
Chapter 2
Existence of Nash Equilibria on Integer
Programming Games

Margarida Carvalho, Andrea Lodi and João Pedro Pedroso

Abstract We aim to investigate a new class of games, where each player’s set of
strategies is a union of polyhedra. These are called integer programming games.
To motivate our work, we describe some practical examples suitable to be modeled
under this paradigm. We analyze the problem of determining whether or not a Nash
equilibria exists for an integer programminggame, anddemonstrate that it is complete
for the second level of the polynomial hierarchy.

Keywords Integer programming games · Nash equilibria · Computational
complexity

2.1 Introduction

Game theory is a generalization of decision theory that takes into account the inter-
action of multiple decision makers which are concerned about finding their “best”
strategies subject to the fact that each controls some, but not all, actions that can take
place. See Fudenberg and Tirole [6] for an overview in this field.

Our goal is to study a particular class of games called integer programming games
(IPG), namely, the existence of “solutions”which in this context are calledNash equi-
libria (NE). We highlight three contributions concerning IPGs: the computational
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complexity study of the problem of deciding the existence of a pure NE and of a NE,
and the determination of sufficient conditions to guarantee the existence of NE.

Our paper is structured as follows. Section2.1.1 fixes notation and covers the game
theory background. Section2.1.2 presents examples of integer programming games
highlighting the importance of studying the existence of NE. Section2.2 provides
literature review. Section2.3 classifies the computational complexity of the problems
related with the existence of NE to IPGs and states sufficient conditions for NE to
exist. Finally, we conclude and discuss further research directions in Sect. 2.4.

2.1.1 Definitions and Notation

We consider games with a finite set of decision makers M = {1, 2 . . . ,m}, called
players. Each player p ∈ M has the set of feasible strategies X p. We denote the
set of all players’ strategies combinations by X = ∏

p∈M X p and the operator (·)−p

to denote (·) for all players except player p. We call each x p ∈ X p and x ∈ X a
player p’s pure strategy and a pure profile of strategies, respectively. Let player
p’s payoff function be Π p(x p, x−p). Our investigation focuses on simultaneous
non-cooperative complete information games, i.e., players play simultaneously, they
are self-interested and have full information of each other payoffs and strategies.
Each player aims to maximize her payoff, which is influenced by other participants’
decisions. In other words, each player p’s goal is to select her best response against
the opponents’ strategies x−p by solving the following mathematical programming
problem:

maximize
x p∈X P

Π p(x p, x−p). (2.1)

A pure profile of strategies x ∈ X that solves the optimization problem (2.1) for
all players is called pure equilibrium. A game may fail to have pure equilibria and,
therefore, a broader solution concept for a game must be introduced. To that end,
we recall some basic concepts of measure theory. Let Δp denote the space of Borel
probability measures over X p and Δ = ∏

p∈M Δp. Each player p’s expected payoff
for a profile of strategies σ ∈ Δ is

Π p(σ ) =
∫

X p

Π p(x p, x−p)dσ. (2.2)

A Nash equilibrium (NE) is a profile of strategies σ ∈ Δ such that

Π p(σ ) ≥ Π p(x p, σ−p), ∀p ∈ M ∀x p ∈ X p. (2.3)
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In a NE each player p’s expected payoff from σ cannot be improved by unilaterally
deviating to a different strategy.1

The support of a strategy σ p ∈ Δp, denoted as supp(σ p), is the set of player p’s
strategies played with positive probability, i.e., supp(σ p) = {x p ∈ X p : σ p(x p) >

0}.Givenσ ∈ Δ, if each player’s support size is 1, then it is a pure profile of strategies,
otherwise, we call it (strictly) mixed. For the sake of simplicity, whenever the context
makes it clear, we use the term (strategy) profile to refer to a pure one.

A game is called continuous if each player p’s strategy set X p is a nonempty
compact metric space and the payoff Π p(x p, x−p) is continuous.

A separable game is a continuous game with the payoff functions taking the form

Π p(x p, x−p) =
k1∑

j1=1

. . .

km∑

jm=1

a p
j1... jm

f 1j1(x
1) . . . f mjm (xm), (2.4)

where a p
j1... jm

∈ R and the f p
j are real-valued continuous functions.

A game is finite if the X p are finite and the Π p(x p, x−p) are arbitrary. Stein et al.
[18] state that finite games are special cases of separable games.Normal-form games
(or strategic-form games) are finite games represented through a multidimensional
matrix with an entry for each pure profile of strategies x ∈ X , where that entry is an
m dimensional vector of the players’ payoffs associated with x .

Based on the definition presented by Köppe et al. [9], we define an integer pro-
gramming game (IPG) as a game with X p = {x p : Apx p ≤ bp, x p

i ∈ N for i =
1, . . . , Bp}, where Ap is a rp × np matrix (with np ≥ Bp), bp a column vector of
dimension rp, and the payoff functions Π p(x p, x−p) are continuous and can be
evaluated in polynomial time. Note that IPGs contain mathematical programming
problems in the special case of a single player.

Observe that any finite game can be modeled as an IPG: associate a binary vari-
able for each player’s strategy (which would model the strategy selected), add a
constraint summing the decision variables up to one (this ensures that exactly one
strategy is selected) and formulate the players’ payoffs according to the payoff val-
ues for combinations of the binary variables2; moreover, these payoff functions are
continuous, since we can endow X with the discrete metric, which makes any func-
tion automatically continuous. In an IPG, strategies’ sets can be unbounded and thus
not compact, which makes the IPG class not contained in that of continuous games.
If the strategies’ sets in an IPG are nonempty and bounded, then the X p are finite
unions of convex polyhedra which are compact metric spaces and thus, the IPG is a
continuous game. Figure2.1 displays the connections between these game classes.

1The equilibrium conditions (2.3) only reflect a player p deviation to strategy in X p and not in Δp ,
because a strategy in Δp is a convex combination of strategies in X p , and thus cannot lead to a
better payoff than one in X p .
2In specific, a player’s payoff is a summation over all pure profiles of strategies, where each term
is the product of the associated binary variables and the associated payoff.
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Fig. 2.1 Game classes
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2.1.2 Examples

Next, we describe two games: the knapsack gamewhich is the simplest purely integer
programming game that one could devise, the competitive lot-sizing gamewhich has
practical applicability in production planning.

Knapsack Game

A simple and natural IPG would be one with linear payoff functions for the players.
Under this setting, each player p aims to solve

max
x p∈{0,1}n

n∑

i=1

vpi x
p
i +

m∑

k=1,k �=p

n∑

i=1

cpk,i x
p
i x

k
i (2.5a)

s. t.
n∑

i=1

wp
i x

p
i ≤ W p, (2.5b)

where the parameters vpi , c
p
k,i , w

p
i andW p are real numbers. This model can describe

situationswherem entities aim to decide inwhich of n projects to invest such that each
entity budget constraint (2.5b) is satisfied and the associated payoffs are maximized
(2.5a). The second term of the payoff (2.5a) reflects the opponents’ influence: if
player p and player k select project i (x p

i = xki = 1) then, player p earns cpk,i > 0 or
loses cpk,i < 0.

In Carvalho [2] mathematical programming tools are used to compute some
refined equilibria of this game.

Competitive Lot-sizing Game

The competitive lot-sizing game is a Cournot competition played through T periods
by a set of firms (players) that produce the same good; see [2] for details. Each
player has to plan her production as in the lot-sizing problems (see [17]) but, instead
of satisfying a known demand in each period of the time horizon, the the market price
depends on the total quantity of the good that is sold in the market. Each player p has
to decide how much will be produced in each time period t (production variable x p

t )
and how much will be placed in the market (variable q p

t ). For producing a positive
quantity, player p must pay a fixed and a proportional amount (setup and variable
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costs, respectively). A producer can build inventory (variable h p
t ) by producing in

advance and incurring in an inventory cost. In this way, we obtain the following
model for each player (producer) p:

max
y p∈{0,1}T ,x p,q p,h p

T∑

t=1

Pt (qt )q
p
t −

T∑

t=1

F p
t y

p
t −

T∑

t=1

C p
t x

p
t −

T∑

t=1

H p
t h

p
t (2.6a)

s. t. x p
t + h p

t−1 = h p
t + q p

t for t = 1, . . . , T (2.6b)

0 ≤ x p
t ≤ Mp

t y
p
t for t = 1, . . . , T (2.6c)

where F p
t is the setup cost, C p

t is the variable cost, H p
t is the inventory cost and Mp

t

is the production capacity for period t ; Pt (qt ) = at − bt
∑m

j=1 q
j
t is the unit market

price. The payoff function (2.6a) is player p’s total profit; constraints (2.6b) model
product conservation between periods; constraints (2.6c) ensure that the quantities
produced are non-negative and whenever there is production (x p

t > 0), the binary
variable y p

t is set to 1 implying the payment of the setup cost F p
t . In this game, the

players influence each other through the unit market price function Pt (qt ).

2.2 Literature Review

Nash [13] defined the most widely accepted concept of solution for non-cooperative
games, the Nash equilibrium. From the definition given in the previous section, a
NE associates a probability distribution to each player’s set of strategies such that no
player has incentive to unilaterally deviate from that NE if the others play according
with the equilibrium. In other words, in an equilibrium, simultaneously each player is
maximizing her expected payoff given the equilibrium strategies of the other players.
In a pure NE only a single strategy of each player has positive probability assigned
(i.e., probability 1).

The state-of-the-art game theory tools are confined to “well-behaved” continuous
games, where payoff functions and strategy sets meet certain differentiability and
concavity conditions, and normal-form games.

The class of continuous games contains awide rangeof relevant games.Glicksberg
[8] proved that every continuous game has a NE. However, literature focuses in
continuous games for which the strategies sets are convex and payoffs are quasi-
concave, since by Debreu, Glicksberg and Fan’s famous theorem there is a pure NE
which computation can be reduced to a constrained problem by the application of the
Karush–Kuhn–Tucker (KKT) conditions to each player’s optimization problem. In
this context, an outlier is the work in [18], where the support size of general separable
games is studied. Note that the tools mentioned above are not valid, for separable
games since they may fail to satisfy concavity conditions.

Finite games have received wide attention in game theory. Nash [13] proved
that any finite game has a NE. Daskalis et al. [5] proved that computing a NE is
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PPAD-complete, which is believed to be a class of hard problems, since it is unlikely
that PPAD (Polynomial Parity Arguments on Directed graphs) is equal to the poly-
nomial time complexity class P . Nisan et al. [14] describe general algorithms to
compute Nash equilibria, which failed to run in polynomial time. We refer the inter-
ested reader to the surveys and state-of-art algorithms collected in von Stengel [19].
Currently, some of those algorithms are available on GAMBIT [12], the most up-to-
date software for the computation of NE for normal-form games.

On the other hand, enumerating all players’ feasible strategies (as in finite games)
for an IPG can be impractical, or the players’ strategies in an IPG might lead to non
well-behaved games, for example where the player’s maximization problems are
non-concave. This shows that the existent tools and standard approaches for finite
games and convex games are not directly applicable to IPGs.

The literature in IPGs is scarce and often focus in the particular structure of
specific games. Kostreva [10] and Gabriel et al. [7] propose methods to compute NE
for IPGs, however it lacks a computational time complexity guarantee and a practical
validation through computational results. Köppe et al. [9] present a polynomial time
algorithm to compute pure NE under restrictive conditions, like number of players
fixed and sum of the number of player’s decision variables fixed, to name few.
There are important real-world IPGs, in the context of e.g., electricity markets [16],
production planning [11], health-care [3]; this highlights the importance of exploring
such game models.

2.3 Existence of Nash Equilibria

It can be argued that players’ computational power is bounded and thus, since the
space of pure strategies is simpler and contained in the space of mixed strategies
– i.e., the space of Borel probability measures – pure equilibria are more plausible
outcomes for games with large sets of pure strategies. In this way, it is important to
understand the complexity of determining a pure equilibrium to an IPG.

AccordingwithNash famous theorem [13] anyfinite gamehas aNash equilibrium.
Since a purely integer bounded IPGs is a finite game, it has a NE. However, Nash
theorem does not guarantee that the equilibrium is pure, which is illustrated in the
following example.

Example 2.1 (No pure Nash equilibrium) Consider the two-player game such that
player A solves

maximize
x A

18x Ax B − 9x A subject to x A ∈ {0, 1}

and player B:

maximize
x B

−18x Ax B + 9x B subject to x B ∈ {0, 1}.
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Under the profile (x A, x B) = (0, 0) player B has incentive to change to x B = 1; for
the profile (x A, x B) = (1, 0) player A has incentive to change to x A = 0; for the
profile (x A, x B) = (0, 1) player A has incentive to change to x A = 1; for the profile
(x A, x B) = (1, 1) player B has incentive to change to x B = 0. Thus there is no pure
NE. The (mixed) NE is σ A = σ B = ( 12 ,

1
2 ) with expected payoff of zero for both

players.

In Sect. 2.3.1, we classify both the computational complexity of deciding if there
is a pure and a mixed NE for an IPG. It will be shown that even with linear payoffs
and two players, the problem isΣ

p
2 -complete. Then, in Sect. 2.3.2, we state sufficient

conditions for the game to have finitely supported Nash equilibria.

2.3.1 Complexity of the Existence of NE

The complexity class Σ
p
2 contains all decision problems that can be written in the

form ∃x∀yP(x, y), that is, as a logical formula starting with an existential quantifier
followed by a universal quantifier followed by a Boolean predicate P(x, y) that can
be evaluated in polynomial time; see Chap.17 in Papadimitriou’s book [15].

Theorem 2.1 The problem of deciding if an IPG has a pure NE is Σ
p
2 -complete.

Proof The decision problem is in Σ
p
2 , since we are questing if there is a solution

in the space of pure strategies such that for any unilateral deviation of a player, her
payoff is not improved (and evaluating the payoff value for a profile of strategies can
be done in polynomial time).

It remains to prove Σ
p
2 -hardness, that is all problems in Σ

p
2 can be reduced in

polynomial time to the problem of deciding if an IPG has a pure NE. The following
problem is Σ

p
2 -complete (see Caprara et al. [1]) and we will reduce it to a problem

of deciding if an IPG has a pure NE:

DeNegre bilevel Knapsack Problem - DN

INSTANCE Non-negative integers n, A, B, and n-dimensional non-negative
integer vectors a and b.

QUESTION Is there a binary vector x such that
∑n

i=1 ai xi ≤ A and for all
binary vectors y with

∑n
i=1 bi yi ≤ B, the following inequality is satisfied

n∑

i=1

bi yi (1 − xi ) ≤ B − 1?

Our reduction starts from an instance of DN . We construct the following instance
of IPG.
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• The game has two players, M = {Z ,W }.
• Player Z controls a binary decision vector z of dimension 2n + 1; her set of feasible
strategies is

n∑

i=1

ai zi ≤ A

zi + zi+n ≤ 1 i = 1, . . . , n

z2n+1 + zi+n ≤ 1 i = 1, . . . , n.

• PlayerW controls a binary decision vectorw of dimension n + 1; her set of feasible
strategies is

Bwn+1 +
n∑

i=1

biwi ≤ B. (2.7)

• Player Z ’s payoff is (B − 1)wn+1z2n+1 + ∑n
i=1 biwi zi+n .

• PlayerW ’s payoff is (B − 1)wn+1 + ∑n
i=1 biwi − ∑n

i=1 biwi zi − ∑n
i=1 biwi zi+n .

We claim that in the constructed instance of IPG there is an equilibrium if and
only if the DN instance has answer YES.

(Proof of if). Assume that the DN instance has answer YES. Then, there is x
satisfying

∑n
i=1 ai xi ≤ A such that

∑n
i=1 bi yi (1 − xi ) ≤ B − 1. Choose as strategy

for player Z , ẑ = (x,

n
︷ ︸︸ ︷
0, . . . , 0, 1) and for playerW ŵ = (

n
︷ ︸︸ ︷
0, . . . , 0, 1). We will prove

that (̂z, ŵ) is an equilibrium. First, note that these strategies are guaranteed to be
feasible for both players. Second, note that none of the players has incentive to
deviate from (̂z, ŵ):

• Player Z ’s payoff is B − 1, and B − 1 ≥ ∑n
i=1 biwi holds for all the remaining

feasible strategies w of player W .
• Player W ’s has payoff B − 1 which is the maximum possible given ẑ.

(Proof of only if). Now assume that the IPG instance has answer YES. Then, there
is a pure equilibrium (̂z, ŵ).

If ŵn+1 = 1, then, by (2.7), ŵ = (

n
︷ ︸︸ ︷
0, . . . , 0, 1). In this way, since player Z max-

imizes her payoff in an equilibrium, ẑ2n+1 = 1, forcing ẑi+n = 0 for i = 1, . . . , n.
The equilibrium inequalities (2.3), applied to player W , imply that, for any of her
feasible strategieswwithwn+1 = 0, B − 1 ≥ ∑n

i=1 biwi (1 − ẑi ) holds, which shows
that DN is a YES instance with the leader selecting xi = ẑi for i = 1, . . . , n.

If ŵn+1 = 0, under the equilibrium strategies, player Z ’s payoff term (B −
1)ŵn+1z2n+1 is zero. Thus, since in an equilibrium player Z maximizes her pay-
off, it holds that ẑi+n = 1 for all i = 1, . . . , n with ŵi = 1. However, this implies
that player W ’s payoff is non-positive given the profile (̂z, ŵ). In this way, player

W would strictly improve her payoff by unilaterally deviating to w = (
︷ ︸︸ ︷
0, . . . , 0, 1).
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In conclusion, wn+1 is never zero in a pure equilibrium of the constructed game
instance. �

Extending the existence property to mixed equilibria would increase the chance
of an IPG to have a NE, and thus, a solution. Next theorem shows that the problem
remains Σ

p
2 -complete.

Theorem 2.2 The problem of deciding if an IPG has a NE is Σ
p
2 -complete.

Proof Analogously to the previous proof, the problem belongs to Σ
p
2 .

It remains to show that it is Σ
p
2 -hard. We will reduce the following Σ

p
2 -complete

to it (see [1]):

Dempe Ritcht Problem - DR

INSTANCE Non-negative integers n, A, C and C ′, and n-dimensional non-
negative integer vectors a and b.

QUESTION Is there a value for x such that C ≤ x ≤ C ′ and for all binary
vectors satisfying

∑n
i=1 bi yi ≤ x , the following inequality holds

Ax +
n∑

i=1

ai yi ≥ 1?

Our reduction starts from an instance of DR. We construct the following instance of
IPG.

• The game has two players, M = {Z ,W }.
• Player Z controls a non-negative variable z and a binary decision vector (z1, . . . ,
zn+1); her set of feasible strategies is

n∑

i=1

bi zi ≤ z

zi + zn+1 ≤ 1, i = 1, . . . , n

z ≤ C ′(1 − zn+1)

z ≥ C(1 − zn+1).

• Player W controls a non-negative variable w and binary decision vector (w1, . . . ,

wn).
• Player Z ’s payoff is Az + ∑n

i=1 ai ziwi + zn+1.
• Player W ’s payoff is zn+1w + ∑n

i=1 biwi zi .

We claim that in the constructed instance of IPG there is an equilibrium if and
only if the DR instance has answer YES.
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(Proof of if). Assume that the DR instance has answer YES. Then, there is x
such that C ≤ x ≤ C ′ and Ax + ∑n

i=1 ai yi ≥ 1 for a y satisfying
∑n

i=1 bi yi ≤ x .
As strategy for player Z choose ẑ = C ′ and (̂z1, . . . , ẑn, ẑn+1) = (y1, . . . , yn, 0); for
player W choose ŵ = 0 and (ŵ1, . . . , ŵn) = (y1, . . . , yn). We prove that (̂z, ŵ) is
an equilibrium. First, note that these strategies are guaranteed to be feasible for both
players. Second, note that none of the players has incentive to deviate from (̂z, ŵ):

• Player Z ’s payoff cannot be increased, since it is equal or greater than 1 and for
i = 1, . . . , n such that ẑi = 0 the payoff coefficients are zero.

• Analogously, player W ’s payoff cannot be increased, since for i = 1, . . . , n such
that ŵi = 0 the payoff coefficients are zero and the payoff coefficient of ẑn+1ŵ is
also zero.

(Proof of only if). Assume that DR is a NO instance. Then, for any x in
[
C,C ′] the

leader is not able to guarantee a payoff of 1. This means that in the associated IPG,
player Z has incentive to choose z = 0 and (z1, . . . , zn, zn+1) = (0, . . . , 0, 1). How-
ever, this player Z ’s strategy leads to a playerW ’s unbounded payoff. In conclusion,
there is no equilibrium. �

In the proof of Theorem2.2, it is not used the existence of a mixed equilibrium
to the constructed IPG instance. Therefore, it implies Theorem2.1. The reason for
presenting these two theorems is because in Theorem2.1, the reduction is a game
where the players have finite sets of strategies, while in Theorem2.2, in the reduction,
a player has an unbounded set of strategies.

2.3.2 Conditions for the Existence of NE

Glicksberg [8] and Stein et al. [18] provide results on the existence and charac-
terization of equilibria for continuous and separable games (recall the definitions in
Sect. 2.1.1), which we will apply to IPGs. Their proofs rely on the fact that the payoff
functions have the form (2.4), enabling to describe the “degree”of interdependence
among players.

In an IPG, each player p’s strategy set X p is a nonempty compact metric space
if X p is bounded and nonempty. This together with the fact that in Sect. 2.1.1 we
assumed that each player’s payoff is continuous, allow us to conclude the following:

Lemma 2.1 Every IPG such that X p is nonempty and bounded is a continuous
game.

Given that every continuous game has a NE [8],

Theorem 2.3 Every IPG such that X p is nonempty and bounded has a Nash equi-
librium.

Applying Stein et al. [18] results, we obtain the following:
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Theorem 2.4 For any Nash equilibrium σ of a separable IPG, there is a Nash
equilibrium τ such that each player p mixes among at most kp + 1 pure strategies
and Π p(σ ) = Π p(τ ).

Proof Apply Theorem 2.8 of [18] to a separable IPG. �

If in an IPG each player’s set of strategies X p is bounded and the payoff takes the
form (2.4), IPG is separable. Assuming that these two conditions are satisfied (so that
Theorems2.3 and 2.4 hold) is not too strong when modeling real-world applications.
In otherwords, the players’ strategies are likely to be bounded due to limitations in the
players’ resources, which guarantees that an IPG has an equilibrium (Theorem2.3).
For instance, recall the knapsack game and the competitive lot-sizing game from
Sect. 2.1.2 in which each player’s set of strategies is bounded. In the knapsack game,
payoffs are linear, thus by Theorem 2.4, we deduce that the bound on the equilibria
supports for each player is n + 1.

Interesting IPGs, the competitive lot-sizing game (recall Sect. 2.1.2), has quadratic
payoff functions that can be written in the form (2.4).

Corollary 2.1 Let IPG be such that X p is nonempty and bounded, and

Π p(x p, x−p) = cpx p +
∑

k∈M
(xk)ᵀQp

k x
p, (2.8)

where cp ∈ R
np and Qp

k is a nk × np real matrix. Then, for any Nash equilibrium
σ there is a Nash equilibrium τ such that each player p mixes among at most
1 + np + np(np−1)

2 pure strategies and Π p(σ ) = Π p(τ ).

Proof In order to write player p’s payoff in the form (2.4), there must be a function
f p
jp
(x p) for 1, x p

1 , . . ., x p
np , x

p
1 x

p
1 , x

p
1 x

p
2 , . . ., x p

1 x
p
np , x

p
2 x

p
2 , . . ., x p

np x
p
np ; thus, kp =

1 + np + np(np−1)
2 in Theorem2.4.

The thesis [2] presents an algorithmic approach that uses the fact that we can
restrict our investigations to finitely supported NE.

2.4 Conclusions and Further Directions

Literature in non-cooperative game theory lacks the study of games with diverse
sets of strategies with practical interest. This paper is a first attempt to address the
computational complexity and existence of equilibria to integer programming games.

We classified the game’s complexity in terms of existence of pure and mixed
equilibria. For both cases, it was proved that the problems are Σ

p
2 -complete. How-

ever, if the players’ set of strategies is bounded, the game is guaranteed to have an
equilibrium. Chen et al. [4] proved that computing a NE for a finite game is PPAD-
complete even with only two players. Thus, recalling Fig. 2.1, computing a NE to a
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separable IPG is PPAD-hard. Even when there are equilibria, the computation of one
is a PPAD-hard problem, which is likely to be a class of hard problems. Furthermore,
the PPAD class does not seem to provide a tight classification of the computational
complexity of computing an equilibrium in IPGs. In fact, the PPAD class has its root
in finite games that are an easier class of games, in comparison with general IPGs.
Note that for IPGs, verifying if a profile of strategies is an equilibrium implies solv-
ing each player’s best response optimization, which can be a NP-complete problem,
while for finite games this computation can be done efficiently. In this context, it
would be interesting to explore the definition of a “second level PPAD” class, that
is, a class of problems for which a solution could be verified in polynomial time if
there was access to a NP oracle.

In this paper, we also determined sufficient conditions for the existence of equi-
libria on IPGs. Moreover, these theoretical results enabled us to conclude that the
support of a NE is finite. This is a key result in the correctness of the algorithm that
computes an equilibrium for an IPG presented in [2]. Future work in this context
should address the question of determining all equilibria, computing an equilibrium
satisfying a specific property (e.g., computing the equilibrium that maximizes the
social welfare, computing a non-dominated equilibrium) and equilibria refinements
or new solution concepts under a games with multiple equilibria. From a mathemat-
ical point of view, the first two questions embody a big challenge, since it seems
to be hard to extract problem structure to the general IPG class of games. The last
question raises another one, which is the possibility of considering different solution
concepts to IPGs.
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