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Preface

This volume presents a collection of papers focusing on the use of data analytics and
machine learning techniques to facilitate the integration of renewable energy resources
into existing infrastructure and socioeconomic systems. The papers included were
presented at DARE 2017, the 5th International Workshop on Data Analytics for
Renewable Energy Integration, which was hosted by ECML PKDD 2017.

In recent times, climate change, energy security, and sustainability have focused a
lot of attention on the development of clean and renewable energy sources. However,
of equal importance is the issue of integrating these sources into existing infrastructure
and socioeconomic systems. While increasing the generating capacities of renewable
energy sources is still important, issues such as efficient and cost-effective storage and
distribution, demand response, planning, and policy making must be resolved in par-
allel. These challenges are inherently multidisciplinary and depend heavily on robust
and scalable computing techniques and the ability to handle large, complex data sets.
The domains of data analytics, pattern recognition, and machine learning are uniquely
positioned to offer solutions to many of these challenges. Examples of relevant topics
include time series forecasting, the detection of faults, cyber security, smart grid and
smart cities, technology integration, demand response, and many others.

This year’s event attracted numerous researchers working in the various related
domains, both to present and discuss their findings and to share their respective
experiences and concerns.We are very grateful to the organizers of ECML PKDD 2017
for hosting DARE 2017, the Program Committee members for their time and assis-
tance, and to the Masdar Institute, MIT, and the University of Oldenburg for their
support of this timely and important workshop. Last but not least, we sincerely thank
the authors for their valuable contribution to this volume.

October 2017 Wei Lee Woon
Zeyar Aung

Oliver Kramer
Stuart Madnick
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Solar Energy Forecasting and Optimization
System for Efficient Renewable

Energy Integration

Diana Manjarres(B), Ricardo Alonso, Sergio Gil-Lopez,
and Itziar Landa-Torres

TECNALIA Research and Innovation, 48160 Derio, Spain
{diana.manjarres,ricardo.alonso,sergio.gil,itziar.landa}@tecnalia.com

Abstract. Solar energy forecasting represents a key issue in order to
efficiently manage the supply-demand balance and promote an effective
renewable energy integration. In this regard, an accurate solar energy
forecast is of utmoss importance for avoiding large voltage variations
into the electricity network and providing the system with mechanisms
for managing the produced energy in an optimal way. This paper presents
a novel solar energy forecasting and optimization approach called SUN-
SET which efficiently determines the optimal energy management for
the next 24 h in terms of: self-consumption, energy purchase and battery
energy storage for later consumption. The proposed SUNSET approach
has been tested in a real solar PV system plant installed in Zamudio
(Spain) and compared towards a Real-Time (RT) strategy in terms of
price and energy savings obtaining attractive results.

Keywords: Solar energy · Renewable energy integration ·
Optimization · PV energy forecast

1 Introduction

According to the 2020 climate & Energy package, a set of binding legislation is
being developed in order to ensure the EU meets its climate and energy targets
for the year 2020. Concretely, this package addresses three key points which
comprises: (1) a 20% cut in greenhouse gas emissions (from 1990 levels), (2) a
20% of EU energy from renewables and (3) a 20% of improvement in energy
efficiency.

Moreover, 2012/27/UE European Directive Article 7 establishes a minimum
objective of energy savings in terms of end use of energy for the 2014–2020 period.
More specifically, in Spain the cumulated energy savings are expected to reach
15,979 ktep, which represents 659 ktep per year. Furthermore, self-consumption
is going to be enhanced and promoted by lawmakers. Regarding the instalation
of new equipment, European Directive 2009/72/EC establishes that the 80%
of end consumers will be equipped with smart meters for 2020 and individual
c© Springer International Publishing AG 2017
W.L. Woon et al. (Eds.): DARE 2017, LNAI 10691, pp. 1–12, 2017.
https://doi.org/10.1007/978-3-319-71643-5_1
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thermal meters are mandatory from 1 January of 2017. This will facilitate and
enable the energy consumption data acquisition and its utilization by the energy
forecasting and optimization modules.

Due to the substantial growth of renewable energy systems’ installation, an
increasing interest is focused on enhancing the modelization and forecasting of
solar irradiance and power generation. This information is a key issue for improv-
ing the operations control and the optimization of solar energy systems. However,
most related studies in the literature ([1–4]) provide a very short-term forecasting
of global solar irradiance which is not sufficient for applying an optimal opera-
tions control of solar PV systems. Moreover, the large integration of renewable
energy sources into the existing or the near-future energy supply structure need
for a precise estimation of the electricity production and consumption at every
moment. It enables an efficient power grid management and the continuity of
the production/consumption relationship. In this context, an accurate forecast-
ing of the solar power generation is required for providing an effective renewable
energy integration and avoiding unpredictable large voltage variations into the
electricity network.

Regarding Photovoltaic (PV) energy forecasting works in the literature,
authors in [5] focus on predicting hourly values of solar power from 21 PV sys-
tems located on rooftops in a small village in Denmark for horizons of up to 36 h.
A two-stage technique based on statistical normalizations of the solar power and
adaptive linear time series models is proposed. Moreover, in [6] a neural net-
work is proposed for 24 h ahead solar power forecasting. The method requires as
input past power measurements and meteorological forecasts of solar irradiance,
relative humidity and temperature at the site of the PV power system. The key
point is that in order to determine the inputs for the Neural Network (NN) and
improve the forecast accuracy, a Self-Organized Map (SOM) is trained to clas-
sify the local weather type of 24-hour ahead provided by online meteorological
services. In the same line of research, authors in [7] proposes a two-dimensional
(2-D) representation model of the hourly solar radiation data that includes the
between-day correlations along the same hour information. The 2-D forecast-
ing performance is tested through feed-forward NN achieving better forecasting
results than linear prediction filters in both 1-D and 2-D. Hourly solar radiation
data from the solar observation station in Iki Eylul campus area of Eskisehir
region of 1 year is used herein.

In [8] a medium-term solar irradiance forecasting model is proposed by adopt-
ing predicted meteorological variables from the US National Weather Service’s
(NWS) forecasting database as inputs to an Artificial Neural Network (ANN)
model. The study also focuses on developing a set of criteria for selecting rele-
vant inputs. The work presented in [9] evaluates and compares several forecasting
techniques using no exogenous inputs for predicting the solar power output of
a PV power plant operating in Merced, California. The findings show that the
ANN-based forecasting models perform better than the other forecasting tech-
niques and also that substantial improvements can be achieved with a GA opti-
mization of the ANN parameters. A diagonal recurrent wavelet neural network
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(DRWNN) is newly established in [10] towards presenting a fine forecasting of
hourly and daily global solar irradiance that improves the generalization capa-
bility of NN in solar forecasting. The proposed method is based on a two phase
training algorithm that is validated using both hourly and daily irradiance fore-
cast data sets in Shanghai and Macau. Finally, authors in [11] present a practical
method for solar irradiance forecast using a Multilayer Perceptron MLP-model
for forecasting the solar irradiance 24 h in advance. The inputs for the NN are
values of the mean daily solar irradiance and air temperature in Trieste, Italy.
The goodness of the proposed model is validated taking into consideration the
forecasted values and the energy produced by the GCPV plant installed on the
rooftop of the municipality.

One of the main goals of being capable of inferring the expected PV gener-
ation for the next 24 h is to provide the system with mechanisms for managing
the produced energy in an optimal way and thus, ensuring an efficient renew-
able energy integration. In this context, several works in the literature focus on
optimally scheduling the energy use in order to enhance self-consumption and
minimize the purchase of energy and consequently, the cost of energy. Authors
in [12] provide methods to determine the optimal storage size for grid-connected
dwellings with PV panels. The work is focused on houses connected to the grid
with a small-scale storage to store a part of the solar power for postponed con-
sumption within the day or the next days. Regarding the residential PV self-
consumption, the work presented in [13] aims at enhancing PV self-consumption
with a battery energy storage system and demand side management (DSM). Sim-
ilarly, [14] shows the potential to increase PV self-consumption through schedul-
ing and load shifting of programmable appliances in Swedish single-family build-
ings. With respect to lead shifting approaches, authors in [15] and [16] propose
different algorithms for optimally scheduling a set of appliances at the end-user
premises.

As observed in the literature, most of the works focuses on PV energy fore-
casting or energy optimization models but are not simultaneously applied to
a specific problem. The proposed work goes beyond the state of the art by
proposing not only a novel solar energy forecasting model, but also an energy
optimization system based on machine learning techniques, coined as SUNSET.
The proposed SUNSET approach has been tested in a real PV solar system plant
installed in Zamudio (Spain) for which an assessment of the results has been per-
formed. Obtained results shed light on the goodness of the proposed approach
which makes use of the PV energy forecast in order to optimally infer the energy
use for the following 24 h by minimizing the price of energy and enhancing the
PV self-consumption.

The structure of the presented manuscript is the following: Sect. 2 describes
the considered solar PV power system for which the proposed approach in Sect. 3
has been applied. Finally, conclusion and future research work is summarized in
Sect. 4.
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2 Solar PV Power System Description

The Solar Thermal Power System proposed in this paper consists of a PV gener-
ation system that integrates electricity storage and a smart energy management
system.

Figure 1(a) depicts the SUNSET PV solar power system employed in this
paper. The PV system is installed in Zamudio (Spain) on a flat roof. It is ori-
ented to the South and mounted on a structure with an inclination of 40◦. More
concretely, the PV string under study consists of 8 PV panels BP-580F connected
in series and to the grid through a PV Inverter SMA Sunny Boy 700.

As already stated in Sect. 1 the main drawback of PV energy is its dependence
on variable solar resource. A lot of studies have been carried out to analyze
the impact of this unpredictability on grid operation (see Sect. 1): voltage and
power flow fluctuation, frequency fluctuation and difficulty of demand-supply
management. External costs of solar variability, such as transmission capacity,
operating reserve and balancing costs, are believed to be insignificant at low
penetration levels, but are expected to rise with higher penetration levels.

Fig. 1. Solar thermal power system.

In order to make PV power become predictable and manageable, a potential
solution is the utilization of energy storage, as shown in Fig. 1(b). If properly
designed, PV self-consumption systems with integrated electrical storage can
increase energy savings at the same time they ease the planning and operation of
distribution grids. For this purpose, PV generation (and electrical consumption)
forecasting tools are required. Economic benefits come from a better utilization
of PV excess for peak-shaving and maximizing self-consumption at the most
profitable time, taking advantage of known daily evolution of electricity tariffs.
As a result, the interface between the prosumers and the rest of the electricity
system will be smartened exchanging information about their anticipated elec-
trical performance. Real-time variable electricity pricing can encourage users to
adjust usage to take advantage of periods when power is cheaply available and
avoid periods when it is scarcer and more expensive, facilitating grid planning
and operation.
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3 Proposed SUNSET Approach

The proposed SUNSET approach is designed in order to provide a more accurate
solar energy forecast and efficiently suggest the optimal energy management
proposal for the following hours in terms of self-consumption, energy purchase
and battery energy storage for later consumption.

SUNSET provides a compact topology that integrates on the same equip-
ment the energy storage, thus yielding to a more efficient system. Moreover, its
flexibility for adapting to the consumer’s needs makes SUNSET a cheaper app-
roach, thus optimizing the Capital Expenditures (CapEx) storage. Last but not
least, it involves an Energy Management System (EMS) that provides a reliable
PV generation and demand forecast, which optimizes the Operational EXpen-
ditures (OpEx) storage and yields to a more cost-effective approach than actual
PV systems.

Figure 2 depicts the scheme of the proposed SUNSET approach which com-
prises the Solar Energy forecasting model and the Energy Optimization model.
It is important to note that the PV generation forecast highly depends on the
accuracy of the weather forecast services. In this context, the SUNSET approach
incorporates an advanced Solar Energy Forecasting Model based on Machine
Learning (ML) techniques which is presented in Subsect. 3.1 with the aim at
improving the PV energy forecast for a specific localization. As shown in Fig. 2,
the estimated PV energy forecast (Êinv) is the input of the Energy Optimiza-
tion Model, described in Subsect. 3.2. This model incorporates also as inputs the
estimated demand forecast (Êload), the maximum contracted power (Potmax)
with the aim at optimally deciding the energy usage for the following day based
on energy cost minimization and an enhanced battery usage.

Fig. 2. Scheme of the proposed SUNSET approach.

3.1 SUNSET Solar Energy Forecasting Model

The main core of the proposed SUNSET Solar Energy Forecasting Model is based
on an intelligent machine learning method based on Random Forest (RF) [17].
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RF technique is a non-linear multiparameter regressor which tries to infer the
relationships between the external temperatures (Tout), the irradiance on hor-
izontal surface (E0), the irradiance on 35◦ (E35◦), the irradiance on clear sky
(ECS), the Cloud Cover (CC) and the weather forecast (Wforecast) in order to
accurately estimate the energy generated by the solar inverter. Therefore, the
solar PV system is modelled by means of a black-box model with the aim at
inferring the estimated energy generated by the solar system (Êinv) for the next
24 h.

The proposed SUNSET Solar Energy Forecasting Model has been tested with
data coming from a solar PV system of Zamudio (Spain) described in Sect. 2.
Current and historical weather variables needed for performing the simulation
are obtained in a 3-hour and a 6-hour time horizon by means of the Accuweather
platform. In addition, it is evidenced that the accuracy of solar energy forecasting
models strongly depends on seasonal characteristics of solar variability. There-
fore, input data is filtered based on seasonal characteristics and estimation errors
are computed per different types of days, i.e. sunny and cloudy days.

Equations 1 and 2 represent the daily εd and hourly εh mean error formu-
lations employed for assessing the proposed SUNSET Solar Energy Forecasting
Model, respectively.

εd =
1

Nd

Nd∑

i=1

∑Nh

j=1 Einv|i − ∑Nh

j=1 Êinv|i
∑Nh

j=1 Einv|i
· 100 (1)

εh =
1

Nd · Nh

Nd∑

i=1

Nh∑

j=1

Einv|(i,j) − Êinv|(i,j)
Einv|(i,j) · 100, (2)

where Nd refers to the number of simulation days, Nh the number of operating
hours (from sunrise to sunset), Einv the actual value of Solar Energy Generation
and Êinv the estimated value.

The following Table 1 presents the error estimation results when forecasting
the solar energy generation (Einv) obtained for distinct days’ typologies. The
proposed model incorporates also ephemerides information to exactly know the
time of sunrise and sunset for each day. Therefore, the estimation of PV gener-
ation considers the times interval until the sunset time.

The first column presents the hourly and daily error estimation of the Solar
Energy Generation (Einv) (%) for sunny days in which the CC ≤ 15%. As can
be observed the mean hourly error is less than 10%, whereas the mean daily
error is around 25%.

By means of the identification and minimization of outlier data, i.e. obser-
vations that appear to deviate markedly from other observations in the sample,
mean hourly and daily error results significantly decrease (see second column),
i.e. both error estimation results are below 10%.

Finally, the third column of Table 1 provides the error results for the total
simulation days (224 days), yielding to mean hourly errors near to 15% and
mean daily error estimations below 30% with a 6-hour time horizon. Moreover,
when referring to Clear Sky (CS) these errors considerably decrease until 10%.
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Table 1. Mean error estimation (%) for sunny days, sunny days with outlier minimiza-
tion and all days without and with respect Clear Sky (CS) irradiance value.

Sunny days:
CC ≤ 15% 6h/3h
time horizon

Sunny days: outliers
min. 6h time horizon

All days/all days
with respect CS 6h
time horizon

Hourly error (%) 8.11/7.83 4.70 14.65/10.63

Daily error (%) 29.46/25.67 7.25 27.14/8.91

Fig. 3. Error estimation for SUNSET Solar Energy Forecasting Model. The histogram
of PV generation error estimation (left) and the boxplot representation of % PV gen-
eration error estimation per hour (right).

Figure 3 depicts the histogram of PV generation error estimation (left) and
the boxplot representation of % PV generation error estimation per hour (right).
Note that boxes delimit the lower and upper quartiles, the medians are depicted
with a solid line and the outliers are marked with asterisks. It can be observed
that median error estimation values are around 20%, growing up at the end of
the day.

It is already known that the major number of errors in the PV generation
forecast comes from intrinsic errors present in the weather forecast magnitudes.
These are in fact the inputs of the proposed SUNSET Solar Energy Forecasting
model. In order to check the accuracy of the proposed model without the affection
of these intrinsic errors, the model is trained with measured magnitudes. Figure 4
shows the boxplot representation of PV generation error estimation (%) in case
the model is trained with measured weather magnitudes. As can be observed,
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Fig. 4. Boxplot representation of error estimations (%) for SUNSET Solar Energy
Forecasting Model by employing measured weather magnitudes as inputs of the model.

error estimation is almost null, i.e. the model is well tuned for forecasting the
PV generation.

3.2 SUNSET Energy Optimization Model

This subsection presents the SUNSET Energy Optimization model which steps
are depicted in detail in Algorithm1. The goal of the proposed energy manage-
ment system consists on optimally deciding the energy usage for the following
day based on energy cost minimization and an enhanced battery usage. There-
fore, the proposed SUNSET Energy Optimization model prioritizes first self-
consumption, then lacks of energy above the maximum contracted power and
finally the remaining lacks of energy. In all cases, battery is charged with PV
energy from previous excesses or in case there is no PV energy excess, energy is
purchased at low price hours controlling the maximum capacity of the battery.

SUNSET Energy Optimization model is compared towards the usually
applied Real-Time (RT) control strategy in which PV energy is self-consumed
at each time and stored in the battery in case there is excess of PV energy. Nev-
ertheless, RT strategy does not follow any intelligent procedure of purchasing
energy, energy is purchased when necessary regardless the energy price or the
exceeding of the maximum contracted power.

Figures 5 and 6 depict the energy management performed by SUNSET and
the RT approach, respectively. As observed, the SUNSET approach priori-
tizes energy purchase at low-prices hours (see Table 3) in order to satisfy the
total demand and also controls not to exceed the maximum contracted power.
Thus, instead of buying energy at the time of the lack of energy, the battery is
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Algorithm 1. Proposed SUNSET Energy Optimization Model
1 Ask the Accuweather weather forecast service for the estimated Wforecast.

2 Forecast the energy demand of the user Êload

3 Train the SUNSET Solar Energy Forecasting Model with the historical data
and the weather forecast and infer the estimated PV energy generated by the
solar system (Êinv) for the next 24 h:

4 Prioritize self-consumption:
5 for i ← 00:00h to 23:00h do

6 if Êinv|i �= 0 & Êload|i �= 0 then

7 Self-consume min{Êinv|i, Êload|i} at i hour.

8 end
9 Prioritize lacks above the maximum contracted power (Potmax):

Supply the energy exceeding Potmax.
10 if Êinv|0i−1 �= 0: then

11 Charge the battery with PV from previous excesses Êinv|0i−1 in order to
supply the energy exceeding Potmax controlling the maximum capacity of
the battery.

12 if Êinv|0i−1 = 0: then
13 Buy energy and charge the battery evenly at low price hours until the lack

controlling its maximum capacity.
14 Remaining lacks of energy: Order the lacks of energy by energy prices at

the time of the lack.
15 if Êinv|0i−1 �= 0: then

16 Charge the battery with PV from previous excesses Êinv|0i−1 in order to
supply the lack of energy at i hour.

17 if Êinv|0i−1 = 0: then
18 Purchase energy at the time of the lack of energy by controlling not to pass

the contracted Potmax.
19

intelligently charged in order to enhance the battery lifetime by means of uni-
form charges and minimize the price of energy. This fact is enlightened when
comparing the battery usage for the RT and the SUNSET approach between
10:00 h to 15:00 h. Whereas RT employs a sharp profile, SUNSET responds to
a smoother curve which benefits its lifetime.

In order to compare the goodness of the proposed SUNSET Energy Opti-
mization approach, a total of 339 simulation days are considered and energy
savings are computed based on the energy price at each hour. A price penalty,
i.e. double price, is included for energy purchases above the maximum contracted
power (Potmax = 30 Kw). Potmax value has been set according to the character-
istics of the employed Solar Thermal Power System (Sect. 2). Table 2 presents the
overall results achieved by both strategies in terms of self-consumption, energy
purchase, days that exceed the maximum contracted power and the total price
of energy purchasing. As can be observed, RT and SUNSET provide the same
self-consumption profile due to the priorization of it in both schemes. However,
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Fig. 5. Example of energy management for the SUNSET approach for a simulation
day.

Fig. 6. Example of energy management for the RT approach for a simulation day.
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Table 2. Simulation results for the RT strategy and the proposed SUNSET Energy
Optimization approach for a total of 339 simulation days.

Self-cons. (Kw) Energy purchase (Kw) Days > Potmax Price (e)

RT 50102 109155 321 13721

SUNSET 50102 105542 70 12103

the total price of energy that needs to be purchased in order to satisfy the
demand is higher for the RT scheme. Similarly, the number of days that exceed
Potmax is approximatelly four times the SUNSET approach. Consequently, this
results in a 12% of price saving by employing SUNSET approach instead of the
RT strategy considering the energy prices in Table 3.

Table 3. Energy price per hour.

0:00–7:00 8:00–17:00 18:00–21:00 22:00–23:00

Energy price (e) 0.091417 0.132440 0.167838 0.132440

4 Conclusions and Future Work

This paper presents a novel solar energy forecasting and optimization approach
for optimally managing energy based on different strategies: self-consumption,
energy purchase and battery energy storage for later consumption. The proposed
SUNSET approach is tested in a real solar PV system plant in Zamudio (Spain)
yielding to excellent results in terms of price minimization and battery usage
enhancement.

Future work will be devoted to generalize the proposed SUNSET approach
to other real scenarios and different countries’ legislations in terms of energy use.
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gram of the Basque Government (BID3ABI project), and EMAITEK funds granted by
the same institution.
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Abstract. The energy yield estimation of a photovoltaic (PV) system
operating under partially shaded conditions is a challenging task and
a very active area of research. In this paper, we attack this problem
with the aid of machine learning techniques. Using data simulated by
the equivalent circuit of a PV string operating under partial shading,
we train and evaluate three different gradient boosted regression tree
models to predict the global maximum power point (MPP). Our results
show that all three approaches improve upon the state-of-the-art closed-
form estimates, in terms of both average and worst-case performance.
Moreover, we show that even a small number of training examples is
sufficient to achieve improved global MPP estimation. The methods pro-
posed are fast to train and deploy and allow for further improvements in
performance should more computational resources be available.

Keywords: Gradient boosting · Solar energy · Photovoltaic (PV)
system · Maximum power point (MPP) · Partial shading · Machine
learning

1 Introduction

The photovoltaic (PV) penetration has remarkably increased worldwide the last
decades, with several applications ranging from rooftop and building-integrated
systems to MW-scale power plants. Especially in the former cases installed in
urban environments, the operating conditions are often non-ideal with surround-
ing obstacles casting shadows on the PV system, leading to non-uniform illu-
mination. Under such conditions, the power-voltage (P-V) characteristic curve
presents several local maximum-power-points (MPPs), a situation that hinders
the effective tracking of the global MPP which provides the maximum power
output. This phenomenon, commonly referred to as partial shading, has gath-
ered the interest of researchers lately due to its non-linear nature and strong
effect on the energy yield of the PV system.
c© Springer International Publishing AG 2017
W.L. Woon et al. (Eds.): DARE 2017, LNAI 10691, pp. 13–25, 2017.
https://doi.org/10.1007/978-3-319-71643-5_2
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There are several PV models in the literature, varying in terms of accuracy,
complexity and scope of application, classified into two generic categories: the
circuit-based models and the heuristic methods. The former models have strong
theoretical foundation and can provide any needed information, but require
tedious simulations of complicated circuits. The latter approaches, on the other
hand, are simpler and provide directly the global MPP, but generally suffer
from lower accuracy [2]. In PV energy yield studies, there is a need for a fast
and reliable method to easily calculate the maximum power of the PV system
at numerous different scenarios; in these applications, the heuristic alternatives
seem more appropriate.

According to [2], these methods can be further classified to: (a) Empirical
efficiency-based models which are derived from empirical observations and have
simple formulation, but exhibit moderate accuracy due to their weak theoret-
ical background [4,8,18]; (b) Explicit mathematical equations that are based
on the equivalent circuit and provide all local MPPs, presenting good aver-
age accuracy in principle, yet occasionally high estimation errors [3,13,17]; and
(c) Artificial Neural Networks (ANN) trained on the actual data of the study-
case PV system which provide adequately fast execution and probably the best
estimations [9,14].

Even though several applications of machine learning algorithms are reported
in the literature for the simple uniform illumination case [10], the relevant
research for partial shading conditions is still limited to only the two afore-
mentioned studies [9,14]. As an alternative, we investigate in this paper gradient
boosting [11,12] models trained on data generated from the equivalent circuit.
In the following, three gradient boosting models are implemented and evaluated
across a wide range of operating conditions, concluding to very interesting and
promising results. This is the first paper in the literature to apply this method
in PV energy forecasting under partial shading.

2 PV Power Generation Under Partial Shading

2.1 Main Concepts and Examples

The smallest commercially available PV unit is the module (or panel). Usually
several PV modules are connected in series to form a string in order to produce
appropriate levels of voltage and power output. A typical PV string composed
by 12 modules is depicted in Fig. 1 [TOP], operating under partial shading con-
ditions (common case of two different irradiance levels). Based on the notation
of [1,3], 10 out of 12 modules are unshaded and illuminated at full irradiance
G = 800 W/m2 (or 0.8 per unit (pu)), whereas the 2 remaining shaded mod-
ules are subject to half the irradiance (shading ratio s = 50%); this corresponds
to a shadow extent of nsh = 2/12 = 0.17. Common temperature T = 45 ◦C is
assumed across the entire string, as usually the temperature difference between
the shaded and unshaded part is small [3]. In the general case, the operating
conditions of a PV string partially shaded at two different irradiance levels are
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Fig. 1. [TOP] Topology of a PV string consisting of 12 PV modules connected in series,
2 of them being shaded at 50%. [BOTTOM-LEFT] Respective P-V curve indicating the
2 local maxima: MPP1 and MPP2. [BOTTOM-RIGHT] Electrical equivalent circuit.

uniquely identified by the vector [G,T, s, nsh], which in this example equals to
[0.8, 45, 0.5, 0.17].

The P-V characteristic at partial shading conditions presents up to two local
MPPs (or power peaks), as illustrated in Fig. 1 [BOTTOM-LEFT] for this par-
ticular scenario. These two MPPs are studied and characterized as MPP1 and
MPP2 in [3,16], as they exhibit different behaviour and dependence on the oper-
ating conditions. Only one of them or both (most often) may appear and the
power peak that provides the maximum power is denoted as the global MPP.
This corresponds to either MPP1 or MPP2 depending on the scenario (MPP1
in Fig. 1), so determining its power Pmax and voltage VPmax

is not a trivial task.
To generate this P-V curve, one has to adopt an electrical equivalent cir-

cuit, modelled and simulated in appropriate software (e.g. MATLAB/Simulink).
According to the PV modelling theory, the equivalent circuit of this system is
described by Fig. 1 [BOTTOM-RIGHT] [1,3]. Each part of the string, shaded
and unshaded, is modelled using the single-diode equivalent and a bypass diode,
the respective circuit parameters being 11 in total and strongly dependent on
the operating conditions [1]. Calculating the maximum power according to the
circuit-based models, involves the laborious steps of (i) extracting these para-
meters at STC 1, (ii) translating their values to the actual conditions and (iii)
simulating a highly non-linear circuit. These procedures are tedious and time-
consuming, thus they are more suited for research, rather than practical appli-
cations [2].

2.2 Closed-Form Equations

Among the heuristic methods mentioned in the Introduction, the closed-form
equations introduced in [3] and further improved in [17] are considered here, as
1 Standard Test Conditions: 1000W/m2 irradiance, 25 ◦C temperature & 1.5 air mass.
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they are shown to outperform other explicit mathematical approaches. These
are probably the best candidates to be compared against the machine learning
models investigated in this paper. For completeness, these expressions are given
in Eq. (1) –more details can be found in [3,17]. Given the conditions [G,T, s, nsh],
the system structural characteristics (PV module datasheet information Vmp0,
Imp0, Voc0, αImp, βVmp, βV oc, total number of modules Ntot, voltage drop on
the bypass diode ΔVD = 1.0 V) and the empirical coefficient λ = 0.06:

MPP1 :

⎧
⎪⎨

⎪⎩

V1 = Ntot[(1 − nsh)V T
mp + nshΔVD]

I1 = GITmp

P1 = V1I1

MPP2 :

⎧
⎪⎨

⎪⎩

V2 = Ntot[(1 − nsh)(sV T
mp + (1 − s)V T

oc) + nshV T
mp]

I2 = sITmp[1 + λ(1 − nsh)]
P2 = V2I2

(1)

where ITmp = Imp0[1 + αImp(T − 25)], V T
mp = Vmp0[1 + βVmp(T − 25)] and

V T
oc = Voc0[1 + βV oc(T − 25)]. Although these expressions yield in general fairly

acceptable average accuracy, in some cases they exhibit high errors, as observed
in [3] and further verified in this paper. This motivates an alternative approach
with machine learning models, which, once trained, could give a better estimate
of the global MPP in a similarly straightforward and cost-efficient way.

3 Gradient Boosting Models for MPP Prediction

We simulate the behaviour of the circuit of Fig. 1 generating examples of input
[G,T, s, nsh] and output [P1, V1, P2, V2, Pmax, VPmax

] vector pairs –note that we
also include the ‘intermediate’ outputs of the local MPP1 & MPP2 power-voltage
pairs, (P1, V1) & (P2, V2), respectively. Using these examples, we train regression
models to predict the values Pmax & VPmax

. The goal is to better approximate
these quantities than the closed-form estimates of Eq. (1).

In machine learning terminology, this is a multi-output regression problem.
Normally, we would like to take into account the covariance of the targets in
our model. In this work, we start with the simpler approach of modelling the
individual targets independently2, i.e. we train multiple single-output regressors.

There are many possible choices of regression algorithms to use. As a reliable
off-the-shelf learning meta-algorithm, gradient boosting [11,12] was chosen, as
its variants have proven very successful in large scale experimental comparisons
of learning algorithms [6,10], industrial applications [5,19] and competitions [7]
alike –often outperforming other powerful kernel-based or deep learning methods.

More specifically, deep learning methods tend to be outperformed by gradient
boosting on tabular data –as is the case here. The problem here is not expected to
2 Initial attempts at exploiting interactions between Pmax & VPmax by first predicting

the value of one and then using it to predict the other, yielded worse results than
assuming independence. Their further investigation is left for future work.
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be particularly noisy; another reason to expect boosting to be good at modelling
it. Compared to kernel-based methods, like Support Vector Machines (SVMs),
that shift the computational burden from the number of features to the number
of examples, gradient boosting is computationally preferable in our task, since
the feature space is considerably smaller than the number of examples.

Furthermore, gradient boosting constructs models that can be more easily
interpreted than those of the aforementioned methods. For example, allowing for
better approximations to Eq. (1) to be derived as closed-form formulas. Finally
and perhaps more importantly, gradient boosting has relatively few hyperpara-
meters to tune compared to the aforementioned methods, the most important
being the ensemble size M and the complexity of its base learner. Very recent
research [20] suggests that the higher both of these are, the better the ensemble’s
generalization behaviour (although the computational cost increases).

Gradient boosting constructs an ensemble of M additive components (base
learners) in a forward stagewise manner; it allows for the optimization of arbi-
trary differentiable loss functions (here quadratic loss). In each stage a base
learner (here regression tree) is fit on the negative gradient of the given loss func-
tion. The final output, i.e. the estimate X̂ of the target variable in question3 in
each case, will be a weighted linear combination X̂ =

∑M
m=1 amfm(G,T, s, nsh)

of the M base learners’ outputs, each of which –being a regression tree– is a
piecewise linear function fm(G,T, s, nsh) of the inputs. The weights am and the
additive components fm are learned form the data.

In the remainder of this section, we shall discuss the three different models
we will compare against the closed-form estimation. The models will differ in
what target outputs X̂ they estimate, and how they combine them to predict
the global MPP (Pmax, VPmax

).

3.1 Direct Modelling of MPP

First we take a direct approach to learning a model for predicting the global MPP
(Pmax, VPmax

). We simply train a regressor to map input vectors [G,T, s, nsh]
to Pmax and another to map them to VPmax

independently, without making use
of the local MPP1 and MPP2. We will henceforth refer to this as the ‘Direct ’
approach. Note that as the two constituent regression tasks are independent,
they can be parallelized to reduce the computational cost.

3.2 Stagewise Modelling of MPP

Next we take a 2-stage approach for predicting the global MPP. We train four
regressors: one to map input vectors [G,T, s, nsh] to each of the ‘intermediate
outputs’ P1, V1, P2 & V2. In other words, we first model the MPP1 and the
MPP2 independently (and in each case Pi independently of its corresponding
Vi). Then, we predict Pmax & VPmax

by

3 As we will see in this section, X̂ can be an estimate of Pmax or VPmax , or of any of
the ‘intermediate outputs’ –P1, V1, P2, V2– depending on the method.
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global MPP :

{
Pmax = max{P1, P2}
VPmax

= {Vi∗ : i∗ = arg maxi∈{1,2} Pi}.
(2)

Note that in some scenarios a single power peak appears (MPP1 or MPP2),
rather than both. In these cases, we disregard these examples for the purpose of
training models to predict P2 & V2 or P1 & V1, respectively. By this approach,
which we shall call ‘Stagewise’, we encode more domain knowledge in our model
about the structure of the targets: there exists at least one MPP and at most
two, each of which has different characteristics and the global MPP is the max-
imum of the existing ones. Again, since the four constituent regression tasks are
independent, they can be parallelized to reduce computational costs.

3.3 Classifier-Assisted Stagewise Modelling of MPP

As we will see in the experimental section, the Stagewise approach achieves very
low error on the intermediate estimates of P1, V1, P2 & V2 and also on Pmax.
Yet, its estimates of VPmax

–even though much better than those of both the
closed-form ones and the Direct ones– seem to not be on par with those of all
other target quantities. This seems to stem from situations in which P1 & P2 are
very close. When this happens, a small estimation error on either of these can
lead us to select the wrong Pi as the Pmax. The resulting error on Pmax will still
be small (the values of P1 & P2 being very close), but by choosing the wrong Vi

as the VPmax
, the error on VPmax

is high.
Motivated by this, the final approach we shall examine is a variant of the

Stagewise method, where the selection of the global MPP (Pmax, VPmax
), is not

based on the comparison of the predicted values of P1 & P2, but is instead decided
by a binary classifier trained to predict whether an input vector [G,T, s, nsh]
leads to MPP1 or MPP2 being the global MPP. To get the label of each exam-
ple, it is sufficient to compare if P1 > P2, in which case MPP1 is the global
MPP, otherwise it is MPP2. Based on the classifier’s prediction, we pick the
appropriate Pi & Vi pair calculated by the regressors as the Pmax & VPmax

,
respectively. The classification subtask is accomplished by training a gradient
boosting ensemble of decision trees4. We call this method ‘StagewiseC ’. As with
the previous approaches, to reduce computational costs we can parallelize the
training of all 5 predictors.

4 Experimental Investigation

4.1 Experimental Setup

We generated 94905 examples from the circuit shown in Fig. 1, considering irra-
diance G = [0.1 : 0.05 : 1.0] pu, temperature T = [−5 : 5 : 65] ◦C, shade ratio
4 Denoting MPP1 & MPP2 with ‘1’ & ‘−1’, respectively, the classifier’s prediction is of

the form Ĥ = sign
[∑M

m=1 amhm(G,T, s, nsh)
] ∈ {−1, 1}, where hm(G,T, s, nsh) ∈

{−1, 1} is the prediction of the base learner added on the m-th round and am its
voting weight, both the learner and am being the learned parameters of the model.
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s = [0.1 : 0.1 : 0.9] and shade extent nsh = [0 : 1/36 : 1]. The examples consist of
input vector [G,T, s, nsh] and output vector [P1, V1, P2, V2, Pmax, VPmax

] pairs –
where we also included the ‘intermediate’ outputs of MPP1 and MPP2. On each
example, we also provide the closed-form estimate for P1, V1, P2 & V2, along
with the resulting final Pmax and VPmax

by evaluating Eq. (1). We compare the
estimate of the learned models described in Sect. 3 to the closed-form ones. As
ground truth, we consider the true outputs of the circuit.

All learners, unless otherwise specified, were gradient boosting ensembles of
size M = 1000 trained on a 75% of the data chosen uniformly at random and
evaluated on the remaining 25%. Regression trees were chosen as base learners
for the regression subtasks, and for the classification step of StagewiseC, we used
a decision tree. In all cases, the trees had a maximum depth of 3. All remaining
hyperparameters were left to the default values of scikit-learn5.

To evaluate the quality of the estimates (both learned models’ and closed-
form ones), for each target quantity X, we calculate on the test set the normalized
root-mean squared error of the predictions X̂,

NRMSE =
√

∑

n

(Xn − X̂n)2
/

μX ,

that uses as normalization factor the mean of quantity X on the test set, μX .
To get a more robust measure of central tendency than the NRMSE, we also

provide the median of the normalized absolute error on each example,

NAEn = |Xn − X̂n|/μX .

We also report the maximum NAE as a measure of worst-case performance
and percentiles of the NAE (95th, 99th, 99.9th & 99.99th), the purpose of which
is to allow us to observe the frequency of large estimation errors.

We perform 10 train-test splits, shuffling the dataset before each split and
report averages and 95% confidence intervals for all evaluation measures esti-
mated. Finally, we also provide some characteristic learning curves to demon-
strate how the quality of estimates of each model changes with the size of the
training set.

4.2 Experimental Results

Results for Intermediate Problems. As we saw, the two stagewise mod-
els (Stagewise & StagewiseC ) use as intermediate steps the predictions of four
regressors (predicting P1, V1, P2 & V2). In addition, StagewiseC predicts whether
the global MPP is MPP1 or MPP2 by the use of a classifier. We first present
results that showcase the predictive performance of these learners, before moving
on to the results on the final Pmax & VPmax

predictions. On Table 1 we com-
pare the approximation on P1 & P2 of the two stagewise models to that of the
closed-form estimates of Eq. (1). On Table 2 we do the same for V1 & V2.
5 http://scikit-learn.org/stable/.

http://scikit-learn.org/stable/
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Table 1. Statistics of the errors of P1 & P2 estimates under the closed-form solutions
and the two stagewise models. Averages and 95% CIs across 10 runs shown. Results
rounded to four decimal places. Lowest values shown in bold.

P1 P2

Closed form Learned model Closed form Learned model

NRMSE 0.0388± 0.0006 0.0120± 0.0002 0.0475± 0.0002 0.0098± 0.0002

Median NAE 0.0084± 0.0000 0.0071± 0.0002 0.0214± 0.0001 0.0061± 0.0001

95th %ile NAE 0.0394± 0.0002 0.0244± 0.0005 0.1065± 0.0007 0.0198± 0.0004

99th %ile NAE 0.1413± 0.0066 0.0350± 0.0012 0.1659± 0.0009 0.0275± 0.0005

99.9th %ile NAE 0.5193± 0.0117 0.0500± 0.0010 0.2207± 0.0021 0.0365± 0.0007

99.99th %ile NAE 0.6608± 0.0081 0.0693± 0.0063 0.2465± 0.0021 0.0440± 0.0021

Maximum NAE 0.7171± 0.0241 0.0812± 0.0084 0.2551± 0.0027 0.0464± 0.0023

Table 2. Statistics of the errors of V1 & V2 estimates under the closed-form solutions
and the two stagewise models. Averages and 95% CIs across 10 runs shown. Results
rounded to four decimal places. Lowest values shown in bold.

V1 V2

Closed form Learned model Closed form Learned model

NRMSE 0.0478± 0.0007 0.0041± 0.0001 0.0352± 0.0001 0.0047± 0.0000

Median NAE 0.0127± 0.0000 0.0020± 0.0000 0.0147± 0.0001 0.0020± 0.0000

95th %ile NAE 0.0342± 0.0001 0.0076± 0.0002 0.0797± 0.0005 0.0094± 0.0001

99th %ile NAE 0.2554± 0.0078 0.0118± 0.0004 0.1158± 0.0008 0.0174± 0.0003

99.9th %ile NAE 0.5403± 0.0063 0.0269± 0.0038 0.1398± 0.0004 0.0317± 0.0009

99.99th %ile NAE 0.6326± 0.0046 0.0756± 0.0055 0.1741± 0.0112 0.0565± 0.0066

Maximum NAE 0.6596± 0.0062 0.0880± 0.0036 0.2101± 0.0081 0.0797± 0.0079

As we can see, the learned model estimates for each of the four quantities are
considerably better than the closed-form ones. This is not only true as a central
tendency (lower NRMSE, lower median NAE), but also holds for the worst case
(lower maximum NAE). Inspecting the NAE percentile results given, we can also
conclude that only a very small number of the errors on the estimates are high.

Next, on Table 3, we can inspect the confusion matrix of the classifier used
by StagewiseC for predicting whether the global MPP is MPP1 or MPP2. We
can see that it is very accurate on both classes.

Results for Final Predictions. We can expect that these results on the inter-
mediate prediction tasks will translate to better estimates than the closed-form
methods for Pmax & VPmax

under the stagewise models. Next, in Tables 4 and 5
we present the results of each model for predicting the global MPP.

Dependence on Training Set Size. We saw that the learned models outper-
form the closed form estimates. But how many examples do the learners need to
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Table 3. Confusion matrix for the classifier used by StagewiseC for predicting whether
the global MPP corresponds to MPP1 or MPP2. Averages and 95% CIs across 10 runs
shown. Results rounded to one decimal place. The classifier is very accurate on both
classes, having an average accuracy of 99.74% with an average F1-score of 0.998 and
very low variance across runs. The data is slightly skewed towards MPP1 being the
global MPP in approximately 58.92% of the cases.

Prediction

MPP1 MPP2

Truth MPP1 13945.5 ± 24.8 33.5 ± 2.2

MPP2 27.8 ± 3.6 9720.2 ± 24.3

see, before they can do so? In Fig. 2, we provide learning curves for the NRMSE
on the final Pmax & VPmax

estimates. We conclude that we do not need to use a
large training set to exceed the quality of the closed-form estimates. We can also
see that beyond –say 5000– training examples, the increase in training set size
only marginally improves the quality of the estimates for the Direct & Stage-
wise estimators. StagewiseC is an exception in two ways: (i) it needs a larger
sample size for its estimates of Pmax to be comparable to the closed-form ones,
(ii) after seeing about 10000 training examples, it is already outperforming all
other approaches in terms VPmax

estimation, yet it can take advantage of a larger
sample size to produce even better estimates.

4.3 Analysis of the Results

As discussed, all trained models examined produced better estimates than the
closed-form ones. Indicatively, inspecting Tables 4 and 5, we find that the reduc-
tion in NRMSE over the closed-form estimate for the Stagewise model’s estimates
in Pmax is about 69%. Similarly, the reduction in NRMSE over the closed-form
estimate for the StagewiseC model’s estimates in VPmax

is about 52%. The results
are similar when the goal is not just good average performance, but also to mini-
mize the maximum prediction error: Stagewise reduces the closed-form estimates’
maximum NAE in Pmax by about 59% and Direct reduces the closed-form esti-
mates’ maximum NAE in VPmax

by about 21%. On the intermediate estimates of
Tables 1 and 2, we saw that the relative improvement of the learned model esti-
mates over the closed-form estimates is even more impressive, for every quantity
and every evaluation measure examined. In short, we get both lowest average
and lowest maximum errors by the learned models.

We attributed the relatively large errors in the estimates (both closed-form
& learned) of VPmax

to cases in which P1 & P2 are close, and a small error in
either results to choosing the wrong global MPP (V1 & V2 may significantly
differ even when P1 ≈ P2). The models we discussed tackle this issue in different
ways: Direct models VPmax

directly, without separately modelling the two MPPs.
Stagewise estimates P1 & P2 with low error –and so does the corresponding Vi
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Table 4. Statistics of the errors of Pmax estimates under the different models. Averages
and 95% CIs across 10 runs shown. Results rounded to four decimal places. Lowest –and
tied for lowest, in the sense of overlapping CIs– values shown in bold.

Closed form Learned models

Direct Stagewise StagewiseC

NRMSE 0.0300± 0.0001 0.0213± 0.0003 0.0093± 0.0001 0.0308± 0.0044

Median NAE 0.0159± 0.0001 0.0126± 0.0002 0.0056± 0.0001 0.0056± 0.0001

95th %ile NAE 0.0645± 0.0004 0.0431± 0.0007 0.0189± 0.0003 0.0189± 0.0003

99th %ile NAE 0.1038± 0.0006 0.0646± 0.0009 0.0267± 0.0007 0.0269± 0.0007

99.9th %ile NAE 0.1369± 0.0014 0.0952± 0.0025 0.0387± 0.0009 0.0403± 0.0009

99.99th %ile NAE 0.1530± 0.0025 0.1229± 0.0080 0.0548± 0.0045 1.8218± 0.4035

Maximum NAE 0.1616± 0.0029 0.1303± 0.0080 0.0662± 0.0069 2.4909± 0.1408

Table 5. Statistics of the errors of VPmax estimates under the different models. Aver-
ages and 95% CIs across 10 runs shown. Results rounded to four decimal places. Lowest
–and tied for lowest, in the sense of overlapping CIs– values shown in bold.

Closed form Learned models

Direct Stagewise StagewiseC

NRMSE 0.0697± 0.0013 0.0597± 0.0005 0.0507± 0.0013 0.0333± 0.0016

Median NAE 0.0098± 0.0000 0.0121± 0.0002 0.0017± 0.0000 0.0017± 0.0000

95th %ile NAE 0.0735± 0.0006 0.1111± 0.0023 0.0075± 0.0001 0.0072± 0.0001

99th %ile NAE 0.2609± 0.0063 0.2548± 0.0051 0.0221± 0.0015 0.0146± 0.0002

99.9th %ile NAE 0.9623± 0.0048 0.6133± 0.0341 0.8539± 0.0137 0.6623± 0.0708

99.99th %ile NAE 1.1801± 0.0377 0.9041± 0.0431 1.0789± 0.0144 1.1334± 0.0228

Maximum NAE 1.2222± 0.0007 0.9603± 0.0192 1.1512± 0.0133 1.1934± 0.0173

it assigns as VPmax
. Finally, StagewiseC trains an accurate classifier to recognise

the global MPP, circumventing the need to compare the estimates of P1 & P2.
The percentile results provided, allow the reader to see that indeed, such large

errors appear very rarely under the learned models. For instance, Table 4 shows
that only one in 10000 (99.99th %ile) estimates of the Stagewise model for Pmax

is expected to have a NAE greater than 5.48%6, whereas one in 20 (95th %ile) of
the closed-form estimates will have a NAE greater than 6.45%. Similarly, Table 5
shows that only one in 100 (99th %ile) estimates of the StagewiseC model for
VPmax

is expected to have a NAE greater than 1.46%, when the same number of
closed-form estimates will have a NAE greater than 26.09%.

Which model is to be preferred in practice will depend on the exact guar-
antees we want for our system and the design limitations imposed. Direct pro-
duces the smallest maximum error in terms of VPmax

. Stagewise outperforms

6 More precisely, 95% of the times, 99.99% of the estimates of Pmax under the Stage-
wise model will have a NAE smaller than some value that lies between 5.03% and
5.93%. In the discussion, we sacrifice this level of mathematical rigour for simplicity.
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all other approaches in terms of estimation of Pmax. StagewiseC produces the
smallest number of high-value errors on VPmax

. To practitioners, we can propose
‘combining’ Stagewise & StagewiseC : train all 5 learners used by StagewiseC, use
the classifier’s prediction for selecting the Vi for VPmax

, but ignore the classifier
and directly compare the estimates of P1 & P2 to choose the Pmax as in Eq. (2).

Fig. 2. Learning curves (NRMSE vs. training set size) on the final Pmax [LEFT] &
VPmax [RIGHT] estimates under each model. Averages and 95% CIs across 10 runs
shown. We investigate training set sizes of 1000 up to the 75% of the total available
examples (71178) taken at steps of 1000.

Finally, we also saw in Fig. 2 that even a small fraction of the available
training examples (e.g. fewer than 5000) is more than enough for the learned
models to considerably improve upon the closed-form estimates. Initial explo-
rations of the ensemble size M and the depth of the trees –omitted due to space
limitations– suggest that increasing either leads to better predictive performance
for all models albeit at a higher computational cost.

5 Conclusion and Future Work

We introduced 3 gradient boosted tree models to perform PV power estimation
under partial shading conditions. Our empirical results show that, compared
to the current state-of-the-art closed-form estimates, the errors on the gradient
boosting models’ predictions are smaller on average, in the worst case and also
the large errors committed are fewer in number. Only a small number of training
examples is needed to improve upon the closed-form estimates. Depending on the
computational resources, we can opt to parallelize the training of the individual
ensembles each model involves or to improve the quality of our estimation at the
cost of increased training time by increasing the number or depth of the trees.

A next step would be to take into account the covariance among targets. A
more detailed investigation of learning algorithms, hyperparameter optimization
and analysis of the resulting computational cost/approximation tradeoffs is also
left for future work. So is the derivation of a simpler, interpretable model to
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replace the closed-form estimates. The skew in the global MPP distribution could
be dealt with cost-sensitive adaptations of boosting [15], improving performance.

The same ideas could also be applied to more complicated scenarios, such
as different PV configurations (arrays of modules connected in series-parallel,
bridged-linked etc.), multiple irradiance levels where more than two MPPs
appear or in the more realistic case of non-uniform temperature across the PV
system.
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Abstract. This paper proposes a recommendation system for load shift-
ing of energy consumption for residential consumers. The main goal is to
provide to customer a set of energy consumption strategies, which would
span from maximum cost saving strategy, to maximum comfort preserv-
ing strategy. The discomfort of user caused by load shifting is expressed
here as a Euclidean distance between recommended and forecasted con-
sumption. Recommendation is formulated as a multi-objective optimiza-
tion problem, solved by NSGA-II (non-dominated sorting genetic algo-
rithm II). Evaluation of proposed method is carried out on data from
Pecan Street [1], which were preprocessed and aggregated, to form a
typical consumption and photovoltaic (PV) generation course for win-
ter and summer day. Albeit no batteries are present in original dataset,
we also consider employing the batteries for storing PV generated spare
power, with simple heuristics to control charging and discharging the
batteries.

Keywords: Load shifting · Multi-objective optimization · NSGA-II

1 Introduction

Load shifting as a part of various demand response programs is a subject of
intensive research, both from perspective of utility companies, aiming to reduce
the peaks in electricity usage, and from perspective of end users trying to utilize
dynamic pricing programs. With emerge of smart and microgrid, incorporating
renewable sources and energy storage systems, this issue became even more
interesting. This is due to the fact, that this environment provides more means
to reduce energy cost.

Smart grid generates a huge amount of data. However, the real value can be
obtained only when these datasets will be properly processed. Data analytics
offers us means to enhance intelligence of the grid, e.g. consumer clustering,
cost and power load optimization or power load prediction are frequently used
[6]. One of the main goals of energy consumer is to save on energy expenditure
while preserving his demands as much as possible. This task is sometimes quite
difficult. We propose a recommendation system based on optimization using
c© Springer International Publishing AG 2017
W.L. Woon et al. (Eds.): DARE 2017, LNAI 10691, pp. 26–32, 2017.
https://doi.org/10.1007/978-3-319-71643-5_3
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NSGA-II algorithm, whereby we take into consideration not only the final energy
cost, but also the comfort of the user.

2 Related Work

Authors of [4] proposed a load scheduling by appliance commitment, namely
electrical water heater. User comfort is expressed as linear inequality constraint
(for water temperature), which is specified by the user. The optimization objec-
tive is to minimize the cost for energy consumption. Price signals were forecasted
by adding a white noise to actual historical data from Pacific Northwest Grid-
Wise Testbed project [5]. Mixed integer linear programming (MILP) model was
formulated for load scheduling in [2], where objective functions expressed cost
minimization, maximization of scheduling preferences (where explicitly specified
time slots for shiftable loads are required) and maximization of climatic com-
fort. Three objective functions are joined into one single-objective optimization
problem, using normalization and weighting method, for which user can spec-
ify his/her preferences by assigning weights to each objective. MILP was then
solved using custom heuristic algorithm. Multi-objective nature of load schedul-
ing problem was preserved in [10] and was solved by modified version of NSGA-II
algorithm. Modeled optimization problem consisted of two objective functions –
one determining the cost for the energy consumption and one determining the
end user dissatisfaction. End user must specify preferred time slots for loads, in
which shifting may occur. Dissatisfaction is then evaluated as the risk of inter-
ruption of energy supply to shiftable load and violating the specified time slots.

Home energy management problem joined with electric vehicle charging was
tackled in [8]. The discomfort was formulated as deviation of house temper-
ature from de-sired value, specified by user. The discomfort objective function
along with total electricity cost was transformed to single objective optimization
problem by simple scalarization.

As can be seen, current methods need user input for expressing the comfort
in the optimization problem, or state the comfort as a simple constraint. We
propose a multi-objective optimization model employing a Euclidean distance
metric, which ex-presses the user comfort violation without need of his explicit
input. Preserving the multi-objective nature of model permits the trade-off explo-
ration of possible strategies.

3 Formulation of Recommendation Model

Our approach assumes that the recommendation of energy consumption schedule
is formulated as a multi-objective optimization problem. At first, model without
battery is created, addition of battery with simple charge and discharge heuristics
is discussed later.

minimize F (X) = (cost(X), Eucl(X), diff(X), smooth(X))T (1)
subject to xi ≥ 0,∀i ∈ {1, . . . , 0} (2)
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where xi is recommended energy consumption at time i, together forming vector
X of size N , which is number of time intervals during one day (24 in our case).
One simple constraint tells us, that the energy consumption at time i cannot be
negative. The cost(X) function is calculating the total price for energy consumed
that day, which can be simply formulated as:

cost(X) =
N∑

i=1

min(xi − pvi, 0) ∗ pi (3)

where pvi is predicted amount of energy produced from photovoltaics at time
i, pi is price of energy from grid at time i. Prices vary during the day and the
value for particular time i depends on the fact, whether it is on/off-peak hour
and summer or a winter – actual values are taken from Pacific Power pricing [9]
and can be seen in Table 1. In this simplified model, any excessive amount of
energy produced from photovoltaics is discarded.

The Eucl(X) expresses Euclidean distance between recommended and pre-
dicted consumption and we use it here as comfort indicator. It is based on
assumption, that maximum comfort for a user is achieved, when one doesn’t
need to shift any load, hence the energy consumption is same as predicted one
– the distance is zero. Therefore, by minimization of Eucl(X) we maximize the
comfort of user.

Next objective function is also a constraint – since the cheapest solution
would be not consuming any energy at all, we must ensure, that the total amount
of recommended energy will be same, as total amount of predicted energy. This
can be done by minimizing the diff(X) function, which is defined as follows:

diff(X) =

∣∣∣∣∣∣

N∑

i=1

xi −
N∑

i=1

ai

∣∣∣∣∣∣
(4)

Last objective function (smooth(X)) aims to minimize large jumps in amount
of consumed energy (i.e. the time series is smooth). It is computed as a standard
deviation of first order difference of consumption.

This mathematical formulation does not consider battery. In battery consid-
ering model, we employ simple heuristics for charging and discharging – when
there is surplus amount of energy generated from photovoltaics, we use it for
charging and whenever there is energy in battery, we use it to satisfy energy
demand. The most widely used batteries for storing the energy from photo-
voltaics are Li-ion batteries [7]. Charging effectivity of the chosen type is 85%
and maximum rate of charging and discharging is 5E, which means that the bat-
tery can be fully charged and discharged in 12 min. Since our model employs one
hour time steps, we just assume, that battery can be fully charged/discharged
in one time step.

4 Evaluation

Optimization model formulated in Chapter 3 was optimized by NSGA-II algo-
rithm [3]. Our goal is to provide a set of recommendations, so the end user can
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Table 1. Prices per kWh for on and off peak hours for summer and winter. On peak
hours during summer are between 4 pm and 8 pm. On-peak hours during winter are
between 6 am and 10 am, and 5 pm and 8 pm. Weekends are always considered as off-
peak hours.

Summer Winter

Off peak On peak Off peak On Peak

0.03875$ 0.011124$ 0.03875$ 0.08316$

explore the tradeoff between preserving comfort and shifting load to save cost.
The filtered set of Pareto-optimal solutions (i.e. no solution can be improved
without worsening the other) is presented to user serving as a guidance for
energy consumption on next day.

In our experiment, we considered three settings: household without battery,
house-hold with battery with 3 kWh capacity and household with 5 kWh battery
capacity. The recommendation is carried out for typical day of summer (April to
October) and winter (November to March), which was calculated as an average
of all users for given period from Pecan Street dataset [1]. Data for typical day
consist of consumed energy and generated energy from photovoltaics and can
be seen in Fig. 1. These values serve as an input for model. The energy cost
user would pay for these average days is 0.80$ for winter day and 1.27$ for
summer day. The optimization with NSGA-II algorithm was performed with
200 individuals and 90% crossover probability rate. Number of generations was
empirically set to 600. As can be seen in lower right plot in Fig. 1, the growth of
hypervolume resembles logarithmic growth, with values dramatically increasing
during the first 100 generations and slowly decreasing growth afterwards. The
reference point for hypervolume was chosen as the worst objective values from
initial population. For evaluation, we considered only solutions, which satisfy
the filtration criteria (diff(X) ≤ 0.5, Eucl(X) ≤ 10 and smooth(X) ≤ 1) and
we pick the population with highest hypervolume score. Tables 2 and 3 show
cost of energy for average winter and summer day, respectively, for consumption
strategy, which yields maximum cost savings. Populations with best hypervolume
among 300 generations and 600 generations were considered. The best results
are (as expected) obtained when employing the large 5 kWh battery, however,
for household with no battery, rather significant saving is also achieved. More
interestingly, the larger number of generations did not bring improvement in
cost saving. This is a consequence of employing the diff(X) and smooth(X)
constraints as objective functions, since the hypervolume is computed from all
objective functions and not only cost and distance.

Figure 2 shows the visualization of optimization results for average winter
day. Upper left plot show all filtered solutions. Marginal solutions (the lowest
cost for energy and the lowest distance) are shown in upper right plot. The
lower left plot shows the scatter plot of filtered solutions, which (along with
consumption profiles) are presented to the user.
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Fig. 1. Average consumption and PV generation of all users

Fig. 2. Visualization of optimization results for average winter day for household with
3 kWh battery.
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Table 2. Cost of energy for solution with lowest price on average winter day

Gen Battery [kWh] Mean cost [$] Std. cost Saving [$] Saving [%]

300 0 0.326 0.027 0.476 59,33

300 3 0.286 0.014 0.516 64,32

300 5 0.282 0.010 0.519 64,83

600 0 0.315 0.011 0.487 60,71

600 3 0.294 0.007 0.508 63,33

600 5 0.279 0.020 0.523 65,20

Table 3. Cost of energy for solution with lowest price on average summer day

Gen Battery [kWh] Mean cost [$] Std. cost Saving [$] Saving [%]

300 0 0.943 0.078 0.328 25,81

300 3 0.671 0.030 0.600 47,21

300 5 0.565 0.049 0.706 55,55

600 0 0.961 0.024 0.310 24,40

600 3 0.702 0.040 0.569 44,78

600 5 0.575 0.049 0.696 54,77

5 Conclusion and Future Work

We propose a software solution for recommendation of energy consumption for
residential user. The main benefits of our solution are the explicit expression of
user’s comfort through Euclidean distance metric and providing the user with a
set of tradeoff solutions from which he can select the most suitable one for the
following day. Our method can be used for providing the simple upper bound
for maximum savings, which can be achieved by employing PV and battery and
is particularly suitable for markets with dynamic day-ahead prices.

In order to deploy our solution in real-life environment, some aspects require
more investigation. Every user has its own specific behavior, which is mirrored
in his/her energy consumption profile. Accurate predictions for next day would
improve accuracy of recommended cost savings and would thus improve the
attractiveness of this approach for end users. More advanced charging and dis-
charging strategy could be employed, leading to even more energy cost savings.
Cluster analysis of customers load profiles would also be beneficial, mainly for
improving the prediction accuracy.
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Abstract. Due to the huge costs associated with wind energy development, this
makes wind farms maintenance and production reliability are of high necessity
to ensure sustainability. The continuous evolution of turbines industry has a
serious impact on the operation and maintenance costs. Thus, monitoring wind
turbines performance and early deterioration prediction are highly required.
During the operational life of turbines, some components are persistently
exposed to extreme environmental influences that result in their edge erosion.
Sensors can be deployed in wind farms to detect such factors, where vast
quantities of incomplete, heterogeneous and multi-sourced data are rapidly
generated. Hence, wind-related data have been considered as big data that
necessitate the intervention of big data analytics for accurate data analysis,
which become severely hard to process using traditional approaches. In this
paper, we propose the Wind Turbine Erosion Predictor (WTEP) System that
uses big data analytics to handle the data volume, variety, and veracity and
estimate the turbines erosion rate, in addition to the total power loss. WTEP
proposes an optimized flexible multiple regression technique. Experiments show
that WTEP achieves high erosion rate prediction accuracy with fast processing
time. Thus, it effectively evaluates the accompanied percentage of power loss for
wind turbines.

Keywords: Big data analytics � Data mining � Regression analysis �
Association rules � Apriori. Principal component analysis � Wind farms
reliability � Wind farms maintenance � Erosion. Power prediction

1 Introduction

Wind energy has become a popular source of energy around the world, where its
development plants cost huge investments. This requires a keen management of their
economic efficiency to ensure higher yields for energy cost reduction [1]. The wind
turbine reliability is a critical factor in the success of a wind energy project, which
implicates reducing the expensive operation and maintenance (O&M) costs that affect
the project’s revenue [2]. During the wind turbine’s operation, some components,
principally the rotor blades, are continuously exposed to certain environmental con-
ditions over time, such as rain, temperature and sand. This results in the deterioration of
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the blade’s material surface and the increase of its surface roughness if unprotected,
leading to its erosion after an average of 2 years of turbines installation and to per-
formance decrease. This requires that in-service maintenance should be performed on
the turbine for at least 12 years of operation if it meets its design life, which results in
huge maintenance costs [3]. For significant erosion rates (5%–20%), O&M costs are
expected to be within $27–54/MWh. Rain erosion occurs during the processing of
turbines in heavy rain. During the high velocity of fallen liquid on a solid target, a high
pressure is developed between the solid and liquid, where it varies over many locations
[4]. On the other hand, sand erosion exists in the desert environments with the movable
dirt and airborne particles affecting turbines’ blades, which increase roughness and
decrease aerodynamic performance [5, 6]. The high temperature affects wind turbines
because the erosion rate increases when the viscosity of liquid reduces [7]. In addition,
the increase of wind speed and air density has a positive impact on power production.
However, when it exceeds 6 m/s over dry soils, it carries sand and dust towards
turbines, leading to erosion. Wind direction is highly effective as well if it is like the
sand direction. Whilst a slope that is greater than 20 m affects the angle between the
surface and sand/dust, resulting in surface erosion [8]. Sensors can be deployed in the
desired location of wind energy plants to monitor such environmental turbines erosion
causes, by collecting sensors’ data that could be heterogeneous and incomplete massive
data [9].

The nature of such wind energy data enforces the desperate need to utilize big data
analytics to handle such issues effectively. Big data refers to the collections of so huge
and heterogenous datasets that are critically sophisticated to process using customary
approaches [10]. This is due to the mainly characterized 4Vs of big data, representing
Velocity, Veracity, Variety, and Volume. Big data analytics refers to the usage of
advanced analytic techniques against these 4Vs [11]. Wind farm engineers can use big
data analytics to manage the risks in order to achieve production goals and recommend
activities to address shortfall detected [12]. Thus, the prediction of erosion rate is an
efficient way to manage the cost impacts of wind farms through the power usage
prediction and the achievement of the supply on demand concept.

In this paper, we introduce the Wind Turbine Erosion Predictor (WTEP) System
that uses big data analytics to handle the data volume, variety, and veracity in order to
predict turbines’ erosion rate. WTEP is built on the top of Trio-V Wind Analyzer
system, which is a generic integral system that analyzes the land suitability of a
potential location and recommends a distribution layout design, in addition to power
prediction using big data analytics prior to wind farms development. WTEP can predict
the erosion rate and evaluate its resultant power loss at any spatial region under study
based on its environmental factors data rather than other customizable studies. The
remaining parts of the paper are organized as follows: Sect. 2 overviews the related
works in wind farm reliability, data reduction and power prediction in the wind energy
domain. Section 3 presents the proposed system, with a detailed discussion of its
architecture. Section 4 explains the experimental approach and the study area. Sec-
tion 5 discusses the different applied experiments and the associated results. Lastly,
Sect. 6 summarizes the conclusion and the future work.
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2 Related Work

2.1 Wind Farm Reliability Approaches

Many researches have considered analyzing wind turbines data to maintain wind
plants. Most of these studies were done to ensure the reliability of wind farms through
extracting the failure history of wind turbines and monitoring their status in order to
reduce downtime and increase availability. Authors in [13] monitored the performance
of wind farm turbines to detect their downtimes by integrating SCADA system with the
turbine’s control system and controlling the detected turbines to manage the require-
ments of power consumption and turbine efficiency. In [14], a platform was developed
using the National Reliability Database for turbines’ failure detection. Another platform
in [15] aimed to discover the hidden patterns in the turbine statuses using the random
forest multiclass classification model. SCADA monitoring system was considered in
[16] to detect failures by applying an anomaly detection technique. In [17], SCADA
data were used to classify the failure events of turbines into severity categories and
apply a statistical methodology for each category to decide the wind farm reliability.
Since the previous researches have tackled the problem from the engineering per-
spective, a minimal research effort was dedicated for analyzing the operational and
environmental data of wind turbines to raise their performance and reduce the asso-
ciated maintenance costs. Moreover, most of these studies were poor to process scal-
able and variable data, since SCADA data are static with a specific format.

2.2 Data Reduction Techniques

Traditional data mining techniques were investigated to fit big data processing. Near
Filter Classifier (NFC) upgrades K-Nearest Neighbor (KNN) classification by adding a
dimensionality reduction step [18]. It computes the class distribution per every dataset
parameter, then sorts the parameters by the calculated value. In [19], Parallel pro-
cessing was used in the decision tree data mining technique to mine a huge amount of
data streams. In addition, “Scalable Advanced Massive Online Analysis (SAMOA)”
technique used parallel processing with distributed decision trees for data mining
classification over big data [20]. Another upgrade was applied to reduce big data
volume using parallel processing by applying K-means on several nodes and com-
bining the results [21]. Although these researches were dedicated to reducing data
volume, but they were poor to reach high accuracy that doesn’t exceed 60%, with high
processing time that reaches 100s with five neighbors [18]. This is in addition to the
extra communication time between nodes in the parallel processing approaches, which
leads to excessive processing time [19].

2.3 Prediction Techniques for Wind Energy

Several prediction techniques were dedicated for wind energy domain. In [22], the
weather prediction used genetic programming. The wind speed and generated power
were predicted in [23] using a fuzzy expert system. Artificial neural networks were
used in [24] to predict electrical power generated from wind farms. However, such
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prediction techniques have just reached 85% accuracy [22] and 20% error rate [24].
The fuzzy system consumes much processing to learn the model that cannot fit big data
processing [23].

The contributions in this proposed research can be summarized as follows. (1) We
propose the Wind Turbine Erosion Predictor (WTEP) as an integral system for pre-
dicting the erosion rate of wind turbines from the data analytical perspective to decrease
turbines failure rate. (2) It uses big data analytics to handle wind turbines data volume,
variety and veracity, where Double-Reduction Optimum Apriori (DROA) approach is
proposed. (3) It presents a new Optimized Flexible Multiple Regression (OFMR)
approach to fit big data processing to predict wind turbines erosion rate, taking into
consideration the different affecting environmental factors that can be adapted and
generalized to wherever the study area is located. Hence, it can fit to evaluate any wind
farm irrespective of its location rather than any customized systems to study certain
territories, which is one of the main strengths of this proposed system. (4) It predicts the
power loss accompanied by the predicted erosion rate.

3 The Proposed Solution

In this section, we present the proposed Wind Turbine Erosion Predictor (WTEP)
system. As shown in Fig. 1 representing the system architecture, WTEP is developed in
accordance with Trio-V Wind Analyzer system to achieve WTEP functionalities. The
study presents the complete work of the proposed system, providing its architecture, the
detailed explanation and implementation of all its components, and the associated
experimentations. WTEP deals with the data layer managing the factors data of wind
farms, in addition to the presentation layer that is connected to the sensors and Google
map to manage the user selections and to display the analytical results plotted on the
map or generated in reports. WTEP works as shown in Fig. 2. The system user
determines the wind farm location and the reduction method to apply on the sensed
factors data. WTEP collects the factors data from the sensors in the defined location
and then manages their biases and noises using the Variety-Veracity WA Handler [25].

Next, the selected reduction method is applied on the data using the Volume WA
Handler. The resultant processed data is then used to analyze the erosion rate and
evaluate the associated power loss using Trio-V Power Loss Analyzer in a detailed
report, showing each cell with its corresponding erosion and power loss rates. Data
velocity, in terms of data processing in the form of a stream, is not handled in this
system since it doesn’t require real-time processing. Sensors data are accumulated in
the data layer, taking into consideration the time representation of data as another data
dimension for offline processing and analysis, where the collected data are strongly
related to the recording time. Thus, a data stream handler is not required. The main
components of WTEP are further explained hereinafter.

3.1 Presentation Layer

This layer provides the User Interface (UI) of the system, which enables the user to
determine the wind farm’s location and collect the associated environmental factors’
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data from the deployed sensors. It then divides the land into cells of equal size as per a
user-defined cell size parameter. In addition, it allows the user to choose a reduction
method to manage the huge size of data. Finally, WTEP prediction results are displayed
in a detailed report with the suitable graphs per cell, visualizing the expected erosion
rate and the corresponding predicted power loss rate.

3.2 Trio-V Wind Analyzer Application Layer

This layer handles the huge Volume, Veracity and Variety (Trio-V) features of the
collected environmental factors’ data, which are generated from the sensors deployed at
the land under study. Then, it evaluates the suitability of this land to establish a wind
farm and suggests a distribution layout for the turbines. The main components are
explained as follows.

Variety-Veracity WA Handler. This module manages the biases and noise detected
in the sensors data while considering its big data nature. It validates the data quality and
data inconsistencies before storage into the data layer through several data cleansing
processes, including noisy data deletion and filling in missing data with the mean value.

Fig. 1. The proposed system architecture
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Fig. 2. Wind Turbine Erosion Predictor (WTEP) system flowchart
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Encoding-decoding processes are considered as well to transform specific factors’ data
into a certain format to be processed [25].

Volume WA Handler. The deployed sensors generate enormous amounts of data.
Thus, this module applies the reduction method that has been selected from the pre-
sentation layer. The data layer structure includes different environmental factors to
identify each cell, where each factor has excessive amount of data per one cell. WTEP
provides several alternative reduction methods merged from different reduction tech-
niques to apply on the cells’ factors data. Some of these techniques are responsible for
reducing the number of cell factors used for analytics, like Principle Component
Analysis (PCA) and Association Rules (ARs) (i.e. column reduction), while others
reduce the amount of cell data, like aggregations. PCA is a data reduction technique
that uses a mathematical approach to reduce many correlated parameters into a small
set of uncorrelated parameters called principal components (PCs). WTEP uses the
correlation approach to match the resultant PCs to their corresponding factors in the
original dataset by calculating the correlation coefficient between every PC(x) and each
factor (y) in the original data using Eqs. (1), (2), (3), and (4) [26]. The factor having the
highest correlation coefficient represents the PC.

Sxx ¼
X

x2 �
P

xð Þ2
n

ð1Þ

Syy ¼
X

y2 �
P

yð Þ2
n

ð2Þ

Sxy ¼
X

xy�
P

xð Þ P
yð Þ

n
ð3Þ

CorrelationCoff ¼ Sxyffiffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

p ð4Þ

Where n represents the number of records for the cell’s factors, x represents the
resultant PC; and y is the cell’s factors data needed to be reduced [26]. The higher the
result means that this PC is most correlated to this factor. As for the ARs, we enhanced
the original version of the Apriori technique to fit the big data processing by intro-
ducing our optimized Apriori algorithm named “Double-Reduction Optimum Apriori”
(DROA) to extract the most informative relationships between the factors using the
criteria of support and confidence according to Eqs. (5) and (6) [27]. The proposed
DROA ARs optimizes the Apriori algorithm to support big data volume by applying
two phases before running the basic Apriori; (1) using database scanning time
reduction that saves a screenshot of the desired transactions between erosion factors
related to a certain area in a supportive map data structure, which decreases the tra-
ditional Apriori processing time. (2) Using transactions reduction that reduces trans-
actions by discarding the unsuitable ones that violate erosion values constraints [25].
This allows DROA ARs to work efficiently on a huge number of transactions.
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Supporti ¼
FPi
TFP

ð5Þ

Confidence ðA ! BÞ ¼ supportðA[BÞ
supportðAÞ � 100 ð6Þ

Where supporti is the support of the ith factor, FPi is the number of times the ith
factor is found, and TFP is the total number of factors found. Confidence (A ! B)
represents the confidence of occurrence; if A occurs, then B will occur too. For more
processing efficiency, WTEP allows merging several approaches of reduction methods
to additionally reduce data. Thus, the reduction alternatives are: Aggregation functions
only, Aggregation followed by PCA, Aggregation followed by DROA ARs, PCA
followed by Aggregation, or DROA ARs followed by Aggregation. For instance,
aggregation only would be sufficient for small datasets, whereas DROA ARs and PCA
are more appropriate for huge datasets.

Trio-V Wind Analyzer Engine. This module is the core of Trio-V Wind Analyzer. It
uses big data analytic techniques to perform land suitability analysis for wind farms
prior to development. Trio-V determines land suitability through evaluating its envi-
ronmental factors. Upon the positive evaluation, Trio-V Wind Analyzer recommends
the optimum wind farm design that avoids the wake effect problem of turbines and
maximizes the generated power by suggesting the suitable turbines’ specifications and
their distribution layout depending on the analyzed factors of the potential location.
Accordingly, it then predicts the expected generated power from this recommended
design [25].

3.3 Wind Turbine Erosion Predictor (WTEP)

This module explains the main WTEP functionalities in the following sub-modules:

Trio-V Erosion Rate Analyzer. This module is responsible for determining the ero-
sion rate per one turbine for each land cell by evaluating specific environmental factors;
rain, sand, wind speed, slope, wind direction, air density, and temperature [4–7, 33].
These environmental factors have variable values over time per year, where severe edge
erosion can be caused if certain thresholds were exceeded as clarified in Table 1. WTEP
considers the influence of such variance of values on erosion. For example, the dust
storms could be very erosive compared to daily wind. However, the continuous direct
exposure of everyday wind can even affect turbines erosion. Thus, all variances of the
different factors are considered in the data analytics process to determine the erosion rate
with an acceptable accuracy. WTEP aggregates all the previous erosion factors data from
the collected sensors data for each cell at the potential land under study. Since WTEP
processes one turbine at a time, the number of installed turbines per land cell is not
considered as a factor in the erosion rate analysis. The Trio-V Erosion Rate Analyzer
module estimates the erosion rate using our proposed Optimized Flexible Multiple
Regression (OFMR) technique, which is an enhanced flexible form of the original
multiple regression technique to support big data volume by considering a dynamic
number of predictors, whereas the original multiple regression analysis is a statistical
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technique for analyzing relationships between factors using multiple predictors in fixed
prediction equation parameters [28]. The following model in Eq. (7) shows the multiple
linear regression model with K predictor variables.

Y ¼ B0 þB1X1 þB2X2 þ . . .: BKXK ð7Þ

Where parameter B0 is the intercept of this plane, while “Y” is the unknown value
to be predicted, and parameters B1, B2 … BK are referred to as regression coefficients
[29]. OFMR supports big data volume by considering a dynamic number of predictors.
It can build the model depending on the considered erosion factors based on the land
under study, which are additionally reduced in the Volume WA handler, rather than
building one fixed model based on all factors. Therefore, OFMR ensures more accurate
results than traditional multiple regression technique, where the erosion rate “Y” is
correlated only to the existing factors from Volume WA handler. OFMR consumes less
processing time due to the flexibility in building the model with any number of pre-
dictors. It handles the biases and noise detected in the sensors data by ensuring data
quality before building the model using the Variety-Veracity Handler. Thus, OFMR
manipulates the overfitting problem in the traditional multiple regression model.
Moreover, the factors’ values that are less than the erosion constraint thresholds will be
ignored by the OFMR regression model. These features made WTEP adapted and
generalized to evaluate any wind farm irrespective of its location, taking into consid-
eration the different affecting environmental factors that would be associated by this
location.

Trio-V Power Loss Analyzer. Leading edge erosion poses a major threat to the
performance of wind turbines. The modeling of power output per one turbine is a trivial
approach that assumes static wind parameters. However, a turbine’s status is incon-
stant, due to the erosion factors and wind parameters like wind speed, and air density
that continuously change and affect the turbine’s status [30]. This module allows
WTEP to evaluate the power loss rate according to the predicted erosion rates resulted
from Trio-V Erosion Rate Analyzer. Power loss prediction is performed by applying a
single linear regression technique using the predicted erosion rate value. Single
regression analysis explores relationships statistically, containing one predictor as
shown in Eq. (8) [31].

Table 1. Erosion factors constraints

Factor Erosion values constraint

Rain >100 mm
Sand 1–200 lm
Steel temperature >160°
Wind Speed >6 m/s
Slope >20
Wind direction –

Air density –
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Y ¼ B0 þB1X ð8Þ

Where “Y” is the power loss rate; “X” is the resultant erosion rate; B0 is the
intercept of this plane; and B1 is the regression coefficient.

4 Case Study Area

Egypt climate is affected by several factors, including its position that lies between
Africa and Asia [32]. These factors give Egypt a hot and sunny weather, with a very
low humidity. The erosion factors value at the main areas in Egypt are presented in
Table 2 [33, 34]. As for the wind direction and air density, their values are continu-
ously changing during the year.

5 Experimental Results and Evaluation

WTEP has been developed using JAVA, MS SQL Server and APIs to some scientific
libraries and external components. Experiments were held to evaluate WTEP from two
points of view: the big data processing efficiency and wind analytics accuracy. Hence,
the experimentation is categorized into: the erosion and power loss rates prediction
accuracy, and the associated processing time versus the different reduction methods to
emphasize that the proposed data reduction and prediction techniques are suitable for
big data analysis, supported by a comprehensive comparison with the relevant existing
state-of-arts. The evaluation was demonstrated on a machine having core i7, 2.70 GHz,
1T hard disk space, and 8 GB RAM. OFMR prediction accuracy is evaluated using the
Root Mean Square Error (RMSE) as per Eq. (9) [29]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
xi � yið Þ2

r
ð9Þ

Where “N” is the number of data points, “xi” the original observed value and “yi” is
the predicted value corresponding to the current original data point “xi”. RMSE values
vary from 0 to 100 in order to be mapped to percentages, in which the smaller values
indicate higher accuracy. RMSE values that are within (0–10) represent an accuracy
from 90% and above. A sample of the experimental results of Red Sea area are
discussed hereafter, since it is one of the potential areas in Egypt for wind plants. Three
dataset sizes are used; small dataset D1 with 100,000 records, medium dataset D2 with

Table 2. Erosion factor values at egyptian areas

Area Sand particles Rain Temperature Wind speed Slope

Western desert <170 microns 20 mm 36 °C 5.3 m/s 32 m
North coast <120 microns 196 mm 20 °C 6.2 m/s 18 m
Red sea <80 microns 2.3 mm 30 °C 8 m/s 27 m
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2,2500,000 records, and large dataset D3 with 5,750,000 records. The average tem-
perature is 30 °C with 4 °C variation during winter. The rainfall is low, averaging
2.3 mm per year with average speed 8 m/s, air density equals to 1.2 kg/m3, and slope
of 27 m. Red Sea area has occasionally dust storms as well [32]. The values of erosion
factors differ depending on the measurement height, representing the height at which
the values are detected and recorded. Thus, each dataset is tested for three turbine scale
heights; 80, 50 and 30, representing the standard turbines’ hub heights in the market.
DROA ARs is investigated at confidence and support thresholds: 0.3, 0.5, 0.7 and 0.9,
whereas PCA is studied at K-values: 5 and 3. These values have been configured as per
many trials of experimental preparation, where their fair representation has been proven
to the remaining values.

5.1 Erosion Rate Accuracy vs. Reduction Methods

Previous researches have considered wind farms reliability from the technical fault
prediction perspective. In [13], 90% system availability has been achieved using
SCADA data monitoring. Random forests data mining was used in [14] to predict
turbines’ failures with 8.3% error rate. Authors in [15] considered anomaly detection
algorithms to detect turbines failures with 90% accuracy. In [24], 88.84% of failures
were detected in a detection system of turbine failures using SCADA data. Despite of
these previous researches, but they predicted the failures of turbines. To the best of our
knowledge, WTEP is the first data analytical system that predicts turbines erosion and
power loss rates using big data analytics. Thus, experiments were carried out to
evaluate the big data processing efficiency by studying the RMSE results of the erosion
rates prediction using OFMR over the different reduction methods. As shown in Fig. 3
for the RMSE results of the three datasets over WTEP reduction methods, the erosion
prediction RMSE decreases as the dataset size increases.

Table 3 summarizes RMSE results over D3, representing the largest dataset. The
aggregation only has the most accurate results due to the complete number of factors
used, then DROA ARs with a reasonable accuracy results, and PCA has the least

Fig. 3. Erosion prediction RMSE vs. reduction methods
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accurate results. Applying DROA ARs or PCA followed by aggregation, the erosion
rate prediction error is 10% less than using aggregation first then DROA ARs or PCA,
since the erosion rate is calculated from the correlated results generated from DROA
ARs or PCA rather than working on all the factors.

5.2 Power Loss Rate vs. Erosion Rate

For the wind analytics evaluation, WTEP have traced the resultant power loss rate over
several erosion rate values per three different areas (Western Desert, Red Sea and North
Coast) for the largest dataset D3. The higher erosion rate, the more power loss rate as
shown in Fig. 4, where each line style represents the erosion rate values interval at a
certain area. Erosion rates exceeding 45% represent a major threat to the power pro-
duction process, as it leads to 30% and more power loss. Figure 3 proves that the
erosion rate is high at the Western Desert that reaches 48% and North Coast with 33%
due to the increase of sand and fallen rain respectively, whereas a normal erosion rate at
Red Sea reaches 17%.

5.3 Processing Time vs. Reduction Methods

Evaluating the big data processing efficiency, WTEP processing time is tested at the
different reduction methods for the three datasets as presented in Fig. 5. The processing
time increases by enlarging the dataset size. Table 4 shows the results over D3, where

Table 3. Erosion rate prediction at D3

Agg. 
Only

ARs+ 
Agg.

Agg. + 
ARs

PCA + 
Agg.

Agg. + 
PCA

RMSE 4.2 < 5.5 < 6.2 < 6.5 < 7.3

Fig. 4. Power loss rate vs. erosion rate
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the largest data can judge the processing time efficiency. The aggregation only con-
sumes the highest processing time due to working on all factors to predict the erosion
rate, in contrast to DROA ARs since it works on a less number of factors. The lowest
processing time is consumed by PCA. Moreover, using the aggregation first then
DROA ARs decreases the number of factors, which reduces the processing time by
20% rather than that of aggregation only that uses all factors in processing. Apply-
ing PCA then aggregation, the processing time is 25% less than that of aggregation
followed by PCA and 40% less than that of aggregation only. Decreasing K-value by 2,
the processing time is reduced by average 2 s. On the other hand, increasing the
confidence and support values by 0.2 reduces the processing time by average 3 s,
because of reducing the number of factors used for processing.

6 Conclusion

Many researches have considered wind farms reliability evaluation to manage their
operation and maintenance costs from the engineering viewpoint. In this paper, we
introduce Wind Turbine Erosion Predictor (WTEP) system for predicting the erosion
rate of wind turbines from the data analytics perspective to minimize turbines failure
rate. WTEP proposes a novel Optimized Flexible Multiple Regression (OFMR)
approach for erosion rate prediction that fits big data processing. In addition, it applies a
new approach for big data volume handler using Double-Reduction Optimum Apriori
(DROA). The Variety-Veracity Handler ensures data quality used for turbines erosion

Fig. 5. Processing time vs. reduction methods

Table 4. Processing time over reduction methods

D3
Agg. 
Only

ARs
+ Agg

Agg.
+ ARs

PCA
+ Agg.

Agg.
+ PCA

16 < 11.2 < 12.7 > 8.2 < 11
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analysis and power loss prediction. Experiments were performed to evaluate big data
processing efficiency and wind analytics at several areas in Egypt, where OFMR
reaches >90% in efficient processing time. DROA ARs generates reasonable accurate
results in less processing time. The experiments held on the Egyptian locations datasets
confirm that the lowest erosion rate is at Red Sea. Our future work is to consider the
economic models of wind farm profitability using big data analytics.
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Abstract. This study applies model-free reinforcement learning (RL) on a case
study based in Utrecht province in the Netherlands to optimize for on-site renew‐
able energy. This aims at reducing the interaction of net zero-energy buildings
with the grid as a result of an increase of heat pump installations and renewable
energy systems (RES) integration. It is believed that this will become increasingly
more important since the regulations regarding 2020 and beyond ascribe signif‐
icant increase in energy efficiency of the built environment. On-site RES self-
consumption is therefore a central lead in this research. The project data comprise
air source heat pump and solar energy data of 6 different households for the
months June to November 2016. The RL algorithm is applied to the different data
sets to derive an optimized individual and generalized control strategy. Simula‐
tions were carried on, to acquire the resulting energy consumption, self-consump‐
tion, and self-sufficiency. The results show an increase of individual self-
consumption between 17% and 348% and self-sufficiency between 18% and 72%.
This results in an additional monetary benefit for the occupants based on the
transition proposals of 2020 for the renewable energy generation net-metering
abolishment in the Netherlands. Furthermore, reducing the grid interaction
implies benefits for the grid operators in terms of investments required for grid
reinforcement.

Keywords: nZEB · Demand response · Smart grid · Reinforcement learning ·
Solar power · Heat pumps · Self-consumption · Self-sufficiency

1 Introduction

Improvements of the energy efficiency of the built environment in the Netherlands is
planned partly to be achieved by increasing the number of nZEB concepts by building
new nZEBs as well as refurbishing existing buildings [1]. An nZEB is a nearly zero
energy building which consumes very little energy over the course of a year (and pref‐
erably meets most of this using renewable energy). Residential nZEBs are dominantly
provided by heat pumps (HP) for HVAC and DHW operation to disconnect from the
gas network while solar panels are used to generate the required energy to meet the local
energy demand. This setup increases the interaction of the residential built environment
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with the electricity grid as a result of solar power injection and also increased power
consumption as a result of the HP load.

This could be addressed by integrating more storage facilities and reinforcing the
grid components such as the transformers and cables which, given the required RES
goals of 2020 and beyond, implies significant investments. The weak link in this area
of renewable energy generation is the lack of large scale storage capacity due to its
relatively high cost. Increasing the size of the grid components is a similarly costly
procedure. However, it is believed that the necessity for a costly reform of the energy
infrastructure could be reduced and substantially spread over a larger period of time if
the variety of decentralized actors could be centrally monitored and managed [2]. The
need for centrally monitoring and managing the variety of power sources and sinks in
the grid has introduced the concept of Smart Grids [2]. Smart Grids are required to
facilitate real-time monitoring and steering tools so as to allow the distribution and
transportation capacity of the grid to progress in a more flexible fashion. In the traditional
top-down approach of the energy system, the Distribution Systems Operators (DSO) are
primarily responsible for the operation and maintenance of the distribution system.
However, the need for Smart Grids imposes the need for a change in this role to a more
pro-active grid management. This introduces new service opportunities for grid opera‐
tors. Connecting a large number of nZEB buildings with fluctuating individual energy
generation is one such example of locally generated energy that adds to the volatility of
the grid power for which grid operators could monitor and manage [3].

Research in this area ranges from fully automated building energy discarding occu‐
pant behavior, to smart metering objectives aiming at increasing occupants’ energy
performance awareness, and control strategies based on electricity prices signals etc. [4–
7]. A large part of this research applies rule-based control (RBC) and model-predictive
control (MPC) methodologies [7, 8, 10–12]. Generally, MPC performs significantly
better that RBC as a result of accurate modelling of the system physics [12]. Both meth‐
odologies have benefits and drawbacks related to their application with the model
complexity being the main central technical difference [12]. Although both methods
have proved to reduce the grid interaction on building level to a certain extent, both
methods lack generalizability potential [9]. Hence, when applied on a large scale the
system parameters have to be adjusted from system to system. To solve this problem, a
learning based methodology is proposed in this paper.

This study, therefore, applies model-free reinforcement learning (RL) to optimize
for the self-consumption and self-generation of the DHW load of the HP installation in
six different households of a refurbishment project in the Netherlands conducted by a
housing corporation. “De Stroomversnelling” project is implemented to refurbish low
performing dwellings into nZEB concepts [13]. This is done by applying a high
performing façade to the existing one and supplying the houses with solar panels. The
houses are fully disconnected from the gas network and operate therefore only on elec‐
tricity.
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2 Methods

2.1 System Setup and Data

An air source heat pump (ASHP) is installed to supply the hot water and special heating.
The ASHP has a COP ranging between 3 and 5 for a temperature range of 45 ◦C and
51.5 ◦C, depending on the outside temperature. Secondly, a hot water storage vessel of
200 L is installed in the dwellings which is only used for DHW purposes. The third
system component is an array of solar panels. The data is measured in 5 min uniform
intervals in the form of three different sensors each measuring a different parameter:

1. A hot water flow rate meter
2. A smart meter registering the power consumption of the heat pump at different modes

and the power delivered by the PV panels
3. A temperature sensor in the storage vessel.

The data is measured and sent to a central repository in which the baseline control
and/or the optimization algorithm is embedded. The individual control action is calcu‐
lated based on the embedded control strategy and subsequently sent as an action signal
to the corresponding ASHP per house.

2.2 Baseline Control and Comfort Standards

The default control strategy is a simple rule-based control algorithm given by Eq. 1 [9]:

𝐚t =

{
1, if Tm < Tth

0, if Tm ≥ Tth

(1)

In which 𝐚t is the action taken by the heat pump: 1 when it is heating and 0 when it
is off. Considering the temperature in the vessel, Tm is the temperature measured by the
midway sensor in the vessel and Tth is the threshold temperature set point [9]. The
comfort standards usually dictate that if Tth is lower than 45 ◦C, the ASHP initiates a
reheat cycle. Additionally, the upper limit for Tm was set threshold of 51.5 ◦C to which
Tm increases during a reheat cycle. Additional comfort standards determine the water
content of the vessel containing the threshold temperatures. A minimum of 50 L with
temperature Tm of at least 45 ◦C, was defined as a minimum requirement to maintain
occupant comfort. The PV output is not considered in the default control strategy as the
main goal of that control strategy is to comply to the comfort standards. The solar energy
delivered is only considered for compensating the energy required from the grid in order
to comply to the nZEB concept on annual basis [13].

2.3 Optimization Objectives

The main objective for this study is to shift the DHW energy consumption towards high
solar energy production hours in order to reduce the energy required during low
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production hours. It is also important to maintain a balanced ASHP consumption to not
affect the nZEB concept by either violating the occupant comfort or a large rise in the
energy consumption. Two main optimization indicators for this objective, are defined
as the relative change in self-consumption and self-sufficiency compared to the baseline
conditions. Self-consumption is defined as the energy of the load that was covered by
the solar energy expressed in either in kWh in absolute terms or as a percentage of the
total generated energy. Self-sufficiency on the other hand, is defined as this same energy
covered by the solar energy expressed either in kWh in absolute terms or a percentage
of the total load. The following Fig. 1 illustrates the two concepts:

Fig. 1. Schematic overview of the daily net load (A + C), net generation (B + C), and absolute
self-consumption (C) [14]

2.4 Application to Case Study

The control algorithm that is aimed at in this study, is an algorithm that optimized for
onsite solar energy consumption. The aim is therefore to utilize the hot water storage
vessel similarly to a storage capacity for the PV energy. Hence, it is important to use as
much PV energy as possible during the high solar energy production hours of the day.
To achieve this, a SARSA(λ) algorithm is applied with a reward function that takes
several parameters regulating the vessel state into consideration according to:

Q(st ,at)
← (1 − 𝛼)Q(st ,at) + 𝛼[rt+1 + 𝛾Q(st+1 ,at+1)] (2)

Here, Q(st ,at)
 represents the state-action value showing how good it is to take action

a when being in state s. α represents the step-size parameter which functions as the
exponentially moving average parameter. It is especially useful for non-stationary envi‐
ronments for weighting recent rewards more heavily than long-past ones. If α is a number
smaller than one for non-stationary environments which indicates that recent updates
weight more than previous ones. This transition happens after every nonterminal state.
The Q(st+1 ,at+1) of every terminal state are defined as zero. Hence, every terminal state has
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an update value of 0. Once the correct modes and their corresponding variables have
been filtered, the episodes are simulated accordingly. Each episode consists of the states
during which the mode was 0 and ends with the state at which action 1 was taken. From
this data, the features needed for the SARSA(λ) code are compiled.

The reward function applied in this algorithm is presented in a flowchart fashion in
Fig. 2. This reward will be appended to each action 0 to be taken. Action 1 leads to a
terminal state which will lead by definition to a standard update of 0 as described previ‐
ously. Consequently, if the Q-value of taking action 0 is higher than 0, action 0 is more
favorable than taking action 1 and vice versa. A drawback to the binary action-space, is
that action 1 could not be punished or rewarded. However, this is solved by amplifying
the negative or positive reward for not reheating (action 0) instead.

Fig. 2. Flowchart of reward function

To prevent the vessel from constantly reheating when there is high generation of
solar energy, a temperature of 2 ◦C below Tstart is defined as the threshold temperature
for the ASHP to reheat the vessel. This is equal to 49.5 ◦C when Tstart is set to 51.5 ◦C
such as in the case in the default strategy. Therefore, two main scenarios are created this
way, one describing a midpoint temperature of higher than 49.5 ◦C and one lower.
Temperatures higher than 49.5 ◦C receive a constant high reward of 25 points to ensure
an idle state. On the other hand, to fully exploit the solar energy when available, if the
temperature falls below this threshold and the solar energy available is higher than that
is needed for rising the temperature of the vessel to 51.5 ◦C again, negative rewards are
favoured to enhance reheating.

When the temperature falls below 49.5 ◦C and the solar energy available is higher
than what is needed to increase Tm by 2 ◦C, the algorithm will append an increasingly
negative reward to temperatures below 49.5 ◦C which depend on the amount of water
consumed. For this purpose, the water consumption threshold is set according to the
comfort standards already defined. If the water consumed at time t is higher than this
threshold Lmax, a reward as a function of both Tm and the water consumption is appended
according to:
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R =
(
Tnext − Tmin

)
−

(
Lnext

100

)
− (

Sol

100
) (3)

In which Lnext represents the cumulative volume of water consumed and Tmin repre‐
sents the minimum midpoint temperature for that scenario. The solar and water param‐
eters are divided by 100 to be normalized to the temperature range.

In each of the scenarios, the agent is punished to a different extent by adjusting Tmin

so as to create a linear decrease in the reward for decreasing temperatures and increasing
solar energy and DHW consumption. Also, in case of high solar energy generation in
combination with a high DHW consumption, the weight of the solar parameter is
increased to enhance reheating for these scenarios. Hence, reheat cycles are preferred
when there is a sufficient amount of solar energy and Tm is more than 2 ◦C below Tstart.
In the scenario of temperatures above 49.5 ◦C, the appended reward is always positive.
This reward function is then applied to SARSA(λ) update which results in state-action
pair values determining how favourable it is to reach a certain state at a particular action.
The derived optimized control strategy is then applied to the vessel state model learned
by the study of [9].

The comparison between the baseline control output and the optimized control output
will be based on the same solar energy and water consumption profile derived from the
data of June to September 2016 for the houses. This serves to compare the potential of
reducing grid interaction with the Sarsa(λ) control in the same context.

3 Results

3.1 Q-Value Analysis

The Q-value function (indicating how good action ‘0’ is) for the summer months for a
house are shown in Fig. 3. A negative value (blue) suggests the start of a reheat cycle
whereas a positive (green/orange) value favors the idle state. It is evident from the figure
that temperatures higher than 51.5 °C always favor the idle state. Temperatures between
45 °C and 51.5 °C favor the idle state when there is no to low solar energy production
and decreases in value as a function of the total water consumed and the solar energy
produced.

The most negative Q0 values (most left corner) represent the least favorable states
for the idle state. This shows that the algorithm learns to favor reheating when there is
high solar energy generation. This effect is amplified when there is DHW consumption
in the dwelling that causes the temperature to drop significantly. The Q-values in the
rightmost corner of the plot show the most stable states which represent the states with
high temperatures above 51.5 ◦C. The influence of the reward is visible this plot as the
Q-values follow the strategy set in the reward function. Deriving from these results, it
can be concluded that the algorithm learns the desired behavior to enhance the heating
cycles during high solar energy generation events while considering the occupant DHW
use.
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3.2 Linear Model Analysis

The reward function built in the algorithm is based on a linear function which suggests
that the output of the algorithm should vary accordingly. Therefore, linear regression is
applied to approximate the function of the algorithm. The same features as the algorithm
were taken as the variables of the linear function. The comparison between the Sarsa Q-
values and the linear Q-values are shown in Fig. 4. The clearest differences lay in the
transition from positive to negative values. The values of the Sarsa algorithm show sharp
incline and decline in certain points in time whereas the transition of the linear model
progresses in a smoother fashion. This explains the increase of the difference shown, as
an example, in the encircled area in Fig. 4 in which it clear that when the algorithm’s
output declined sharply, the linear output continued to increase steadily following the
increase in solar energy production. Additionally, the fluctuations due to the solar energy

Fig. 3. 3D representation of the Q0 values of house 1 summer months’ data (Color figure online)

Fig. 4. Sarsa Q-values vs. linearly approximated Q-values
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fluctuation are damped significantly in comparison with the algorithm. This results also
in a slight delay in the transition to negative values. However, this does not pose a
drawback to the model as the delay remains in the comfort level temperatures of higher
than 45 ◦C. In fact, the damping effect of the model could be considered as an improve‐
ment to the algorithm since it is less responsive to sudden fluctuations in the solar energy
production.

3.3 Optimization Results

The results of the energy consumption and the average daily number of reheat cycles
for the six houses are shown in Table 1.

Table 1. Complete numerical results of the optimization control strategy for Jun-Sep

2 House nr. Baseline
total energy
consumptio
n (kWh)

Δ Times
turned on

Δ Total
energy
withdrawn
from grid
(kWh)

Δ Self-
consumptio
n (kWh)

Self-
sufficiency
basline and
optimized
(%)

Δ Comfort
violation
(nr of times)

1 133 162 –24 16 71% –363
(+36%) (–63%) 17% 89% (–88%)

2 94 19 –33 17 58% –45
(+6%) (–82%) 31% 91% (–53%)

3 124 123 –37 20 58% –287
(+28%) (–70%) 28% 85% (–84%)

4 44 44 –11 10 67% –3
(+23%) (–73%) 35% 91% (–72%)

5 53 135 –38 51 28% –132
(+67%) (–99%) 348% 100% (–70%)

6 91 217 –37 32 39% –164
(+74%) (–67%) 89% 79% (–73%)

The interaction of the ASHP load with the grid decreases significantly as a result of
the optimization control strategy. Overall, it is evident from the results, that the energy
withdrawn from the grid is reduced primarily due to the optimized timing of the reheat
cycles during high energy generation hours. The total energy injected to the grid by the
solar panels (indicated by the self-consumption column) is therefore reduced accord‐
ingly. The highest increase in self-consumed energy is 348% larger than for the baseline
control strategy for house number 5 and the lowest for 15% for house number 1. This
supports the significance of the consumption pattern of the building occupant on the
optimization potential furthermore.

The combined total amount of enhanced onsite solar energy consumption for these
houses accounts for 165 kWh in the period of June to September. This would have
alternatively been injected to the grid causing large peaks in the grid during high gener‐
ation hours. Moreover, the number of comfort violations (Tm lower than 45 ◦C and water
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consumption is greater than 0L) is decreased significantly as a result of the optimization
for all houses. This could be attributed to significant rise in the number of reheat cycles
in order to maintain vessel midpoint temperatures of higher 49.5 ◦C during high gener‐
ation hours as set in the reward function. Therefore, the reduction of the comfort viola‐
tion is considered to account for part of the increase in total average daily required
energy.

Perhaps the most notable effect of the optimization is visible in the self-sufficiency
parameter. The optimization resulted in a remarkable increase in the self-sufficiency for
all houses. House 5 even reached an increase of 70% in self-sufficiency to reach a total
self-sufficiency of 99% of the load. The lowest increase is evident for house number 1
with an increase of 17% which resulted in a total self-sufficiency of 89%. The large
difference could partly be explained by the high baseline self-sufficiency of house
number 1 of 71% against that of only 28% for house 5. Intuitively, the lower the initial
self-sufficiency, the larger the potential for optimization. Secondly, house 1 has signif‐
icantly higher DHW consumption than the other houses which depletes the DHW storage
tank much faster forcing it to reheat additionally during the low energy generation hours.

4 Discussion

4.1 Generalizability

The cluster of houses of this case-study comprise identical refurbished social housing
dwellings. Therefore, the system size and parameters are all identical which will natu‐
rally result in similar control behavior. The only highly divergent variable on daily basis
is the occupant behavior. Nevertheless, the algorithm learns the corresponding control
strategy based on the individual data input. Therefore, this control strategy could also
be applied to clusters with different and also divergent system parameters provided that
the features used in this case study are available. In other words, the algorithm is gener‐
alizable and could be applied to any system that could provide these three parameters.
The optimization potential will vary from one system to another based on the system
parameters such as the insulation and the size of the water vessel, solar energy genera‐
tion, type of dwelling, and the number of occupants of the dwelling.

4.2 Implications for the Occupants

The current Dutch net metering compensation scheme means selling excess solar energy
is beneficial in all cases before 2020. Power sold to the grid is compensated against the
total consumed power on annual basis. The excess power sold to the grid beyond the
range of the total consumed power, is also compensated for a fair price determined by
the DSO. This scheme is therefore stimulating consumers to invest in solar energy. As
a result, consumers do not have to pay tax on their energy bill. This tax is estimated to
account for 40 million Euros annually [15] which is funded by the Dutch tax system. It
is therefore argued that this tax is paid for by tax-payers without solar panels [15].
Moreover, the scheme is not beneficial for grid operators on a long-term scale as a result
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of the need for grid reinforcement. It is therefore planned to diminish this scheme by
2020.

All of this means that while currently reducing the power injected to the grid is not
beneficial, it will become so according to the plans for the transition plan in 2020 [16].
Two main transition proposals are stated in the report state a reduced value for the excess
sold power to the grid. The first proposal states a buying value of €0.22/kWh against a
selling value of €0.06/kWh. The second proposal includes an additional feed-in tariff of
€0.075 to the selling price. In both cases, on-site solar energy consumption will become
more beneficial than selling to the grid. It is estimated by [16] that the monthly cost for
nZEBs will increase, as a result of diminishing the net-metering scheme, by €40 given
the current prices of solar technology and heat pumps and €30 considering the expected
price reduction of these installations. Table 2 presents the total reduction of the summed
energy injection and uptake for all six houses in the period of June to December, against
the monetary value in both scenario 1 and 2 of the proposal of [16]. Deducting the money
missed due to the reduction of solar energy selling from the gained money due to the
reduction of electricity uptake, results in a total benefit between € 4- 24 in the first
scenario and €1-9 in the second for the six houses for the period of June to December.

Table 2. Overview of reduction of energy uptake and injection and the corresponding monetary
benefit for the two scenarios proposed in [16] to replace the net-metering policy in the Netherlands
in 2020

House nr Total reduced
injection (kWh)

Total reduced
uptake (kWh)

Δ Monetary
benefit scenario 1
(€)

Δ Monetary
benefit scenario 2
(€)

1 79 89 14.84 8.915
2 98 118 20.08 12.73
3 102 137 24.02 16.37
4 37 30 4.38 1.605
5 164 104 13.04 0.74
6 115 108 16.86 8.235

4.3 Implications for Grid Operators

The optimization results discussed in the previous sections show a decrease of energy
injection to the grid of a maximum of 25 kWh on average for the houses in summer and
a minimum of 10 kWh for the period of September to December. The reduction of
injected power to the grid translates directly to a reduction in the necessary cost for grid
reinforcement. The required grid reinforcement cost comes from the size of the trans‐
formers and cables required to accommodate a large increase solar energy generation
due to an increase in nZEB concepts. Additional benefits for the grid operators relate to
the real-time grid monitoring and steering role of the grid operators.
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4.4 Learning Mechanism of RL

The main argument to use RL for this optimization is the learning aspect and general‐
izability of the method. The constantly changing solar and occupant behavior patterns
create a disadvantage for fixed optimization approaches such as MPCs and rule-based
control methodologies. To test and proof the learning mechanism of the RL algorithm
used, average occupant behavior and monthly solar energy profiles were created from
the individual profiles of the six houses. These profiles were then applied to the algorithm
to simulate the results for each of the houses. The number of reheat cycles as a result of
the averaged profiles optimization show remarkable results for being substantially
amplified for houses with a low energy consumption profile. The large difference of the
number of heating cycles between the individual and averaged profiles indicates the
strong influence of the individual occupant behavior on the performance of the algo‐
rithm. This emphasizes the significance of the learning behavior of the algorithm as
opposed to rigid approach of rule-based control optimization algorithms.

5 Conclusions and Recommendations

Deriving from the results and discussion, using RL could provide means for improving
the performance of nZEB to comply to the label standards and in the same time reduce
the pressure on the grid as a result of the increasing electrification of the built environ‐
ment without posing a threat to the occupant comfort. Providing these means for the
utility grid not only reduces the need/cost for grid reinforcement, but allows for more
renewable energy technologies to be deployed in the residential built environment.

The results show an increase of individual self-consumption between 17% and 348%
and self-sufficiency between 18% and 72% by applying DHW load shifting. This indi‐
cates a significant potential to reduce grid interaction to boost the implementation of
RES in the residential built environment for the sake of increasing the share of renew‐
ables and also to improve the efficiency of the built environment by implementing more
nZEBs. Additionally, considering the planned abolishment of the net-metering policy
for solar power in 2020 in the Netherlands, reducing the grid interaction increases the
monetary benefit for the residents. Moreover, this approach improves the monitoring
potential of grid operators to avoid grid curtailment as a result of the increased electri‐
fication of the building loads and locally generated renewable energy. However, if the
transient grid stability is aimed at as a main factor by the DSO, then the instantaneous
power injection should be included as an additional variable and prioritized in the algo‐
rithm.
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Abstract. More and more sensors are used in industrial systems
(machines, plants, factories...) to capture energy consumption. All these
sensors produce time series data. Abnormal behaviours leading to
over-consumption can be detected by experts and represented by sub-
sequences in time series, which are patterns. Predictive time series rules
are used to detect new occurrences of these patterns as soon as possible.

Standard rule discovery algorithms discretize the time series to per-
form symbolic rule discovery. The discretization requires fine tuning
(dilemma between accuracy and understandability of the rules). The
first promising proposal of rule discovery algorithm was proposed by
Shokoohi et al., which extracts predictive rules from non-discretized data.
An important feature of this algorithm is the distance used to com-
pare two sub-sequences in a time series. Shokoohi et al. propose to use
the Euclidean distance to search candidate rules occurrences. However
this distance is not adapted for energy consumption data because occur-
rences of patterns should have different duration. We propose to use more
“elastic” distance measures. In this paper we will compare the detection
performance of predictive rules based on several variations of Dynamic
Time Warping (DTW) and show the superiority of subsequenceDTW.

1 Introduction

Nowadays, only around 60% of energy resources purchased by industrial enter-
prises are used to create added value. The remaining 40% are considered to be
lost. To trace these losses, companies are increasingly equipped with sensors.
Detecting dysfunctions from time series recorded by these sensors becomes a
crucial part for reducing energy consumption.

Dysfunctions can be associated with specific patterns in time series (dysfunc-
tion signatures related to specific shapes of the time series). Thus, diagnosing the
abnormal behavior of an observed system, machine, or plant, could be achieved
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by locating patterns related to dysfunctions in time series. Our goal is to get typ-
ical patterns from experts (a pattern is a sub-sequence of a time series selected
by the expert) and to return the smallest prefix to detect new occurrences of
this typical pattern in a time series efficiently.

Predictive rules discovery is adapted to this task. A predictive rule has two
parts: one is called antecedent and the other consequent. It means that if the
antecedent is recognized, the consequent will occur before a delay. These predic-
tive rules are easily understandable for the expert. Our goal is to discover such
predictive rules in time series for detecting power consumption problems.

Classical predictive rule discovery algorithms discretize time series data
[3,7,19]. But discretization is a difficult task and requires to choose the appro-
priate discretization method and to fine tune its parameters. To avoid this prob-
lem, in [15], Shokoohi et al. propose to extract predictive rules directly from
time series without discretizing data. Shokoohi et al.’s approach can be sum-
marized as follows. First, recurrent sequences are selected in a pre-processing
step. Second, each of these sequences is split into two parts: an antecedent and a
consequent. The split positions are chosen arbitrarily to yield a set of candidate
rules. Next, for each rule, its occurrences, as pairs (antecedent, consequent), are
retrieved in the time series. This is what we call time series rule matching. Then,
these occurrences are used to compute a score for the rule, via a score function
inspired by MDL [12] (Minimum Description Length). Finally the rule with the
best score is returned.

Shokoohi et al.’s algorithm makes use of the Euclidian Distance for time series
rule matching. However, the Euclidian Distance does not cope with distortions
on the time axis (called here time elasticity) which is often the case with power
consumption data.

We study the use of different extensions [11,17,18] of Dynamic Time Warping
(DTW), a well-known distance measure [2], able to handle time elasticity, i.e.
distortion in time. In this paper, we propose one of them, subsequenceDTW [11],
to improve time series rule matching. We compare its performance (prediction
earlyness and precision) of time series rules elaborated with two different distance
measures, the Euclidean distance and DTW.

Section 2 defines important concepts such as predictive rules and rules occur-
rences. Section 3 presents some related works. Section 4 presents our method
for time series rule matching. In Sect. 5, we present detailed experiments for
evaluating the performance of time series rule matching on a manually anno-
tated energy-consumption time series, according to three distance measures: the
Euclidean distance used in [15], the DTW, and subsequenceDTW.

2 Background

Sensors are used to capture energy consumption and to produce time series data.
We consider here a time series T as defined in [5].
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Definition 1. time series
A time series T is an ordered sequence of n real-valued variables T =
(t1, ..., tn), ti ∈ R. Values ti are uniformly spaced in time.

An expert gives a typical pattern to be searched. Such a pattern is a sub-
sequence of a time series. In order to detect the pattern as soon as possible in
time series, a predictive time series rule is built from the expert pattern.

Definition 2. predictive time series rule
A predictive time series rule R for a pattern p =< p1, ..., pk > is a pair (Ra, Rc).
The antecedent is Ra =< p1, ..., pi >. The consequent is Rc =< pi+1, ..., pk >.
It means that if the antecedent is recognized, the consequent will occur before a
delay.

From a time series, an expert is able to extract a set of sub-sequences con-
sidered similar. In energy consumption data, two similar sub-sequences can last
longer or shorter. A pattern is shown in Fig. 1a and one of its occurrences is
shown in Fig. 1b. As one can see, the occurrence is not identical to the searched
pattern, in duration and in shape, but the expert still consider them as similar.

The rules discovery algorithm is based on the similarity of two sub-sequences.
Different parameters are needed: a distance measure D between two sub-
sequences, a constant th (threshold of similarity), and a maxlag (maximum
delay between the antecedent and the consequent of a rule).

(a) searched pattern (b) an occurrence of the pattern

Fig. 1. Example of an occurrence (b) lasting shorter than the searched pattern (a) and
having its bottom spike slightly shifted to the left.

Definition 3. Similarity of two sub-sequences
Two sub-sequences s1 and s2 are similar if and only if D(s1, s2) ≤ th.

Definition 4. Set of occurrences of a sub-sequence in a time series
In a time series t =< t1, t2, ..., tn >, a set of occurrences O = {otii }i∈START of a
sub-sequence s =< s1, s2, ..., sk > is the set of all sub-sequences oi similar to s
in t. START [1..K] is the index of the occurrences where K is the length of O.
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otii =< ti, . . . , ti+li > is the ith sub-sequence of s in t of size li starting at the
time ti with li ∈ [1, n].

Definition 5. Set of non overlapping occurrences in a time series
A set of non overlapping occurrences of a sub-sequence in a time series t is a set
of occurrences O such as ∀i, j ∈ START , i < j ⇒ tj > ti + li.

The former definitions are related to occurrences of sub-sequence. But, in
rule discovery, these definitions can be extended to the case of occurrences of
time series rules.

Definition 6. Set of rule occurrences
Let R = (Ra, Rc) a time series rule, t a time series and maxlag a pos-
itive constant. A set of rule occurrences of R in t is a set OR where
OR = {(ata1

1 , ctc11 ), . . . , (atam
m , ctcmm )}. Let Oa = {ata1

1 , . . . , atam
m } and Oc =

{ctc11 , . . . , ctcmm } two sets of sub-sequence occurrences, OR verify the following
properties:

– Oa is a set of non overlapping occurrences of Ra in t.
– Oc is a set of non overlapping occurrences of Rc in t.
– ∀i ∈ [1,m], 0 < tci − tai + lai < maxlag with lai the length of atai

i .
– Oa ∪ Oc is a set of non overlapping occurrences.

3 Related Work

Most approaches for discovering rules in real-valued time series rely on dis-
cretization of time series in order to apply symbolic rule discovery methods [1].
A classical method, in [3], proposes to apply K-means clustering on time series to
obtain symbolic data. This preprocessing step has been commonly used in sev-
eral other rule discovery methods, as in [6–8]. However, clustering sub-sequences
in time series can be unsuitable in some situations [9]. For example, a single
sub-sequence can occur several times in a cluster with narrow delays. This is
called trivial matches [10].

In [14,19], Piecewise Linear Aggregation (PLA) is used as discretization
method, but Shokoohi et al. stated in [15] that this method is not adapted to
rule-based prediction. Recently, Shokoohi et al. propose a discovery rule method
which does not rely on a symbolic approach. This method is based on time series
rule matching, consisting in finding rule occurrences in a time series (see Sect. 2).
Algorithms of time series rely on a distance measure for comparing series.

Distance Measures. Many distance measures exist, but here we focus on
measures that are able to handle similarity with distortion in time (see Sect. 2).
In [4], Ding et al. compare various elastic distance measures. The Dynamic Time
Warping (DTW) is one of the best methods because it is accurate and requires
few parameters.

DTW is a method for speech recognition, which was brought to the data
mining community in [2]. DTW is based on a dynamic programming approach
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to align two sequences and computes the optimal distance between them. Several
extensions of DTW exist: FastDTW [13] speeds up its computation, OBE-DTW
[18] and ψ-DTW [17] relax constraints on the endpoints of compared series.
Another extension, subsequenceDTW (subDTW) [11] finds several occurrences
of a series in a time series in a single pass. Section 4.2 provides further details
on DTW and subDTW.

4 Distance Measures for Time Series Rule Matching

This section describes how a time series rule is matched on a time series. Then,
we present further details of two existing elastic distance measures: DTW and
subDTW.

4.1 Time Series Rule Matching

Time series rule matching allows to find the occurrences of a time series rule in
a time series. First a time series rule R is generated from the searched pattern
s in the same way as in [15]. The searched pattern s is split into two parts: the
first part is the antecedent Ra and the second part is the consequent Rc (see
Sect. 2).

Time series rule matching is divided into two steps:

– step 1: identify all the antecedent occurrences Ra in the time series
– step 2: for each antecedent occurrence found in step 1, search the associated

consequent Rc between this antecedent and the next one

Two steps are needed to retrieve first the sets of non-overlapping occurrences
of the antecedent Ra. In both step 1 and 2, the search requires to compare
antecedent or consequent with a sub-sequence of the time series. Different para-
meters are needed: a maxlag (the maximum length allowed between antecedent
and consequent), a distance measure, a distance threshold, and for many dis-
tance measures, a sliding window to browse all the sub-sequences of the time
series. Intuitively, the distance threshold should only authorize small distance
values, because the smaller the distance is, the more similar the compared series
are.

The maxlag is an expert knowledge and the choice of the distance measure
D will be discussed later in Sect. 4.2. A single distance measure is used for the
search of antecedent and consequent occurrences. However, since the antecedent
and the consequent can have different sizes, a specific threshold distance and
a specific window size are required for each of them. We called tha (thc) the
distance threshold and wa (wc) the window size for the search of the antecedent
Ra (consequent Rc).

To avoid asking a user for too many values, tha, thc, wa and wc are automati-
cally computed from pth and pwindow. pth is the given percent of the distribution
of possible distance values between Ra (Rc) and sub-sequences of time series. pth
is easier to set than raw distance values. pwindow is a percent of the length of the
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series searched (respectively Ra and Rc). This parameter depends of the distance
measure D. For example if D is the Euclidean distance the value of pwindow must
be 100% because Euclidean distance can only be calculated between series of the
same size.

Algorithm 1 shows the time series rule matching. Step 1 is described by line
4, step 2 from line 5 to line 11.

Algorithm 1. Time series rule matching
Input: distance measure D, time series rule R, time series ts, maxlag between

antecedent and consequent, parameter for the window sizes pwindow, parameter
for the thresholds pth

Output: OR the set of occurrences of R in ts
1: OR, Oa ← ∅ // Oa is the set of antecedent occurrences found
2: wa, wc ← get window sizes(R, pwindow)
3: tha, thc ← get thresholds distance(R, pth, wa, wc)
4: Oa ← get antecedent occurrences(R, ts,D,wa, tha)
5: for all occa ∈ Oa do
6: consequent ← get consequent(R, ts,D,maxlag, wc, thc)
7: if consequent found then
8: occR ← create rule occ(occa, consequent)
9: OR.add(occR)

10: end if
11: end for
12: return OR

During step 1, the window of size wa is slided at every successive position
of the input time series. At each position, the sub-series included in the window
is compared to the antecedent Ra. If the distance is less than the threshold tha

the position gives a candidate match. During this matching, we need to ensure
that no trivial matches are returned [10] (see Sect. 3).

During step 2, for each antecedent occurrence found in step 1, the best can-
didate match of Rc is retrieved. The best candidate must not overlap the next
antecedent occurrence. The delay between the current antecedent and this con-
sequent must not exceed the maxlag.

As defined in Sect. 2, during the search of the antecedent an consequent
occurrences, the distance measure must be able to compare series with distortion
in duration. The next section presents two existing distances measures that are
able to solve this problem: DTW and subDTW.

4.2 Distance Measures

The definition of DTW, given in [17], is used. To compute the optimal non-
linear alignment between a pair of time series X and Y , with lengths n and m
respectively, DTW typically bounds to some constraints: boundary condition,
monotonicity condition and continuity condition. Many alignments satisfy all
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the conditions. DTW performs a dynamic programming algorithm to compute
the alignment between X and Y with minimum cost (DTW distance). The time
and space complexities are O(nm).

Here, X is the rule antecedent Ra or consequent Rc whereas Y is a sub-
sequence of a time series. To get a set of Y , DTW requires a sliding window
browsing the time series. However, this raises a new problem, how to well con-
figure the size of the window ? Indeed, a window that is too small could miss
occurrences longer than the window, whereas a window that is too long, could
cover several occurrences.

One extension of DTW, subDTW [11], proposes to solve the setting of the
window. It is a distance measure, which offers the aligning property of DTW
without the boundary condition. Moreover, it does not need any window. For a
more detailed presentation refers to [11]. The integration of subDTW to our time
series rule matching algorithm allows to remove wa and wc during the search of
the antecedent and consequent occurrences.

5 Experimental Results

The experiment consists of comparing three distance measures (the Euclidean
distance, DTW and subDTW) to match 20 generated rules in an energy-
consumption time series that are annotated by an expert. This expert knowledge
is provided by the French start-up Energiency, a provider of software analyzing
energy-consumption to improve energy performance. In Sect. 5.2, the ability of
each distance measure to retrieve the annotated rule occurrences is evaluated.
In Sect. 5.3, the accuracy of distance measures is given with their related false
alarm rate.

5.1 Experimental Setup

The experiments are performed on a real energy-consumption time series, called
TS. Its frequency is ten minutes and its length is 26253 data points, which
represents 6 months of energy consumption. The monitored system is an indus-
trial plant composed of several machines. This kind of time series is commonly
observed by experts.

An expert is asked to pick a sub-sequence of TS related to a interesting
phenomenon to predict. Figure 2a shows a sequence of an abrupt decrease, a
steady state, a down spike, a steady state and an abrupt return to the initial
steady state. As presented in Sect. 4.1, a set of time series rules is first generated
by splitting the sequence at n equidistant points. A rule is generated for each
split point. To avoid extreme rules (for example, a time series rule with an
antecedent with only one data point), the minimum length of the antecedent
and consequent parts is set at 5% of the length of the sequence picked by the
expert. In our experiment, the number of divisions is set to 19, that yields a set
of 20 rules, and one of these rules is illustrated in Fig. 2b.
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(a) expert’s sequence (b) time series rule

Fig. 2. Example of a rule (b), generated from the 8th split point in the expert’s
sequence (a).

For the experiment, the time series is manually annotated by an expert,
according to the set of rules. As illustrated in Fig. 3, an annotation is an interval
(Fig. 3a). For the expert, a rule occurrence must start in this interval to be con-
sidered as a match (Fig. 3b). In TS, 48 intervals are identified for each rule gener-
ated from the 1th, 2th, 3th, 19th and 20th split points. 65 intervals are found for
each rule generated from the other split points. For each experiment, several val-
ues are tested for maxlag ({0h, 20h, 40h, 120h}) and pth ({5%, 10%, 15%, 20%}).
For the Euclidean distance, pwindow is set to 100%, and for DTW, the values of
pwindow vary in {50%, 100%, 125%}.

(a) an annotated interval (b) a rule occurrence

Fig. 3. Correct matching example of an annotated occurrence (light hatching for
antecedent, heavy hatching for consequent).

5.2 Performance of Rule Matching

In this experiment, the ability of each distance measure to retrieve the annotated
rule occurrences is evaluated for the 20 rules generated. Let Actual True (T ) be
the set of rule occurrences annotated in the time series TS by the expert, and
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Predicted True (PT ) the set of rule occurrences found by the rule matching
algorithm where PT = {e|e ∈ TP ∪ FP}, True Positive TP = {e|e ∈ PT ∩ T}
and False Positive FP = {e|e ∈ PT\T}. Precision Pr and recall Rc are then
computed as follows:

Pr =
|TP |
|PT | =

|TP |
|TP ∪ FP | Rc =

|TP |
|T |

Figure 4a shows the precision versus the recall for the three distance mea-
sures: the Euclidean distance, DTW and subDTW. The results of each distance
measure are surrounded by a convex hull (covering the results for the 20 rules).
Surrounding the results allows to compare more easily the global performance
for each distance measure. It should be noted, that a small convex hull implies
a small variation in performance among the 20 rules.

The results confirm that the Euclidean distance is not adapted to retrieve rule
occurrences with time distortion. Indeed, the Euclidean distance compare series
point-to-point without relying on an alignment algorithm. Moreover, only series
with the same size can be compared. The precision of DTW is at least as high
as the precision of subDTW, but the convex hulls show that the performance of
DTW varies to an extended rate according to the rule. SubDTW has a better
recall than DTW, thus more annotated rule occurrences are found.

Figure 4b shows the impact of the size of the sliding window on the perfor-
mance of DTW. When the size of the window increases, the recall decreases.
Whereas if the size of the window decreases, then the recall increases but the
precision decreases. These results confirm that most of the annotated occur-
rences of the rules in TS are shorter than the rule. Moreover, if the size of the
window is too large, no consequences are found in TS because the antecedent
occurrence overlaps the entire rule occurrence. Defining the correct size of the
window is critical for the performance of DTW. Several sizes of window can be
tested but the execution time is strongly impacted.

This problem does not concern subDTW, because a window is not required.
The recall of subDTW is higher than the recall of DTW for any size of the
window. The use of subDTW to perform time series rule matching is best suited
to time series with distortion in duration for rule occurrences.

Note that, after the experiments, the values of pth is set to 20% and maxlag is
set to 120 h, which represents 5 days. The maxlag is high because the time series
are associated to an industrial environment, where breakdowns and maintenance
can take several days.

5.3 False Alarms Rate

The next experiment focuses on the accuracy of the distance measure, according
to the false alarm rate measured by the confidence. Let Incomplete Predicted
True (IPT ), the set of the antecedent occurrences found by the time series rule
matching algorithm IPT = {e|e ∈ TP ∪ FP ∪ A} with A the set of antecedent
occurrences found without consequent. The confidence Cf can be computed as
follows:
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(a) (b)

Fig. 4. Precision/recall plots for Euclidean, DTW and subDTW distances (a) and
DTW with several window sizes (b).

Cf =
|PT |
|IPT | =

|TP ∪ FP |
|TP ∪ FP ∪ A|

Figure 5 shows the confidence of each distance measure for the 20 rules gener-
ated. SubDTW has a higher confidence than DTW and the Euclidean distance,
especially between the 4th split point rule and the 10th split point rule. Thus,
subDTW triggers less false alarms.

Fig. 5. Confidence plot for Euclidean, DTW and subDTW distances

Table 1 presents the confidence, the recall and the precision for the 4th and
the 5th split point rules. These split point rules have a small antecedent allowing
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Table 1. Recall, precision and confidence for 4th and 5th split point rules. Bold numbers
highlight the best result in each column.

4th split point rule 5th split point rule

Distance measure Recall Precision Confidence Recall Precision Confidence

Euclidean distance 38% 58% 15% 40% 55% 20%

DTW (100%) 46% 73% 13% 49% 78% 14%

DTW (50%) 52% 70% 13% 57% 65% 18%

subDTW 89% 61% 33% 88% 60% 66%

to predict sooner the searched pattern. SubDTW keeps a good ratio between
precision, recall and confidence for rules with a small antecedent.

6 Conclusion and Future Research

We have investigated time series rule matching in a rule discovery algorithm in
energy consumption time series. In this context, time series rule matching must
compare sub-sequences with distortion in time. We evaluate three existing dis-
tance measures on a real use case: the Euclidean distance used in [15], DTW a
well-known elastic measure and subDTW, an extension of DTW which does not
require a sliding window to browse the time series. The results confirm that the
Euclidean distance is not adapted to find rule occurrences with different dura-
tion. Whereas, DTW and subDTW can handle the task. However, subDTW
allows to find occurrences of rule with smaller antecedent without losing per-
formance. Finding occurrences of rule with small antecedent means predicting
energy consumption problems “as soon as possible”. Furthermore, subDTW does
not need to set a sliding window.

There are lot of avenues for future work. We primarily focused on the con-
straint brought by using a sliding window when taking into account the duration
of the occurrences in time series rule matching. However, as with all the methods
relying on a distance measure, setting the right threshold is a very important and
difficult task. That is even more important in our case, because we work from
the shape which is highly dependent of the expert judgment. That’s why we pro-
pose to explore interactive learning, to learn the threshold by asking the expert
to evaluate a sub-set of occurrences found, then to iterate until an acceptable
threshold was found.

We should emphasize that time series rule matching is only a step of the rule
discovery algorithm. In [15], time series rule matching is used to find occurrences
of candidate rules. The score of each candidate rule is computed, from these
occurrences, by a score function inspired by MDL. This score function works only
for rule occurrences with the antecedent and consequent of the same duration
of the candidate rule. With our new time series rule matching which find rule
occurrences with different length, this condition doesn’t hold anymore. Hence,
there is a need to find a new score function.
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In the presented rule discovery algorithm, a whole rule is generated from a
sequence given by an expert. However, the given sequence could be only used for
the antecedent or consequent part of the rule. Then, the algorithm has to find
in time series the other part of the rule.

A last avenue can be to extend rule discovery to a set of time series as
proposed in [15]. The distance measures have to be adapted to multiple time
series, but there is already a proposal in [16].
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1 TÜBİTAK MAM Energy Institute, Ankara, Turkey
mehmet.ozkan@tubitak.gov.tr

2 Middle East Technical University, 06531 Ankara, Turkey
karagoz@ceng.metu.edu.tr

Abstract. Effective use of renewable energy sources, and in particular
wind energy, is of paramount importance. Compared to other renewable
energy sources, wind is so fluctuating that it must be integrated to the
electricity grid in a planned way. Wind power forecast methods have an
important role in this integration. These methods can be broadly classi-
fied as point wind power forecasting or probabilistic wind power forecast-
ing methods. The point forecasting methods are more deterministic and
they are concerned with the exact forecast for a particular time inter-
val. These forecasts are very important especially for the Wind Power
Plant (WPP) owners who attend the energy market with these forecasts
from day-ahead. Probabilistic wind power forecasting is more crucial
for the operational planning of the electricity grid by grid operators. In
this methodology, the uncertainty in the wind power forecast for WPPs
are presented within some confidence. This paper presents a probabilis-
tic wind power forecasting method based on local quantile regression
with Gaussian distribution. The method is applied to obtain probabilis-
tic wind power forecasts, within the course of the Wind Power Monitoring
and Forecast Center for Turkey (RİTM) project, which has been realized
by TÜBİTAK MAM. Currently, 132 WPPs are included in the project
and they are being monitored in real-time. In this paper, the results
for 15 of these WPPs, which are selected from different regions of the
country, are presented. The corresponding results are calculated for two
different confidence intervals, namely 5–95 and 25–75 quantiles.

Keywords: Wind power forecasting · Quantile regression · Probabilistic
forecast

1 Introduction

Due to the well-known disadvantages of using fossil-fuels as energy sources, such
as unsustainability and environmental pollution, the importance of the renew-
able sources has increased in recent years. Wind is one of the most important
c© Springer International Publishing AG 2017
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renewable energy resources with its high potential. However, compared to other
renewable energy sources, it has high variability and unstability. Therefore, reli-
able wind power forecasting is an important research problem.

The wind power forecasting methods reported in the literature can be mainly
classified as point forecasting and probabilistic forecasting methods.

Point forecasting targets at exact forecasts for each time interval under con-
sideration. These forecasts are quite important for Wind Power Plant (WPP)
owners since they use these forecasts in the energy market and their economical
returns depend on the accuracy of these forecasts [1]. There are several point
forecasting methods presented in the literature and these forecasts are mainly
based on statistical, physical and hybrid approaches.

Probabilistic wind power forecasting is more crucial for the electrical grid
operators who manage the planning of the grid in the country. In this type of
forecasting, some confidence interval such as (5–95 percentiles, 10–90 percentiles,
and 25–75 percentiles) are given as forecasting results as shown in the sample
forecast graph in Fig. 1. In this graph, the green line shows the point forecast
and the gray lines show different confidence interval forecasts. According to these
confidence intervals, the grid operators can carry out their day-ahead energy
planning operations, as these probabilistic forecasting results help the operators
get an overall idea about wind power generation in the country. Therefore, these
probabilistic forecasts must be reliable enough for the safety of the electrical grid
with WPPs.

In this paper, we present a probabilistic wind power forecasting method based
on local quantile regression with Gaussian distribution. The proposed method
has been applied to 15 WPPs that are within the scope of a large-scale wind
power monitoring and forecast project (the RİTM project), which currently cov-
ers 132 WPPs countrywide. The evaluation results attained using the real data
for these 15 WPPs are quite satisfactory and promising.

The rest of the paper is organized as follows: Sect. 2 presents the related
literature on the probabilistic wind power forecasting and Sect. 3 provides brief
information about the (RİTM) project as the proposed forecasting method is
developed and applied within the scope of this project. Information regarding
the data set is given in Sect. 4 and the proposed forecasting method is described
in Sect. 5. The evaluation results are presented in Sect. 6 and finally, Sect. 7
concludes the paper with a summary and future work based on the current
study.

2 Related Work

Probabilistic wind power forecasting is based on presenting an upper and a lower
bound for the future probability of one or more events. This kind of approach
is commonly used in various areas from economy to health or energy to stock
market applications [2]. The aims of these models are to determine the safety
intervals for the forecast and to present more reliable forecasts with less error
rates.
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Fig. 1. A sample probabilistic wind power forecast graph

Most of the probabilistic wind power forecast models in the literature are
based on quantile regression techniques [3]. In [4], Nielsen and Madsen first
consider models for the mean of a random variable and later they consider models
for the quantiles [4]. They implement their models for 25% and 75% quantiles. In
the implementation of their model, they use quantreg function of the statistical
tool, R [5]. According to their results, the upper and lower bounds fail in 500
out of 11000.

Juban and et al. [6] propose a probabilistic model with kernel density estima-
tion. They test their model on three WPPs in France and their data resolution
is 3-hour. According to their results, the proposed model has better results com-
pared to continuous probabilistic evaluation and their model can be improved
by optimizing the value of the smoothing parameters for different regions of the
input hyperspace.

In [7], Sideteros and Hatziargyriou propose a probabilistic wind power
forecast model by using neural networks and artificial intelligence techniques.
Weather forecast are initially modeled by they start to using Self Organized
Maps (SOM) and these forecasts are classified into three Radial Base Function
Neural Networks (RBFNN) which have point forecasting information. In the
final step, they use Gaussian Basic Functions at the hidden layer with general-
ized cross-validation and Bayesian interpolation. The model is tested on the data
of two different WPPS along one year under the confidence intervals of 5–95, 10–
90, 25–75 and 40–60. According to their evaluation results, authors report that
their model can perform satisfactorily and very robust under different weather
conditions and for different terrains.
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Carpiana et al. propose a probabilistic wind power forecast approach which
is based on Markov chain models [8]. The proposed method is reported to per-
form for short-term horizon, without requiring restrictive assumptions on the
wind power probability distribution. They compare their obtained results from
first and second order Markov chain models with respect to persistence model.
According to their observations, the second order improves the forecast perfor-
mance by reducing the prediction error.

A novel hybrid model is presented by Yan et al. in [9]. In their study, the
authors present a hybrid deterministic–probabilistic method where a temporally
local “moving window” technique is used in Gaussian process to examine the esti-
mated forecasting errors. They have tested their models in two WPPs which are
located in the USA and Ireland. The results are compared with each other, with
respect to Mean Absolute Error (MAE) rate metric. The authors have demon-
strated that the proposed hybrid deterministic–probabilistic method reduces the
computational complexity during the learning and inference process compared to
the standard Gaussian process. According to them, this factor is the most advan-
tageous part of the proposed approach compared to classical Gaussian process
model. Also, the proposed approach is shown to be effective for overcoming the
time-varying characteristic at the two WPPs by producing a smaller forecasting
error than those of the other models [9].

Three main statistical models in that area namely local quantile regression,
local Gaussian Model and the Nadaraya–Watson estimator are compared in
Bremnes work [19]. All of these models have several advantages and disadvan-
tages. The Nadaraya–Watson estimator is generally preferred in very short term
(0–6 h) probabilistic wind power forecasting. In this study, a hybrid model that
uses both local quantile regression and Gaussian distribution is followed since it
is more suitable for the short term (0–48 h) probabilistic wind power forecasting.
Proposed model is mainly based on local quantile regression analysis but also in
the determination of the bound coefficients Gaussian distribution is used.

3 The General Architecture of the RİTM System

In order to effectively monitor and forecast the wind power in Turkey, a large-
scale project, namely, Wind Power Monitoring and Forecast Center for Turkey
(Ruzgar Izleme ve Tahmin Merkezi (RİTM)) has started in 2012 [10]. The main
aim of the project is to help the operators who control the electrical grid and
carry out the necessary planning operations on the grid, by providing reliable
day-ahead short-term and very short-term forecasts and monitoring the WPPs
in real-time. Additionally, the point wind forecasts produced within the scope of
the project are considerably important for the WPP owners because according
to the accuracy of their day-ahead forecasts, they make profit or they lose in the
daily energy market. They submit their 48-hour forecasts (in 1-hour resolution)
to the energy market in day-ahead and their returns depend on these forecasts.

The general architecture of the overall monitoring and forecast system imple-
mented within the scope of the project is presented in Fig. 2 [12]. In this archi-
tecture, the most important information source is the weather forecasts as they
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Fig. 2. The general architecture of the RİTM system [12]

are crucial for producing the power forecasts. Therefore, in this large-scale sys-
tem, the weather forecasts are obtained from three different sources, namely,
Turkish Met Office (MGM) [13], European Centre for Medium-Range Weather
Forecasts (ECMWF) [14] and Global Forecast System (GFS) [15] and the final
power forecasts are obtained from the combination of these models. Apart from
the weather forecasts, the real production values are also measured in the WPP
areas by the power quality devices installed and are sent to the system center in
every three seconds.

As the point forecasting facility of the project, a new data mining based fore-
cast model, namely, Statistical Hybrid Wind Power Forecast Technique (SHWIP)
has been implemented and it has been operation in the center [11]. By execut-
ing the forecast models the outputs are visualized by the user interface software
and they are monitored by the WPP owners and the grid operator organization
which regulates the energy sources in the country in real-time.

For the probabilistic forecast model described in the paper, the inputs are
the intermediate point forecasts of the SHWIP model for three different weather
forecast sources and the historical power data of the WPP for the most recent
one-month period.
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4 Data Set Description

The proposed probabilistic wind power forecast method is applied on the cluster-
based intermediate point forecasts [11] obtained by using the individual weather
forecasts of the aforementioned three sources, namely, MGM, GFS and ECMWF.
In order to construct the model, historical real production values of the WPPs
are used in the training stage. While constructing the model, the training period
is selected as 30 days.

Table 1. Data sets used in the model

Name Unit Resolution

Historical Real Power Data Megawatt Hourly(30 days)

Historical MGM Clustered Power Forecast Data Megawatt Hourly(30 days)

Day-Ahead MGM Clustered Power Forecast Data Megawatt Hourly(48 h)

Historical GFS Clustered Power Forecast Data Megawatt Hourly(30 days)

Day-Ahead GFS Clustered Power Forecast Data Megawatt Hourly(48 h)

Historical ECMWF Clustered Power Forecast Data Megawatt Hourly(30 days)

Day-Ahead ECMWF Clustered Power Forecast Data Megawatt Hourly(48 h)

The data structure used in constructing the model is presented in Table 1.
The unit for all of the data types is Megawatt and they are in hourly resolution.
The historical data sets consist of 30 × 24 hourly data for the most recent 30 days
when the model is executed. The day-ahead forecast tuples are the 48-hour
point forecast tuples of the day for which the probabilistic power forecasts are
produced.

5 Proposed Method

The aim of the proposed method is to find each hour interval forecast indepen-
dently by using the historical forecast and power data. Initially, the maximum
distance between the current hour forecast and historical forecast data is found
as shown in Fig. 3. Then the u matrix of size 48× 30*24 is calculated as given
in Eq. 1. Finally, the weight the weight vector w of size 48 × 30*24 is calculated
according to the weight function given in Eq. 2 [8] for each 48 h independently
by using the u vector. In all of the formulas, i index ranges from 1 to 48 and j
index ranges from 1 to 30*24.

uij =
TraningForecastj − Forecasti

maxDistancei
(1)

wij(uij) =

{
(1 − u3

ij)
3, if uij < 1

0, if uij = 1
(2)
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Fig. 3. Determination of weight array

σi =
30×24∑
j=1

(Powerj − Trainingj)2 × wij (3)

For each element in the training forecast, u value is determined according
to Eq. 1 and the u value used in the weight function, which is given in Eq. 2
to calculate the weight array in the size of 30× 24 for each 48 test hour. In the
following step, by using this weight array and historical power data, the variance
of the each hour is determined as given in Eq. 3.

bound5i = Forecasti − BOUND5COEFF × √
σi (4)

bound25i = Forecasti − BOUND25COEFF × √
σi (5)

bound75i = Forecasti + BOUND25COEFF × √
σi (6)

bound95i = Forecasti + BOUND5COEFF × √
σi (7)

In the final step, by using the total variance and bound coefficients, the inter-
val forecast for that particular hour is calculated as stated in Eqs. 4, 5, 6 and 7.
While determining the bound coefficients, Gaussian distribution is assumed [16]
and Bound5 coefficient is selected as 1.6449 and Bound25 coefficient is selected
as 0.6745.

The process described above is conducted for each 48-hour forecast tuple
independently and at the end of the process, two-day interval forecasts are deter-
mined for 5–95 and 25–75 confidence intervals.
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6 Evaluation Results

This section presents the evaluation results of the applied method on the WPPs.
The results are given for 15 WPPs, which are selected from different regions of
Turkey. For testing the reliability of the model, at least 93% of the real power

Fig. 4. Gaussian distribution with sigma levels

Table 2. The evaluation results

WPP 5–95 25–75 Region Capacity

percentile(%) percentile(%) (MW)

WPP1 91.69 74.39 Marmara 114

WPP2 92.38 73.01 Marmara 60.5

WPP3 93.33 77.41 Marmara 142.5

WPP4 91.57 73.5 Marmara 93

WPP5 90.36 76.55 Marmara 50

WPP6 90.96 68.4 Aegean 50

WPP7 91.46 73.84 Aegean 240

WPP8 90.59 74.53 Aegean 120

WPP9 91.68 76.86 Aegean 47.5

WPP10 91.91 77.19 Mediterranean 48

WPP11 92.68 72.37 Mediterranean 76

WPP12 90.87 79.48 Mediterranean 42.5

WPP13 87.6 69.47 Black Sea 42

WPP14 82.46 67.97 Central Anatolia 168

WPP15 93.34 84.45 Southeastern Anatolia 25
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value of the WPP must be in 5–95 percentile and 69% of the power value must be
in 25–75 confidence intervals according to the bell curve given in Fig. 4 [17,18].

The corresponding evaluation results are presented in Table 2 together with
several other characteristics regarding the WPPs such as their installed capac-
ities. As the test period, the four-months region between January 1, 2017 and
May 1, 2017 is selected.

According to results presented in Table 2, in 12 of 15 WPPs, more than 70%
of the real production value in the test region is in 25–75 confidence interval.
Similarly in 13 of 15 WPPs, production value remains in the forecast band of
5–95 more than 90% of the cases. The best results are obtained in WPP3 and
the worst results are obtained for WPP14. For these WPPs, sample time series
charts are presented in Fig. 5 and Fig. 6, respectively. In these figures, the green
line represents the real production data and gray intervals denote the 25–75 and
5–95 interval forecasts.

Fig. 5. Probablistic wind power forecasts for WPP3

Fig. 6. Probablistic wind power forecasts for WPP14
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7 Conclusion

In order to benefit from the renewable energy sources effectively, there is a need
for good planning. Especially if this source is so variable such as wind, then a
reliable forecast system is inevitable for the convenient planning the energy grid.
In this work, the probabilistic wind power forecasting method implemented and
applied within the course of the RİTM project is presented. According to the
evaluation results, the method attains reliable results especially for the 25–75
confidence intervals and the results for the 5–95 intervals are also applicable.
The training duration for constructing model is selected as 30 days. Future work
based on the current study includes investigating the effects of different train-
ing durations on the model performance. In addition, apart from the historical
power, the effects of other variables such as temperature and pressure in the
WPP area can be investigated.

Acknowledgment. This work is conducted within the scope of RİTM project (with
number 5122807), which is directed by Energy Institute of TÜBİTAK MAM. We would
like thank all of the partners of the RİTM project especially to Renewable Energy
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Abstract. Power system analyses increasingly use annual time series
for temporal and spatial assessment of operational and also planning
aspects. These analyses are often limited due to the computational time
of the large amount of load flow calculation. By introducing algorithms
which are capable of generating shorter and representative time series
of measured load or power generation time series, the calculation time
for load flow calculations can be reduced. We present a method which is
capable of extracting features from the time series and use those features
to create a representative time series. Furthermore, we show that our
method is capable of maintaining the most important statistical features
of the original time series by applying a Fisher-Pitman Permutation test.

Keywords: Representative time series · Feature extraction · Clustering ·
Load flow · Grid expansion planning

1 Introduction

The amount of collected data due to smart grids is vast. Data producing devices
within smart grids range from power generators, e.g., wind turbines or solar
power facilities, to households with smart meters. Each of these devices generates
a steady flow of data which can be processed to determine the future power
production, to plan grid expansions, simulate future energy markets, or just to
assess the dynamics of the power grid itself. The time resolution of these data
can vary. Typically, in the industry data are collected in intervals of 15 min.
However, also a resolution of 1 min or even of seconds, could be imagined in a
future application which increases the amount of data by a factor 15 or even 900.

An aggregation of data does not necessarily reflect the statistical characteris-
tics of the time series data. Depending on the application, an aggregation has to
maintain different statistical characteristics of the input data. Applications such
as the planning of battery charging strategies, the planning future power grid

c© Springer International Publishing AG 2017
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expansions, or simulations of the power market, the input data need to reflect
the most important statistical characteristics of the data for the given task. For
example, grid expansion planning has to focus on extreme values and their prob-
abilistic characteristics, whereas simulation of the power market needs to have
a view on all possible result variations within the grid including outliers.

In this article, we propose a method to create a shorter representative time
series from a long input time series. The goal is to reduce the runtime of follow-
ing analyses, like load flow calculations. The method analyzes load time series,
calculates features of segments of the time series and then clusters the extracted
feature vectors. By sampling from the clusters, we can select similar time series
segments and create a representative time series of the input time series. Further-
more, we show that the created representative time series has similar statistical
properties as the input time series when used in a load flow calculation.

The remainder of the article starts with a discussion of the related work
in Sect. 2 followed by a description of the segmentation and feature extraction
algorithms used to determine the representative time series in Sect. 3. Afterward,
we compare the results of load flow calculations using the representative load
time series and the original load time series in Sect. 4. The paper concludes with
a discussion of key results and an outlook on future work in Sect. 5.

2 Related Work

Creating representations of a time series to reduce the calculation for further
analyses is an important research topic. Processing large amounts of data is
time-consuming, by pre-processing the data to create representative time series
with a lower amount of data and the same statistical characteristics, it is possible
to improve the computation time of subsequent algorithms. As a good time
series representation depends on the application, different algorithms have been
developed.

In [1], time overlaps are used during the segmentation of annual data for
parallel simulation runs. Showing that using weekly segments with an overlap
from one day to the previous week improves parallel simulation performance.

A proposed general approach preserving different statistical properties of
time series is given by [2]. The authors provide a method using log-spectrum
smoothing to conduct inference on time series sampled by different methods,
allowing them to reduce the amount of data and increasing the performance.
In [3], an indication is given regarding the amount of data that needs to be
preserved to create representative time series, which capture temporal variability
to preserve statistical properties of the time series.

Basic algorithms to create representative time series include algorithms like
k-means for clustering similar time segments as discussed in [4] to approaches
that use linear optimization to find similar segments as used in [5].

The k-means clustering approach in [4] allows generating clusters to represent
the gross electricity demand and net demand for wind output. The authors were
able to reduce the runtime of their subsequent simulations by using these clusters.
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The optimization based approach in [5] identifies representative time series, by
weighting representative time series based on their performance in load flow
applications, e.g., grid expansion planning.

Related work focusing on clustering energy and load data include [6–8]. The
authors of [6] use clustering methods, such as k-means or hierarchical clustering,
to identify typical loads of electricity customers. [7] uses a feature extraction
process, where simple features such as mean and standard deviation are extracted
to identify similar customers and use their respective load curves to optimize
their load. In [8], a feature extraction approach similar to the one proposed in
[7] is used to identify unusual energy consumption in buildings.

Creating a representation of a time series, especially for load time series,
is an active field of research. So far, feature-based approaches have been used
to analyze household related data to identify unusual behavior. The impact of
feature based clustering on load flow applications has not been analyzed in detail
so far.

3 Proposed Method

This section explains the process of obtaining representative time series from an
evenly spaced input time series, i.e., equidistant in time. Representative time
series Trep segments of the original univariate time series T = {t0, t1, . . . , tn}
To create representative time series we propose the following consecutive steps
as shown in Fig. 1. The steps include preprocessing as explained in Sect. 3.1,
followed by segmentation and feature extraction in Sect. 3.2, and finally the
creation of the representative time series by sampling from a created cluster
representation followed by the postprocessing is explained in Sect. 3.3.

Fig. 1. A flow chart of the proposed algorithm for the generation of representative time
series using feature vectors. The algorithms for feature extraction are Sliding Window
Feature Extraction (SWFE), Fast Feature Extraction (FFE) and a Convolutional Auto
Encoder Neural Network (CNN).

3.1 Preprocessing

The preprocessing consists of two substeps, the first step is optional and removes
the seasonal influence and the second step normalizes the time series. Both pre-
processing steps are applied on each time series to allow an independent handling
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of each time series. The preprocessing parameters are saved to allow to transform
the representative time series to a similar level as the input time series.

An input time series which is longer than a year most likely has seasonal
influences. Hence, the first pre-processing step removes these seasonal influences.
The time series is resampled to a resolution of one week using the mean of
the data points. By subtracting these resampled values from the corresponding
weekly values, the seasonal influence on the time series is removed.

The second preprocessing step normalizes the time series T by applying the
standard z-score.

Z =
T − μ

σ
(1)

Equation 1 shows the standard z-score normalization, where Z is the normalized
time series, μ is mean value of T and σ is the standard deviation of T both are cal-
culated for the whole time series. The normalized time series Z = {z0, z1, . . . , zn}
has a mean of 0 and a standard deviation of 1.

3.2 Segmentation and Feature Extraction

After the preprocessing, the normalized time series is segmented and the feature
vectors are extracted. For some algorithms, the segmentation is dependent on
the feature extraction algorithm. Hence, the segmentation method is described
with the corresponding feature extraction algorithm. In our work, we propose
three different feature extraction algorithms.

1. Simple Sliding Window feature extraction (SWFE),
2. Fast Feature Extraction (FFE) and
3. feature extraction based on Convolutional Autoencoder Neural Networks

(CNN).

Each of these algorithms produces a feature vector for each analyzed segment.
The feature vectors for each time series are clustered in a subsequent step.

Simple Sliding Window Feature Extraction. The segmentation of the
SWFE algorithm is shown in Fig. 2a. The algorithm uses a fixed sliding win-
dow of size m. Hence, the first window starts at time step t1 = 0 and reaches
t2 = t1 + m. Afterwards, the window is shifted by distance of s. Hence, the
second window then starts at t3 = t1+s and reaches t4 = t3+m. In our applica-
tion s is set to m, so the time series is always shifted by m and therefore creates
non-overlapping segments.

For each window, the mean, variance, minimum, maximum, and the median
are extracted as features and stored for clustering. Furthermore, the start posi-
tion and the window length m are stored, to easily allow to obtain the corre-
sponding time series segment to a feature vector.
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Fig. 2. Schematic segmentation for the different feature extraction algorithms: SWFE
and CNN (a), FFAL (b). In (c) the solid red line shows the representation within
the growing window. The dotted vertical line shows the current sliding window, which
is used to select segmentation points. The black dash-dotted line shows the current
polynomial fit of the growing window.

Fast Feature Extraction. The FFE uses a sliding window and a growing
window technique [9]. Figure 2b depicts the mechanisms of the FFE algorithm.
The sliding window acts as explained in Sect. 3.2 with s = 1. The growing
window starts with a window size of 1 and is iteratively increased. A polynomial
approximation with a degree of k is fitted in both windows. The coefficients of
the orthogonal expansion of the approximating polynomial define the feature
vector for the FFE algorithm. As explained in more detail in [9], the coefficients
of the polynomial approximation represent characteristics of the analyzed time
series, e.g., mean or curvature.

Segmentation is performed if the fit of the polynomial approximation reaches
a certain threshold, e.g., the approximation error is too high, or the curvature
reaches a user-specified limit. At the segmentation point, the coefficients of the
polynomial approximation are stored alongside with the approximation error,
the current window length of the growing window, and the segmentation point.
Afterward, the gathered information resets, and the algorithm tries to find the
next segment [10]. In our implementation, the sliding window approximation is
used to find appropriate segmentation points, and the growing window approx-
imation is used to determine the feature vector.

Convolutional Auto Encoder Neural Networks. An autoencoder (AE)
learns the relationship between input data and output data through a bottleneck.
The input data are the same as the output data, allowing the autoencoder to
learn a view on the data at the bottleneck which is similar to principal component
analysis. By splitting the autoencoder into an encoder and decoder part, it is
possible to transfer the data into a low-dimensional representation with the
encoder and decode this representation using the decoder.
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A convolutional neural network (CNN) learns a filter function on the input
training data, in our case different time series segments. Thus, allowing to extract
different features of the analyzed subsampled time series. Furthermore, similar
subsampled time series produce similar features as input for the subsequent
layer. By using convolutional inputs and combine them with the structure of the
autoencoder we obtain a feature extraction algorithm.

The CNN AE algorithm uses the same sliding window method as the SWFE.
The inputs for the training, as well as the outputs of the neural network, are the
data within the current sliding window. After the training of the neural network,
the network is separated into encoder and decoder parts. The feature vectors
are obtained by taking the output from the encoder, i.e., a low dimensional
representation of the data at the bottleneck of the CNN AE. Those extracted
feature vectors are then used for clustering.

The CNN AE algorithm has the obvious drawback that the neural network
needs to be trained before it can be applied to extract feature vectors. The
training increases the run time and the amount of data needed.

3.3 Creation of Representative Time Series

To create representative time series using a set of feature vectors we need to
cluster the feature vectors. Similar feature vectors will be clustered to represent
similar elements within the input time series.

To create a representative time series from these clusters, we sample N
data points of those clusters and reconstruct the associated time series segment.
Reconstructing time segments of the SWFE or FFE feature vectors is done by
using the associated segmentation point and length which are used to obtain the
associated time series segment from the normalized input time series. The CNN
AE reconstructs the input data by applying the sampled feature vectors as input
to the decoder. Using the feature vectors as input to the decoder allows calculat-
ing the associated time series segment. Afterward, all samples are concatenated
to create the output time series, and the preprocessing steps are reversed, i.e.,
reversing the steps of the standard z-score normalization and adding the corre-
sponding seasonal influence.

The sampling of feature vectors influences the representation of the time
series. Depending on the subsequent analysis different sampling strategies might
be selected. E.g., if the analysis focuses on obtaining information about extreme
values, such as minimum and maximum, outliers or elements of the convex hull
of the cluster should primarily be sampled.

4 Evaluation

We evaluated the performance of the representative time series by applying them
to load flow calculation to determine explanatory power in applications such as
grid expansion planning. We first describe our evaluation method in more detail
in Sect. 4.1 and show our results in Sect. 4.2.
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4.1 Method

To evaluate the method we proposed in Sect. 3, we created 100 representative
time series for 100 different household load time series for all proposed feature
extraction algorithms. The representative time series and the input time series
were analyzed using load flow calculations. The results of those load flow calcu-
lations were validated using the Fisher-Pitman [11] Permutation test.

The input load time series were artificially created time series with a length
of a year and a resolution of 15 min. The load profile generator [12], we used to
create the input time series, uses detailed information on German households to
create load time series as close as possible to the current housing situation in
Germany.

Fig. 3. Overview of the validation
process.

Fig. 4. Generic distribution grid used for
the validation.

Figure 3 illustrates the validation process. The validation determines if the
representative time series has the same statistical characteristics as the input
time series. The validation evaluates the grid parameters calculated by the load
flow analysis and not the representative time series itself. Hence, we can identify
if the representative load time series lead to similar statistical characteristics as
the input load time series

All algorithms use a sliding window size of 12 h to segment the time series.
The sliding windows had no overlap, except for the FFE. As clustering algorithm,
we used HDBSCAN [13], a hierarchical version of the density based clustering
algorithm DBSCAN. From the resulting clusters of feature vectors, we sampled
1000 samples of 12 h to form a representative load time series. During the sam-
pling, each feature vector was drawn uniformly from the cluster member, and
outliers were not taken into account. Furthermore, the cluster size was taken
into account to obtain the same size ratio in the representative time series as
in the clustered data. E.g., if two clusters are found with 80 and 20 members
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and we would draw 10 samples, 8 of them would be for the first and 2 from the
second.

The input load time series and the representative load time series were used
in a load flow calculation of a generic Kerber distribution grid [14] as shown
in Fig. 4. The generic distribution grid consists of one transformer, five feeders
with 57 nodes and 57 lines. For each line, node and the transformer a time series
of the capacity of the component is calculated using the load flow calculation.
The load flow calculation was performed using the Python based open source
software PandaPower [15].

The transformer capacities, line capacities, and node voltages time series
are checked for similar statistical features using the Fisher-Pitman permutation
test [11]. To decide if both time series are similar the Fisher-Pitman test should
result in high p-values ≥ 0.15 and ≤ 0.85. In our evaluation, we choose to assess
the minimum, maximum, mean, median and standard deviation to determine
the similarity of the input time series with the representative time series.

4.2 Results

During our evaluation, we calculated p-values for the minimum, maximum,
mean, median and standard deviation for transformer capacities, line capaci-
ties, and node voltages. Figure 5 shows an exemplary boxplot of the calculations
of the SWFE for the line capacities.

Table 1 presents an overview of the results. All algorithms, except the CNN,
show promising behavior to create representative time series. The SWFE is capa-
ble of maintaining information about the maximum values and the standard

Fig. 5. Exemplary boxplot of the p-values for the line capacity. Calculated using the
Fisher Pitman test for the SWFE.
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Table 1. Overview of p-values per algorithm. The means of all load flow results are
shown with the corresponding standard deviation.

Algorithm p value for Transformer Line Voltage

SWFE median 0.000(±0.000) 0.000(±0.000) 1.000(±0.000)

max 0.293(±0.250) 0.293(±0.249) 0.980(±0.140)

mean 0.000(±0.000) 0.000(±0.000) 1.000(±0.000)

min 0.020(±0.140) 0.020(±0.140) 0.707(±0.250)

std 0.366(±0.353) 0.365(±0.353) 0.335(±0.345)

FFE median 0.019(±0.131) 0.019(±0.129) 0.981(±0.129)

max 0.983(±0.060) 0.982(±0.059) 1.000(±0.000)

mean 0.232(±0.418) 0.232(±0.417) 0.767(±0.418)

min 0.000(±0.000) 0.000(±0.000) 0.018(±0.059)

std 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)

CNN median 0.000(±0.000) 0.000(±0.000) 1.000(±0.000)

max 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)

mean 0.000(±0.000) 0.000(±0.000) 1.000(±0.000)

min 0.000(±0.000) 0.000(±0.000) 0.000(±0.000)

std 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)

deviation of the load flow results. The FFE is capable of maintaining informa-
tion about the mean of the load flow results. The high standard deviations of
the results are due to the averaging over all calculated load flow results. Due to
different losses and line length within the power grid, these values tend to vary.
The CNN algorithm is not capable of reproducing any of the characteristics
calculated by the load flow calculation.

The runtime could successfully be reduced from 638 s using the 35040 data
points of the original time series to 76 s using the 1000 data points of the rep-
resentative time series. The runtime was averaged over 10 load flow calculations
on a single core of an Intel Xeon E5-2683 @ 2.1 Ghz.

5 Conclusion and Outlook

In this paper, we presented a method to obtain representative time series from an
input time series using feature vectors of time series segments. We then evaluated
the results of a load flow calculation for the representative time series and the
input time series. By applying Fisher-Pittmann test on the results of the load
flow calculation, we were able to assess the similarity of both time series.

As shown in Sect. 4, only the SWFE, and FFE are capable of recreating
load flow results similar to the original input time series. The CNN method fails
to recreate the load flow results. The shortcomings of the SWFE is to obtain
similar median, mean and minimal values for transformer and line capacities.
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The minimum value of the node voltage can be achieved using the SWFE. The
FFE is only capable of obtaining similar mean values and has a low score on
all other characteristics. The CNN feature extraction is not able to reproduce
any load flow results. This might be due to the layout of the CNN which uses
48 input neurons and has a bottleneck of 4 neurons which might not be good
enough to reproduce the necessary information of the input time series.

An additional explanation for the low scores in areas such as the mean,
min or median values might be the applied sampling strategy or the size of the
representative time series. We tried to have a broad general view of the data
and sampled uniformly on the clusters. A better strategy would be to adjust the
sampling to the feature extraction algorithm as well as the specific applications
which have to be solved using the load flow calculations, e.g., grid expansion
planning.

Furthermore, we might be able to obtain more information about the original
time series by increasing the size of the representative time series. If this is done,
it has to be taken into account that by increasing the size of the representative
time series the runtime of the load flow calculation will increase as well.

The additional runtime for the SWFE and the FFE to extract the repre-
sentative time series adds to the total runtime but can be considered less in
comparison to the achieved speedup of about 90%. The CNN, on the other
hand, needs to learn a representation of the data, which makes the algorithm
unusable for single time usage. If applied to real world data, the CNN should
be pre-trained. This pre-training allows for a pre-adaption to load time series.
During their application, the fine tuning can be done on the data for whom the
representative time series need to be calculated.

Our future work includes the adoption of the presented methods to multi-
variate time series to better capture the correlation between different household
loads. This adoption may allow improving the load flow analysis for renewable
energies further. All of the methods are capable of performing multivariate fea-
ture extraction; this would result in an increased size of the feature vector for
clustering. Hence, another dimensionality reduction algorithm might need to be
applied before clustering. Furthermore, we want to develop sampling strategies,
which allow selecting specific features for grid planning tasks, e.g., grid expansion
or stability calculations. Other work will include an analysis of generating rep-
resentative time series by using a function, which maps actual load flow results
back to the time series itself. This allows learning a function which maps similar
load flow results to a specific time series.
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Abstract. Distributed residential solar power forecasting is motivated
by multiple applications including local grid and storage management.
Forecasting challenges in this area include data nonstationarity, incom-
plete site information, and noisy or sparse site history. Gaussian process
models provide a flexible, nonparametric approach that allows probabilis-
tic forecasting. We develop fully scalable multi-site forecast models using
recent advances in approximate Gaussian process methods to (probabilis-
tically) forecast power at 37 residential sites in Adelaide (South Aus-
tralia) using only historical power data. Our approach captures diurnal
cycles in an integrated model without requiring prior data detrending.
Further, multi-site methods show some advantage over single-site meth-
ods in variable weather conditions.

1 Introduction

Solar power forecasting is motivated by several areas of application, including
grid management, load shifting (demand management) and energy storage man-
agement. As small scale residential solar penetration grows, challenges to fore-
casting power for multiple distributed small scale sites, in particular forecasting
with incomplete site information and noisy power data, become of interest.

Challenges in this context include nonstationarity in the data,1 and develop-
ing useful probabilistic forecasts. Many forecasting methods assume it is possible
to detrend power data prior to stochastic modelling in order to ‘flatten’ the data
and remove diurnal cyclical trends associated with cycles in solar radiation. How-
ever, methods to do so rely on comprehensive site information [7], or site history
as in [5,17]. Overall, existing methods have high data demands, constraining
their usefulness for new or unseen sites.

For certain applications it is desirable to work with a probabilistic distrib-
ution of forecasts that quantifies forecast uncertainty. Statistically-based meth-
ods, such as vector autoregressive (VAR) models, typically allow probabilistic
forecasts however are constrained in their application to unflattened data and
sites for which no training data is available. Machine learning methods such as

1 Stationarity here refers to the property that distribution parameters remain stable
(and finite) over time.
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neural networks (ANNs) are more widely applicable but do not generally allow
probabilistic forecasts. Gaussian process models are advantageous in this regard,
providing a flexible, nonparametric forecast approach that is also probabilistic
in nature.

Transfer learning over distributed sites may assist in addressing site data
limitations as well as improve prediction of weather-related power fluctuations.
The literature suggests cross site data can be helpful in modelling cloud condi-
tions to improve site level forecasts, as in [3,12,23], with evidence that cross site
information in a dense network can be relevant from timescales of a few minutes,
as in [27], to multi-hour horizons in a widely distributed network, as in [3].

A key constraint often associated with multisite approaches is scalability to
large numbers of sites. Within the Gaussian process literature, several approxi-
mate methods have been developed that support stochastic parameter optimisa-
tion, thus maintaining scalability to large datasets and feasibility for real world
application.

The current study considers the problem of short term (less than 30 min)
power forecasting for large distributed networks of residential rooftop solar sys-
tems. We apply sparse variational Gaussian process (gp) approaches for proba-
bilistic forecasting across multiple solar sites in Adelaide, Australia. Our aim is
to test whether scalable gp methods can be applied to short term distributed
forecasting to provide useful, probabilistic forecasts at the site level with limited
site history and information.

1.1 Related Work

The literature around solar forecasting is extensive, including studies that inves-
tigate both solar irradiance and power forecasting over multiple forecast horizons
(a few minutes to multiple days) using approaches that range from physics-based
models to statistical and machine learning methods. Studies to date also examine
multiple inputs including irradiance or power measurements, ground and satellite
based weather data and meteorological forecasts. Several reviews [10,14,18,25]
provide a thorough coverage of recent methods.

In the sphere of short term forecasting, stochastic models utilising only his-
torical power data have been shown to perform relatively well in the past [18],
although recent advances suggest highly accurate forecasts can be produced
by including comprehensive climate data [16]. Predominant statistical meth-
ods include adaptively estimated VAR, autoregressive integrated moving aver-
age (ARIMA) and generalised autoregressive conditional heteroskedasticity
(GARCH) models, for example as in [3,9]. These methods allow for weather-
related nonstationarity and at shorter horizons (up to one hour) have been
found to be competitive in forecasting clearness indices (i.e. flattened irradi-
ance data) [9,15]. In a number of cases models are applied in a multisite setting
as in [3,5,11,27].

The major machine learning methods explored for short term solar forecast-
ing are neural networks and support vector machines (SVMs). Recent examples
of ANNs for short term horizons include [12,20]. ANNs have been explored in
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a multisite setting in irradiance forecasting [25], although at time of writing no
examples were identified of multivariate prediction at horizons less than one hour
ahead.

Gaussian process and related models have been explored to a limited extent
in solar forecasting. [9,15] include univariate gp models applied to clearness
indices as comparative models. [4] also uses a gp model to forecast clearness
index values over an irradiance field in 30 min increments. The authors apply
probabilistic principal components dimension reduction to improve feasibility of
real time adaptive gp modelling over multiple locations (by reducing the number
of ‘locations’ for which a gp is estimated), and further assume independence
between models, thus respecifying the multivariate problem as several univariate
problems. However, even with these adaptations, scalability is still constrained
by non-stochastic optimisation of the exact gp as described in Sect. 2.

Several studies use a closely related method, kriging, to predict clearness
indices in a multisite setting [2,22,23,26]. Building on [22,26] develops one-hour-
ahead clearness index forecasts using one month of hourly data from a group of
10 meteorological stations in Singapore. In [23], the authors ‘nowcast’ clearness
index values for 25 sensor locations covering an approximately 30 km radius area
in Osaka.

2 Theory

Gaussian process (gp) models provide a flexible nonparametric Bayesian app-
roach to machine learning problems such as regression and classification [21] and
have proved successful in various application areas involving spatio-temporal
modeling [8]. Formally, a gp is a prior over functions for which every subset
of function values f(x1), . . . , f(xn) follows a Gaussian distribution. We denote
a function drawn from a gp with mean function μ(x) and covariance function
κ(·, ·) by f(x) ∼ GP(μ(x), κ(x,x′)).

One of the most widely used gp models is the standard regression setting
with a zero-mean gp and i.i.d. Gaussian noise:

yt ∼ N (f(xt), σ2
y) with f(xt) ∼ GP(0, κ(xt,xt′)), (1)

where xt denote features at time t and σ2
y is the noise variance.

Given a set of observations {(xt, yt)}N
t=1, we wish to learn a model in order to

make predictions at a new datapoint x∗. Given the likelihood and prior models
in Eq. (1), the predictive distribution over f(x∗) is a Gaussian with mean and
variance given by:

μ∗ = κ(x∗,X)(K + σ2
yI)

−1y, σ∗ = κ(x∗,x∗) − κ(x∗,X)(K + σ2
yI)

−1κ(X,x∗),

where X and y denote all the training features and outputs, respectively; K
is the covariance matrix induced by evaluating the covariance function at all
training datapoints; and I is the identity matrix.
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Although computing the exact predictive distribution above is appealing
from the theoretical perspective and in a small-data regime, these computa-
tions become unfeasible for large datasets as their time and space complexity
are O(N3) and N2 respectively.

Much of the research efforts in gp models have been devoted to this issue [19]
with significant breakthroughs achieved over the last few years [13,24]. Indeed,
here we study the variational approach to inference in gp models, which relies
upon reformulating the prior via the so-called inducing variables [24].

2.1 Scalable Gaussian Process Regression via Variational Inference

Full details of the variational approach to scalable gp regression is out of the
scope of this paper and we refer the reader to [6,13,24] for further reference.
Here it suffices to explain that we introduce a set of M inducing variables u =
(u1, . . . , uM ), which lie in the same space as the original function values and
are drawn from the same gp prior. For these inducing variables we have their
corresponding inputs Z = (z1, . . . , zM ), where each zj is a D-dimensional vector
in the same space as the original features x.

The variational approach to gp inference involves a reformulation of the
prior via the inducing variables and the proposal of an approximate posterior
over these using q(u) = N (m,S), which is estimated via the optimization of the
so-called evidence lower bound (elbo):

Lelbo(m,S) = KL(q(u)‖p(u)) − Eq(f)[log p(y|f)], (2)

where KL(q‖p) denotes the Kullback-Leibler divergence between distributions q
and p; p(u) = N (0, κ(Z,Z)) is the Gaussian prior over the inducing variables;
Eq(f)[log p(y|f)] is the expectation of the conditional likelihood (given in Eq. (1))
over q(f) =

∫
u

q(u)q(f |u)du; and q(u) the approximate posterior given above.
Using simple properties of the Gaussian distribution it is possible to show that
Eq. (2) can be solved analytically and, more importantly, Lelbo decomposes as
a sum of objectives over the training data. This readily allows the application
of stochastic optimization methods rendering the time and space complexity of
the algorithm as O(M3) and O(M2), respectively, hence independent of N and
applicable to very large datasets.

2.2 Gaussian Processes for Solar Power Forecasting

A key advantage of gp models is their flexibility to express potentially nonlin-
ear relationships and nonstationary processes through various kernel forms. gp
models have the capacity to account for nonstationarity associated with diurnal
cycles through appropriate kernel functions. Further, their nonparametric nature
allows models to flexibly reflect variable volatility i.e. nonstationarity associated
with weather effects.

In the present study, we propose several Gaussian process model specifi-
cations for application to the residential solar forecasting problem where site
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information is unknown. Kernels are structured to capture both cyclical and
autoregressive processes in the power data. We compare results under both
‘site-independent’ approaches, where Gaussian process models are applied to
sites individually, and multi-site approaches, where forecasting for multiple sites
is performed via collaborative Gaussian process models.

Site-Independent Models. Consider the timeseries of power observations for
a single site p, denoted yp, at times t = 0, . . . , N . As in (1), let

ypt = fp(xpt) + εpt, fp(x) ∼ GP(0, κp(xpt,xps)) (3)

εpt ∼ iidN (0, σ2
yp

). Under the gp specification, observed power ypt is a func-
tion of a latent Gaussian process, fp(xpt), plus idiosyncratic noise εpt. The covari-
ance between power at time t and time s, s �= t is thus given by the kernel function
κp(xpt,xps). The likelihood function is given by ypt|fpt ∼ N (fpt, σ

2
yp

).
In the site-independent setting, the feature vector xpt is comprised of two

main elements: a time index t and a set of lagged power observations at pre-
specified five minute intervals denoted g. In order to forecast power at t + δ for
δ steps ahead, lag features are current observed power and past observed power
at 5 and 10 min prior. Thus xpt = (t,gpt), gpt = (ypt−δ, ypt−δ−1, ypt−δ−2). Lags
were selected in line with previous studies that find immediate lags are relevant
for short term forecasting (see e.g. [26]).

Additional, ‘extended site-independent’ models are estimated using an aug-
mented set of lag features. The feature vector is extended to include power obser-
vations of nearby sites, that is gpt = (ypt−δ, ypt−δ−1, ypt−δ−2, y−pt−δ, y−pt−δ−1,
y−pt−δ−2), where y−p denotes all sites near to site p. Utilising cross-site features
in the form of lags allows separate site model estimation and has been applied in
several studies including [3,12]. We define ‘near’ as being within a 10 km radius.2

Kernel functions for site-independent and extended site-independent models
are comprised of several separable kernel elements. A periodic kernel is applied
to the time index to capture daily cyclical trends in output and is defined as

κPer.(t, s) = θ exp

⎡

⎣−0.5

(
sin

(
π
T (t − s)

)

l

)2
⎤

⎦ (4)

where θ governs cycle amplitude, T denotes cycle period (fixed at one day),
and lengthscale, l, governs rate of decay in covariance as the time-span between
observations increases.

A linear kernel is applied to lag features gi ∈ g to capture short term varia-
tions from the regular diurnal trend:

κLin.(gpt,gps) =
∑

i

σigpti, gpsi (5)

2 A fixed radius is applied to provide local regularisation, which has been found to
reduce overfitting in multisite settings [11,27]. The 10 km threshold aims to limit
‘neighbours’ to sites most likely to be relevant given historic local windspeed.
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where σi are in effect weight coefficients. The overall kernel structure for all
site-independent models is:

κp(xpt,xps) = κPer.(t, s)κLin.(gpt,gps). (6)

Multi-site Models. Values for proximate sites would be expected to covary,
due to both synchronous diurnal cycles in unflattened data and shared weather
systems. Some efficiency would thus be expected from exploiting the shared
covariance structure through collaborative learning.

Two separate multi-site gp model structures are estimated for site-level
power forecasting. The first is a pooled structure, where (standardised) site data
are used in a joint specification with shared kernel parameter values. The second
structure is the linear coregionalisation model or LCM. This structure assumes
site observations covary through a lower dimension set of shared latent processes.

For each multi-site model structure, two alternative kernel specifications are
explored. These four model specifications are detailed below.

Pooled Model. The pooled, or ‘joint’, model is a pooled Gaussian process
model where all site observations share a common kernel that includes an addi-
tional kernel element defining a spatial covariance factor.

The first pooled model kernel (‘Joint Model 1’) is defined as a multiplicative,
separable spatiotemporal kernel added to a shared linear kernel applied to lagged
power values. Feature vector x is extended to include h = (latitude, longitude)
i.e. xpt = (t,gpt,hp). A radial basis function (RBF) kernel is applied to hi ∈ h
to capture spatial dependencies, thus for sites p and q,

κ(xpt,xqs) = κPer.(t, s)κRBF (hp,hq) + κLin.(gpt,gqs). (7)

where

κRBF (hp,hq) = σ2exp
{ − 1

2

2∑

i=1

((hpi − hqi)/li)2
}
. (8)

In the RBF kernel, σ2 governs maximum covariance between points hp and
hq, and lengthscale, li, governs the rate of decay in covariance as distance between
observations along the relevant axis increases.

The second joint model (‘Joint Model 2’) is similarly specified however
replaces the shared linear kernel with separately parameterised linear kernels
for each site. Specifically, κLin.(gpt,gqs) becomes

κLin.,p(gpt,gqs) =
∑

i

σpigpti, gqsi, κLin.,p = 0 for p �= q (9)
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Coregional Model. The linear coregional model (LCM) assumes yp is a func-
tion not of a single latent process fp(xp) but a linear combination of several inde-
pendent latent Gaussian processes. Covariance between sites arises from these
shared latent processes. Weights defining the linear combination for a given site
are site-specific,3 fp(x) =

∑Q
j=1 wpjuj(x).

We assume three latent processes u(x)j , j = 1, ..., 3 in the first LCM model
(‘LCM Model 1’) and two latent processes in the second model (‘LCM Model 2’).
Each latent process has an associated kernel, κj , giving rise to a shared covariance
structure across sites driven by both kernel elements and weight matrices.

Let Bj = WjW′
j +κj where Wj is a p×1 matrix of weights wpj , and κj is a

diagonal matrix of isotropic noise. We define κ1 = κPer.(t, s) and κ2 = κRBF (t, s)
respectively as periodic and RBF kernels applied to time indices. The third latent
process kernel is defined as κ3 = κLin.(gt,gs). The shared kernel structure in
LCM Model 1 is thus given by:

K(fp(xpt), fq(xqs)) =
3∑

j=1

[Bj ]pq κj(xpt,xqs). (10)

The second coregional model is similar to the above, however again the linear
kernel component is treated slightly differently. In LCM Model 2, Q = 2 with
κ1 and κ2 defined as above, and lag features are included in a separate kernel
component defined as in (9). Thus

K(fp(xpt), fq(xqs)) =
2∑

j=1

[Bj ]pq κj(xpt,xqs) + κLin.,p(gpt,gqs). (11)

The specification in (11) allows a slightly more expressive parameterisation
of the linear kernel than (10).

Benchmark Models. Without clear sky normalisation and under the assump-
tion of short site history, there are few existing models for comparison. One
feasible benchmark prevalent in the literature is the persistence model,4 which
forecasts the next observation as the current observation i.e. yt+1 = yt. Persis-
tence models are estimated for each site separately.

In addition, the site-independent Gaussian process models serve as a bench-
mark. These are approximately equivalent to linear Bayesian regression models
assuming a standard Gaussian prior distribution over regression coefficients. As
such they are closely related to VAR models as applied to flattened data.

3 Experiments

The analysis makes use of a sample of 37 residential photovoltaic systems
installed within an approximately 10 by 15 km ‘box’ in the central Adelaide area.
3 A useful exposition of coregional models can be found at [1].
4 The persistence model in the present study is applied to unflattened data.
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Most sites have an installed capacity of 2 to 5 kW. The dataset is comprised of
5-minute average power readings over a 30 day period in January 2017 (specifi-
cally 30 days ending 28 January 2017). Days were defined as 7 am to 7 pm, yield-
ing a total of 144 observations for a site over a day. This accounts for a total of
159,840 observations, which is clearly unfeasible for standard (non-scalable) gp
models.

The goal of the experiments is to test whether gp models estimated under a
sparse variational framework can be applied to forecast distributed power output
at the site level for multiple distributed sites. In particular, whether (a) combined
kernel forms can be used to model nonstationary data characteristics, and (b)
collaborative learning can improve forecast accuracy or reduce data requirements
compared to independent site forecasts.

The four multisite models set out above are used to forecast output for each
site. These are compared to results under the site-independent and persistence
models. Models are trained for forecasting horizons from five to thirty minutes
at five minute intervals. The forecast target in each case is five minute average
power at that horizon. Models were trained using the first 60% of observations
(18 days). Forecasts were then generated for a test set of the following 40% of
observations (12 days) for each site.

All models are estimated via the sparse, variational approach described in
Sect. 2. Inducing points are initialised at cluster centroids and optimised within
the model. To illustrate the scalability of the approach, we use 2300 inducing
points for joint models, or approximately 2.4% of the data dimension. Maintain-
ing the same ratio, 63 inducing points per site were used for individual models.

3.1 Accuracy Metrics

Forecast accuracy is assessed for each site for each model using three mea-
sures: mean absolute error (MAE) in kilowatts, standardised mean squared error
(SMSE) and standardised mean log loss (SMLL), as defined in [21]. Specifically,

SMSE =
1

Nte

Nte∑

i=1

(
y − ŷ

σyte

)2

(12)

MAE =
1

Nte

Nte∑

i=1

|y − ŷ| (13)

SMLL =
1

Nte

Nte∑

i=1

(nlpdi − nlli), where (14)

nlpdi =
1
2

[

ln(2π) + lnσ2
ŷi

+
(

yi − ŷi

σŷi

)2
]

,

nlli =
1
2

[

ln(2π) + lnσ2
ytr

+
(

yi − μytr

σytr

)2
]

.
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Subscripts te and tr refer to training and test sets respectively and ŷ denotes
the predicted value of y. SMSE is standardised by reference to test set variance
σ2

yte
. Values less than one indicate the model improves on a simple mean forecast.

SMLL measures the (negative log) likelihood of the test data under the model,
denoted nlpd, relative to (negative log) likelihood under the trivial normal dis-
tribution with parameters (ytr, σ2

ytr
), denoted nll. More negative metric values

indicate better relative performance of the model.5

3.2 Results

Forecast Accuracy. Results at the site level suggest the site-independent
model performs as well as or better than the joint (pooled) model in terms
of average site accuracy (Fig. 1). SMSE for both the site independent and joint
models ranges from 0.05–0.12 over 5–30 forecast horizons, however MAE and
SMLL are consistently improved under the site-independent model over all fore-
cast horizons e.g. MAE of 0.14–0.26 kW versus 0.17–0.29 kW under site and joint
models respectively. The LCM specifications perform poorly on all measures rel-
ative to the joint and basic site-independent models. At all forecast horizons, the
better performing models (joint and site-independent) are more accurate than
the persistence benchmark.

Additional expressiveness in the kernel due to the more flexible linear lag
kernel structure does not significantly improve forecast accuracy in the joint or
LCM models, and in some cases tends to contribute to higher forecast variability
across sites (Fig. 1). Interestingly, the extended site-independent model performs
very poorly relative to other models, however forecast error remains fairly stable
over 10–30 min horizons. This result may indicate overspecification of this (very
flexible) kernel structure.

Estimation of Daily Power Curve. It is difficult to evaluate the current
approach as an alternative to those that require flattening the data without a
direct (flattened) benchmark for the given dataset. However, examining fore-
cast accuracy on clear6 days provides some insight into how the approach
accounts for clear sky curves. Table 1 summarises forecast accuracy under the
site-independent and joint model 1 specifications for clear (or mostly clear) and
cloudy days in the test set, which each represent 50% of the test data.

Forecast accuracy appears competitive on clear days, with mean MAE across
sites of 50 Watts on clear days at the five minute horizon, rising to 130 Watts
at the 30 min horizon. Given mean power for the full dataset set across clear
and cloudy days of 2.1 kW, MAE represents around 2.4 (6.2)% of mean power at

5 Note that SMLL does not apply to the non-probabilistic persistence model.
6 Clear days are defined as those where daily global horizontal irradiance (GHI) was
more than 90% of mean maximum daily GHI for the month of January. Measure-
ments are from the Adelaide (West Terrace) Australian Bureau of Meteorology
weather station. GHI for clear (cloudy) days ranges from 93–97 (36–90)% of the
mean January maximum.
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Fig. 1. Site forecast mean error and error variability
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Table 1. Mean site forecast accuracy on clear versus cloudy days

Model Horizon Clear days Cloudy days

MAE (kW) SMSE MSLL MAE (kW) SMSE MSLL

joint model 1 5 0.091 0.003 −2.01 0.253 0.051 −1.03

site-independent 5 0.050 0.002 −2.10 0.238 0.052 −1.04

joint model 1 10 0.100 0.005 −1.77 0.308 0.066 −0.89

site-independent 10 0.078 0.005 −1.88 0.311 0.077 −0.85

joint model 1 15 0.122 0.007 −1.65 0.340 0.076 −0.83

site-independent 15 0.096 0.006 −1.77 0.341 0.085 −0.78

joint model 1 20 0.150 0.009 −1.56 0.359 0.080 −0.81

site-independent 20 0.109 0.007 −1.69 0.361 0.093 −0.77

joint model 1 25 0.171 0.011 −1.49 0.378 0.085 −0.79

site-independent 25 0.124 0.008 −1.63 0.380 0.100 −0.75

joint model 1 30 0.184 0.012 −1.44 0.389 0.087 −0.78

site-independent 30 0.133 0.009 −1.59 0.390 0.103 −0.73

the 5 (30) min horizon. Similarly, SMSE of 0.002 to 0.009 (for site-independent
results) over 5 to 30 min horizons implies that average mean squared error is less
than one percent of total power variation on clear days.

Considering transfer learning more generally, it is relevant to note the better
performance of the joint model on cloudy days, which contrasts with the bet-
ter performance of the site-independent models on clear days (Table 1). On all
measures, the best performing joint model performs consistently better during
variable weather, while the opposite is true for sunny weather periods (not-
ing accuracy is significantly diminished for both models on cloudy days). This
suggests ‘negative’ transfer effects with respect to forecasting diurnal cycles,
while forecast errors are somewhat moderated during cloudy periods by the
joint model.

4 Discussion

The scalable, approximate Gaussian process methods appear to have significant
potential in the distributed forecasting setting. We are able to produce prob-
abilistic site level forecasts using a flexible, nonparametric method in a large
scale setting. Further, the approach seems to incorporate diurnal cycles within
an integrated model successfully without exogenous site information.

Gaussian process based models produce a strong level of accuracy on sunny
days for forecasts out to the 30 min horizon. Overall, however, accuracy of models
during cloudy conditions appears low. Given the absence of feature data beyond
location, time and output, however, it is possible accuracy can be substantially
improved (as in [16]) via inclusion of weather or other external data, including
site features where available.
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Overall accuracy of forecasts is not improved by jointly estimated models
(pooled and coregional) compared to site-independent models. Performance in
cloudy versus clear weather, however, illustrates that there may be potential for
transfer learning benefits during more variable weather.

One possible factor affecting model performance is the spatial covariance ker-
nel, which is a stationary function resulting in sites equally distant along a fixed
axis being assigned an equal covariance regardless of current weather direction.
Ideally, a spatial kernel would more specifically reflect current cloud velocity.
Further, the stationary kernel assigns higher weight to closer sites, which may
not be optimal as forecast horizons increase. A more refined kernel or adap-
tive model structure may thus assist in identifying relevant cloud-related data
features for transfer learning in a forecast setting.
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Abstract. Wind energy is a source of sustainable energy which is devel-
oping very quickly all over the world. Forecasting wind speed is a global
concern and a critical issue for wind power conversion systems as it
has a great influence in the scheduling of power systems as well as on
the dynamic control of wind turbines. In this research, we deploy and
study four forecasting models in order to forecast wind speeds in the
city of Abu Dhabi, United Arab Emirates (UAE). Two of these mod-
els are conventional statistical methods, namely, (i) Auto Regression
Integrated Moving Average (ARIMA) and (ii) Seasonal Auto Regres-
sion Integrated Moving Average (SARIMA) models, and the other two
are drawn from the field of machine learning, namely, (i) Artificial Neural
Networks (ANN) and (ii) Singular Spectrum Analysis (SSA) models. We
compare the performances of these four models in order to determine
the model which is most effective for forecasting wind speed data. The
results show that the forecasting model SSA provides, on average, the
most accurate forecasted values compared to the other three models.
However, those three models, ARIMA, SARIMA and ANN, offer bet-
ter results for the first few hours (around 24 h), which indicates that
ARIMA, SARIMA, and ANN models are suitable for short-term fore-
casting, while SSA is suitable for long-term forecasting. The findings of
our research could contribute in defining the fitting forecasting model in
terms of short-term forecasting or long-term forecasting.

Keywords: Wind speed · Forecasting · Statistical methods · Machine
learning

1 Introduction

Wind energy is a sustainable energy source which is developing very quickly all
over the world. The penetration of wind energy is increasingly rapidly; therefore,
it is important for power systems to plan for the integration of wind power with
the other power sources. Forecasting wind speed is a critical issue for wind power
conversion systems as it affects the scheduling of connected power systems as well
as the dynamic control of wind turbines. Hence, the ability to accurately predict
c© Springer International Publishing AG 2017
W.L. Woon et al. (Eds.): DARE 2017, LNAI 10691, pp. 107–120, 2017.
https://doi.org/10.1007/978-3-319-71643-5_10
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wind speed is an important capability [1]. However, making accurate wind speed
predictions is a difficult and complex challenge because of the chaotic nature of
wind speed fluctuations.

There is a large number of research papers which study wind speed predic-
tion and forecasting, and many different methods or models have been applied.
These methods are divided into four categories which are: physical methods,
statistical methods, spatial correlation methods, and machine learning methods.
Each method has a number of advantages and disadvantages.

As implied by the name, physical models use a large number of physical para-
meters to build a multi-variate forecasting model. These parameters include geo-
graphical orientation, geomorphic conditions, temperature, and pressure. Thus,
physical models are good for long-term forecasting and is widely applied for
weather predictions.

Statistical models employ time series models based on mathematical equa-
tions to generate wind speed predictions based on historical data. The most
commonly used models are statistical in nature because of the simplicity of their
computations and the inherent ability to handle noise. Examples of statistical
models are Auto Regression Moving Average (ARMA), Auto Regression Inte-
grated Moving Average (ARIMA), and Seasonal Auto Regression Integrated
Moving Average (SARIMA).

The third category, which is spatial correlation methods, uses multi-
dimensional datasets from different measurement stations in order to forecast
future wind speed.

Machine learning methods have been used to forecast and predict wind speed
time series data. Some of these methods are Fuzzy Logic Methods, Support Vec-
tor Machine (SVM), Artificial Neural Networks (ANN), and Singular Spectrum
Analysis (SSA). SSA models are relatively new to the field of forecasting and
decomposition of time series data. There are some existing studies where SSA
has been used for the time series analysis, but this was not on wind speed time
series data, as will be attempted in this research work.

In this research, our objective is to forecast hourly based wind speed time
series dataset for Abu Dhabi city, UAE. The data were collected at Abu Dhabi
International Airport. We study four different forecasting models from two dif-
ferent categories. For the statistical models, (i) ARIMA and (ii) SARIMA are
explored, and for the machine learning models, (i) ANN and (ii) SSA are studied.

The performance and the accuracy of each model in forecasting the wind
speed data for a week time ahead in hourly basis is then compared. The aim of
this study, that compares three traditional forecasting methods for wind speed
time series data, which are ARIMA, SARIMA and ANN, with a relatively new
method (SSA) that have been used for some time series analysis and decompo-
sition, is to proof that the SSA model provides the best results in forecasting
accuracy of the wind speed dataset over the other three forecasting models. To
our best knowledge, our study is the first to use SSA for the purpose of wind
speed forecasting.

This paper is a summary version of the master’s thesis of the first author [2].
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2 Methods Explored

In total, we explored four methods: two statistical and two machine learning
methods. The two statistical methods are: (i) Auto Regression Integrated Mov-
ing Average (ARIMA) and (ii) Seasonal Auto Regression Integrated Moving
Average (SARIMA). The two machine learning methods are: (i) Artificial Neural
Networks (ANN) and (ii) Singular Spectrum Analysis (SSA).

2.1 Statistical Methods

The main objective of statistical time series analysis is to develop mathematical
models which provide reasonable descriptions of a sample data. “In order to
provide a statistical setting for describing the character of data that seemingly
fluctuate in a random fashion over time, we assume that a time series can be
defined as a collection of random variables indexed according to the order in
which they are obtained in time” [3]. Forecasting is one of the major applications
of statistical time series analysis in which the future possible trend(s) is/are
forecasted based on the analysis the various components of the historical time
series data. Forecasting using statistical methods are very useful for short and
medium term forecasts, since the used historical data usually show inertia and do
not have huge changes in a short period [4]. Followings are the brief descriptions
of the ARIMA and SARIMA methods that we explore in this research.

ARIMA: The Autoregressive Integrated Moving Average (ARIMA) model is
one of the most useful class of homogeneous non-stationary time series mod-
els. It includes some useful differencing and variance stabilizing transformation
processes in order to connect the stationary and the non-stationary time series
models [5]. A proper degree of differencing can be taken in order to transform a
homogeneous non-stationary time series to a stationary time series. The autore-
gressive moving average models (ARMA) are useful for describing stationary
time series. Nevertheless, the autoregressive integrated moving average models
(ARIMA) are useful for describing various homogeneous non-stationary time
series that can be used to build a large class of time series model by the use of
differencing.

In the general ARIMA(p, d, q) model, p represents auto regression parame-
ter, d represents the differencing parameter, and q represents moving average
parameter.

φp(B)(1 − B)dYt = θ0 + θq(B)at (1)

φp(B)(1 − B)dYt = θq(B)at (2)

The composite variable φp(B) represents the stationary Auto Regression
operator as φp(B) = (1−φ1B−. . .−φpB

p), and the composite variable θq(B) rep-
resents the invertible Moving Average operator as θq(B) = (1−θ1B−. . .−θqB

q).
These two variables are not sharing any common factors. The variable (1−B)dYt

refers to the differencing operator where d is the difference value. The parameter
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θ0 plays very different roles for d ≥ 0. The series at is a Gaussian N(0, α2
a) white

noise process. The deterministic trend parameter θ0 is removed for simplicity
but no loss of generality. Equation 2 is one of the most frequently used models
in forecasting applications.

ARIMA and its variants hybridized with other methods have been used in
wind power forecasting in [6–8].

SARIMA: The ARIMA model described in the previous section was an ordi-
nary non-seasonal ARIMA model. In this section, we will describe the seasonal
ARIMA model which is denoted as SARIMA. SARIMA models are capable of
modeling a wide range of seasonal time series data. The formation of the Sea-
sonal ARIMA model is by adding some further seasonal terms to the original
ARIMA models, and it is written as following:

ARIMA(p, d, q)(P,D,Q)m

The value m refers to the number of periods per season. The uppercase
notations represent the seasonal parts of the model, as P refers to seasonal
auto regression parameter, D refers to the seasonal differencing parameter, and
Q refers to the seasonal moving average parameter, while the lowercase nota-
tions represent the non-seasonal parts of the model as described in the previous
section. The terms included in the seasonal part of the model are very similar
to the non-seasonal terms of the model, however they contain backshifts of the
seasonal period. The seasonal ARIMA model formula can be written as:

(1 − φpB)(1 − φpB
m)(1 − B)(1 − Bm)yt = (1 + θqB)(1 + θqB

m)et (3)

Here (1 − φpB) represents the non-seasonal auto regression parameter, (1 −
φpB

m) represents the seasonal auto regression parameter, (1 − B) represents
the non-seasonal difference and (1−Bm) represents the seasonal difference. The
variable m refers to the number of periods per season. For the right side of
the equation, (1 + θqB) represents the non-seasonal moving average parameter,
and (1 + θqB

m) represents the seasonal moving average parameter. In Eq. 2.1,
the additional seasonal components are simply multiplied with the non-seasonal
components.

The SARIMA method has been used for wind speed forecasting in conjunc-
tion with other methods in [9]. It has also been used for time series forecasting
in various other application domains [10–13].

2.2 Machine Learning Methods

Machine learning methods have drawn a great attention in the last few years as
they have created themselves as a great competitors to the classical statistical
models in prediction and forecasting community. As a significant number of
studies have been done in forecasting time series data using machine learning
models, there are multiple number of studies showing that some of the machine
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learning models have improved forecasting performance and accuracy than the
traditional statistical models [14]. Followings are the brief descriptions of the
ANN and SSA methods that we explore in this research.

ANN: Artificial Neural Networks (ANN) are forecasting methods which are
based on simple mathematical calculations of the brain as they allow for com-
plex nonlinear relationships between the predictors and their response variables.
A neural network is described as a network consisting of neurons which are
organized in a number of layers. The first layer (or the input layer) includes the
predictors, and this layer forms the bottom layer. The last layer (or the output
layer) forms the top layer. In between, there may be some intermediate layers
which are called hidden layer. The simplest example of a neural network contain
no hidden layers and it is equivalent to a linear regression. Figure 1 shows an
example of a neural network. The model selected in this experiment was an ANN
with single hidden layer and maximum number of weight as 2,000.

Fig. 1. Example of artificial neural networks.

As shown in Fig. 1, a neural network model is defined by a network of three
layers of a simple processing unit. These units are connected to each others by a
cyclic links as shown. The relationship between the inputs (Yt−1, . . . , Yt−p) and
the output (Yt) has the following mathematical representation:

Yt = w0 +
q∑

j=1

wj × g(w0j +
p∑

i=1

wij × Yt−i) + εt (4)
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Here wij (i = 0, 1, 2, . . . , p, j = 1, 2, . . . , q) and wj (j = 1, 2, . . . , q) are
the model parameters which are often called by the connection weights; p is
representing the number of input nodes; and q is representing the number of
hidden nodes. εt is a very small cumulative number that varies depending on
the number of input nodes. The function g() performs a nonlinear functional
mapping of the presented data [15].

Different flavors of ANN have been used for wind speed forecasting in different
geographical locations such as Mexico, Nigeria, and Turkey [16–18] as well as in
other application domains [19–22].

SSA: Singular spectrum analysis (SSA) is relatively a recent approach used for
modeling and forecasting time series. It is a non-parametric spectral estimation
method that uses no assumptions for the underlying process [23]. The SSA model
combines elements of multivariate geometry, classical time series analysis, signal
processing as well as dynamical systems. Moreover, it can decompose the original
time series data to its major independent components, such as trend, oscillation
behavior (periodic and quasi-periodic components) as well as noise, efficiently,
which are used afterwards for time series forecasting [23,24].

SSA models have an important advantage in which it allows for produc-
ing forecasts for individual components of the time series data or the rebuilt
series upon the reconstruction of the time series data under study. This advan-
tage is useful if the aim is to make a prediction about, for instance, the trend-
ing/deterministic component of the time series data without taking into account
the variability resulting from other sources [25]. The model selection in this
experiment was based on default parameter selection of SSA model.

SSA has been used for forecasting in the domains of forecasting electricity
load, system failure, and hydrology [23,24,26]. However, to our best knowledge,
it has not been used for wind speed forecasting before. Our study is the first to
use SSA for the purpose of wind speed forecasting.

3 Experimental Setup

3.1 Dataset

The data set used in this study is an hourly time series wind speed data of Abu
Dhabi city, UAE (Fig. 2) collected at the Abu Dhabi International Airport. The
data set is relatively big as it is recorded from 1982 to 2010 in an hourly base,
which makes it a total of 25,4184 data points (Fig. 3).

We are forecasting the wind speed data from 1 h ahead to 1 week (168 h)
ahead basis. In order to start the implementation of the forecasting models, the
data set should be first divided into two separate sets: the training set and the
testing set. The division was based on the number of forecasting hours required
for getting our results which is one week ahead. In this case the training set
contains 25,4016 data points, and the testing set consists of 24× 7 = 168 data
points.
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Fig. 2. United Arab Emirates (UAE) and its capital Abu Dhabi. (Source: https://
www.cia.gov/library/publications/the-world-factbook/geos/ae.html)

Fig. 3. Line plot of Abu Dhabi wind speed data with 25,4184 data points (recorded
hourly from 1982 to 2010).

3.2 Evaluation Criteria

The performances of the forecasting algorithms are evaluated by five evaluation
criteria:

1. Mean Error (ME),
2. Mean Absolute Error (MAE),
3. Mean Percentage Error (MPE),
4. Mean Absolute Percentage Error (MAPE), and
5. Root-Mean-Square Error (RMSE).

https://www.cia.gov/library/publications/the-world-factbook/geos/ae.html
https://www.cia.gov/library/publications/the-world-factbook/geos/ae.html
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ME =
1
n

n∑

i=1

xi − x̂i (5)

MAE =
1
n

n∑

i=1

|xi − x̂i| (6)

MPE =
100
n

n∑

i=1

xi − x̂i

xi
(7)

MAPE =
100
n

n∑

i=1

|xi − x̂i|
xi

(8)

RMSE =

√√√√ 1
n

n∑

i=1

(xi − x̂i)2 (9)

In Eqs. 5 to 9, n stands for the number of forecasting data points, xi (i =
1, . . . , n) is the actual value of the ith data point, and x̂i (i = 1, . . . , n) is the
forecasted value of the ith data point. Since all the five criteria are the measure-
ment of the forecasting errors of different types, a lower value indicates a better
performance of the forecasting method.

In our particular experimental setup, it is always the case that n = 1 because
with each method we are carrying out 168 individual point forecasts for 168
testing data points (i.e., 1 hour-ahead to 168 hour-ahead forecasts). It should be
noted that if n > 1, the criteria ME and MPE will not make much sense. For
example, if n = 2 and x1 − x̂1 = +1 and x2 − x̂2 = −1, then ME = 0 even
though there are errors on the two individual point forecasts.

4 Experimental Results

We will discuss the experimental results of the four methods of our choice:
ARIMA, SARIMA, ANN, and SSA on the Abu Dhabi wind speed dataset in
this section.

For ARIMA, initially a number of possible models have been examined in
terms of parameters selection as shown in Fig. 4. This is to determine the best
model according to the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) values [27], where the best model is the one which
has the lowest AIC and BIC values. After examining all possible models, it is
observed that the best ARIMA model, based on the AIC value, is ARIMA(4,1,4).

Similarly for SARIMA, initially a number of possible models have been exam-
ined in order to determine the best model as shown in Fig. 4 according to the AIC
values. After examining all possible models, it is found that the best SARIMA
model, based on the AIC value, is SARIMA(4,1,4)(1,0,4)24 (Fig. 5).

The performances of the 4 methods in terms of the five evaluation criteria (as
described in Sect. 3.2) are presented in Figs. 6, 7, 8, 9 and 10. In each figure, the
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Fig. 4. ARIMA model selection based on AIC and BIC.

Fig. 5. SARIMA model selection based on AIC and BIC.

X-axis represents the forecasting time horizon, which ranges from 1 h to 1 week
(168 h) ahead.

Figures 6 and 8 suggest that all the methods trend to over-forecast (i.e.,
x̂ > x) in most cases.

Moreover it can be observed from Figs. 6, 7, 8, 9 and 10 that the performances
of ARIMA, SARIMA, and ANN are generally better than those of SSA for short-
term forecasts (i.e., 1 hour-ahead to 24 hour-ahead). However, the results of SSA
are better than the three competitions for the long-term forecasts (24–168 hour-
ahead forecasts).
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Fig. 6. Mean Error (ME).

Fig. 7. Mean Absolute Error (MAE).

The relative forecasting accuracies of all the four methods relative to the
actual wind speed are depicted in Fig. 11. It can be noted that none of the
methods (including SSA) are able to accurate forecast the spikes in the wind
speed, thus highlighting the inherent difficulty of the wind speed forecasting
problem.
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Fig. 8. Mean Percentage Error (MPE).

Fig. 9. Mean Absolute Percentage Error (MAPE).



118 K. Al Dhaheri et al.

Fig. 10. Root-Mean-Square Error (RMSE).

Fig. 11. Actual vs. forecasted win speed values by the four methods.
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5 Conclusion

In this paper, we have studied four forecasting models in forecasting wind speed
data of Abu Dhabi city. The models are divided into two categories, two from
statistical methods (ARIMA and SARIMA) and the other two from machine
learning methods (ANN and SSA). Then we compared these four models in
order to determine the most efficient model in forecasting the wind speed data.
The results of our study showed that the forecasting model SSA had the most
accurate forecasted values comparing to the other three models, however, it also
showed that those three models, ARIMA, SARIMA and ANN, had batter results
for the first few hours (around 24 h), which indicates that ARIMA, SARIMA,
and ANN models are suitable for short-term forecasting, while SSA model is
suitable for long-term forecasting. The findings of our research could contribute
in defining the fitting forecasting model in terms of short-term forecasting or
long-term forecasting.

Acknowledgement. The authors would like to acknowledge and appreciate the sup-
port of Professor Taha Ouarda in providing the Abu Dhabi wind data set, and also
thank Dr. Aamna Mohammed Al Shehhi for her support and assistance with the sta-
tistical models.
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Abstract. Numerical weather predictions (NWP) ensembles, i.e., prob-
abilistic variants of NWP forecasts, can be a useful tool to improve the
quality of renewable energy predictions as well as to provide useful esti-
mates of uncertainty in NWP–based energy forecasts. In this work we
will consider the application of the NWP ensembles provided by the
European Center for Medium Weather Forecasts (ECMWF) to deal with
these issues. We shall consider both local prediction at a single wind farm
as well as the wide area prediction of wind energy over Peninsular Spain
and show that while deterministic forecasts have an edge over ensemble
based ones, these can be used to derive quite good uncertainty intervals.

Keywords: Numerical weather prediction · Probabilistics ensembles ·
Wind energy · Multilayer perceptrons · Support vector regression ·
Uncertainty estimates

1 Introduction

The worldwide efforts towards clean energy sources are leading to a very fast
expansion of wind and solar energy productions. While partially driven by sub-
sidies at the beginning, wind and solar energy are achieving an economic logic of
their own that results in considerable investments in large solar and wind farms,
where installed power on the hundreds of MW are becoming routine, particularly
off–shore. As a consequence, their accurate prediction is a key tool to manage
and integrate these energy sources and thus it gets a constant research attention.

Two goals are particularly important. The first is, of course, to make energy
predictions as accurate as possible but, given the flickery nature of weather condi-
tions, a second crucial goal is to endow energy forecasts with reliable uncertainty
estimates. For one to a few (6 to 10) days ahead, Numerical Weather Predictions
(NWP), such as those of the European Center for Medium Weather Forecasts
(ECMWF), are the key source to derive wind energy estimates. Several modeling
methodologies can be applied but Machine Learning–based methods are steadily
gaining ground with tools such as Multilayer Perceptrons (MLPs), either shal-
low or deep [5], Support Vector Regression (SVR) [19], Random Forests and
Gradient Boosting Regression [2], Gaussian Processes [6] or, more generally,
c© Springer International Publishing AG 2017
W.L. Woon et al. (Eds.): DARE 2017, LNAI 10691, pp. 121–132, 2017.
https://doi.org/10.1007/978-3-319-71643-5_11
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ensemble methods [10,16]. In fact, it might be said that the combination of
NWP inputs and ML regression models are progressively defining the state of
the art in wind energy prediction and this will also be our scenario here, building
both MLP and SVR models on top of the ECMWF’s NWP products.

The standard NWP input are the so–called deterministic forecasts, based on
the best estimate of the model equations and their initial conditions and repre-
senting what could be taken as the most accurate weather prediction. As such,
they are run using the finest spatial and temporal resolution available at the
ECMWF (currently about 0.125◦ and 1 h); of course, the numerical effort of a
standard, 10 day deterministic forecast is very high. However, weather forecasts
are also subject to a considerable degree of uncertainty and NWP ensembles are
used to partially address this. In the ECMWF case they are currently given by a
set of 51 different forecasts built running different NWP models at a 0.25◦ spa-
tial and 3 h temporal resolutions. Each ensemble model corresponds to slightly
random different initial conditions and NWP model parameters which seek to
capture different possible weather evolutions, particularly at longer prediction
periods and, thus, give a set of possible weather scenarios. One of these models,
the so called control forecast, is the counterpart at coarser space (about 0.25◦)
and time (about 3 h) resolution of the deterministic forecast, and the other 50
correspond to perturbations of the control one.

Thus, NWP ensembles offer at first sight a richer scenario in which to perform
renewable, wind in our case, energy predictions, although at a coarser time-space
resolution. This suggests some venues for their exploitation. A first obvious ques-
tion is whether using ensemble information results in better wind energy pre-
dictions than those achievable using deterministic NWP alone. A rule of thumb
seems to be that for shorter forecasting horizons an ensemble based forecast
of weather variables should have a precision similar to that of the determinis-
tic one, while for longer horizons (and hence more uncertainty in predictions),
ensemble forecasts should be more reliable. In principle, this might suggest a
similar behavior when applied to wind energy prediction. On the other hand,
a possible advantage of ensemble forecasts is that they should naturally give
uncertainty intervals for the energy predictions with a time varying width, in
contrast with the basically fixed width estimates derived from the percentiles of
past prediction residuals.

We will address both issues in this work, where we will consider wind energy
predictions both for a single wind farm, Sotavento, in northwestern Spain, and
also over the much wider area of Peninsular Spain. We will build energy predic-
tions using two powerful Machine Learning (ML) models, Multilayer Perceptrons
(MLPs) and Support Vector Regression (SVR) but, rather than proposing com-
peting ML procedures, this has more to do with a first data–based analysis of
what can be achieved using ensembles to enhance NWP based energy forecasts.
We will study two energy prediction scenarios, namely predictions for the same
day where NWP forecasts are produced, and those for two days afterwards. Our
main conclusions are the following:
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– Energy predictions derived from NWP ensembles are competitive with those
derived from the deterministic forecast but the latter still have an edge.

– Ensemble predictions can be used to provide good energy uncertainty esti-
mates, although the direct use of the ensemble prediction spread will give
poor results. Instead, it is much better to center them on the determinis-
tic forecast and apply a suitable calibration of the spreads of the ensemble
predictions.

The rest of the paper is organized as follows. We briefly review in Sect. 2 ensemble
NWP forecasts, particularly those provided by the European Center for Medium
Weather Forecasts (ECMWF), and MLP and SVR models in Sect. 3. Numerical
results are given in Sect. 4 and the paper ends in Sect. 5 with a short discussion,
the main conclusions and proposals for further work.

2 NWP Ensembles

We first point out the different meanings the word “ensemble” may have in
the Machine Learning (ML) and meteorology communities. ML ensembles are
aggregations of single ML models which are built independently and randomly.
Randomness seeks to endow them with a probabilistic structure while indepen-
dence seeks to lower the variance of the aggregated estimator and, hence, lead to
better predictions. These ML ensembles are widely used in many fields, and also
for wind [10] or solar [14] energy, where they can either improve single model
forecasts or provide uncertainty estimates for them. See the recent paper [16] for
a very complete overview of the current state of the art of ML ensemble based
energy predictions.

On the hand, and while ultimately having similar goals, NWP ensembles seek
to capture the uncertainty inherent to the weather behavior. In [12] an overview
of NWP ensemble forecasting focused on the Ensemble Prediction System (EPS)
of the ECMWF is given, with a discussion of possible uncertainty sources and
how these may be incorporated through perturbations of the initial conditions
of a NWP model. Roughly speaking, the general idea is to consider as initial
states of the NWP ensembles those perturbations which should result in larger
increases of initial errors. In particular, this initialization does not follow statis-
tical sampling procedures, which would be too costly given the high complexity
and large dimension of weather models; thus, an ensemble interpretation strictly
based on probability grounds could be problematic.

Currently ECMWF’s EPS produces forecasts derived from 51 integrations
with an approximately 32 Km spatial resolution and a 3 h time resolution for
up to 10 days ahead. 50 of these forecasts are derived from initial conditions
which are slightly different but close to the ECMWF’s best estimate of the
initial state of the atmosphere, which are used to obtain the ensemble’s control
forecast. The resulting spread around the control gives a measure of potential
weather evolution uncertainty. General guidelines for the use of NWP ensembles
either on their own or jointly with deterministic forecasts are given in [1].
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As previously mentioned, NWP ensembles appear very attractive for renew-
able energy prediction where good uncertainty estimates are almost as impor-
tant as precise point forecasts, but some caveats should be taken into account.
In principle, the spread, i.e., the differences between ensemble members, should
increase with the time horizons but, however, the EPS forecasts tend to be under
dispersive [18], i.e., their spreads tend to be too small, at least for the shorter
term horizons. As a consequence, it may be the case [7] that for these shorter
horizons, the spread of ensemble–derived wind energy forecasts may be too tight
to compute some quantiles. Moreover, and as also pointed out in [7], the quan-
tiles so obtained are not likely to be correct, at least for short time horizons in
the following sense: if at a given farm location one ranks between 0 and 100 the
actual power values inside the ensemble forecast spread, one would expect this
rank to be uniformly distributed on the [0, 100] interval. However, as discussed
in [7], Sect. 4.1, the corresponding QQ plots show this not being the case. In
fact, any ensemble model will have its own systematic bias and, thus, will not
capture statistical uncertainty. Calibration techniques, i.e., methods to correct
bias in variance estimates, could be used to improve on this and to make under
dispersion less pronounced at longer horizons.

We will address both the quality of ensemble energy forecasts and their use-
fulness to estimate uncertainty intervals in the following sections, but besides
the concrete numerical results we give, one must also conclude that using NWP
ensembles to improve on renewable energy predictions or to give power uncer-
tainty estimates requires a careful handling. This should not be surprising. First
of all, the ultimate goal of ensemble prediction systems is to be useful tools to
help in weather related decisions, such as extreme weather situations or disaster
prevention. As a consequence, their real value does not lie in providing probabil-
ity forecasts correct by themselves in a statistical sense and even less so in any
renewable energy application. This does not mean, however, that they should
be discarded outright but, rather, that their usefulness in this field has to come
from a not too narrow consideration of their nature but, instead, on how their
information can be put to use to help energy producers or system operators.

3 MLP and SVR Models

In our experiments we will work with fairly straightforward neural network (NN)
and support vector regression (SVR) models, which we briefly review next. For a
given size N sample {(x1, y1), . . . , (xN , yN )} in NN regression we try to minimize
the L2 regularized loss

eNN (w) =
1

2N

∑

p

(yp − f(xp, w))2 +
α

2
‖w‖2,

where by f(x,w) we denote the output on x of an NN whose architecture deter-
mines a weight set w. Many possible architecture options are available; here we
will work with a fixed number of fully connected layers, each of which with the
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same number of hidden units. The general, classic theory of such networks is
very well known (see for instance [3], Chap. 5) but the recent developments on
deep NNs have resulted in a number of important enhancements, some of which
we will apply here. For instance, we will use ReLUs [9] as the activation func-
tions, Glorot–Bengio weight initialization [8] and minibatch–based Adam [11]
as the optimization method. All these options are available in neural network
frameworks such as Keras [4] or Scikit–learn [15], whose MLPRegressor class we
will use here.

To minimize the computational effort in hyper–parameter estimation, we
have considered fixed MLP architectures with 2 hidden layers of 100 units each
for the Sotavento problem (similar results are obtained with 4 layers), and with
4 hidden layers of 1000 units each for the REE problem. We have also fixed the
activation function (ReLUs) and used the default hyperparameters for the Adam
solver. This leaves the L2 penalty parameter alpha as the only one to hyper–
parameterize, which we do by fixed fold cross validation with 2013 as the train
fold and 2014 as the validation fold, using again Scikit–learn’s tools. We will
consider a logarithmic equi–spaced grid with values α = 2k with −20 ≤ k ≤ 8.

On the other hand, and while it is more often written as a constrained opti-
mization problem, the minimization problem to be solved for linear SVR (i.e.,
the primal problem) has the following cost function

eSV R =
∑

p

[yp − w · xp − w0]ε +
1

2C
‖w‖2 (1)

using again L2 regularization and the ε-insensitive loss [y − ŷ]ε = max{|y − ŷ| −
ε, 0}, which defines an ε-wide, penalty-free “error tube” around the model. As
mentioned, (1) is usually rewritten as a constrained minimization problem which
is then transformed using Lagrangian theory into a much simpler dual problem,
the one actually being solved [17]. As it is well known, the dual problem only
involves patterns through their dot products which, in turn, makes it possible
to apply the kernel trick [17], replacing the linear dot products x · x′ with the
values k(x, x′) of a positive definite kernel k. Going back to the primal problem,
the final model can be written as

f(x) = w∗
0 +

∑

α∗
p>0

α∗
pk(xp, x), (2)

where the α∗
p are the dual optimal solutions and w∗

0 is derived through the KKT
conditions; see [17] for more details.

As it is usually done, we will work with the Gaussian kernel e−γ‖x−x′‖2
.

This results in an SVR model having three hyper–parameters: the regulariza-
tion coefficient C (which is the penalty constant in the standard constrained
minimization SVR formulation), the width ε of the insensitivity tube and the
γ parameter for the kernel width. All three are crucial to achieve good model
performance and we will also use here Scikit–learn’s grid search cross validation
tools working on a equi–spaced logarithmic scale. More precise, for C we will
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consider C = 4k values in the range −5 ≤ k ≤ 5, for ε the values 4−kσ, with
1 ≤ k ≤ 5 and σ being the targets’ standard deviation, and for γ the values 4k

d ,
with −2 ≤ k ≤ 2 and where d denotes pattern’s dimension.

We will use both MLPs and SVRs to build energy predictions based on the
same day deterministic and control NWP forecasts. More precisely, we will work
with the forecasts produced at UTC hour 00 each day to hyperparameterize and
build our models using as features the NWP forecasts for the UTC hours 00
to 23 of each such day and as targets the corresponding wind energy values.
Hourly deterministic NWP forecasts are directly available from the ECMWF
and we interpolate the 3–hour ensemble forecasts to a one hour resolution using
cubic splines. The rationale for this “same day” modeling is precisely that NWP
forecasts should be more accurate for such 0–day horizons and, consequently,
so would be their associated ML models. From now on we will refer to these
same day models as the deterministic and control MLP and SVR models. The
same day deterministic model will also be applied to deterministic two day ahead
NWP forecasts to obtain the corresponding energy forecasts. For ensembles we
will similarly apply the control model to obtain both the same day ensemble
energy prediction and the ensemble and control two day ahead forecasts.

4 Numerical Experiments

In our experiments we will work with NWP data for 2013, 2014 and 2015, for
which we have downloaded the deterministic and control forecasts from the
ECMWF’s MARS repository and which we will use for training, validation and
test purposes respectively. The remaining 50 ensemble forecasts will be used only
for test purposes and, therefore, we have download only these forecasts for 2015.
As mentioned we will use wind energy values for the Sotavento wind farm, which
makes them available on its web portal, and for the wind energy of Peninsular
Spain, kindly provided by Red Eléctrica de España, REE, Spain’s TSO.

4.1 Deterministic vs Ensemble Energy Forecasts

Before studying uncertainty intervals, we will perform a straight comparison of
the MLP and SVR deterministic energy forecasts with those of the corresponding
control forecasts and also with the mean and median of the ensemble based
energy forecasts. In all cases we have used the following NWP variables:

– U and V wind speed components and their modules at 10 and 100 m.
– Surface pressure.
– Temperature at 2 m.
– Wind to power conversion at 10 and 100 m, using a generic power curve which

saturates at 20 m/s and has a cutoff at 25 m/s.

As customary we normalize NWP variables to 0 mean and 1 standard devia-
tion; energy values are in a 0-100 scale. While, as mentioned, deterministic fore-
casts are derived using a finer grid, in order to minimize data volumes we will
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Table 1. MAE and RMSE results for both MLP and SVR models for same and two
day ahead forecasts.

Sotavento REE

MAE RMSE MAE RMSE

MLP Det 5.86 8.50 2.76 3.66

Control 6.84 9.12 2.68 3.67

Mean 6.01 8.78 2.68 3.65

Median 5.99 8.78 2.68 3.64

Det (2d) 7.25 10.50 4.60 5.77

Mean (2d) 8.37 11.35 6.17 7.55

Median (2d) 8.21 11.34 6.14 7.54

SVR Det 5.80 8.52 2.54 3.37

Control 6.34 9.13 2.56 3.40

Mean 5.85 8.72 2.56 3.38

Median 5.84 8.74 2.56 3.39

Det (2d) 7.19 10.57 4.63 5.80

Mean (2d) 9.31 12.20 6.70 8.14

Median (2d) 9.23 12.22 6.66 8.10

work with deterministic and ensemble NWP features from a 0.25◦ resolution for
Sotavento and from a 0.5◦ one for REE. For Sotavento we will work with an 8×15
rectangular grid approximately centered at the wind farm for both deterministic
and ensembles data, and with a 18×29 grid that covers Peninsular Spain for the
REE data. Pattern dimension would thus be in principle 1, 200 = 8×15×10 for
Sotavento and 5, 220 = 18×29×10 for REE. We point out that model complex-
ity is quite different for SVRs and MLPs. For SVRs the maximum number of
α multipliers in (1) is the sample size, 17,520 in our case, corresponding to the
number of hours in two years. On the other hand, and just for Sotavento, the
number of weights (without counting bias terms) in our NN models is 130,100
while for REE we have 8,221,000 weights. Since we work with hourly data (after
interpolation for the ensemble NWP forecasts), the number of yearly patterns is
8, 760 for both problems. After hyper–parameterization we will train the MLP
and SVR models over the combined data of 2013 and 2014 and apply them on
2015. SVRs solve a convex minimization problem and their solutions are thus
essentially unique. However NN training starts at random initial weights and
mini–batch training adds further randomness. Hence, there is not a unique final
model and we will take advantage of this by training independently 10 NNs and
averaging their predictions. This should lead to a degree of variance reduction
and, thus, better forecasts.

In Table 1 we give MAE and RMSE values for all models considered for
both the same day and the two day ahead scenarios. As it can be seen, SVR
performs better than MLP for all configurations, except for the 2 day ahead
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Table 2. Uncertainty percentage targets (second column) and percentages of actual
energy values inside the corresponding uncertainty intervals for same day and 2 days
in advance.

Confidence Sotavento REE

0d 2d 0d 2d

MLP 20 20.79 21.42 19.86 20.34

50 49.70 50.01 53.42 47.07

80 79.89 80.59 81.40 78.54

90 90.55 90.22 92.00 89.98

95 94.89 94.71 96.93 94.54

SVR 20 20.34 20.85 19.29 19.24

50 51.27 48.71 50.73 47.84

80 80.18 79.15 81.37 82.13

90 89.31 89.71 90.73 91.93

95 94.48 94.58 97.24 95.35

forecasts, where interestingly MLP slightly outperforms SVR for both Sotavento
and REE. We also note that the median of the ensembles is usually the second
best model after the deterministic one, with the mean often close and observe
that the 2 day ahead ensemble errors for Sotavento are much closer to those
for the same day than the REE errors. It is also interesting to see that all the
REE same day models perform similarly (with the exception of the deterministic
MLP) while for Sotavento the ensemble median clearly outperforms the control
model. Summing things up, these results are to be expected in the sense that,
for shorter horizons, deterministic energy forecasts should be slightly better than
the best forecast derived from the ensemble predictions. Moreover, SVR models
seem to have a slight edge over the MLP ones, despite the much larger number
of weights of the latter. This may be due to the very high correlation of the
weather variables and it deserves further study.

4.2 Uncertainty Intervals

Here we derive uncertainty intervals for the energy forecasts for which we will use
a relatively simple calibration of the ensemble energy spreads which we describe
next. Notice that it is sensible to center the uncertainty intervals on the energy
forecast under operation (which after the previous Subsection is likely to be a
deterministic model) and, also, to take advantage of its known past errors. Thus,
for calibration we propose here to combine past deterministic errors and ensemble
spreads to compute, for a given confidence percentage s, the uncertainty top and
bottom limits using the following formula

p̂det ± δ
mdet

mens
sprens(s), (3)
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where p̂det are the deterministic predictions, δ is a tuning parameter to be fixed,
mdet is the median of past deterministic errors, mens is half the median of
the ensembles’ spread and sprens(s) is half the difference between the s/2 and
100 − s/2 percentiles of the ensemble energy forecasts. Notice that in (3) the
values of δ,mdet and mens are fixed but sprens changes at each hourly point,
resulting in variable width uncertainty estimates.

Since we only have ensemble data for 2015, we will use that year for validation
and testing as follows. We first perform a 12–fold consecutive split of 2015, so
that each fold should approximately correspond to one month; with a slight abuse
of the language we will call these folds “months” from now on. To compute the
optimal δ to be used on a given test month, we apply 11–fold cross validation,
further splitting the other 11 months in 11 pairs of a 10–month subset for training
and the remaining month for validation. We then compute the ratio

mdet

mens
over

the 10 month subsets and consider equi–spaced δ values between 0 and 5 with
a step of 0.05. The 0 and 5 extremes ensure that the validation minimum will
be attained by a δ∗ between them. The corresponding uncertainty boundaries
given by (3) are evaluated by applying the following loss function [13]:

pererr(δ, s) = |{% of test residuals ∈ Iδ,s} − (100 − s)| , (4)

on each of the remaining validation months, where Iδ,s denotes the uncertainty
interval defined by (3). Here s is the desired confidence, or percentage value of
inside points and pererr(δ, s) gives the percentage of forecasts outside the δ–
dependent estimated interval, which ideally should be 0. We then choose the
optimal δ∗ as the one minimizing the monthly validation errors and compute
its test value on the remaining 12–th month using again the loss (4) after re-
evaluating

mdet

mens
over the other 11 months. The final test error we report is just

the average of the 12 individual monthly test errors. We point out that optimal
δ∗ values for Sotavento are similar for the same and two day ahead uncertainty
intervals, while for REE the two day δ∗ values are slightly smaller, possibly due
to larger ensemble spreads. As it should be expected, they increase with the
confidence values, and move in the range 1.5, the δ∗ value for Sotavento’s two
days ahead SVR and 20% confidence, to the largest value of 3.3 for Sotavento’s
same day SVR and 95% confidence. The REE δ∗ values are in a 1.6–2.8 range.

The resulting test values for both the same and two day scenarios are shown
in Table 2 for Sotavento and REE, which gives for each tested confidence intervals
the actual percentage of energy production values inside the estimated uncer-
tainty intervals (i.e., 100 − pererr(δ∗, s) for an s percentage target); the ideal
value should be precisely s. As we can see, for essentially all the percentages
considered the estimated values are quite close to their confidence targets. Also,
results for same and two day ahead forecasts are in general quite similar.

As a final remark we would like to point out that both SVR and MLP give
fairly good and similar uncertainty estimates. This is likely due because the
spread and error statistics for the previous training months also hold for the
current test ones and, also, the optimal calibration factor δ∗ is essentially the
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same for all months (although the spreads sprens will be different for each month)
and increases with the confidence interval.

In Figs. 1 and 2 we show examples of the resulting intervals for same and
two day ahead forecasts. We can see that two day estimates are generally wider
than the same day estimates, which is to be expected given that same day
deterministic forecast have a better accuracy than the two day ahead ones. (The
Sotavento intervals are also usually wider, although this is harder to see in the
figures given the different scales.)

Fig. 1. Same day MLP uncertainty intervals for Sotavento (left) and SVR ones for
REE (right) for an 80% confidence on December 2015 where Prods refers to observed
energy values.

Fig. 2. Two day ahead SVR uncertainty intervals for Sotavento (left) and MLP ones for
REE (right) for an 80% confidence on December 2015 where Prods refers to observed
energy values.

5 Discussion, Conclusions and Further Work

It is clear from the preceding that the use of NWP ensembles can enrich NWP–
based wind energy forecasts, particularly when considering wide areas. Moreover,
ensembles allow us to estimate varying width uncertainty intervals with fairly
good results. On the other hand, they require a much larger computational
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effort, not only because data sizes certainly increase due of the 50 ensemble
members but also because prediction times would be also multiplied by 50; this
is particularly serious for SVR–based predictions.

Nevertheless, even with the previous caveats, exploring possible advantages of
NWP ensembles in wind energy forecasts should be worthwhile. To begin with,
we have only considered same and two day ahead scenarios, while ensemble
predictions are available for much longer horizons. Moreover, forecasting accu-
racy could conceivably be improved taking into account the actual spread of
ensemble forecasts. In fact, while the correlation between the ensemble’s spread
and its error is not large, one may still expect some relationship between the
spread’s magnitude and the stability of the atmosphere. When it is small, the
atmosphere’s predictability should be higher and its actual state should be near
the deterministic forecast. On the other hand, if the ensemble forecasts clearly
diverge, they should provide a more sensible prediction under higher uncer-
tainty atmospheric settings. It is thus conceivable that this could be exploited
to improve point forecasts, particularly for longer horizons. Finally, while we
believe our study of SVR models to be complete enough, there is certainly more
work to do over MLPs, where novel convolutional architectures or dropout–based
regularization could yield models better than the ones presented here. We are
currently working on these ideas.
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supplying wind energy data. We also thank the ECMWF and Spain’s AEMET for
kindly granting access to the MARS repository.

References

1. Guidelines on ensemble prediction systems and forecasting. Tech. Rep. WMO-No:
1091, World Meteorological Organization (2012)
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