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Abstract. Recently, deep-learning-based methods have displayed
promising performance for hyperspectral image (HSI) classification.
However, these methods usually require a large number of training
samples, and the complex structure and time-consuming problem have
restricted their applications. Deep forest, a decision tree ensemble app-
roach with performance highly competitive to deep neural networks.
Deep forest can work well and efficiently even when there are only small-
scale training data. In this paper, a novel simplified deep framework is
proposed, which achieves higher accuracy when the number of train-
ing samples is small. We propose the framework which employs local
binary patterns (LBPS) and gabor filter to extract local-global image
features. The extracted feature along with original spectral features will
be stacked, which can achieve concatenation of multiple features. Finally,
deep forest will extract deeper features and use strategy of layer-by-layer
voting for HSI classification.
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1 Introduction

Depending on the development of sensor technology, hyperspectral sensors could
provide images owning hundreds of bands with high spatial and spectral infor-
mation. Hundreds of spectral band values which are continuous and narrow are
recorded as a data cube, with the spectral resolution of nanometer level. Due to
these advantages, the applications of hyperspectral data have been widely used
in many fields such as spectral unmixing [15] and environmental monitoring [13].
Hyperspectral image classification is one of the most important technologies for
these applications. However, hyperspectral image classification is still a chal-
lenge problem owing to its complex characteristic. The high dimensionality may
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produce curse of dimensionality [5], and the abundant spectral bands may also
bring noise to decrease performance of the classification. Therefore, we could not
simply use spectral signals for hyperspectral sensing image classification.

During the last decade, many traditional methods based on feature extraction
have been proposed to solve the problem. These methods use spectral and spatial
information, and the classification algorithms [4,11,16].

In recent years, deep learning has been implemented in various fields such as
image classification [7]. In [2], Chen et al. proposed applying deep-learning-based
methods to handle HSI classification for the first time, where autoencoder (AE) is
utilized to learn deep features of HSI. After that, several simplified deep learning
methods are developed [12,14]. However, methods based on deep learning could
suffer from the complex framework of neural networks, and the performance is
limited by the small number of training samples. Furthermore, the methods also
suffer from a time-consuming training process, and final experimental results are
not easy to reproduce.

According to the motivations and problems mentioned above, we introduce a
method based on deep forest [18] that can handle HSI classification with limited
training samples. Compared to deep neural networks, deep forest achieves highly
comparable performance efficiently. What is more, the hyper-parameters of deep
forest is quite small, and the result is less sensitive to parameter setting. It will
spend less time in training process and perform well on small-scale samples.
In this letter, we propose a deep framework combining with spectral-spatial
cooperative features for deeper HSI features extraction and classification, which
achieves better performance with much less training samples than deep learning
methods and traditional methods. To take fully into account the globality in the
feature extraction, spectral-spatial cooperative feature combines local and global
features with the original spectral feature. Furthermore, considering the feature
learned from the last layer of deep forest may not be the best representative
feature, we improve the framework of deep forest. We add a voting mechanism
in the framework, and have a better experimental result.

The remainder of this paper is organized as follows. In Sect. 2, we first present
a roughly process about the method, then we present a detailed description of
spectral-spatial cooperative feature. At last, we introduce deep forest in detail,
which also includes adding a voting mechanism in the framework. In Sect. 3,
the experimental results and comparison experiments are displayed. Finally, we
come to a conclusion in Sect. 4.

2 The Proposed Method

The proposed features follow three parallel strategies: local feature extraction,
global feature extraction and the original spectral feature. Figure 1 shows the
overall implementation of the classification method. LBP operator is applied to
the calculation of the entire band images to obtain LBP feature map, and the
local feature is obtained by counting the histogram of each neighbourhood of the
center pixel. The global feature is produced by using gabor filter which captures



Hyperspectral Image Classification Based on Deep Forest 327

Fig. 1. Simple flowchart of DFCF method

texture features at different angles, and the original spectral feature of the central
pixel is drawn out. Then we combine the features to get the spectral-spatial
cooperative feature, while deep forest with a voting mechanism is employed to
deeper feature extraction and the final classification predictions. Here, we present
a brief introduction of Gabor filter and LBP operator at first, then, we describe
feature fusion about spectral-spatial cooperative feature. Finally, the framework
of deep forest is introduced.

2.1 Gabor Filter

A gabor filter, which can extract the relevant features in different scales and
directions in the frequency domain, and its frequency and direction of expression
are similar to the human visual system. The research shows that gabor filters
are very suitable for texture expression and separation [3]. Therefore, it’s widely
used for computer vision and image processing. In the 2-D gabor filter model, the
filter consists of real component and imaginary component. The mathematical
expressions can be expressed as
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imaginary component:

g(x, y;λ, θ, ψ, σ, γ) = exp
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where:
x′ = x cos θ + y sin θ; y′ = −x cos θ + y sin θ (4)

where λ is wavelength of the sinusoidal function, θ specifies the direction of
the parallel stripes of the gabor function, which takes a value of 0 to 360◦. ψ
represents phase offset. γ, spatial aspect ratio, usually setting to 0.5, specifies
the ellipticity of the gabor function support. σ is only determined by λ and b as

σ =
λ

π

√
ln 2
2

· 2b + 1
2b − 1

(5)

2.2 Local Binary Pattern

LBP (Local Binary Pattern)[10] is an operator used to describe the local tex-
ture features of an image, and it has significant advantages such as rotational
invariance and gray-scale invariance. For each given center pixel vc (scalar value),
we find the corresponding pixel vi on the specified radius r to compare with vc,
where r determines the distance from the center pixel. If the pixel value is higher
than the center pixel value, set to 1, otherwise set to 0. After selecting p neigh-
bors {v0, v1, . . . , vp−1}, the LBP calculating the center pixel vc is as followed

LBPp,r(vc) =
p−1∑
i=0

S(vp − vc)2p (6)

where S(vp − vc) = 1 if vp > vc and S(vp − vc) = 0 if vp < vc. Through the
above formula, given an image, we can get the LBP value of each pixel (The
direction of the calculation process is clockwise). While each pixel does not fall
to an integer position, its gray value is estimated by bilinear interpolation based
on the pixel gray value of the nearest two integer positions within the radius
track. The LBP value reflects local texture information and smoothness. Then,
an histogram is computered over a local patch, which represents LBP feature of
the center pixel.

2.3 Spectral-Spatial Cooperative Feature

By utilizing gabor to filter the spectral image of each spectral band in a given
HSI, we can extract global texture features in different directions and different
scales. At the same time, the lbp feature map is obtained by computing the
spectral image of each spectral band in a given HSI through the LBP operator.
The histogram feature is calculated for the fixed size neighborhood of each central
pixel, thus obtaining local texture features. In this paper, before performing
the above calculations, we use PCA to reduce the spectral dimension due to
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many of spectral bands containing redundant information. We stack the local
texture and the global texture feature with its original spectral feature to form
the initial extracted feature. The feature contains local and global features, also
including spectral and spatial information. Therefore, it is called Spectral-Spatial
Cooperative Feature.

Fig. 2. The structure of Deep Forest. Each level outputs a distribution vector, then,
the vector is concatenated with input feature vector, which is formed as a new feature
to input the next level. Finally, output of the last level is averaged to get a probability
distribution, and set the prediction label as the highest probability of the label.

2.4 Deep Forest

Cascade Forest. The structure of the network in deep neural networks mostly
bases on the layer-by-layer stacking, and it is utilized to process features. In view
of this, Zhou and Feng [18]. proposed deep forest, a novel decision tree ensemble
method, which employs a cascade structure. The illustration is shown in Fig. 2,
where the input received by each level is obtained by the preceding level, and
the processing result of this level is outputted to the next level.

Each level represents an ensemble of decision tree forests. To encourage the
diversity, each level has different decision tree forest. In Fig. 2, complete-random
tree forests and random forests [1] is used in the structure. In this paper, we
simply use three complete-random tree forests to structure each level. Each tree
forest contains 900 complete-random trees. With randomly selecting a feature
for split at each node of the tree, the tree forest is generated. Then grow the
tree until each leaf node contains only the same class of instances or no more
than 10 instances. For each forest, it will estimate the distribution of the class
by counting the percentage of different class of the training samples at the leaf
node where the instance concerned falls into. Finally, the distribution of the
classes will be averaged across all trees, and each forest will output distribution
of each class.
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Each forest outputs a distribution of each class, which forms a class vector.
Then, the original vector is concatenated with the class vector to form a new
feature vector that inputs to the next level of deep forest. For instance, based
on a classification task with 16 classes, each of the three forests will output a
sixteen-dimensional class vector. Thus, the input feature of the next level will
augment 3 × 16 = 48 dimensions.

In contrast to most deep neural networks, deep forest can handle different
scales of training data, including small-scale ones. The reason is that, for a
validation set, the model complexity of deep neural networks is fixed. However,
after expanding a new level, the training process of deep forest will be terminated
when the performance is not significantly improved. Therefore, the number of
levels will be automatically determined. Furthermore, in order to reduce the risk
of over-fitting, the output of each cascade level will be generated by a number of
cross-validations to ensure that the output is sufficient to characterize the input.

Fig. 3. Cascade forest with the voting mechanism. The gray scale in a small box
represents a probability value of the class. When the box is black, the probability is 1.

A Voting Mechanism. In this paper, we structure four levels deep forest to
handle HSI classification task whose number of training data is poor. There
are three complete-random tree forests in each level. Each tree forest outputs
a distribution of each class and a prediction label. For HSI classification task,
the distribution each level outputs and the prediction labels are produced by
studying the feature this level inputs. In each layer, the feature of input is not
identical so that it will lead to the prediction of each layer is also diverse, as it
is well known that diversity [17] is crucial for ensemble construction. Therefore,
we employ each layer of the prediction results, joining a voting mechanism in
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deep forest model. The illustration is shown in Fig. 3. Given a feature as input,
we can get three predictions in each level. Then, the final prediction of this level
is obtained by using the three predictions to vote. Finally, the final predictions
of each level will vote to form a result prediction. Compared with the original
model, the model not only relies on the output distribution of the previous level,
but also uses the prediction label to affect the next level, which increases the
diversity of the structure and the final classification can get more accurate label
results.

3 Experimental Results

3.1 Data Sets and Experimental Setup

Two popular HSI datasets are used in our experiments: Indian Pines and Pavia
University.

Indian Pines: The Indian Pine data set is one of the most common data sets
in the HSI classification and is obtained from the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) in Northwestern Indiana, India. The image size
is 145×145, with wavelengths ranging from 0.4 to 2.5µm. The data set originally
had 220 spectral bands. In order to reduce the effect of the water absorption, 20
water absorption bands were removed, and the remaining 200 bands were used
in the experiments. There are 16 classes of interests in the data set, with totally
10249 pixels which are labeled.

Pavia University : The data of Pavia University were collected in the city, Italy
Pavia, through the reflective optical system imaging spectrometer (ROSIS-3)
sensor. The data set originally had 115 spectral bands. Due to the effect of noise
interference, 12 bands were removed and 103 bands is used in the experiment.
The image size is 610×340, with wavelengths range from 0.43 to 0.86µm. Spatial
resolution is approximately 1.3 m. In this data set, a total of 42776 pixels are
labeled, which are classified into 9 classes.

Fig. 4. Indian Pines. (a) False color composite image choosing R-G-B=bands 15-25-59.
(b)Ground truth. (c)The prediction of DFCF.
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Fig. 5. Pavia University. (a) False color composite image choosing R-G-B=bands
15-40-65. (b)Ground truth. (c)The prediction of DFCF.

In comparison experiments, limited by space limitations, we refer three meth-
ods to compare the method which proposed in this paper, including GCK, NRS
and EPF-G. GCK [8] is a composite-kernel-framework based method. NRS [9],
based on gabor filter, extract global texture feature for HSI classification, while
EPF-G [6] takes advantage of edge-preserving filtering to classify hyperspectral
images. In order to be able to evaluate the performance of the methods more
comprehensively, overall accuracy (OA), average accuracy (AA) and Kappa coef-
ficient (κ) are employed in the experiments. In the experiment, some important
parameters are set in the way of cross-validation. Due to space limitations, this
article will not elaborate.

Indian Pines: At first, 30 principal components are used for operations. we use
b = 1 and 8 orientations to set gabor filter, and patch size of LBP operator is
21 × 21.

Pavia University : At first, 30 principal components are used for operations. we
use b = 5 and 8 orientations to set gabor filter, and patch size of LBP operator
is 21 × 21.

Deep Forest : When we apply deep forest, the results are not sensitive to param-
eter settings. We build 3 complete-random forests on each layer of cascade forest
and 4 levels are employed to structure deep forest for both of Pavia University
and Indian Pines.

3.2 Classification Results

This section presents the results of each method, and also shows the superiority
of the method we proposed. Each data set is randomly selected for 20 samples
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Table 1. INDIAN PINES: the classification accuracy of different methods (%).

Class Samples Methods

TrainTest GCK NRS EPF-G DFCF

Alfalfa 20 26 96.94 ± 3.71 99.92± 0.55 62.07 ± 20.5 98.00 ± 1.92

Corn-notill 20 1408 75.67± 5.80 70.28 ± 7.43 74.83 ± 9.59 74.94 ± 6.64

Corn-mintill 20 810 81.59 ± 4.47 75.47 ± 7.71 74.68 ± 10.96 86.23± 5.87

Corn 20 217 93.17 ± 5.04 94.58± 4.59 42.07 ± 11.72 93.88 ± 4.67

Grass-pasture 20 463 89.70 ± 4.29 87.70 ± 5.18 94.83± 5.18 91.34 ± 4.06

Grass-trees 20 710 97.57± 1.29 92.55 ± 4.19 94.39 ± 3.90 96.89 ± 3.02

Grass-pasture-
mowed

14 14 97.54 ± 3.94 100± 0.00 91.01 ± 12.62 99.57 ± 1.70

Hay-
windrowed

20 458 99.42 ± 0.23 98.21 ± 2.31 99.85 ± 0.41 99.95± 0.10

Oats 10 10 100.00± 0.00 100.00± 0.00 78.18 ± 19.56 99.00 ± 7.00

Soybean-notill 20 952 80.98 ± 4.11 72.46 ± 8.17 69.21 ± 6.70 85.55± 5.50

Soybean-
mintill

20 2435 79.87 ± 4.58 71.76 ± 8.39 84.40 ± 6.03 85.70± 5.36

Soybean-clean 20 573 84.07 ± 6.37 81.25 ± 7.01 59.43 ± 13.22 89.61± 5.36

Wheat 20 185 99.56± 0.29 99.18 ± 1.28 99.50 ± 1.33 99.06 ± 0.80

Woods 20 1245 93.74 ± 2.88 87.09 ± 5.12 97.27 ± 2.53 97.47± 1.53

Buildings-
Grass-Trees-
Drives

20 366 93.16 ± 3.66 90.43 ± 6.10 71.08 ± 15.00 95.20± 5.32

Stone-Steel-
Towers

20 73 95.71 ± 4.69 98.97± 2.03 81.16 ± 7.79 98.16 ± 1.39

OA 85.54 ± 1.42 79.87 ± 1.82 78.45 ± 2.75 88.56± 1.82

AA 91.17 ± 0.85 88.74 ± 1.03 79.62 ± 2.35 93.16± 1.09

κ × 100 83.61 ± 1.58 77.14 ± 2.03 75.64 ± 3.07 86.99± 2.04

per class for training and the rest for testing. All methods are performed 50 times,
and the average value and standard deviation are presented in Tables 1 and 2.

(1) The result of Indian Pines: Indian data set is randomly selected 20 samples
per class for training and the rest for testing. If half number of the samples is
less than 20, we randomly select half number of the sample for training and
the rest for testing. In Table 1, quantitative experimental results are listed.
In all methods, the DFCF achieve the highest OA, AA and κ, and the
standard deviation is relatively small, which indicates that the method has
excellent classification accuracy and good stability for Indian Pines data set.
In addition, in a total of 16 classes, there are 7 best class accuracies obtained
by using DFCF, and 11 class accuracies of all classes are higher than 90%.
Figure 4 shows the classification result obtained by utilizing DFCF method.
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Table 2. PAVIA UNIVERSITY: the classification accuracy of different methods (%).

Class Samples Methods

TrainTest GCK NRS EPF-G DFCF

Asphalt 20 6611 80.91 ± 8.55 84.17 ± 5.64 96.54± 2.82 87.24 ± 6.49

Meadows 20 18629 97.78± 1.29 84.09 ± 7.35 94.67 ± 3.05 84.77 ± 5.65

Gravel 20 2079 74.60 ± 8.30 83.69 ± 7.89 80.75 ± 13.03 90.30± 5.82

Trees 20 3044 80.00 ± 12.53 91.69 ± 4.54 73.78 ± 14.59 92.56± 4.62

Painted metal
sheets

20 1325 99.73 ± 0.54 99.99± 0.05 94.61 ± 3.90 99.66 ± 0.21

Bare 20 5009 87.69 ± 6.87 86.45 ± 4.89 60.08 ± 12.21 94.60± 4.09

Bitumen 20 1310 79.03 ± 11.13 86.30 ± 6.68 76.99 ± 11.96 96.28± 3.43

Self-Blocking
Bricks

20 3662 70.02 ± 7.54 77.74 ± 8.29 84.96 ± 6.57 94.39± 4.20

Shadows 20 927 62.36 ± 10.52 92.91 ± 2.87 98.39 ± 1.30 100.00± 0.00

OA 86.36 ± 3.08 85.11 ± 3.08 83.54 ± 5.33 89.12± 2.64

AA 81.35 ± 3.38 87.45 ± 1.26 84.53 ± 3.82 93.31± 1.26

κ × 100 82.30 ± 3.85 80.85 ± 3.67 79.12 ± 6.32 85.99± 3.25

(2) The result of Pavia University : Figure 5 and Table 2, respectively, show intu-
itional and quantitative experiment results on Pavia University data set. In
the case of the equal training numbles, each method achieves a better result
than the result achieved on Indian Pine data set. The reason may be that
the spatial resolution of Pavia University data set so that it achieves higher
classification result. In all methods, the DFCF still achieve the highest OA,
AA and κ, and the smallest standard deviation indicates the stability of the
method. When the task is limited to the number of training samples, AA
will become an important indicator. We have almost 7% advantages com-
pared to the highest result of the contrast methods. In addition, in all the 9
classes, DFCF work best in 6 classes, and exceeds 99% in 2 classes.

4 Conclusion

In this letter, we have introduced deep forest combining with spectral-spatial
cooperative features (DFCF) for deeper HSI feature extraction and classifica-
tion. DFCF is based on deep framework, thus, it can be considered as a simple
deep learning method. Through deep forest, the features are extracted into more
representative features, which further increase the accuracy of the classification.
Furthermore, in order to develop deep forest that is more suitable for HSI clas-
sification tasks, we have added a voting mechanism in its framework to get a
significant classification result. Finally, we have used some of the most advanced
methods on two popular datasets for comparison experiments, and the result
has indicated that DFCF method works well and outperforms other methods.



Hyperspectral Image Classification Based on Deep Forest 335

Further research has the following points: (1) Further study of the application
of deep forest in HSI classification. (2) Reduce the number of training samples
and further improve classification accuracy.
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