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Abstract. With the rapid development of deep learning in recent years,
lots of trackers based on deep learning were proposed, and achieved great
improvements compared with traditional methods. However, due to the
scarcity of training samples, fine-tuning pre-trained deep models can be
easily over-fitted and its cost is expensive. In this paper, we propose a
novel algorithm for online visual object tracking which is divided into
two separate parts, one of them is target location estimation and the
other is target scale estimation. Both of them are implemented with
correlation filters independently while using different feature representa-
tions. Instead of fine-tuning pre-trained deep models, we update corre-
lation filters. And we design the desired output of correlation filters for
every training sample which makes our tracker perform better. Extensive
experiments are conducted on the OTB-15 benchmark, and the results
demonstrate that our algorithm outperforms the state-of-the-art by great
margin in terms of accuracy and robustness.
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1 Introduction

As one of the popular branches of computer vision, visual object tracking has
been widely used in various fields, such as military strike, traffic control, security
system, human-computer interaction and so on, and it has been rapidly devel-
oped thanks to the development of deep learning in recent years. Single-target
tracking can be described as follow: an arbitrary target is given by a bounding
box in the first frame and the trackers give predicted bounding box in subse-
quent frames. Although great progress has been made in past decades, visual
object tracking is still a challenging task to handle with owning to complicated
and volatile interferences like illumination variation, scale variation, partial or
full occlusion, motion blur, background clutters and deformation.

The features that can effectively distinguish target from its surrounding
background play significant role in visual tracking. Trackers [10,12,16,17,30,31]
based on hand-crafted features have solved mentioned challenges more or less
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to some extent and can run at a high speed. But hand-crafted features are usu-
ally specially designed for certain scenarios, so they are less accurate or robust
when faced with more complex scenarios, which can lead to tracking failure.
Recently, lots of trackers [4,21,23,24,27,28] based on deep learning methods
have been proposed and made a great progress in terms of accuracy and robust-
ness. These trackers all use features that extracted by Convolutional Neural
Networks (CNNs) as the representation of tracking target.

Apart from advantages of CNNs, there exist some thorny issues to handle
with. For example, a numerous amount of annotated samples are required for
supervised training of deep CNNs which have millions of parameters. And the
lack of training samples becomes more severe for online visual object tracking
since there is only one annotated sample provided in the first frame of each video.
What’s more, the computation of features extracted by CNNs is more complex
than hand-crafted features. Correlation filters, which transform convolution into
multiplication to accelerate processing speed, have been widely used in tracking
[5,10,24], but the desired output of correlation filters in these trackers are either
the same for all training samples or designed improperly which reduces the
correlation between filters and tracking targets.

In this paper, we divide tracking into two parts, one of them is target loca-
tion estimation, and the other is target scale estimation. Both of them are imple-
mented by correlation filters. On the training stage, we design the desired output
of correlation filters carefully to get more superior filters. The contributions of
this paper are summarized as follows: (i) we comprehensively analyze the diver-
sity of the features from different layers in a CNN as well as the difference
between hand-crafted features and the features extracted by CNNs. And we
design two correlation filters to utilize these features effectively; (ii) we proposed
a novel tracker based on these correlation filters for single-target tracking which
just need to update correlation filters dynamically instead of fine-tuning pre-
trained deep models. We conducted extensive experiments on OTB-15 bench-
mark [29] dataset and the results demonstrate that our algorithm outperforms
several state-of-the-art trackers.

The rest of this paper is organized as follows. Section 2 reviews related work
about our algorithm. Section 3 introduces our algorithm thoroughly and Sect. 4
represents the experimental results of our evaluation on different trakers. Finally,
Sect. 5 makes a conclusion on our work in this paper.

2 Related Work

The usage of features extracted by CNNs has shown great effectiveness for com-
puter vision tasks in recent years, such as segmentation [8], classification [20],
and gained considerable improvements. However, the computation complexity of
extracting these features is much higher than hand-crafted features, and some
scholars have done lots of research to improve computational efficiency. Correla-
tion filters, which have played a significant role in signal processing since the 80’s
[15,22] and solved myriad objective functions in the Fourier domain, are widely



318 Q. Liu et al.

used in visual tracking to speed up trackers owning to their high computational
efficiency.

In [6], Bolme et al. proposed a new type of correlation filter called Average
of Synthetic Exact Filters (ASEF), and performed well in some specific tasks
[6,7]. However, a large number of samples are required for the training of ASEF.
In the next year, Bolme et al. modified ASEF and proposed Minimum Output
Sum of Squared Error (MOSSE) filter for tracking [5], which achieved remark-
able performance at a high processing speed. Both ASEF and MOSSE filters
are single-channel correlation filters. Henriques et al. [14] proposed an analytic
model which is named KCF for datasets consisted of thousands of translated
patches using the concept of circulant matrices. For linear regression, this model
is equivalent to a correlation filter, but it is also suitable for non-linear regres-
sion. What’s more, KCF can be extend to multi-channel correlation filter. The
work in [19] also did some research on multi-channel correlation filters which
make it possible for correlation filters to be more widely used.

Danelljan et al. proposed a concise tracker called DSST [10] based on cor-
relation filters which inspired us to do our research. The highlight of DSST is
its approach for scale estimation. But according to our observation of DSST,
we found that the desired outputs of correlation filters are designed improp-
erly, which will be explained in detail in Sect. 3. The tracker HDT [24] exploits
features from different layers in a CNN by a correlation filter for localizing track-
ing target. But HDT is limited to only location estimation which leads to poor
performance in video sequences with severe scale variations. What’s more, the
desired output of correlation filter is fixed since the first frame, which worsen its
performance.

3 Tracking Based on CNN and Correlation Filters

Here, we will describe our algorithm TCCF (Tracking based on CNN and Cor-
relation Filters) thoroughly. Before that, we first introduce the features used for
target location estimation and scale estimation.

3.1 Feature Selection

Hand-crafted features, take HOG [9] features for example, do well in representing
the texture and edge of tracking target. As shown in Fig. 1, different targets
are all described clearly by HOG features1. But the drawback of hand-crafted
features is that they can not distinguish tracking target between objects that
are in the same category effectively (refer to the feature map locating at the
intersection of third row and second column).

Recently, some deep CNN models [20,25,26] trained on ImageNet [11] have
been widely used in many computer vision tasks and achieved great success.

1 The HOG feature map is visualized with the aid of Pitor’s Computer Vision Matlab
Toolbox: https://pdollar.github.io/toolbox/.

https://pdollar.github.io/toolbox/
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Fig. 1. Feature maps for different tracking targets. From left to right: the first column
are input images, the second one are visualized HOG feature maps, the rest are feature
maps extracted by VGG-16 from conv2-2, conv3-3 and conv4-3 layers respectively, and
the feature map from a layer presented here is the average of all channel feature maps.

The features extracted by CNNs are more discriminative than hand-crafted (refer
to Fig. 1). What’s more, features extracted by a CNN vary from layers to layers.
As shown in Fig. 1, shallower layers capture generic information of the target,
while deeper layers capture semantic information of the target. Wang et al. also
did some research on these differences between different layers [27].

Here, our tracking algorithm is divided into two parts, one of them is target
location estimation, and the other is target scale estimation. The two parts
are implemented independently. Since features extracted by CNNs can separate
target from background more effectively than hand-crafted features, and there
are some diversities between features from different layers, so they will be used
by a correlation filter to implement location estimation. Once the location of
tracking target is determined, hand-crafted (to be exact, HOG) features are
used by another correlation filter to complete scale estimation since they do
better in representing the texture and edge of target than features extracted by
CNNs.

3.2 Correlation Filters

The structure of our proposed method is shown in Fig. 2, tracking online is
divided into two parts here. Location Correlation Filter (LCF) is used for loca-
tion estimation, while Scale Correlation Filter (SCF) is used for scale estimation.
Both LCF and SCF are multi-channel correlation filters. Here, we make an intro-
duction to the multi-channel correlation filter used in our algorithm.

Let xt, which is a multi-channel signal, denote the features extracted from
the given training sample, yt denote the desired output of correlation filter
and f t denote the correlation filter we want to get. The upper case variants
Xt = F(xt), Y t = F(yt) and F t = F(f t), where F(·) denote the Discrete
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Fig. 2. The structure of TCCF.

Fourier Translation (DFT). yt is artificially pre-defined according to the specific
problem we are handling with. The correlation f t is an ensemble of C weak
filters, where C is the number of channels. In the Fourier domain, F t can be
computed by minimizing:

F t = arg min
F t

||Y t −
c=C∑

c=1

F t
c � Xt

c||2 + λ

c=C∑

c=1

||F t
c ||2 (1)

where the subscript index c denote the component in cth channel. The parameter
λ in the second term on the right is the regularizer and the symbol � denote
element-wise product. The solution to Eq. (1) is:

F t
c =

Y t � X̄t
c∑c=C

c=1 Xt
c � X̄t

c + λ
(2)

where the division is performed element-wise and X̄t
c denote the complex conju-

gation of Xt
c. Obviously, the first term in the denominator is the power spectrum

of xt. From Eq. (2) we can find that once the training sample xt and the regu-
larizer λ are determined, the filter is directly controlled by yt.

Given a testing sample t, we first transform it to the Fourier domain to obtain
T , then the response of t can be computed by:

r = F−1(
c=C∑

c=1

Tc � F t
c ) (3)

where F−1(·) is the inverse of DFT (IDFT).
In order to simplify our proposed model and reduce the cost of computation,

we adopt an incremental update method as other researchers do in [5,10,24],
which only use current frame to partially update previous correlation filters
when tracking online. Given the tth frame in a video sequence, let pt and st
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Fig. 3. Left: Average success plots of two trackers. Middle: Average success plots of
three trackers. Right: The curve between average success scores and standard deviation
of yt

s.

denote the position and size of target in this frame, which are predicted by the
tracker. F t is updated as follows:

F t
c =

At

Bt
=

(1 − η)At−1 + ηÂt

(1 − η)Bt−1 + ηB̂t
(4)

where

F̂ t
c =

Ât

B̂t
=

Y t � X̄t
c∑c=C

c=1 Xt
c � X̄t

c + λ
(5)

and the parameter η is the learning rate of correlation filters.

Location Correlation Filter: Since features extracted by a pre-trained CNN
are used in LCF, so xt and f t are three dimensional, which means xt, f t ∈
�M×N×C . Let yt

l ∈ �M×N denote the desired output of LCF and it is a 2-D
Gaussian shape distribution which is determined by the mean μt

l and standard
deviation δtl . Suppose features from K convolution layers are used in our algo-
rithm, there will be K independent correlation filters in LCF, which means:

LCF = {F k,t|k = 1, 2, . . . ,K} (6)

each F k,t has a weight wk, and
∑k=K

k=1 wk = 1. The location of target predicted
by F k,t is the coordinate (mk, nk) of the maximum value in rk. The ultimate
location of target is computed as follows:

(m,n) =
k=K∑

k=1

wk · (mk, nk) (7)

the symbol · denote the product of two scalars. Once the ultimate location of
target is predicted, there will be a loss between (mk, nk) and (m,n), which
implies the stability of F k,t. And the weight wk is updated according to the
stability of F k,t. Please refer to [24] for more information.
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Fig. 4. Qualitative results of the proposed TCCF tracker and other 9 trackers on a
subset of OTB-15 benchmark. From left to right and top to bottom: Basketball, Biker,
BlurOwl, CarDark, Bolt, Car1, RedTeam, Deer, Walking2, Human4, Singer2,
Surfer. Two frames of each video are presented here.

It should be noted that the mean of yt
l is set to 0 and the standard deviation

δtl is proportional to the target size st, i.e.:

δtl ∝ st (8)

which means the desired output yt
l of location correlation filter is controlled

by δtl and it is dynamically updated to adjust to the scale variation of target.
While in HDT [24] and DSST [10], the desired outputs of correlation filters are
fixed since the first frame in a video sequence, which has a negative impact
on the performance of trackers. Suppose we choose a reference system φ in the
image from the perspective of tracking target and the target make a translation
distance D in φ. Now we jump out of the image and choose a reference system φ′

in the screen from the respective of observer and the target make a translation
distance D′ in φ′. Since the location estimation is completed in φ′ and it’s a
common sense that the larger st is, the larger D′ will be when D is a constant
and vice versa, which means the location estimation is relevant to the size of
target.

Scale Correlation Filter: In order to implement scale estimation, we pre-
define a set of scale factors {αl = θ�L

2 �−l|l = 1, 2, . . . , L}, where θ > 1 is the step
for scale transformation. Given a training sample, we first extract L rectangles
of interest with the size αl · st, where st denote the size of target in this training
sample. Then we get a feature map M t ∈ �C×L from these rectangles of interest
with each collum in M t corresponding to one rectangle. Let xt

c ∈ �1×L denote
the cth row vector in M t, and yt

s denote the desired output of SCF, then SCF
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can be obtained by Eq. (2). yt
s is 1-D Gaussian shaped distribution with its mean

μt
s = 0. And the target size s′ in testing sample is determined by:

s′ = αi · st (9)

where αi is the scale factor and i is the index of the maximum value in the
response r.

Inspired by the effectiveness of dynamical update of yt
l , we keep yt

s dynami-
cally updated like Eq. (8), but experimental results demonstrate that the dynam-
ical update of yt

s reduces the performance of tracker which is opposite of what
we have expected.

Here we give an explanation. Unlike location estimation which is implemented
in φ′, the scale estimation is just to find an optimal scale factor αi which is
independent with φ and φ′. Since the scale variation between two consecutive
frames is small, which means the probability of severe scale variation between
two consecutive frames is much lower and vice versa, so yt

s is independent with
the size of target but relative to the number of scale factors L:

δts ∝ L (10)

Table 1. Average precision scores on different attributes: Illumination Variation (IV),
Occlusion (OCC), Deformation (DEF), Out-of-Plane Rotation (OPR), Background
Clutters (BC), Scale Variation (SV), Motion Blur (MB), Fast Motion (FM), Out-of-
View (OV), Low Resolution (LR), In-Plane Rotation (IPR).

Attributes
Trackers CSK Frag L1APG Staple DSST KCF FCNT HDT SiamFC STCT TCCF

IV 0.405 0.256 0.295 0.251 0.545 0.667 0.712 0.803 0.686 0.737 0.815
OCC 0.368 0.336 0.392 0.323 0.546 0.609 0.693 0.743 0.629 0.732 0.738
DEF 0.341 0.289 0.338 0.286 0.487 0.582 0.688 0.760 0.560 0.734 0.731
OPR 0.363 0.342 0.340 0.314 0.505 0.598 0.740 0.745 0.678 0.717 0.759
BC 0.460 0.317 0.366 0.308 0.565 0.623 0.689 0.766 0.635 0.762 0.797
SV 0.348 0.306 0.347 0.298 0.567 0.568 0.709 0.787 0.717 0.761 0.755
MB 0.325 0.302 0.342 0.247 0.670 0.573 0.698 0.780 0.703 0.768 0.757
FM 0.302 0.321 0.317 0.279 0.630 0.529 0.635 0.763 0.697 0.719 0.745
OV 0.252 0.330 0.350 0.207 0.475 0.441 0.635 0.651 0.688 0.594 0.611
LR 0.380 0.306 0.409 0.360 0.509 0.558 0.716 0.756 0.859 0.741 0.805
IPR 0.389 0.320 0.405 0.329 0.566 0.587 0.763 0.803 0.697 0.705 0.753

Overall 0.406 0.342 0.392 0.328 0.579 0.611 0.742 0.804 0.693 0.770 0.796

4 Experiments

The proposed algorithm is implemented in MATLAB with Caffe framework [18]
and runs at 3.5 fps on a Ubuntu 14.04.3 machine with a 3.0 GHz Intel i7-5960x
CPU and a Nvidia GM2000 TITAN X GPU. The VGG-16 is used as the pre-
trained CNN in our experiments, and the last 6 convolutional layers are used
to extract features. We use L = 33 and θ = 1.02 for scale estimation. And the
learning rate η is set to 0.00902.
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We use one-passe-evaluation (OPE) metric on the first 50 video sequences
in OTB-15 benchmark [29] to evaluate different trackers. According to different
challenging factors, such as illumination variation, occlusion, deformation and
so on, there are 11 attributes tagged to these video sequences, which make it
possible to evaluate these trackers thoroughly.

Inspired by DSST [10], we first construct two naive trackers TCCFn1 and
TCCFn2 based on LCF to illustrate the effectiveness of the dynamical update
of yt

l . The yt
l in TCCFn1 is fixed since the first frame, and the yt

l in TCCFn2
is dynamically updated according to Eq. (8). As shown on the left in Fig. 3,
there are 1.2% improvements in TCCFn2 which demonstrates the effectiveness
of dynamical update of yt

l . We also construct another tracker TCCFn3 where
the yt

l and yt
s both are dynamically updated. The success scores of TCCFn2

and TCCFn3 are shown in the middle in Fig. 3, from where we can figure out
that the dynamical update of yt

s reduces the performance of tracker. To find
the optimal yt

s according to Eq. (10), we conduct extensive experiments using
variable-controlling method and get a graphic which is shown on the right in
Fig. 3, from where we find the optimal standard deviation of yt

s and then we
construct the optimal tracker TCCF as depicted in the middle in Fig. 3.

We compare our proposed TCCF tracker with other ten trackers, CSK [13],
Frag [1], L1APG [2], Staple [3], DSST [10], KCF [14], FCNT [27], HDT [24],
SiamFC [4], STCT [28]. And We do qualitative and quantitative evaluation on
these trackers. Among them, qualitative results are shown in Fig. 4, from where
we can figure out that our approach efficiently handles some challenging factors,
such as deformation, motion blur, scale variation, background cluster and so on.
Quantitative results are shown in Tables 1 and 2. We compared these trackers
for every attribute. In Table 1, all the values are obtained at the threshold of
20 pixels. In Table 2, all the values are computed using the metric AUC (Area
Under Curve). The first, second and third best trackers are highlighted in red,
green and blue, respectively. From Tables 1 and 2, we can find that our TCCF
performs well in different attributes, which demonstrates the effectiveness of our
correlation filters.

We also use the precision and success plots to evaluate all trackers in Fig. 5.
The precision plots demonstrate the percentage of frames where the distance
between the ground truth center of target and the predicted center of target
is within a given threshold. The success plots demonstrate the percentage of
frames where the overlap ratio between the ground truth bounding box and the
predicted bounding box is higher than a given threshold. Comparing TCCF with
DSST, we can figure out that there are 21.7% and 15.2% improvements in the
precision and success scores. While compared with STCT, TCCF gets 2.6% and
0.6% improvements in the precision and success scores. When comparing TCCF
with HDT, although HDT gets 0.8% improvements in the precision scores, TCCF
gets 5.9% improvements in the success scores. The plots in Fig. 5 demonstrate
that our TCCF tracker achieves the best overall performance than other trackers.
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Table 2. Average success scores on different attributes: Illumination Variation (IV),
Occlusion (OCC), Deformation (DEF), Out-of-Plane Rotation (OPR), Background
Clutters (BC), Scale Variation (SV), Motion Blur (MB), Fast Motion (FM), Out-of-
View (OV), Low Resolution (LR), In-Plane Rotation (IPR).

Attributes
Trackers CSK Frag L1APG Staple DSST KCF FCNT HDT SiamFC STCT TCCF

IV 0.318 0.201 0.235 0.172 0.399 0.433 0.486 0.500 0.484 0.570 0.587
OCC 0.269 0.252 0.277 0.190 0.377 0.396 0.473 0.486 0.458 0.514 0.510
DEF 0.267 0.235 0.248 0.178 0.357 0.400 0.482 0.487 0.407 0.544 0.506
OPR 0.271 0.261 0.248 0.197 0.355 0.396 0.503 0.486 0.487 0.513 0.532
BC 0.344 0.246 0.294 0.215 0.416 0.417 0.474 0.501 0.466 0.579 0.574
SV 0.266 0.238 0.253 0.192 0.402 0.352 0.474 0.479 0.528 0.545 0.541
MB 0.274 0.265 0.263 0.196 0.495 0.395 0.505 0.524 0.536 0.587 0.571
FM 0.257 0.268 0.252 0.202 0.477 0.370 0.469 0.510 0.536 0.553 0.557
OV 0.214 0.258 0.253 0.146 0.365 0.327 0.459 0.441 0.509 0.455 0.457
LR 0.242 0.201 0.267 0.217 0.308 0.297 0.415 0.415 0.616 0.491 0.568
IPR 0.296 0.265 0.305 0.216 0.397 0.389 0.519 0.523 0.519 0.507 0.552

Overall 0.310 0.265 0.292 0.200 0.421 0.403 0.508 0.514 0.509 0.567 0.573
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Fig. 5. Average precision plots and success plots of different trackers tested over 50
video sequences. On the left, trackers are ranked according to the precision score at the
threshold of 20 pixels. On the right, trackers are ranked according to the area under
curve.

5 Conclusion

In this paper, we proposed a novel algorithm for online visual object tracking
based on CNN and correlation filters (TCCF). The pre-trained VGG-16 [25] is
the only one CNN used in our algorithm and it is kept fixed when tracking online,
so the algorithm just need to update correlation filters dynamically instead of
fine-tuning pre-trained deep models, which means the structure of our algorithm
is simple and compact. TCCF is consisted with two separate component entities:
location estimation and scale estimation. Both of them are implemented by cor-
relation filters independently while using different feature representations. The
results of extensive experiments demonstrate that our algorithm outperform the
state-of-the-art by a great margin in terms of accuracy and robustness.
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