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Abstract. The energy yield estimation of a photovoltaic (PV) system
operating under partially shaded conditions is a challenging task and
a very active area of research. In this paper, we attack this problem
with the aid of machine learning techniques. Using data simulated by
the equivalent circuit of a PV string operating under partial shading,
we train and evaluate three different gradient boosted regression tree
models to predict the global maximum power point (MPP). Our results
show that all three approaches improve upon the state-of-the-art closed-
form estimates, in terms of both average and worst-case performance.
Moreover, we show that even a small number of training examples is
sufficient to achieve improved global MPP estimation. The methods pro-
posed are fast to train and deploy and allow for further improvements in
performance should more computational resources be available.

Keywords: Gradient boosting · Solar energy · Photovoltaic (PV)
system · Maximum power point (MPP) · Partial shading · Machine
learning

1 Introduction

The photovoltaic (PV) penetration has remarkably increased worldwide the last
decades, with several applications ranging from rooftop and building-integrated
systems to MW-scale power plants. Especially in the former cases installed in
urban environments, the operating conditions are often non-ideal with surround-
ing obstacles casting shadows on the PV system, leading to non-uniform illu-
mination. Under such conditions, the power-voltage (P-V) characteristic curve
presents several local maximum-power-points (MPPs), a situation that hinders
the effective tracking of the global MPP which provides the maximum power
output. This phenomenon, commonly referred to as partial shading, has gath-
ered the interest of researchers lately due to its non-linear nature and strong
effect on the energy yield of the PV system.
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There are several PV models in the literature, varying in terms of accuracy,
complexity and scope of application, classified into two generic categories: the
circuit-based models and the heuristic methods. The former models have strong
theoretical foundation and can provide any needed information, but require
tedious simulations of complicated circuits. The latter approaches, on the other
hand, are simpler and provide directly the global MPP, but generally suffer
from lower accuracy [2]. In PV energy yield studies, there is a need for a fast
and reliable method to easily calculate the maximum power of the PV system
at numerous different scenarios; in these applications, the heuristic alternatives
seem more appropriate.

According to [2], these methods can be further classified to: (a) Empirical
efficiency-based models which are derived from empirical observations and have
simple formulation, but exhibit moderate accuracy due to their weak theoret-
ical background [4,8,18]; (b) Explicit mathematical equations that are based
on the equivalent circuit and provide all local MPPs, presenting good aver-
age accuracy in principle, yet occasionally high estimation errors [3,13,17]; and
(c) Artificial Neural Networks (ANN) trained on the actual data of the study-
case PV system which provide adequately fast execution and probably the best
estimations [9,14].

Even though several applications of machine learning algorithms are reported
in the literature for the simple uniform illumination case [10], the relevant
research for partial shading conditions is still limited to only the two afore-
mentioned studies [9,14]. As an alternative, we investigate in this paper gradient
boosting [11,12] models trained on data generated from the equivalent circuit.
In the following, three gradient boosting models are implemented and evaluated
across a wide range of operating conditions, concluding to very interesting and
promising results. This is the first paper in the literature to apply this method
in PV energy forecasting under partial shading.

2 PV Power Generation Under Partial Shading

2.1 Main Concepts and Examples

The smallest commercially available PV unit is the module (or panel). Usually
several PV modules are connected in series to form a string in order to produce
appropriate levels of voltage and power output. A typical PV string composed
by 12 modules is depicted in Fig. 1 [TOP], operating under partial shading con-
ditions (common case of two different irradiance levels). Based on the notation
of [1,3], 10 out of 12 modules are unshaded and illuminated at full irradiance
G = 800 W/m2 (or 0.8 per unit (pu)), whereas the 2 remaining shaded mod-
ules are subject to half the irradiance (shading ratio s = 50%); this corresponds
to a shadow extent of nsh = 2/12 = 0.17. Common temperature T = 45 ◦C is
assumed across the entire string, as usually the temperature difference between
the shaded and unshaded part is small [3]. In the general case, the operating
conditions of a PV string partially shaded at two different irradiance levels are
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Fig. 1. [TOP] Topology of a PV string consisting of 12 PV modules connected in series,
2 of them being shaded at 50%. [BOTTOM-LEFT] Respective P-V curve indicating the
2 local maxima: MPP1 and MPP2. [BOTTOM-RIGHT] Electrical equivalent circuit.

uniquely identified by the vector [G,T, s, nsh], which in this example equals to
[0.8, 45, 0.5, 0.17].

The P-V characteristic at partial shading conditions presents up to two local
MPPs (or power peaks), as illustrated in Fig. 1 [BOTTOM-LEFT] for this par-
ticular scenario. These two MPPs are studied and characterized as MPP1 and
MPP2 in [3,16], as they exhibit different behaviour and dependence on the oper-
ating conditions. Only one of them or both (most often) may appear and the
power peak that provides the maximum power is denoted as the global MPP.
This corresponds to either MPP1 or MPP2 depending on the scenario (MPP1
in Fig. 1), so determining its power Pmax and voltage VPmax

is not a trivial task.
To generate this P-V curve, one has to adopt an electrical equivalent cir-

cuit, modelled and simulated in appropriate software (e.g. MATLAB/Simulink).
According to the PV modelling theory, the equivalent circuit of this system is
described by Fig. 1 [BOTTOM-RIGHT] [1,3]. Each part of the string, shaded
and unshaded, is modelled using the single-diode equivalent and a bypass diode,
the respective circuit parameters being 11 in total and strongly dependent on
the operating conditions [1]. Calculating the maximum power according to the
circuit-based models, involves the laborious steps of (i) extracting these para-
meters at STC 1, (ii) translating their values to the actual conditions and (iii)
simulating a highly non-linear circuit. These procedures are tedious and time-
consuming, thus they are more suited for research, rather than practical appli-
cations [2].

2.2 Closed-Form Equations

Among the heuristic methods mentioned in the Introduction, the closed-form
equations introduced in [3] and further improved in [17] are considered here, as
1 Standard Test Conditions: 1000W/m2 irradiance, 25 ◦C temperature & 1.5 air mass.
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they are shown to outperform other explicit mathematical approaches. These
are probably the best candidates to be compared against the machine learning
models investigated in this paper. For completeness, these expressions are given
in Eq. (1) –more details can be found in [3,17]. Given the conditions [G,T, s, nsh],
the system structural characteristics (PV module datasheet information Vmp0,
Imp0, Voc0, αImp, βVmp, βV oc, total number of modules Ntot, voltage drop on
the bypass diode ΔVD = 1.0 V) and the empirical coefficient λ = 0.06:

MPP1 :

⎧
⎪⎨

⎪⎩

V1 = Ntot[(1 − nsh)V T
mp + nshΔVD]

I1 = GITmp

P1 = V1I1

MPP2 :

⎧
⎪⎨

⎪⎩

V2 = Ntot[(1 − nsh)(sV T
mp + (1 − s)V T

oc) + nshV T
mp]

I2 = sITmp[1 + λ(1 − nsh)]
P2 = V2I2

(1)

where ITmp = Imp0[1 + αImp(T − 25)], V T
mp = Vmp0[1 + βVmp(T − 25)] and

V T
oc = Voc0[1 + βV oc(T − 25)]. Although these expressions yield in general fairly

acceptable average accuracy, in some cases they exhibit high errors, as observed
in [3] and further verified in this paper. This motivates an alternative approach
with machine learning models, which, once trained, could give a better estimate
of the global MPP in a similarly straightforward and cost-efficient way.

3 Gradient Boosting Models for MPP Prediction

We simulate the behaviour of the circuit of Fig. 1 generating examples of input
[G,T, s, nsh] and output [P1, V1, P2, V2, Pmax, VPmax

] vector pairs –note that we
also include the ‘intermediate’ outputs of the local MPP1 & MPP2 power-voltage
pairs, (P1, V1) & (P2, V2), respectively. Using these examples, we train regression
models to predict the values Pmax & VPmax

. The goal is to better approximate
these quantities than the closed-form estimates of Eq. (1).

In machine learning terminology, this is a multi-output regression problem.
Normally, we would like to take into account the covariance of the targets in
our model. In this work, we start with the simpler approach of modelling the
individual targets independently2, i.e. we train multiple single-output regressors.

There are many possible choices of regression algorithms to use. As a reliable
off-the-shelf learning meta-algorithm, gradient boosting [11,12] was chosen, as
its variants have proven very successful in large scale experimental comparisons
of learning algorithms [6,10], industrial applications [5,19] and competitions [7]
alike –often outperforming other powerful kernel-based or deep learning methods.

More specifically, deep learning methods tend to be outperformed by gradient
boosting on tabular data –as is the case here. The problem here is not expected to
2 Initial attempts at exploiting interactions between Pmax & VPmax by first predicting

the value of one and then using it to predict the other, yielded worse results than
assuming independence. Their further investigation is left for future work.
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be particularly noisy; another reason to expect boosting to be good at modelling
it. Compared to kernel-based methods, like Support Vector Machines (SVMs),
that shift the computational burden from the number of features to the number
of examples, gradient boosting is computationally preferable in our task, since
the feature space is considerably smaller than the number of examples.

Furthermore, gradient boosting constructs models that can be more easily
interpreted than those of the aforementioned methods. For example, allowing for
better approximations to Eq. (1) to be derived as closed-form formulas. Finally
and perhaps more importantly, gradient boosting has relatively few hyperpara-
meters to tune compared to the aforementioned methods, the most important
being the ensemble size M and the complexity of its base learner. Very recent
research [20] suggests that the higher both of these are, the better the ensemble’s
generalization behaviour (although the computational cost increases).

Gradient boosting constructs an ensemble of M additive components (base
learners) in a forward stagewise manner; it allows for the optimization of arbi-
trary differentiable loss functions (here quadratic loss). In each stage a base
learner (here regression tree) is fit on the negative gradient of the given loss func-
tion. The final output, i.e. the estimate X̂ of the target variable in question3 in
each case, will be a weighted linear combination X̂ =

∑M
m=1 amfm(G,T, s, nsh)

of the M base learners’ outputs, each of which –being a regression tree– is a
piecewise linear function fm(G,T, s, nsh) of the inputs. The weights am and the
additive components fm are learned form the data.

In the remainder of this section, we shall discuss the three different models
we will compare against the closed-form estimation. The models will differ in
what target outputs X̂ they estimate, and how they combine them to predict
the global MPP (Pmax, VPmax

).

3.1 Direct Modelling of MPP

First we take a direct approach to learning a model for predicting the global MPP
(Pmax, VPmax

). We simply train a regressor to map input vectors [G,T, s, nsh]
to Pmax and another to map them to VPmax

independently, without making use
of the local MPP1 and MPP2. We will henceforth refer to this as the ‘Direct ’
approach. Note that as the two constituent regression tasks are independent,
they can be parallelized to reduce the computational cost.

3.2 Stagewise Modelling of MPP

Next we take a 2-stage approach for predicting the global MPP. We train four
regressors: one to map input vectors [G,T, s, nsh] to each of the ‘intermediate
outputs’ P1, V1, P2 & V2. In other words, we first model the MPP1 and the
MPP2 independently (and in each case Pi independently of its corresponding
Vi). Then, we predict Pmax & VPmax

by

3 As we will see in this section, X̂ can be an estimate of Pmax or VPmax , or of any of
the ‘intermediate outputs’ –P1, V1, P2, V2– depending on the method.
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global MPP :

{
Pmax = max{P1, P2}
VPmax

= {Vi∗ : i∗ = arg maxi∈{1,2} Pi}.
(2)

Note that in some scenarios a single power peak appears (MPP1 or MPP2),
rather than both. In these cases, we disregard these examples for the purpose of
training models to predict P2 & V2 or P1 & V1, respectively. By this approach,
which we shall call ‘Stagewise’, we encode more domain knowledge in our model
about the structure of the targets: there exists at least one MPP and at most
two, each of which has different characteristics and the global MPP is the max-
imum of the existing ones. Again, since the four constituent regression tasks are
independent, they can be parallelized to reduce computational costs.

3.3 Classifier-Assisted Stagewise Modelling of MPP

As we will see in the experimental section, the Stagewise approach achieves very
low error on the intermediate estimates of P1, V1, P2 & V2 and also on Pmax.
Yet, its estimates of VPmax

–even though much better than those of both the
closed-form ones and the Direct ones– seem to not be on par with those of all
other target quantities. This seems to stem from situations in which P1 & P2 are
very close. When this happens, a small estimation error on either of these can
lead us to select the wrong Pi as the Pmax. The resulting error on Pmax will still
be small (the values of P1 & P2 being very close), but by choosing the wrong Vi

as the VPmax
, the error on VPmax

is high.
Motivated by this, the final approach we shall examine is a variant of the

Stagewise method, where the selection of the global MPP (Pmax, VPmax
), is not

based on the comparison of the predicted values of P1 & P2, but is instead decided
by a binary classifier trained to predict whether an input vector [G,T, s, nsh]
leads to MPP1 or MPP2 being the global MPP. To get the label of each exam-
ple, it is sufficient to compare if P1 > P2, in which case MPP1 is the global
MPP, otherwise it is MPP2. Based on the classifier’s prediction, we pick the
appropriate Pi & Vi pair calculated by the regressors as the Pmax & VPmax

,
respectively. The classification subtask is accomplished by training a gradient
boosting ensemble of decision trees4. We call this method ‘StagewiseC ’. As with
the previous approaches, to reduce computational costs we can parallelize the
training of all 5 predictors.

4 Experimental Investigation

4.1 Experimental Setup

We generated 94905 examples from the circuit shown in Fig. 1, considering irra-
diance G = [0.1 : 0.05 : 1.0] pu, temperature T = [−5 : 5 : 65] ◦C, shade ratio
4 Denoting MPP1 & MPP2 with ‘1’ & ‘−1’, respectively, the classifier’s prediction is of

the form Ĥ = sign
[∑M

m=1 amhm(G,T, s, nsh)
] ∈ {−1, 1}, where hm(G,T, s, nsh) ∈

{−1, 1} is the prediction of the base learner added on the m-th round and am its
voting weight, both the learner and am being the learned parameters of the model.
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s = [0.1 : 0.1 : 0.9] and shade extent nsh = [0 : 1/36 : 1]. The examples consist of
input vector [G,T, s, nsh] and output vector [P1, V1, P2, V2, Pmax, VPmax

] pairs –
where we also included the ‘intermediate’ outputs of MPP1 and MPP2. On each
example, we also provide the closed-form estimate for P1, V1, P2 & V2, along
with the resulting final Pmax and VPmax

by evaluating Eq. (1). We compare the
estimate of the learned models described in Sect. 3 to the closed-form ones. As
ground truth, we consider the true outputs of the circuit.

All learners, unless otherwise specified, were gradient boosting ensembles of
size M = 1000 trained on a 75% of the data chosen uniformly at random and
evaluated on the remaining 25%. Regression trees were chosen as base learners
for the regression subtasks, and for the classification step of StagewiseC, we used
a decision tree. In all cases, the trees had a maximum depth of 3. All remaining
hyperparameters were left to the default values of scikit-learn5.

To evaluate the quality of the estimates (both learned models’ and closed-
form ones), for each target quantity X, we calculate on the test set the normalized
root-mean squared error of the predictions X̂,

NRMSE =
√

∑

n

(Xn − X̂n)2
/

μX ,

that uses as normalization factor the mean of quantity X on the test set, μX .
To get a more robust measure of central tendency than the NRMSE, we also

provide the median of the normalized absolute error on each example,

NAEn = |Xn − X̂n|/μX .

We also report the maximum NAE as a measure of worst-case performance
and percentiles of the NAE (95th, 99th, 99.9th & 99.99th), the purpose of which
is to allow us to observe the frequency of large estimation errors.

We perform 10 train-test splits, shuffling the dataset before each split and
report averages and 95% confidence intervals for all evaluation measures esti-
mated. Finally, we also provide some characteristic learning curves to demon-
strate how the quality of estimates of each model changes with the size of the
training set.

4.2 Experimental Results

Results for Intermediate Problems. As we saw, the two stagewise mod-
els (Stagewise & StagewiseC ) use as intermediate steps the predictions of four
regressors (predicting P1, V1, P2 & V2). In addition, StagewiseC predicts whether
the global MPP is MPP1 or MPP2 by the use of a classifier. We first present
results that showcase the predictive performance of these learners, before moving
on to the results on the final Pmax & VPmax

predictions. On Table 1 we com-
pare the approximation on P1 & P2 of the two stagewise models to that of the
closed-form estimates of Eq. (1). On Table 2 we do the same for V1 & V2.
5 http://scikit-learn.org/stable/.

http://scikit-learn.org/stable/
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Table 1. Statistics of the errors of P1 & P2 estimates under the closed-form solutions
and the two stagewise models. Averages and 95% CIs across 10 runs shown. Results
rounded to four decimal places. Lowest values shown in bold.

P1 P2

Closed form Learned model Closed form Learned model

NRMSE 0.0388± 0.0006 0.0120± 0.0002 0.0475± 0.0002 0.0098± 0.0002

Median NAE 0.0084± 0.0000 0.0071± 0.0002 0.0214± 0.0001 0.0061± 0.0001

95th %ile NAE 0.0394± 0.0002 0.0244± 0.0005 0.1065± 0.0007 0.0198± 0.0004

99th %ile NAE 0.1413± 0.0066 0.0350± 0.0012 0.1659± 0.0009 0.0275± 0.0005

99.9th %ile NAE 0.5193± 0.0117 0.0500± 0.0010 0.2207± 0.0021 0.0365± 0.0007

99.99th %ile NAE 0.6608± 0.0081 0.0693± 0.0063 0.2465± 0.0021 0.0440± 0.0021

Maximum NAE 0.7171± 0.0241 0.0812± 0.0084 0.2551± 0.0027 0.0464± 0.0023

Table 2. Statistics of the errors of V1 & V2 estimates under the closed-form solutions
and the two stagewise models. Averages and 95% CIs across 10 runs shown. Results
rounded to four decimal places. Lowest values shown in bold.

V1 V2

Closed form Learned model Closed form Learned model

NRMSE 0.0478± 0.0007 0.0041± 0.0001 0.0352± 0.0001 0.0047± 0.0000

Median NAE 0.0127± 0.0000 0.0020± 0.0000 0.0147± 0.0001 0.0020± 0.0000

95th %ile NAE 0.0342± 0.0001 0.0076± 0.0002 0.0797± 0.0005 0.0094± 0.0001

99th %ile NAE 0.2554± 0.0078 0.0118± 0.0004 0.1158± 0.0008 0.0174± 0.0003

99.9th %ile NAE 0.5403± 0.0063 0.0269± 0.0038 0.1398± 0.0004 0.0317± 0.0009

99.99th %ile NAE 0.6326± 0.0046 0.0756± 0.0055 0.1741± 0.0112 0.0565± 0.0066

Maximum NAE 0.6596± 0.0062 0.0880± 0.0036 0.2101± 0.0081 0.0797± 0.0079

As we can see, the learned model estimates for each of the four quantities are
considerably better than the closed-form ones. This is not only true as a central
tendency (lower NRMSE, lower median NAE), but also holds for the worst case
(lower maximum NAE). Inspecting the NAE percentile results given, we can also
conclude that only a very small number of the errors on the estimates are high.

Next, on Table 3, we can inspect the confusion matrix of the classifier used
by StagewiseC for predicting whether the global MPP is MPP1 or MPP2. We
can see that it is very accurate on both classes.

Results for Final Predictions. We can expect that these results on the inter-
mediate prediction tasks will translate to better estimates than the closed-form
methods for Pmax & VPmax

under the stagewise models. Next, in Tables 4 and 5
we present the results of each model for predicting the global MPP.

Dependence on Training Set Size. We saw that the learned models outper-
form the closed form estimates. But how many examples do the learners need to
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Table 3. Confusion matrix for the classifier used by StagewiseC for predicting whether
the global MPP corresponds to MPP1 or MPP2. Averages and 95% CIs across 10 runs
shown. Results rounded to one decimal place. The classifier is very accurate on both
classes, having an average accuracy of 99.74% with an average F1-score of 0.998 and
very low variance across runs. The data is slightly skewed towards MPP1 being the
global MPP in approximately 58.92% of the cases.

Prediction

MPP1 MPP2

Truth MPP1 13945.5 ± 24.8 33.5 ± 2.2

MPP2 27.8 ± 3.6 9720.2 ± 24.3

see, before they can do so? In Fig. 2, we provide learning curves for the NRMSE
on the final Pmax & VPmax

estimates. We conclude that we do not need to use a
large training set to exceed the quality of the closed-form estimates. We can also
see that beyond –say 5000– training examples, the increase in training set size
only marginally improves the quality of the estimates for the Direct & Stage-
wise estimators. StagewiseC is an exception in two ways: (i) it needs a larger
sample size for its estimates of Pmax to be comparable to the closed-form ones,
(ii) after seeing about 10000 training examples, it is already outperforming all
other approaches in terms VPmax

estimation, yet it can take advantage of a larger
sample size to produce even better estimates.

4.3 Analysis of the Results

As discussed, all trained models examined produced better estimates than the
closed-form ones. Indicatively, inspecting Tables 4 and 5, we find that the reduc-
tion in NRMSE over the closed-form estimate for the Stagewise model’s estimates
in Pmax is about 69%. Similarly, the reduction in NRMSE over the closed-form
estimate for the StagewiseC model’s estimates in VPmax

is about 52%. The results
are similar when the goal is not just good average performance, but also to mini-
mize the maximum prediction error: Stagewise reduces the closed-form estimates’
maximum NAE in Pmax by about 59% and Direct reduces the closed-form esti-
mates’ maximum NAE in VPmax

by about 21%. On the intermediate estimates of
Tables 1 and 2, we saw that the relative improvement of the learned model esti-
mates over the closed-form estimates is even more impressive, for every quantity
and every evaluation measure examined. In short, we get both lowest average
and lowest maximum errors by the learned models.

We attributed the relatively large errors in the estimates (both closed-form
& learned) of VPmax

to cases in which P1 & P2 are close, and a small error in
either results to choosing the wrong global MPP (V1 & V2 may significantly
differ even when P1 ≈ P2). The models we discussed tackle this issue in different
ways: Direct models VPmax

directly, without separately modelling the two MPPs.
Stagewise estimates P1 & P2 with low error –and so does the corresponding Vi



22 N. Nikolaou et al.

Table 4. Statistics of the errors of Pmax estimates under the different models. Averages
and 95% CIs across 10 runs shown. Results rounded to four decimal places. Lowest –and
tied for lowest, in the sense of overlapping CIs– values shown in bold.

Closed form Learned models

Direct Stagewise StagewiseC

NRMSE 0.0300± 0.0001 0.0213± 0.0003 0.0093± 0.0001 0.0308± 0.0044

Median NAE 0.0159± 0.0001 0.0126± 0.0002 0.0056± 0.0001 0.0056± 0.0001

95th %ile NAE 0.0645± 0.0004 0.0431± 0.0007 0.0189± 0.0003 0.0189± 0.0003

99th %ile NAE 0.1038± 0.0006 0.0646± 0.0009 0.0267± 0.0007 0.0269± 0.0007

99.9th %ile NAE 0.1369± 0.0014 0.0952± 0.0025 0.0387± 0.0009 0.0403± 0.0009

99.99th %ile NAE 0.1530± 0.0025 0.1229± 0.0080 0.0548± 0.0045 1.8218± 0.4035

Maximum NAE 0.1616± 0.0029 0.1303± 0.0080 0.0662± 0.0069 2.4909± 0.1408

Table 5. Statistics of the errors of VPmax estimates under the different models. Aver-
ages and 95% CIs across 10 runs shown. Results rounded to four decimal places. Lowest
–and tied for lowest, in the sense of overlapping CIs– values shown in bold.

Closed form Learned models

Direct Stagewise StagewiseC

NRMSE 0.0697± 0.0013 0.0597± 0.0005 0.0507± 0.0013 0.0333± 0.0016

Median NAE 0.0098± 0.0000 0.0121± 0.0002 0.0017± 0.0000 0.0017± 0.0000

95th %ile NAE 0.0735± 0.0006 0.1111± 0.0023 0.0075± 0.0001 0.0072± 0.0001

99th %ile NAE 0.2609± 0.0063 0.2548± 0.0051 0.0221± 0.0015 0.0146± 0.0002

99.9th %ile NAE 0.9623± 0.0048 0.6133± 0.0341 0.8539± 0.0137 0.6623± 0.0708

99.99th %ile NAE 1.1801± 0.0377 0.9041± 0.0431 1.0789± 0.0144 1.1334± 0.0228

Maximum NAE 1.2222± 0.0007 0.9603± 0.0192 1.1512± 0.0133 1.1934± 0.0173

it assigns as VPmax
. Finally, StagewiseC trains an accurate classifier to recognise

the global MPP, circumventing the need to compare the estimates of P1 & P2.
The percentile results provided, allow the reader to see that indeed, such large

errors appear very rarely under the learned models. For instance, Table 4 shows
that only one in 10000 (99.99th %ile) estimates of the Stagewise model for Pmax

is expected to have a NAE greater than 5.48%6, whereas one in 20 (95th %ile) of
the closed-form estimates will have a NAE greater than 6.45%. Similarly, Table 5
shows that only one in 100 (99th %ile) estimates of the StagewiseC model for
VPmax

is expected to have a NAE greater than 1.46%, when the same number of
closed-form estimates will have a NAE greater than 26.09%.

Which model is to be preferred in practice will depend on the exact guar-
antees we want for our system and the design limitations imposed. Direct pro-
duces the smallest maximum error in terms of VPmax

. Stagewise outperforms

6 More precisely, 95% of the times, 99.99% of the estimates of Pmax under the Stage-
wise model will have a NAE smaller than some value that lies between 5.03% and
5.93%. In the discussion, we sacrifice this level of mathematical rigour for simplicity.
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all other approaches in terms of estimation of Pmax. StagewiseC produces the
smallest number of high-value errors on VPmax

. To practitioners, we can propose
‘combining’ Stagewise & StagewiseC : train all 5 learners used by StagewiseC, use
the classifier’s prediction for selecting the Vi for VPmax

, but ignore the classifier
and directly compare the estimates of P1 & P2 to choose the Pmax as in Eq. (2).

Fig. 2. Learning curves (NRMSE vs. training set size) on the final Pmax [LEFT] &
VPmax [RIGHT] estimates under each model. Averages and 95% CIs across 10 runs
shown. We investigate training set sizes of 1000 up to the 75% of the total available
examples (71178) taken at steps of 1000.

Finally, we also saw in Fig. 2 that even a small fraction of the available
training examples (e.g. fewer than 5000) is more than enough for the learned
models to considerably improve upon the closed-form estimates. Initial explo-
rations of the ensemble size M and the depth of the trees –omitted due to space
limitations– suggest that increasing either leads to better predictive performance
for all models albeit at a higher computational cost.

5 Conclusion and Future Work

We introduced 3 gradient boosted tree models to perform PV power estimation
under partial shading conditions. Our empirical results show that, compared
to the current state-of-the-art closed-form estimates, the errors on the gradient
boosting models’ predictions are smaller on average, in the worst case and also
the large errors committed are fewer in number. Only a small number of training
examples is needed to improve upon the closed-form estimates. Depending on the
computational resources, we can opt to parallelize the training of the individual
ensembles each model involves or to improve the quality of our estimation at the
cost of increased training time by increasing the number or depth of the trees.

A next step would be to take into account the covariance among targets. A
more detailed investigation of learning algorithms, hyperparameter optimization
and analysis of the resulting computational cost/approximation tradeoffs is also
left for future work. So is the derivation of a simpler, interpretable model to
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replace the closed-form estimates. The skew in the global MPP distribution could
be dealt with cost-sensitive adaptations of boosting [15], improving performance.

The same ideas could also be applied to more complicated scenarios, such
as different PV configurations (arrays of modules connected in series-parallel,
bridged-linked etc.), multiple irradiance levels where more than two MPPs
appear or in the more realistic case of non-uniform temperature across the PV
system.
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