
Chapter 7
Nuclear Pore Complexes in the Organization
and Regulation of the Mammalian Genome

Marcela Raices and Maximiliano A. D’Angelo

Abstract In the last decade, the nuclear envelope (NE) has emerged as an important
regulator of genome architecture and a central player in gene expression regulation.
Nuclear pore complexes (NPCs), the channels that penetrate the NE connecting the
nucleus to the cytoplasm, are the largest protein complexes of the NE. Built by mul-
tiple copies of roughly 30 different proteins, NPCs were traditionally studied for
their role in controlling nucleocytoplasmic transport. But accumulating evidence
shows that these massive molecular structures play multiple transport-independent
roles that are key for the maintenance of cellular physiology and tissue homeostasis.
In this chapter, we will focus on the current knowledge of the role of mammalian
NPCs in the regulation of genome organization and gene expression. The recent
findings showing that NPCs regulate the activity of specific genes either at the
nuclear periphery or inside the nucleus point towards these structures as critical con-
trollers of genome function. Deciphering the molecular mechanism employed by
NPCs to modulate specific gene expression programs and to maintain genome
integrity are our main challenges for the next decade.

Keywords Nuclear pore complex · nuclear envelope · nucleoporin · transcription ·
gene expression · nuclear transport

7.1 Introduction

In eukaryotic cells the nucleus is the organelle where the genome is housed.
Discovered in 1833 by botanist Robert Brown (Oliver 1913), the nucleus serves as
the control center of the cell where all the genetic information is stored and trans-
lated. The nucleus is characterized by a double-membrane structure, known as
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the nuclear envelope (NE), that separates the chromosomes from the cytoplasm.
In metazoans, the nuclear lamina, which is a filamentous protein meshwork situated
underneath the NE, provides mechanical stability to the nucleus and aids in the
regulation of many nuclear processes, including genome organization and gene
expression regulation (Stancheva and Schirmer 2014). The NE is perforated by
large multiprotein channels known as nuclear pore complexes or NPCs. Discovered
in 1950 (Callan and Tomlin 1950), NPCs represent the sole gateway into the nucleus
and, thus, they are responsible for the entry and exit of most molecules from and into
this compartment. Although NPCs have been historically studied for their essential
role in controlling nucleocytoplasmic molecule exchange, they have recently
emerged as important regulators of diverse cellular processes in a transport-
independent manner (Raices and D’Angelo 2012). One of the most studied functions
of NPCs is their role in the regulation of genome integrity. Increasing evidence
supports a model in which NPCs not only act as organizers of the cellular genome
but also as scaffolds for the regulation of specific gene groups confined to the nuclear
periphery. Moreover, several nucleoporins have been now found to localized to the
nuclear interior where they assist the transcriptional machinery in regulating gene
activity. In this chapter, we describe our current knowledge of the role of mammalian
NPCs in the regulation of genome organization and gene expression. While our
understanding of these functions of NPCs in mammalian cells is not yet as extensive
as in yeast, increasing evidence indicates a strong conservation in the genomic
processes and mechanisms regulated by NPCs between these organisms.

7.2 Stability, Mobility and Lifespan of Mammalian NPCs

NPCs are one of the largest protein complexes of eukaryotic cells (Raices and
D’Angelo 2012). These channels have an eight-fold-symmetrical structure that con-
sists of a nuclear envelope-embedded scaffold that is built to surround a central
transport channel through which all nucleocytoplasmic transport takes place
(Frenkiel-Krispin et al. 2010; Beck et al. 2004, 2007; Maimon et al. 2012). Attached
to this scaffold are two rings, the cytoplasmic and nuclear rings, from where eight
filaments emanate (Fig. 7.1a). On the nuclear side, the filaments are joined in a distal
ring to form the nuclear basket of the NPC. Even though the overall structure of
NPC is conserved among species, its size varies, being the mammalian NPCs the lar-
gest complexes of all (estimated molecular mass = 60–125 MDa) (Suntharalingam
and Wente 2003; Yang et al. 1998). Interestingly, even though NPCs are massive
protein complexes, these channels are composed of roughly 30 different proteins
known as nucleoporins or Nups (Rout et al. 2000; Cronshaw et al. 2002; Yang et al.
1998; Reichelt et al. 1990; Hoelz et al. 2016) (Fig. 7.1b). Despite being a membrane
embedded structure, most NPCs components are soluble proteins and in mammalian
cells only three nucleoporins are transmembrane (D’Angelo and Hetzer 2008). Most
nucleoporins have been found to associate in biochemically stable subcomplexes
that are believed to act as the building blocks of nuclear pores (Fig. 7.1b)
(Hoelz et al. 2016). Due to the eight-fold rotational symmetry of these structures,
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nucleoporins and subcomplexes are present in eight or multiples of eight copies, and
each pore has an estimated 500–1000 total proteins. In addition to their localization
within the NPC structure, nucleoporins have also been classified depending on their
residence time (Rabut et al. 2004). Stable nucleoporins are those that show very low
exchange rates from NPCs and are mostly components of the pore scaffold.
Dynamic nucleoporins, on the other hand, are constantly exchanged from NPCs,
having residence times at the structure that range from a few seconds to a few hours
(Rabut et al. 2004). These dynamic nucleoporins are mostly members of the pore
peripheral structures that include the nuclear basket, central channel and filaments.

Mammalian cells divide through open mitosis, a process in which the nucleus is dis-
assembled during the M-phase of the cell cycle to allow the separation of sister chro-
matids (Kutay and Hetzer 2008). In each cell division, when the nucleus breaks down ,
NPCs are disassembled in their stable subcomplexes, which are recycled at the end of
M-phase to assemble new channels at the daughters’ nuclear envelopes (D’Angelo and
Hetzer 2008). This disassembly–reassembly cycle ensures that in dividing mammalian
cells NPCs are renewed in each cell-division. But NPCs behave differently in non-
dividing and postmitotic cells (D’Angelo et al. 2009). As mentioned above, the
scaffold components of NPCs have very long residence times at this structure. In fact,
studies in dividing cells have identified that these nucleoporins have residence times at
NPCs that are longer than the cell cycle (Rabut et al. 2004; Daigle et al. 2001). This
provided the first evidence that the core NPC proteins would only exchange when
pores disassemble during mitosis. Support for this model came from recent studies
showing that scaffold nucleoporins indeed have extremely long lives at NPCs of post-
mitotic cells (D’Angelo et al. 2009; Savas et al. 2012). Analysis of nucleoporin
turnover in postmitotic cells and tissues uncovered extremely low rates of exchange
for these nucleoporins, suggesting minimal turnover of NPC structural components.
These findings indicate that when mammalian cells exit the cell cycle they maintain
their NPC scaffold structures for almost their entire life (D’Angelo et al. 2009; Savas
et al. 2012; Toyama et al. 2013). This long life of NPCs does not come without cost,
and nuclear pores have been shown to deteriorate as postmitotic cells age, leading to
the loss of nuclear compartmentalization in old cells (D’Angelo et al. 2009).
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Mammalian NPCs are not only incredibly stable structures at the NE, they are
also immobile. Studies using Fluorescent Recovery After Photobleaching (FRAP)
have identified that NPCs do not move independently at the NE (Daigle et al.
2001). In fact, in the same way as the nuclear lamina, nuclear pores move as large
arrays in response to changes in nuclear shape (Daigle et al. 2001). The low turn-
over of NPCs, their large size and potential anchor sites for DNA and proteins,
and their lack of mobility at the nuclear periphery suggest that these structures
play a role in nuclear organization by acting as stationary, long-lived, positional
markers at the NE (D’Angelo and Hetzer 2008).

7.3 Chromatin Interactions with Mammalian NPCs

It is has now become clear that chromosomes are not randomly dispersed inside
the nucleus (Misteli 2007). A significant amount of data shows that genes and
chromosomal domains have unique relative positons within the nucleus of differ-
ent cell types, and several studies have demonstrated that intranuclear gene posi-
tion can affect gene activity/regulation (Nguyen and Bosco 2015; Talamas and
Capelson 2015; Stancheva and Schirmer 2014). These findings have uncovered
that the three-dimensional (3D) organization of the genome plays a key role in
gene expression control. However, how genome architecture is faithfully main-
tained in mammalian cells remains poorly comprehended.

The first studies of the association of mammalian NPCs with the genome identi-
fied that the Nup93 nucleoporin associates with chromatin regions enriched in het-
erochromatin markers (Brown et al. 2008). Nup93 is a scaffold component of NPCs
that shows a low exchange rate from nuclear pores during interphase and plays a
key role in the maintenance of the nuclear permeability barrier (Rabut et al. 2004;
Galy et al. 2003; D’Angelo et al. 2009). The finding that Nup93 associates with het-
erochromatin fueled the original idea that the nuclear periphery was a repressive
environment mostly associated with chromatin condensation and gene silencing
(Towbin et al. 2009). Interestingly, in this original study, the genome regions asso-
ciated with NPCs were found to change when global histone acetylation was modi-
fied, indicating that NPC-genome interactions are dynamic (Brown et al. 2008).
More recent studies have identified that NPCs also bind active genes (Kehat et al.
2011; Raices et al. 2017), open chromatin domains (Ibarra et al. 2016), and enhan-
cer regions (Ibarra et al. 2016), which is more consistent with the long-time observa-
tion by electron microscopy that differently from the nuclear lamina, NPCs are
surrounded by euchromatin (Lemaitre and Bickmore 2015; Capelson and Hetzer
2009) (Fig. 7.2). These studies point to NPC surroundings as regions of decon-
densed, transcription-permissive, chromatin, and suggest that these channels play a
role in the positive regulation of gene expression. Notably, the maintenance of these
NPC-associated decondensed domains, also known as heterochromatin exclusion
zones, has been shown to depend on the nuclear basket nucleoporin Tpr (Krull et al.
2010). This indicates that nuclear pores have an active role in regulating the state of
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their surrounding chromatin. The direct binding of different genomic regions, their
active role in the regulation of the neighboring chromatin environment, and the fact
that mammalian NPCs are immobile due to their interactions with the nuclear
lamina, support the current model in which these large structures play a critical role
in genome architecture.

7.4 Gene Expression Regulation at NPCs

7.4.1 Genes that Associate with Mammalian NPCs

In budding yeast, many genes have been found to relocate to NPCs when acti-
vated, and it is well established that NPC-gene association is important for their
efficient expression as well as for their transcriptional memory (Schneider et al.
2015; Sood and Brickner 2014; D’Urso and Brickner 2017). In mammals, the
regulation of gene expression by NPCs is just beginning to be exposed, and
emerging evidence suggest that similar to its yeast counterparts, nuclear pores
play a critical role in the regulation of gene expression at the nuclear periphery.
The first description of active genes requiring NPC-association for their efficient
transcription came from a study of cardiomyocyte hypertrophic growth (Kehat
et al. 2011). This work showed that when cardiomyocyte hypertrophic growth is
induced, the proper transcription of several genes, including sarcomeric and
calcium-handling genes, requires their relocation to NPCs (Kehat et al. 2011)
(Fig. 7.3a). Similarly, the regulation of multiple structural and contraction genes
in skeletal muscle has been recently shown to take place at NPCs and to require
the presence of a tissue-specific nucleoporin known as Nup210 (Fig. 7.3b).
Nup210 was the first nucleoporin identified (Gerace et al. 1982). This transmem-
brane protein shows cell type- and tissue-specific expression (Olsson et al. 1999,
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2004; D’Angelo et al. 2012). By regulating gene expression, Nup210 has been
shown to be important for the differentiation of muscle progenitors and for the
maturation and survival of differentiated muscle cells (D’Angelo et al. 2012;
Raices et al. 2017). In the absence of this nucleoporin, the activity of many struc-
tural genes becomes misregulated, although their association with NPCs is not
affected (Raices et al. 2017). The findings of these studies indicate that in cardiac
and skeletal muscle the positioning of specific genes at NPCs is critical for their
proper regulation and reveal that NPCs act as scaffolds for the regulation of spe-
cific gene groups. Notably, Nup210 is not expressed in muscle progenitor cells
(Raices et al. 2017; D’Angelo et al. 2012). Its expression is induced and Nup210
is added to NPCs during differentiation (Raices et al. 2017; D’Angelo et al.
2012). This indicates that gene regulation at NPCs can be modulated by chan-
ging the composition of this structure (Fig. 7.3b).
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including Nup93, Nup188 and Nup205, associate with HoxA genes and repress their activity at
NPCs. In this figure, silent genes are shown in gray, active genes in pink
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The association of genes with NPCs is not restricted to muscle cells and has
also been described during neuronal differentiation. Chromatin immunoprecipita-
tion (ChIP) studies of the Nup98 nuclear pore complex member showed that this
nucleoporin binds many developmental and cell differentiation genes (Liang et al.
2013). Nup98 is a phenylalanine-glycine (FG) repeat-containing dynamic nucleo-
porin that also localizes to the nuclear interior (Griffis et al. 2002, 2003). It is
expressed from the NUP98 gene as a 98 kDa protein or as a larger 195-kDa pre-
cursor encoding Nup98-Nup96 that is autoproteolytically cleaved to produce both
nuclear pore complex components (Fontoura et al. 1999; Ratner et al. 2007). At
NPCs, Nup98 localizes at the cytoplasmic and nuclear sides (Griffis et al. 2003).
Inside the nucleus, the localization of Nup98 varies among different cell types, but
cells that have high levels of this nucleoporin, as well as cells overexpressing it,
show its accumulation in intranuclear foci known as GLFG bodies, due to the
glycine-lysine-phenylalanine-glycine repeats that Nup98 contains (Griffis et al.
2002, 2003). The function of Nup98-containing intranuclear foci is yet to be eluci-
dated. A large amount of evidence accumulated in the past decade indicates that
Nup98 plays an important role in the regulation of gene expression at NPCs and
inside the nucleus (Franks and Hetzer 2013). During the early stages of neuronal
differentiation Nup98 has been shown to bind a subset of non-active or low activity
genes at NPCs (Liang et al. 2013) (Fig. 7.3c). On the other hand, the binding of
Nup98 to genes that are highly activated during this process occurs in the nucleo-
plasm and away from NPCs as described below (see Sect. 7.5)(Liang et al. 2013).

Consistent with NPCs acting as hubs for transcriptional regulation, a recent
study identified an enrichment of superenhancer sequences within the genomic
regions associated with nuclear pores (Ibarra et al. 2016) (Fig. 7.3d).
Superenhancers are domains of the genome that contain clusters of enhancers in
close proximity (Niederriter et al. 2015) and generally play a role in the regulation
genes involved in cell identity/cell type specification. This study found that deple-
tion of Nup153 or Nup93 dramatically affects the transcription of genes regulated
by NPC-associated superenhancers (Ibarra et al. 2016) (Fig. 7.3d).

Even though these studies have identified a positive role of NPCs in transcrip-
tional regulation, the Nup93 nucleoporin was found to bind genome regions
enriched in silent chromatin markers (Brown et al. 2008). This suggests a role for
NPCs in gene repression. Consistent with this idea, a recent study uncovered that
several members of the Nup93-Nup205 NPC subcomplex (including Nup93,
Nup188 and Nup205) bind to the promoter of HOXA genes and silence their
expression (Labade et al. 2016) (Fig. 7.3e). Fluorescent in situ hybridization ana-
lyses of the genes regulated by these nucleoporins confirmed their association
with the nuclear periphery and uncovered that Nup93 is required for the tethering
of HOXA genes to NPCs (Labade et al. 2016).

All these studies demonstrate that similar to the yeast NPCs, mammalian NPCs
can bind active and silent chromatin, and act as positive or negative regulators of
gene expression. But more importantly, that mammalian NPCs are key players in
the regulation of developmental and cell type-specific gene expression by acting as
protein scaffolds that allow the local regulation of specific genes confined to the
nuclear periphery.
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7.4.2 Mechanisms of Gene-Expression Regulation by NPCs

A large amount of evidence has shown that in yeast the dynamic association of
genes with NPCs is regulated by transcription factors (Randise-Hinchliff et al.
2016; Brickner et al. 2012). Transcription factors not only regulate NPC-tethering
in these organisms but they are also required for the clustering of genes that present
their binding sites (Randise-Hinchliff et al. 2016; Brickner et al. 2012). The role of
transcription factors in regulating gene expression at NPCs has also been described
in flies, where the Ecdysone receptor, a nuclear hormone receptor, is recruited to
NPCs upon stimulation to regulate the activity of NPC-associated genes (Pascual-
Garcia et al. 2017). How NPCs regulate gene expression at the nuclear periphery in
mammals is just starting to be unraveled. Recent findings showed that the nucleo-
porin Nup210 recruits the transcription factor Mef2C to NPCs to modulate the
activity of several muscle structural genes (Raices et al. 2017). This indicates that
the role of transcription factors in regulating gene expression at the nuclear periph-
ery might be conserved in mammals. But even though Nup210 is important for the
efficient expression of NPC-associated genes, it is not required for gene localization
to the nuclear periphery (Raices et al. 2017). Interestingly, during cardiomyocyte
hypertrophic growth, the association of genes with NPCs is negatively modulated
by the histone deacetylase HDAC4 (Kehat et al. 2011). In these cells, when
HDAC4 is anchored to NPCs, it prevents the association and transcription of sev-
eral sarcomeric genes (Kehat et al. 2011). When hypertrophic growth is stimulated,
the release of HDAC4 from NPCs leads to the recruitment and activation of these
genes. Because HDAC4 is a key negative regulator of Mef2C activity that is
exported from the nucleus during myogenesis (Clocchiatti et al. 2013; McKinsey
et al. 2000), these findings indicate that the interplay between transcription factors
and chromatin modulators might regulate NPC-gene association and gene expres-
sion regulation. Altogether, the existing data allows to propose that: (1) by interact-
ing and recruiting transcriptional modulators, including transcription factors and
chromatin regulators, (2) by concentrating super-enhancers in their vicinity, and (3)
by tethering genes that share common regulatory domains, NPCs act as hubs for the
transcriptional regulation of specific gene groups at the nuclear periphery.

7.5 Gene Expression Regulation by Nucleoporins
in the Nuclear Interior

7.5.1 Genes that Associate with Intranuclear Nucleoporins

Despite the emerging evidence that the NPC structure is itself important for gene
expression regulation, most nucleoporin-genome interactions described so far in
metazoans take place in the nuclear interior and away from NPCs (Kalverda et al.
2010; Capelson et al. 2010; Liang et al. 2013) (Fig. 7.4). This phenomenon was
initially identified in flies, where several nucleoporins were found to bind
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chromatin inside the nucleus and to play an important role in the regulation of
developmental gene expression (Kalverda et al. 2010; Capelson et al. 2010). In
mammalian cells, a few nucleoporins have also been shown to regulate gene
expression inside the nucleus. The clearest example is Nup98 (Fig. 7.4). As men-
tioned, Nup98 is a dynamic nucleoporin that shuttles between NPCs and the
nuclear interior (Griffis et al. 2002). In mammalian cells, the mobility of Nup98
inside the nucleus has been shown to be transcription-dependent (Griffis et al.
2002), and this nucleoporin has been found to bind developmentally regulated
genes during embryonic stem cell (ESC) to neuronal differentiation (Liang et al.
2013). The genes bound by Nup98 in ESCs, which include active cell cycle and
nucleic acid metabolism genes as well as some silent genes, differ from the ones
bound in neuroprogenitors, which are mostly genes that are activated during
neural differentiation (Liang et al. 2013). These findings indicate that Nup98 gen-
ome association is cell type-specific and developmentally regulated. Consistent
with this idea, in lung fibroblasts Nup98 was found to associate with silent chro-
matin domains (Liang et al. 2013). Functionally, inhibition of Nup98 activity by
expression of a dominant negative mutant has been found to affect the expression
of the Nup98-bound developmental genes (Liang et al. 2013). Interestingly, two
modes of gene regulation during neuronal differentiation have been described for
Nup98. This nucleoporin has been shown to bind genes that are in the initial stage
of induction at NPCs (on-pore), while the association of Nup98 with genes that
are strongly induced during neuronal differentiation has been found to take place
in the nuclear interior (off-pore) (Liang et al. 2013) (Figs. 7.3 and 7.4). These find-
ings indicate that nuclear pore complex components might modulate different
genes/gene expression programs depending on their spatial location within the
nuclear space.

A detailed analysis of the DNA bound by Nup98 in mammals showed enrich-
ment for GA-box DNA motifs. GA repeat motifs are bound by the GAGA factor
(Liang et al. 2013), which in Drosophila and mammals regulates boundary activity
at HOX clusters (Srivastava et al. 2015; Adkins et al. 2006; Granok et al. 1995)
and modulates the expression of homeotic genes (Adkins et al. 2006; Granok
et al. 1995). These findings might help to explain why several of the abnormal
Nup98 fusion proteins that result from chromosomal translocations result in the
alteration of HOX gene expression (see Sect. 7.6).

In addition to its role in regulating the activity of developmental genes, the
binding of Nup98 to interferon gamma (INFγ) target genes is required for tran-
scriptional memory (Light et al. 2013). In human cells, many genes that are
induced by INFγ retain a “memory” of the activation and are turned on at a faster
rate if cells are re-exposed to the cytokine. This transcriptional memory is main-
tained for several generations and depends on epigenetic modifications (D’Urso
and Brickner 2017). Nup98 has been found to be recruited to the promoter of sev-
eral INFγ target genes, such as HLA-DRA, only after removal of the cytokine
(Light et al. 2013). The association of Nup98 with the promoter of these recently
expressed genes is required for their proper re-activation upon INFγ re-exposure
(transcriptional memory) (Light et al. 2013). The function of Nup98 in
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transcriptional memory is conserved in yeast, as its homologue Nup100 is required
for the transcriptional memory of the inositol-responsive gene INO1 (Light et al.
2013; D’Urso and Brickner 2014). But differently from yeast, the regulation of
transcriptional memory by nucleoporins in human cells takes place inside the
nucleus and not at NPCs (Fig. 7.4). Interestingly, ChIP studies using the antibody
mAb414, which recognizes the Nup62, Nup153, Nup214 and Nup358 nucleopor-
ins, showed that one or more of these nucleoporins also associate with the HLA-
DRA locus. But differently from Nup98, this association is also observed when
the gene is activated by INFγ (Light et al. 2013). What role does the association
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of the mAb414-recognized nucleoporins with this gene play in its transcriptional
regulation remains to be determined.

The NPC Nup153 member is a main component of the nuclear basket
(Sukegawa and Blobel 1993; Pante et al. 1994), and another dynamic nucleoporin
that shows transcription-dependent mobility (Griffis et al. 2004). Nup153 has been
found to interact with the nuclear lamina (Al-Haboubi et al. 2011; Smythe et al.
2000) and has been associated with intranuclear filaments of the Tpr nucleoporin
that emanate from NPCs into the nuclear interior (Hase and Cordes 2003; Simon
and Wilson 2011). Nup153 has several zinc fingers motifs in its N-terminal region
(Sukegawa and Blobel 1993) and has been shown to bind DNA (Sukegawa and
Blobel 1993) and RNA (Ullman et al. 1999; Dimaano et al. 2001; Ball et al.
2007). It also has multiple FG repeats in its C-terminal domain through which it
interacts with transport receptors (Shah et al. 1998; Moroianu et al. 1995;
Nakielny et al. 1999). Several functions have been attributed to Nup153. These
include the regulation of mRNA export (Bastos et al. 1996; Ullman et al. 1999),
importin α/β-mediated nuclear import (Walther et al. 2001; Shah and Forbes 1998;
Ogawa et al. 2012; Makise et al. 2012), NPC assembly (Walther et al. 2001;
Vollmer et al. 2015), mitotic checkpoint regulation (Mackay et al. 2009; Lussi
et al. 2010), HIV infection and replication, DNA damage repair (Mackay et al.
2017; Duheron et al. 2017; Chow et al. 2012; Lemaitre et al. 2012) and gene
expression regulation (Vaquerizas et al. 2010; Mendjan et al. 2006; Jacinto et al.
2015; Nanni et al. 2016). A role for Nup153 in gene expression regulation was
originally identified in Drosophila, where Nup153 together with Megator, the
homolog of human Tpr and another nuclear basket nucleoporin, were found to be
required for the transcriptional regulation of dosage compensation (Mendjan et al.
2006). These proteins were later shown to bind a great portion of the genome
(∼25%) in continuous domains of 10–500 kilobases that present chromatin mar-
kers of active transcription (Vaquerizas et al. 2010). Consistent with a role in tran-
scriptional regulation, downregulation of Nup153 was found to affect the
expression a large number of genes (∼5,700) in flies (Vaquerizas et al. 2010). In
mouse ESCs, Nup153 was recently identified to bind to the transcription start site
of several developmental genes (Jacinto et al. 2015). Interestingly, in these cells
Nup153 was found to act as a repressor for differentiation genes (Fig. 7.4). The
repression by Nup153 is required for the maintenance of the pluripotent state of
ESCs, and depletion of this nuclear pore complex component results in early cell
differentiation into different linages (Jacinto et al. 2015). The role of Nup153 in
gene expression regulation is not restricted to ESCs. In mouse cardiomyocytes,
Nup153 has also been found to associate with, and to regulate the activity of,
genes involved in cardiac remodeling (Nanni et al. 2016). In this case, the binding
of Nup153 correlates with markers of active chromatin but whether they occur
inside the nucleus or at the nuclear periphery has not been investigated (Nanni
et al. 2016). These findings further support the concept that nucleoporins can regu-
late different subsets of genes in distinct cell types.

The idea that nuclear pore complex components might play multiple functions
depending on their intracellular localization is further reinforced by the findings
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that a soluble isoform of the transmembrane nucleoporin Pom121 (sPom121) reg-
ulates gene expression inside the nucleus (Franks et al. 2016) (Fig. 7.4). sPom121
is a consequence of a genomic rearrangement during mammalian evolution that
generated an alternative transcription initiation in the POM121 loci. The product
of this alternative start site is spliced so that it loses exon 4 encoding the trans-
membrane domain of Pom121. This results in a soluble isoform of Pom121 that
does not associate with NPCs (Franks et al. 2016). The soluble sPom121 uses its
nuclear localization signal to access the nuclear interior where it interacts with
Nup98 at many gene promoters and cooperates to regulate multiple target genes
(Fig. 7.4). Like Nup98 and Nup153, sPom121 mobility is affected by the transcrip-
tional state of the cell, and the transcriptional inhibitor Actinomycin D strongly
slows down the exchange of Pom121 inside the nucleus (Franks et al. 2016).

7.5.2 Mechanisms of Gene-Expression Regulation
by Intranuclear Nucleoporins

To date, we have a very limited knowledge of the mechanisms through which
intranuclear nucleoporins regulate gene expression in mammalian cells. In the
case of Nup98, studies using the Nup98 fusion proteins that result from chromoso-
mal translocations uncovered that through its FG-rich repeats this nucleoporin
interacts with several transcriptional and chromatin modulators including CREB
binding protein (CBP)/p300 (Kasper et al. 1999), histone deacetylase 1 (HDAC1)
(Bai et al. 2006), and mixed lineage leukemia (MLL) (Shima et al. 2017)
(Fig. 7.4). Many of these interactions have been shown to play a key role in the
deregulation of HOX gene expression that is associated with the malignant trans-
formation of hematopoietic progenitors expressing Nup98 fusion proteins (see
Sect. 7.6). Interestingly, wild type Nup98 has also been found to interact with Trx/
MLL and NSL in Drosophila, and to regulate HOX gene expression in this organ-
ism (Pascual-Garcia et al. 2014). Nup98 interactors suggest that this nucleoporin
helps to recruit chromatin modifiers to specific loci, particularly developmental
genes, influencing their expression. This may also hold true for Nup98-regulated
INFγ target genes. Although the mechanisms through which this nucleoporin reg-
ulates transcriptional memory have not been identified, this process requires speci-
fic changes in chromatin modifications (D’Urso and Brickner 2017, 2014) that
suggest that Nup98 might also work by modulating the activity of chromatin mod-
ifying complexes. But how Nup98, which does not contain DNA binding domains
per se, recruits these transcriptional regulators to specific DNA sites is still
unknown. A key player in this process might be the nuclear export factor Crm1.
Crm1 is the major transport receptor for the export of proteins from the nucleus
(Fung and Chook 2014). Recently, it was found that in leukemic cells Crm1 is
prebound to HOX gene clusters and helps to recruit the Nup98-HoxA9 and
CALM-AF10 aberrant fusion proteins to regulate HOX gene expression (Conway
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et al. 2015; Oka et al. 2016) (Fig. 7.4). These findings are very exciting because
they identify that the coordinated activity of nuclear transport receptors and
nuclear pore complex proteins is not just restricted to the regulation of nucleo-
cytoplasmic transport, but is also critical for the assembly of transcriptional com-
plexes that modulate the activity of the mammalian genome.

The regulation of gene expression by Nup98 is not restricted to its function on
specific loci. Nup98 has also been shown to bind to the 3’ end of a distinct set of
p53 target genes and to regulate mRNA stability (Singer et al. 2012). For example,
Nup98 binding to the 3’UTR of p21 mRNA prevents its degradation by the exo-
some and increases its levels in cells. Because certain cancers, such as hepatocel-
lular carcinoma (HCC) show reduced levels of Nup98, this nucleoporin has been
suggested to act as a tumor suppressor required for the proper function of p53 in
cells (Singer et al. 2012).

Recently, a proteomic screen identified the DExH/D-box helicase DHX9 as a
binding partner for Nup98 (Capitanio et al. 2017). Helicases are enzymes that cat-
alyze nucleic acid remodeling. The DHX9 helicase is able to unwind RNA as well
as DNA, and has been shown to play critical roles in gene transcription and RNA
processing (Lee and Pelletier 2016). Nup98 has been found to recruit DHX9 to
specific foci within the nucleus and modifying Nup98 levels affects the intranuc-
lear localization of the enzyme (Capitanio et al. 2017). Interestingly, Nup98 and
DHX9 co-bind a subset of messenger RNAs and genomic loci; and the interaction
of Nup98 with DHX9 has been shown to stimulate the transcriptional function of
the enzyme (Capitanio et al. 2017). Because Nup98 binding to DHX9 increases its
ATPase activity, it has been proposed that this nucleoporin acts as a cofactor for
DHX9 during transcription. The identification of several additional helicases as
interaction partners for Nup98 suggest that a Nup98-helicase complex may be
responsible for regulating the activity of a subset of Nup98 target genes, either by
modulating the activity of gene loci themselves or by regulating the processing of
their transcripts (Capitanio et al. 2017).

In contrast to the transcriptional activator function of Nup98, Nup153 has been
shown to negatively regulate the activity of differentiation/developmental genes,
promoting in this manner the pluripotency of ESCs (Jacinto et al. 2015). The way
Nup153 represses such genes is by directly interacting and recruiting the poly-
comb repressive complex 1 (PRC1) to their promoters (Jacinto et al. 2015)
(Fig. 7.4). The Polycomb-group (PcG) protein complexes, which include PRC1
and PRC2 among others, are responsible for creating and maintaining a repressive
chromatin environment that ensures the silencing of many developmental genes
(Aloia et al. 2013; Margueron and Reinberg 2011). Polycomb proteins mediate
gene silencing mainly by modulating chromatin structure through histone post-
translational modifications. The PRC1 complex, for example, induces chromatin
condensation by monoubiquitylation of histone H2A (Wang et al. 2004), which
leads to the repression of PRC1 target genes. By bringing the PRC1 complex to
differentiation-inducing genes, the chromatin-associated Nup153 induces epige-
netic gene silencing that maintains stem cell pluripotency.
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7.6 Gene Regulation by Abnormal Nucleoporin
Fusion Proteins

Many cancers are characterized by chromosomal translocations that lead to gene
fusion encoding chimeric proteins with aberrant functions (Zheng 2013). Because
chromosomal rearrangements require the interaction of the two translocating chro-
mosomes, it is considered that the nonrandom distribution of chromosomes inside
the cell nucleus is a key determinant of this process (Nikiforova et al. 2000; Roix
et al. 2003; Soutoglou and Misteli 2008; Zheng 2013). Chromosomal rearrange-
ments are particularly represented in blood cancers, and several chimeric fusion pro-
teins have been found to play critical roles in the transformation of hematopoietic
progenitors and to significantly contribute to the development of blood malignan-
cies. Notably, several nucleoporins were found to be part of oncogenic fusions in
blood malignancies, particularly in acute myeloid leukemia (AML), chronic myelo-
genous leukemia (CML), T-cell acute lymphoblastic leukemia (T-ALL) and myelo-
dysplastic syndrome (MDS). These include Nup98, Nup160, Nup214, Nup358 and
Tpr (Simon and Rout 2014; Shimozono et al. 2015; Fahrenkrog 2014).

Most studies involving nucleoporin fusions have been centered on Nup98
fusions, and to a minor extent, on Nup214 fusions. Nup98 is the most frequently
translocated nucleoporin in leukemia, and at least 30 different fusions partners for
this nucleoporin have been identified so far (Fahrenkrog 2014; Saw et al. 2013).
The oncogenic strength and the mechanisms of function of different Nup98
fusions depend on the fusion partner (Saw et al. 2013). Leukemias that have
Nup98 chimeric fusions are generally highly aggressive and very resistant to thera-
pies (Moore et al. 2007; Gough et al. 2011). In most cases, NUP98 participates in
balanced chromosomal translocation that result in fusion proteins of the N-
terminal domain of Nup98, which contains its GLFG repeats, and the C-terminal
domain of a fusion partner (Gough et al. 2011; Moore et al. 2007). The GLFG
repeats of Nup98 have been shown to be essential for the transformation of hema-
topoietic progenitors by Nup98 fusions (Kasper et al. 1999); and although wild
type Nup98 localizes to NPCs and the nuclear interior, Nup98 fusions have been
described as intranuclear proteins that do not associate with NPCs (Kasper et al.
1999; Xu and Powers 2010; Fahrenkrog et al. 2016). Of all Nup98 fusions,
approximately one third are proteins that contain homeodomains (HD), which are
helix-turn-helix DNA-binding domains (Fahrenkrog 2014; Moore et al. 2007;
Gough et al. 2011). This class mostly include transcription factors that play key
roles in blood development. The rest include non-HD proteins, the majority
of which are involved in epigenetic regulation and chromatin remodeling.
The ectopic expression of several Nup98 fusion proteins has been shown to pro-
mote the proliferation and prevent the differentiation of hematopoietic progenitors
(Chung et al. 2006; Calvo et al. 2002; Choi et al. 2009; Yassin et al. 2009;
Takeda et al. 2006).

Studies of Nup98 fusion proteins in leukemia have uncovered alterations in the
NE structure (Fahrenkrog et al. 2016), nucleocytoplasmic transport (Funasaka
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et al. 2011; Saito et al. 2017; Takeda et al. 2010), cell signaling (Qiu et al. 2015),
and mitosis (Salsi et al. 2014, 2016). But probably the most common abnormal-
ities observed with the ectopic expression of Nup98 chimeric proteins are the
deregulation of gene expression, particularly of HOX genes, and epigenetic altera-
tions (Kasper et al. 1999; Ghannam et al. 2004; Bai et al. 2006; Calvo et al. 2002;
Saw et al. 2013; Oka et al. 2016; Rio-Machin et al. 2017). This suggest, that key
mechanisms though which these aberrant proteins affect normal cell physiology
are by modulating the expression of key differentiation/developmental genes and
through changes in chromatin organization. How Nup98 fusions perform these
functions is an area of active research. Recently, several Nup98 fusion proteins
were shown to interact with the histone modifying complexes mixed lineage leu-
kemia 1 (MLL1) and the non-specific lethal (NSL) (Xu et al. 2016), being these
interactions required for leukemogenesis (Xu et al. 2016; Shima et al. 2017).
These include NUP98-HOXA9, NUP98-HOXD13, NUP98-NSD1, NUP98-
PHF23, and NUP98-TOP1 (Xu et al. 2016). As mentioned, wild type Nup98 in
drosophila also interacts with Trx/MLL and NSL to regulate HOX gene expres-
sion (Pascual-Garcia et al. 2014). This indicates that the regulation of histone
modifications is a normal function of Nup98 that gets hijacked by its fusion part-
ners. Nup98 fusion proteins have also been shown to associate with other chroma-
tin modifiers including the histone deacetylase HDAC1 and CBP/p300 (Kasper
et al. 1999; Bai et al. 2006; Rio-Machin et al. 2017). For many interactions
between Nup98 and chromatin modulators, the FG repeats of Nup98 have been
shown to be essential for protein association and for chromatin modifications (Bai
et al. 2006; Kasper et al. 1999). This also supports the idea that wild type Nup98
has a role in epigenetic modulation. Some of these endogenous Nup98 functions
might be further potentiated by its fusion with other chromatin modifiers such as
the histone methyl transferases NSD1, NSD3 or MLL. Conversely, the endogen-
ous functions of transcriptional/chromatin modulators might be enhanced by
fusion with Nup98. For example, in some cases of AML, Nup98 is fused to the
plant homeodomain (PHD) domains of JARID1A and NSD1. PHD fingers, which
are present in many chromatin-remodeling proteins, bind to specific histone/epige-
netic marks and help to recruit transcription factors and chromatin modulators
(Musselman and Kutateladze 2009). At the HOXA locus, PHD domains have
been found to prevent the spreading of polycomb repressive complexes which pro-
mote gene silencing. Consistent with a chromatin boundary activity, NUP98–PHD
fusions were found to prevent polycomb-mediated gene silencing and to help
maintain chromatin in an active state, stimulating in this manner HOX gene
expression (Wang et al. 2009).

As mentioned before, several other nucleoporins participate in cancer asso-
ciated chromosomal translocations. For most of them, the mechanisms through
which this nucleoporin chimeric proteins deregulate cellular physiology is still
unknown. So far, the only other nucleoporin fusion that has been shown to also
affect gene expression directly is the SET-NUP214 chimera. Nup214 (also known
as CAN) is an FG repeat-containing nucleoporin component of the cytoplasmic
filaments (Kraemer et al. 1994; Napetschnig et al. 2009). This large nucleoporin

1737 Nuclear Pore Complexes in the Organization and Regulation of the Mammalian Genome



plays important roles in nuclear import and export. Similar to Nup98, the fusions
of Nup214 maintain its FG domains and localize to intranuclear foci instead of
NPCs (Fornerod et al. 1995; Saito et al. 2004; Simon and Rout 2014). Also like
Nup98, Set-Nup214 chimeras bind to the promoter of HOXA genes and deregu-
late their expression, promoting cell proliferation and inhibiting cell differentia-
tion. At HOXA gene promoters Set-Nup214 interacts with the transport receptor
CRM1 and the histone methyltransferase DOTL1 (Van Vlierberghe et al. 2008).
This suggests that its mechanisms of recruitment and gene expression regulation
might be conserved with the Nup98-HoxA9 fusion (see Sect. 7.5.2) (Conway
et al. 2015; Oka et al. 2016).

Another fusion of Nup214, Dek-Nup214, has been shown to affect gene expres-
sion but at the translation, instead of transcriptional, level (Ageberg et al. 2008). By
stimulating hyperphosphorylation of the oncogene Elf4E, Dek-Nup214 increases
overall protein synthesis (Ageberg et al. 2008). This is interesting, because
increased activity of Elf4E has been found to modify the configuration of NPCs to
stimulate the export of oncogenic RNAs and promote cell proliferation (Culjkovic-
Kraljacic et al. 2012). It is worth mentioning, that even though Set- and Dek-
Nup214 fusions do not localize to NPCs, they still affect nucleocytoplasmic trans-
port (Saito et al. 2016; Port et al. 2016). The way these fusion proteins affect
nuclear transport is through the sequestration of transport receptors and nucleopor-
ins into their highly dynamic intranuclear foci (Saito et al. 2016; Port et al. 2016).
Naturally, by affecting nuclear transport, and also by tethering transcription factors
to these foci, Nup214 fusions have an indirect impact on gene expression.

7.7 Conclusions

Since their discovery, NPCs have continuously amazed scientist for their unique
features. First was their exceptional structure, then was their essential role in con-
trolling the exchange of all molecules between the nucleus and the cytoplasm, and
now their emerging contributions to genome integrity and gene expression regula-
tion. Though almost 70 years have passed from their first observation, there are
still many mysteries that need to be elucidated. What is the organization of the
central channel? Which is/are the definite mechanism/s of nucleo cytoplasmic
transport? How many partners work together with NPCs to regulate genome func-
tion? are some of many questions that still remain to be answered.

But what has become clear with a large amount of work from many different
labs is that NPCs are not just mere channels that sit at the NE passively allowing
the exchange of molecules between the nucleus and the cytoplasm. NPCs are
highly dynamic and plastic structures that can be modified to change their proper-
ties, that can have distinct composition in different cell types, that play multiple
transport-independent functions, and that they are central regulators of cellular
physiology. The recent findings that NPC components also have off-pore func-
tions not only extends the potential processes modulated by nucleoporins but also
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provides a novel perspective on how these structures might contribute to regulate
essential cellular functions.

The role of NPCs as critical regulators of genome organization and gene
expression was originally described in yeast and flies. Although understanding the
function of mammalian NPCs in these processes lagged behind for some time, it
has now started to catch up with the emerging roles of mammalian NPCs in all
aspects of genome integrity, including genome organization, transcriptional regu-
lation, DNA repair, DNA replication, chromosome segregation, and others (see
(Bukata et al. 2013; Raices and D’Angelo 2012) for additional information). The
central role that NPCs and nucleoporins play in many of these processes explains
the increasing number of alterations in these structures that are being linked to dis-
eases such as neurodegeneration and cancer. Understanding the modes of action
of NPCs and nucleoporins in regulating and coordinating genome functions will
help us elucidate how these structures contribute to the faithful translation and
transmission of the genetic information, and will result in a better understanding
of how alterations in their function contribute to disease development.
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