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Abstract. Recently, deep learning methods have been introduced to the
field of visual tracking and gain promising results due to the property
of complicated feature. However existing deep learning trackers use pre-
trained convolution layers which is discriminative to specific object. Such
layers would easily make trackers over-fitted and insensitive to object
deformation, which makes tracker a good locator but not a good scale
estimator. In this paper, we propose deep scale feature and an algo-
rithm for robust visual tracking. In our method, object scale estimator is
made from lower layers from deep neural network and we add a specially
trained mask after convolution layers, which filters out potential noise
in this tracking sequence. Then, the scale estimator is integrated into
a tracking framework combined with locator made from powerful deep
learning classifier. Furthermore, inspired by correlation filter trackers, we
propose an online update algorithm to make our tracker consistent with
changing object in tracking video. Experimental results on various pub-
lic challenging tracking sequences show that our proposed framework is
effective and produce state-of-art tracking performance.

1 Introduction

Visual tracking plays one of the most fundamental role in the field of computer
vision, due to it has wide range of applications, such as safety surveillance, intelli-
gent city system and vision-based self-driving cars. Visual tracking is model-free,
which means given a bounding box of target in the first frame, the tracker would
estimate its position and scale in the next frames of video with none prior knowl-
edge related to this sequence. It lacks training samples and every sequence is of
great difference. Although visual tracking has been researched for years, it still
has a lot of challenging problems need solve, including occlusion, scale variation,
illumination change and object deformation [27].

Object tracking algorithms are of two categories: generative and discrimi-
native. Generative algorithms learn a high-dimension feature space to describe
target and locate the target by minimizing the reconstruction error in thou-
sands of potential regions. Discriminative algorithm builds a metric to minimize
the distance between target in consequence frames and target in the first frame
and maximize the distance between target and background. These approaches
have been developed to gain better performance. However, classical methods
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utilize artificial features, such as Histogram of oriented gradients (HoG) [4],
Local binary patterns (LBP) [18] to describe texture information, or appearance
model. These features cannot represent complicated structure and show deeper
information of object and background.

Convolutional Neural Network (CNN), which could learn sophisticated fea-
tures from original image data, has been adopted in tracking as well. Inspired
by transfer learning [19] used in other computer vision field, for example, object
detection [8,21] and semantic segmentation [17], they transfer convolutional lay-
ers pre-trained at ILSVRC2012 ImageNet [16] classification dataset. These pre-
trained layers have excellent ability of generalization and relieve the lack of
training sample in tracking partly.

Those aforementioned trackers, which use highly-deep convolution layers,
simply ignore the lack of training samples in model-free tracking. Since the out-
put of deep convolution layers is quite sparse and overfitted to some parts of
target, these features might not suit to scale estimate job. It is quite straight-
forward for us to get features from shallow layers to estimate the current target
scale. But, this raises another problem, that shallower layers mean more noise
from background and such noise would interfere the scale estimator. So we need
learn a mask after the shallow network and filter out noise from background.

In this paper, we propose a tracking framework based on deep scale fea-
ture (DSF), which consists of two parts. One based on deeper CNN decides the
center of current target at current time. The other one based on shallow CNN
learns the target appearance and generates estimation to object size. Recent
deep learning trackers usually has only one network and ignore the immanent
contradiction between two different tasks, locator and scale estimator. Because,
the scale estimation task requires the net sensitive to appearance change, while
locator demands invariance feature. Different from these approaches, the locator
of our method is relived from the task of estimating the scale variance and built
from deeper networks. On the other hand, the scale estimator is not that deep.

The contribution of our method can be summarised as:

(1) We propose a self-learnt mask algorithm and deep scale feature to describe
the appearance model of target.

(2) We propose a visual tracking framework consisting of two neural networks,
which has state-of -art performance.

The rest of the paper is organised as follows. In Sect. 2, we first review related
work. The details of the proposed method are illustrated in Sect. 3. In Sect. 4, we
would presents and discuss the experimental results on a tracking benchmark.
Section 5 provides conclusions.

2 Related Work

Widely used tracking-by-detection [15] framework consists of two models:
appearance model to tell the target shape and motion model to tell the center of
target. There are two kinds of appearance model, generative and discriminative.
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Generative model mainly focuses on reconstruction error of target candidates.
These methods utilizes raw pixel information [1] or sparse subspace [13] to
describe the appearance model. Discriminative model finds the most discrimina-
tive feature to distinguish object from background. Online learning framework
based on structured SVM [10], multiple instance learning [2] and correlation
filters [5,7] are adopted and they performs better than generation models. DCF-
based tracker initially uses low level feature, such as HOG feature [5]. Resent
DCF-based trackers [6] utilize CNN as robust feature extractor. [5] proposes an
algorithm to estimate the scale changes based on the Gaussian model and [24]
reimplements it by deep features.

As the development of hardware, plenty of algorithms of computer vision
have been invented based on neural network. So do they in model-free tracking.
In [9], two-stream structure is proposed to build a classifier-based tracker. Pre-
trained on auxiliary images, [26] presents an auto-encoder tracker. To reduce
over-fitting, [24] uses a complicated sequential ensemble learning strategy. [20]
tries to use multi-level feature from stacks of convolutional networks (Fig. 1).

Fig. 1. The structure of proposed algorithm. Our algorithm consists of three main
steps: (1) extract robust features from convolutional layers; (2) detect the object center;
(3) estimate the scale change

3 Proposed Method

3.1 Deep Network Output When Tracking

Before describing the details of proposed deep scale feature tracker, we first
analyse output of deep convolution layers in the field of tracking. When a deep
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convolution network, like VGG [22] or ResNet [11], tries to classify an object,
it first uses its convolution kernels to slide across the object and produces heat
maps indicating what kernels response to this structure. After the last convo-
lutional layer, VGG would connect all its heat map unit to all the unit of fully
connection layer to learn every unit’s contribution to the final decision. However,
as described in [25], if we transfer these layers to tracking jobs, the most neurons
of last convolution layer are nearly zero. These neurons are highly sparse and
discriminative to specific object. Since max pooling layer is partly shift invari-
ance, these sparse activated neurons might not change much when object varies
in scale. Therefore, we should remove some max pooling layers, and choose fea-
ture extractor not quite deep. Thus, we choose layers before conv4 3 of VGG as
base feature extractor.

On the other side, deeper convolution layer has more semantic information
in object categories, the shallower layer has more structure information in tex-
ture. These inactivated or dead neurons of shallow layer however, might become
activated when object is occluded by background or new object, which has simi-
lar texture structure, appears in the receptive field. These unexpected activated
neurons would interfere scale estimator. We should learn a mask to shut down
these potential noisy neurons.

3.2 Deep Feature Mask

As mentioned before, we should find those potential noisy deep feature from
512 channels of conv4 3 layer. Simply speaking, the self-learnt mask should dis-
able those neurons which output similar pattern activations between object and
background. Because we would append several layers after conv4 3 to estimate
current scale. As a result, we should take the discriminative ability of newly
appended layers. So the simplest way of disabling those sensitive to everything
neurons is not our choice. This is because, these neurons might output easy-to-
distinguish pattern between object and background. Inspired by [25], the pro-
posed deep mask method is based on a target heat map regression model. This
model is conducted on conv4 3 layers of VGG and consists of a convolutional
layer without any nonlinear activation layer. It takes the feature maps of conv4 3
to be masked as input to predict the target heat map g, which is a compact 2-D
centeredtarget of ground truth as used in [5]. The model is trained by minimizing
the following loss function:

L = ‖G(Ft) − g‖2 + λΣ‖w‖2 (1)

G function is the newly added layers. If fed with the feature maps F of conv4 3
of whole frame at the time, it would produce a 2-D heat map. The parameter λ
balances importance of L2 loss and regularization term.

After back-propagation converges, we select the feature maps according to
their output at the location of object and background. If fi represents the i-th
feature maps F of conv4 3, the heat map difference can be computed by masked
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out the i-th feature map Ĝi then minus g. Then we define the importance Ii of
the element fi as its difference with target map and can be computed as follows:

Ii = ‖Ĝi − g‖2 (2)

All the 512 feature maps are sorted in the descending order by their impor-
tance. The K selected feature maps have the top-K importance others are masked
out. In our experiments, we choose 300 as K and only do mask learning at the
first frame and tracker performs quite well.

3.3 Deep Scale Feature

The proposed deep scale feature is based on conv4 3 from VGG with deep feature
mask, which simultaneously sense more low-level information and avoid possible
noisy from similar object categories. Next, we would describe the scale estimator
and how it works.

The scale estimator is constructed on top of conv4 3 layers with learnt mask
and consists of a fully-connected layer with one neuron, which produces the scale
variance factor. At the first frame, after mask has been built, we crop the object
rectangle in different sizes with a step of 1.02 as suggested in [5]. Then, the scale
estimator is trained with these feature map from different size with stochastic
gradient descent (SGD) algorithm.

When tracking, the tracker firstly uses locator to determine current center
and crop rectangle area around object with size of last frame. Secondly, the
cropped image patch is interfered by scale estimator and update the scale coef-
ficient accordingly. Since target could change a lot in the same sequence, the
tracker would update scale estimator periodically.

3.4 Locator Construction

According to foremost analysis, the locator should use such features as discrimi-
native as possible. Therefore, we choose one of the best CNN classifiers as feature
extractor. The locator is based on the Res4a layers of ResNet-51, then add two
convolutional layers and one rectifier activation between them.

We follow the approach of discriminative correlation filter to train our model,
which is trained by minimizing the following loss function:

L = ‖F (I) − g‖2 + λΣ‖w‖2 (3)

F function is the position-CNN. If fed with image patch I, it would produce
a 2-D heat map. g is the target heat map which has a compact 2-D Gaussian
shaped peak centerred at the center. The parameter λ balances importance of
L2 loss and regularization term. At the first frame, in order to learn context
information around the object, we crop rectangle two times larger than ground
truth bounding box and modify target heat map g accordingly.

During tracking, image patch around last position is input into locator and
we get the current object center which has the largest confidence in the heat
map. The locator parameters are updated in the same way as scale estimator.
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3.5 Tracking Algorithm

Algorithm 1. Deep scale feature tracking algorithm
Input: The initial bounding box bbox1
Output: current bounding box bboxt
1: Initialize mask with Eq. (1) and Eq. (2)
2: Initialize locator and scale estimator
3: repeat
4: Crop region It centered at last location and two time larger in size
5: Use locator to estimate current center centert of target.
6: if confidence higher than threshold then
7: Crop region I

′
t centered at centert with the same size as It .Pass I

′
t through

scale estimator, produce current scale factor
8: Update object location
9: else

10: current location equals last location
11: end if
12: if location changes and tracker has process 10 frames then
13: Update locator and scale estimator
14: end if
15: until The sequence ends

Overview. The overall tracking procedure is presented in Algorithm 1.

Tracking and Update. We use locator to get the center of object, while use
scale estimator to track scale variance. Assuming heat map of locator is current
possibility distribution and the confidence of each candidates equals the value of
heat map. And we find the maximum confidence and convert relative position
to pixel position.

To balance periodic update and poorly samples, we propose one update cri-
teria: high locator confidence. The criteria is measured by ways as in [25], we
treat the maximum heat map value as current confidence. If it is less than a
threshold 0.1, we would stop parameter update. Once scale or size needs update,
they vary by one step (1.02 for scale and ratio).

4 Experiment

4.1 Experiment Setup

The proposed framework is implemented in Caffe [14] with MATLAB R2016a
and runs at 0.5 frames per second. Our tracker runs on a PC with 3.0 GHz i7-
X5960 CPU and TITAN X GPU. All of networks are trained with SGD solver
at learning rate 1e−7 with momentum of 0.9.

Our tracker is evaluated on 12 public challenging video sequences, contain-
ing plenty sort of challenging factors, such as fast motion, scale and illumina-
tion change, background clutter and object occlusion. We compare our tracker
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result with 10 state-of-art trackers, consisting of 4 deep learning based trackers,
including FCNT [25], SiamFC [3], SINT [23], STCT [24], 3 DCF-based trackers,
including SRDCF [7], DeepSRDCF [6], HDT [20] and 3 classic trackers, includ-
ing Struck [10], MEEM [28], MUSTer [12]. For the fairness, we adopt the source
codes or result files provided by the authors.

4.2 Experiment Result

Two common used metrics are applied for quantitative evaluation: Central Loca-
tion Error (CLE) and Overlap Rate (OR). CLE is defined as the Euclidean dis-
tance between center of BboxG and BboxT , where BboxG is the ground-truth
bounding box and BboxT is the bounding box produced by trackers. OR is
defined as OR = BboxT∩BboxG

BboxT∪BboxG
.

Quantitative Evaluation. We use the precision plot and the success plot, as
shown in Fig. 2, to evaluate average performance of trackers on every sequence.
The precision plot demonstrates the percentage of frames where the distance
between the predicted target location and the ground truth location is within
a given threshold. Whereas the success plot illustrates the percentage of frames
where OR between the predicted bounding box and the ground truth bounding
box is higher than a threshold. The area under curve (AUC) is used to rank
the tracking algorithms in each plot. As shown in Fig. 2 and Tables 1 and 2,
our method achieves the superior performance in terms of both evaluation met-
rics compared to state-of-art trackers. Especially, STCT tracker utilizes similar
structure as proposed algorithm, but STCT does not consider deep feature mask
at scale and uses highly sophisticated framework compared to proposed method.
If we exam those not-well-performed sequences, we would some common prop-
erties, like out-of-plane rotation in Coke, shape deformation in Basketball and
similar object in Car4 and Deer. These factors undermine the power of CNN
feature to estimate scale, which is complicated 2-D coarse-grained feature and
cannot handle 3-D and fine-grained changes well.

(a) Precision plots of OPE (b) Success plots of OPE

Fig. 2. Result curve
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Table 1. Comparison of 11 trackers on 12 video sequences in terms of central location
error (in pixels). Red fonts indicate the best performance while the blue fonts indicate
the second best.

FCNT SRDCF SiamFC MEEM SINT Struck HDT MUSTer DeepSRDCF STCT DSF

Deer 7.7 4.0 5.5 4.5 5.3 5.3 5.1 7.2 4.6 4.3 4.8

Basketball 10.3 10.8 22.9 8.5 19.1 118.3 3.3 4.8 19.8 3.9 5.3

Car4 4.7 1.7 5.6 18.0 3.3 8.7 7.4 1.9 1.8 2.7 5.3

Coke 11.0 18.9 11.3 11.0 7.5 12.1 10.2 15.1 14.9 15.1 13.4

FaceOcc1 22.3 14.8 11.7 16.4 13.8 18.8 17.4 14.3 12.9 18.3 19.2

Football 8.6 5.7 6.3 88.9 210.9 17.3 5.8 14.8 6.2 7.4 6.8

Jogging-2 15.3 3.7 6.1 8.2 4.1 107.7 2.9 4.8 5.7 6.4 2.8

Woman 9.5 4.8 14.9 4.1 11.1 4.2 10.9 9.4 3.7 8.6 3.5

CarScale 10.6 19.7 15.4 30.1 31.5 36.4 29.9 18.7 25.2 15.2 15.3

Subway 5.1 2.6 3.3 4.1 3.6 4.5 2.6 2.2 3.0 3.0 2.4

MountainBike 6.4 9.0 6.1 13.2 10.3 8.6 8.4 8.1 9.7 12.6 7.2

MotorRolling 12.5 247.1 87.9 170.9 24.0 145.7 14.1 110.4 200.8 18.2 17.1

Avg 10.3 28.6 16.4 31.5 28.7 40.6 9.8 17.6 25.7 9.6 8.6

Table 2. Average overlap rate. Red fonts indicate the best performance while the blue
fonts indicate the second best.

FCNT SRDCF SiamFC MEEM SINT Struck HDT MUSTer DeepSRDCF STCT DSF

Deer 0.71 0.81 0.73 0.75 0.71 0.74 0.75 0.75 0.77 0.76 0.75

Basketball 0.67 0.53 0.57 0.66 0.64 0.20 0.85 0.75 0.39 0.78 0.71

Car4 0.82 0.87 0.78 0.46 0.78 0.49 0.49 0.90 0.88 0.84 0.75

Coke 0.66 0.51 0.58 0.65 0.63 0.67 0.65 0.52 0.52 0.56 0.54

FaceOcc1 0.64 0.76 0.76 0.75 0.75 0.73 0.74 0.76 0.79 0.71 0.77

Football 0.56 0.66 0.70 0.34 0.14 0.53 0.68 0.54 0.65 0.61 0.69

Jogging-2 0.67 0.71 0.70 0.63 0.75 0.20 0.79 0.75 0.60 0.74 0.78

Woman 0.69 0.67 0.54 0.71 0.62 0.73 0.74 0.69 0.72 0.67 0.64

CarScale 0.52 0.73 0.69 0.41 0.54 0.41 0.41 0.68 0.69 0.72 0.74

Subway 0.63 0.76 0.75 0.68 0.68 0.65 0.76 0.72 0.73 0.75 0.79

MountainBike 0.77 0.69 0.76 0.60 0.63 0.71 0.70 0.73 0.69 0.61 0.78

MotorRolling 0.58 0.09 0.37 0.10 0.52 0.15 0.52 0.29 0.10 0.51 0.56

Avg 0.66 0.65 0.66 0.56 0.62 0.52 0.67 0.67 0.63 0.69 0.70

5 Conclusion

In this paper, we have proposed a robust tracking framework based on deep
scale feature. To make the tracker sensitive to scale variance and robust against
noises, a type of mask is learnt from the first frame and is used to filter out
potential noisy feature maps. To estimate current scale factor, we train a fully-
connected layer with one neuron right after masked feature map. Last but not
least, a periodic update scheme is proposed to trade off between poorly tracking
result and object changes. We have tested out method on 12 different challenging
sequences and experiment results show the superiority of proposed algorithm
compared to 10 state-of-art trackers.
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