
A Double Recursion Algorithm to Image
Restoration from Random Limited

Frequency Data

Xiaoman Liu and Jijun Liu(B)

School of Mathematics, Southeast University, Nanjing 211189,
People’s Republic of China

jjliu@seu.edu.cn

Abstract. One of the main tasks in image restoration is to catch the
picture characteristics such as interfaces and textures from incomplete
noisy frequency data. For the cost functional with data matching term in
frequency domain and the total variation together with Frobenius norm
penalty terms in spatial domain, the properties of the minimizer of cost
functional and the error estimates on the regularizing solution are estab-
lished. Then we propose an algorithm with double recursion to restore
piecewise smooth image. The Bregman iteration with lagged diffusivity
fixed point method is used to solve the corresponding nonlinear Euler-
Lagrange equation. By implementing recursion algorithms a few times,
the satisfactory reconstructions can be obtained using random band sam-
pling data. Numerical implementations demonstrate the validity of our
proposed algorithm with good edge-preservations.
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1 Introduction

A lot of engineering backgrounds such as objects detections for military pur-
poses and magnetic resonance imaging (MRI) for medical applications, lead to
the studies on image restorations. The main tasks of image restorations aim
to the recovery of an image from given noisy measurement data. However, in
most engineering configurations, the specified measurement data are limited fre-
quency data instead of the full data in spatial domain. Therefore the image
restorations are essentially of the nature of ill-posedness [1]. Mathematically,
the image restorations require the stable approximations to the target image
from insufficient noisy measurement data, which are also one of the most impor-
tant research areas of applied mathematics by dealing with the ill-posedness of
the image restorations.

In recent decades, various image restoration models and mathematical tech-
niques have been developed due to the great importance of image restoration

c© Springer International Publishing AG 2017
Y. Zhao et al. (Eds.): ICIG 2017, Part III, LNCS 10668, pp. 3–14, 2017.
https://doi.org/10.1007/978-3-319-71598-8_1



4 X. Liu and J. Liu

problems, such as level set methods, wavelet-based frameworks, nonlinear PDEs
models and optimization schemes [2–4]. In all these studies, the basic ideas are
the reconstructions of an image by some denoising process, while the key infor-
mation about the image should be kept in terms of the regularization techniques.

The mathematical framework dealing with ill-posed problems is the regular-
izing scheme with some appropriate penalty terms incorporating into the cost
functional. The key issue for this scheme is that the suitable weight called the
regularizing parameters between the data matching term and the penalty terms
should be specified artificially to keep the balance between the data matching
and smoothness of the sought solution. In the cases that the exact solution to be
sought is smooth, the penalty terms for the solution can be measured by some
standard norms such as L2 or H2 norm for which the choice strategy for the
regularizing parameters have been studied thoroughly [1,4]. However, for non-
smooth exact solution such as those in the image restorations with the sharp
jump of the grey level function of the image, instead of the standard differential
norms, the other non-differential penalty term such as total variation (TV) or
L0-norm sparsity penalty term should be applied [2,3].

Motivated by the above engineering backgrounds, we consider an image
recovery problem using the incomplete noisy frequency data by minimizing a
cost functional with penalty terms in Sect. 2. Based on the derivatives expres-
sions of the cost functional, an iterative scheme with outer and inner recursions
are proposed in Sect. 3 to solve the minimizing problem. Finally, some numerical
experiments are presented to show the validity of the proposed scheme in Sect. 4.

2 Optimization Modeling with Error Analysis

As the standard configurations in signal processing, we define the Fourier Trans-
form matrix F ∈ R

N×N with the components

Fi,j = e−i 2π
N ij , i, j = 1, · · · , N. (2.1)

It is well-known that the matrix F is an unitary matrix [10] satisfying F ∗F =
I, where the superscript ∗ denotes the conjugate transpose of an matrix, I is
identity matrix.

In most computer vision problems, the two-dimensional image f :=
(fm,n)(m,n = 1, · · · , N) can be represented as a vector f . Here we introduce
some symbols for this representation as follows:

� operator vect : RN×N → R
N2×1: vect[f ] := (f1, f2, · · · , fN2)T = f , where

the N2-elements are generated by re-ordering the N column vectors of f
sequently.

� operator array: the inverse of the vect, i.e., array[f ] = f .
� Two-dimensional discrete Fourier transform (DFT) matrix F:

f̂ := vect[FT fF ] = (F ⊗ F )f := Ff ,

where ⊗ is the tensor product of two matrices.
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By partial frequency data of f̂ , we mean that only parts of the elements of
f̂ are sampled, with other elements considered as 0. Denoted by P the N × N
matrix generating from the identity matrix I by setting its N–M rows as null
vectors, i.e., P = diag(p11, p22, · · · , pNN ) with pii being 1 or 0. Then P f̂ means
that we only take M(≤ N) rows of f̂ as our partial data. To the vector form f ,
the sampling matrix should be modified as an N2 × N2 matrix. Then we have
the following notations with tensor product:

vect[P f̂ ] = (I ⊗ P )vect[f̂ ] = (I ⊗ P )f̂ := Pf̂ . (2.2)

Obviously, the matrix P is the sampling matrix in algorithm domain which is
chosen before reconstruction.

Generally, the frequency data of an image f are obtained by some scanning
process, which are of unavoidable error, i.e., our inversion data for image recovery
are in fact P ĝδ with noisy data ĝδ of f̂ satisfying

‖P f̂ − P ĝδ‖F ≤ ‖f̂ − ĝδ‖F ≤ δ, (2.3)

where ‖ · ‖F is the Frobenius norm for an N × N matrix, corresponding to the
2-norm of an N2-dimensional vector after stacking the elements of an N × N
matrix into an N2-dimensional vector. Hence the data matching term can be
written as

‖P f̂ − P ĝδ‖2F = ‖P(Ff) − Pĝδ‖22. (2.4)

There are various sampling matrices, like those in radial lines sampling
method [12], band sampling method [6] which is much efficient in numerical
experiments. In this paper, we apply the random band sampling process which
samples some rows randomly. Denoted by cenR the central ratio, i.e., to the fre-
quency image there are only cenR×N rows in the central parts of the frequency
image (the centre is between No. N/2−1 and N/2 rows) in Cartesian coordinate
system or in the natural domain coordinate which is shown in Fig. 1(b), and the
others sampling rows are the random ones. In the algorithm domain shown in
Fig. 1(a), the sampling rows are distributed on the four corners, i.e., it is the
same distribution as the mask as usual.

Fig. 1. (a) Algorithm domain coordinate; (b) Natural domain coordinate.

Recall that the most important issue for image restorations is the edge-
preservation property of the image, which means that we are essentially inter-
ested in the efficient reconstruction for a piecewise constant image with the
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main interests in detecting image edges. Since the total variation (TV) of a two-
dimensional function can describe the function jumps efficiently, we are then led
to the following constraint optimization problem

min
f∈RN×N

{|f |TV : ‖PFT fF − P ĝδ‖2F ≤ δ
}

, (2.5)

where P ĝδ is the incomplete noisy frequency data, and TV penalty term |f |TV

for f is defined in a standard way [6,12]. Since |f |TV is not differentiable at
f = Θ (zero matrix), we approximate |f |TV by

|f |TV,β =
N∑

m,n=1

√
(∇x1

m,nf)2 + (∇x2
m,nf)2 + β (2.6)

for small constant β > 0, where ∇m,nf :=
(∇x1

m,nf,∇x2
m,nf

)
with two components

∇x1
m,nf =

{
fm+1,n − fm,n, if m < N,

f1,n − fm,n, if m = N,
∇x2

m,nf =

{
fm,n+1 − fm,n, if n < N,

fm,1 − fm,n, if n = N

for m,n = 1, · · · , N due to the periodic boundary condition on f .
However, the constraint optimization problem (2.5) in the case of P 	= I has

no restrictions on the size of f , notice that PFT XF = Θ may have nonzero
solution X arbitrarily large for singular matrix P . To exclude this uncertainty,
our image recovery problem is finally reformulated as the following unconstraint
problem

{
f∗ := arg min

f
Jβ(f),

Jβ(f) := 1
2‖PFT fF − P ĝδ‖2F + α1‖f‖2F + α2|f |TV,β .

(2.7)

where α1, α2 > 0 are regularizing parameters.
The theorems below illustrate the existence of the minimizer and establish

the choice strategies for the regularizing parameters α1, α2.

Theorem 1. For α1 > 0, α2, β ≥ 0, there exists a local minimizer to the opti-
mization problem (2.7).

Proof. Since Jβ(f) ≥ 0 for f ∈ R
N×N , there exists a constant J∗ ≥ 0 such that

J∗ = inf
f

Jβ(f). So there exists a matrix sequence {fk ∈ R
N×N : k = 1, 2, · · · }

such that lim
k→∞

Jβ(fk) = J∗, which means α1‖fk‖2F ≤ Jβ(fk) ≤ C0 for k =

1, 2, · · · , i.e., ‖fk‖2F ≤ C0/α1. Therefore there exists a subsequence matrix of
{fk : k = 1, 2, · · · }, still denoted by {fk : k = 1, 2, · · · }, such that lim

k→∞
fk = f∗.

Notice that |f |TV,β is also continuous with respect to f by (2.6), the conti-
nuity of Jβ(f) with respect to f yields Jβ(f∗) = lim

k→∞
Jβ(fk) = J∗ = inf

f
Jβ(f),

i.e., f∗ is the minimizer of Jβ(f). The proof is complete. ��
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Theorem 2. Denote by f† ∈ R
N×N the exact image. Then the minimizer f∗ =

f∗
α1,α2,β,δ satisfies the following estimates

‖PFT f∗
α1,α2,β,δF − P ĝδ‖2F ≤ δ2 + α1‖f†‖2F + 2α2N

2
√

β + 2α2|f†|TV , (2.8)

‖f∗
α1,α2,β,δ‖2F ≤ δ2

2α1
+ α2

α1
|f†|TV + α2

α1
N2

√
β + ‖f†‖2F , (2.9)

|f∗
α1,α2,β,δ|TV,β ≤ δ2

2α2
+ α1

α2
‖f†‖2F + N2

√
β + |f†|TV . (2.10)

Proof. Since f∗
α1,α2,β,δ is the minimizer, we have

1
2
‖PFT f∗

α1,α2,β,δF − P ĝδ‖2F + α1‖f∗
α1,α2,β,δ‖2F + α2|f∗

α1,α2,β,δ|TV,β

≤ 1
2
‖PFT f†F − P ĝδ‖2F + α1‖f†‖2F + α2|f†|TV,β

≤ 1
2
δ2 + α1‖f†‖2F + α2(|f†|TV,β − |f†|TV ) + α2|f†|TV

=
1
2
δ2 + α1‖f†‖2F + α2

N∑

m,n=1

β
√

|f†
m,n|2 + β +

√
|f†

m,n|2
+ α2|f†|TV

≤ 1
2
δ2 + α1‖f†‖2F + α2N

2
√

β + α2|f†|TV . (2.11)

Since |f∗
α1,α2,β,δ|TV ≤ |f∗

α1,α2,β,δ|TV,β , the proof is complete by the triangle
inequality. �

The above decompositions are important for seeking the minimizer of our
cost functional, which is taken as our reconstruction of image. This result gen-
erates the resolution analysis for our reconstruction scheme in terms of the
data-matching and regularity-matching for the image, i.e., the quantitative error
descriptions on these two terms are given. We can adjust the parameters α1, α2

analytically such that our reconstruction fits our concerns for either image details
(data-matching) or image sparsity (TV difference).

3 The Iteration Algorithm to Find the Minimizer

Take the image vector f = (f1, f2, · · · , fN2)T ∈ R
N2×1 as the equivalent variables,

and each components fi has one-to-one correspondence relationship with fm,n,
i.e. fm,n = f(n−1)N+m. For the optimization problem

min
f

Jβ(f) = min
f

(
1
2
‖PFT fF − P ĝδ‖2F + α1‖f‖2F + α2|f |TV,β

)
(3.1)

finding the minimizer f∗ approximately, the Bregman iterative algorithm is given
in [13], which is established in terms of Bregman distance [14]. In order to solve
the optimization problem (3.1) iteratively, f (k+1) is yielded by solving its Euler-
Lagrange equation [15]. Due to the penalty terms ‖f‖F and |f |TV,β , the corre-
sponding Euler-Lagrange equation for the minimizer is nonlinear. So we propose
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to find the minimizer by the lagged diffusivity fixed point method [16]. Consid-
ering the optimization problem with respect to the image vector f as

min
f

Jβ(f) := min
f

(
1
2
‖P(Ff) − Pĝδ‖22 + α1‖f‖22 + α2|f |TV,β

)
. (3.2)

In order to solve the Euler-Lagrange equation of (3.1), we need the derivatives
of data matching term and the penalty terms in (3.2). By straightforward com-
putations, these derivatives have the following expressions:

⎧
⎨

⎩

∇f
1
2‖PFT fF − P ĝδ‖2F = F∗P∗PFf − F∗P∗Pĝδ,

∇f‖f‖2F = 2I ⊗ If ,
∇f |f |TV,β = L[f ]f ,

(3.3)

where P = I ⊗ P and the N2 × N2 matrix

L[f ] := (I ⊗ D)T Λ[f ](I ⊗ D) + (D ⊗ I)T Λ[f ](D ⊗ I) (3.4)

with
⎧
⎨

⎩

Λ[f ] := diag
(

1
d1[f ]

, · · · , 1
dN2 [f ]

)
,

di[f ] :=
√

(
∑N2

l′=1(I ⊗ D)i,l′fl′)2 + (
∑N2

l′=1(D ⊗ I)i,l′fl′)2 + β,

where i = i(m,n) = (n−1)N+m, l′ = l(m′, n′) = (n′−1)N+m′ for m,n,m′, n′ =
1, · · · , N , and the N × N circulant matrix D := circulant(−1, 0, · · · , 0, 1),

Based on (3.3), we can find the approximate minimizer by the following
Bregman iterative algorithm.

Algorithm 1. Bregman iterative algorithm for minimizing Jβ(f)

Input: frequency input {ĝδ
m′,n′ : m′, n′ = 1, · · · , N}, sampling matrix P ∈ R

N×N ,
and parameters α1, α2, β.
Do iteration from l = 0 with g(0) = Θ, f (0) = Θ.
While l < L0

{ Compute:

ĝ(l+1) = ĝδ +
(
ĝ(l) − F T f (l)F

)
,

f (l+1) = arg min
f∈RN×N

α1‖f‖2
F + α2|f |TV,β + 1

2
‖PF T fF − P ĝ(l+1)‖2

F ,

l ⇐ l + 1. }
End do
f∗ := fL0

End

According to (3.3), the stacking vector f (l+1) of the minimizer f (l+1) of Jβ(f)
at the l−th step satisfies the following nonlinear equation:

N2(I ⊗ P )f + 2α1(I ⊗ I)f + α2L[f ]f = F∗I ⊗ P
(
ĝδ − Ff (l)

)
, (3.5)
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with sampling data P ĝδ and the spatial approximation f (l) at the (l−1)th step,
which constitutes the standard Bregman iterative algorithm. Now we propose a
new algorithm based on the Bregman iteration by introducing an inner recursion.

Notice, the real symmetric matrix I ⊗ P may not be invertible due to our
finite sampling matrix P . Therefore an efficient algorithm should be developed
for solving the nonlinear system (3.5) with unknown f ∈ R

N2×1. We apply the
lagged diffusivity fixed point method [16].

Define Λn[f ] := diag( 1
d(n−1)N+1[f ]

, · · · , 1
d(n−1)N+N [f ] ), then Λ[f ] = diag(Λ1[f ],

· · · , ΛN [f ]). Since

L1[f ] := 2α1(I ⊗ I) + α2(I ⊗ D)T diag(Λ1[f ], · · · , ΛN [f ])(I ⊗ D)

is a real positive block diagonal matrix and

L2[f ] := α2(D ⊗ I)T Λ[f ](D ⊗ I)

= α2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
d1[f ]

+ 1
dN2 [f ]

− 1
d1[f ]

· · · 0 − 1
dN2 [f ]

− 1
d1[f ]

1
d1[f ]

+ 1
d2[f ]

· · · 0 0
...

...
. . .

...
...

0 0 · · · 1
dN2−2[f ]

+ 1
dN2−1[f ]

− 1
dN2−1[f ]

− 1
dN2 [f ]

0 · · · − 1
dN2−1[f ]

1
dN2−1[f ]

+ 1
dN2 [f ]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

is a symmetric block matrix, we construct the inner iteration scheme from l-step
for the nonlinear system (3.5) as

L1[f (l)]f (l+1) = −
(
N2(I ⊗ P ) + L2[f (l)]

)
f (l)

+ I ⊗ P
(
F∗ĝδ − F∗Ff (l)

)
(3.6)

for l = 0, 1, · · · . Since L1[f (l)] is a known block diagonal matrix being symmetric
positive, the computational costs for solving f (l+1) are affordable by solving
each column vector of f (l+1) separately, which meets an N−dimensional linear
equations with symmetric positive coefficient matrix.

In the numerical experiments, we choose regularization of adjoint conjugate
gradient method (ACGM) as the inner iteration scheme to solve (3.6). Let b(l)

be the right term in (3.6) which is the known part from the l−step in exterior
recursion, and μ is the prior regularizing parameter in ACGM. So we have

f (l+1)
k+1 = f (l)k − κ

(l)
k

(
μf (l)k + L1[f (l)]T (L1[f (l)]f

(l)
k − b(l))

)
, (3.7)

where κ
(l)
k is the step-size at k-step in inner recursion defining as

κ
(l)
k :=

〈−r(l)k , (μI + L1[f (l)]TL1[f (l)])(−r(l)k )T 〉
‖(μI + L1[f (l)]TL1[f (l)])(−r(l)k )‖22

,

from the classic successive over relaxation method (SOR), 〈 , 〉 is the L2 inner
product, and r(l)k := μf (l)k + L1[f (l)]T (L1[f (l)]f

(l)
k − b(l)).
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Notice, the initial value f (l)0 in the inner recursion can be chosen as 0 or f (l),
and the stopping criterion may be the maximum iteration number K0 or some
others related to the small values of the cost function or the small difference of
the iterative sequences. Here we stop the iteration process when the difference
between f (l+1) and f (l) is smaller than 10−3. Finally we have the scheme to
find the approximate minimizer by the following iterative algorithm with inner
recursion.

Algorithm 2. Bregman iterative algorithm with inner recursion
Input: frequency input {ĝδ

m′,n′ : m′, n′ = 1, · · · , N}, sampling matrix P ∈ R
N×N ,

and parameters α1, α2, β, μ, L0.
Do exterior recursion from l = 0 with g(0) = Θ, f (0) = Θ
While l < L0

{ Compute: ĝ(l+1) = ĝδ +
(
ĝ(l) − PFf (l)

)
,

Do inner recursion from k = 0 with f
(l)
0 = f (l).

While ‖f (l+1)
k+1 − f

(l)
k ‖2

2 > 10−3

{ Compute: b(l), r
(l)
k , κ

(l)
k .

Compute: f
(l+1)
k+1 = f

(l)
k − κ

(l)
k r

(l)
k with (3.7)

k ⇐ k + 1. }
End do

l ⇐ l + 1. }
End do
f∗ := fL0

End

4 Numerical Experiments

All the numerical tests are performed in MATLAB 7.10 on a laptop with an
Intel Core i5 CPU M460 processor and 2 GB memory.

We consider a model problem with Ω = [0, 1]2 and N = 128. Define

D1 :=

{

x = (x1, x2) :
(

x1 − 1
4

)2

+
(

x2 − 1
2

)2

≤ 1
64

}

,

D2 :=
{

x = (x1, x2) :
∣
∣
∣
∣x1 − 3

4

∣
∣
∣
∣ ≤ 1

8
,

∣
∣
∣
∣x2 − 1

2

∣
∣
∣
∣ ≤ 1

4

}
, (4.1)

and

f(x) :=

⎧
⎪⎨

⎪⎩

1, x ∈ D1,

2, x ∈ D2,

0, x ∈ Ω \ (D1 ∪ D2).
(4.2)

The functions f(x) together with its frequency function log(|f̂(ω)|) in algorithm
domain (i.e., after shifting as Fig. 1) is shown in Fig. 2(a) and (b). Obviously, the
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frequency data in the center (or in the four corners before shifting) consist of
the main information about the image, so we should sample these data as much
as possible.

Fig. 2. (a) f(x); (b) Frequency function log(|f̂(ω)|) after shifting; (c) and (d) Sampling
noisy frequency data P60 log(|ĝδ(ω)|) and P90 log(|ĝδ(ω)|) after shifting.

Firstly we yield the full noisy data gδ
m,n from the exact image fm,n by

gδ
m,n = fm,n + δ × rand(m,n),

where m,n = 1, · · · , N and rand(m,n) are the random numbers in [−1, 1]. The
mesh image of initial image and the noisy image are shown in Fig. 3. Then the
full noisy frequency data are simulated by

ĝδ
m′,n′ = F [gδ

m,n], m′, n′ = 1, · · · , N. (4.3)

So with the random band row sampling method using sampling matrix P ,
P ĝδ

m′,n′ is the input incomplete noisy data by row sampling process.

Fig. 3. The mesh of initial image f(x) and noisy image gδ(x).

Take α1 = 1000, α2 = 0.001, β = μ = 0.0001, and the noise level δ = 0.1. To
the row sampling processes, we consider two schemes by taking M0 = 60, cenR =
0.3 and M0 = 90, cenR = 0.3, so the sampling ratios are M0/M = 60/128 =
46.88% and 70.31%, respectively. To compare the restoration performances by
applying more sampling data, we require that the data for M0 = 60 be included
in the data set for M0 = 90. In order to ensure the validity of tests, the random
number rand(m,n) and sampling rows should be fixed in each parts. Then we
obtain the sampling matrix P60, P90 with pii = 1 only at the following locations:

i ∈ {1 − 5, 16, 17, 18, 23, 34, 37, 39, 40, 43, 44, 45, 47 − 55,

58, 60, 61, 63, 64, 70, 76 − 79, 81, 82, 83, 86, 88 − 91,

94, 95, 97, 98, 100, 101, 103, 105, 107 − 112, 125 − 128} (4.4)
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and

i ∈ {1 − 14, 16, 17, 18, 23, 27 − 32, 34, 37, 39, 40, 43, 44, 45, 47 − 55,

58, 60, 61, 63, 64, 70, 72, 73, 74, 76 − 79, 81, 82, 83, 86, 88, 89 − 91,

94, 95, 97, 98, 100, 101, 103, 105, 107 − 112, 114 − 128} (4.5)

respectively. Figure 2(c) and (d) show the two-dimensional image of full fre-
quency data, the incomplete noisy frequency data with P60, P90 after shifting
respectively.

In our iteration process, the Bregman iterative number is L0 = 20, and
the initial value in ACGM inner recursion is f (l). We compare Algorithm 2
with Algorithm 1, i.e., comparing the proposed scheme to the Bregman iterative
algorithm without inner recursion. Figure 4(a) and (b) give the reconstructed
image f∗ with P60, P90 by our proposed algorithm, while Fig. 4(c) shows the
reconstructed image f∗ with P90 by standard Bregman iterative algorithm.

Fig. 4. (a), (b) The reconstruction of f∗ with P60, P90 by our Bregman iterative algo-
rithm with ACGM inner recursion; (c) The reconstruction of f∗ with P90 by standard
Bregman iterative algorithm without inner recursion.

From our numerical implementations, the algorithm based on random band
sampling method can reconstruct the piecewise smooth image with good edge-
preservation. Considering we apply the noisy data with relative error 10% and
the unused sampling data (the lost data) are more than 50% and 30%, the image
restorations based on Bregman iterative algorithm with ACGM inner recursion
are satisfactory. However, the reconstruction could only restore the relative grey
level in the whole image, the exact value cannot be recovered efficiently. The
numerical evidences for this phenomena are that the reconstructed image f∗

with sampling matrix P90 has interfaces clearly, but the interfaces of f∗ with
P60 is worse.

5 Conclusion

An efficient algorithm to restore image based on L2 −TV regularization penalty
terms is established. The data matching term of the optimizing model is only
used limited data in frequency domain, which are obtained by random band
sampling process. The new idea is that the model is included with two iteration:
Bregman iteration and adjoint conjugate gradient method as inner recursion.
In order to solve the optimizing problem, the Bregman iteration with lagged
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diffusivity fixed point method is used to solve the nonlinear Euler-Lagrange
equation of modified reconstruction model. For the inner recursion, the initial
value getting from the l-th exterior recursion can decrease the inner iteration
time. The experimental results demonstrate that proposed algorithm with ran-
dom band sampling is very efficient for recovering the piecewise smooth image
with limited frequency data, compared with the standard Bregman iterative
algorithm.
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