
Chapter 4
Nuclear Pore Complex in Genome Organization
and Gene Expression in Yeast

Carlo Randise-Hinchliff and Jason H. Brickner

Abstract The nuclear pore complexes (NPCs) are large, evolutionarily conserved
multiprotein channels embedded in the nuclear envelope of all eukaryotes cells.
NPCs mediate macromolecular import and export from the nucleoplasm and cyto-
plasm by an active signal-dependent process. Recent research indicates that the
NPCs play many additional roles in gene function and spatial organization of the
genome. This chapter highlights our current understanding of NPC in genome-
related functions in budding yeast. In yeast, Nups physically interact with a large
number of highly expressed genes and active inducible genes. The repositioning of
inducible genes to the NPCs leads to stronger expression and is regulated through
multiple regulatory strategies including cell cycle regulated phosphorylation of
Nup1. Many inactive or poised genes also interact with Nups. The interaction of
recently repressed GAL1 and INO1 with the NPC is necessary for transcriptional
memory. Retention at the NPC for these genes lead to an altered chromatin structure
that primes them for rapid transcriptional reactivation. Thus, interactions with the
NPC influences the spatial organization of the genome and impacts transcription.

Keywords Chromosomal spatial organization · nuclear pore complex · yeast
nucleoporins · transcription control · interchromosomal clustering · transcriptional
memory · cell cycle regulation · repositioning of inducible genes · regulation of
gene recruitment and clustering · aging

4.1 Introduction

A membrane-bounded nucleus is a defining feature of all eukaryotic cells. The
nucleus contains the majority of the genetic material in the cell and isolates
nuclear from cytoplasmic functions. The nucleus is delimited by a double lipid
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bilayer membrane called the nuclear envelope (NE) and communication between
the cytoplasm and nucleus is mediated by the nuclear pore complex (NPC). The
NPC regulates the bidirectional exchange of macromolecules, export of specific
RNA molecules, and selective transport of regulatory factors. Thus, the NPC is a
critical mediator of cellular processes between the nucleus and the rest of the cell.

Within the nucleus, eukaryotic genomes are organized spatially and some
nuclear functions are compartmentalized. Each chromosome occupies a distinct
“territory” and can position it’s chromatin into subnuclear compartments where
loci can cluster with co-regulated regions or interact with stable nuclear structures
(Sexton and Cavalli 2015). The spatial position of individual genes often reflects
their transcriptional states (Pombo and Dillon 2015). In metazoans, chromosomes
fold back onto themselves forming distinct non-overlapping globular territories
(Cremer et al. 2006). Transcriptionally active regions tend to position at the edges
of the territories in the inter-territorial space. Soluble factors such as transcriptional
regulators and RNA polymerase II are non-uniformly distributed within the
nucleus (Bartlett et al. 2006). The nucleolus, for example, is a subnuclear compart-
ment that serves as the site for ribosome biogenesis (Boisvert et al. 2007). The
nucleolus concentrates factors involved in rRNA production and ribosomal bio-
genesis (Andersen et al. 2005). Thus, both chromatin and soluble factors are spa-
tially organized within the nucleus.

The organization of chromatin is also dynamic; developmental and physiologi-
cal signals that alter gene expression also alter chromatin organization (Peric-
Hupkes et al. 2010; Randise-Hinchliff et al. 2016). This suggests that the spatial
organization of the genome within the nucleus contributes to gene regulation.
However, the mechanisms and functional significance of the nuclear organization
are not fully understood. What is clear is that stable nuclear structures bind to cer-
tain chromosomal regions, imparting organization and influencing transcriptional
regulation (Meldi and Brickner 2011; Taddei and Gasser 2012). For example, in
metazoans, the nuclear lamina, a filamentous network of lamins and lamin-
associated proteins at the nuclear periphery, associates with large, transcriptional
repressed regions of the genome (Luperchio et al. 2014). Because the nuclear
lamina associates with chromatin modifying proteins and transcriptional repres-
sors, it has been proposed that it is a transcriptional repressive environment
(Gruenbaum and Foisner 2015).

However, the nuclear periphery is not exclusively associated with transcription-
ally silent heterochromatin. Electron microscopy shows decondensed euchromatin
positioned adjacent to NPCs (Belmont et al. 1993). In yeast, repressive regions
and NPCs form distinct, non-overlapping foci (Taddei et al. 2004). This suggest
that beyond its vital role in nucleo-cytoplasmic transport, the NPC may interact
with active regions of the genome. Indeed, in yeast, flies, worms and mammalians,
NPC components interact with hundreds to thousands of active genes (Brickner
and Walter 2004; Casolari et al. 2004; Brown et al. 2008; Ahmed et al. 2010;
Kalverda et al. 2010; Rohner et al. 2013). In yeast, these interactions occur at the
nuclear periphery (Ahmed et al. 2010). However, in flies and mammals, such
interactions can occur at both the NPC and with soluble nuclear pore proteins, in
the nucleoplasm (Capelson et al. 2010; Kalverda et al. 2010). Interaction with
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nuclear pore proteins promotes stronger transcription, alters chromatin structure
and limits the spread of silencing (Ishii et al. 2002; Dilworth et al. 2005; Ahmed
et al. 2010; Kalverda et al. 2010; Light et al. 2010, 2013; D’Urso et al. 2016). In
yeast, interaction with the NPC can also lead to interchromosomal clustering of
co-regulated genes (Brickner and Brickner 2012; Brickner et al. 2016; Randise-
Hinchliff et al. 2016). Additionally, recently repressed genes bound at the NPC are
poised for faster reactivation (Brickner et al. 2007; Brickner 2009; Tan-Wong et al.
2009; Light et al. 2010; Botstein and Fink 2011). Thus the NPC plays an important
role in both the spatial organization of the nucleus and transcriptional regulation.

Here we review our current understanding of the mechanism and functional
significance of the interaction of the NPC with the budding yeast genome.
Research in yeast has provided significant conceptual and mechanistic insight into
chromosomal organization and its effects on gene regulation. These discoveries
have stimulated work in metazoan systems, which has revealed that these mechan-
isms are largely conserved.

4.2 Spatial Organization of the Yeast Genome

Budding yeast, Saccharomyces cerevisiae, has served as an outstanding model for
understanding fundamental cell and molecular biology of eukaryotic cells (Taddei
et al. 2010; Botstein and Fink 2011). However, budding yeast has several nuclear
features that contribute to chromatin organization that are distinct from higher
eukaryotes (Taddei et al. 2010; Zimmer and Fabre 2011). The primary difference
is that budding yeast undergoes a closed mitosis; the NE does not break down dur-
ing mitosis. During interphase, the centromeres of the 16 relatively small chromo-
somes (230–1,500 kb) remain tethered to the spindle pole body (SPB). The SPB,
functionally analogous to the microtubule organizing center, is embedded in the
NE and is positioned opposite the nucleolus (McBratney and Winey 2002).
Chromosome arms emanate away from the SPB towards the opposite pole of the
nucleus, where telomeres cluster as well. The 32 telomeres form a small number
of foci at the NE by FISH, reflecting their inter-chromosomal clustering (Hediger
et al. 2002). Since centromeres remain tethered through interphase, there is a
strong determinant for the spatial position of chromosomal regions (Duan et al.
2010; Zimmer and Fabre 2011). In other words, short chromosome arms are
unable to explore the same nuclear volume as longer arms. Consistent with this
notion, telomeres of chromosomes having short arms (< 300 kb) cluster together
near the SPB and telomeres of chromosomes having longer arms cluster together
near the nucleolus (Duan et al. 2010). This organization is known as the Rabl con-
figuration and is not specific to yeast. It was first observed by Carl Rabl in 1885 in
epithelial salamander larvae and later in Drosophila melanogaster embryos and in
many cereal species (Marshall et al. 1996; Parada and Misteli 2002). Despite yeast
possessing unique features, the morphology and mechanisms that influence the
spatial arrangement of yeast chromosomes have been important to understanding
genomic organization in all eukaryotes.

894 Nuclear Pore Complex in Genome Organization and Gene Expression in Yeast



4.3 Composition of NPC

The yeast NPC is one of largest and most complex proteinaceous assemblies in
the cell, consisting of approximately 400 proteins with a mass of 66 million
Daltons (Aitchison and Rout 2012). The NPC is composed of approximately 30
nucleoporins (Nups), each of which are present in multiple copies (usually 8 or
16), reflecting the eight-fold symmetry of the structure. Specific groups of Nups
contribute to repetitive subcomplexes that form the NPC (Aitchison and Rout
2012). Based on structure, motifs, and locations, Nups can be classified into dis-
tinct groups (Fig. 4.1). Furthermore, many Nups bind dynamically to the NPC,
cycling on or off or associating only during certain phases of the cell cycle
(Dilworth et al. 2001; Makhnevych et al. 2003; Tran and Wente 2006). Thus, the
exact number and definition of Nups is uncertain.

The NPC is a highly conserved structure and the majority of Nups have struc-
tural conservation that has been extrapolated to the last common eukaryotic ancestor
(Brohawn et al. 2008; Neumann et al. 2010). However, due to a recent whole-
genome duplication during Saccharomyces evolution, followed by gene divergence
and loss, several Nups that are encoded by single genes in vertebrates exist as para-
logous pairs in S. cerevisiae such as Nup116/Nup100 (Nup98 in vertebrates),
Nup157/Nup170 (Nup155 in vertebrates), and Nup53/Nup59 (Nup3 in vertebrates;
(Aitchison and Rout 2012). Also, the metazoan cytoplasmic filament Nups, Nup358
and Aladdin, are absent in yeast and the nucleoplasmic yeast Nup60 is absent in
vertebrates (Wu et al. 1995; Cronshaw et al. 2002; Hoelz et al. 2011).

The yeast NPC, compared to the vertebrate NPC, is also both significantly
smaller (66MDa compared to 125MDa) and less abundant in the NE (200 com-
pared to 2,500–5,000) (Reichelt et al. 1990; Rout and Blobel 1993; Grossman
et al. 2012). In metazoan organisms, NPCs are disassembled and reassembled
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Fig. 4.1 Overall structure of the yeast nuclear pore complex (NPC). Nups are classified into dis-
tinct groups by structure and location
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during mitosis while in yeast, due to a closed mitosis, the NPC remains assembled
through the life cycle of the cell. Besides these differences, the core structure and
function of the NPC is conserved between yeast and metazoans.

The cylindrical structure of the NPC is organized with eight-fold symmetry
around a central transport channel and pseudo two fold symmetry between the
cytoplasm and the nucleoplasm (Fig. 4.1) (Hoelz et al. 2011). The NPC is com-
posed of two main functional regions; a central core and peripheral structures. The
NPC core consists of coaxial inner, outer, and transmembrane rings surrounding a
central channel, approximately 40 nm in diameter (Hoelz et al. 2011). The core is
built from scaffold Nups (outer ring Nups, linker Nups and inner ring Nup),
membrane-embedded ring Nups, and central FG-Nups. The core scaffold defines
the shape and dimensions of the NPC (Kampmann and Blobel 2009). These Nups
are structurally related to vesicular coat proteins and have been proposed to cata-
lyze the formation of the sharply curved pore membrane (Devos et al. 2004). The
pore membrane domain harbors three transmembrane proteins, Ndc1, Pom152 and
Pom34, that interact with the core proteins and anchor the NPC within a pore in
the NE. Finally, 11 Nups rich in phenylalanine-glycine (FG) repeats, are natively
unstructured domains that form the permeability barrier of the NPC channel and
serve as docking sites for transport receptors (Alber et al. 2007). The peripheral
structures are made up of asymmetrical filaments that extend into either the cyto-
plasm and nucleoplasm. The cytoplasmic filaments are composed of Nup159,
Nup42, Gle2 and Dbp5 and function in mRNP remodeling (Okamura et al. 2015).
The nuclear basket forms the peripheral structure within the nucleus. It consists of
filaments of FG Nups: Nup60, Nup1, Nup2, Mlp1, and Mlp2 (Hoelz et al. 2011).
The nuclear basket functions in transport but an accumulating body of evidence
also connects the nucleoplasmic basket to transcriptional regulation, modulating
chromatin structure and organization of the genome.

4.4 Nuclear Pore Complex Interacts with the Genome

In addition to its role in regulating nucleo-cytoplasmic transport, the NPC also con-
tributes to transcription and the spatial organization of the genome within the
nucleus. Nuclear pore components directly interact with transcriptional regulators,
mRNA export factors and chromatin (Table 4.1; (Steglich et al. 2013). The interac-
tions with chromatin provide anchor points along the nuclear periphery to spatially
organize and compartmentalize the genome. Using chromatin immunoprecipitation
(ChIP) coupled to DNA microarray analysis (ChIP-chip), the interactions of Nups
and NPC-associated factors were mapped genome-wide in yeast (Casolari et al.
2004, 2005). For a majority of the NPC components, genomic occupancy strongly
correlated with transcriptional activity (Casolari et al. 2004). This included the
nuclear basket components Nup2, Nup60, Mlp1 and Mlp2, the scaffold components
Nic96 and Nup116, and the karyopherins Xpo1 and Cse1. These Nups also prefer-
entially bound to genes involved in glycolysis and protein biosynthesis (Casolari
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et al. 2004). Thus, certain active chromatin regions position and physically interact
with the NPC (Table 4.1).

Interaction with Nups does not always correlate with transcription. The genomic
occupancy of Nsp1, Nup84, Nup145 and Nup100 had no correlation with expres-
sion (Casolari et al. 2004). Thus, the NPC interacts with both active and inactive
regions of the genome. The differences in the observed binding profiles for nuclear
pore components may either reflect functional distinct molecular interactions with
NPC or distinct NPC molecular composition. In support of the idea that different
NPCs might be compositionally distinct, Mlp1, Mlp2, Ulp1 and Pml39 are asso-
ciated with only a subset of NPCs (Zhao et al. 2004; Palancade et al. 2005).

Table 4.1 Summary of nucleoporins in genome-related functions in yeast

Name Location Functions*

Nup 1 Nuclear
basket

• Cell cycle phophorylation of Nup1 is required for
periperhallocalization and interchromosomal clustering of
GAL1 and IN01 genes

• Physically interacts with TREX-2 complex

Nup2 Nuclear
basket

• Association with active genes
• Required for peripheral localization of GAL1, IN01 and tDNA
genes

• Required for peripheral localization of recently repressed IN01
• Role in chromatin boundary activity
• Physically interacts with H2A.Z as well as IN01 and GAL1
gene promoters

Nup60 Nuclear
basket

• Association with active genes
• Required for peripheral localization and clustering of GAL1
and IN01 genes

• Required for peripheral localization of recently repressed IN01

Mlp1 Nuclear
basket

• Association with active genes
• Physically interacts with the SAGA complex and Ulp1
• Required for transcriptional memory of GAL1
• Required for interchromosomal clustering of GAL1 gene

Mlp2 Nuclear
basket

• Association with active genes
• Physically interacts with Ulp1
• Required for peripheral localization of GAL1 and IN01 genes

Nup100 Central
FG-Nups

• Physically interacts with GAL1
• Required for transcription memory and peripheral localization
of recently repressed IN01

Nup116 Central
FG-Nups

• Association with active genes
• Physically interacts with GAL1

Nic96 Inner ring
Nups

• Association with active genes

Nup170
subcomplex

Inner ring
Nups

• Required in tethering and silencing of ribosomal and
subtelomeric genes

Nup84
subcomplex

Outer ring
Nups

• Required for peripheral localization of recently repressed IN01

*Refer to text for citations.
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Many inducible genes reposition from the nucleoplasm to the nuclear periphery
and physically interact with the NPC in response to different environmental stimuli.
For example, the GAL genes (GAL1, GAL2, GAL7 and GAL10) in glucose are tran-
scriptionally repressed and are localized in the nucleoplasm with sub-diffusive con-
strained movement (Casolari et al. 2004; Cabal et al. 2006). In contrast, in
galactose, the GAL genes become transcriptionally induced and reposition to the
nuclear periphery with more constrained diffusion (Cabal et al. 2006; Brickner
2007). At the nuclear periphery, GAL genes physically interact with Nup116, Mlp1,
Nup60, Nup2, Cse1, XpoI and Nup100 (Casolari et al. 2004). This interaction
depends on gene activity and the transcriptional activator Gal4 and occurs in the
gene promoter (Schmid et al. 2006). In strains lacking Nup2, Nup1, Nup60 or
Mlp2, GAL1 remains nucleoplasmic in galactose media (Brickner et al. 2007;
Brickner et al. 2016). Furthermore, the Gal genes are not the only region of the gen-
ome that is recruited to the NPC in galactose. When media is shifted to galactose,
large scale rearrangements occur, repositioning many chromosomal regions to the
nuclear periphery through multiple anchor points (Dultz et al. 2016).

Gene recruitment to the NPC has been observed in many environmental stimuli
such as nutrient shifts (INO1, HIS4, HXK1, SUC2), osmotic stress (CTT1, STL1),
heat shock (TSA2, HSP104) and mating pheromone treatment (PRM1, FIG2, FUS1;
(Brickner and Walter 2004; Casolari et al. 2005; Dieppois et al. 2006; Taddei et al.
2006; Sarma et al. 2007; Ahmed et al. 2010; Regot et al. 2013; Guet et al. 2015;
Randise-Hinchliff et al. 2016). The INO1 gene (encoding inositol 1-phoshate
synthase) repositions to the nuclear periphery upon activation during inositol starva-
tion. The repositioning of INO1 requires many Nups including Nup1, Nup2, Nup60,
Nup157, Nup42, Gle2, and Mlp2 (Ahmed et al. 2010). Interaction of INO1 and
GAL1 promotes stronger transcription by increasing the fraction of cells that respond
to the inducing signal (Brickner et al. 2007; Texari et al. 2013; Brickner et al. 2016).

The interaction of the genome with the NPC is regulated through the cell cycle.
Active genes such as GAL1, INO1 and HSP104 relocalize from the nuclear periph-
ery to the nucleoplasm during S-phase (Brickner and Brickner 2010, 2012). This
regulation of peripheral localization is due to oscillating Cdk-mediated phosphory-
lation of Nup1. Targeting of these genes to the NPC requires Cdk activity and
either of two Cdk phosphorylation sites on Nup1. However, substitution of phos-
phomimetic aspartates in place of the phosphoacceptor residues at either position
leads to localization at the periphery throughout the cell cycle and bypasses the
requirement for Cdk activity (Brickner and Brickner 2010). Likewise, although
tDNA genes encoding tRNAs are generally clustered in the nucleolus, during M
phase, they reposition to the NPC (Chen and Gartenberg 2014). This coincides
with the peak of tDNA expression. Loss of either Nup60 and Nup2 blocks recruit-
ment to the NPC and leads to reduced transcription of tDNA genes during
M-phase (Chen and Gartenberg 2014). Thus, in response to different environ-
mental stimuli or cell cycle signals regions of the genome reposition to the NPC,
enhancing transcription.

NPC-DNA interactions also play an important role in chronological aging in
yeast, the process by which cells cease to divide after producing a fixed number of
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daughter cells (Sinclair and Guarente 1997; Denoth-Lippuner et al. 2014). Aging
is asymmetrically inherited; each generation the mother ages, but the daughter cell
is born with full longevity (Sinclair and Guarente 1997). Extrachromosomal
rDNA circles (ERCs) form spontaneously by homologous recombination within
the rDNA locus and accumulate in older cells (Sinclair and Guarente 1997) and
these ERCs have been proposed to serve as aging factors for several reasons
(Denoth Lippuner et al. 2014). ERCs are asymmetrically inherited, accumulating
and being retained in the mother cells. Artificially introducing ERC in daughter
cells, or enhancing ERC formation in mother cells, shortens longevity (Sinclair
and Guarente 1997). Conversely, reducing the rate of ERC formation increases
lifespan (Defossez et al. 1999). Attachment of ERCs to NPC confine the DNA cir-
cles to the mother cell and preventing their inheritance (Denoth-Lippuner et al.
2014). Likewise, ERC association affects NPC inheritance to the daughter: ERC-
bound NPCs are concentrated as an “NPC cap” in the mother cell and are retained,
whereas unbound NPCs freely move into the daughter cell. The mechanism for
this retention is not completely understood, however the SAGA complex is
involved. Loss of SAGA complex components, such as Gcn5 and Spt3, cause
DNA circles to dissociate from the NPC, spread into the daughter cells and lead to
shorter lifespan (Denoth-Lippuner et al. 2014).

The NPC interacts with both active and repressed regions of the yeast genome,
influencing its spatial organization, transcription and chronological aging. The role
for Nups in regulating transcription may be evolutionarily conserved. In flies, mice
and humans, expression of certain genes is enhanced by interaction with Nups
(Brickner and Walter 2004; Casolari et al. 2004; Brown et al. 2008; Ahmed et al.
2010; Kalverda et al. 2010; Rohner et al. 2013). However, many inactive or poised
genes also interact with Nups, so interaction with Nups or NPCs does not always
correlate with transcription (Casolari et al. 2004; Brickner et al. 2007; Light et al.
2013). Below we discuss our current understanding of the impact of the NPC on
transcriptional regulation, the molecular mechanisms that target genes to the NPC,
how the interaction with the NPC leads to interchromosomal interactions and the
role of the NPC in promoting epigenetic transcriptional memory in budding yeast.

4.5 Nups Influence Transcription

In 1985, Günter Blobel put forth an attractive “gene gating hypothesis,” postulating
that the interactions of active genes with NPCs might coordinate transcription with
mRNA biogenesis and export out of the nucleus to limit mRNA diffusion rates
(Blobel 1985). Indeed, interaction with NPC promotes stronger expression for indu-
cible genes such as INO1 and GAL1 (Brickner et al. 2007; Ahmed et al. 2010;
Brickner et al. 2016). Single molecule mRNA FISH suggests that this is due to an
increase in the fraction of cells that induce these genes, rather than an increase in the
amount of mRNA produced per transcription event (Brickner et al. 2016). It remains
unclear if mRNA export is affected by this interaction. Promoter mutations that
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block interaction of genes with the yeast NPC do not lead to nuclear accumulation
of those mRNAs (Ahmed et al. 2010; Brickner et al. 2016). The yeast nucleus is
small and mRNA export is rapid (Smith et al. 2015). Live cell imaging of mRNAs
does not support the model in which mRNAs are directed to particular NPCs (Smith
et al. 2015). Thus, although the transcription of genes is impacted by the interaction
with the NPC, it is still unclear if post-transcriptional events are affected.

NPCs may anchor and concentrate transcriptional regulators to promote expres-
sion, functioning as a transcriptionally active subnuclear compartment. Consistent
with this notion, the kinetics of GAL1 expression is enhanced by Ulp1 anchored at
the NPC (Texari et al. 2013). Ulp1 is a SUMO protease that is maintained at the
NPC by association with Mlp1 and Mlp2 (Zhao et al. 2004). Ulp1 enhances the
rate of GAL1 mRNA production by catalyzing the desumoylation and attenuation
of two repressors, Tup1 and Ssn6 (Texari et al. 2013). Furthermore, many tran-
scriptional activators and mRNA export factors bind directly to the NPC. For
example, the multiprotein complex TREX-2, which is necessary for mRNA
export, interacts with Nup1 and localizes to inner nuclear basket of the NPC
(Fischer et al. 2002; Kohler and Hurt 2007). The SAGA complex, a transcriptional
co-activator, is linked to TREX-2 through a common component, Sus1, and binds
to the NPC directly through Mlp1 (Rodriguez-Navarro et al. 2004; Luthra et al.
2007). Finally, the Mediator complex, another transcriptional coactivator, also
binds to TREX-2 (Schneider et al. 2015). Therefore, interaction of transcriptional
regulators with the NPC might enhance expression of active genes at the NPC.

NPC components may also promote transcriptional repression. Loss of mem-
bers of the Nup84 subcomplex (Nup84, Nup120, Nup133, and Nup145) detaches
telomeres from the nuclear periphery and leads to loss of silencing of subtelomeric
reporter gene (Therizols et al. 2006). Likewise, the Nup84 subcomplex participates
in glucose-responsive repression of SUC2 by physically interacting with Mig1
(Sarma et al. 2011). Finally, Nup170 is required for peripheral tethering and silen-
cing of many ribosomal and subtelomeric genes through cooperation with chroma-
tin remodeler RSC and Sir4 (Van de Vosse et al. 2013). These findings suggest
NPC components can influence silencing.

One complication in understanding the effects of gene-NPC interactions on
transcription is that null mutations can disrupt the spatial organization that is nor-
mally being exploited in a wild type cell. For example, the Ulp1 SUMO protease
is maintained at the NPC by Mlp1 and Mlp2 and is normally important for pro-
moting GAL1 derepression (Texari et al. 2013). However, mutants lacking NPC
basket components both block targeting of GAL1 to the nuclear periphery and
release Ulp1 into the nucleoplasm. This results in more rapid GAL1 depression,
which has been interpreted as a role for the NPC in negatively regulating GAL1
(Green et al. 2012). However, in a strain lacking Mlp1 and Mlp2, normal regula-
tion of GAL1 is restored when Ulp1 is artificially anchored to the NPC (Texari
et al. 2013). Thus, interpreting the effects of null mutations of NPC components
can be complicated by the change in the spatial organization of NPC-associated
factors. For that reason, mutations in cis-acting DNA elements that perturb the
positioning of a gene in an otherwise normal nucleus can provide important
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information about the function of NPC interactions (Ahmed et al. 2010; Light
et al. 2010; Brickner et al. 2012, 2016). One caveat to this statement is that, in
cases where the cis-acting DNA elements that control gene positioning are the
same as the elements that control transcription, the effects of interaction with the
NPC on gene expression have not been distinguishable from the effects on target-
ing (Randise-Hinchliff and Brickner 2016).

Finally, another function of the interaction of NPCs with chromatin may be to
alter chromatin structure to insulate active and silent regions. Studies using a
“boundary trap” identified several NPC components capable of inducing boundary
activity (Ishii et al. 2002; Dilworth et al. 2005). A boundary factor blocks the
spread of heterochromatin without inducing transcription. Tethering of the nuclear
pore protein Nup2, Exportins Cse1, Mex67 and Los1 and the RAN GEF Prp20
beside a reporter gene prevented the spread of silencing from the HML locus with-
out activating an adjacent gene (Ishii et al. 2002; Dilworth et al. 2005).
Endogenous Nups may also possess boundary active. Loss of endogenous Nup2
alleviates telomeric repression (Dilworth et al. 2005). Also Nup2 physically inter-
acts with chromatin-modifying proteins and histone variant H2A.Z and binds to
intergenic regions near telomeres (Dilworth et al. 2005).

4.6 Mechanisms of Gene Recruitment

The molecular mechanisms underlying gene recruitment to the nuclear periphery
and interactions with NPC are not completely understood. Consistent with the gene
gating hypothesis, factors involved in early transcription and mRNA export are
required for recruitment of genes to the NPC. For example, peripheral localization
of INO1 requires components of both SAGA (Gcn5, Spt7 or Spt20) and TREX-2
(Sac3, Thp1, Sus1; (Ahmed et al. 2010). Likewise, recruitment of GAL genes to the
NPC is blocked in strains lacking components of SAGA, Mediator (Med31, Cdk8),
TREX-2 and the mRNA export receptor Mex67 (Luthra et al. 2007; Schneider
et al. 2015; Brickner et al. 2016). SAGA and Mediator complexes mediate two
complementary pathways for transcriptional activation (Bhaumik 2011). Mediator
stabilizes the transcription factor TFIID, which is involved in general housekeeping
genes, whereas SAGA-dependent genes are involved in environmental stress
responses. It is conceivable that TREX-2 and Mex67 are recruited to active genes,
acting as a bridge that anchors genes to NPC by interacting with components of the
SAGA or mediator complexes bound to the genes. However, several observations
are not consistent with this model. For example, recruitment of both INO1 and
GAL1 to the nuclear periphery occur independent of either the transcriptional activa-
tor or RNA polymerase II, suggesting that transcription is not required for reposi-
tioning to the NPC (Schmid et al. 2006; Brickner et al. 2007, 2016). Thus, although
the requirement for these factors is clear, the interpretation of their role is not.

Gene recruitment to the NPC is controlled by cis-acting elements in promoters
of these genes (Randise-Hinchliff and Brickner 2016). For example, recruitment
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of INO1 to the nuclear periphery is controlled by two DNA Gene Recruitment
Sequences called GRSI and GRSII. GRSI and GRSII redundantly control targeting
of INO1 to the NPC and a mutation that disrupts both elements blocks INO1
recruitment to the nuclear periphery (Ahmed et al. 2010). When inserted at an
ectopic locus that is normally nucleoplasmic (URA3), each GRS is sufficient to
promote recruitment to the nuclear periphery. Thus, these GRS elements function
as DNA zip codes; being both necessary and sufficient to control interactions with
the NPC and contribute to the spatial organization of the genome.

GRS elements are binding sites for transcription factors (TFs; (Brickner et al.
2012; Brickner and Brickner 2012; Randise-Hinchliff et al. 2016). The TFs Put3
and Cbf1 bind to GRSI and GRSII, respectively, and are both necessary for INO1
gene recruitment (Fig. 4.2a; (Randise-Hinchliff et al. 2016). Interestingly, neither
Put3 or Cbf1 control INO1 transcription. INO1 expression is regulated by the Ino2

Regulatory stategies of TF-mediated gene recruitment and interchromosomal clustering

Cell cycle regulation of gene recruitment and interchromosomal clustering
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Fig. 4.2 Regulation of gene recruitment and interchromosomal clustering at the NPC. (a)
Transcription factor (TF)-mediated recruitment and clustering are regulated by multiple strate-
gies. (Left) Put3 and Cbf1 bind to GRSI and GRSII respectively and mediate INO1 recruitment
to the NPC upon inositol starvation. Recruitment of INO1 is regulated by the local recruitment of
Rpd3(L) histone deacetylase. (Middle) Gcn4-mediated recruitment of HIS4 to the NPC is con-
trolled by Gcn4 protein abundance. Gcn4 is translationally regulated. (Right) Upon mating pher-
omone stimulation, Ste12 mediates recruitment of PRM1 to the NPC. Ste12 is regulated by
MAPK phosphorylation of the inhibitor Dig2. (b) Gene recruitment and interchromosomal clus-
tering are regulated through the cell cycle. During G1, gene recruitment and interchromosomal
clustering of two loci (orange and blue) are localized at the NPC. During S-phase, phosphoryla-
tion of Nup1 blocks recruitment to the periphery but clustering is maintained in the nucleoplasm.
During G2/M-phase the two loci are repositioned to the nuclear periphery, unclustered
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and Ino4 TFs, neither of which are necessary to promote peripheral localization
(Graves and Henry 2000; Randise-Hinchliff and Brickner 2016). Thus, genes such
as INO1 have separate elements and TFs controlling their transcription and posi-
tioning. In contrast, recruitment of HIS4 and PRM1 to the nuclear periphery is
controlled by the same TFs that regulate their expression (Arndt and Fink 1986;
Hagen et al. 1991; Randise-Hinchliff et al. 2016). HIS4 repositions to the nuclear
periphery upon activation by amino acid starvation and PRM1 repositions upon
mating pheromone stimulation and this requires Gcn4 and Ste12, respectively
(Fig. 4.2a; (Randise-Hinchliff et al. 2016). The binding sites of Gcn4 (Gcn4BS)
and Ste12 (pheromone-response element, 3xPRE) also function as DNA zip codes
to target URA3 to the nuclear periphery. This suggests that some, but not all, TFs
function in mediating gene recruitment to the NPC. What distinguishes TFs that
mediate gene recruitment from ones that do not? Put3, Cbf1, Gcn4 and Ste12 are
not obviously similar in structure; representing four different families of TFs
(Randise-Hinchliff and Brickner 2016). Furthermore, it is unclear how these fac-
tors mediate recruitment to the NPC. Is it through direct interaction with NPC
components or through intermediate anchors such as TREX-2 or Mediator?

4.7 Interchromosomal Clustering at the NPC

Zip code-mediated targeting to NPC leads to interchromosomal clustering of
genes. This can be observed by comparing the position of two loci that are tar-
geted to the nuclear periphery in either haploid or diploid yeast cells (Brickner
and Brickner 2012). Active INO1 clusters at the NPC with another GRSI-
containing gene, TSA2 and with ectopic GRSI inserted at the URA3 locus, but
does not cluster with these loci in the nucleoplasm when repressed (Brickner et al.
2012). In diploid cells, two active alleles of INO1 also cluster together. GRSI-
mediated clustering requires the Put3 TF, which binds to GRSI. In contrast, INO1
does not cluster with genes recruited to the nuclear periphery by different zip
codes such as the HSP104 gene (targeted by a different zip code called GRS3).
Importantly, GRS3 inserted at URA3 is sufficient to induce clustering with
HSP104. Thus, clustering is zip code-specific. Interchromosomal clustering at the
NPC has been observed for many genes such as INO1, GAL1, HIS4, PRM1 and
HSP104 (Brickner et al. 2012, 2016; Randise-Hinchliff et al. 2016). Therefore, zip
code-mediated targeting to the NPC leads to interchromosomal interactions and
likely impacts the spatial organization of the yeast genome.

Targeting to the NPC is a prerequisite for zip-code mediated clustering. However,
the molecular mechanisms controlling targeting to the NPC and interchromosomal
clustering are distinct. For example, the recruitment of GAL1 to the NPC, like INO1,
is controlled by two redundant zip codes GRS4 and GRS5 (Brickner et al. 2016).
Although both GRS4 and GRS5 are sufficient to target URA3 locus to the nuclear
periphery, GRS4 alone controls GAL1 clustering (Brickner et al. 2016). Likewise,
GRSI is both necessary and sufficient for INO1 clustering whereas GRSII is not
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(Brickner et al. 2012). Therefore, not all zip codes that are sufficient to target URA3
to the nuclear periphery are sufficient to induce interchromosomal clustering.
Clustering, unlike gene targeting, requires both transcription and transcriptional acti-
vators such as Gal4 (Brickner et al. 2016). Finally, the set of NPC components
required for clustering are overlapping, but distinct, from the set required for target-
ing. Loss of Nup1, Nup60 and Mlp2 block both targeting to the nuclear periphery
and clustering of GAL1, whereas loss of Mlp1 specifically blocks GAL1 clustering
without affecting peripheral targeting (Brickner et al. 2016).

4.8 Regulation of Gene Recruitment and Clustering

Gene recruitment to the NPC and interchromosomal clustering of many genes are
conditional and occur under specific environmental stimuli (Randise-Hinchliff
et al. 2016). This reflects how each zip code and the TF that binds to them are
regulated. Put3-, Cbf1-, Ste12-, and Gcn4- mediated recruitment are regulated
through different strategies (Randise-Hinchliff and Brickner 2016). Put3 and Cbf1
are regulated by a context-dependent mechanism. While Put3 and Cbf1 condition-
ally recruit INO1 upon inositol starvation, when the GRSI and GRSII are inserted
at an ectopic site, recruitment to the nuclear periphery is constitutive. This sug-
gests that Put3 and Cbf1 have the capacity to recruit chromatin under repressing
conditions, but are negatively regulated in the context of the INO1 promoter.
Indeed, Put3 and Cbf1 are regulated at INO1 by local recruitment of Rpd3(L) his-
tone deacetylase complex by transcriptional repressors, Ume6 and Opi1 (Fig. 4.2a;
(Randise-Hinchliff et al. 2016). Loss of Rpd(L) leads to constitutive binding of
Put3 and constitutive recruitment and interchromosomal clustering of INO1 at the
NPC. Many transcriptional repressors are sufficient to block GRSI- and GRSII-
mediated recruitment to the NPC as well as GRSI-mediated clustering (Randise-
Hinchliff et al. 2016). Sixteen of twenty one transcriptional repressors tested were
able to block GRSI zip code activity (Randise-Hinchliff et al. 2016). This suggests
that this is a general function of transcriptional repressors, which may provide
multiple, alternative strategies to regulate the recruitment to the NPC mediated by
a particular TF. For example, the TSA2 gene is recruited to the NPC by Put3.
TSA2 is induced by protein folding stress, is not regulated by Ume6 or Opi1, and
is recruited by different environmental stimuli (Ahmed et al. 2010; Brickner and
Brickner 2012). Therefore, the context contributes to zip code regulation.

Gcn4- and Ste12-mediated gene recruitment are regulated through context-
independent mechanisms (Fig. 4.2a; (Randise-Hinchliff and Brickner 2016). The
zip code activity of the Gcn4 and Ste12 binding sites inserted at an ectopic site in
the genome are still regulated (Randise-Hinchliff et al. 2016). Ste12-mediated
recruitment is regulated downstream of DNA binding by MAPK phosphorylation
of the inhibitor Dig2. Loss of Dig2 or a phosphomimetic mutation in Dig2 led to
constitutive Ste12-mediated recruitment of both PRM1 and the 3xPRE at URA3.
Gcn4-mediated targeting is regulated by its abundance. Upregulating Gcn4 protein
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levels led to an increased level of peripheral localization of HIS4 and ectopic
GCN4BS at URA3. Thus, in addition to regulation by local recruitment of tran-
scriptional repressors, targeting to the NPC can be regulated by other mechanisms.

TF-mediated gene positioning and interchromosomal clustering is regulated by
at least three different mechanisms that operate on different time scales (Randise-
Hinchliff et al. 2016). MAPK signaling is rapid and leads to repositioning and
clustering within 15–30 minutes. Changes in Gcn4 protein levels lead to slower
repositioning and clustering of Gcn4 targets over 30–60 minutes. INO1 recruit-
ment and clustering occurs even more slowly over 60–120 minutes, consistent
with the slow depression of INO1 transcription. Thus, cells employ different stra-
tegies to regulate TF-mediated gene positioning over different time scales.

4.9 Gene Recruitment and Clustering Through the Cell Cycle

The recruitment of inducible genes to the NPC is regulated through the cell cycle. For
active INO1, GAL1 and HSP104 genes, recruitment to the nuclear periphery occurs
during G1 and G2/M, but not in S-phase when the genes localize in the nucleoplasm
(Fig. 4.2b; (Brickner and Brickner 2010). Importantly, the loss of peripheral localiza-
tion is not a nonspecific effect of DNA replication, but rather due to phosphorylation
of Nup1 by the cyclin-dependent kinase Cdk1 (Brickner and Brickner 2010).
Phosphorylation of Nup1 is required for normal targeting to the nuclear periphery;
inactivation of Cdk or mutations that block phosphorylation of Nup1 also block tar-
geting of INO1 and GAL1 to the periphery. Conversely, mutations in Nup1 that
mimic phosphorylation at either of two sites or loss of the Cdk1 inhibitor, Sic1, led to
INO1 and GAL1 remaining at the nuclear periphery during S-phase. The phosphomi-
metic mutations bypass the requirement of Cdk1, suggesting that Nup1 is the only
protein whose phosphorylation affects peripheral targeting of these genes.

Interchromosomal clustering is also regulated through the cell cycle, but is out of
phase with gene recruitment. GAL1 clustering is maintained in the nucleoplasm
through S-phase, but is lost upon repositioning to the periphery during G2/M
(Fig. 4.2b; (Brickner et al. 2016). Interestingly, the regulation of peripheral targeting
and clustering are interdependent. Loss of phosphorylation of Nup1 leads to loss of
interchromosomal clustering and phosphomimetic Nup1 both maintains GAL1 at the
NPC during S-phase and leads to clustering during G2/M. Therefore, Cdk phosphor-
ylation of the NPC coordinates the positioning of individual genes and the organiza-
tion of chromosomes with respect to each other through the cell cycle.

4.10 Transcription Memory

Several inducible genes such as INO1 and GAL1 that are recruited to the NPC
upon activation remain anchored to the pore for several generations after
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repression (D’Urso and Brickner 2014). Such epigenetic retention leads to an
altered chromatin structure and primes genes for rapid transcriptional reactivation.
This phenomenon is called transcriptional memory and represents a mitotically
heritable state. Furthermore, transcriptional memory leads to a faster or stronger
response when cells are confronted with an environmental challenge previously
experienced, presumably impacting cellular fitness and survival (D’Urso and
Brickner 2014). Nuclear pore components play important roles in transcriptional
memory, but not all genes that interact with the NPC when active exhibit memory.
Understanding the mechanisms and specific NPC components involved in tran-
scriptional memory can further elucidate the functions of the NPC.

A well-established model for transcriptional memory is GAL1 (Brickner et al.
2007; Kundu et al. 2007; Brickner 2009). After being repressed, GAL1 is retained
at the nuclear periphery, primed for faster reactivation for up to seven generations
(Brickner et al. 2007). During the first few hours, GAL1 is anchored to the NPC as
an intragenic loop between its promoter and 3’ end; called a memory gene loop
(MGL; (Tan-Wong et al. 2009). MGLs are stabilized at the NPC by Mlp1 and are
thought to prime genes for reactivation by retaining transcription initiation factors,
such as TBP. Indeed, destabilizing GAL1 MGL, through loss of Mlp1, signifi-
cantly reduces both TBP binding and the rate of reactivation (Tan-Wong et al.
2009). However, this is not the sole mechanism of GAL1 transcriptional memory,
since the GAL1 MGL does not persist as long as memory (Brickner et al. 2007;
Tan-Wong et al. 2009). It is possible that MGLs initiate memory and downstream
mechanisms maintain transcriptional memory. Consistent with this notion, the
chromatin remodeling complex, SWI/SNF1, is required for GAL1 memory, but
not for loop formation (Kundu et al. 2007). Interestingly, the inheritance of GAL1
memory is not perpetuated by chromatin alone, but through trans-acting Gal1 pro-
tein itself, which is necessary for epigenetic memory (Zacharioudakis et al. 2007).
Ectopic expression of GAL1 is sufficient to induce faster induction of the other
GAL genes (Zacharioudakis et al. 2007). Thus, the rapid reactivation of GAL genes
involves multiple mechanisms including the formation of gene loops, chromatin-
based mechanisms and GAL1 protein itself.

Loss of the histone variant H2A.Z both blocks periphery localization of INO1
and GAL1 and causes a dramatic decrease in the reactivation after repression
(Brickner et al. 2007) (our unpublished results). This suggests that peripheral loca-
lization is coupled to reactivation. Indeed, H2A.Z incorporation after repression
depends on the nuclear pore protein Nup100. H2A.Z also physically associates
with Nup2 (Dilworth et al. 2005). However, it is unclear how H2A.Z perpetuates
memory. Loss of H2A.Z and Nup100 leads to a strong and specific defect in the
rate of reactivation of INO1 (Light et al. 2010), but loss of H2A.Z affects both the
rate of activation and reactivation of GAL1 (Halley et al. 2010). Similar to Nup2,
H2A.Z functions to insulate euchromatin from the spread of heterochromatin
(Meneghini et al. 2003). It is found in most inducible promoters and facilitates fas-
ter induction (Zhang et al. 2005; Albert et al. 2007; Wan et al. 2009). H2A.Z-con-
taining nucleosomes are also less stable and flank nucleosome-free regions in
promoters (Albert et al. 2007). Therefore, perhaps chromatin changes like H2A.Z
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incorporation generally enhance the rate of transcriptional induction and such
changes can be influenced by interactions with the NPC during memory.

INO1 gene remains associated with the nuclear periphery for up to four genera-
tions after repression, dependent on H2A.Z incorporation and Nup100 (Brickner
et al. 2007; Light et al. 2010). After repression, the INO1 promoter is marked with
another chromatin mark, dimethylated histone H3 lysine 4 (H3K4me2). Memory
leads to binding of poised RNA polymerase II (RNAPII) preinitiation complex
(PIC), which enhances the rate of future reactivation (Fig. 4.3a; (Light et al. 2010;
Light et al. 2013; D’Urso et al. 2016). Many of the NPC components required for
active recruitment were also required in memory such as Nup1, Nup2 and Nup60.
However, five Nups are specifically required for retention at the nuclear periphery
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Fig. 4.3 Model of INO1 transcriptional memory at the NPC. (a) INO1 is recruited to the NPC
under inositol starvation, which leads to transcription by RNA polymerase II (RNAPII) as well
as hyperacetylation and both di- and trimethylation of histone H3, lysine 4 (H3K4). Upon repres-
sion, INO1 remains associated to the NPC and the preinitiation RNAPII is poised to the promoter
for up to four generations. INO1 transcriptional memory leads to an altered chromatin state invol-
ving the incorporation of H2A.Z and dimethylation of H3K4. (b) Transcription factor Sfl1 binds
to the MRS upon repression and is required for recruitment and remodeling of Set1/COMPASS
(1). The remodeled form of COMPASS lacking the Spp1 subunit is necessary to establish H3K3
dimethylation (2). H3K4me2 recruits Set3C (3). Set3C promotes the persistence of H3K4me2
and potentially the recruitment or remodeling of COMPASS (4). (c) Cdk8+ Mediator promotes
transcriptional poising. During activation, Mediator lacks Cdk8 and TFIIK (Kin28/Cdk7) phos-
phorylates Serine 5 of RNAPII to initiate transcription. Upon repression, Kin28 is lost and
Cdk8+ Mediator is recruited
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during transcriptional memory: Nup100 and Nup84 subcomplex components
Nup84, Nup120, Nup133, and Nup145C (Light et al. 2010). In contrast to GAL1,
INO1 does not require Mlp1 and MGLs do neither form nor are required for INO1
memory (Tan-Wong et al. 2009; Light et al. 2010). By ChIP, Nup2 binds to the
INO1 promoter both in active and recently repressed conditions, whereas, Nup100
binds specifically during memory (Light et al. 2010). In strains lacking Nup100,
the INO1 promoter loses H2A.Z incorporation, H3K4me2 and poised RNA poly-
merase II PIC, leading to slower reactivation (Light et al. 2010, 2013).

Targeting of active and recently repressed INO1 to the NPC is mediated by dis-
tinct mechanisms and different zip codes (Light et al. 2010). Recruitment of
recently repressed INO1 to the nuclear periphery does not require GRSI and
GRSII. Instead, after repression a zip code called the Memory Recruitment
Sequence (MRS) is both necessary and sufficient to recruit INO1 to the NPC. A
mutation in the MRS sequence specifically blocks INO1 peripheral positioning
after repression, but not in active conditions (Light et al. 2010). Finally unlike the
GRS, MRS-mediated recruitment is not regulated throughout the cell cycle
(Brickner and Brickner 2010).

Transcriptional memory also leads to interchromosomal clustering of INO1
(Brickner et al. 2015). During memory, two alleles INO1 remain clustered in
diploid cells, which requires the MRS and Nup100. Unlike recruitment during
memory, INO1 clustering during memory also requires GRSI and GRSII zip codes
(Brickner et al. 2015). Furthermore, neither GRSI or MRS inserted at URA3 is suf-
ficient to cause clustering with INO1 during memory. In contrast, the ectopic
GRSI clusters with INO1 in active conditions (Brickner and Brickner 2012). This
suggest clustering during memory requires previous clustering of INO1 during
activation. Therefore, the MRS zip code is necessary, but not sufficient, to induce
clustering. Clustering of INO1 during transcriptional memory is regulated through
the cell cycle. In G2/M phase, INO1 clustering is lost (Brickner et al. 2015).
Therefore, MRS- and GRS- mediated recruitment and clustering of INO1 share
some similarities, but function by distinct mechanisms.

4.11 Molecular Mechanism of INO1 Transcriptional Memory

INO1 transcriptional memory is initiated by binding of a TF to the MRS zip code.
The TF Sfl1 binds to the MRS upon shifting cells from activating to repressing con-
ditions (Fig. 4.3; (D’Urso et al. 2016). Sfl1 has a genetic interaction with the Nup84
subcomplex component, Nup120, and is both necessary and sufficient to recruit
chromatin to the nuclear periphery (Robertson and Fink 1998, D’Urso et al. 2016).
Sfl1 and the MRS, like Nup100, are essential for all aspects of transcriptional mem-
ory (D’Urso et al. 2016). This suggests that binding of Sfl1 to the MRS initiates
INO1 transcriptional memory and may determine the duration of memory.

INO1 transcriptional memory is associated with histone modifications. When
INO1 is repressed, H3K4 is hypoacetylated and unmethylated whereas during
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activation, H3K4 is hyperacetylated and both di- and trimethylated (Fig. 4.3a;
(D’Urso et al. 2016). However, upon repression, INO1 loses histone acetylation
and trimethylation, but remains dimethylated (H3K4me2; (D’Urso et al. 2016).
H3K4me2 is necessary for memory and is established by remodeling of the Set1/
COMPASS methyltransferase complex, ejecting the Spp1 subunit (Fig. 4.3b;
(D’Urso et al. 2016). The Spp1- complex is capable of dimethylation, but not tri-
methylation of H3K4 (Schneider et al. 2005; Takahashi et al. 2009). H3K4me2
recruits the SET3C histone deacetylase, which is also required for memory
(D’Urso et al. 2016). Set3 is the eponymous member of SET3C and binds to
H3K4me2 through its PHD domain (Kim and Buratowski 2009). SET3C binding
to H3K4me2 is required both to recruit RNAPII and to maintain H3K4me2 during
memory (D’Urso et al. 2016). Conditional inactivation of SET3C leads to rapid
loss of both H3K4me2 and poised RNAPII from the INO1 promoter (D’Urso
et al. 2016). Thus, SET3C has a direct and continuous role in memory. The main-
tenance of H3K4me2 may provide a chromatin state that allows recruitment of
RNAPII and rapid reactivation.

Changes in chromatin composition (H2A.Z) and histone modifications
(H3K4me2) are necessary for transcriptional memory. These changes presumably
allow RNAPII PIC to remain bound; poising genes for transcriptional reactivation
(D’Urso and Brickner 2014). PIC assembly during memory also requires Cdk8+

form of Mediator (Fig. 4.3c). Mediator binds to the INO1 promoter both under
activating and memory condition (D’Urso and Brickner 2014). However, the
Cdk8 module only binds during memory. Inactivation of Cdk8 specifically dis-
rupts RNAPII binding during memory and slows reactivation without affecting
INO1 activation (D’Urso and Brickner 2014). Interestingly, Cdk8+ Mediator phy-
sically interacts with both Sfl1 and the NPC-associates TREX-2 complex, both of
which are required for memory (Song and Carlson 1998; Schneider et al. 2015).
The poised PIC complex during memory is partially assembled, missing both
Ctk1 and Kin28, which phosphorylate serine 2 and 5 on the caboxy terminal
domain, respectively (Light et al. 2010). Unlike Cdk8, Kin28 is also not required
for memory and the poised RNAPII is unphosphorylated on Ser2 and 5. It’s con-
ceivable that Cdk8 and Kin28 are mutually exclusive and that Cdk8+ Mediator
promotes transcriptional poising by blocking Kin28 association with the PIC
(Fig. 4.3c). Further experiments will discern this mechanism.

The mechanism of INO1 memory is related to the mechanism of stress-induced
memory in yeast and IFNγ-induced memory in human cells (D’Urso et al. 2016).
In both systems, genes that display memory are marked with H3K4me2, bound by
RNAPII and Cdk8. In yeast, 77 of the genes induced by oxidative stress are
primed for activation in response to previously experienced salt stress (Guan et al.
2012). This effect persists for four generations. However, unlike INO1, salt stress-
induced memory does not require Sfl1 or Nup100 and requires a different NPC
component, Nup42, for faster reactivation (Guan et al. 2012). In human cells,
genes that exhibit IFNγ-induced memory physically interact with Nup98, a homo-
logue of Nup100, and require Nup98 for memory (Light et al. 2013). Unlike in
yeast, IFNγ-induced genes interact with Nup98 in the nucleoplasm. Despite these
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differences, the core mechanism revealed by studies of INO1 transcriptional mem-
ory is both general and conserved (D’Urso et al. 2016).

4.12 Concluding Remarks

From yeast to humans, the NPC plays essential roles in promoting transcription,
regulating chromatin structure, spatially organizing eukaryotic genomes. Research
in yeast has guided our understanding of these mechanisms, many of which are
evolutionarily conserved. These observations have broadened our understanding
of the NPC’s role as a regulatory hub for genome organization and function.
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