
Chapter 19
Understanding Complexity in a Practical
Combinatorial Problem Using Mathematical
Programming and Constraint Programming

Beatriz B. Oliveira and Maria Antónia Carravilla

Abstract Optimization problems that are motivated by real-world settings are often
complex to solve. Bridging the gap between theory and practice in this field starts by
understanding the causes of complexity of each problem and measuring its impact in
order to make better decisions on approaches and methods. The Job-Shop Schedul-
ing Problem (JSSP) is a well-known complex combinatorial problem with several
industrial applications. This problem is used to analyse what makes some instances
difficult to solve for a commonly used solution approach – Mathematical Integer Pro-
gramming (MIP) – and to compare the power of an alternative approach: Constraint
Programming (CP). The causes of complexity are analysed and compared for both
approaches and a measure of MIP complexity is proposed, based on the concept of
load per machine. Also, the impact of problem-specific global constraints in CP mod-
elling is analysed, making proof of the industrial practical interest of commercially
available CP models for the JSSP.

Keywords Job-shop scheduling problem · Mathematical programming
Constraint programming · Global constraints · Complexity

19.1 Introduction

The Job-Shop Scheduling Problem (JSSP) and its many extensions and variations
have been thoroughly studied on the field of Optimization, due to its computational
difficulty. This problem is NP-hard [8] and was even qualified as “one of the most
computationally stubborn combinatorial problems” [3]. For these reasons, it will be
analysed in this paper as a starting point to understand the meaning of complexity
for both approaches: Mathematical Programming and Constraint Programming.

B. B. Oliveira (B) · M. A. Carravilla
INESC TEC and Faculty of Engineering, University of Porto, Porto, Portugal
e-mail: beatriz.oliveira@fe.up.pt

M. A. Carravilla
e-mail: mac@fe.up.pt

© Springer International Publishing AG 2018
A. I. F. Vaz et al. (eds.), Operational Research, Springer Proceedings
in Mathematics & Statistics 223, https://doi.org/10.1007/978-3-319-71583-4_19

269

270 B. B. Oliveira and M. A. Carravilla

The JSSP summarily consists of scheduling J jobs to be processed in M machines
with the goal of minimizing the time it takes for all the operations to end (makespan).
Each job takes a fixed processing time in each machine and there is a certain sequence
of machines that it should follow – each job has its own specific sequence. The
operations must be completed – once a job starts on a specific machine, it must take
the full processing time. Also, a machine can only handle one job at the time.

The JSSP has numerous applications in the industry, namely on production plan-
ning and scheduling. In the past years, several extensions and adaptations are arising
in the literature [9, 12], many concerning real applications.

This paper has two main objectives. Firstly, it aims to gain some insights regarding
the factors that induce complexity on the Mathematical Programming approach to
this problem. As this approach is commonly used to solve real-world problems,
understanding these factors can help practitioners identify beforehand the challenges
and/or opportunities that arise from the characteristics of the problem and therefore
make better decisions regarding e.g. solution methods.

Secondly, it aims to understand whether the alternative approach of Constraint
Programming (CP) is useful to tackle to the “difficult to solve” instances. Above all,
there is the goal to understand the power of the commercially available CP models
for the JSSP and, consequently, whether they are a realistic solid alternative for
practitioners.

The paper is thus divided into two main sections. The first section is related to the
Mathematical Programming approach. It presents a mixed-integer formulation for
this combinatorial problem that is commonly used in the literature and assesses its
computational power with eighty-two literature instances. The main objective is to
understand which factors are more relevant to explain the complexity and “stubborn-
ness” of the JSSP, namely to understand the impact of size. Therefore, on Sect. 19.2.1,
the MIP model is presented; the computational results are discussed on Sect. 19.2.2.
In this section, a potential measure of instance complexity is also presented and
tested. The second part is devoted to the Constraint Programming approach to the
JSSP (Sect. 19.3). Here, three different CP formulations are presented (Sect. 19.3.1)
and tested against the performance of the MIP model (Sect. 19.3.2). One of the CP
formulations is a model commercially available, including global constraints specif-
ically developed for this problem. The main goal is herein to understand the power
and limitations of CP programs, namely the commercially available one. Finally, on
Sect. 19.4 the main conclusions are drawn.

The overall purpose of this paper is to draw attention to the impact of understanding
and measuring impact when tackling specially complex problems, such as real-world
applications of the JSSP. This purpose is materialised in the following contributions:

• A quantitative-based discussion on factors that induce complexity for a MIP
approach to the JSSP, namely the total size of the instance and relationship between
number of jobs and machines;

• A proposed measure of MIP-complexity of JSSP instances based on load per
machine;

19 Understanding Complexity in a Practical Combinatorial Problem … 271

• A comparison of the computational power of different CP formulations for the
JSSP, with insights related with commercially available CP models, which show
significant advantages when tackling complex instances;

• A comparison between CP and MIP approaches to the JSSP, establishing their
advantages and shortcomings;

• A quantitative evidence of the benefits of using commercially available CP models
to tackle complex JSSP instances and settings.

19.2 Mathematical Programming Approach

19.2.1 MIP Model

This model follows the one proposed by Applegate and Cook [3], based on the
disjunctive programming problem presented in Balas [5].

Sets and indexes

J set of jobs (|J | = J)

M set of machines |M | = M)

i, j ∈ J index of jobs (i, j = {1, . . . , J })
k ∈ M index of machines (k = {1, . . . , M})

Parameters

pik the kth operation (machine) for job i
tik processing time of job i on machine k
L significantly large value

Decision Variables

xik starting time of job i on machine k
yi jk (= 1) if job i is scheduled before job j in machine k
c makespan

Mathematical Program

min c (19.1)

s.t. xi pik ≥ xi pi k−1 + ti pi k−1 , ∀ i ∈ J , ∀k ∈ M \{1} (19.2)

xik ≥ x jk + t jk − Lyi jk, ∀ k ∈ M , ∀i, j > i ∈ J (19.3)

x jk ≥ xik + tik − L(1 − yi jk), ∀ k ∈ M , ∀i, j > i ∈ J (19.4)

c ≥ xi piM + ti piM ∀i ∈ J (19.5)

xik, c ≥ 0, ∀i ∈ J , k ∈ M (19.6)

yi jk ∈ {0, 1}, ∀i, j > i ∈ J , k ∈ M (19.7)

272 B. B. Oliveira and M. A. Carravilla

The goal of this model is to minimize the total makespan (Eq. 19.1). The first
constraint (Eq. 19.2) ensures that a job can only start to be processed in a machine
if it has finished its processing on the previous machine (clearly, this does not apply
to the first operation of the job).

The second and third constraints are related to the order of the jobs in each machine
(Eqs. 19.3 and 19.4). They state that if a job precedes another job in a certain machine,
then its starting time is not limited by the latter. However, if a job comes after another
job in a machine, it can only start when this one has finished. The following constraint
(Eq. 19.5) states that the total makespan is given by the job that finishes the processing
last (i.e., based on the last machine: the M th machine the job will go through).

Finally, the decision variable that sets the starting time of each job on each machine
as well as the makespan should be non-negative, and the precedence variable is set
as a binary (Eqs. 19.6 and 19.7).

19.2.2 Computational Tests and Results

In order to understand the behaviour of this MIP model, 82 instances from the litera-
ture were run. The computational tests were run on a Toshiba Personal Computer with
16 Gigabyte of RAM memory, and with a processor Intel(R) Core(TM) i7-4600U
CPU @ 2.10 GHz 2.70 GHz. The model was developed in a OPL Project in IBM
ILOG CPLEX Optimization Studio 12.6.1.0 and the MIP Solver used was CPLEX.
The time limit set for the resolution of each instance was 30 min. The instances’
characteristics and solution can be found on the Appendix (Table 19.4) and the main
results are summarised on Table 19.1.

Table 19.1 Summary of the average results of the MIP model

J M #instances Avg. sol. time (s) Sol. time std. dev. (s) Avg. gap (%) Gap std. dev.

6 6 1 0 0 0 0

10 5 5 13 18 0 0

10 10 18 142 286 0 0

15 5 5 1.800 0 29 5%

15 10 5 1.800 0 11 8%

15 15 5 1.800 0 12 3%

20 5 6 1.800 0 47 5%

20 10 10 1.800 0 39 9%

20 15 8 1.800 0 37 2%

20 20 4 1.800 0 22 4%

30 10 5 1.800 0 55 2%

50 10 10 1.800 0 76 3%

19 Understanding Complexity in a Practical Combinatorial Problem … 273

0

5

10

15

20

10 15 20 25 30 35 40 45 50

Number of jobs

N
um

be
r

of
m

ac
hi

ne
s

12%

11%

29%

22%

47%

39%

37%

55% 76%

Relative gap (bubble width)

Fig. 19.1 Average MIP relative optimality gap attained per instance size

As it is possible to observe on Table 19.1, the solver was only able to prove
optimality within the time limit (30 min) for the twenty-four smallest instances.1

The results are herein analysed for both resulting groups:

Instances Solved to Optimality:

For the smallest instances, solved to optimality, the average solution time increases
with the size of the instances. Nevertheless, the magnitude of the variability of solu-
tion times for instances of the same size (given by its standard deviation, in Table 19.1)
suggests that the size is not the only factor that translates into complexity and, con-
sequently, to longer run times.

Instances Not Solved to Optimality:

For the fifty-eight instances that were not solved to optimality in 30 min, the value of
the optimality gap attained may shed some light on the matter of complexity. Firstly, it
is interesting to compare the average results of the instances of type (J, M) = (20, 5)

and of type (J, M) = (15, 15). The latter are bigger in terms of number of variables
and constraints, yet the solver is able to achieve significantly lower gaps for them
(47% vs. 12%). This is another evidence that the “easiness to solve” is not only linked
with the size of the problem.

Figure 19.1 represents the average gap attained for instances of the same size.
The horizontal axis represents the number of jobs in the instances, the vertical axis
represents the number of machines, and the width of the bubbles depicts the size of
the average optimality gap. On an horizontal reading, it is possible to see that the
optimality gap increases as instances tackle an increasing number of jobs. This may

1Instances ft06, ft10, abz5, abz6, la01–la05, la16–la20, orb01–orb10.

274 B. B. Oliveira and M. A. Carravilla

be due to the fact that the number of jobs influences the most the size and thus, at some
(limited) degree, the complexity of the model and its difficulty to solve to optimality.
In fact, due to the structure of the binary variable yi jk , ∀i, j > i ∈ J , k ∈ M , it can be
seen that J = |J | has more impact on the number of variables that M = |M |. Due
to the structure of Constraints 19.3 and 19.4, it also strongly influences the number
of constraints. In conclusion, this horizontal increase seems a natural consequence
of the size of the instances, which is heavily dependent on the number of jobs (J).

However, if one considers a fixed number of jobs (for example, j = 20 on the
horizontal axis) and analyses the impact of the number of machines in the optimality
gap, the effect is reversed. It seems that, for a fixed number of jobs, the optimality
gap achieved in the same run time is better for more balanced instances, with the
same number of jobs and machines (even if that means a bigger number of variables
and constraints).

Regarding the observable “easiness” to solve balanced instances (in terms of
number of jobs and machines), one may consider several hypotheses. Please con-
sider the following definition of optimality gap for a minimization problem: Gap =
(UB − LB)/LB, where LB stands for the lower bound, given by the best relaxed
solution found on the Branch-and-Bound nodes not pruned at a time; and UB stands
for the upper bound, which is given by the best integer solution found so far. Due
to the complexity of the methods and heuristics utilized by CPLEX to speed up
the Branch-and-Bound procedure, it is difficult to understand how the lower bound
evolves in different instances. Therefore, the main hypothesis presented to explain
this behaviour is related with the update velocity of the upper bound. Analysing the
data herein presented, it may be possible to say that the balanced structure (i.e., a
similar number of jobs and machines) makes it easier for the solver to find admissible
(integer) solutions and thus update the upper bound.

One could also argue that the effect of the increasing number of machines (that
reduces the optimality gap for the same number of jobs) is not a matter of balance
but of the existence of alternative admissible solutions. That is to say that it is not
the balance between the two dimensions of the problem that is at stake but only the
number of machines. In fact, if a certain problem is characterized by a big number
of machines (and if the precedence of operations is not too restraining) it is possibly
easier to find alternative optima, as well as admissible integer solutions that update
the upper bound.

Other factors may influence the complexity of the instance, namely the prece-
dences and processing times that may hinder or help the procedure to find admissi-
ble integer solutions, which may explain the high standard deviation of the solution
times observed for the twenty-four smallest instances.

A Measure of Complexity

In order to further understand the concept of instance complexity, a measure of
the load of solicitations applied to each machine throughout the scheduling horizon
was designed. Dividing the horizon in partitions of the same size, the goal was to
understand whether the load applied in the partitions (the need or demand of jobs

19 Understanding Complexity in a Practical Combinatorial Problem … 275

to be scheduled there) was constant, and what was the maximum value it achieved
throughout the horizon. So, for some partition p of the horizon, the needs-to-capacity
ratio (r) is given by:

rp = count(ESik ∈ p)

M
,∀ i ∈ J , ∀ k ∈ M

Here, M is, as before, the number of machines, and ESik stands for the earliest
start of job i in machine k. The earliest start is defined by the precedence rules of
each job:

ESik =
∑

m

tim ,∀m ∈ M : pio = m, pio′ = k, o < o′

Here, as before, tim stands for the processing time of job i on machine m and pio
represents the oth machine where job i is processed. Therefore, the earliest start of a
job on a machine is the result of the sum of the processing times of that same job on
the preceding machines. For example, if job 1 can only be processed in machine C
after being processed in machines A and B then the earliest start of job 1 on machine
C is equal to the time it takes to be processed in machines A and B. Therefore, the
needs-to-capacity ratio is able to represent, at a certain extent, what are the needs of
jobs to be scheduled in each machine, taking into consideration the precedences.

This measure was calculated for the eighty-two instances run. In order to adapt
the partitions of the scheduling horizon to each instance, the length of the partitions
was based on the instances’ minimum value of the processing times:

length = 2 · min
ik

(tik), ∀ i ∈ J ,∀ k ∈ M

Figure 19.2 represents the evolution of this ratio for instances la10 and la37.
Both instances consider 15 jobs yet in la10 there are 5 machines whilst in la37
there are 15 machines. Despite the smaller size, the MIP solver achieved an optimality
gap of 35% for the former (vs. 15% for the latter).

Fig. 19.2 Evolution of the
needs-to-capacity ratio for
the first 40 partitions of the
scheduling horizon of
instances la10 and la37

10 20 30 40

0

0.5

1

1.5

2

2.5

3

N
ee

ds
-t

o-
ca

pa
ci

ty
ra

tio

la10 (J=15, M=5)
la37 (J=15, M=15)

276 B. B. Oliveira and M. A. Carravilla

Fig. 19.3 Correlation
between the optimality gap
attained by the MIP solver
and maximum
needs-to-capacity ratio of
the instances in Footnote 2

R2 = 0.675

0.2 0.4 0.6 0.8

0

1

2

3

4

5

6

MIP optimality gap

M
ax

im
um

ne
ed

s-
to

-c
ap

ac
ity

ra
tio

As explained before, the needs-to-capacity ratio represents, for each partition
of time, the number of jobs whose earliest start in some machine falls within the
partition, divided over the total number of machines. It is thus an average measure of
the load per machine. Figure 19.2 is hence able to display the additional complexity of
la10: the maximum and overall level of solicitations (needs) per machine is higher
than in la37 and has more variation throughout time. This supports the statement
that the precedences and processing times in the instance may hinder the solver to
find admissible integer solutions and influence the solution time/quality more than
the number of variables and constraints.

In order to compare instances in a easier way, the maximum ratio attained
throughout the partitions of the scheduling horizon was calculated for each instance.
Figure 19.3 represents the correlation between the maximum ratio and the optimality
gap attained by the MIP solver (for those instances in which the solver was unable
to prove optimality within the time limit2). Table 19.5 in the Appendix also presents
these metrics, together with the quartile in which each maximum ratio falls when
comparing the maximum needs-to-capacity ratio of the eighty-two instances. This
table also contains information regarding the number of partitions, their length, and
the standard deviation of the ratio throughout the horizon.

Figure 19.3 represents each instance by its optimality gap and maximum needs-to-
capacity ratio. It is possible to observe that the ratio increases as the gap increases, i.e.
as the MIP solver finds it more and more difficult to reach (or prove) optimality. The
R2 statistics with a value of 67% shows a good correlation between these two metrics,
which supports the hypothesis that the ratio is a good indicator of an instance’s
complexity for the MIP solver. That is to say, the relation between the load of jobs
that, at a certain point in time, are soliciting the machines and the capacity the
system has to respond to these solicitations (i.e. the number of machines) has a direct
influence on the difficulty the solver has to reach and prove optimality for a given
instance.

2Instances in which the MIP solver was unable to prove optimality within the 30 min time limit:
abz7–abz9, ft20, la06–la15, la21–la40, swv01–swv20, yn1–yn4.

19 Understanding Complexity in a Practical Combinatorial Problem … 277

0.2 0.4 0.6 0.8

0

1

2

3

4

5

6

MIP optimality gap

M
ax

im
um

ne
ed

s-
to

-c
ap

ac
ity

ra
tio

(J=15, M=5)
(J=15, M=10)
(J=15, M=15)
(J=20, M=5)
(J=20, M=10)
(J=20, M=15)
(J=20, M=20)
(J=30, M=10)
(J=50, M=10)

Fig. 19.4 Correlation between the optimality gap attained by the MIP solver and maximum needs-
to-capacity ratio of the previous instances, categorized by size (number of jobs J and number of
machines M)

Figure 19.4 shows the size characteristics (number of jobs and machines) of the
instances in Fig. 19.3. It is interesting to see from a different perspective the conclu-
sion drawn before: an increase of the size does not imply an increase of complexity.
At the same time, if one considers a specific group of instances of the same size,
videlicet the instances with (J, M) = (20, 20) (triangle-shaped points), the maxi-
mum ratio attained is very similar amongst the instances while the optimality gap
still shows some variation, not fully explained by the ratio (the dots representing
the instances are spread horizontally on Fig. 19.4). This shows that are still other
factors that may contribute to the complexity of the instance besides size and load
of solicitations on the machines.

19.3 Constraint Programming Approach

“CP solving is based on intelligently enumerating all possible variable-value com-
binations” [13].

Constraint Programming is based on a flexible and intuitive modelling language,
allowing for logic constraints, non-linear constraints, and almost every expression
possible over the variables. It also requires that the domain of the variables (finite
set of possible values) is set beforehand [13].

A CP program assigns values to variables without violating the constraints [4].
A search tree is built with several nodes, where each node is a solution, with some
variables with a value already assigned to them. Each node then branches to several
other nodes, each representing a similar solution but with other variable (from the
remaining without assignment) allocated to some possible value. There are as many
child nodes as there are possible values in the domain of the variable to assign [1].
The mechanism of constraint propagation consists on decreasing the domain of the

278 B. B. Oliveira and M. A. Carravilla

variables not assigned yet due to the value assigned to a certain value in a iteration,
and thus decreasing the number combinations to test [13].

Global constraints are a powerful element of CP programs. A global constraint
is, by definition, a constraint that involves more than two variables. When designed
to seize to the full potential the structure of the problem, these can be a powerful
tool to facilitate constraint propagation and thus reduce significantly the search tree.
It is important to recall that, although there are widely used global constraints (e.g.
alldiff), some of the best performing global constraints that solve specially difficult
problems are usually designed specifically for them. For the most studied problems
in CP, global constraints have been designed and enhanced in the past years [10]. It
is also important to note that in CP, unlike MIP problems, increasing the number of
constraints may indeed be beneficial as it helps propagation.

Due to their characteristics, it is often the case that CP programs should perform
well, by nature and theory, at finding admissible solutions, although only being able
to prove optimality by explicitly searching all nodes and comparing their results.
MIP solvers, on the other hand, although having more difficulty at finding admis-
sible solutions, are able to prove optimality by setting upper and lower bounds and
determining the optimality gap, i.e. it is not needed to explicitly explore the full
solution space.

Scheduling problems are a classical application of CP due to their above-discussed
“stubbornness”. Therefore, specific well-performing global constraints have been
designed and tested for it. Moreover, since it was previously inferred that the difficulty
to find admissible integer solutions may be an important factor on the “stubbornness”
of this problem (Sect. 19.2.2), Constraint Programming should be an appropriate
approach to tackle this problem. So, in the next section, three different CP models
are presented and tested. The first two are CP variations of the previously presented
MIP model. The third one uses global constraints developed specifically for this
problem and different decision variables.

19.3.1 CP Models

Three CP models are used in this paper to understand and compare the power of
Constraint Programming models, namely and especially of global constraints.

The first model (CP1), is nearly a translation of the MIP model presented in
Sect. 19.2.1. Since logic constraints can be used in CP, Constraints 19.3 and 19.4 (of
the MIP model) can be translated into one disjunctive equation, and thus there is no
need to use the auxiliary binary variables yi jk . The second model (CP2) is a variation
of CP1, where the makespan variable (c) is eliminated (as well as Constraint 19.5).
Since CP does not require its model elements to be linear, the objective function can
be stated as the minimization of the maximum value amongst several, which was not
possible using Mathematical Linear Programming. Finally, the third model (CP3) is
based on the IBM ILOG CPLEX Optimization Studio example sched_jobshop for

19 Understanding Complexity in a Practical Combinatorial Problem … 279

CP and seizes all the advantages of Constraint Programming: the decision variables’
representation is more appropriate and two specifically developed global constraints
are used.

19.3.1.1 CP1

Using the same sets, indexes and parameters of the MIP Model presented:

Decision Variables

xik ∈ {0, . . . , 10000} and integer starting time of job i on machine k
c ∈ {0, . . . , 10000} and integer makespan

CP1 Model

min c (19.8)

s.t. xi pik ≥ xi pi k−1 + ti pi k−1 , ∀ i ∈ J , ∀k ∈ M \{1} (19.9)

xik ≥ x jk + t jk ∨ x jk ≥ xik + tik, ∀ k ∈ M , ∀i, j > i ∈ J
(19.10)

c ≥ xi piM + ti piM ∀i ∈ J (19.11)

The main difference of this model (vs. the MIP model) is the absence of the yi jk
variables and the presence of the disjunctive Constraint 19.10. In fact, CP models
allow for this kind of logic constraints, which state that either the inequality on the
left or the inequality of the right must hold. That is to say that for each machine
either job i waits for job j to end (if it is scheduled after it) or the other way around.
This type of constraint allows for this disjunction “or-or” to be stated without the
auxiliary binary variable that states whether or not job i precedes job j .

19.3.1.2 CP2

Using the same sets, indexes and parameters of the MIP Model presented:

Decision Variables

xik ∈ {0, . . . , 10000} and integer starting time of job i on machine k

CP2 Model

min max
i

{xi piM + ti piM } (19.12)

s.t. xi pik ≥ xi pi k−1 + ti pi k−1 , ∀ i ∈ J , ∀k ∈ M \{1} (19.13)

xik ≥ x jk + t jk ∨ x jk ≥ xik + tik, ∀ k ∈ M , ∀i, j > i ∈ J (19.14)

280 B. B. Oliveira and M. A. Carravilla

When comparing with CP1, this model has a different objective function and,
consequently, the variable c and the Constraint 19.11 are no longer needed. This is
possible because CP allows for the use of non-linear equations, such as Eq. 19.12.

19.3.1.3 CP3

Using the same sets, and indexes of the MIP Model presented:

Parameters

Oik : (m, t) operation of job i in the kth machine, represented by a tuple of the machine in question

(m) and the associated processing time (t)

Decision Variables

wik , sizeOik : t interval that represents the operation of job i on machine k,

which must have the length (size) of the processing time t of operation Oik

sk sequence of the above-defined intervals (jobs) on machine k;
built from the intervals for all i jobs and o machines such that Oio : m = k

CP3 Model

min max
i

{ endOf(wiM) } (19.15)

s.t. noOverlap(sk) ∀ k ∈ M (19.16)

endBeforeStart(wik,wik+1) ∀ i ∈ J , ∀ k ∈ M \{M} (19.17)

This model is considerably different from the previous two (and, consequently,
from the MIP Model) mainly because the decision variables were changed in order
to enable the use of two global constraints (Constraints 19.16 and 19.17), which
were designed specifically for the JSSP and are able to fulfil the Constraint Program-
ming potential to its maximum in this type of problems. In fact, our variables are
now intervals, representing the length of the job operations by its size (which is a
parameter) and their positioning by its start time (which is the decision variable) and
finish time, and sequences of intervals, which represent the job scheduling in each
machine. In fact, although the second decision variable is somehow repeating what
the first one already says, it is needed in order to build Constraint 19.16, which will
bring significant computational advantages.

The objective function is similar to the one on CP2, and attempts to minimize
the makespan, i.e. the last interval or operation to end. Constraint 19.16 uses the
structure of the decision variable sequence s, and ensures that there is no overlap
of jobs in every machine. It has the same function as Constraints 19.3 and 19.4 in

19 Understanding Complexity in a Practical Combinatorial Problem … 281

the MIP Model. Constraint 19.17 ensures that a job only starts on a machine after it
has finished on the previous. It has the same function as Constraint 19.2 in the MIP
Model.

19.3.2 Computational Tests and Results

In order to understand the behaviour and performance of these CP models versus
the MIP model, eleven instances were chosen from the eighty-two tested for the
Mathematical Programming approach (Sect. 19.2.2). These instances were chosen
based on their performance with the MIP Model. For each size of instance (number
of jobs and number of machines), the hardest instance to solve with Mathematical
Programming was chosen, so as to increase sample variability. The “difficulty” crite-
rion was the solution time if the instance was solved within the 30 min time limit, or
the optimality gap attained if the solver was stopped without proving optimality. It is
also possible to observe that the instances chosen come from all four quartiles, when
classified using the maximum needs-to-capacity ratio (Table 19.5, in the Appendix),
so as to increase diversity.

The computational tests were run on the same computer and the models were also
developed and run on IBM ILOG CPLEX Optimization Studio 12.6.1.0 using the CP
Optimizer. The time limit set for the resolution of each instance was also 30 min. The
eleven instances chosen and the summary of the results are presented on Table 19.2.
Here, the values in bold are the best solutions found across models.

These results point to the initial hypothesis that Constraint Programming is most
useful when it involves well-performing global constraints, which were able to cap-
ture and use the problem structure to propagate constraints and prune branches more

Table 19.2 Results of CP models, comparing with MIP model

Objective function Solution time (s)

MIP CP1 CP2 CP3 MIP CP1 CP2 CP3

la10 958 958 958 958 1.800 1.800 1.800 0

la14 1.292 1.292 1.292 1.292 1.800 1.800 1.800 0

orb01 1.059 1.096 1.070 1.059 1.013 1.800 1.800 28

la23 1.032 1.032 1.032 1.032 1.800 1.800 1.800 0

la30 1.355 1.355 1.355 1.355 1.800 1.800 1.800 2

la37 1.418 1.430 1.410 1.397 1.800 1.800 1.800 5

la34 1.749 1.721 1.740 1.721 1.800 1.800 1.800 1

abz7 702 691 691 663 1.800 1.800 1.800 1.800

swv10 2.024 1.915 1.961 1.827 1.800 1.800 1.800 1.800

yn4 1.054 1.044 1.061 986 1.800 1.800 1.800 1.800

swv13 4.307 3.829 3.948 3.149 1.800 1.800 1.800 1.800

282 B. B. Oliveira and M. A. Carravilla

i) MIP
Opti-
mality
gap

ii) Δ
Obj.

Value

iii) CP
Sol. time

C3

Stopped by limit

C2
300−1800s

C1

0−300sΔ �= 0%

B

Δ = 0gap> 0%

A

gap
= 0%

Fig. 19.5 Characteristics of the different types of instances

easily. In fact, when comparing CP1 or CP2 with the MIP model, one is able to
conclude that these Constraint Programming models bring little or no advantage.
As the instances get bigger, the combinations of the domains to test get exponen-
tially large and hinder a good performance of the model. However, when the global
constraints and a more appropriate representation are used (CP3), this complexity is
more easily tackled and the results point to a significantly better performance of CP
when compared with a MIP approach. Comparing the performance of CP1 and CP2
(which were very similar), it is also possible to conclude that reducing the number
of constraints does not bring clear advantages, as is more usual in MIP programs.

In order to compare in more detail the Mathematical Programming and Constraint
Programming approaches, the eighty-two instances were run with the full-performing
CP model (CP3). The results are presented in the Appendix (Table 19.63). From the
results, the instances were categorized in six categories (A, B, C1, C2, C3), depending
on three sequential criteria: (i) whether or not the MIP model was able to prove the
optimality of the solution found (i.e. attaining 0% optimality gap), (ii) the difference
on the objective function values found by both approaches, and (iii) the run time
of the CP model. Figure 19.5 depicts the instance categorization and the respective
characteristics.

Instances of type A are the instances that the MIP model solved within the time
limit, i.e. the optimality of the solution was proven (with 0% gap). The instances
where the MIP solution optimality was not proven were divided in two groups: the

3This table also repeats the MIP results in order to facilitate the comparison instance by instance.

19 Understanding Complexity in a Practical Combinatorial Problem … 283

Table 19.3 Summary of average results for CP model CP3, comparing with MIP model

Instance type (#) Avg size5 Avg MIP sol.
time (s)

Avg CP sol.
time (s)

Avg Δ obj.
value (%)

A (24) 87 109 6 0

B (17) 154 1.800 0 0

C1 (18) 278 1.800 44 3

C2 (1) 225 1.800 313 −1

C3 (22) 341 1.800 1.800 −11

instances where the solution value found by the CP Optimizer (within the time limit,
hence optimal) was equal to the one attained by the MIP model (type B) and the
instances where the solution values were different4 (type C). The instances of type
C were also divided according to the solution time of the CP program. One should
notice that the program was stopped by the time limit only for category C3; for C1
and C2, it stopped because it had explored all possible solutions. Table 19.3 presents
the summary of the average results for each type of instance.

The average size5 of the instances increases from A to C, yet there is no linear
relation with size and the distribution of the instances of type C in C1, C2 and C3.
In fact, C1 contains both smaller instances (15 jobs and 5 machines) and some of
the biggest instances (50 jobs and 10 machines). At the same time, other instances
of the same sizes are classified as C3. This is an indication that also in Constraint
Programming size is not a clear indicator of complexity.

Instances of type A (the smallest) were solved to optimality by both approaches,
and their optimality was proven also in both cases.6 Nevertheless, the CP approach
was considerably faster.

For instances of type B, since the CP Optimizer was able to explore all possible
solutions under the time limit, it proved the optimality of the best solution found. As
there is no difference between the solution value found by CP and MIP, it is possible
to state that both approaches reached the optimum. However, although the MIP model
was also able to reach the optimum for these instances, it was not able to prove so
within the time limit. Considering that for these 17 instances the CP Optimizer took,
in average, under a second to attain the optimal solution, this approach was able
to almost instantaneously prove optimality whilst the MIP solver was not able to
do so in 30 min. This conclusion does not contrast with the notion that Constraint
Programming is a technique more prone to admissibility rather than optimality: in

4I.e., there existed a delta on the objective function value given by Δ = (ObjValueCP −
ObjValueMI P)/ObjValueMI P .
5Since the number of variables and constraints is different in the two models, size is herein considered
as the number of jobs multiplied by the number of machines.
6MIP model: proven by optimality gap. CP Model: the only way for a CP program to prove optimality
is by exploring all possible solutions; therefore, if the solver stops before the time limit, it means
that optimality was proven.

284 B. B. Oliveira and M. A. Carravilla

fact, it was its power to efficiently check admissibility that allowed for the optimality
to be proven in these cases.

As for instances of type C, it is important to notice that there are 18 instances
categorized as C1, 22 as C3 yet only one as C2. Moreover, the instance categorized
as C2 is close to the threshold of C1 (the run time is 313 s and the threshold is 300 s).
In fact, either the CP Optimizer is swift to explore all possible solutions (under 5 min)
or it reaches the time limit (30 min) without being able to do so. Moreover, as it as
mentioned above, the size is not a good indicator of this behaviour: when analysing
the biggest instances (swv11-swv20), it is possible to conclude that in half of the
instances the optimal solution is found in under 3 s while in the other half the CP
Optimizer is stopped after 30 min without being able to explore all possible solutions.
Nevertheless, there are significant improvements on the objective function value for
all sub-categories of C, especially on C3.

It is therefore interesting to study how swiftly the CP Optimizer finds its best solu-
tion in 30 min. As an example, Fig. 19.6 presents the value of the incumbent solutions
found throughout the run time for instance swv12. The dotted line represents the
best solution found by the MIP solver for this instance (with an optimality gap of
79%). It is possible to see that the steep improvement on the objective function value
occurs in the beginning. In fact, approximately 80% of the improvement (vs. the MIP
solution) occurs in 20 s, and 95% occurs in 2 min.

It is also interesting to analyse the swiftness to find a good solution for those
instances in which both approaches were stopped by the 30 min time limit and where
the CP presented only a slightly better performance in terms of the best objective
function value found in this limit. Figure 19.7 shows the evolution of the incumbent
value for both approaches for instance yn1 (20 jobs, 20 machines) in which the
improvement attained by the CP approach (vs. the MIP approach) was the smallest
(1%).

As it is possible to see, the CP model was able to achieve a good solution before
the MIP model. In fact, for the CP approach there was one major improvement in the

0 500 1000 1500

3200

3600

4000

4400

Runtime (seconds)

In
cu

m
be

nt
O

bj
ec

tiv
e

V
al
ue

CP: evolution
MIP: best sol. value

(a) Overview of the 30 minutes run time

0 20 40 60 80 100
Runtime (seconds)

CP: evolution
MIP: best sol. value

(b) Detail of the first 2 minutes

Fig. 19.6 Evolution of the incumbent objective function value for instance swv12 throughout the
30 min run time with model CP3

19 Understanding Complexity in a Practical Combinatorial Problem … 285

Fig. 19.7 Evolution of the
incumbent objective function
value for instance yn1
throughout the 30 min run
time with the MIP model and
CP model (CP3)

0 500 1000 1500
900

1000

1100

1200

Runtime (seconds)

In
cu

m
be

nt
O

bj
ec

tiv
e

V
al
ue

CP model
MIP model

first seconds and a smaller one after approximately 10 min. As for the MIP model,
there were three major improvements: the first after a few seconds, the second at
around 2–3 min, and the third in the last 10 min of the time horizon. This may lead
to the conclusion that this full-performing CP model is quicker than the MIP model
at finding good solutions even in the case where both approaches reach the same
solution within the same time limit.

One final note to highlight the fact that the needs-to-capacity ratio was not a good
predictor of complexity (or “difficulty to solve”) for the CP Optimizer. In fact, there
was not a clear correlation between the CP solution time and the needs-to-capacity
ratio quartile of the instances (Table 19.5, in the Appendix).

19.4 Conclusions

The first objective of this paper was to understand the impact of the instances’ size
on the intrinsic complexity of the JSSP and on its consequent “difficulty to solve”.
The problem was described and a MIP Model from the literature was presented and
used to solve eighty-two instances. The results enabled a detailed analysis of the
instances’ characteristics and responsiveness to the MIP model.

From the analysis of the performance of the Mathematical Programming approach,
it was possible to conclude that an instance size has a significant impact on its easiness
to solve, yet it is not the only significant factor. In fact, there was significant variability
on solution time for same-size instances, and for bigger instances that were not solved
to optimality there was not always visible a straightforward relationship between size
and optimality gap achieved.

In this approach, the size of the problem is determined by two characteristics: the
number of jobs and the number of machines. From the structure of the problem and its
formulation, the number of jobs has a bigger impact on the number of variables and
number of constraints, hence a bigger impact on the size. Moreover, the increase on
the number of jobs seems to have a straightforward relationship with the increase of
optimality gap achieved. As for the number of machines, it was possible to conclude
that its impact is not direct. For a specific number of jobs, it seems that an increasing

286 B. B. Oliveira and M. A. Carravilla

or more balanced number of machines makes the instances easier to solve despite
being of a bigger size. An hypothesis proposed to explain this behaviour is related
to the easiness of the solver to find admissible integer solutions in such a problem,
hence being able to update the upper bound and the optimality gap more frequently.

In order to further understand the concept of complexity, a measure of the load
applied to each machine throughout the scheduling horizon was designed. The needs-
to-capacity ratio developed shows a significant correlation with the optimality gap
attained by the MIP solver, thus being an adequate predictor of the “difficulty to
solve” of an instance, for a Mathematical Programming approach.

The measure proposed, as well as the insights gained regarding the factors that
induce complexity, can be useful e.g. when tackling an industrial scheduling applica-
tion of the JSSP. Analysing the number of jobs and machines and other characteristics
of the actual problem, it will be possible to understand whether the MIP model can
easily solve the problem to optimality thus eliminating the need for more complex
solution approaches or whether these are justifiably needed.

The second objective of this paper was to compare the impact of using Constraint
Programming instead of Mathematical Programming to tackle the complexity of the
JSSP. It was concluded that the main power of CP when tackling these hard, complex,
combinatorial problems comes from the tailored-made global constraints that are
able to swiftly improve propagation, find admissible solutions and thus significantly
decrease the solution time. In fact, the CP models that used the same variables as
the MIP model and similar constraints – which benefited only from part of the CP
modelling flexibility by the use of logic and non-linear constraints – performed as
well as, or worse than, the MIP model for the instances tested. The CP model that
used a different representation of the variables and solid global constraints, however,
was able to get significant improvements either in solution time and quality of the
solutions found.

It was also possible to conclude that for some instances, although the MIP solver
presented high optimality gap values at the end of the time limit, it was indeed able to
reach the optimum. Nevertheless, it was not able to prove so. This conclusion is built
on the fact that, within seconds, the (well-performing) CP model was able to test
all possible admissible solutions and state that said solution was the best possible.
Moreover, it was possible to conclude that the instance size has a significantly smaller
impact in Constraint Programming than in Mathematical Programming. In fact, half
of the largest instances tested were solved to optimality in a few seconds while the run
of the remaining half was stopped by the 30 min time limit. There were also indicators
that the full-performing CP approach may be swifter than the MIP approach at finding
good solutions, even when it is not able to prove optimality in the specified time limit
and it is not able to attain major improvements on the best solution value found.

Since the best performing CP model, which presents all the above-mentioned
advantages, is commercially available, these conclusions may have a significant
impact on practical application of optimization methods. In fact, it is pointed out
that there are Constraint Programming models available for this type of problem that
may be a better alternative to the “traditional” MIP approach for some problems.

19 Understanding Complexity in a Practical Combinatorial Problem … 287

Future work will be focused on comparing other characteristics of both approaches,
such as the number of feasible solutions found in a specific time frame, which might
be useful when using hybrid solution methods such as matheuristics to solve this
problem. Additionally, it would be interesting to study the reasons why the needs-
to-capacity ratio does not appear to be a good predictor of “difficulty to solve” for
CP models.

Acknowledgements The first author was supported by grant SFRH/BD/103362/2014 from FCT -
Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science and Technology). This
work was also partially financed by the ERDF - European Regional Development Fund through
the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Pro-
gramme within project “POCI-01-0145-FEDER-006961”, and by National Funds through the FCT
- Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science and Technology) as
part of project UID/EEA/50014/2013.

Appendix

See Tables 19.4, 19.5 and 19.6.

Table 19.4 Size and characteristics of the instances run and corresponding results with the MIP
model

Instance name Jobs Machines Obj. function value Solution time (s) Optimality gap (%)

ft06 6 6 55 0 0

abz5 10 10 1.234 19 0

abz6 10 10 943 4 0

ft10 10 10 930 122 0

la01 10 5 666 7 0

la02 10 5 655 6 0

la03 10 5 597 3 0

la04 10 5 590 2 0

la05 10 5 593 45 0

la16 10 10 945 7 0

la17 10 10 784 13 0

la18 10 10 848 3 0

la19 10 10 842 6 0

la20 10 10 902 4 0

orb01 10 10 1.059 1.013 0

orb02 10 10 888 9 0

(continued)

288 B. B. Oliveira and M. A. Carravilla

Table 19.4 (continued)

Instance name Jobs Machines Obj. function value Solution time (s) Optimality gap (%)

orb03 10 10 1.005 590 0

orb04 10 10 1.005 38 0

orb05 10 10 887 17 0

orb06 10 10 1.010 596 0

orb07 10 10 397 14 0

orb08 10 10 899 36 0

orb09 10 10 934 56 0

orb10 10 10 944 14 0

la06 15 5 926 1.800 33.91

la07 15 5 890 1.800 26.07

la08 15 5 863 1.800 26.66

la09 15 5 951 1.800 25.00

la10 15 5 958 1.800 34.66

la21 15 10 1.071 1.800 15.07

la22 15 10 932 1.800 7.41

la23 15 10 1.032 1.800 23.42

la24 15 10 940 1.800 4.68

la25 15 10 979 1.800 6.54

la36 15 15 1.281 1.800 10.54

la37 15 15 1.418 1.800 15.31

la38 15 15 1.207 1.800 11.76

la39 15 15 1.240 1.800 8.55

la40 15 15 1.245 1.800 14.78

abz7 20 15 702 1.800 31.45

abz8 20 15 715 1.800 28.95

abz9 20 15 721 1.800 27.04

ft20 20 5 1.198 1.800 48.51

la11 20 5 1.222 1.800 50.31

la12 20 5 1.039 1.800 40.69

la13 20 5 1.150 1.800 41.91

la14 20 5 1.292 1.800 52.46

la15 20 5 1.207 1.800 49.59

la26 20 10 1.218 1.800 26.93

la27 20 10 1.288 1.800 33.39

la28 20 10 1.224 1.800 31.74

la29 20 10 1.220 1.800 26.42

la30 20 10 1.355 1.800 34.64

(continued)

19 Understanding Complexity in a Practical Combinatorial Problem … 289

Table 19.4 (continued)

Instance name Jobs Machines Obj. function value Solution time (s) Optimality gap (%)

swv01 20 10 1.563 1.800 46.45

swv02 20 10 1.579 1.800 45.40

swv03 20 10 1.618 1.800 47.42

swv04 20 10 1.625 1.800 48.51

swv05 20 10 1.633 1.800 45.81

swv06 20 15 1.868 1.800 40.26

swv07 20 15 1.736 1.800 38.28

swv08 20 15 2.046 1.800 41.88

swv09 20 15 1.907 1.800 41.85

swv10 20 15 2.024 1.800 45.65

yn1 20 20 913 1.800 17.50

yn2 20 20 954 1.800 21.91

yn3 20 20 945 1.800 20.33

yn4 20 20 1.054 1.800 27.42

la31 30 10 1.784 1.800 55.77

la32 30 10 1.850 1.800 52.68

la33 30 10 1.719 1.800 54.53

la34 30 10 1.749 1.800 57.72

la35 30 10 1.888 1.800 55.58

swv11 50 10 3.767 1.800 77.84

swv12 50 10 4.002 1.800 78.68

swv13 50 10 4.307 1.800 80.37

swv14 50 10 4.081 1.800 79.66

swv15 50 10 3.722 1.800 78.02

swv16 50 10 2.952 1.800 73.41

swv17 50 10 2.915 1.800 72.10

swv18 50 10 2.950 1.800 74.16

0swv19 50 10 3.107 1.800 74.67

swv20 50 10 3.009 1.800 74.46

abz5 – abz9 in Adams et al. [2] ft06, ft10, ft20 in Fisher and Thompson [6]

la01 – la40 in Lawrence [7] orb01 – orb10 in Applegate and Cook [3]

swv01 – swv20 in Storer et al. [11] yn1 – yn4 in Yamada and Nakano [14]

290 B. B. Oliveira and M. A. Carravilla

Table 19.5 Needs-to-capacity ratio calculation for each instance

Needs-to-capacity ratio

Instance
name

Optimality
gap (%)

Maximum
value

Quartile
(of max)

Std.
deviation

partitions Partition
length

ft06 0 1.17 1st 0.30 27 2

abz5 0 2.00 3rd 0.55 9 100

abz6 0 1.20 2nd 0.34 18 40

ft10 0 1.00 1st 0.11 159 4

la01 0 2.60 3rd 0.63 17 24

la02 0 2.40 3rd 0.64 15 24

la03 0 2.00 3rd 0.43 31 14

la04 0 2.00 3rd 0.35 42 10

la05 0 2.20 3rd 0.39 39 10

la16 0 1.00 1st 0.19 51 14

la17 0 1.00 1st 0.17 67 10

la18 0 1.00 1st 0.17 65 10

la19 0 1.00 1st 0.19 56 10

la20 0 1.20 2nd 0.20 60 12

orb01 0 1.10 1st 0.18 68 10

orb02 0 1.00 1st 0.16 50 12

orb03 0 1.00 1st 0.16 66 10

orb04 0 1.10 1st 0.17 76 10

orb05 0 1.10 1st 0.18 55 10

orb06 0 1.00 1st 0.19 61 12

orb07 0 1.20 2nd 0.25 28 10

orb08 0 1.20 2nd 0.18 66 10

orb09 0 1.00 1st 0.17 69 10

orb10 0 1.10 1st 0.17 78 10

la06 34 3.00 3rd 0.63 29 14

la07 26 3.60 4th 0.77 25 16

la08 27 3.40 4th 0.59 38 10

la09 25 3.40 4th 0.64 26 14

la10 35 3.00 3rd 0.51 44 10

la21 15 1.70 2nd 0.28 48 14

la22 7 1.50 2nd 0.23 59 10

la23 23 1.60 2nd 0.23 73 10

la24 5 1.70 2nd 0.24 75 10

la25 7 1.70 2nd 0.25 77 10

la36 11 1.00 1st 0.17 69 14

la37 15 1.00 1st 0.15 95 10

la38 12 1.13 1st 0.15 98 10

(continued)

19 Understanding Complexity in a Practical Combinatorial Problem … 291

Table 19.5 (continued)

Needs-to-capacity ratio

Instance
name

Optimality
gap (%)

Maximum
value

Quartile (of
max)

Std.
deviation

partitions Partition
length

la39 9 1.00 1st 0.15 95 10

la40 15 1.00 1st 0.15 91 10

abz7 31 1.73 2nd 0.41 19 22

abz8 29 2.27 3rd 0.53 21 22

abz9 27 1.80 2nd 0.54 23 22

ft20 49 4.20 4th 0.44 111 4

la11 50 4.60 4th 0.90 31 14

la12 41 4.40 4th 0.76 41 10

la13 42 4.00 4th 0.71 42 10

la14 52 4.40 4th 0.72 45 10

la15 50 4.40 4th 0.80 32 12

la26 27 2.20 3rd 0.36 50 14

la27 33 2.00 3rd 0.27 64 10

la28 32 2.10 3rd 0.31 81 10

la29 26 2.20 3rd 0.31 76 10

la30 35 2.00 3rd 0.30 77 10

swv01 46 2.00 3rd 0.14 356 2

swv02 45 2.00 3rd 0.15 330 2

swv03 47 2.20 3rd 0.15 334 2

swv04 49 2.10 3rd 0.15 351 2

swv05 46 2.10 3rd 0.14 390 2

swv06 40 1.40 2nd 0.09 483 2

swv07 38 1.33 2nd 0.09 449 2

swv08 42 1.40 2nd 0.09 527 2

swv09 42 1.40 2nd 0.09 476 2

swv10 46 1.40 2nd 0.13 231 4

yn1 17 1.30 2nd 0.23 33 20

yn2 22 1.40 2nd 0.31 37 20

yn3 20 1.15 1st 0.28 35 20

yn4 27 1.20 2nd 0.27 37 20

la31 56 3.30 4th 0.46 73 10

la32 53 3.10 3rd 0.43 79 10

la33 55 3.30 4th 0.46 75 10

la34 58 3.00 3rd 0.43 60 10

la35 56 3.10 3rd 0.45 68 10

swv11 78 5.00 4th 0.30 397 2

swv12 79 5.30 4th 0.31 390 2

(continued)

292 B. B. Oliveira and M. A. Carravilla

Table 19.5 (continued)

Needs-to-capacity ratio

Instance
name

Optimality
gap (%)

Maximum
value

Quartile (of
max)

Std.
deviation

partitions Partition
length

swv13 80 5.20 4th 0.31 382 2

swv14 80 5.30 4th 0.31 382 2

swv15 78 5.00 4th 0.32 339 2

swv16 73 5.10 4th 0.31 372 2

swv17 72 5.00 4th 0.33 308 2

swv18 74 5.00 4th 0.32 331 2

swv19 75 5.00 4th 0.31 339 2

swv20 74 5.10 4th 0.32 333 2

Table 19.6 Instances run (with J jobs and M machines) with MIP model and CP model CP3

Instance MIP optimality
gap (%)

MIP obj.
function value

CP3 Obj.
function value

MIP sol.
time (s)

CP3 sol.
time (s)

ft06 0.0 55 55 0 0

abz5 0.0 1.234 1.234 19 7

abz6 0.0 943 943 4 2

ft10 0.0 930 930 122 12

la01 0.0 666 666 7 0

la02 0.0 655 655 6 0

la03 0.0 597 597 3 0

la04 0.0 590 590 2 1

la05 0.0 593 593 45 0

la16 0.0 945 945 7 2

la17 0.0 784 784 13 2

la18 0.0 848 848 3 2

la19 0.0 842 842 6 10

la20 0.0 902 902 4 3

orb01 0.0 1.059 1.059 1.013 28

orb02 0.0 888 888 9 7

orb03 0.0 1.005 1.005 590 19

orb04 0.0 1.005 1.005 38 10

orb05 0.0 887 887 17 7

orb06 0.0 1.010 1.010 596 13

orb07 0.0 397 397 14 4

orb08 0.0 899 899 36 5

orb09 0.0 934 934 56 3

orb10 0.0 944 944 14 2

(continued)

19 Understanding Complexity in a Practical Combinatorial Problem … 293

Table 19.6 (continued)

Instance MIP optimality
gap (%)

MIP obj.
function value

CP3 Obj.
function value

MIP sol.
time (s)

CP3 sol.
time (s)

la06 33.9 926 926 1.800 0

la07 26.1 890 890 1.800 0

la08 26.7 863 863 1.800 0

la09 25.0 951 951 1.800 0

la10 34.7 958 958 1.800 0

la21 15.1 1.071 1.046 1.800 76

la22 7.4 932 927 1.800 9

la23 23.4 1.032 1.032 1.800 0

la24 4.7 940 935 1.800 35

la25 6.5 979 977 1.800 52

la36 10.5 1.281 1.268 1.800 13

la37 15.3 1.418 1.397 1.800 5

la38 11.8 1.207 1.196 1.800 313

la39 8.5 1.240 1.233 1.800 18

la40 14.8 1.245 1.222 1.800 82

abz7 31.5 702 663 1.800 1.800

abz8 29.0 715 680 1.800 1.800

abz9 27.0 721 686 1.800 1.800

ft20 48.5 1.198 1.165 1.800 1

la11 50.3 1.222 1.222 1.800 0

la12 40.7 1.039 1.039 1.800 0

la13 41.9 1.150 1.150 1.800 0

la14 52.5 1.292 1.292 1.800 0

la15 49.6 1.207 1.207 1.800 0

la26 26.9 1.218 1.218 1.800 1

la27 33.4 1.288 1.235 1.800 254

la28 31.7 1.224 1.216 1.800 31

la29 26.4 1.220 1.153 1.800 1.800

la30 34.6 1.355 1.355 1.800 2

swv01 46.4 1.563 1.413 1.800 1.800

swv02 45.4 1.579 1.475 1.800 203

swv03 47.4 1.618 1.406 1.800 1.800

swv04 48.5 1.625 1.488 1.800 1.800

swv05 45.8 1.633 1.438 1.800 1.800

swv06 40.3 1.868 1.710 1.800 1.800

swv07 38.3 1.736 1.667 1.800 1.800

swv08 41.9 2.046 1.810 1.800 1.800

swv09 41.8 1.907 1.698 1.800 1.800

(continued)

294 B. B. Oliveira and M. A. Carravilla

Table 19.6 (continued)

Instance MIP optimality
gap (%)

MIP obj.
function value

CP3 Obj.
function value

MIP sol.
time (s)

CP3 sol.
time (s)

swv10 45.7 2.024 1.827 1.800 1.800

yn1 17.5 913 901 1.800 1.800

yn2 21.9 954 910 1.800 1.800

yn3 20.3 945 910 1.800 1.800

yn4 27.4 1.054 986 1.800 1.800

la31 55.8 1.784 1.784 1.800 1

la32 52.7 1.850 1.850 1.800 0

la33 54.5 1.719 1.719 1.800 0

la34 57.7 1.749 1.721 1.800 1

la35 55.6 1.888 1.888 1.800 1

swv11 77.8 3.767 3.021 1.800 1.800

swv12 78.7 4.002 3.119 1.800 1.800

swv13 80.4 4.307 3.149 1.800 1.800

swv14 79.7 4.081 2.970 1.800 1.800

swv15 78.0 3.722 2.960 1.800 1.800

swv16 73.4 2.952 2.924 1.800 0

swv17 72.1 2.915 2.794 1.800 0

swv18 74.2 2.950 2.852 1.800 0

swv19 74.7 3.107 2.843 1.800 2

swv20 74.5 3.009 2.823 1.800 0

References

1. 4COutreachProgram. CSP tutorial (2005), http://4c.ucc.ie/web/outreach/tutorial.html
2. J. Adams, E. Balas, D. Zawack, The shifting bottleneck procedure for job shop scheduling.

Manag. Sci. 34, 391–401 (1988)
3. D. Applegate, W. Cook, A computational study of the job-shop scheduling instance. ORSA J.

Comput. 3, 149–156 (1991)
4. K.R. APT, Priciples of Constraint Programming (Cambridge University Press, Cambridge,

2003)
5. E. Balas, Disjunctive programming. Ann. Discret. Math. 5, 3–51 (1979)
6. H. Fisher, G.L. Thompson, Probabilistic learning combinations of local job-shop scheduling

rules, in Industrial Scheduling, ed. by J.F. Muth, G.L. Thompson (Prentice-Hall, Englewood
Cliffs, 1963), pp. 225–251

7. S. Lawrence, Resource constrained project scheduling: an experimental investigation of heuris-
tic scheduling techniques (supplement), in Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, Pennsylvania (1984)

8. J.K. Lenstra, Computational complexity of discrete optimization problems. Ann. Discret. Math.
4, 121–140 (1979)

9. J. Poppenborg, S. Knust, J. Hertzber, Online scheduling of flexible job-shops with blocking
and transportation. Eur. J. Ind. Eng. 6, 497–518 (2012)

http://4c.ucc.ie/web/outreach/tutorial.html

19 Understanding Complexity in a Practical Combinatorial Problem … 295

10. F. Rossi, P. van Beek, T. Walsh (eds.), Handbook of Constraint Programming (Elsevier, Ams-
terdam, 2006)

11. R.H. Storer, S.D. Wu, R. Vaccari, New search spaces for sequencing instances with application
to job shop scheduling. Manag. Sci. 38, 1495–1509 (1992)

12. K. Thörnblad, A.B. Strömberg, M. Patriksson, T. Almgren, Scheduling optimisation of a real
flexible job shop including fixture availability and preventive maintenance. Eur. J. Ind. Eng. 9,
126–145 (2015)

13. W.J. van Hoeve, Introduction to constraint programming, in ACP Summer School on Theory
and Practice of Constraint Programming, September 24–28, 2012, Wrocław, Poland (2012)

14. T. Yamada, R. Nakano, A genetic algorithm applicable to large-scale job-shop instances, in
PPSN’2 Proceedings of the 2nd International Workshop on Parallel Problem Solving from
Nature, ed. by R. Manner, B. Manderick (1992), pp. 281–290

	19 Understanding Complexity in a Practical Combinatorial Problem Using Mathematical Programming and Constraint Programming
	19.1 Introduction
	19.2 Mathematical Programming Approach
	19.2.1 MIP Model
	19.2.2 Computational Tests and Results

	19.3 Constraint Programming Approach
	19.3.1 CP Models
	19.3.2 Computational Tests and Results

	19.4 Conclusions
	References

