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Abstract. Designing efficient and secure implementations of Elliptic
Curve Cryptography (ECC) has attracted enormous interest from both
theoreticians and practitioners. The main contenders in terms of per-
formance are curves defined over binary extension fields or large prime
characteristic fields. In addition to the efficiency requirements, security
advantages such as implementation simplicity and resistance to side-
channel attacks are receiving increasing attention in research and com-
mercial applications. In this paper, we keep pushing in this direction and
study efficient implementation of regular scalar multiplication algorithms
for binary curves equipped with efficient endomorphisms. Our focus is on
implementing the Galbraith-Lin-Scott (GLS) family of binary curves by
exploring the space of different models and laddering algorithms, for their
high performance, reasonable implementation simplicity, lower memory
consumption and side-channel resistance. Our results demonstrate that
laddering implementations can be competitive with window-based meth-
ods by obtaining a new speed record for laddering implementations of
elliptic curves on high-end Intel processors.

1 Introduction

Secure and efficient implementation of Elliptic Curve Cryptography (ECC) has
received a lot of interest by researchers and implementers alike. The security of
ECC cryptosystems relies on the hardness of the Elliptic Curve Discrete Log-
arithm Problem (ECDLP) conjectured as fully exponential, which consists in
recovering the scalar k ∈ Z from the given points P and Q = kP in some elliptic
curve E defined over a finite field Fq.

Scalar multiplication (k, P → kP ) is the main operation required when eval-
uating ECC protocols and corresponds to adding point P to itself k − 1 times.
The performance and security of a curve-based cryptosystem strictly relates to
the choice of curve parameters, scalar multiplication algorithm, finite field arith-
metic, and implementation quality. Algorithms for scalar multiplication can be
broadly classified in window-based methods, composed of a precomputation step
for computing small multiples of the input point, and a main loop exploiting this
precomputation through table lookups; and simpler and more compact laddering
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methods [4,23] that execute the same operation across all iterations. These algo-
rithms can be further classified in fixed-base when the input is a known point G
(generator), variable-base when the input is unknown point P and double-point
when two points P and Q are simultaneously multiplied as �P + mQ by scalars
� and m. These scenarios typically occur in key generation, key exchange and
signature verification, respectively.

In practice, the main contenders in terms of performance are curves defined
over large prime characteristic fields (prime curves), or over binary extension
fields (binary curves). Performance is not the only metric, and security advan-
tages such as implementation simplicity and resistance to side-channel attacks
are receiving more attention in research and industry. In the prime case, for
instance, Edwards curves [3] and FourQ [7] have provided most of the recent
performance and/or security improvements by adopting more conservative or
aggressive choices of parameters, respectively. In the binary case, recent advances
firmly rely on exploiting efficient endomorphisms and optimized parameters in
Koblitz [18,22] and Galbraith-Lin-Scott (GLS) [12,20] curves.

Thanks to many improvements introduced in modern processors as power-
ful vector instructions, binary curves arguably now enjoy better native support
for their underlying field arithmetic in some micro-architectures. Combined with
algorithmic developments such as the lambda coordinate system [20,21] and effi-
cient endomorphisms, binary curves currently hold the speed record for the most
efficient scalar multiplication in software targeting Intel desktop processors [19].
Despite advances in solving the ECDLP for these curves [10], binary curves are
still considered secure for cryptographic applications [23] and were standardized
by IEEE [13] and NIST [17].

In this paper, we study the efficient implementation of laddering algorithms
for variable-base scalar multiplication under different models of elliptic curves
defined over binary extension fields. Laddering algorithms offer some built-in
side-channel protection because of their regularity, and implementation friend-
liness due to the simplicity of not requiring all coordinates of a point to be
computed. The Montgomery ladder over the x-coordinate is the most popular
algorithm pertaining to this class [16].

We target binary GLS curves equipped with efficient endomorphisms, allow-
ing multi-dimensional laddering algorithms such as the DJB chain proposed by
Bernstein in [2] to be used. The DJB algorithm is uniform, in the sense that
all iterations in the main loop require the same number and type of field opera-
tions [6], and can be implemented in an isochronous way (constant time) because
the number of loop iterations can be made constant. Recently, Azarderakhsh and
Karabina proposed the AK laddering algorithm tailored for the computation
of point multiplication on elliptic curves with efficiently computable endomor-
phisms. The AK algorithm can be faster than DJB but has a variable number
of loop iterations (with small standard deviation). More recently, AK and DJB
laddering algorithms have been employed by Costello et al. for the implementa-
tion of point multiplication and x-coodinate only key exchange on elliptic curves
defined over prime fields [6]. The main contributions of this work are:
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– Concrete strategies for efficiently implementing the Montgomery, DJB and
AK variable-base laddering algorithms, minimizing the number of conditional
operations for side-channel protection. As long as the efficiency of finite field
arithmetic continues to improve due to progress in instruction sets, these
overheads become significant and must be handled properly. Also, an efficient
uniform algorithm for AK recoding is proposed and evaluated.

– Techniques for converting between binary GLS curves in the Weierstraß model
to alternate models such as Huff and Edwards while keeping coefficients com-
pact and efficient to operate with. Faster formulas for evaluating differential
addition and doubling operations required by laddering algorithms are pre-
sented for these models, applying lazy reduction and other recent techniques
from the literature [9].

– A set of GLS curve parameters at the 128-bit security level which maximize
the efficiency of the proposed techniques, followed by a state-of-the-art imple-
mentation which demonstrate that laddering algorithms can be competitive
with window-based methods while setting new speed records for laddering
implementations.

The work is organized as follows. In Sect. 2, Weierstraß, Huff and Edwards
elliptic curve models are introduced, together with efficient formulae and algo-
rithms for converting from binary GLS curves in the Weierstraß model. In Sect. 3,
the Montgomery, DJB and AK laddering algorithms for scalar multiplication are
discussed together with improvements. Section 4 presents experimental results
and discussion, and Sect. 5 concludes.

2 Binary GLS Curves

Let EW,a,b be an ordinary binary elliptic curve in short Weierstraß form defined
by the equation

EW,a,b : y2 + xy = x3 + ax2 + b, (1)

where a, b ∈ F2m . The set of affine points P = (x, y) with x, y ∈ FF2m that satisfy
the above equation, together with the point at infinity O, forms an additive
abelian group with respect to the elliptic point addition operation. This group
is denoted as EW,a,b(F2m) and its order can be written as #EW,a,b(F2m) =
2m − t + 1, where t is the trace of Frobenius and satisfies |t| ≤ 2m.

In order to define a Galbraith-Linn-Scott (GLS) curve [11,12], choose a
quadratic extension F22m of F2m as F22m = F2m [s]/(s2 + s + 1) and pick a field
element a′ ∈ F22m such that Tr(a′) = 1, where Tr is the trace function from F22m

to F2m defined as Tr : c �→ ∑2m−1
i=0 c2

i

. It follows that #E(F22m) = (2m+1)2−t2.
Let us define

E′/F22m : y2 + xy = x3 + a′x2 + b, (2)

with #E′
W,a′,b(F22m) = (2m − 1)2 + t2. E′ is the quadratic twist of EW,a,b which

means that both curves are isomorphic over F24m under the endomorphism φ :
E → E′, (x, y) �→ (x, y + σx), with σ ∈ F24m\F22m satisfying σ2 + σ = a + a′.
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Fix a′ = s and choose b such that #E′
a′,b(F22m) = 2r, where r is prime with

(2m − 1) bits. Let a1 = b−1/8, Eq. (2) is isomorphic over F22m to

E′′/F22m : Y 2 + a1XY = X3 + a2
1sX

2 + 1/a2
1, (3)

with isomorphism given by Φ : E′ → E′′, (x, y) �→ (a2
1x, a3

1y) [24].
Let π : E → E be the Frobenius map and let ψ be the composite GLS

endomorphism ψ = φπφ−1 given as ψ(x, y) = (x2m

, y2m

+ x2m

s). Hankerson
et al. showed in [12] that ψ(P ) = λP for some λ ∈ Z satisfying λ2 + 1 ≡ 0
(mod r). For k ∈ Z, the scalar multiplication kP can then be decomposed in
k1P + k2ψ(P ) such that k ≡ k1 + k2λ (mod r).

Parameters. A concrete GLS curve targeting approximately the 128-bit secu-
rity level can be found by choosing m = 127 and binary field F2m defined as
F2[z]/(f(z) = z127 + z63 + 1). Two possible choices for curve coefficient b defin-
ing curves E1 and E2, respectively, can be found below:

1. b1 = 0x54045144410401544101540540515101 in polynomial representation
(hexadecimal form) with short 64-bit square root

√
b = 0xE2DA921E91E38DD1.

This parameter is widely used in the literature [18,20] to optimize a multipli-
cation by b in the Montgomery ladder due to the short square root, and here
is chosen for comparison with related work.

2. b2 = z85 + z21 in polynomial form with short root b−1/8, introduced here to
simplify curve coefficients when converted to other curve models.

Both concrete curves E1 and E2 have large 253-bit prime subgroup order r and
thus satisfy common security requirements for the discrete logarithm setting.

The basic computation in each step of a laddering algorithm (ladd oper-
ation) is differential addition (dadd) and doubling (doub) evaluated over the
base field where the curve is defined. Given points P1 and P2 on elliptic curve
E(Fq) with known difference P0 = P1 −P2, this operation computes point addi-
tion P1 + P2 and point doubling 2P1. In general, the formulas can be evaluated
over a smaller set of coordinates. Let w be a rational function defined over elliptic
curve E(Fq) given by the fraction of polynomials in the coordinate ring of E, with
w(P ) = w(−P ) [9]. For any points P1, P2 given by the values w(P1), w(P2) and
difference w(P1−P2), differential addition and doubling formulae again compute
w(P1 + P2) and w(2P1) in w-coordinates. A projective w-coordinate represen-
tation w(P ) = (W : Z) of a point P can also be defined to eliminate expensive
inversions in curve arithmetic, and the corresponding affine representation can
be simply recovered by computing W

Z .
Let m, s,d, r,a and i denote the costs of field multiplication, squaring, mul-

tiplication by short curve parameter, modular reduction by f(z), addition and
inversion in F22m , respectively. The lazy reduction technique evaluates an expres-
sion (ab + cd) over a field Fq by accumulating the multiplication results before
modular reduction, incurring a performance trade-off of (a − r). Because addi-
tion in a binary field is trivial, typically r > a and the technique incurs a
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small speedup. Notation [·]f here denotes an explicit modular reduction oper-
ation of a double-precision result, implying that multiplication and squaring
results are automatically reduced otherwise. In the next subsections, we improve
state-of-the-art differential addition and doubling formulas for several binary
curve models presented in [9] by using lazy reduction and compare their relative
performance.

2.1 Formulae for Weierstraß Curves

In Weierstraß curves, the w-coordinate representation w(P ) of a point P can be
simplified to the x-coordinate x(P ). The formulae below compute the projective
w-coordinate differential addition and doubling (ladd) operation among points
P1 = (X1 : Z1) and P2 = (X2 : Z2), producing the results (X3 : Z3) = (X1 :
Z1) + (X2 : Z2) and (X4 : Z4) = 2(X1 : Z1), given the difference point in
projective coordinates P0 = (X0 : Z0) = (X1 : Z1) − (X2 : Z2):

A = (X1 + Z1), B = (X2 + Z2), T = [X1 · X2 + Z1 · Z2]f ,

Z3 = (T + A · B)2 · X0, X3 = T 2 · Z0,

Z4 = (a1 · X1 · Z1)2, X4 = A4.

This formula was improved from [24] by using lazy reduction of (X1X2 + Z1Z2)
and can be used over the curve isomorphic to the set of parameters E2 defined
by Eq. (3). Total cost in this case is (6m + 5s + d + 5a − r) by trading an
additional modular reduction (r) by a double-precision addition (extra a). If
Z0 = 1, the formulae below can be used instead by switching to López-Dahab
coordinates over curve E1 defined by Eq. (2) with difference point w(P0) = x0

in affine coordinates [15], costing (5m + 4s + d + 4a − r):

A = X1 · Z2, B = X2 · Z1, T = (X2)2, U = (Z2)2

X4 = (T + U
√

b1)2, Z4 = T · U

Z3 = (A + B)2, X3 = [x0 · Z4 + A · B]f .

Multiplication by b1 is efficient because b1 is chosen such that its square root
is a 64-bit polynomial.

2.2 Formulae for Edwards Curves

Let d1, d2 ∈ F22m with d1 �= 0 and d2 �= d21 +d1, the binary Edwards curve is the
non-singular curve

EE,d1,d2 : (x + y)(d1 + d2(x + y)) = xy(1 + x)(1 + y). (4)

When Tr(d2) = 1, the curve is complete and there are no exceptions to the
addition law. The Edwards model is birationally equivalent to the Weierstraß
model

v2 + uv = u3 + (d21 + d2)u2 + d41(d
4
1 + d21 + d22) (5)
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under the map (x, y) �−→ (u, v) and its inverse defined by [5]

u = (d31 + d21 + d1d2)(x + y)/(xy + d1(x + y)), (6)

v = (d31 + d21 + d1d2)(d1 + 1 + x/(xy + d1(x + y)).

Since the curve used in this work has no rational points of order 4, it is not
isomorphic to an Edwards curve with coefficients d1 = d2 and cannot enjoy the
simpler arithmetic in that case.

We still obtain efficient arithmetic by selecting parameters of curve E2 and
choosing curve coefficients d1 = (s·z84) ∈ F22m and d2 = d21+d1+

√
b/d21 ∈ F22m .

A subfield constant is thus obtained for evaluating the differential addition and
doubling formula. Define function w(x, y) = (x + y)/(d1(x + y + 1)) such that
w(P ) = w(−P ) for all affine points except when x + y = 1 [9]. Assuming that
w(P1) and w(P2) are represented in projective coordinates (W1 : Z1) and (W2 :
Z2), respectively, and given precomputed w-coordinate z0 = 1/w0 of difference
point P0, the formulae below compute differential addition and doubling with
cost (5m + 4s + d + 4a − r):

A = W1 · Z1, B = W1 · Z2, C = W2 · Z1,

W4 = A2, Z4 = ( 4

√
d41 + d31 + d21d2W1 + Z1)4,

W3 = (B + C)2, Z3 = [B · C + z0 · W3]f .

These formulae are faster than the almost complete formular given in [9] by
(r − a), due to lazy reduction. Compared to the affine Weierstraß formula, it
apparently has the same cost, but the multiplication by the curve coefficient is
slower because (d41 + d31 + d21d2) is a polynomial in F2m with degree 91 in our set
of parameters E2.

2.3 Formulae for Huff Curves

Let ha �= hb ∈ F22m the coefficients of the generalized binary Huff curve given
by the set of coordinates satisfying the equation

EH,ha,hb
: hax(y2 + fy + 1) = hby(x2 + fx + 1). (7)

This equation is birationally equivalent to the Weierstrass curve

v(v + (ha + hb)fu) = u(u + h2
a)(u + h2

b). (8)

under the map (x, y) �−→ (u, v) and its inverse defined by [8]

(x, y) =
(

hb(u + h2
a)

v
,

ha(u + h2
b)

v + (ha + hb)fu

)

, (9)

(u, v) =
(

hahb

xy
,
hahb(haxy + hb)

x2y

)

.
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In order to convert a GLS curve to the Huff curve model, we adapt the
method in [8, Proposition 2] by defining f = g(z) · s, where g is a polynomial
of small degree such that Tr(1/f) = Tr(s) and Tr(f8b) = 0. For simplicity,
parameters ha, hb will be chosen as hb = 1 and ha ∈ F2m as the solution h2

a

to equation t2 + 1

f4
√

(b)
t = 1 in a subfield. This guarantees that the constant

γ = f2 (ha+hb)
2

hahb
and its inverse 1/γ will have small degree and reside in a subfield,

allowing fast multiplication by these constants.
We adapt the almost complete formulae from [9] to general binary Huff

curves. By choosing w(x, y) = (xy) · γ, and given the w-coordinate w0 of differ-
ence point P0 precomputed as z0 = 1/w0, we propose the following formulae for
differential addition and doubling costing (5m + 4s + d + 4a − r):

A = W1 · Z1, B = W1 · Z2, C = W2 · Z1,

W3 = A2, Z3 = (W1/γ + Z1)4,

W3 = (B + C)2, Z3 = [B · C + z0 · W3]f .

These formula are again faster than [9] by (r − a) due to lazy reduction. Com-
pared to the Edwards model, this formula is faster in our parameters because
the multiplication by curve coefficient with cost d involves a multiplication by
a polynomial of degree 54. This is equivalent to the cost of the Weierstraß for-
mulae. There is another advantage of this curve model: it is easy to observe
that w(x, y) = xyγ = ha

u for our choice of parameters, thus converting from
the x-coordinate Weierstraß representation requires only an inversion and mul-
tiplication by a subfield constant. When working over w-coordinates only, this
allows the GLS endomorphism to be computed as a simple 2m-power over F22m

because ha lies in a subfield.
At last, there are formulas in the binary Hessian model with this exact

same cost [9], but which result in larger curve coefficients after conversion from
Weierstrasß for our choices of parameters, so they are not discussed in this work.

3 Laddering Algorithms

Scalar multiplication is the performance-critical operation for protocols based
on elliptic curves and the algorithms follow two general ideas. In window-based
methods, a table of points containing small multiples Pi = diP is precomputed,
the scalar is recoded to another representation and the scalar multiplication
follows by adding and doubling multiples obtained from the table according
to the recoded scalar digits di. This strategy usually consumes more memory
due to the precomputed table, and side-channel countermeasures are needed to
prevent leaks from the recoding process or differences in memory access during
table lookups. Laddering methods uniformly iterate a ladder step consisting of
point doubling and addition over a smaller set of variables, reducing memory
consumption. From the point of view of efficiency and simplicity, almost complete
formulae as in the previous section which do not compute all coordinates are
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preferable and sufficient to prevent exceptional cases within the laddering. Side-
channel countermeasures protect the selection of variables to be updated with
conditional operations.

Below we summarize and propose optimizations for three different laddering
algorithms: the original Montgomery ladder, Bernstein’s double point multiplica-
tion algorithm based on the new binary chain and a recent double multiplication
algorithm due to Azarderakhsh and Karabina. The algorithms heavily depend on
three branchless operations depending on a bit condition: select for selecting
among two inputs, cswap for conditionally swapping variables, and ccopy for
conditionally copying the input to the output. These conditional operations are
usually considered to be cheap, but their cost is becoming increasingly significant
due to faster finite field and elliptic curve arithmetic, and more powerful instruc-
tion sets. Our proposed versions of the algorithms will then focus on simplifying
conditional operations when merging two consecutive loop iterations.

3.1 Montgomery Ladder

A version of the Montgomery scalar multiplication based on the projective w-
coordinate representation is given in Algorithm 1. The algorithm receives as
input w(P ), the affine w-coodinate of P , and the integer scalar k. Two accu-
mulator points P1 = (W1 : Z1) and P2 = (W2 : Z2) are initialized as w(P )
and w(2P ), respectively, which are doubled and added depending on the cur-
rent bit of the key. Iteration j starts with accumulators [w(lP ), w((l + 1)P )],
where l is the integer represented by the j leftmost bits of k, and computes
[w(2lP ), w((2l+1)P )] or [w((2l+1)P ), w((2l+2)P ). By induction, the last iter-
ation produces [kP, (k + 1)P ], where the first point is the result and the second
point may be useful for recovering the full coordinates of the result. Following
previous work, this version merges two consecutive iterations and only performs
real swaps when necessary (consecutive bits are different).

When operating over Weierstraß curves with w(P ) = x(P ), the y-coordinate
y1 of kP can be recovered from (X1 : Z1) = w(P ), (X2 : Z2) = w((k + 1)P ) and
P = (x, y) with the following formula from [15]:

y3 = (x + X1/Z1)[(X1 + xZ1)(X2 + xZ2) + (x2 + y)(Z1Z2)](xZ1Z2)−1 + y.

Although not explictly mentioned in the literature, this formula can be used to
fully recover kP = (x3, y3) with cost of (i+10m+1s+6a), at a relatively small
increase from the cost (i + m) of computing x3 = X1/Z1:

A = Z1 · Z2, B = (X1 + x · Z1), C = x · Z2, D = C · X1,

E = B · (X2 + C), F = (x2 + y) · A + E, G = (x · A)−1, H = F · G,

x3 = D · G, y3 = y + (x + x3) · H.

3.2 Two-Dimensional DJB Ladder

As described in Sect. 2, a scalar multiplication kP can be computed as k1P +k2Q,
for Q = ψ(P ). Hence, two-dimensional laddering algorithms can be used to eval-
uate a single scalar multiplication exploiting endomorphisms. We briefly explain
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Algorithm 1. Montgomery ladder using differential addition and doubling for-
mulae (ladd). The auxiliary function cswap conditionally swaps the two first
arguments depending on the value of the third parameter.
Input: k = (kl−1, . . . , k1, k0) ∈ Z such that k > 0 and w(P ), for P ∈ E(F22m)
Output: w(kP ), w((k + 1)P ) ∈ E(F22m)
1: (W1 : Z1) ← w(P )
2: (W2 : Z2) ← w(2P )
3: p ← 0
4: for j ← l − 2 downto 0 do
5: c ← kj ⊕ p
6: p ← kj

7: (W1,W2) ← cswap(W1,W2, c)
8: (Z1, Z2) ← cswap(Z1, Z2, c)
9: ((W1 : Z1), (W2 : Z2)) ← ladd((W1 : Z1), (W2 : Z2), w(P ))
10: end for
11: (W1,W2) ← cswap(W1,W2, p)
12: (Z1, Z2) ← cswap(Z1, Z2, p)
13:return (W1 : Z1) = w(kP ), (W2 : Z2) = w((k + 1)P )

Bernstein’s double point multiplication algorithm based on the new binary
chain [2]. The chain for (k1, k2) is computed as follows. Let (M,N) = (k1, k2) and
D = k1 mod 2. CD(0, 0) is defined as the base case (0, 0), (1, 0), (0, 1), (1,−1).
For (M,N) �= (0, 0), CD(M,N) is defined recursively:

CD(M,N) =Cd(	M/2
, 	N/2
),
(M + (M + 1 mod 2), N + (N + 1 mod 2)),
(M + (M mod 2), N + (N mod 2)),
(M + (M + D mod 2), N + (N + D + 1 mod 2)), and

d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if (	M/2
 + M, 	N/2
 + N) mod 2 = (0, 1)
1 if (	M/2
 + M, 	N/2
 + N) mod 2 = (1, 0)
D if (	M/2
 + M, 	N/2
 + N) mod 2 = (0, 0)
1 − D if (	M/2
 + M, 	N/2
 + N) mod 2 = (1, 1).

Building the new binary chain for the integers (k1, k2) requires a number of
max(�log2 k1�, �log2 k2�) iterations, and at the each iteration three vectors are
added to the sequence. Given two elliptic curve points P,Q ∈ E(Fq), the new
binary chain for (k1, k2) allows us to compute k1P + k2Q at a cost of two point
additions and one point doubling per iteration. The algorithm generates a chain
sequence specifying the input to the doubling and addition operations at each
iteration and a sequence of differences which encodes the differences of the points
that are the input points to the addition operations at each iteration [1].
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Algorithm 2 presents our optimized version of the DJB laddering algo-
rithm. The algorithm starts by computing the chain sequence, returning four bit
sequences S0, S1, S2, S3 representing the recoded versions of the input scalars k1
and k2, a value fa determining the first addition and the correct point fi among
three accumulators to be returned at the end of the algorithm. Accumulators
(W0 : Z0), (W1 : Z1), (W2 : Z2) are initialized in projective coordinates using the
dadd and doub and later keep track of the multiples of P and Q inside the main
loop. Accumulator (W2 : Z2) starts with value w(P +2Q) or w(2P +Q) depend-
ing on the chosen difference point and accumulator (W1 : Z1) always starts with
w(2(P + Q)). Differences wP+Q, wP−Q can be computed in affine coordinates
sharing an inversion, to avoid slower projective representation of differences.

At the beginning of each iteration of our implementation, the condition bit t
evaluates what operand will be copied to temporary variable (W4 : Z4). This is
needed because the doub operation inside the laddering can receive any of the
three accumulators copied to (W3 : Z3). Then the correct differences are copied
to w0 and w1, followed by two differential additions using the chosen differences
and a point doubling. These conditions were tediously derived and minimized
from the bit combinations in the sequences S0, S1, S2, S3 to correctly position
the inputs and outputs of the curve arithmetic operations. An advantage of this
algorithm is always returning (k+1)P = (k1+1)P +k2ψ(P ) among the two other
unused results, in a position depending on the parities of k1 and k2. This allows
to recover the full coordinates of P using the same formulas in the previous
subsection, increasing the scenarios in which the laddering can be applied.

3.3 Two-Dimensional AK Ladder

Let k1 and k2 be again two positive integers. In order to compute k1P +k2Q, the
AK laddering algorithm starts with the initial values d = k1, e = k2, 
R = (P,Q),

u = (1, 0), 
v = (0, 1), and 
Δ = (1,−1). Define also Ru = 
u · 
R, Rv = 
v · 
R, and
RΔ = 
Δ · 
R. The initial values yield Ru = P , Rv = Q, RΔ = Ru − Rv = P − Q,
and dRu +eRv = k1P +k2Q, and the values d, e, 
u,
v, 
Δ,Ru, Rv, RΔ are updated
according to the rules in Table 1 so that dRu + eRv = k1P + k2Q and RΔ =
Ru − Rv hold, d, e > 0, and (d + e) decreases until d = e. When d = e, we have
k1P + k2Q = dRu + eRv = d(Ru + Rv) which can be computed using a single
point multiplication algorithm with base Ru + Rv and scalar d. Note that when
gcd(k1, k2) = 1, (d + e) in the algorithm will decrease until d = e = 1 and we
have k1P + k2Q = Ru + Rv [1].

Algorithm 3 computes a recoded format for the scalars according to Table 1
in a branchless manner. The recoded sequence stores in each position a value
among the four rules in the table. First conditions t and t′ are computed in lines

3 and 4 as d
?≡ e (mod 2) and d

?≡ 0 (mod 2), respectively. Variable f is assigned
to |d − e| in line 6, values (d, e) are swapped before division by 2 (shifting to
the right by 1) if the conditions for rules R′

1 or R′
2 apply, and d conditionally

receives f to update the correct value, after which the swapping is restored in
line 10. At the end of each iteration, the sequence is increased by one element
storing the rule and the current length if incremented.



84 D.F. Aranha et al.

Algorithm 2. DJB laddering algorithm, employing the dadd and doub opera-
tions. The chain computation returns recoded scalars and two additional values
determining the first addition (fa) and the correct point (fi) to be returned at
the end of the algorithm. Auxiliary functions select conditionally selects among
two arguments and ccopy copies the input to the destination depending on the
last parameter.
Input: Integers k1, k2 > 0 and w(P ), w(Q) for P,Q ∈ E(F22m)
Output: w(k1P + k2Q) ∈ E(F22m)
1: S0, S1, S2, S3, fa, fi ← chain(k1, k2)
2: (W0 : Z0) ← w(P + Q), wP ← w(P ), wQ ← w(Q)
3: wP+Q ← w(P + Q), wP−Q ← w(P − Q)

4: (wP , wQ) ← cswap(wP , wQ, fa
?
= 1)

5: (W2 : Z2) ← dadd((wP+Q : 1), (wP : 1), wQ)
6: (W1 : Z1) ← doub((W0 : Z0))

7: (wP , wQ) ← cswap(wP , wq, fa
?
= 1)

8: for j ← max(�log2 k1�, �log2 k2�) downto 0 do
9: t ← S1,j ⊕ (S3,j ∧ S0,j)
10: w0 ← select(wP , wQ,¬S3,j)
11: w1 ← select(wP+Q, wP−Q, S2,j)
12: (W4 : Z4) ← select((W1 : Z1), (W0 : Z0), t)
13: (W3 : Z3) ← select((W2 : Z2), (W4 : Z4),¬S0,j)
14: (W2 : Z2) ← dadd((W2 : Z2), (W4 : Z4), w0)
15: (W0 : Z0) ← dadd((W1 : Z1), (W0 : Z0), w1)
16: (W1 : Z1) ← doub((W3 : Z3))
17: end for
18: R ← (W0 : Z0)

19: R ← ccopy((W1 : Z1), fi
?
= 1)

20: R ← ccopy((W2 : Z2), fi
?
= 2)

21: return R

The authors of the algorithm discuss in [1] that, if k1 and k2 are �-bit inte-
gers, then k1P + k2Q can on average be computed in about 1.4� point additions
and 1.4� point doublings. Moreover addition and doubling operations can be
performed using differential addition and differential doubling formulas as the
differences of the group elements to be added are known by construction. Algo-
rithm 4 presents our implementation of the AK laddering approach by merging
consecutive iterations. Expressions for the conditions determining the condi-
tional operations at the beginning of each iteration were tediously evaluated
and minimized to reduce the number of required conditional operations for a
correct execution. In contrast with the previous laddering algorithms, the ladd
operation now performs the laddering step with difference point in projective
coordinates because the differences are not fixed in the AK algorithm, as it can
be observed at the end of the conditional swap operations that RΔ can be among
the updated variables.
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Algorithm 3. AK recoding, returning the sequence S and its length l according
to the rules in Table 1. Auxiliary function cswap conditionally swaps the two
arguments and select returns one of the arguments based on the condition,
respectively.
Input: Integers k1, k2 > 0
Output: Recoded sequence S and its length l
1: d ← k1, e ← k2, i ← 0
2: while d �= e do

3: t ← (d
?≡ e) (mod 2)

4: t′ ← d
?≡ 0 (mod 2)

5: c ← (d − e)
6: f ← select(c,−c, (c < 0))
7: (d, e) ← cswap(d, e, ((c < 0) ∧ t) ∨ (¬t ∧ ¬t′))
8: d ← select(d, f, t)/2
9: d ← d/2
10: (d, e) ← cswap(d, e, ((c < 0) ∧ t) ∨ (¬t ∧ ¬t′))
11: Si ← select(select(R1, R

′
1, (c < 0)), select(R2, R

′
2,¬t′),¬t)

12: i ← i + 1
13: end while
14: return S, i

Table 1. Update rules for double point multiplication in the AK algorithm.

Rule Condition d e �u �v �Δ Ru Rv RΔ

R1 d ≡ e (mod 2)

and d > e

(d − e)/2 e 2�u �u + �v �Δ 2Ru Ru + Rv RΔ

R1′ d ≡ e (mod 2)

and d < e

d (e − d)/2 �u + �v 2�v �Δ Ru + Rv 2Rv RΔ

R2 d ≡ 0 (mod 2) d/2 e 2�u �v �u + �Δ 2Ru Rv Ru + RΔ

R2′ e ≡ 0 (mod 2) d e/2 �u 2�v �Δ + (−�v) Ru 2Rv RΔ + (−Rv)

4 Experimental Results and Discussion

In order to detect what curve model was more promising in terms of performance,
we started the implementation from the differential addition and doubling for-
mulas, because the operation counts for the multiple curve models were very
similar. We largely followed and reused publicly available code1 for finite field
arithmetic from [19,23] to enjoy optimizations for our high-end target platforms.
This implementation employs compiler intrinsics to take advantage of 128-bit
vector instructions for binary field arithmetic, especially the carryless multiplier
available through instruction PCLMULQDQ to accelerate polynomial multiplica-
tion. The base binary field was defined as F

127
2

∼= F2[z]/(z127 + z63 + 1) and its
quadratic extension as F2254

∼= F2127 [s]/(s2+s+1). Curve arithmetic for the two

1 SUPERCOP: https://bench.cr.yp.to.

https://bench.cr.yp.to
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Algorithm 4. AK laddering, employing a projective version of the ladd opera-
tion. The recode computation returns recoded scalars and the sequence length
according to the recoding rules. The auxiliary function cswap conditionally
swaps the two arguments depending on the value of the last condition.
Input: k1 > 0, k2 > 0 ∈ Z with gcd(k1, k2) = 1 and w(P ), w(Q) for P,Q ∈ E(F22m)
Output: w(k1P + k2Q) ∈ E(F22m)
1: (S, l) ← recode(k1, k2)
2: Ru ← w(P ), Rv ← w(Q), RΔ ← w(P − Q)
3: b′

0 ← 0, b′
1 ← 0, b′

2 ← 0
4: for j ← l − 1 downto 0 do

5: b0 = (Sj
?
= R2), b1 = (Sj

?
= R′

1), b2 = (Sj
?
= R′

2)
7: c0 ← b′

0 ⊕ b0, c2 ← b′
2 ⊕ b2, c

′
1 ← (b′

1 ∨ b′
2)

6: c1 ← c′
1 ⊕ (b1 ∨ b2)

7: (Rv, RΔ) ← cswap(Rv, RΔ, (c0 ∧ ¬c′
1) ∨ (c2 ∧ c′

1))
8: (Ru, RΔ) ← cswap(Ru, RΔ, (c0 ∧ c′

1) ∨ (c2 ∧ ¬c′
1))

9: (Ru, Rv) ← cswap(Ru, Rv, c1)
10: (Rv, Ru) ← laddP (Ru, Rv, RΔ)
11: b′

0 ← b0, b
′
1 ← b1, b

′
2 ← b2

12: end for
13: (Ru, Rv) ← cswap(Ru, Rv, b

′
1 ∨ b′

2)
14: (Ru, RΔ) ← cswap(Ru, RΔ, b′

2)
15: (Rv, RΔ) ← cswap(Rv, RΔ, b′

0)
16: (Ru, Rv) ← laddP (Ru, Rv, RΔ)
17: return Ru

sets of parameters described in Sect. 2 was implemented on top of the finite field
arithmetic and the GLV recoding code for scalar decomposition was extended to
work with the new curve parameters. Conditional operations were implemented
based on the 128-bit version of the BLENDV instruction.

Our target platforms are an Intel Ivy Bridge Core i5-3510M running at
3.1 GHz, an Intel Haswell Core i7-4770 running at 3.4 GHz and an Intel Skylake
Core i7-6700K clocked at 4 GHz, all three with Turbo Boost and HyperThread-
ing disabled to make benchmarking more stable. The code was compiled with gcc
7.1.1, icc 17.0.4 and clang 4.0.1 with the optimization flags -O3 -march=native
-fomit-frame-pointer in the three machines. Performance figures under dif-
ferent compilers were somewhat close, with clang producing marginally better
results for the vectorized field arithmetic. Hence we decided to report only the
numbers for the last compiler.

4.1 Laddering Steps

Table 2 presents our performance numbers for evaluating the differential addi-
tion and doubling formulae in the target platforms. Field operations within the
routines were carefully scheduled to avoid dependencies and exploit the high
throughput of vector instructions in the target platforms. Performance clearly
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increases in more recent microarchitecture families due to faster carryless mul-
tiplication instruction.

Differential addition and doubling was faster for all curve models in affine
coordinates when compared to Weierstraß in projective coordinates due to the
smaller number of multiplications, following our operation counts in Sect. 2. The
implementations of the Huff model enjoyed a slightly better instruction schedul-
ing for the field operations and were faster than Weierstraß in affine coordinates.
The Edwards model was competitive with Weierstraß, but suffers from larger
coefficients and an inefficient way of applying the GLS endomorphism spending
expensive inversions to convert points from and to Weierstraß coordinates, which
makes it less competitive in the big picture. This was much simpler for the Huff
model, because our choice of parameters allows the GLS endomorphism to be
applied with a single Frobenius application (Sect. 2.3), amounting to one field
addition and some cheap word shuffling instructions. We observe that the Huff
model was the best representation in terms of performance for the laddering step.

Table 2. Timings in clock cycles for evaluating the ladd operation in the Ivy Bridge,
Haswell and Skylake platforms. Numbers were taken as the average of 104 executions
and cycles were counted with help of the rdtsc instruction with TurboBoost and
HyperThreading turned off.

Curve model Cycles on Ivy Cycles on Haswell Cycles on Skylake

Weierstraß affine 630 225 168

Weierstraß projective 758 250 149

Huff 621 215 152

Edwards 643 223 178

4.2 Laddering Algorithms

The observations from Table 2 allow us to reduce the combinations of scalar mul-
tiplication algorithm and curve model to select only the most promising ones.
Because we could not evaluate the GLS endomorphism in the Edwards model
efficiently, we did not implement the two-dimensional DJB and AK laddering
algorithms in this curve model. The DJB algorithm was then implemented for
the Weierstraß and Huff models, where the GLS endomorphism can be efficiently
applied, and the AK algorithm was implemented in the projective Weierstraß
model due to the restrictions imposed by the difference point changing at every
iteration (difference in projective coordinates). We present the execution times
for scalar multiplication in Table 3 below. Following [6], implementations are
classified in terms of resistance against timing attacks (TAR) in uniform (U)
where the same number of field operations is executed at every laddering itera-
tion, but the number of iterations may be variable; and constant-time (CT) when
the two requirements are satisfied. Timings for DJB and AK include recoding
routines, although this step is negligible only in the DJB chain.
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Table 3. Results from related work and for our implementation for uniform (U) and
constant-time (CT) scalar multiplication algorithms over binary and prime curves at
the 128-bit security level. Performance figures are presented for Ivy Bridge (I), Haswell
(H) or Skylake (S) platforms. Timings for FourQ in the Skylake processor were obtained
by benchmarking code available by [7] in our platform (*). Our best numbers for each
platform are highlighted in bold and best numbers overall in italic.

Related work (laddering/window) Curve TAR Cycles on I Cycles on H Cycles on S

DJB laddering [6] prime CT 148,000 - -

AK laddering [6] prime U 133,000 - -

FourQ (window-based) [7] prime CT 69,000 56,000 46,467∗

Montgomery ladder [18,23] binary CT - 70,800 50,823

2-GLV double-and-add [19,20] binary CT 114,800 48,312 38,044

This work (laddering) Curve TAR Cycles on I Cycles on H Cycles on S

Montgomery on Weierstraß binary CT 142,660 60,838 46,446

Montgomery on Huff binary CT 147,914 58,214 44,373

Montgomery on Edwards binary CT 150,483 60,083 46,538

DJB on Weierstraß binary CT 123,145 50,851 39,800

DJB on Huff binary CT 122,541 51,995 38,658

AK on Weierstraß binary U 124,267 55,524 41,492

The table demonstrates that binary curves are only competitive in Haswell
and Skylake platforms supporting efficient vectorized binary field arithmetic
through a very fast carry-less multiplier. Laddering approaches can be com-
petitive with the window-based methods employed in FourQ [7] and 2-GLV
double-and-add [19] if our techniques are employed. For the Weierstraß model, a
direct comparison for the Montgomery Ladder algorithm between our implemen-
tation and [23] gives a 8.6% speedup on Haswell. We implemented formulas from
Sect. 3.1 for y-coordinate recovery and the resulting cost was negligible, amount-
ing to 333 cycles in Haswell and 312 cycles in Skylake, almost 4 times faster than
the 1203 Skylake cycles in [23]. We strongly suspect that their implementation
uses two inversions for computing both x and y coordinates.

In particular, performance figures for our implementation of the DJB algo-
rithm in the Huff model were very close to speed records presented in [19], being
slower by 5% and 1.6% in the Haswell and Skylake platforms, respectively. This
is an interesting result, given that the laddering algorithms are simpler to imple-
ment with protection against side-channel attacks, and require smaller amounts
of storage. These approaches are somewhat penalized by an affine point addi-
tion at the beginning of the laddering algorithm to compute difference points
w(P ± Q). The AK laddering algorithm suffers from a slow recoding routine
costing 6.4% and 8.7% of the whole scalar multiplication in the two platforms,
respectively. This cost comes mostly from the side-channel protections in Algo-
rithm 3 and the penalty could be alleviated if scalars were already generated in
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recoded form, given that the constant time requirement is not mandatory. We
now discuss application of our techniques in the broader context of key exchange
protocols.

4.3 Discussion

Our techniques can be applied for accelerating the curve-based Diffie-Hellman
key exchange. In the ephemeral version of the protocol, two parties negotiate a
shared key by first generating an ephemeral key pair (a,A) (respectively (b,B))
using a fixed-base scalar multiplication A = aG of generator G (respectively B =
bG), exchanging the resulting ephemeral public keys A and B and computing the
variable-base scalar multiplication of the received public key by the ephemeral
private key as K = abG.

After restricting the scalar multiplication approaches exclusively to laddering
algorithms, there are a few options. The DJB algorithm in the Weierstraß and
Huff model is well suited for the fixed-base scalar multiplication, because the
affine point addition required for computing w(G ± ψ(G)) can be precomputed
and provided together with the curve parameters. The curve models also allow
simple recovery of the y-coordinate to allow any receiving party to efficiently
evaluate the GLS endomorphism and employ a two-dimensional laddering algo-
rithm for its variable-base scalar multiplication. Notice that this is not true for
the AK algorithm, which is more useful for the variable-base multiplication. In
the latter case, subscalars can be generated in recoded form to avoid the high cost
of the AK recoding. Table 4 reports our timings for implementing the ephemeral
Diffie-Hellman key exchange using the proposed optimizations in three scenarios:
for comparison with related work, the Montgomery laddering algorithm is used
in the Weierstraß model; the DJB algorithm in the Huff model is used for the
two scalar multiplications to achieve constant time execution; and side-channel
security is relaxed by using the AK algorithm in the Weierstraß model for the
second scalar multiplication with previously recoded subscalars.

We restrict the comparison to Haswell and Skylake platforms where binary
curves enjoy faster vector instruction sets. Compared to the state-of-the-art in
laddering implementations for the Skylake platform, our implementation of the
standard Montgomery laddering in the Weierstraß model improves upon [23]
by 2.9%, but is not competitive with the window-based method in [19]. The
DJB algorithm in the Huff model increases the performance improvement to
21.3% and becomes close to window-based methods. Notice, however, that FourQ
employs a large 7.5 KB precomputed table for accelerating the window-based
fixed-base portion of the key exchange protocol, a technique from which we
do not benefit in this work. We anticipate such an optimization would reach a
new speed record for key exchange implementations in the target platform. The
performance for key exchange can be slightly increased by using a combination of
the DJB and AK laddering algorithms, if one is willing to sacrifice constant-time
execution for uniform execution only.
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Table 4. Results for related work and our implementations of the Diffie-Hellman key
exchange, using different approaches for instantiating the protocol. Benchmarks are
presented for Ivy Bridge (I), Haswell (H) or Skylake (S) platforms. Timings for FourQ
in the Skylake processor were obtained by benchmarking code available by [7] in our
platform (*). Our best numbers in each platform are highlighted in bold and best
numbers overall in italic.

Related work (laddering/window) Curve TAR Cycles on I Cycles on H Cycles on S

FourQ (window-based) [7] prime CT 104,000 88,000 74,032*

2-GLV double-and-add [19] binary CT 120,000 96,624 76,088

Montgomery ladder [23] binary CT - - 95,702

This work (laddering) Curve TAR Cycles on I Cycles on H Cycles on S

Montgomery on Weierstraß binary CT 295,828 121,676 92,890

DJB on Huff binary CT 245,682 101,696 75,318

DJB + AK on Weierstraß binary U 243,188 101,769 74,440

5 Conclusion

This work presented several contributions. First, we proposed tricks to convert
GLS curves to alternative models and obtained parameters optimized for elliptic
curve arithmetic. The latest formulas for differential addition and doubling in the
Weiertraß, Huff and Edwards models were slightly improved by using lazy reduc-
tion and short coefficients allowed by the parameters. The resulting implemen-
tations were combined with efficient implementations of the Montgomery, DJB
and AK algorithms to obtain efficient scalar multiplication based on laddering,
achieving a new speed record in laddering algorithms for high-end Intel desktop
processors and performance improvements for executing the Diffie-Hellman key
exchange protocol.

As future work, we plan to extend our strategies to the recently proposed
twisted μ4-normal form binary curves [14] to enjoy their efficient arithmetic in
the case of elliptic curves with endomorphisms. The entire code for our implemen-
tations is available at https://github.com/dfaranha/ladd-gls254 to allow repro-
ducibility and facilitate further improvements by independent researchers.
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prime: lambda coordinates for binary elliptic curves. J. Cryptograph. Eng. 4(1),
3–17 (2014)
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