
Chapter 4
A Penalty Approach for Solving
Nonsmooth and Nonconvex MINLP
Problems

M. Fernanda P. Costa, Ana Maria A. C. Rocha
and Edite M. G. P. Fernandes

Abstract This paper presents a penalty approach for globally solving nonsmooth
and nonconvexmixed-integer nonlinear programming (MINLP) problems.Both inte-
grality constraints and general nonlinear constraints are handled separately by hyper-
bolic tangent penalty functions. Proximity from an iterate to a feasible promising
solution is enforced by an oracle penalty term. The numerical experiments show that
the proposed oracle-based penalty approach is effective in reaching the solutions of
the MINLP problems and is competitive when compared with other strategies.

Keywords MINLP · Penalty function · DIRECT · Oracle

4.1 Introduction

In this paper, we address the solution of nonsmooth and nonconvex mixed-integer
nonlinear programming (MINLP) problems by a penalty approach. It is assumed that
the problem is in the form

globmin
x∈X⊂Rn

f (x)

subject to g j (x) ≤ 0, j = 1, . . . , p
hl(x) = 0, l = 1, . . . ,m
xi ∈ R for i ∈ Ic ⊆ I ≡ {1, . . . , n}
x j ∈ Z for j ∈ Id ⊆ I

(4.1)

M. F. P. Costa (B)
Centre of Mathematics, University of Minho, Campus de Gualtar,
4710-057 Braga, Portugal
e-mail: mfc@math.uminho.pt

A. M. A. C. Rocha · E. M. G. P. Fernandes
Algoritmi Research Centre, University of Minho, Campus de Gualtar,
4710-057 Braga, Portugal
e-mail: arocha@dps.uminho.pt

E. M. G. P. Fernandes
e-mail: emgpf@dps.uminho.pt

© Springer International Publishing AG 2018
A. I. F. Vaz et al. (eds.), Operational Research, Springer Proceedings
in Mathematics & Statistics 223, https://doi.org/10.1007/978-3-319-71583-4_4

39

40 M. F. P. Costa et al.

where f, g j , hl : Rn → R are continuous possibly nonlinear functions in a com-
pact subset of R

n , herein defined as X = {x : −∞ < lbi ≤ xi ≤ ubi < ∞, i =
1, . . . , n}, Ic ∩ Id = ∅ and Ic ∪ Id = I . Thus, Ic is the index set of the continu-
ous variables and Id consists of the indices of the integer variables. Here, integer
variables include binary variables. Let C be the following subset of Rn , C = {x ∈
R

n : g j (x) ≤ 0, j = 1, . . . , p, hl(x) = 0, l = 1, . . . ,m}, and let Wc = C ∩ X be a
closed set. Consider the set D, which is the cartesian product of the sets Dj , j ∈ Id ,
where

Dj = {d ∈ Z : lb j ≤ d ≤ ub j } , j ∈ Id , (4.2)

let I be defined by I = {
x ∈ X : x j ∈ Z for j ∈ Id ⊆ I

}
and let W = C ∩ I be

the nonempty feasible region of the problem (4.1). When a continuous relaxation
of the integer variables is applied, W ≡ Wc. A continuous relaxation means that the
integer variables can be treated as continuous variables, and all function (f , g and h)
values can be computed for x j ∈ R, j ∈ Id (instead of x j ∈ Z, j ∈ Id). The MINLP
problem (4.1) is said to be convex if f and g1(x), . . . , gp(x) are convex functions
and h1(x), . . . , hm(x) are affine functions over X . This means that by relaxing the
integrality constraint on x j , j ∈ Id , a convex program is obtained (minimizing a
convex function over a convex set). Otherwise, the MINLP is said to be nonconvex.

Most techniques available in the literature require the definition and the use of con-
vexmodel functions and the continuous relaxations of the integer variables. However,
some real-life MINLP problems that emerge in mechanical, electrical and chemi-
cal engineering applications involve nonsmooth and nonconvex functions and the
specific integer variables cannot be relaxed [1]. Most exact methods for nonconvex
MINLP are based on the branch-and-bound (BB) technique. Effective examples are
the spatial-BB algorithm [2, 3], branch-and-reduce type algorithms [2, 4] and the
α-BB algorithm [5].

Heuristics for nonconvex MINLP are also available in the literature. A heuristic
approach extension of the boundary tracking optimization is presented in [6]. In [7],
a variable neighborhood search heuristic is proposed and in [8], two heuristics are
analyzed: the first aims to obtain an initial feasible solution, the second one searches
for an improved solution within the neighborhood of a given point.

Extensions of the feasibility pump algorithm to nonconvex MINLP are available
in [9]. A derivative-free method that relies on two search procedures, a line search
strategy for the continuous variables and a local search for the discrete ones, is
presented in [10]. Recently, penalty-based algorithms aiming to penalize integrality
violation are available in the literature [11–13].

Metaheuristics are nowadays very popular and aim to compute fast and good
approximations to optimal solutions of nonconvex MINLP problems. A mixed-
integer hybrid differential evolution (MIHDE) [14] has been successfully applied
to mixed-integer optimization problems and a particle swarm optimization is pre-
sented in [15]. A parameter free penalty approach with a genetic algorithm (GA) [16]
and a filter technique combinedwith aGA [17] are analyzedwhen solving nonconvex
MINLP. In [18], the BBMCSFilter method, which relies on a BB framework and a
derivative-free methodology to solve nonsmooth and nonconvex NLP, is presented.

4 A Penalty Approach for Solving Nonsmooth and Nonconvex MINLP Problems 41

Two extended versions of the ant colony optimization framework are available in
[19] and a new version of the firefly algorithm (FA), that uses four preference rules
to select solutions that are feasible or have the least objective function values, is
tested in [20]. Review onMINLP techniques and applications are available in [2, 21,
22]. A brief overview of the start-of-the-art in software for the solution of MINLP
problems can be found in [23].

In this study, a penalty continuous formulation of the MINLP problem (4.1) is
used. First, a penalty function has been selected from a class of penalty functions that
are applied to general integer problems [11–13]. Second, two other penalty functions
have been constructed in order to penalize the general constraints violation as well as
to enforce convergence to a solution, denoted by the oracle, that is feasible and has
the least function value found so far. Thus, after relaxing the integrality constraints on
the variables and adding a particular penalty term to the objective function, Pd (x; εd),
aiming to penalize the integrality constraint violation, as well as by adding another
penalty term, Pc(x; εc), to penalize the general constraints violation, the following
continuous bound constrained nonlinear programming (BCNLP) problem emerges

globmin
x∈X

Ψ (x; εd , εc) ≡ f (x) + Pd(x; εd) + Pc(x; εc)

subject to xi ∈ R, i = 1, . . . , n,
(4.3)

where εd , εc ∈ R
+ are positive penalty parameters [24]. The motivation is that prob-

lem (4.1) is equivalent to the continuous BCNLP problem, in the sense that they have
the same global minimizers. The optimal solution of the BCNLP problem can then
be easily obtained by well-established and known solvers.

In the sequel, the herein presented work adds a new penalty term to the objective
function in problem (4.3), aiming to enforce convergence to the oracle, represented
by o∗, and defined as the best found feasible solution, aiming to predict a global
optimum. The goal of the oracle penalty is to penalize solutions that move away
from o∗. The new proposed algorithm is tested and compared with other nonconvex
MINLP strategies.

Thus, our contribution in this article is directed to the combination of three penalty
terms aiming to penalize the integrality violation, the nonlinear inequality and equal-
ity constraints violation and the distance to the oracle o∗. The penalty term for the
integrality constraints is based on the hyperbolic tangent function, as proposed in
[11], and the equality and inequality constraints are dealt with penalties also defined
by the hyperbolic tangent function [24]. Similarly, the new penalty imposed on the
distance of the current solution to the oracle is also based on the hyperbolic tan-
gent function. The motivation for the use of the hyperbolic tangent function is that
its boundedness property makes the BCNLP penalty problem easier to solve than
with some of its competitors. The solution of the BCNLP problem is then obtained
using the DIRECT algorithm [25], a deterministic and derivative-free algorithm for
finding global solutions inside hyperrectangles. We illustrate the performance of the
proposed penalty approach on a well-known set of MINLP test problems.

42 M. F. P. Costa et al.

The remainder of the paper proceeds as follows. Section4.2 introduces the penalty
methodology and Sect. 4.3 addresses the implementation of the penalty terms and
investigates the use of the penalty parameters and the oracle parameter. Section4.4
contains the results of all the numerical experiments and the conclusions are sum-
marized in Sect. 4.5.

4.2 Penalty Approaches

The following equivalence result based on a penalty approach will be used [11–13].

Property 4.1 Assuming that W and Wc are compact sets, there exists a value ε̄ > 0
such that, for any εd ∈ (0, ε̄], the problems

min f (x), subject to x ∈ W

and
min F(x; εd) ≡ f (x) + Pd(x; εd), subject to x ∈ Wc (4.4)

where

Pd(x; εd) = 1

εd

∑

j∈Id
min
d∈Dj

tanh(|x j − d|) (4.5)

are equivalent in the sense that they have the same minimizers.

This property is a consequence of Property 2.5 in [11]. The below presented
assumptions (A1)–(A3) on f and on the penalty Pd(x; εd) (see (4.5)) are required
to prove Property 4.1.

(A1) Function f is bounded on Wc and there exists an open set A ⊃ W and real
numbers α, L > 0 such that for all x, y ∈ A, f satisfies

| f (x) − f (y)| ≤ L‖x − y‖α.

(A2) For all x, y ∈ W and for all εd ∈ R
+,

Pd(x; εd) = Pd(y; εd).

(A3) There exists an ε̄, and for all z ∈ W there exists a neighborhood S(z) such that

Pd(x; εd) − Pd(z; εd) ≥ L̄‖x − z‖α, for all x ∈ S(z) ∩ (Wc\W), εd ∈ (0, ε̄],

where L̄ > L and α is chosen as in (A1). Furthermore, let S = ⋃
z∈W S(z),

∃x̄ /∈ S such that

4 A Penalty Approach for Solving Nonsmooth and Nonconvex MINLP Problems 43

lim
εd→0

(Pd(x̄; εd) − Pd(z; εd)) = +∞ for all z ∈ W,

Pd(x; εd) ≥ Pd(x̄; εd) for all x ∈ Wc\S and for all εd > 0.

Problem (4.4) comes out by relaxing the integer constraints on the variables and
adding a particular penalty term to the objective function f .

Let Pc(·; εc) : Rn → R be a penalty term, that aims to penalize general equality
and inequality constraints violation, defined by

Pc(x; εc) = 1

εc

⎛

⎝
p∑

j=1

tanh(g+
j (x)) +

m∑

l=1

tanh(|hl(x)|)
⎞

⎠ , (4.6)

where g+
j (x) = max{g j (x), 0} and εc ∈ R

+ is the penalty parameter. We note that
Pc(x; εc) = 0 when x ∈ C and Pc(x; εc) > 0 when x /∈ C . Generally speaking,
under suitable assumptions on the objective function F of problem (4.4) and on
the penalty Pc(·; εc), the problems

minΨ (x; εd , εc) ≡ F(x; εd) + Pc(x; εc), subject to x ∈ X,

and (4.4) are equivalent (see Theorem 2.1 in [12]).
For the sake of simplicity, we define

P(x; εd , εc) = Pd(x; εd) + Pc(x; εc). (4.7)

Both penalty terms in P(x; εd , εc) are based on the hyperbolic tangent function,
tanh : R → [−1, 1] ⊂ R, an odd function which is differentiable, strictly increasing
on R, and satisfies tanh(t) = 0 iff t = 0 and

lim
t→0+

tanh(t)

t
= 1, lim

t→+∞ tanh(t) = 1 and lim
t→+∞

d tanh(t)

dt
= 0.

Under some suitable assumptions on f and P(x; εd , εc) (see Theorem 2.1 in [12],
as well as Property 2.5 in [11] in the context of the hyperbolic tangent function) we
may remark the following.

Remark 4.1 Under suitable assumptions on f and P(x; εd , εc), let W and X
(W ⊆ X ⊂ R

n) be compact sets. Then, ∃ε̃ ∈ R
+ such that for all εd , εc ∈ (0, ε̃],

the problems (4.1) and (4.3) have the same global minimizers.

44 M. F. P. Costa et al.

4.3 Oracle-Based Penalty Algorithm

The extension of the above presented penalty approach to solve MINLP problems is
investigated.

We note here that the term Pd(x; εd) (see (4.5)) penalizes the distance from x to a
point z (in terms of the components i ∈ Id) that satisfies z := [x]r ∈ I ⊂ X where
zi ∈ Z, i ∈ Id results from rounding xi to the nearest integer and zl = xl for l ∈ Ic,
thus compelling x to come near z. However, since z may not be a global minimizer,
our proposal considers a new penalty term that aims to reduce the distance from x to
a very promising solution, o∗ (ideally a global optimizer), that satisfies o∗ ∈ W and
has an objective function value not greater than f (z). The o∗ is a parameter vector,
herein also denoted by the oracle, likewise it is used in [26], due to its predictive
nature. Although the original idea of the oracle penalty method corresponds to a
transformation of the objective function f into an additional equality constraint
hm+1(x) = f (x) − γ = 0, where γ is the oracle parameter [26], our proposal is
equivalent to having an extra equality constraint that aims to enforce the proximity
of the current solution to the oracle. Thus, we add a new penalty term to P , measuring
proximity from x to o∗, with the aim of finding a solution near the oracle with a lower
objective function value f (x) < f (o∗) ≤ f (z)

q(x; o∗) =
n∑

i=1

tanh(|xi − o∗
i |). (4.8)

Remark 4.2 We note that, in the context of incorporating the function ‘tanh’ in the
penalty terms, this corresponds to adding new equality constraints xi = o∗

i to the
problem (4.1) and that the feasible set of the “new problem” is now Wo = {x ∈
W : xi = o∗

i , i = 1, . . . , n}. When the oracle parameter o∗ is a global minimizer to
the problem (4.1), a feasible solution to the “new problem” (x ∈ Wo) is the global
solution of the MINLP problem.

Thus, the new proposed BCNLP problem for finding a global solution to aMINLP
problem like (4.1) is

globmin
x∈X

Ψ (x; εd , εc, o∗) ≡ f (x) + P(x; εd , εc, o∗)

subject to xi ∈ R, i = 1, . . . , n,
(4.9)

where the oracle penalty function reads as follows:

P(x; εd , εc, o
∗) = Pd(x; εd) + Pc(x; εc) + 1

εc
q(x; o∗). (4.10)

When there is a guess about the global minimizer, this information may be used to
speed the convergence of the algorithm. To apply the oracle penalty function when
there is no guess about the global minimizer, some modifications are required to

4 A Penalty Approach for Solving Nonsmooth and Nonconvex MINLP Problems 45

make the method more robust regarding the oracle parameter selection. We assume
that the two following conditions hold:

• f (o∗) > f (x∗);
• there exists at least one z∗ ∈ W such that f (o∗) = f (z∗) ≥ f (x∗).

Thus, the oracle vector o∗ should be updated whenever a solution better than o∗
is produced, i.e., if a solution z ∈ I is found such that f (z) ≤ f (o∗) and Θ(z) ≤
Θ(o∗), where

Θ(x) = max
j=1,...,p;l=1,...,m

{
g+
j (x), |hl(x)|

}
(4.11)

represents the maximum general constraints violation, then the new value for the
oracle is the following o∗ = z.

The algorithm based on the proposed oracle penalty function, denoted by oracle-
based penalty algorithm (ObPA), is shown in Algorithm1. To initialize the oracle,
we set o∗ = [x0]r , where the initial approximation, x0, is randomly generated in X .

Input: x0 ∈ X , ε > 0, δ > 0, η > 0, μ > 0, ε1d > ε, ε1c > ε, δ1 > δ, η1 > η, μ1 > μ;
Set k = 1;
Initialize the oracle as o∗ = z0 = [x0]r ;
while the stopping rule defined in (4.14) does not hold do

if Θ(zk−1) ≤ Θ(o∗) and f (zk−1) ≤ f (o∗) then
Set o∗ = zk−1;

end
if Θ(o∗) ≤ ηk then

Compute xk , an approximation to the solution of problem (4.9) such that

Ψ (xk; εkd , ε
k
c , o

∗) ≤ Ψ (x; εkd , ε
k
c , o

∗) + δk for all x ∈ X (4.12)

else
Compute xk , an approximation to the solution of problem (4.3) such that

Ψ (xk; εkd , ε
k
c) ≤ Ψ (x; εkd , ε

k
c) + δk for all x ∈ X (4.13)

end
Set zk = [xk]r ;
if ‖xk − zk‖∞ > μk then

εk+1
d = max{0.1εkd , ε}; μk+1 = μk ; δk+1 = δk ;

else
εk+1
d = εkd ; μ

k+1 = max{0.1μk , μ}; δk+1 = max{0.9δk , δ};
end
if Θ(xk) > ηk then

εk+1
c = max{0.1εkc , ε}; ηk+1 = ηk ; δk+1 = δk ;

else
εk+1
c = εkc ; η

k+1 = max{0.1ηk , η}; δk+1 = max{0.9δk , δ};
end
Set k = k + 1;

end

Algorithm 1: ObPA

46 M. F. P. Costa et al.

In addition to forcing the integer variables to take integer values, another important
issue is to reduce the overall general constraint violation measured by Θ . The ObPA
has the ability to select the penalty objective function for the BCNLP problem.
Either penalty (4.10) or (4.7) is used according to the general constraint feasibility
level of the oracle. At iteration k, if Θ(o∗) ≤ ηk then it is worth to penalize |xi − o∗

i |
componentwise, so that an approximation near to the oracle is computed (and penalty
(4.10) is used); otherwise, an approximation in the vicinity of the oracle is not of the
upmost importance and the penalty (4.7) is used instead.

Besides the penalty parameters and the feasibility tolerance ηk , another parameter,
μk , is required to check the level of integrality violation at the current solution xk .
Furthermore, the parameter δk represents the error bound which reflects the accuracy
required for the current approximation xk to the solution of the BCNLP problem.

Simple rules to control the reduction of parameters εkd , ε
k
c , η

k, μk and δk are used
and lower bounds are imposed to prevent theBCNLPproblemsof becomingvery hard
to solve. The penalty parameters εkd and εkc are reduced, using εk+1

d = max{0.1εkd , ε}
and εk+1

c = max{0.1εkc , ε} respectively, when the corresponding violation measures
(‖xk − zk‖∞ and Θ(xk)) at the computed approximation xk are not satisfactory;
otherwise, they are maintained.

TheObPA stops when an approximation xk , which has a sufficiently small general
constraints feasibility measure and is within an error of δ (in relative terms) of the
known global solution, is computed. Thus, the stopping conditions are

Θ(xk) ≤ η and
| f (xk) − f ∗|
max{1, | f ∗|} ≤ δ, (4.14)

where η and δ are very small positive tolerances.

Remark 4.3 The use of the known global solution to stop the algorithm, during
these preliminary tests, aims to analyze its effectiveness. In case f ∗ is not available,
the second condition in (4.14) is replaced by the relative difference between the
function values of two consecutive iterations less than or equal to the specified error
tolerance, δ.

Finally, we now briefly elaborate on the global optimization method to solve
the BCNLP problems formulated in (4.9) and (4.3). The deterministic algorithm
DIRECT [25] is used. The problems to be addressed by DIRECT are defined in (4.9)
and (4.3) in such a way that conditions (4.12) and (4.13) respectively are satisfied.
The method does not require any derivative information and has been originally
proposed to solve BCNLP problems, by producing finer and finer partitions of the
hyperrectangles generated from X , and evaluating Ψ at their centers. The algorithm
is a modification of the standard Lipschitzian approach that eliminates the need
to specify the Lipschitz constant [25]. To perform a balance between global and
local search, the algorithmmakes use of two important concepts: potentially optimal
hyperrectangle and grouping according to size. The center, ci , the objective function
value at the center point,Ψ (ci ; ·), and the size, di , of each hyperrectangle i are used to
define the groups of hyperrectangles, to select the potentially optimal hyperrectangles

4 A Penalty Approach for Solving Nonsmooth and Nonconvex MINLP Problems 47

and to divide them into smaller ones, until a convergence condition is satisfied [27]. In
the context of Algorithm1, three stopping criteria were considered for DIRECT: (i)
an error tolerance on theBCNLP objective penalty function value, δk , (ii) amaximum
number of iterations, or (iii) a maximum number of function evaluations.

4.4 Numerical Experiments

To make a preliminary evaluation of the practical behavior of the proposed ObPA for
solving nonconvexMINLP problems, we use a set of benchmark problems, identified
as f1 to f29 in the subsequent tables (see [4, 17, 28]). The algorithm is implemented in
Matlab™(registered trademark of theMathWorks, Inc.) programming language. The
algorithmic parameters are set as follows: η = 1E − 04, δ = 1E − 03, μ = 1E −
04, ε = 1E − 05, ε1d = 1, ε1c = 0.1, η1 = 0.1, μ1 = 0.1. However, if the stopping
conditions (4.14) do not hold for the given η and δ, ObPA is allowed to run for 30
iterations.

At each iteration k, when DIRECT is used to solve the BCNLP problems (4.9) or
(4.3), by imposing the conditions (4.12) or (4.13) respectively, the error tolerance on
the penalty function value is δk . We note that the parameter δ1 is set to one, slowly
decreases from one iteration to the other, until it reaches the value δ = 1E − 03. The
maximum number of iterations is made to depend on the number of variables (5n
for f7; 10n for f3, f4, f8, f12, f14, f16, f18, f19, f24 and f26; 20n for f1, f5, f11 and
f20; 50n for f9 and f17; 70n for f2, f22, f23, f28 and f29; 100n for f6, f13, f21 and
f25; 150n for f15; 250n for f27; 300n for f10) and the maximum number of function
evaluations is set to 50,000.

First, we compare the results produced by ObPA, as presented in Algorithm1,
with those obtained by a variant that does not use the oracle penalty, i.e., the BCNLP
problem (4.3) is always solved in all iterations. See Table4.1. The table shows the
name of the problem, P, the best known optimal solution available in the literature,
f ∗, the solution produced by the algorithm, fsol , the number of function evaluations
required to achieved the reported solution, n f e, the number of iteration, nit , and the
CPU time in seconds, T . From the results, it is possible to conclude that the proposed
ObPAwas able to find the global optimum for 20 of the 29 problems (according to the
stopping conditions shown in (4.14) with η = 1E − 04 and δ = 1E − 03). For the
remaining nine problems, the algorithm run for 30 iterations. From the table, we may
also conclude that the solutions obtained by the variant without the oracle penalty
have been greatly deteriorated in three problems (f5, f7, f9) and slightly deteriorated
in two (f11 and f12). The solutions for all the other problems are comparable, being
f19 the only one with a slight improvement. Overall the results obtained by the
proposed ObPA are superior to those of the tested variant.

Second, the results produced by ObPA are compared with those obtained by the
BBMCSFilter, a BB-based multistart coordinate search filter method published in
[18] and the results reported in [17], where a filter-based genetic algorithm (FGA)
is presented. Table4.2 shows the name of the problem, being the set f1–f12 also

48 M. F. P. Costa et al.

Ta
bl
e
4.
1

N
um

er
ic
al
re
su
lts

pr
od
uc
ed

by
A
lg
or
ith

m
1
an
d
by

th
e
va
ri
an
tw

ith
ou
tt
he

or
ac
le
pe
na
lty

P
f∗

A
lg
or
ith

m
1

V
ar
ia
nt

w
ith

ou
tt
he

or
ac
le
pe
na
lty

f s
ol

n
fe

ni
t

T
(s
ec

.)
f s
ol

n
fe

ni
t

T
(s
ec
.)

f1
2

2.
00
04
56

58
9

2
1.
29

E
−

01
2.
00
04
72

50
9

2
1.
10

E
−

01

f2
2.
12
4

2.
12
44
81

54
33

2
2.
54

E
+

00
2.
12
44
81

48
91

2
2.
39

E
+

00

f3
1.
07
65
4

1.
07
63
92

14
23

3
5.
96

E
−

01
1.
07
65
34

12
33

3
5.
35

E
−

01

f4
99
.2
39
63
7

99
.2
44
69
5

62
9

2
2.
69

E
−

01
99
.2
44
69
5

52
3

2
2.
29

E
−

01

f5
3.
55
74
63

3.
70
13
80

10
3,
04
9

30
6.
47

E
+

01
5.
22
56
69

87
,5
69

30
6.
42

E
+

01

f6
4.
57
95
82

4.
57
96
00

88
,8
43

3
5.
10

E
+

01
4.
57
96
00

77
,1
11

3
4.
45

E
+

01

f7
−1

7
−1

6.
69
13
58

20
39

30
5.
61

E
−

01
−1

0.
33
33
33

17
57

30
5.
63

E
−

01

f8
−3

22
17
.4

−3
22
15
.6
40
35
7

56
,6
85

2
4.
39

E
+

01
−3

22
15
.6
40
35
7

56
,6
85

2
4.
62

E
+

01

f9
7.
66
71
80
1

7.
66
72
32

20
,5
23

4
1.
02

E
+

01
8.
24
02
13

19
8,
97
7

30
1.
02

E
+

02

f1
0

−2
.4
44
4

−2
.4
38
02
3

35
4,
97
5

30
8.
95

E
+

01
−2

.4
38
02
3

30
8,
27
3

30
7.
97

E
+

01

f1
1

3.
23
61

3.
23
60
34

14
17

2
7.
06

E
−

01
3.
26
01
72

21
,9
01

30
1.
10

E
+

01

f1
2

1.
12
5

1.
12
53
01

26
3

2
5.
94

E
−

02
1.
13
23
43

69
11

30
1.
55

E
+

00

f1
3

87
.5

89
.5
00
01
7

70
7,
91
3

30
3.
22

E
+

02
89
.5
00
05
1

59
1,
30
1

30
2.
74

E
+

02

f1
4

−6
.6
66
66
7

−6
.6
66
51
4

24
1

2
8.
68

E
−

02
−6

.6
66
51
4

22
3

2
1.
10

E
−

01

f1
5

−5
.6
84
8

−5
.6
84
73
2

14
,3
15

3
7.
53

E
+

00
−5

.6
84
73
2

12
,7
89

3
6.
79

E
+

00

f1
6

2.
00
0

2.
00
01
19

18
73

2
8.
24

E
−

01
2.
00
03
56

15
49

2
7.
01

E
−

01

f1
7

3.
44
55

3.
44
55
14

59
41

3
1.
19

E
+

00
3.
44
55
14

52
35

3
1.
08

E
+

00

f1
8

2.
20
00

2.
20
00
32

50
97

4
2.
28

E
+

00
2.
20
01
98

14
45

2
6.
54

E
−

01

f1
9

6.
00
97
2

6.
54
84
38

39
,8
71

30
2.
36

E
+

01
6.
42
48
18

35
,3
95

30
2.
09

E
+

01

f2
0

−1
7.
00
00

−1
6.
99
99
53

16
,8
71

6
7.
87

E
+

00
−1

6.
99
99
53

14
,6
27

6
7.
03

E
+

00

(c
on
tin

ue
d)

4 A Penalty Approach for Solving Nonsmooth and Nonconvex MINLP Problems 49

Ta
bl
e
4.
1

(c
on
tin

ue
d)

P
f∗

A
lg
or
ith

m
1

V
ar
ia
nt

w
ith

ou
tt
he

or
ac
le
pe
na
lty

f s
ol

n
fe

ni
t

T
(s
ec

.)
f s
ol

n
fe

ni
t

T
(s
ec
.)

f2
1

−4
.5
14
20
2

−4
.5
14
19
8

25
,9
99

4
1.
46

E
+

01
−4

.5
14
15
4

23
,5
29

4
1.
39

E
+

01

f2
2

−1
3.
40
19
04

−1
3.
40
18
55

67
,0
81

4
3.
60

E
+

01
−1

3.
40
18
55

36
,6
05

3
1.
90

E
+

01

f2
3

−1
.0
83
33

−1
.0
78
68
0

20
6,
88
9

30
9.
65

E
+

01
−1

.0
78
66
7

20
4,
33
5

30
9.
44

E
+

01

f2
4

−0
.9
43
47

−0
.6
64
91
3

30
0,
05
5

30
1.
98

E
+

02
−0

.6
64
91
3

26
7,
52
7

30
1.
73

E
+

02

f2
5

18
9.
31
16

18
9.
37
56
06

14
,8
55

4
7.
52

E
+

00
18
9.
37
53
88

13
,1
61

4
6.
80

E
+

00

f2
6

31
31
.0
00
33
9

77
7

4
1.
85

E
−

01
31
.0
01
01
6

68
5

4
1.
60

E
−

01

f2
7

−3
2

−3
1.
99
88
99

34
,1
69

4
8.
32

E
+

00
−3

1.
99
86
28

30
,2
37

4
6.
90

E
+

00

f2
8

73
.0
35
3

78
.7
69
76
6

14
25
,1
25

30
9.
96

E
+

02
78
.7
69
76
6

14
23
,4
37

30
1.
00

E
+

03

f2
9

−1
.9
23

−0
.9
13
44
6

99
1,
83
9

30
9.
19

E
+

02
−0

.9
13
44
6

14
51
,5
77

30
1.
12

E
+

03

50 M. F. P. Costa et al.

Ta
bl
e
4.
2

N
um

er
ic
al
re
su
lts

pr
od

uc
ed

by
th
e
A
lg
or
ith

m
1,

th
e
B
B
M
C
SF

ilt
er

in
[1
8]

an
d
th
e
FG

A
in

[1
7]

A
lg
or
ith

m
1

B
B
M
C
SF

ilt
er

†
FG

A
§

P
(|I

c|,
|I d

|)
f s
ol

n
fe

f a
vg

S
D

n
fe

av
g

f a
vg

S
D

n
fe

av
g

f1
(1
,1
)

2.
00
04
56

58
9

2.
00
08
17

3.
6
E

−
04

35
30

2.
00
00

1.
6
E

−
06

45
30

f2
(1
,1
)

2.
12
44
81

54
33

2.
12
45
90

1.
4
E

−
06

12
59

2.
18
52

6.
1
E

−
02

37
99

f3
(2
,1
)

1.
07
63
92

14
23

1.
08
16
40

8.
1
E

−
03

52
74

1.
07
69

3.
8
E

−
04

57
52

f4
(2
,1
)

99
.2
44
69
5

62
9

99
.2
39
63
5

1.
0
E

−
07

67
0

99
.5
78
4

3.
4
E

−
01

98
54

f5
(3
,4
)

3.
70
13
80

10
3,
04
9

3.
56
08
48

2.
0
E

−
03

76
,7
75

3.
68
22

1.
2
E

−
01

11
,4
92

f6
(3
,4
)

4.
57
96
00

88
,8
43

4.
58
23
22

9.
3
E

−
04

75
,4
13

4.
80
48

2.
3
E

−
01

99
37

f7
(1
,1
)

−1
6.
69
13
58

20
39

−1
6.
99
80
54

2.
3
E

−
03

42
96

−1
6.
82
67

1.
7
E

−
01

41
47

f8
(3
,2
)

−3
22
15
.6
40
35
7

56
,6
85

−3
22
17
.4
28

0.
0
E

+
00

18
,0
51

−3
22
17

2.
7
E

−
02

66
09

f9
(2
,3
)

7.
66
72
32

20
,5
23

7.
66
75
83

9.
5
E

−
04

28
,0
90

7.
74
72

8.
0
E

−
02

11
,4
80

f1
0

(1
,1
)

−2
.4
38
02
3

35
4,
97
5

−2
.4
44
44
4

0.
0
E

+
00

27
36

−2
.4
44

4.
4
E

−
04

41
25

f1
1

(1
,2
)

3.
23
60
34

14
17

3.
23
61
21

8.
7
E

−
05

41
,6
35

3.
33
95

1.
0
E

−
01

50
28

f1
2

(1
,1
)

1.
12
53
01

26
3

1.
12
51
15

2.
9
E

−
04

77
70

1.
12
5

1.
4
E

−
06

47
57

f1
3

(2
,2
)

89
.5
00
01
7

70
7,
91
3

87
.5
07
04
3

1.
7
E

−
02

41
,8
52

–
–

–

f1
4

(1
,1
)

−6
.6
66
51
43

24
1

−6
.6
66
13
1

1.
8
E

−
04

11
22

–
–

–

f1
5

(1
,2
)

−5
.6
84
73
2

14
,3
15

−5
.6
51
95
2

2.
6
E

−
02

39
3,
34
5

–
–

–

f1
6

(2
,2
)

2.
00
01
19

18
73

2.
00
00
00

0.
0
E

+
00

29
,8
47

–
–

–

f1
7

(1
,1
)

3.
44
55
14

59
41

3.
44
58
08

2.
1
E

−
04

54
69

–
–

–

f1
8

(1
,3
)

2.
20
00
32

50
97

2.
20
00
00

0.
0
E

+
00

11
,1
82

–
–

–

f1
9

(4
,2
)

6.
54
84
38

39
,8
71

6.
01
07
14

6.
6
E

−
04

37
,1
32

–
–

–

f2
0

(2
,3
)

−1
6.
99
99
53

16
,8
71

−1
6.
99
46
05

5.
5
E

−
03

27
,1
49

–
–

–

f2
1

(1
,3
)

−4
.5
14
19
8

25
,9
99

−4
.5
13
44
8

6.
8
E

−
04

50
,1
46

–
–

–

(c
on
tin

ue
d)

4 A Penalty Approach for Solving Nonsmooth and Nonconvex MINLP Problems 51

Ta
bl
e
4.
2

(c
on
tin

ue
d)

A
lg
or
ith

m
1

B
B
M
C
SF

ilt
er

†
FG

A
§

P
(|I

c|,
|I d

|)
f s
ol

n
fe

f a
vg

S
D

n
fe

av
g

f a
vg

S
D

n
fe

av
g

f2
2

(2
,4
)

−1
3.
40
18
55

67
,0
81

−1
3.
40
19
30

3.
6
E

−
04

84
,7
90

–
–

–

f2
3

(2
,2
)

−1
.0
78
68
0

20
6,
88
9

−1
.0
83
24
5

5.
4
E

−
05

24
58

–
–

–

f2
4

(3
,8
)

-0
.6
64
91
3

30
0,
05
5

–
–

–
–

–
–

f2
5

(2
,1
)

18
9.
37
56
06

14
,8
55

–
–

–
–

–
–

f2
6

(0
,2
)

31
.0
00
33
9

77
7

–
–

–
–

–
–

f2
7

(1
,1
)

−3
1.
99
88
99

34
,1
69

–
–

–
–

–
–

f2
8

(6
,5
)

78
.7
69
76
6

14
25
,1
25

–
–

–
–

–
–

f2
9

(5
,3
)

−0
.9
13
44
6

99
1,
83
9

–
–

–
–

–
–

†
T
he

N
L
P
re
la
xa
tio

n
is
st
op

pe
d
af
te
r
10

sa
m
pl
e
po

in
ts
ar
e
ge
ne
ra
te
d
in

th
e
m
ul
tis
ta
rt
al
go

ri
th
m

an
d
30

ru
ns

ar
e
ex
ec
ut
ed

§
T
he

al
go
ri
th
m

st
op
s
w
he
n
a
so
lu
tio

n
w
ith

er
ro
r
1
E

−
3
is
fo
un
d
or

th
e
nu
m
be
r
of

fu
nc
tio

n
ev
al
ua
tio

ns
re
ac
he
s
10
,0
00
;
P s

=
20

,
R

=
50

52 M. F. P. Costa et al.

Ta
bl
e
4.
3

O
th
er

nu
m
er
ic
al
co
m
pa
ri
so
ns

P
A
lg
or
ith

m
1

E
X
P-
M
IP

4-
ru
le
FA

	
M
IH

D
E

§
A
C
O
m
i†

PS
O

‡
pe
n-
G
A

f s
ol

n
fe

(n
it
)

f e
x
p

#
no
d.

f a
vg

n
fe

av
g

f a
vg

n
fe

av
g

f a
vg

n
fe

av
g

%
su
c.

n
fe

av
g

%
su
c.

n
fe

su
c

av
g

f1
2.
00
00
11

15
89

(2
)

–
–

2.
00
00

34
09

–
13
,1
04

–
–

–
–

84
17
2

f2
2.
12
44
76

13
,4
49

(2
)

–
–

2.
71
49

52
53

–
29
,1
66

–
–

10
0

35
00

85
64

f3
1.
07
63
92

14
23

(3
)

1.
07
6

0
1.
07
67

51
78

–
28
,4
55

1.
14
59

42
50

–
–

43
18
,6
08

f4
99
.2
44
69
5

62
9
(2
)

–
–

–
–

–
60
,9
50

–
–

10
0

40
00

59
74
47

f5
3.
70
16
62

38
,2
87

(1
1)

–
–

–
–

–
12
,3
75

–
–

–
–

41
35
71

f6
4.
57
96
00

33
,8
59

(3
)

4.
57
9

2
4.
77
58

12
,1
57

–
–

4.
57
96

73
1

10
0

30
,0
00

–
–

f7
−1

6.
99
87
20

15
01

(2
)

−1
7

1
−1

6.
99
98

32
43

–
98
3

−1
7

30
7

–
–

–
–

f8
−3

22
15
.6
40
35
7

56
,6
85

(2
)

–
–

–
–

–
50
,9
76

–
–

–
–

10
0

10
0

f9
7.
66
72
32

20
,5
23

(4
)

7.
66
7

2
8.
06
95

86
22

–
–

7.
66
72

36
3

–
–

–
–

f1
0

−2
.4
38
02
3

12
,3
95

(3
)

–
–

−2
.4
38
0

35
01

–
–

−2
.4
44
4

27
0

–
–

–
–

f1
1

3.
23
60
34

13
97

(2
)

–
–

3.
23
61

44
05

–
–

23
.4
75

11
80

–
–

–
–

f2
4

−0
.6
86
92
6

62
,3
91

(3
)

−0
.9
12

1
–

–
–

–
–

–
–

–
93

25
8

f2
6

31
.0
00
33
9

80
1
(4
)

31
1

–
–

–
–

–
–

–
–

–
–

f2
9

−1
.3
93
49
3

36
,1
91

(5
)

–
–

–
–

–
–

–
–

88
40
,0
00

–
–

	
Te
rm

in
at
io
n
co
nd

iti
on

s:
|f

k
−

f∗
|/|

f∗
|≤

1
E

−
04

an
d
vi
ol
at
io
n

≤
1
E

−
03
;
P s

=
20

,
R

=
30

§
Te
rm

in
at
io
n
co
nd
iti
on
:|

fk
+2

0
−

fk
|<

1
E

−
05

or
a
m
ax
im

um
of

20
00

ite
ra
tio

ns
;
P s

=
3,

R
=

10
†
A
lg
or
ith

m
st
op
s
w
he
n
a
so
lu
tio

n
w
ith

er
ro
r
1
E

−
03

is
re
ac
he
d
or

a
m
ax
im

um
of

10
,
00

0
fu
nc
tio

n
ev
al
ua
tio

ns
is
at
ta
in
ed
;
P s

=
20

,
R

=
30

‡
Te
rm

in
at
io
n
co
nd
iti
on
s:

|f
k+

50
−

fk
|<

1
E

−
05

or
a
m
ax
im

um
of

20
0
ite
ra
tio

ns
;
P s

=
50

,
R

=
10
0

Te
rm

in
at
io
n
co
nd

iti
on

s:
|f

k
−

f∗
|≤

1
E

−
02

or
a
m
ax
im

um
of

20
0
ite
ra
tio

ns
;
P s

=
10

n,
R

=
10
0

4 A Penalty Approach for Solving Nonsmooth and Nonconvex MINLP Problems 53

used in [17] and the set f1–f23 used in [18]. In the second column of the table, the
pair inside parenthesis corresponds to (|Ic|,|Id |). The remaining columns contain:
the solution produced by ObPA, fsol , and the number of function evaluations, n f e,
the average value of the objective function values produced by all the executed runs
(with BBMCSFilter and FGA), favg , the standard deviation of the function values,
SD, and the average number of function evaluations (over all the runs), n f eavg . The
character ‘–’ in the tables means that the information is not available in the cited
papers, ‘Ps’ is the size of the population and ‘R’ gives the number of independent
executed runs. From the comparison, we may conclude that the produced solutions
are of good quality. For most problems, the number of required function evaluations
ismoderate when comparedwith the numbers produced by the other algorithms, with
the exception in nine problems where it is much higher. In seven of these problems,
the algorithm reached 30 iterations since one of the conditions in (4.14) was not
satisfied. Thus, from the comparison with the BBMCSFilter and FGA, the ObPA
proves to be competitive either in terms of the quality of the found solutions or in
the number of function evaluations.

Finally, using a small subset of the problems, we compare our results with those
reported by other strategies. Table4.3 reports the solution produced by Algorithm1,
fsol , the number of function evaluations, n f e, and the number of iterations, nit . The
algorithm is made to stop when a solution with an error of 1E − 03 is reached or a
maximum of 5000n function evaluations is attained. The other results in the table
are collected from the exact penalty for mixed-integer programs (EXP-MIP) in [13],
the 4-rule FA in [20], the MIHDE in [14], the extended version of the ant colony
optimization (ACOmi) in [19], the particle swarm optimization (PSO) in [15] and the
penalty GA (pen-GA) in [16]. The table also shows the solution found by EXP-MIP,
fexp, and the number of nodes (corresponding to the number of branch and reduce
iterations), ‘# nod.’.

As far as the stochastic heuristics are concerned, Table4.3 shows: the average of
the objective function values (over all the executed runs), favg , the average number
of function evaluations, n f eavg , the percentage of successful runs (according to the
stopping conditionbasedon the proximity of f to f ∗),% suc., and the averagenumber
of function evaluations of the successful runs alone, n f esucavg . From the results wemay
conclude that the proposed ObPA performs reasonably well.

4.5 Conclusions

In this paper, an oracle-based penalty approach for solving nonsmooth and nonconvex
MINLPproblems is proposed.Acontinuous reformulationBCNLPproblem is solved
by the deterministic DIRECT solver. The penalty function to be optimized involves
a combination of penalty terms to penalize the integrality constraints, the equality
and inequality constraints and the distance to the oracle, based on hyperbolic tangent
penalty functions. The numerical experiments show that the proposed algorithmgives
competitive results when compared with other methods in the literature.

54 M. F. P. Costa et al.

Future developments will be directed to improve the efficiency of the oracle-
based penalty algorithm, in terms of the number of function evaluations, by using an
alternative deterministic and derivative-free global optimizer to solve the continuous
BCNLP problems.

Acknowledgements The authors would like to thank two anonymous referees for their valuable
comments and suggestions to improve the paper.

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fun-
dação para a Ciência e Tecnologia, within the projects UID/CEC/00319/2013 andUID/MAT/00013/
2013.

References

1. O. Exler, T. Lehmann, K. Schittkowski, A comparative study of SQP-type algorithms for
nonlinear and nonconvex mixed-integer optimization. Math. Program. Comput. 4(4), 383–412
(2012)

2. S. Burer, A.N. Letchford, Non-convex mixed-integer nonlinear programming: a survey. Surv.
Oper. Res. Manag. Sci. 17(2), 97–106 (2012)

3. S. Lee, I.E. Grossmann, A global optimization algorithm for nonconvex generalized disjunctive
programming and applications to process systems. Comput. Chem. Eng. 25(11), 1675–1697
(2001)

4. H.S. Ryoo, N.V. Sahinidis, Global optimization of nonconvex NLPs and MINLPs with appli-
cations in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)

5. C.S. Adjiman, I.P. Androulakis, C.A. Floudas, Global optimization of mixed-integer nonlinear
problems. AIChE J. 46(9), 1769–1797 (2000)

6. V.K. Srivastava, A. Fahim, An optimization method for solving mixed discrete-continuous
programming problems. Comput. Math. Appl. 53(10), 1481–1491 (2007)

7. L. Liberti, G. Nannicini, N. Mladenović, A good recipe for solving MINLPs, inMatheuristics:
Hybridizing Metaheuristics and Mathematical Programming, vol. 10, ed. by V. Maniezzo, T.
Stützle, S. Voß (Springer, US, 2010), pp. 231–244

8. G. Nannicini, P. Belotti, Rounding-based heuristics for nonconvex MINLPs. Math. Program.
Comput. 4(1), 1–31 (2012)

9. C. D’Ambrosio, A. Frangioni, L. Liberti, A. Lodi, A storm of feasibility pumps for nonconvex
MINLP. Math. Program. 136(2), 375–402 (2012)

10. G. Liuzzi, S. Lucidi, F. Rinaldi, Derivative-free methods for bound constrained mixed-integer
optimization. Comput. Optim. Appl. 53(2), 505–526 (2012)

11. M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco, E.M.G.P. Fernandes, Firefly penalty-based
algorithm for bound constrained mixed-integer nonlinear programming. Optimization 65(5),
1085–1104 (2016)

12. S. Lucidi, F. Rinaldi, Exact penalty functions for nonlinear integer programming problems. J.
Optim. Theory Appl. 145(3), 479–488 (2010)

13. S. Lucidi, F. Rinaldi, An exact penalty global optimization approach for mixed-integer pro-
gramming problems. Optim. Lett. 7(2), 297–307 (2013)

14. Y.-C. Lin, K.-S. Hwang, F.-S. Wang, A mixed-coding scheme of evolutionary algorithms to
solve mixed-integer nonlinear programming problems. Comput. Math. Appl. 47(8–9), 1295–
1307 (2004)

15. L. Yiqing, Y. Xigang, L. Yongjian, An improved PSO algorithm for solving non-convex
NLP/MINLP problems with equality constraints. Comput. Chem. Eng. 31(3), 153–162 (2007)

16. K.Deep,K.P. Singh,M.L.Kansal, C.Mohan,A real coded genetic algorithm for solving integer
and mixed integer optimization problems. Appl. Math. Comput. 212(2), 505–518 (2009)

4 A Penalty Approach for Solving Nonsmooth and Nonconvex MINLP Problems 55

17. A. Hedar, A. Fahim, Filter-based genetic algorithm for mixed variable programming. Numer.
Algebr. Control Optim. 1(1), 99–116 (2011)

18. F.P. Fernandes, M.F.P. Costa, E.M.G.P. Fernandes, Branch and bound based coordinate search
filter algorithm for nonsmooth nonconvex mixed-integer nonlinear programming problems, in
Computational Science and Its Applications – ICCSA 2014, Part II, LNCS, vol. 8580, ed. by
B. Murgante, S. Misra, A.M.A.C. Rocha, C. Torre, J.G. Rocha, M.I. Falcão, D. Taniar, B.O.
Apduhan, O. Gervasi (Springer, Berlin, 2014), pp. 140–153

19. M. Schlüter, J.A. Egea, J.R. Banga, Extended ant colony optimization for non-convex mixed
integer nonlinear programming. Comput. Oper. Res. 36(7), 2217–2229 (2009)

20. M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco, E.M.G.P. Fernandes, Extension of the firefly
algorithm and preference rules for solving MINLP problems, in International Conference
of Numerical Analysis and Applied Mathematics (ICNAAM 2016), AIP. Conf. Proc. 1863,
270003-1–270003-4 (2017)

21. P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, A.Mahajan,Mixed-integer nonlinear
optimization. Acta Numer. 22, 1–131 (2013)

22. F. Boukouvala, R. Misener, C.A. Floudas, Global optimization advances in mixed-integer
nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO. Eur. J.
Oper. Res. 252(3), 701–727 (2016)

23. M.R. Bussieck, S. Vigerske, MINLP solver software, in Wiley Encyclopedia of Operations
Research and Management Science, ed. by J.J. Cochran, L.A. Cox, P. Keskinocak, J.P.
Kharoufeh, J.C. Smith (Wiley, New York, 2011)

24. A.M.A.C. Rocha, M.F.P. Costa, E.M.G.P. Fernandes, Solving MINLP problems by a penalty
framework, in Proceedings of XIII Global Optimization Workshop, ed. by A.M. Rocha, M.F.
Costa, E. Fernandes, (2016), pp. 97–100

25. D.R. Jones, C.D. Perttunen, B.E. Stuckman, Lipschitzian optimization without the Lipschitz
constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

26. M. Schlüter, M. Gerdts, The oracle penalty method. J. Glob. Optim. 47(2), 293–325 (2010)
27. D.E. Finkel, DIRECT Optimization Algorithm User Guide, Center for Research in Scientific

Computation. (CRSC-TR03-11, North Carolina State University, Raleigh, NC 27695-8205,
March 2003)

28. C.A. Floudas, P.M. Pardalos, C. Adjiman, W.R. Esposito, Z.H. Gümüs, S.T. Harding, J.L.
Klepeis, C.A. Meyer, C.A. Schweiger, Handbook of Test Problems in Local and Global Opti-
mization, Nonconvex Optimization and its Applications (Springer Science & Business Media,
Dordrecht, 1999)

	4 A Penalty Approach for Solving Nonsmooth and Nonconvex MINLP Problems
	4.1 Introduction
	4.2 Penalty Approaches
	4.3 Oracle-Based Penalty Algorithm
	4.4 Numerical Experiments
	4.5 Conclusions
	References

