
Chapter 10
Optimal Control Strategies for an
Advertisement Viral Diffusion

João N. C. Gonçalves, Helena Sofia Rodrigues
and M. Teresa T. Monteiro

Abstract The process of diffusing viral marketing campaigns through social net-
works can be modeled under concepts of mathematical epidemiology. Based on a
Susceptible-Infected-Recovered (SIR) epidemiological model, the benefits of opti-
mal control theory on the diffusion of a real viral advertisement are studied. Two
optimal control strategies that could help marketers to maximize the spread of infor-
mation and minimize the costs associated to it in optimal time windows are analyzed
and compared. The uniqueness of optimality system is proved. Numerical simula-
tions show that high investment costs in publicity strategies do not imply high overall
levels of information diffusion. This paper contributes to the current literature by
studying a viral marketing campaign using real numerical data.

Keywords Optimal control theory · Viral marketing · SIR epidemiological
model · Information diffusion strategies

10.1 Introduction

Marketing is a valuable tool to orient and increase the performance of a company [15].
However, traditional marketing strategies are having difficulty to meet demanding
conditions of consumers [13]. Therefore, to create competitive advantages against
other companies, marketing professionals have been trying to design attractive and

J. N. C. Gonçalves (B) · M. T. T. Monteiro
Department of Production and Systems, Algoritmi R&D Center,
University of Minho, Braga, Portugal
e-mail: jncostagoncalves@gmail.com

M. T. T. Monteiro
e-mail: tm@dps.uminho.pt

H. S. Rodrigues
School of Business Studies, Polytechnic Institute of Viana do Castelo, Valença, Portugal
e-mail: sofiarodrigues@esce.ipvc.pt

H. S. Rodrigues
Department of Mathematics, Center for Research and Development in Mathematics
and Applications (CIDMA), University of Aveiro, Aveiro, Portugal

© Springer International Publishing AG 2018
A. I. F. Vaz et al. (eds.), Operational Research, Springer Proceedings
in Mathematics & Statistics 223, https://doi.org/10.1007/978-3-319-71583-4_10

135



136 J. N. C. Gonçalves et al.

viral campaigns, based on strategies that allow to revert the drawbacks of traditional
marketing. One of these strategies is known as Viral Marketing (VM), which refers
to the process that takes advantage of word-of-mouth to replicate and diffuse a
marketing message into a large set of customers [9]. VM aims to reach a large
audience with a low cost associated to it, by exploiting network effects which in
turn maximize information diffusion. Moreover, VM has proved to be a sustainable
marketing strategy by avoiding the necessity of establishing a direct contact with
targeted individuals [11]. Nonetheless, some downsides can be highlighted to VM,
such as its uncontrollable nature or even the difficulty in controlling the timing and
success of the transmission phenomena (see [19] and the references cited therein).

Optimal control theory is an extension of the calculus of variations that seeks to
find control strategies for a dynamic system [12], and gives some insights on its use-
fulness by optimizing marketing strategies that maximize the spread of information
without losing much money.

Over time, optimal control problems applied to marketing have been proposed
and discussed (see, e.g., [4–6] and the references cited therein). More precisely, these
research studies focus on study optimal strategies to promote information diffusion
in social networks and environments.

Considering that VM can be modeled by epidemiological models [9, 14, 17],
this article studies the dynamics and impact of a real VM advertisement - Dove
Real Beauty Sketches, based on real data presented in [18]. Produced in 2013, Dove
Real Beauty Sketches is a publicity campaign that focuses on state the definition of
beautiful, promoting self-esteemand changing the perception of beauty [2].However,
one of the major difficulties in diffusing a viral message relates to create mechanisms
that convince and persuade individuals to spread it in the best time window. Thus,
by choosing this campaign as an example of how to build a successful marketing
strategy, our aim is to study optimal policies and time intervention strategies that
could help marketing professionals to increase information diffusion with low cost
in future campaigns. For that, a controlled SIR epidemiological model proposed in
[4] is analyzed and applied to Dove’s advertisement. Additionally, some numerical
simulations related to different investment cost scenarios are performed.

The paper is organized as follows. Section10.2 presents themathematical problem
according to themarketing campaign real data. In Sect. 10.3, an optimal control prob-
lem is formulated and studied. Section10.4 presents numerical simulations related
to the comparison of different marketing strategies and guidelines regarding the best
control policies to apply in different investment scenarios. Conclusions are carried
out in Sect. 10.5.

10.2 SIR Epidemiological Model and Properties

In this section, the SIR epidemic model without control is formulated and basic
properties within a marketing context are established. This model subdivides the
population into three mutually–exclusive compartments: susceptible individuals,



10 Optimal Control Strategies for an Advertisement Viral Diffusion 137

who correspond to the portion of the target population who can spread the mar-
keting message (S); infected individuals, who correspond to the set of population
who encourage the spreading of the message among social networks (I ); recovered
individuals, who stop diffusing the marketing message (R).

The dynamics, over time t , of the mutually–exclusive compartments can be
described by the following system of ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −β

S(t)I (t)

N
d I (t)

dt
= β

S(t)I (t)

N
− γ I (t)

dR(t)

dt
= γ I (t) ,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S(0) = S0 > 0

I (0) = I0 > 0

R(0) = 0 .

(10.1)

The total population and its rate of change at time t are given by

N = S + I + R ⇔ dS

dt
+ d I

dt
+ dR

dt
= 0 ,∀t ∈ [0,∞) . (10.2)

Hence, since R(t) = N − S(t) − I (t), the system (10.1) can be reduced to

⎧
⎪⎨

⎪⎩

dS(t)

dt
= −β

S(t)I (t)

N
d I (t)

dt
= β

S(t)I (t)

N
− γ I (t) .

(10.3)

Exploring the dynamics of the system (10.3), when the marketing message is
appealing, individuals leave the class S and move to class I at a rate β. Over time,
individuals in the class I stop sharing the message and move to class R at a rate γ .
It should be emphasized that the variables S(t), I (t) and R(t), parameters β and γ ,
and initial conditions are non-negative. Thus, it can be shown that the solutions of
the SIR system are also non-negative (see, e.g., [3]).

Henceforth, further analyses consider a selected set of parameter values, in part
computed based on numerical algorithms described in the literature and in part taken
from real numerical data related to Dove’s campaign (see Table10.1). It is also
appropriate to reformulate the model (10.3) in terms of the fractions of S, I and R,

by considering s = S

N
, i = I

N
, r = R

N
.

Using fminsearch routine (see [7]) fromMatlaboptimization toolbox, included
in the algorithm proposed in [10], parameters estimation was performed based on the
first seven days ofDove’smarketing campaign,where themaximumpeak of infection

is attained. Obtained by the inequality
di(t)

dt
> 0 for s ≈ 1, the basic reproduction

number of the normalized SIRmodel

(

R0 = β

γ

)

expresses the number of secondary

transmissions made by a single infected individual, within a susceptible set of popu-
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Table 10.1 Parameters and initial conditions

Symbol Description Estimated value References

β Predisposition to share the
marketing message

67.5244 [10]

γ Cessation of diffusion of the
marketing message

65.0751 [10]

N Total population at the campaign
launching

109 [16]

S(0) Number of susceptible individuals
at the campaign launching

109–30.000 [18]

I (0) Number of infected individuals at
the campaign launching

30.000 [18]

R(0) Number of recovered individuals at
the campaign launching

0 [18]

lation [14]. It can be proved that ifR0 < 1 the marketing message is not widespread.
However, in this case, R0 > 1, which confirms that Dove’s campaign was a viral
epidemic (see, e.g., [3] for more details on the dynamics ofR0 in this model).

10.3 Optimal Control Problem

As proposed in [4], an optimal control problem related to the model analyzed so
far is formulated. After the normalization of the model (10.3), two control functions
u1(t) and u2(t), ∀t ∈ [0, 6], are added. Hence, considering r(t) = 1 − s(t) − i(t),
the resultant state system of ordinary differential equations with optimal control is
given by

⎧
⎪⎪⎨

⎪⎪⎩

ds(t)

dt
= −(

β + u2(t)
)
s(t)i(t) − u1(t)s(t)

di(t)

dt
= (

β + u2(t)
)
s(t)i(t) + u1(t)s(t) − γ i(t) ,

⎧
⎪⎪⎨

⎪⎪⎩

s(0) = S(0)

N

i(0) = I (0)

N
.

(10.4)
The control functions u1(t) and u2(t) express the recruitment of susceptible indi-

viduals to act as spreaders within the targeted population (e.g., via advertisements
in mass media) and the encouragement of infected individuals to continue to spread
the marketing message into their social network (e.g., through vouchers, rewards,
monetary stimuli), respectively [4].

Let t f be the considered campaign deadline. The set of admissible control func-
tions is defined as

Ω =
{

(u1(·), u2(·)) ∈ (L2(0, t f ))
2 | 0 � u1(t) � u1max ∧ 0 � u2(t) � u2max, ∀t ∈ [0, t f ]

}

.
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For ui : i ∈ {1, 2}, note that the application of the control policy is maximum
if ui = ui max, and minimum if ui = 0. The main objective is to find the optimal
values u∗

1 and u∗
2 for the controls u1 and u2, in such a way that the state trajectories

s and i are the solution of the system (10.4) over [0, t f ] and maximize the objective
functional (10.5). As a trade–off, the optimal control problem consists in maximize
the spreading of information at the final time and minimize the intervention costs
related to the application of the control policies, i.e.,

max
Ω

J (u1(·), u2(·)) = r(t f ) + i(t f ) +
∫ t f

0
−

[
Bu21(t) + Cu22(t)

]
dt , (10.5)

subject to (10.4), where the non-negative constants B and C represent the weights
of the investment cost associated to the control signals u1 and u2, respectively. The
quadratic structure of the weighted controls is consistent with related literature (see,
e.g., [4, 8]). The existence of the optimal controls can be proved using existence
results of optimal solutions studied in [1].

Under the Pontryagin’s Maximum Principle (PMP) [12] and considering the opti-
mal control problem (10.4) and objective functional (10.5), if (u∗

1(·), u∗
2(·)) is a

control pair that is optimal for the problem, then there exists a nontrivial Lipschitz
continuous mapping, called adjoint vector, λ : [0, t f ] → R

2, λ(t) = (λ1(t), λ2(t)),
such that

ds

dt
= ∂H

∂λ1
,

di

dt
= ∂H

∂λ2

and
dλ1

dt
= −∂H

∂s
,

dλ2

dt
= −∂H

∂i
,

where the function H defined by

H(s(t), i(t), u1(t), u2(t), λ1(t), λ2(t)) = −(Bu21(t) + Cu22(t))

+ λ1(t)
[−(

β + u2(t)
)
s(t)i(t) − u1(t)s(t)

]

+ λ2(t)
[(

β + u2(t)
)
s(t)i(t) + u1(t)s(t) − γ i(t)

]

is called the Hamiltonian. At time t , let s∗ and i∗ be the optimal state trajectories.
Thus, according to the PMP it follows that

⎧
⎪⎪⎨

⎪⎪⎩

dλ1

dt
= λ1(t)

[(
β + u∗

2(t)
)
i∗(t) + u∗

1(t)
] − λ2(t)

[(
β + u∗

2(t)
)
i∗(t) + u∗

1(t)
]

dλ2

dt
= λ1(t)

[(
β + u∗

2(t)
)
s∗(t)

] − λ2(t)
[(

β + u∗
2(t)

)
s∗(t) − γ

]
,

(10.6)
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with transversality conditionsλ1(t f ) = 0 andλ2(t f ) = 1, since r(t f ) and i(t f ) appear
as payoffs terms in the objective functional (10.5).

In addition, by setting
∂H

∂u1
and

∂H

∂u2
to zero and due to the boundedness of the

control functions u1(t) and u2(t) on Ω , the optimal controls u∗
1(t) and u∗

2(t) are
characterized by:

u∗
1(t) = min

⎧
⎨

⎩
max

⎧
⎨

⎩

s∗(t)
(
λ2(t) − λ1(t)

)

2B
, 0

⎫
⎬

⎭
, u1max

⎫
⎬

⎭
, (10.7)

and

u∗
2(t) = min

⎧
⎨

⎩
max

⎧
⎨

⎩

s∗(t)i∗(t)
(
λ2(t) − λ1(t)

)

2C
, 0

⎫
⎬

⎭
, u2max

⎫
⎬

⎭
. (10.8)

At this point, it is possible to derive the optimality system, consisting of the
state system (10.4), the adjoint system (10.6) and transversality conditions with the
characterizations (10.7) and (10.8).

Theorem 10.1 (Uniqueness of Optimality System) Given the initial value problem
(10.4) and the objective functional (10.5), the optimal solution (s∗(t), i∗(t)) with
associated optimal control functions u∗

1(t), u
∗
2(t) and the adjoint functions λ1(t),

λ2(t) are unique for t f sufficiently small.

Proof Let (s, i, λ1, λ2) and (s, i, λ1, λ2) be two solutions of the optimality system.
Consider s = eφt a1, i = eφt a2, λ1 = e−φt b1, λ2 = e−φt b2. Analogously, consider

s = eφt a1, i = eφt a2, λ1 = e−φt b1, λ2 = e−φt b2, where φ is a constant.
Let

u1(t) = min

{

max

{
a1(b2 − b1)

2B
, 0

}

, u1max

}

,

u2(t) = min

{

max

{
eφt a1a2(b2 − b1)

2C
, 0

}

, u2max

}

,

and

u1(t) = min

{

max

{
a1(b2 − b1)

2B
, 0

}

, u1max

}

,

u2(t) = min

{

max

{
eφt a1a2(b2 − b1)

2C
, 0

}

, u2max

}

.
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Henceforth, for the sake of simplicity, it will be considered u1, u1, u2, u2 instead
of the above characterizations. Using these assumptions, the first state equation of
the optimality system becomes

eφt da1
dt

+ φeφt a1 = −(β + u2)e
2φt a1a2 − u1e

φt a1 . (10.9)

Now, the equations for s and s, i and i , λ1 and λ1, λ2 and λ2 are subtracted.
Then, each of these equations is multiplied by an appropriate difference of functions
and integrated from 0 to t f . Next, the four integral equations are added and some
estimates are performed. Below, we illustrate one of these manipulations using the
Eq. (10.9).

1

2

(
a1(t f ) − a1(t f )

)2 + φ

∫ t f

0
(a1 − a1)

2 dt

= −
∫ t f

0
eφt

[
(β + u2)a1a2 − (β + u2)a1a2)

]
(a1 − a1) dt −

∫ t f

0
(u1a1 − u1a1)(a1 − a1) dt

= −
∫ t f

0
eφt

[
β
(
(a1 − a1)a2 + a1(a2 − a2)

)
+ (u2 − u2)a1a2 + u2(a1 − a1)a2

+ u2a1(a2 − a2)
]
(a1 − a1) dt −

∫ t f

0

[
(u1 − u1)a1 + u1(a1 − a1)

]
(a1 − a1) dt

� D
∫ t f

0
(a1 − a1)

2 + (b1 − b1)
2 + (b2 − b2)

2 dt + Eeφt f

∫ t f

0
(a1 − a1)

2 + (a2 − a2)
2 dt

+ Fe3φt f
∫ t f

0
(b1 − b1)

2 + (b2 − b2)
2 dt ,

where D, E and F are constants.After estimate all the four equations of the optimality
system, and noting that eφt f � e3φt f , all integral equations are combined producing
the following inequality:

1

2

[(
a1(t f ) − a1(t f )

)2 + (
a2(t f ) − a2(t f )

)2 + (
b1(0) − b1(0)

)2 + (
b2(0) − b2(0)

)2
]

+ φ

∫ t f

0
(a1 − a1)

2 + (a2 − a2)
2 + (b1 − b1)

2 + (b2 − b2)
2 dt

� D̃
∫ t f

0
(a1 − a1)

2 + (a2 − a2)
2 + (b1 − b1)

2 + (b2 − b2)
2 dt

+ F̃e3φt f
∫ t f

0
(a1 − a1)

2 + (a2 − a2)
2 + (b1 − b1)

2 + (b2 − b2)
2 dt .

Rearranging the terms, the result is

1

2

[
(
a1(t f ) − a1(t f )

)2 + (
a2(t f ) − a2(t f )

)2 + (
b1(0) − b1(0)

)2 + (
b2(0) − b2(0)

)2
]

�
(
D̃ + F̃e3φt f − φ

) ∫ t f

0
(a1 − a1)

2 + (a2 − a2)
2 + (b1 − b1)

2 + (b2 − b2)
2 dt ,
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where D̃ and F̃ depend on the coefficients and the bounds of a1, a2, b1, b2. By

choosing φ > D̃ + F̃ and t f <
1

3φ
log

(
φ − D̃

F̃

)

, it therefore follows that

0 � 1

2

[
(
a1(t f ) − a1(t f )

)2 + (
a2(t f ) − a2(t f )

)2 + (
b1(0) − b1(0)

)2 + (
b2(0) − b2(0)

)2
]

�
(
D̃ + F̃e3φt f − φ

) ∫ t f

0
(a1 − a1)

2 + (a2 − a2)
2 + (b1 − b1)

2 + (b2 − b2)
2 dt

� 0 ,

which implies that

(
D̃ + F̃e3φt f − φ

) ∫ t f

0
(a1 − a1)

2 + (a2 − a2)
2 + (b1 − b1)

2 + (b2 − b2)
2 dt = 0.

Thus, knowing that
(
D̃ + F̃e3φt f − φ

)
< 0, we have a1 = a1, a2 = a2, b1 = b1,

b2 = b2, and (s, i, λ1, λ2) = (s, i, λ1, λ2).

Remark 10.1 Since the state system (10.4) is autonomous, the proof of theorem 10.1
holds for any time t f .

10.4 Numerical Results and Discussion

In this section, the influence of the optimal control strategies incorporated in the SIR
model (10.4) with objective functional (10.5) is studied. The main goal is to provide
insights related to when and which control strategies should be applied to maximize
the spreading of information and minimize costs.

Using Matlab software to solve the optimality system, numerical results were
obtainedusing a forward-backward fourth-orderRunge–Kutta scheme.Moredetailed
information on this numerical scheme is presented in [8]. Numerical simulations con-
sider a campaign deadline t f = 6, which corresponds to the Dove’s campaign data
on the first seven days.

In what follows, two approaches are considered. Firstly, in Sect. 10.4.1, simula-
tions of the control weights are performed using both optimal controls u∗

1 and u
∗
2, in

order to assess which control weights induce a higher objective functional. Secondly,
in Sect. 10.4.2, these pairs are used to model and compare scenarios related to high
and low investment costs in publicity actions.
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10.4.1 Simulation of the Control Weights Using u∗
1 and u∗

2

Firstly, using both optimal controls u∗
1 and u∗

2, the variation of the control weights
on both infected individuals (i(t)) and control signals is studied over [0, 6]. The
simulations of the control weights are performed under three strategies described in
Table10.2.

The choice of the values for B and C was based on several experimental simula-
tions that aimed at obtaining the results that best described the reality of each strategy.
For the sake of consistency, since at the beginning of a viral epidemic the main goal
is to attract susceptible individuals, it is conceivable to start with an intermediate
investment cost in detriment of a lower one. For this reason, the above strategies do
not consider B < 1. The simulations regarding the three strategies are illustrated in
Fig. 10.1. Figure10.1a shows that around the first day, the fraction of infected indi-
viduals is higher when the investment costs in fostering people who had already been
in contact with the marketing message are low, namely for B = 1 and C = 10−3.

Regarding the Strategy 2 (Fig. 10.1b), by fixing B = 1, as the control weight C
increases, infection levels do not vary. Thus, it is plausible to conclude that higher
costs in implement further publicity strategies to foster infected individuals do not
result in higher levels of spreading.

In what concerns the Strategy 3, Fig. 10.1c reports that as the control weight B
increases, the number of people who have contact with the intended message is
diminishing all the time and the maximum peak of infection is attained increasingly
late.

Transversally, whatever the strategy considered, the smaller the investment costs
neither in fostering infected individuals to continue to spread the message, nor in
recruit susceptible individuals to act as spreaders, the greater the levels of information
spreading.

Overall, Table10.3 presents the values for the objective functional (10.5) by vary-
ing the control weights for each strategy.

Table 10.2 Optimal control marketing strategies

# Strategy Marketing context

Strategy 1: B = 1 and C ∈ {x | x = 10−i

and i = 1, . . . , 3}
Low investment costs in encouraging infected
individuals to continue to spread the marketing
message (e.g., exploiting social networks such as
Facebook and Twitter)

Strategy 2: B = 1 and C ∈ {x | x = 10i

and i = 1, . . . , 3}
High investment costs in encouraging infected
individuals to continue to spread the marketing
message (e.g., monetary rewards and stimuli,
expensive promotional gifts and international trips)

Strategy 3: B ∈ {x | x = 10i

and i = 0, . . . , 3} and C = 1
Increasing the investment costs in recruiting
susceptible individuals to act as spreaders
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Fig. 10.1 Variation of the control weights on i(t) for the different marketing strategies

Table 10.3 Summary of objective functionals varying control weights (B,C)

Strategy 1 Strategy 2 Strategy 3

(B,C) ≈J (u∗
1, u

∗
2) (B,C) ≈J (u∗

1, u
∗
2) (B,C) ≈J (u∗

1, u
∗
2)

(1, 10−3) 0.699766 (1, 10) 0.698692 (1, 1) 0.698693

(1, 10−2) 0.698815 (1, 102) 0.698691 (10, 1) 0.463743

(1, 10−1) 0.698704 (1, 103) 0.698691 (102, 1) 0.273901

– – – – (103, 1) 0.159022

In Table10.3, recalling the aim of maximize the objective functional (10.5), the
pairs of control weights that induce a higher cost functional are highlighted in bold,
for each strategy. The choice of the highlighted pairs was based on the aim of portray
low, high and equal investment cost scenarios, respectively, to study their effects on
the diffusion of the marketing message. These three scenarios are simulated in the
next section.
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10.4.2 Control Experiments for Different Investment Costs
Scenarios

In this Section, scenarios based on the control weights highlighted in Table10.3 are
simulated, varying the control functions u1(t) and u2(t), ∀t ∈ [0, 6]. If the company
hasmonetary funds to invest in extra publicity actions either on susceptible or already
infected individuals, upper control policies are tested. The upper control is defined
as the maximum control value for which the cost functional (10.5) is positive, and it
represents the maximum application of a control measure. Henceforth, let u1max and
u2max be the upper controls related to the control functions u1 and u2, respectively.

10.4.2.1 Low Investment Costs Scenario Using Control Weights
(B,C) = (1, 10−3)

In Fig. 10.2a it is possible to note that the fraction of infected individuals is signifi-
cantly higher whenever control is applied. In this regard, the implementation effect of
the controls u1 and u2 is assessed, separately and combined, over [0, 6], see Fig. 10.3.

Observing Fig. 10.3a, b at the launch of the advertisement, the best policy is to
implement the optimal control combination (u∗

1, u
∗
2), in order to rapidly attain the

maximum peak of infection at the end of the first day of Dove’s campaign (see
Fig. 10.2a). Then, during the next 2days, the control u2 is at the upper bound (see,
Fig. 10.3b), suggesting in this time window that the best policy is to apply (0, u∗

2) in
such a way as to encourage infected individuals to continue to spread the message.
Hence, at the end of t = 2, when the levels of recovery begin to increase, the pair
(u∗

1, 0) should be implemented in order to minimize the rate of recovered individuals
by attracting susceptible individuals to diffuse the intended message, see Fig. 10.3a.

Notice that, in terms of the objective functional, despite of infection levels attain
a maximum level using (u1max, u2max), J (u1max, u2max) ≈ 0.002095, which means
that a double investment in both control policies compromises the objective of mini-

Fig. 10.2 i(t) with B = 1, C = 10−3, u1max = 0.4, u2max = 1
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Fig. 10.3 Optimal controls u1 and u2 with B = 1, C = 10−3, u1max = 0.4, u2max = 1

mize costs. In contrast, based on Table10.3, J (u∗
1, u

∗
2) ≈ 0.699766, that is, the simul-

taneous use of the control functions u∗
1 and u

∗
2 fulfills the proposed trade-off. This is

underpinned by the fact that, for the control intervention (u∗
1, u2max), the cost func-

tional (10.5) is almost the same as the obtained when the optimal controls u∗
1 and

u∗
2 are applied (J (u∗

1, u2max) ≈ 0.695835). These arguments show the importance
of the control u1 to attain the maximum peak of infection at the beginning of the
campaign.

10.4.2.2 High Investment Costs Scenario Using Control Weights
(B,C) = (1, 10)

In this scenario, analogously to the previous one, the fraction of infected individuals
is higher with the implementation of control policies than without it, see Fig. 10.4a.

Fig. 10.4 i(t) with B = 1, C = 10, u1max = 0.4, u2max = 0.01
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Fig. 10.5 Optimal controls u1 and u2 with B = 1, C = 10, u1max = 0.4, u2max = 0.01

However, Fig. 10.5 illustrates that the magnitude of the control u2 is significantly
lower than the magnitude of u1. By linking this finding with Fig. 10.4a, it is possible
to infer not only that the optimal control measure u∗

2 applied by itself has no direct
influence on the information dissemination, but also that by applying (u∗

1, 0), the
levels of information diffusion are satisfactory.

When upper control measures are applied, the infection levels increase substan-
tially, see Fig. 10.4b. However, the use of (u1max, u2max) results in a residual objective
functional (J (u1max, u2max) ≈ 0.001591). At this point, upper control policies for u2
are disadvantageous, inasmuch as the adoption (u∗

1, u2max) leads to the same infec-
tion levels as the obtained by using both optimal controls and J (u∗

1, u
∗
2) ≈ 0.698692,

see Fig. 10.4a, b. Furthermore, J (u∗
1, 0) ≈ 0.698678, which means that the control

u∗
1 is a sufficient condition to achieve the proposed trade–off.
Analogously to the previous strategy, it also can be noticed that the control u1 has

much more influence on the information spreading than u2.
In order to avoid redundancy, the control simulations using B = C = 1 were

omitted. However, in this case, u1 has much more influence on the information
spreading than u2. In addition, to meet the objective functional, optimal control
strategies overlap the efforts imposed by upper control policies.

10.5 Conclusion

This paper applies optimal control theory to a real viral marketing campaign, by
using real numerical data. The uniqueness of optimality system is proved. We show
that the spreading of information attains high levels of dissemination at much faster
rates when optimal control theory is applied. It is observed that when B is fixed and
C decreases, the levels of information diffusion tend to grow up. In contrast, when
B is fixed and C increases, the levels of information spreading do not vary and are
lower than the values obtained for smaller levels of C .
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In order to improve the timing of the information diffusion, we recommend,
for each scenario, optimal time windows to apply the control policies u1 and u2.
Moreover, we conclude that the infection transmission process is maximized by
using optimal control policies related to u1 and u2. However, it should be noted that
due to the chaotic and quasi-unpredictable nature of viral campaigns, the success of a
campaign depends on a constant monitoring and controlling on the part of marketing
professionals. Regarding the parameters estimation, reaching a high level of fitting
accuracy is not a trivial task. At this point, mathematical modeling reveals a fruitful
tool to maximize the diffusion of marketing contents and minimize the costs of
running a campaign.

To sum up, optimal control theory plays a key role on the effective diffusion of
viral marketing campaigns, by providing not only higher levels of infection than the
obtained without using it, but also by speeding up the transmission process within
the target audience.
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