
eSPF: A Family of Format-Preserving Encryption
Algorithms Using MDS Matrices

Donghoon Chang1, Mohona Ghosh2, Arpan Jati1, Abhishek Kumar1(B),
and Somitra Kumar Sanadhya3

1 Indraprastha Institute of Information Technology, Delhi, India
{donghoon,arpanj,abhishekk}@iiitd.ac.in

2 Indian Institute of Information Technology Design and Manufacturing,
Jabalpur, India

mohona@iiitdmj.ac.in
3 Indian Institute of Technology, Ropar, India

somitra@iitrpr.ac.in

Abstract. The construction SPF, presented in Inscrypt-2016 was the
first known SPN based format-preserving encryption algorithm. In this
work, we significantly improve its performance and flexibility. We term
this new construction as eSPF. Unlike SPF, all the basic transformations
of eSPF are defined under the field Fp. This allows us to use a MDS
matrix instead of the binary matrix used in SPF. The optimal diffusion
of MDS matrix leads to an efficient and secure design. However, this
change leads to violations in the message format. To mitigate this, we
propose a discarding algorithm to drop the symbols that are not the ele-
ments of the format thus preserving it.

We also present a concrete instantiation of eSPF for digits and its
comparison with existing FPE algorithms like FFX and SPF. The perfor-
mance analysis shows that the proposed design is at least 15 times faster
than FFX for most of the practical applications.

Keywords: Format-preserving encryption · MDS matrix · SSN · Crypt-
analysis · Substitution-permutation network

1 Introduction

Motivation. Maintaining the confidentiality of messages is one of the main goals
of cryptography. Block ciphers are the most popular cryptographic primitives to
fulfil this purpose. The conventional block ciphers such as AES [15] and DES [13]
handle binary data of specific sizes, for example 128-bit for AES [15]. In many
real world applications, it is desirable and essential to have the ciphertext follow
the same format as the plaintext. Moreover, ciphertext length expansion is also
not allowed in these situations. Encryption of Credit Card Numbers (CCN) or
Social Security Numbers (SSN) are examples of such applications. Unfortunately,
the conventional block ciphers and their modes such as ECB, CBC, CTR, etc.
are not suitable for this purpose.
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 133–150, 2017.
https://doi.org/10.1007/978-3-319-71501-8_8

134 D. Chang et al.

Format-Preserving Encryption (FPE) refers to transformation of data that
is formatted as a sequence of the symbols in such a way that the encrypted form
of the data has the same format and length as the original data. Many financial
or e-commerce databases contain CCN or SSN and for both practical and legal
reasons, encryption of these values are important. However, these fields that
need to be encrypted have fixed formats and a plain use of conventional block
cipher will produce ciphertexts violating the specified format.

The problem of encryption over fixed formats was first investigated in the
database community by Brightwell and Smith [11]. Schoroeppel and Orman
proposed the Hasty Pudding Cipher [32] which first demonstrated an encryp-
tion scheme that worked for arbitrary domain. A few years later, Black and
Rogaway [9] made the first systematic study of this problem and suggested some
approaches to achieve the desired functionality. Being motivated by the real
world application, many FPE designs have been proposed such as FFSEM [34],
FFX [3], BPS [10], VFPE [33], FEA-1 and FEA-2 [25]. A special publication of NIST
SP800-38G [20] specifies three modes of operation for format-preserving algo-
rithms namely FF1, FF2 and FF3. Each of these modes employ an unbalanced
Feistel structure and use AES-128 algorithm as the internal round function. FF1
and FF2 invokes AES-128 algorithm at least 11 times and FF3 invokes it eight
times thus leading to high number of AES-128 invocations. Moreover, Bellare et
al. [2] have been shown some message recovery attacks on FF1 and FF3. This was
followed by an attack presented in [18] where Durak and Vaudenay presented
a practical attack to the FF3 scheme. Apart from Feistel based FPE schemes
another important mechanism of designing FPEs based on card shuffling was
adopted in [23,28–30]. In 2016, Chang et al. [12] proposed a new FPE algorithm
SPF, based on a substitution permutation network (SPN) strategy. SPF is the
first known SPN based FPE algorithm and it has been shown that it is almost
5 times faster than the other known FPE algorithms such as FF1, FF2 and FF3.
However, the use of binary matrix in the linear layer of SPF has two limitations.
Firstly, it doesn’t allow SPF to be applied to formats of all sizes. Secondly, it
restricts SPF to achieve maximal diffusion and hence the optimal efficiency. In
this paper, we aim to address these limitations.

1.1 Our Contribution

We present a new substitution permutation design approach to construct effi-
cient format-preserving encryption family. This is realized by using MDS matrix
in the diffusion layer unlike SPF construction where binary matrix is used. As
a result, higher diffusion is achieved in lesser number of rounds. Moreover, SPF
construction doesn’t work for format sizes which are multiples of 3 due to its
design of the binary matrix. Our proposed construction does not have this limita-
tion and works for any domain size. The other notable advantage of our proposed
construction is that one instantiation may work for many formats.

We define the basic transformations for the proposed construction and a con-
crete instance for digits. The construction uses an iterated block cipher as the

eSPF: A Family of Format-Preserving Encryption Algorithms 135

underlying building block. It consists of two algorithms - a non format preserv-
ing encryption scheme to generate the keystream and a discarding algorithm to
ensure that the format is preserved.

The domain size of real-world applications of FPE motivates us to incorpo-
rate tweak in the proposed design. We propose a new key scheduling and tweak
scheduling algorithm to realize our design goal. Further, we estimate a lower
bound on the number of active S-boxes for different number of rounds for the
proposed construction. The security of our design is then analyzed against dif-
ferential, linear, square, related tweak and key scheduling attacks. Finally, we
compare the efficiency of a concrete instance of our proposed construction for
the most popular and widely used format - ‘digit’, with FFX and BPS and show
that the proposed design is almost 15 times faster than FFX.

The rest of the paper is organized as follows. In Sect. 2, the important pre-
liminaries are described. The proposed eSPF construction is presented in Sect. 3.
The concrete instance of eSPF for digits is presented in Sect. 4. We analyze the
security of the proposed scheme against the standard attacks in Sect. 5. This
is followed by performance analysis of the same in Sect. 6. Finally, we conclude
our work in Sect. 7.

2 Preliminaries

Let Σ = {0, 1, 2, . . . , N − 1} be the alphabet set, where N ≥ 2. The size N of
the set Σ is referred to as the ‘format size’ and the elements of Σ are referred to
as ‘symbols’, for example, for digits, N = 10. Σ∗ denotes the set of strings with
elements from Σ. We assume that the plaintext contains symbols only from Σ. If
this is not the case, suitable encoding and decoding functions could be used and
then one can apply the “rank-then-encipher” approach [3] to use the methods
described in this work.

2.1 The Notations Used in the Paper

The following notations have been used throughout the paper.

|Σ| : The number of elements in the set Σ.
�N : Symbol wise addition modulo N .
�x� : Smallest integer just greater than x.
S[i] : ith symbol of the string S from the left.
S || T : Concatenation of two strings S and T .
|S|N : Length of the string S in base N .
Fp : Galois Field GF(p) where p is prime.

2.2 Specification

An instance eSPFNr denotes a member of eSPF family that has format size N and
consists of r-rounds. The input/output of each intermediate round is denoted as

136 D. Chang et al.

state [15]. Each state consists of n = 16 symbols. For ease of representation and
discussion, we represent each state as a 4 × 4 two-dimensional array of symbols.

The transformation of an input string of length n over symbol set Σ to
state is described by the function STATE(X) (Algorithm 1); while the inverse
transformation of a state to produce a string over Σn is described by the function
STRING(state) (Algorithm 2).

Algorithm 1. STATE(X)
input : string X
output: state

for i ← 0 to (n − 1) do1

j ← i mod 4;2

k ← �i/4�;3

state[j, k] ← X[i];4

return state5

Algorithm 2. STRING(state)
input : state
output: string X

for i ← 0 to 3 do1

for j ← 0 to 3 do2

n ← (i + j × 4);3

X[n] ← state[i, j];4

return X5

3 The eSPF Construction

eSPF contains two components: a non format preserving encryption Ek and a
Discarding Algorithm (DA), followed by modular addition. To achieve diffusion
in our encryption scheme, we use MDS matrix. MDS matrices have tremendous
applications not only in the coding theory but also in the design of symmetric
cryptographic primitives, for example, AES [15], Camellia [1], SQUARE [14] etc.
owing to their highest possible branch number. This make them a natural choice
for the diffusion layer since higher branch number ensures higher diffusion rate as
well as lesser number of rounds, finally leading to a secure and efficient primitive
construction.

Having an MDS matrix for diffusion functionality, requires the operations
to be done over a finite field. This stringent requirement, limits the possible
format size N to the cardinality of Fpb , where p is a prime and b is an integer.
A suitable S-box and MDS matrix over the finite field Fpb is then used to realize
the substitution and permutation layer of our scheme.

As the operations are performed in Fpb , we need to perform a process to dis-
card symbols which are not in format. This discarding process is equivalent of
cycle-walking or using modular operation to ensure non-violation of the format.
We show that the rate of discarding symbols in our case is low for practical sce-
narios and it does not affect the efficiency of our scheme significantly. Another
important advantage of this construction is that, given one instance, the con-
struction may be used for other formats as well, if their format size is smaller
than or equal to pb which is not possible in the SPF family.

3.1 The Round Transformations

Each round of eSPF consists of the following five following transformations which
updates the internal state:

eSPF: A Family of Format-Preserving Encryption Algorithms 137

SB ◦ SR ◦ MC ◦ KA ◦ TA

SubBytes (SB): A SubBytes transformation S : Fpb → Fpb is used to create
confusion in the cipher. It is a permutation consisting of a bijective mapping
to each element of the state. Typically an S-box is the multiplicative inverse
function in the field Fpb , i.e.,

S : x → x−1

This mapping is very popular and believed to be a good choice for designing
differentially and linearly resistant cipher. However, another popular approach
is to do a brute force search and choosing substitution layer based on analyzing
the differential and linear properties along with the implementation cost. Many
lighweight ciphers adopt the second approach.

ShiftRows (SR): This transformation shifts the rows cyclically over different
offsets. Similar to AES, there is no shift over the first row, whereas symbols of
second, third and fourth row are shifted left by one, two and three positions
respectively.

MixColumns (MC): Permutation layer is used to introduce diffusion in the
cipher to make sure that any local differences of an internal state before permu-
tation layer propagates to the larger area of the state after this layer. In many
modern ciphers, the linear diffusion layer is realized by using a r × r matrix that
operates on the state column by column.

KeyAddition (KA): The key addition transformation modifies the state by
adding round key symbol wise using modulo addition pb.

TweakAddition (TA): Similar to KA step, given a sub tweak Twi and the current
state Si the tweak addition is a symbol wise addition modulo pb.

Counter1

Ek()

Discarding Algorithm
DA()

P1

C1

N

.

Counter2

Ek()

Discarding Algorithm
DA()

P2

C2

Countern

Ek()

Discarding Algorithm
DA()

Pn

Cn

N NN

Fig. 1. Encryption of eSPF.

138 D. Chang et al.

Algorithm 3. Enc SPFNr (K,M,T, Tw)
input : Key K, Message M ,

Counter T , Tweak Tw
output : Ciphertext C

Initialize two NULL strings Q, Q′;1

Initialize � ← |M |N ;2

state ← STATE(T);3

KA(state,K);4

TA(state,Tw);5

for j ← 1 to r − 1 do6

SubBytes(state);7

ShiftRow(state);8

MixColumns(state);9

KA(state,Kj);10

TA(state,Tw);11

SubBytes(state);12

ShiftRow(state);13

KA(state,Kj);14

TA(state,Tw);15

string Q′ ←STRING(state);16

Q ←DA(Q′);17

for i ← 0 to (� − 1) do18

C[i] ← (M [i] �N Q[i]);19

return C;20

Algorithm 4. DA(S)
input : String S
output : String S′

Initialize a string1

S′=NULL;
For i ← 1 to n2

if S[i] ∈ Σ3

S′ = S′||S[i];4

else5

S′ ;6

return S′;7

The Operating Mode of eSPF. We adopt the Counter Mode [19] of operation
for eSPF so that we can handle arbitrary length messages. For a large message
block, the message will be divided into sub-blocks and the eSPF routine is invoked
internally to generate the corresponding output block for a sequence of counters.
The ciphertext will be concatenation of all the output blocks (Fig. 1).

The main advantages of counter-mode are parallel encryption/decryption
and no requirement of padding, i.e., no length extension. However, malleability
is the major limitation of this mode. This constraint is applicable to other block
cipher modes like CBC, OFB etc. as well [31]. This limitation can be handled
by using an additional message authentication protocol in our eSPF scheme, the
design and analysis of which is currently beyond the scope of this work.

Algorithm 3 shows the encryption process of eSPF construction. The only
difference between encryption and decryption will be the use of modular sub-
traction in place of modular addition.

3.2 Discarding Algorithm DA()

Let Σ = {0, 1, 2, . . . , N − 1} be the alphabet set of format size N . Let Σ′ =
{0, 1, 2, . . . , N ′ − 1}, where Σ′ is the alphabet set containing all the elements

eSPF: A Family of Format-Preserving Encryption Algorithms 139

of Fpb and N ′ > N . Since, each state of Ek contains n-symbols, the output
of Ek is a string of n symbols. Let, the string Q′ be the output of Ek, i.e.,
Q′ = q′

0q
′
1q

′
2 . . . q′

n−1 such that q′
i ∈ Σ′, for 0 ≤ i ≤ n − 1. The output of

discarding algorithm DA() will be a string Q, i.e., Q = DA(Q) = q0q1q2 . . . qn′−1

such that qi ∈ Σ and n′ ≤ n.
We are interested in finding the probability of occurrence of an arbitrary

integer a ∈ Σ at the k-th trial after the occurrence of elements of (Σ′ − Σ) in
the first k − 1 trials.

Let X be the success event defined for the occurrence of a specific symbol
a ∈ Σ and the corresponding probability be pa = 1

N ′ . Let Z be a failure event
defined as the occurrence of a symbol of set (Σ′ − Σ) and the corresponding
probability p is N ′−N

N ′ .
For a ∈ Σ, Pr[X = a] = pk−1pa.
Thus, the total probability S of getting a can be estimated as:

S =
1

N ′ +
N ′ − N

N ′ · 1
N ′ +

N ′ − N

N ′ · N ′ − N

N ′ · 1
N ′ + · · · (1)

After multiplication with N ′−N
N ′ , Eq. 1 can be rewritten as

N ′ − N

N ′ · S =
N ′ − N

N ′ · 1
N ′ +

N ′ − N

N ′ · N ′ − N

N ′ · 1
N ′ + · · · (2)

From Eqs. 1 and 2, S = 1
N .

Without loss of generality, this can be shown for all elements of the set Σ
and thus it can be concluded that the discarding algorithm does not impact the
distribution of occurrence of symbols of Σ, i.e., it will not leak any additional
information.

Discarding Rate: By discarding, we mean ignoring a symbol if it does not
belong to alphabet set Σ. Let, pr be the probability of not discarding an output
symbol of Ek, i.e., pr = N

N ′ , then the probability of discarding a symbol is (1−pr).
Let, Z be a random variable with parameter n and pr, where n denotes the

number of independent trials and pr is the success probability of the experiment.
Then the random variable Z follows binomial distribution. Hence, the probability
that Z contains a0 symbol is Pr(Z = a0) =

(
n
a0

)
pr

a0(1 − pr)n−a0 and expected
value of a0 is n × pr.

To minimize the discarding rate, the field GF(pb) and the corresponding set
Σ′ should be chosen carefully. The small difference between (N ′ −N) will ensure
a higher value for pr. For example, if N = 10, F11 (p = 11, b = 1, N ′ = 11) is
the most suitable option. In this case the average value of a0 is 14.55, i.e., on
an average less than 1.45 symbols out of 16 symbols will be discarded by the
discarding algorithm.

4 eSPF for Digits

In this section, we present eSPF1010, which is a concrete instantiation of our con-
struction for digits. We choose, F11, i.e., GF(11) for our construction. Thus, all
the arithmetic operations are done modulo 11.

140 D. Chang et al.

4.1 The S-Box

The S-box for F11 is shown in Table 1. To choose the S-box mapping, we analyzed
all the possible mappings under different criteria such as maximal difference and
linear probabilities and hardware implementation. Based on these, an optimal
implementation of our S-box with logic gates is as follows:

y0 = {x2x̄0 + x3} y1 = {x̄1x̄2x3 + x̄0x̄1}
y2 = {x0x1 + x̄1x3} y3 = {x̄0x̄1x̄3 + x0x̄1x2}

where, our S-box can be represented as yn = S[xn]. The maximum differential
probability and the maximum correlation for this S-box are 2−2.45 and 2−1.45

respectively.

Table 1. Representation of S-box for F11.

x 0 1 2 3 4 5 6 7 8 9 10

S[x] 2 0 10 6 3 8 9 4 7 5 1

4.2 The ShiftRows

The ShiftRows operation in this construction works exactly like AES.

4.3 The Permutation

In [22], Gupta et al. analyzed the format preserving diffusion layers for digits and
showed that it is impossible to construct any cryptographically significant 4 × 4
matrices over the field F24 which yields a format preserving set of cardinality 10.
Further, for an arbitrary format, non-existence of MDS matrix under some rea-
sonable restrictions has been shown in [12]. Since, our motivation was to use a
MDS matrix for optimal efficiency, based on the findings of [12,22], we decided
to choose the diffusion layer such that it may violate the format size. The linear
diffusion layer for our case is realized by the following 4 × 4 MDS matrix over
GF(11).

M =

⎛

⎜
⎜
⎝

1 1 2 5
5 1 1 2
2 5 1 1
1 2 5 1

⎞

⎟
⎟
⎠

The branch number of this matrix is 5.

4.4 Key Addition

The key addition transformation is symbol wise modular addition for a state Si

and subkey Ki.

eSPF: A Family of Format-Preserving Encryption Algorithms 141

4.5 Tweak Addition

Inclusion of tweak for eSPF is motivated by the domain size of real world appli-
cations of FPE algorithms and birthday bound security of the associated block
ciphers. Tweak is public and it is used to randomize the instance of the block
cipher, i.e., different values of tweak correspond to different families of permuta-
tions. Its usage helps in case of FPE algorithms since now the same ciphertext
(e.g., if the two credit card numbers will provide the same plaintext for encryp-
tion, say middle 6 digits) will look different to the attacker due to different values
of the tweak and hence would be indistinguishable. The proposed construction
works in counter mode and use of different counter value ensures variability over
ciphertext. However, since in the real world applications of FPE algorithms, the
length of messages is mostly short (single block messages), same counter value
may be used to encrypt different messages. Further, as the domain sizes of vari-
ous formats are also small, enough variability may not be achieved in some cases.
To circumvent this issue, we are using a tweak in our design.

Initiated by the work of Liskov et al. [26], few tweakable block cipher designs
have been proposed in literature. In [24], Jean et al. presented the generic
TWEAKEY framework that can be used to convert any key alternating block
cipher into a tweakable one and proposed three instantiations - Deoxys-BC,
JoltiK-BC and KIASU-BC that were the first ad-hoc tweakable block ciphers
based on AES.

Injection of tweak in eSPF construction follows the tweak injection method
adopted in KIASU-BC [24], i.e., the the tweak will be added to the first two rows
of the state. Considering the block size of eSPF1010 (≈256 and the security, we
choose a 60-bit tweak Tw). Two subtweaks Tw0 and Tw1 will be generated by
a Tw using (Algorithm 6). Tw0 and Tw1 will then be added to the first two
rows of the state for each even and odd numbered rounds correspondingly.

4.6 Key Schedule

We propose a new scheduling algorithm (KSA) for eSPF1010. The key schedule
algorithm takes the 128-bit key K as input and generates (r + 1) round subkeys
as output. Let K be represented as k127k126 . . . k2k1k0. We first divide the K into
two bit string of equal size and find K0 = STATE(K mod 1116). We iterate Step
5 to Step 9 of the Algorithm 5 to extract the remaining r subkeys. Addition of
round constant i provides security against slide attack and the addition operation
is chosen to introduce non-linearity. The shift operation ensures that all the
bits of K will be used up to round 5. In [3] Bellare et al. estimated the lower
bound of statistical distance between the uniform distribution on Zp and the
distribution obtained by b mod p after picking b randomly in Za as p/a where
a > p. We estimate 2−72 (a = 2128, p = 1116 ≈ 256) as the statistical distance
for digits. This bound suggests that the mod 1116 operation does not impact the
distributions dramatically.

142 D. Chang et al.

Algorithm 5. KSA(K)
input : Key K
output: Round Keys

K0,K1, . . . ,Kr

x1 ← k127k126 . . . k65k64;1

y1 ← k63k62 . . . k1k0;2

K0 ← STATE(K mod 1116)3

for i ← 1 to r do4

yi ← ((yi
 16) + xi) ⊕ i;5

xi ← (xi � 33) ⊕ yi;6

Ki ← STATE((xi||yi)7

mod 1116);
xi+1 ← xi;8

yi+1 ← yi;9

return (K0,K1, . . . ,Kr);10

Algorithm 6. TSA(Tw)
input : Tweak Tw
output: Round tweaks

Tw0, Tw1

Tw0 ← STATE(Tw mod 118);1

Tw ← (Tw
 30);2

Tw1 ← STATE(Tw mod 118);3

return (Tw0, Tw1);4

5 Security Analysis

In this section, we evaluate the security of eSPF1010 construction against various
standard attacks.

5.1 Differential and Linear Cryptanalysis

Differential [7] and linear cryptanalysis [27] are two of the most powerful tech-
niques to analyze symmetric-key primitives. To resist the differential and linear
attacks, we choose to design our transformations according to the wide trail
design strategy [16] and estimate the lower bounds for active S-boxes for differ-
ent rounds of eSPF1010.

Number of Active S-boxes: The diffusion layer of eSPF uses a 4 × 4 MDS
matrix with branch number 5. Hence, any two round differential/linear charac-
teristic has a minimum of 5 active S-boxes and any four round differential/linear
characteristic has a minimum of 25 active S-boxes for eSPF. In Table 2, we men-
tion the number of rounds (r) and the corresponding minimum number of active
S-boxes (Ar) for eSPF. In FSE 2006, Granboulan et al. [21] presented a general
framework for differential and linear cryptanalysis of block cipher when the block
is not a bitstring. A M × M matrix Δ simulates the behavior of the S-box S
over differences by Δ(S)a,b = #{x|S(x + a) − S(x) = b}. The maximum entry
of the matrix, i.e., D(S) is defined as:

D(S) = max
(a,b) �={0,0}

Δ(S)a,b.

The corresponding maximum propagation probability is defined as differential
probability, DP(S) = D(S)/M . The D(S) is equal to 2 for eSPF1010 and the corre-
sponding maximum DP(S) is equal to 2−2.45 (2

11 ≈ 2−2.45).

eSPF: A Family of Format-Preserving Encryption Algorithms 143

Table 2. Minimum number of active S-boxes Ar for r rounds of eSPF.

r 1 2 3 4 5 6 8 10 12 16

Ar 1 5 6 25 26 30 50 55 75 100

In order to investigate the security against linear cryptanalysis of the
S-box, firstly we calculate the distribution vector Λ0(S){a,b} = (#{x ∈
Fpb |〈a, b|x, S(x)〉 = u})u∈{Z}, where 〈a, b|x, y〉 = 〈a|x〉 − 〈b|y〉 and 〈a, x〉 is
scalar product of a and x. The distribution vector represents the behavior
of the considered S-box. The random behavior can be defined as: fa,b;u =
1
M #(x, y) ∈ Fpb × Fpb |〈a, b|x, y〉 = u. The bias of the S-box represents the differ-
ence of behavior of S-box S and the random case and is defined as ΛS(S)a,b;u =
Λ0(S)a,b;u −fa,b;u. The highest bias measures the non linearity of the S-box. For
eSPF1010, the maximal bias is equal to 2

11 = 2−2.45 and the maximum correlation
is 2−1.45.

Based on the above parameters, the probability of any single 6-round dif-
ferential characteristic of eSPF1010 is upper bounded by 2−73 and the maximum
correlation of a 6-round linear trial is 2−43. These bounds ensure that the data
requirement to mount these attacks will exceed the available data 255(≈ 1116)
for 6-rounds.

5.2 Square Attack

In this section, we describe a 7-round square attack [14] against eSPF. This
attack is motivated by the attack shown in [17]. For our 7-round attack, we first
construct a 4-round distinguisher. Consider a Λ-set of 11 plaintexts in which
the first symbol takes all possible 11 values (active symbol) and the remaining
symbols take any constant value that remains same throughout the set. Since,
our construction involves tweak addition, in this attack, let us suppose that the
attacker uses Λ-sets for the two subtweaks as well, i.e., one symbol of both the
subtweaks (position being the same as that of the active symbol in the plaintexts)
are active. Considering these, Fig. 2 shows the four round transformations of
eSPF construction.

Let xj , yj , zj , wj denote the symbol values in round j after SubBytes,
ShiftRows, MixColumns and KeyAddition and stage respectively. Let A[p] denote
the pth symbol (column wise) in any intermediate state A where, 0 ≤ p ≤ 15.
Similarly, Ai

j [p] denotes the pth symbol of ith state A in round j where, (where,
0 ≤ i ≤ 10). In the pre-whitening stage, since Λ-sets of plaintexts and subtweaks
are in control of the attacker, he chooses the plaintexts P i and subtweaks TW i

0

(where, 0 ≤ i ≤ 10) such that for each i the sum (P i + Twi
0) mod 11 is a con-

stant. The state remains constant until S1 where the first symbol becomes active
again due to addition of the second sub-tweak Tw1. In, round 2 consider state
S2[0]. Due to sub-tweak addition of Tw1[0], we have:

144 D. Chang et al.

A C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

SB

C C C C

C C C C

C C C C

C C C C

SR

C C C C

C C C C

C C C C

C C C C

MC

C C C C

C C C C

C C C C

C C C C

A C C C

C C C C

C C C C

C C C C

A C C C

C C C C

C C C C

C C C C

A C C C

C C C C

C C C C

C C C C

A C C C

C C C C

A C C C

A C C C

SB SR MC

B C C C

C C C C

A C C C

A C C C

? C C C

C C C C

A C C C

A C C C

? C C C

C C C C

C C A C

C A C C

?

C

?

?

SB SR MC

C

A

A

A

A

A

A

C

SB SR MC

?

C

?

?

?

C

?

?

?

A

A

C

?

B

?

?

KA

A

?

?

?

?

?

?

B

P S0 SSB
1 SSR

1 SMC
1 S1

SSB
2 SSR

2 SMC
2 S2

SSB
3 SSR

3 SMC
3 S3

SSB
4 SSR

4 SMC
4 S4

TA

KA

TA

KA

TA

KA

TA

KA

TA

Round 2

Round 3

Round 4

C

C

C

C

C

A

A

A

A

A

A

C

C

C

C

C

?

?

?

?

SB SR MC

?

?

?

?

A A

A

A

C

?

?

?

C

A

?

A

?

?

A

?

?

A

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

KA

?

?

?

?

?

?

?

?

?

?

?

?

SSB
5 SSR

5 SMC
5 S5

TA
Round 5

?

?

?

?

?

?

?

C

A

A

A

A

A

A

C

C

C

C

C

C

A

C

?

A

C

?

A

C

C

A

C

A

A

A

C

?

?

?

?

?

?

?

B

?

? B

A A

A

A

C

Fig. 2. A five round distinguisher for eSPF. Here A denotes an active symbol, B denotes
that mod 10 sum of all values in that symbol is 0 and ? denotes unknown symbol.

wi
2[0] = (zi2[0] + Twi

1[0]) mod 11

Since tweak symbol as well as the state symbol are active, if we add all the values
in w2[0], then it can be shown that the sum mod 11 is always 0 as follows:

w0
2[0] + w1

2[0] + . . . w10
2 [0] = (

10∑

i=0

zi2 +
10∑

i=0

Twi
1) mod 11

= (55 + 55) mod 11 = 0

This shows that the set of values in the first symbol position after second round
tweak addition forms a balanced set with probability 1. After SubBytes operation
in round 3, the balanced set property is destroyed. Similar explanation can be
given till state transformation after ShiftRows in round 4. After MixColumns
operation in round 4, we get a completely unknown state. However, at state
SMC
4 , consider the first column. Here, we have:

eSPF: A Family of Format-Preserving Encryption Algorithms 145

10∑

i=0

zi5[0] +
10∑

i=0

zi5[3] = (
10∑

i=0

yi
5[0] +

10∑

i=0

yi
5[1] + 2

10∑

i=0

yi
5[2] + 5

10∑

i=0

yi
5[3]) mod 11 +

(
10∑

i=0

yi
5[0] + 2

10∑

i=0

yi
5[1] + 5

10∑

i=0

yi
5[2] +

10∑

i=0

yi
5[3]) mod 11

= (2
10∑

i=0

yi
5[0] + 3

10∑

i=0

yi
5[1] + 7

10∑

i=0

yi
5[2] + 6

9∑

i=0

yi
5[3]) mod 11

= (2
10∑

i=0

yi
5[0] + 0)mod11 = Even number

Again in the right hand side of the above equation, since y5[1, 2, 3] are active
cells, their sum over all 11 states is always going to be zero as discussed above.
Hence, the additive sum of Z5[0] + Z5[3] over all 11 states will always be an even
number with probability 1; which will be preserved even after tweak addition
in round 4. In the random case, the output will be even with a probability of
6/11. Hence, a valid distinguisher is constructed. This four round attack can be
extended up to seven rounds by adding one round in the backward and 2 rounds
in the forward directions to recover the secret key.

5.3 Impossible Differential Cryptanalysis

Impossible Differential Cryptanalysis (IDC) [5] uses impossible differential char-
acteristics to eliminate incorrect keys. Since the diffusion layer of eSPF construc-
tion is very similar to the AES algorithm, the basic 4 round impossible character-
istics presented in [6] for AES algorithm and the proposed construction is same.
The input and output characteristics for 4 rounds impossible characteristics is
as follows:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 4R
� (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1)

More rounds can be appended before and after the 4 round impossible distin-
guisher. We found up to 6 rounds characteristics, which can be used for key-
recovery attacks, but no such characteristics could be found when the number
of round is greater than 6.

5.4 Key Related Attacks

Slide attacks [8] and related-key attacks [4] are the two most important types
of key scheduling attacks. Our key scheduling algorithm for eSPF adds a round
dependent counter in each round to prevent sliding of the subkeys. For related key
attack to work, the attacker should be able to identify meaningful relationships
between different subkeys so that a related key differential can be constructed
over certain rounds. However, the non-linear addition operation and the modular
function in our key scheduling algorithms do not allow an adversary to deduce

146 D. Chang et al.

all the other round keys (and the master key) from one round key by working
through the key schedule. The modular function in particular also makes it very
hard for an attacker to control the difference propagation through different round
keys. Moreover, we also analyzed that each bit of the secret key K is used by the
fifth round for all format size 10 or more. Hence, we believe that these features
of the proposed KSA are sufficient to resist related key attacks.

5.5 Related Tweak Attack

Launching a related tweak attack to recover the secret key is easier for an attacker
compared to related key attack. This is because the tweak value is a public entity
and can be chosen by the attacker himself. This allows him to insert differences
in the tweak input of the block cipher and construct related tweak differentials.
Thus, it is imperative to assess the security of our schemes in this stronger related
tweak setting.

We developed an automated program to count the number of active S-boxes
and return an upper bound on the probability of the best related tweak truncated
differentials. Table 3 lists the number of active S-boxes for the first 8-rounds of
eSPF. It can be seen that the probability of any characteristic on more than 6
rounds is not higher than 2−36×2.45 = 2−88.2 for eSPF. This bound ensures that
the amount of data required to launch the attack will exceed the data available
to an attacker (i.e., 1116 ≈ 253). Hence, our construction can resist any related
tweak attack of practical complexity if the number of rounds is ≥ 6.

Table 3. Count of active S-box (Ar) and corresponding differential probability (Pr)
over different rounds r of eSPF for related tweak differentials.

r 1 2 3 4 5 6 7 8

Ar 0 0 1 5 20 36 50 66

Pr 0 0 2−2.45 2−9.8 2−49 2−88.2 2−122.5 2−161.7

Considering the attacks discussed above as well as efficiency we recommend
r = 10.

6 Performance

eSPF was designed with performance implementation costs in mind. In this
section, we provide performance comparison of eSPF with FPE designs FFX and
SPF.

eSPF: A Family of Format-Preserving Encryption Algorithms 147

6.1 Implementation

As eSPF is an AES-like block-cipher, the round-operations are best implemented
using table-lookups. The reference implementation was done for 32-bit platform,
but 64-bit processor support is ubiquitous and the implementation is also faster,
so all the results are for the 64-bit implementation. Table 4 shows the implemen-
tation results.

Table 4. Execution speed in symbols/second and cycles/symbol for eSPF10
10.

Processor Clock speed Speed for eSPF1010

Symbols/second Cycles/symbol

Core i7 6700 3.4 GHz 201.2 × 106 16.8

Core i7 4770 3.4 GHz 168.1 × 106 20.2

Core i5 2400 3.1 GHz 44.8 × 106 70.5

The lookup-table based implementation of eSPF1010 round function required
4 tables with 64 entries of 32-bit integers. The round functions and the MOD
(remainder) operation was combined. Each column required 4 table-lookups,
as a result there were 16 table-lookups in total. PDEP and PEXT instructions,
were used for various bit-manipulation operations needed, significantly improv-
ing the performance. Owing to the similarity with SPF for digits (which consists
of 14 rounds), the performance gains for eSPF1010 would primarily be the result
of reduced number of rounds, however the discarding algorithm would cause
some performance degradation. The expected speedup can be estimated to be
((14 ÷ 10) × (10 ÷ 11)), which is about 1.27.

6.2 Performance of eSPF10
10 Compared to FFX with Radix 10

Even for the smallest input sizes, FFX requires 11 invocations of AES-128 to
encrypt messages containing about 52 symbols of radix 10. FFX needs 10 AES-128
invocations with a MOD operation which is quite expensive, and an extra
AES-128. To test the expected performance, we used the inbuilt 128-bit inte-
ger support in gcc to perform MOD operations. On an Intel Core i7 4770 CPU at
3.4 GHz, the MOD operation was taking approximately 184 clock cycles at an
average. We also tested an assembly version of a fast 128-bit MOD implementa-
tion for MSVC which took 296 clock cycles. On the same machine, it was found
out that the AES-128 execution speed was 129 MiB/s by running openssl speed
aes-128-cbc, which comes down to about 400 cycles per AES-128 invocation.
As FFX uses 10 MOD operations and 11 AES-128 invocations, one FFX encrypt
operation should take about (184 × 10) = 1840 cycles for MOD and (400 ×
11) = 4400 cycles for AES, so in total it takes about 6240 cycles at least. So,
FFX should run at about 120 cycles/symbol (6240 ÷ 52) at max; this ignores

148 D. Chang et al.

any other performance loss due to copies, and other operations like NUMradix(),
STRradix() etc. So, eSPF is about 6 times faster than FFX for similar parame-
ters. Considering traditional applications of FPE such as encryption of SSN and
CCN, eSPF would be around 30 and 15 times faster than FFX respectively.

According to the definition of FFX, a large MOD (of size approximately
radixN/2, where N is the size of input string) operation is needed. As the
MOD can get very large, efficient implementation would need to use big-integer
libraries, which tend to be significantly slower (can be a few orders of magni-
tude, depending on parameters) than the AES-128, used. As a result the overall
implementation can get very slow. This is not a problem in eSPF.

7 Conclusion

In this work, we present a new efficient format-preserving encryption construc-
tion based on substitution-permutation networks. We present a concrete instance
of the proposed construction for format size 10. Further, to analyze the secu-
rity of the presented design, we consider conventional cryptanalytic techniques
as well as dedicated attacks. Finally, we compare the efficiency of the presented
construction with existing schemes. The construction is approximately ten times
faster than existing popular designs such as FFX and BPS for most of practical
uses of FPE. A similar construction for other popular format size is an interesting
open problem.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44983-3 4

2. Bellare, M., Hoang, V.T., Tessaro, S.: Message-recovery attacks on Feistel-based
format preserving encryption. Cryptology ePrint Archive, Report 2016/794 (2016).
http://eprint.iacr.org/2016/794

3. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-05445-7 19

4. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48285-7 34

5. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48910-X 2

6. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael (1999, unpub-
lished manuscript)

https://doi.org/10.1007/3-540-44983-3_4
http://eprint.iacr.org/2016/794
https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2

eSPF: A Family of Format-Preserving Encryption Algorithms 149

7. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 1

8. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6 41

9. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45760-7 9

10. Brier, E., Peyrin, T., Stern, J.: BPS: a format-preserving encryption proposal.
NIST. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/
bps/bps-spec.pdf

11. Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data
warehouse security, vol. PP, pp. 141–149 (1997). http://csrc.nist.gov/niccs/1997

12. Chang, D., Ghosh, M., Gupta, K.C., Jati, A., Kumar, A., Moon, D., Ray, I.G.,
Sanadhya, S.K.: SPF: a new family of efficient format-preserving encryption algo-
rithms. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143,
pp. 64–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54705-3 5

13. Coppersmith, D., Holloway, C., Matyas, S.M., Zunic, N.: The data encryption
standard. Inf. Secur. Tech. Rep. 2(2), 22–24 (1997)

14. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

15. Daemen, J., Rijmen, V.: The block cipher Rijndael. In: Quisquater, J.-J., Schneier,
B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg (2000).
https://doi.org/10.1007/10721064 26

16. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45325-3 20

17. Dobraunig, C., Eichlseder, M., Mendel, F.: Square attack on 7-round Kiasu-BC. In:
Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp.
500–517. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 27

18. Betül Durak, F., Vaudenay, S.: Breaking the FF3 format-preserving encryption
standard over small domains. Cryptology ePrint Archive, Report 2017/521 (2017).
http://eprint.iacr.org/2017/521

19. Dworkin, M.: NIST Special Publication 800–38A: Recommendation for Block
Cipher Modes of Operation-Methods and Techniques, December 2001

20. Dworkin, M.: Recommendation for block cipher modes of operation: methods for
format-preserving encryption. NIST Special Publication, 800:38G

21. Granboulan, L., Levieil, É., Piret, G.: Pseudorandom permutation families over
Abelian groups. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 57–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11799313 5

22. Gupta, K.C., Pandey, S.K., Ray, I.G.: Format preserving sets: on diffusion lay-
ers of format preserving encryption schemes. In: Dunkelman, O., Sanadhya, S.K.
(eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 411–428. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49890-4 23

23. Hoang, V.T., Morris, B., Rogaway, P.: An enciphering scheme based on a card
shuffle. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
1–13. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 1

https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45760-7_9
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/niccs/1997
https://doi.org/10.1007/978-3-319-54705-3_5
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/978-3-319-39555-5_27
http://eprint.iacr.org/2017/521
https://doi.org/10.1007/11799313_5
https://doi.org/10.1007/978-3-319-49890-4_23
https://doi.org/10.1007/978-3-642-32009-5_1

150 D. Chang et al.

24. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the
TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45608-8 15

25. Lee, J.-K., Koo, B., Roh, D., Kim, W.-H., Kwon, D.: Format-preserving encryption
algorithms using families of tweakable blockciphers. In: Lee, J., Kim, J. (eds.)
ICISC 2014. LNCS, vol. 8949, pp. 132–159. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-15943-0 9

26. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

27. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

28. Morris, B., Rogaway, P.: Sometimes-recurse shuffle. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 311–326. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 18

29. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer, Hei-
delberg (2009)

30. Ristenpart, T., Yilek, S.: The mix-and-cut shuffle: small-domain encryption secure
against N queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 392–409. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 22

31. Rogaway, P.: Evaluation of Some Blockcipher Modes of Operation. http://www.
cryptrec.go.jp/estimation/techrep id2012 2.pdf

32. Schroeppel, R., Orman, H.: The hasty pudding cipher. AES candidate submitted
to NIST, p. M1 (1998)

33. Sheets, J., Wagner, K.R.: Visa Format Preserving Encryption (VFPE). NIST Sub-
mission (2011)

34. Spies, T.: Feistel finite set encryption. NIST Submission, February 2008. http://
csrc.nist.gov/groups/ST/toolkit/BCM/modes-development.html

https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-319-15943-0_9
https://doi.org/10.1007/978-3-319-15943-0_9
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-642-55220-5_18
https://doi.org/10.1007/978-3-642-40041-4_22
https://doi.org/10.1007/978-3-642-40041-4_22
http://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
http://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes-development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes-development.html

	eSPF: A Family of Format-Preserving Encryption Algorithms Using MDS Matrices
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 The Notations Used in the Paper
	2.2 Specification

	3 The eSPF Construction
	3.1 The Round Transformations
	3.2 Discarding Algorithm DA()

	4 eSPF for Digits
	4.1 The S-Box
	4.2 The ShiftRows
	4.3 The Permutation
	4.4 Key Addition
	4.5 Tweak Addition
	4.6 Key Schedule

	5 Security Analysis
	5.1 Differential and Linear Cryptanalysis
	5.2 Square Attack
	5.3 Impossible Differential Cryptanalysis
	5.4 Key Related Attacks
	5.5 Related Tweak Attack

	6 Performance
	6.1 Implementation
	6.2 Performance of eSPF1010 Compared to FFX with Radix 10

	7 Conclusion
	References

