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Abstract. We study the problem of content-based image retrieval using
hand drawn sketches. The problem is very challenging since the low-level
visual features of sketch and image have a large variance. Recent stud-
ies show that learning deep features that utilize high-level supervision
is a feasible solution of this problem. We propose a new network struc-
ture with a joint loss by combining a simple classification loss with a
robust histogram loss to learn better deep features for both sketch and
image. The joint loss method has nearly no parameters to tune; it can
not only learn the difference between image/sketch samples from differ-
ent semantic class but also capture the fine-grained similarity between
image/sketch samples in the same semantic class. In the experiments, we
show the proposed method obtains excellent performance in real-time on
the standard sketch-based image retrieval benchmark.
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1 Introduction

Sketch-based image retrieval (SBIR) is an important problem that is attrac-
tive in both computer vision and computer graphics. In computer vision, sketch
and image have different low-level visual cues; finding visual representation or
designing a computer vision system to match sketch and image is a meaning-
ful research topic. In computer graphics, sketch-based image retrieval has many
fancy applications, such as MindFinder1, shoe search, furniture design [1]. Thus,
it is important to find a robust method to solve this problem.

Before the era of deep learning, there are two popular methods for SBIR.
The first one is to extract sketch/edge from the image, and then perform sketch
to image retrieval by shape matching methods. The second one is to extract
local image descriptors and encode the image descriptors to generate a vector
representation of both image and sketch. The local image descriptors can be
SIFT [2] or HOG [3]. But these methods are not robust enough since the variation
measured by the low-level visual features between image and sketch is so large.
1 http://research.microsoft.com/en-us/projects/mindfinder.
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Deep learning is more robust for this problem because it produces high-level
semantic features. But the conventional deep features are not suitable for the
sketch-based image retrieval task, such as the deep feature of AlexNet [4] trained
in the ImageNet dataset [5]. Deep features for SBIR are learned from sketch and
image data with instance-level or category-level annotations. Wang et al. firstly
proposed a sketch-image dataset that contains category-level annotations in [6];
then Yu et al. proposed a sketch-image dataset with instance-level annotations
in [1]. Using these annotations, the deep network for SBIR is trained using the
batch contains both sketches and images; classification loss and triplet loss are
utilized by [1,6] respectively. In this paper, we develop a new deep network
structure that takes the advantages of both [1,6]; the network is supervised
by both classification loss and embedding loss; furthermore, we adopt a more
advanced embedding loss named histogram loss - it has nearly no parameters
to tune and achieves excellent performance. The histogram loss is recently pro-
posed in [7]; when training the network, histogram loss computes two similarity
distributions for positive similarities and negative similarities respectively; the
positive similarity means the similarity between two training samples from the
same class, and the negative similarity means the similarity between two training
samples from different classes; in the end, the histogram loss minimizes the inter-
section between the positive similarity distribution and the negative similarity
distribution.

In the experiments, we validate the proposed method on the standard SBIR
benchmark, i.e., M.Eitz-SBIR dataset [8]. The experimental results show that
the joint loss function outperforms each of the individual loss, and the proposed
deep feature obtains the state-of-the-art performance on this benchmark.

2 Related Work

Since there are more and more tablets and smart phones with pen as input,
it is much easier for people to show his idea using sketch. Recognizing sketch
is becoming more important in many AI applications. Previous SBIR meth-
ods can be divided into three folds: (1) SBIR using shape matching methods
aims on matching the query sketch to the edge map of natural image, such as
[9–13]. (2) SBIR using image descriptors, such as SIFT [14] and the dense stroke
feature [15], and typically a bag of word model is adopted to aggregate the image
descriptors into a compact representation for both sketch and image. (3) SBIR
using deep learning features, which use supervised deep convolutional neural
networks to learn representations for sketch and image, such as [6,16–18]. In
detail, the contrastive loss [16,17] is used for sketch to 3D shape retrieval and
sketch to image retrieval in [18,19] respectively. In [6], classification loss is used
to learn deep representation, and it needs a balanced number of training data
for each category. In [1], triplet loss is used since for each instance there is a
limited number of training samples. Our work includes both classification loss
and histogram loss [7] which is suitable for a small number of training samples
per category.
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Learning deep embeddings is widely used in many visual applications beyond
of SBIR, for example, face recognition, person re-identification, fine-grained
recognition, online product search etc. The histogram loss method [7] adopted
has been proven to be more powerful than triplet loss [20,21] and the lifted
structure similarity softmax (LSSS) loss [22].

3 Methodology

In this section, we give detailed descriptions of the proposed method for SBIR.
Inspired by the histogram loss method in [7], our method estimates two distribu-
tions of similarities for a pair of positive and negative samples, then minimizes
the probability of the case that the similarity score in a positive pair is lower
than that in a random negative pair. We follow the trend of recent work which
utilizes the CNN model combines it with the classification loss and the histogram
loss to learn a cross-domain embedded feature [1,6,18,19,23].

3.1 Network Architecture

Given a query sketch s and a set of candidate nature images {pj}M
j=1 ∈ P , SBIR

focuses on computing the similarity between s and p. We use deep CNN model
as feature extractor for both s and p. Without loss of generality, we denote the
CNN feature extractor as fθ(·).

Due to the semantic gap between nature images and sketches, it is difficult
to train a CNN model which works well in both sketch and image domains. In
recent work, [18,23] focused on using a network with heterogeneous branches
for the two domains, whereas [1,19] trained a network with multiple identity
branches for free-hand sketches and edge maps extracted from nature images by
the structural edge detector [24]. Unlike the previous works, we propose to learn
deeply embedded features that represent both nature images and sketches well.

TU-Berlin dataset [14] is a widely-used sketch dataset containing 20,000
sketches, and HUST SI dataset [6] is composed of 31,824 nature images from
the web. We extract edge maps from these nature images by using the edge
detector in [24]. Then we obtain a mixed dataset with 20,000 sketches, 31,824
nature images, and 31,824 edge maps from nature images to train our model.

Deep models have the ability to learn high-level descriptions for input data.
Here AlexNet [4], which is trained in the ImageNet dataset [5] consisting of 1, 000
common object images, is adopted as our pre-trained model. Different from [6],
we not only use the traditional ‘softmax’ classification loss but also adopt the
histogram loss that encourages our model to be more sensitive to fine-grained
sketch-to-image similarities. The framework is illustrated in Fig. 1.

3.2 Classification Loss

We define a batch of examples as X = {x1, x2, . . . , xn} and a deep convolutional
network as fθ(·), where θ represents learnable parameters of the network. As our
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Fig. 1. The proposed deep convolutional network supervised by the classification loss
and the histogram loss.

training dataset is composed of C common categories, the embedded features
{fθ(xi)} can be classified by a fully-connected layer (we can regard it as a clas-
sifier) with C neurons. The output of the fully-connected layer zi is fed into a
C-way softmax layer which produces a distribution yi over the C class in Eq. (2).
The classification loss LC over a batch of n examples can be calculated as in
Eq. (1), where ti is the class label of ith example.

Lc(T, Y ) = −
n∑

i=1

Lc(ti, yi) = −
n∑

i=1

C∑

c=1

tic log(yic) (1)

yic = softmax(zic) =
ezij

∑C
t=1 ezit

(2)

3.3 Histogram Loss

Histogram loss is inspired by the Quadruplet-based loss [25,26] which computes
similarities/distances of positive pairs and negative pairs. However, the potential
problem of the quadruplet-based loss is that there are an even larger number
of all quadruplets than of all triplets for large-scale training dataset, leading to
rare usage of this loss. As a consequence, [7] proposed a histogram loss which
is regarded as an efficient quadruplet-based loss and almost in a parameter-free
manner.

We use fθ(·) to convert the input samples X = {x1, x2, . . . , xn} to the embed-
ded features {fθ(xi)}. After performing L2-normalization, the embedded fea-
tures can be represented as {f̂θ(xi)}. We match elements to each other to form

a dense similarity matrix S = {sij =
〈

f̂θ(xi), f̂θ(xj)
〉

}, which shows how similar

they are. And the label mij ∈ {+1,−1} indicates whether xi and xj is similar
(from the same class) or not. Two similarity sets S+ = {sij |mij = +1} and
S− = {sij |mij = −1} for positive and negative pairs are aggregated to estimate
the probability distributions p+ and p−, respectively. In addition, the elements
of two sets are bounded to [−1;+1] for the sake of task simplification. By this
means, we can acquire two distributions and convert them to R-dimensional his-
tograms H+ and H− with uniformly spaced bins (the step of bins Δ is 2

R−1 ).
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The rth bin h+
r of the histogram H+ is computed as in Eq. (3).

h+
r =

1
|S+|

∑

(i,j):mij=+1

δi,j,r (3)

where (i, j) is a positive pair in the batch and δi,j,r can be assigned as in Eq. (4).

δi,j,r =

⎧
⎪⎨

⎪⎩

(sij − tr−1)/Δ, if sij ∈ [tr−1; tr],
(tr+1 − sij)/Δ, if sij ∈ [tr; tr+1],
0, otherwise

(4)

Meanwhile, H− is estimated in the same way.
Consequently, we employ two distributions p+ and p− to calculate the prob-

ability of the case that the similarity score in a random negative pair is higher
than that in a random positive pair, and it can be represented as in Eq. (5).

Lh(X) =
R∑

r=1

(h−
r

r∑

q=1

h+
q ) (5)

where Lh is our histogram loss for the batch X.

3.4 Optimization

We adopt the joint supervision of the classification loss Lc and the histogram
loss Lh for learning deep features. The formulation is given in Eq. (6).

L = Lc + Lh (6)

In order to optimize this network, it is crucial to update weights of this
proposed network. Indeed, it is easy to do the back-propagation of classification
loss. Here, the gradients of the histogram loss Lc with respect to h+

r and h−
r are

computed in Eq. (7):
∂Lh

∂h+
r

=
∑r

q=1 h+
q

∂Lh

∂h−
r

=
∑r

q=1 h−
q

(7)

Furthermore, the back-propagation gradients for similarities sij can be derived
as shown in Eq. (8).

∂h+
r

∂sij
=

⎧
⎪⎨

⎪⎩

+1
Δ|S+| , if sij ∈ [tr−1; tr],

−1
Δ|S−| , if sij ∈ [tr; tr+1],

0, otherwise,

(8)

For ∂h−
r

∂sij
, it is computed in a similar way. Finally, given ∂sij

∂f̂θ(xi)
= f̂θ(xj) and

∂sij

∂f̂θ(xj)
= f̂θ(xi), the loss can be back-propagated to the individual samples, and

then further into the deep embedding network.
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4 Experiment

In this section, we perform experiments to test the proposed method on the task
of SBIR and compare it to the previous methods.

4.1 Dataset

TU-Berlin dataset [14] has 20,000 non-expert sketches, divided into 250 common
object categories, e.g., bicycle, car. In each category, there are 80 sketches of
1111 × 1111 size are drawn by the human.

HUST SI dataset [6] contains 31,824 nature images of 250 categories, cor-
responding to TU-Berlin sketch classes. For each category, there are at least 80
nature images in various sizes.

M.Eitz-SBIR [8] dataset is the retrieval set. This dataset contains 31 sketches
and each sketch is associated with 40 nature images. We query a sketch in
its 40 related nature images and obtain a ranking list of the nature images.
And we compute the Kendall’s rank correlation coefficient [8] to evaluate the
performance of the proposed method. This evaluation criteria will be briefly
reviewed in Sect. 4.3.

In order to learn deep features suitable for sketches and nature images, we
combine TU-Berlin, HUST SI, and edge maps of HUST SI as mixed training
data. M.Eitz-SBIR dataset is served as the retrieval dataset.

4.2 Experimental Settings

Our deep learning model is based on a widely used pre-trained model AlexNet
[4], which is designed for 1000 common object categories of the ImageNet classi-
fication task [5]. AlexNet contains 8 layers: the first five ones are convolutional
layers and the remaining layers are fully-connected layers. Each convolutional
layer is followed by a ReLU layer, and some of them are also followed by a local
normalization layer and max-pooling layer. The 6th layer and the 7th layer both
includes 4096 neurons, and the 8th layer outputs 1000 nodes for 1000-category
classification. As is referred in Sect. 3.3, only the first 7 layers of AlexNet are
employed in our model to extract deep features, and we use these features to
compute the histogram loss. With deep features as input, a new fully-connected
layer with 250 neurons outputs the class distributions. And the classification loss
is calculated based on these class distributions. No matter it is sketch or image,
it is resized into 227 × 227 to extract its deep feature.

We use the open source Keras [27] toolbox to train our models. Weights of
the last fully-connected layer are initialized using a glorot-uniform distribution
[28]. Biases are all initialized to be 0. The initial learning rate is set to 0.001,
divided it by 10 at the 15th epoch and the 30th epoch. And mini-batch size is
assigned to 256. The size of histogram bins is set to 100. Meanwhile, the weight
decay is 0.0005.
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Table 1. Comparison with the results (using Kendall’s rank correlation coefficient)
of different data pre-process strategies on M.Eitz-SBIR dataset. The best result is in
bold.

Training data Without data-aug With data-aug

Sketch 0.373 0.347

Sketch+ image 0.434 0.471

Sketch+ image + edge-map 0.479 0.497

4.3 Evaluation

We perform our retrieval experiments on the M.Eitz-SBIR dataset with the
Kendall’s rank correlation coefficient [8] as the evaluation criteria. As is referred
in [8], the Kendall’s rank correlation coefficient τ is proposed to determine how
similar two ranking lists are. So we compare the ranking list of our proposed
method to the user ranking which is regarded as “ground-truth”. τ can take
values in the range [−1, 1], with −1 indicating a reversed list, 0 indicating two
ranking lists are independent, and 1 indicating two lists are in a same order.

A SBIR system may produce the same score for two images, thus possibly
producing tied pairs. Therefore, a variation of the Kendall’s rank correlation
coefficient is used. This variation is denoted as τb and defined as Eq. (9):

τb =
nc − nd

[(N − U)(N − V )]
1
2

(9)

where nc and nd denote the number of concordant and discordant pairs, respec-
tively. N = n(n − 1)/2 means the number of possible pairs in a set of n distinct
elements, U = 1

2

∑t
i=1 ti(ti −1)/2 means the number of tied pairs in the baseline

ranking list, and V = 1
2

∑u
i=1 ui(ui − 1)/2 represents the number of tied pairs in

the ranking list of our proposed method.

4.4 Results

Training data pre-process strategies. We employ different strategies of data
pre-process to train our model. Firstly, we discuss on the influence of different
mixing strategies of training data. (1) Only using Sketches: 20, 000 sketches in
TU Berlin are used to train our model directly. (2) Mixing the sketches and
nature images: We combine TU Berlin with HUST SI dataset as the training
data. (3) Mixing the sketches, nature images, and edge maps: Following [6], edge
maps of the HUST SI dataset are added to training data. We extract edge maps
by the structural edge detector and binary them with the threshold of 0.9.

Data augmentation (data-aug) is widely used to boost the performance of
deep learning system. Here, we compare the experimental results with data aug-
mentation to those without data augmentation. The data augmentation method
applied in this article is briefly introduced as follows: For training data, we
resize a image/sketch to the size 256 × 256, then randomly crop a 227 × 227
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Table 2. Comparison with the results of different size of histogram bins on M.Eitz-
SBIR dataset.

Size of
histogram bins

Correlation
coefficient

100 0.497

50 0.494

25 0.492

10 0.483

patch from the resized image and randomly horizontally flip the patch during
the network training. To obtain fast retrieval speed, for retrieval images, no
data-augmentation is done.

As is shown in Table 1, performing data augmentation for mixed data of TU
Berlin, HUST SI and edge maps of HUST SI achieves the best performance.
Due to the similar appearance between sketches and edge maps from the same
category, edge maps can bridge the common characteristic of them. In contrast,
if a model is trained without edge maps, it is hard to fill the semantic gap and
learn the same feature extractor for sketches and images. When only applying
sketches as the input, the features extracted by the model are only suitable for
sketches but not suitable for nature images. So mixing sketches, nature images,
and edge maps are superior to other two strategies of using training data.

Parameter study of the histogram loss. As is referred in Sect. 3.3, the
size of histogram bins is the only tunable parameter of the histogram loss. It
determines whether histograms are coarse or fine-grained. In order to estimate
similarity distributions p+ and p−, we transform a training batch of examples
to a dense matrix of pairwise similarities. Then the distributions are quantized
to fixed-length vectors. If the batch size is too small, the similarity distributions
may not model the real distributions. Only keeping large batch size can provide
the data independence.

We perform experiments when the size of histogram bins is equal to 100,
50, 25, 10 (Δ = 0.01, 0.02, 0.04, 0.1). And the batch size is fixed to 128. Table 2
illustrates that we get similar results if the number of histogram bins is set to
100, 50 and 25. However, if the size of histogram bins is too small, the correlation
coefficient value will drop. Therefore, we set the size of histogram bins as 100
and the batch size as 128.

Comparison with the state-of-the-art methods. We make a comparison
with previous work in Table 3. As is mentioned in Sect. 4.4, it discusses the
data pre-process of training data and the size of histogram bins. Following our
best setting, our proposed method achieves the state-of-the-art result, which
outperforms SHOG [8], Key-shape [29], cross-domain method [6], etc. Meanwhile,
we conduct comparison experiments that the model trains only with classification
loss or histogram loss.
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Table 3. Comparison with results of different method on M.Eitz-SBIR dataset. In
the table, hist, classification and joint respectively represents the network trained only
with histogram loss, only with histogram loss and with the joint loss.

Method Correlation coefficient

SHOG [8] 0.277

Words-of-Interest [30] 0.313

Key-shape [29] 0.289

Min-Hash [31] 0.336

Content-aware [32] 0.352

Cross-domain [6] 0.477

Ours (hist) 0.451

Ours (classification) 0.441

Ours (joint) 0.497

Table 3 explains that our model with the joint loss is superior to that with a
single classification or histogram loss. The advantage of joint loss is that it learns
the category semantics and fine-grained details at the same time. Moreover, some
samples of the SBIR results are shown in Fig. 2. We list the top 10 retrieval
results of our proposed method for 8 query sketches. The first column denotes
the Kendall’s rank correlation coefficient score τb of each query sketch which is
given in second column. If τb is closer to 1, it means that this retrieval result is
in better performance. Conversely, it represents a bad retrieval result. In Fig. 2,
we can find that the correlation coefficient score of second row and fifth row are
lower than other rows. In second row, query sketch is an image of two people
and should retrieval group photos. However, it is easily confused by images that
contain many people, like 2th and 3th retrieval results. Query sketch in fifth row
is a building with some windows, but we retrieval several images that contain a
sign or a door actually. It indicates that our proposed method can not distinguish
buildings from other rectangular objects. However, it still makes sense, because
buildings have rectangular shape inside.

4.5 Running Cost

All of our experiments run on a PC with a NVIDIA GeForce GTX 1080 GPU
(8 GB) and 32 GB RAM. It takes about 7 h for training (nearly 25,000 iterations,
45 epochs). During testing, it will take about 17 ms to preform one retrieval,
including the time of feature extraction of query sketch and feature comparison.
It meets the requirement of real-time application. The source code for reproduc-
ing results is available upon acceptance.
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0.519

0.455

0.497

0.640

0.409

0.513

0.528

0.626

Fig. 2. The top 10 retrieval results of the proposed method. Each row shows a retrieval
result. The first column and second column means the correlation coefficient score and
query image respectively.

5 Conclusion and Future Work

For the problem of SBIR, the proposed deep network jointly trained using clas-
sification loss and histogram loss is able to learn superior deep features. The
joint loss is better than the single loss; it could be applied in tasks which need
to learn deep embeddings. In addition, we will study how to design network
structure that is more suitable for sketch recognition and generating an image
from a sketch using generative adversarial networks in the future.
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