, the number of installed turbines per land cell is not
considered as a factor in the erosion rate analysis. The Trio-V Erosion Rate Analyzer
module estimates the erosion rate using our proposed Optimized Flexible Multiple
Regression (OFMR) technique, which is an enhanced flexible form of the original
multiple regression technique to support big data volume by considering a dynamic
number of predictors, whereas the original multiple regression analysis is a statistical
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technique for analyzing relationships between factors using multiple predictors in fixed
prediction equation parameters [28]. The following model in Eq. (7) shows the multiple
linear regression model with K predictor variables.

Y ¼ B0 þB1X1 þB2X2 þ . . .: BKXK ð7Þ

Where parameter B0 is the intercept of this plane, while “Y” is the unknown value
to be predicted, and parameters B1, B2 … BK are referred to as regression coefficients
[29]. OFMR supports big data volume by considering a dynamic number of predictors.
It can build the model depending on the considered erosion factors based on the land
under study, which are additionally reduced in the Volume WA handler, rather than
building one fixed model based on all factors. Therefore, OFMR ensures more accurate
results than traditional multiple regression technique, where the erosion rate “Y” is
correlated only to the existing factors from Volume WA handler. OFMR consumes less
processing time due to the flexibility in building the model with any number of pre-
dictors. It handles the biases and noise detected in the sensors data by ensuring data
quality before building the model using the Variety-Veracity Handler. Thus, OFMR
manipulates the overfitting problem in the traditional multiple regression model.
Moreover, the factors’ values that are less than the erosion constraint thresholds will be
ignored by the OFMR regression model. These features made WTEP adapted and
generalized to evaluate any wind farm irrespective of its location, taking into consid-
eration the different affecting environmental factors that would be associated by this
location.

Trio-V Power Loss Analyzer. Leading edge erosion poses a major threat to the
performance of wind turbines. The modeling of power output per one turbine is a trivial
approach that assumes static wind parameters. However, a turbine’s status is incon-
stant, due to the erosion factors and wind parameters like wind speed, and air density
that continuously change and affect the turbine’s status [30]. This module allows
WTEP to evaluate the power loss rate according to the predicted erosion rates resulted
from Trio-V Erosion Rate Analyzer. Power loss prediction is performed by applying a
single linear regression technique using the predicted erosion rate value. Single
regression analysis explores relationships statistically, containing one predictor as
shown in Eq. (8) [31].

Table 1. Erosion factors constraints

Factor Erosion values constraint

Rain >100 mm
Sand 1–200 lm
Steel temperature >160°
Wind Speed >6 m/s
Slope >20
Wind direction –

Air density –
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Y ¼ B0 þB1X ð8Þ

Where “Y” is the power loss rate; “X” is the resultant erosion rate; B0 is the
intercept of this plane; and B1 is the regression coefficient.

4 Case Study Area

Egypt climate is affected by several factors, including its position that lies between
Africa and Asia [32]. These factors give Egypt a hot and sunny weather, with a very
low humidity. The erosion factors value at the main areas in Egypt are presented in
Table 2 [33, 34]. As for the wind direction and air density, their values are continu-
ously changing during the year.

5 Experimental Results and Evaluation

WTEP has been developed using JAVA, MS SQL Server and APIs to some scientific
libraries and external components. Experiments were held to evaluate WTEP from two
points of view: the big data processing efficiency and wind analytics accuracy. Hence,
the experimentation is categorized into: the erosion and power loss rates prediction
accuracy, and the associated processing time versus the different reduction methods to
emphasize that the proposed data reduction and prediction techniques are suitable for
big data analysis, supported by a comprehensive comparison with the relevant existing
state-of-arts. The evaluation was demonstrated on a machine having core i7, 2.70 GHz,
1T hard disk space, and 8 GB RAM. OFMR prediction accuracy is evaluated using the
Root Mean Square Error (RMSE) as per Eq. (9) [29]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
xi � yið Þ2

r
ð9Þ

Where “N” is the number of data points, “xi” the original observed value and “yi” is
the predicted value corresponding to the current original data point “xi”. RMSE values
vary from 0 to 100 in order to be mapped to percentages, in which the smaller values
indicate higher accuracy. RMSE values that are within (0–10) represent an accuracy
from 90% and above. A sample of the experimental results of Red Sea area are
discussed hereafter, since it is one of the potential areas in Egypt for wind plants. Three
dataset sizes are used; small dataset D1 with 100,000 records, medium dataset D2 with

Table 2. Erosion factor values at egyptian areas

Area Sand particles Rain Temperature Wind speed Slope

Western desert <170 microns 20 mm 36 °C 5.3 m/s 32 m
North coast <120 microns 196 mm 20 °C 6.2 m/s 18 m
Red sea <80 microns 2.3 mm 30 °C 8 m/s 27 m
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2,2500,000 records, and large dataset D3 with 5,750,000 records. The average tem-
perature is 30 °C with 4 °C variation during winter. The rainfall is low, averaging
2.3 mm per year with average speed 8 m/s, air density equals to 1.2 kg/m3, and slope
of 27 m. Red Sea area has occasionally dust storms as well [32]. The values of erosion
factors differ depending on the measurement height, representing the height at which
the values are detected and recorded. Thus, each dataset is tested for three turbine scale
heights; 80, 50 and 30, representing the standard turbines’ hub heights in the market.
DROA ARs is investigated at confidence and support thresholds: 0.3, 0.5, 0.7 and 0.9,
whereas PCA is studied at K-values: 5 and 3. These values have been configured as per
many trials of experimental preparation, where their fair representation has been proven
to the remaining values.

5.1 Erosion Rate Accuracy vs. Reduction Methods

Previous researches have considered wind farms reliability from the technical fault
prediction perspective. In [13], 90% system availability has been achieved using
SCADA data monitoring. Random forests data mining was used in [14] to predict
turbines’ failures with 8.3% error rate. Authors in [15] considered anomaly detection
algorithms to detect turbines failures with 90% accuracy. In [24], 88.84% of failures
were detected in a detection system of turbine failures using SCADA data. Despite of
these previous researches, but they predicted the failures of turbines. To the best of our
knowledge, WTEP is the first data analytical system that predicts turbines erosion and
power loss rates using big data analytics. Thus, experiments were carried out to
evaluate the big data processing efficiency by studying the RMSE results of the erosion
rates prediction using OFMR over the different reduction methods. As shown in Fig. 3
for the RMSE results of the three datasets over WTEP reduction methods, the erosion
prediction RMSE decreases as the dataset size increases.

Table 3 summarizes RMSE results over D3, representing the largest dataset. The
aggregation only has the most accurate results due to the complete number of factors
used, then DROA ARs with a reasonable accuracy results, and PCA has the least

Fig. 3. Erosion prediction RMSE vs. reduction methods
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accurate results. Applying DROA ARs or PCA followed by aggregation, the erosion
rate prediction error is 10% less than using aggregation first then DROA ARs or PCA,
since the erosion rate is calculated from the correlated results generated from DROA
ARs or PCA rather than working on all the factors.

5.2 Power Loss Rate vs. Erosion Rate

For the wind analytics evaluation, WTEP have traced the resultant power loss rate over
several erosion rate values per three different areas (Western Desert, Red Sea and North
Coast) for the largest dataset D3. The higher erosion rate, the more power loss rate as
shown in Fig. 4, where each line style represents the erosion rate values interval at a
certain area. Erosion rates exceeding 45% represent a major threat to the power pro-
duction process, as it leads to 30% and more power loss. Figure 3 proves that the
erosion rate is high at the Western Desert that reaches 48% and North Coast with 33%
due to the increase of sand and fallen rain respectively, whereas a normal erosion rate at
Red Sea reaches 17%.

5.3 Processing Time vs. Reduction Methods

Evaluating the big data processing efficiency, WTEP processing time is tested at the
different reduction methods for the three datasets as presented in Fig. 5. The processing
time increases by enlarging the dataset size. Table 4 shows the results over D3, where

Table 3. Erosion rate prediction at D3

Agg. 
Only

ARs+ 
Agg.

Agg. + 
ARs

PCA + 
Agg.

Agg. + 
PCA

RMSE 4.2 < 5.5 < 6.2 < 6.5 < 7.3

Fig. 4. Power loss rate vs. erosion rate
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the largest data can judge the processing time efficiency. The aggregation only con-
sumes the highest processing time due to working on all factors to predict the erosion
rate, in contrast to DROA ARs since it works on a less number of factors. The lowest
processing time is consumed by PCA. Moreover, using the aggregation first then
DROA ARs decreases the number of factors, which reduces the processing time by
20% rather than that of aggregation only that uses all factors in processing. Apply-
ing PCA then aggregation, the processing time is 25% less than that of aggregation
followed by PCA and 40% less than that of aggregation only. Decreasing K-value by 2,
the processing time is reduced by average 2 s. On the other hand, increasing the
confidence and support values by 0.2 reduces the processing time by average 3 s,
because of reducing the number of factors used for processing.

6 Conclusion

Many researches have considered wind farms reliability evaluation to manage their
operation and maintenance costs from the engineering viewpoint. In this paper, we
introduce Wind Turbine Erosion Predictor (WTEP) system for predicting the erosion
rate of wind turbines from the data analytics perspective to minimize turbines failure
rate. WTEP proposes a novel Optimized Flexible Multiple Regression (OFMR)
approach for erosion rate prediction that fits big data processing. In addition, it applies a
new approach for big data volume handler using Double-Reduction Optimum Apriori
(DROA). The Variety-Veracity Handler ensures data quality used for turbines erosion

Fig. 5. Processing time vs. reduction methods

Table 4. Processing time over reduction methods

D3
Agg. 
Only

ARs
+ Agg

Agg.
+ ARs

PCA
+ Agg.

Agg.
+ PCA

16 < 11.2 < 12.7 > 8.2 < 11
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analysis and power loss prediction. Experiments were performed to evaluate big data
processing efficiency and wind analytics at several areas in Egypt, where OFMR
reaches >90% in efficient processing time. DROA ARs generates reasonable accurate
results in less processing time. The experiments held on the Egyptian locations datasets
confirm that the lowest erosion rate is at Red Sea. Our future work is to consider the
economic models of wind farm profitability using big data analytics.
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