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Abstract. Hardware Performance Counters (HPCs) are present in most
modern processors and provide an interface to user-level processes to
monitor their processor performance in terms of the number of micro
architectural events, executed during a process execution. In this paper,
we analyze the leakage from these HPC events and present a new micro-
architectural side-channel attack which observes number of instruction
counts during the execution of an encryption algorithm as side-channel
information to recover the secret key. This paperfirst demonstrates
the fact that the instruction counts can act as a side-channel and then
describes the Instruction Profiling Attack (IPA) methodology with the
help of two block ciphers, namely AES and Clefia, on Intel and AMD
processors. We follow the principles of profiled instruction attacks and
show that the proposed attack is more potent than the well-known
cache timing attacks in literature. We also perform experiments on
ciphers implemented with popular time fuzzing schemes to subvert tim-
ing attacks. Our results show that while the countermeasure success-
fully stops leakages through the timing channels, it is vulnerable to the
Instruction Profiling Attack. We validate our claims by detailed experi-
ments on contemporary Intel and AMD platforms to demonstrate that
seemingly benign instruction counts can serve as side-channels even for
block cipher implementations which are hardened against timing attacks.

Keywords: Micro-architectural side-channel attack · Hardware perfor-
mance counters · Cache-timing attack · Block-cipher

1 Introduction

The state of a computing environment gets affected by the processes executing
on it. Modern cryptosystems are vulnerable against growing threats in the form
of information leakages about the secret key through side-channels like power,
radiation, timing, etc. One category of such threats uses the information leakages
created because of the variations (in say timing) caused due to the presence of a
cache memory in processors. The cause of the variation is that the access time for
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a data present in the cache is much lower than the data not present in it, as the
processor first looks into the cache memory before processing with a data. This
disparity in the access time is the fundamental notion of all cache-attacks. Block
ciphers like Data Encryption Standard (DES), Advanced Encryption Standard
(AES), Clefia, Blowfish, etc. are vulnerable to cache-attacks as they require key
dependent table lookup for their encryption operations.

Two important classes of cache-attacks are - cache trace attacks and cache
timing attacks. For a cache trace attack, an adversary needs to profile the cache
access patterns, in terms of cache-hits and cache-misses during the encryption
operation. Cache timing attacks, on the other hand, only require the informa-
tion regarding overall execution time of the encryption process, thus making
it more threatening than the other form of cache-attacks. An adversary can
easily capture the timing information over a network, without the need of any
sophisticated measuring instrumentation, thereby, creating a chance of possible
remote attacks. It can be pointed here that these threats have been shown to be
pertinent even in a remote server running an encryption algorithm [2,4].

There have been some seminal works of cache timing attack on block ciphers,
both with large tables like AES and small tables like Clefia. Bernstein [4] demon-
strated that statistical correlation between the profiles of the execution time of
AES for a known key and an unknown key could be used to extract the secret key
bytes. In the same way Rebeiro et al. [20,21] described that the timing profiles
for the Clefia encryption for both the known and unknown key could be used to
obtain the round keys and thereby trivially determine the secret key.

Numerous works have been done to counter the risks of cache timing
attacks [8,11,16,19]. A notable work to prevent these attacks is described in [11]
by Martin et al. They presented a general mitigation strategy to limit the
fidelity of fine-grained time-keeping, thereby making it difficult for the adver-
sary to distinguish between different time-stamps. The authors mainly focused
on the RDTSC (Read Time Stamp Counter) instructions, which returns the
current value of TSC (Time Stamp Counter) register, to design their counter-
measures and eliminated the possibility of information leakages through other
micro-architectural events. But, on the contrary to their claim, the advent of
perf event system call and performance monitoring tool PAPI [18] allows an
adversary to monitor any micro-architectural event of a system with user priv-
ilege and with higher granularity. Also, the work reported in [6] has shown the
possibility of timing attack in spite of the presence of time obfuscation. Most
modern processors contain hardware performance counters which count the total
occurrences of different micro-architectural events. The PAPI tool gives an upper
hand to an adversary to mount an attack in the presence of the defense by time
fuzzing technique.

A micro-architectural attack has been proposed based on Instruction cache
(I-cache) [1] for public key cryptographic implementation, however, the hard-
ware event instruction count has not been quite explored in the case of block
ciphers. A possible reason could be as block ciphers do not have key-dependent
conditional branches like public key ciphers, the number of instructions does not
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intuitively leak the secret key. In this paper, we look into this issue of explor-
ing whether the micro-architectural event, instruction-count, can be utilized to
reveal secret keys of block ciphers. We propose an Instruction Profiling Attack
(IPA), which thus exploits this not-so-researched side-channel, i.e., instruction
counts, and determines secret keys from block cipher executions faster than tra-
ditional cache timing attacks. A related fall-out of this attack is that, block
cipher implementations which are time-resistant by fuzzing time stamp counters
are still vulnerable against the proposed IPA.

The attack methodology is validated on two different types of block ciphers,
namely AES and Clefia on two separate processors, Intel Core i5 and AMD A10.

Main Idea and Motivation

The cache timing attacks work on the intuition of non-uniform cache memory
accesses due to cache hits and cache misses. These memory operations are noth-
ing but simple load- store instructions spawned by the CPU. In the presence
of timing obfuscation defense mechanism, an adversary is unable to analyze the
timing differences and gain secret information but can monitor the number of
instructions executed in the system. The total number of load-store instructions
executed during the encryption process will vary based on the secret key, as the
cache access pattern will be different for different secret keys. A cache-miss oper-
ation will result in an extra load instruction and this disparity in the executed
instructions is the main idea behind this work. The motivation is to use the
instruction count event as an information leakage source and mount an attack.

Most of the modern encryption implementations use time obfuscation tech-
nique, which can be implemented easily with little performance overhead, to
mitigate the threats of cache-timing attacks. Distributions, like OSX, Ubuntu
use deliberate time delay after entering the wrong password to invalidate the
timing analysis done by an adversary [24]. The present paper strives to evaluate
the security of such apparently secured systems against timing attacks in the
face of the newly proposed threat.

Our Contribution

We have investigated the presence of information leakage of an encryption
process using the hardware event instruction count. The prime contributions
that we made through this work are:

– We have proposed a new side-channel attack, namely Instruction Profiling
Attack (IPA), tailored for block ciphers using HPC event: instruction. We
have also demonstrated the effectiveness of IPA by successfully retrieving the
secret key bits.

– We have evaluated our proposed attack method on both Intel and AMD
platforms. The time complexity of a successful IPA is shown to be much
lesser than a successful cache-timing attack.
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– Additionally, in this paper, we show that the success rate of IPA is not affected
by time-obfuscation countermeasures like timewarp, which can successfully
thwart attacks based on timing channels.

The rest of the paper is organized as follows: the next section presents an
overview of the necessary preliminaries related to this work. Section 3 analyzes
a new form of side-channel leakage by analyzing the security of block ciphers.
Section 4 discusses our attack methodology with the help of a case study on AES
block cipher. Section 5 demonstrates all the experimental results, and Sect. 6 dis-
cusses the practicality of the proposed attack methodology in different environ-
ments. Finally, Sect. 7 presents the conclusion of this work.

2 Preliminaries

In this section, we first discuss the basic operations of two block ciphers, namely
AES and Clefia. Next, we describe a time obfuscating countermeasure to thwart
cache-timing attacks. Then we present a brief overview of hardware performance
counters which are instrumental to the proposed attack. We follow for evaluating
the proposed attack methodology.

2.1 AES Block Cipher

AES [7] is a 10 round cipher which takes a 16 byte secret key K =(k0, k1, · · · , k15)
and an input of 16 byte plain text P = (p0, p1, · · · , p15). Its implementation in
software, based on Barreto’s code, is widely recognized [3]. The first 9 rounds
of the algorithm uses four 1 KB lookup tables T0, T1, T2, and T3 and then an
additional look up table T4 for the final round. Though the use of lookup tables
optimizes the performance of the algorithm, the size of the lookup table is large.
The following equation shows the structure of the cipher in each round, encap-
sulating the four basic operations of AES, namely the SubBytes, ShiftRows,
MixColumns and AddRoundKey : For each round r, (1 ≤ r ≤ 9) the input is the
state Sr comprising of 16 bytes (sr0, s

r
1, · · · , sr15) and the key Kr to the round

is split into 16 bytes (kr
0, k

r
1, · · · , kr

15). The next state Sr+1 is the output of the
rth round. The input and round key to the first round S1 is (P ⊕ K) and K1

respectively.

Sr+1 = {T0[sr0] ⊕ T1[sr5] ⊕ T2[sr10] ⊕ T3[sr15] ⊕ {kr
0, k

r
1, k

r
2, k

r
3}

T0[sr4] ⊕ T1[sr9] ⊕ T2[sr14] ⊕ T3[sr3] ⊕ {kr
4, k

r
5, k

r
6, k

r
7}

T0[sr8] ⊕ T1[sr13] ⊕ T2[sr2] ⊕ T3[sr7] ⊕ {kr
8, k

r
9, k

r
10, k

r
11}

T0[sr12] ⊕ T1[sr1] ⊕ T2[sr6] ⊕ T3[sr11] ⊕ {kr
12, k

r
13, k

r
14, k

r
11}}

2.2 Clefia Block Cipher

Clefia is a small lookup table based 128-bit block cipher [21]. It has a generalized
Feistel structure. There are three key lengths of 128, 192 and 256 bits defined in
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the specification [22]. For the 128-bit key based specification the input is of 16
bytes, P0 to P15, grouped into 4 byte words. For each of the 18 rounds in the
cipher, the first and third words are fed into functions F0 and F1 respectively.
These functions are non-linear in nature. The collective outputs of F0 and F1, is
known as F functions. These outputs are ex-ored with second and fourth words.
In addition to this, at the beginning and end of the encryption the second and
the fourth words are whitened.

To create the non-linearity in the F functions two sboxes S0 and S1 are used.
These sboxes are in the form of 256 byte lookup tables, from each F function
they are invoked twice. This makes a total of eight table lookups per round.
Thus, for the entire encryption 144 such lookups are needed. Following are the
equations of the functions F0 and F1:

F0 : {y0, y1, y2, y3} = (S0[x0 ⊕ k0], S1[x1 ⊕ k1], S0[x2 ⊕ k2], S1[x3 ⊕ k3]) · M0

F1 : {y0, y1, y2, y3} = (S1[x0 ⊕ k0], S0[x1 ⊕ k1], S1[x2 ⊕ k2], S0[x3 ⊕ k3]) · M1

Along with four round keys, k0, k1, k2, k3 the F functions take four input bytes
x0, x1, x2 and x3. After the sbox lookups, the bytes are diffused by multiplying
them with (4 × 4) matrices M0 and M1. Following are the structure of the
matrices M0 and M1:

M0 =

⎛
⎜⎜⎝

1 2 4 6
2 1 6 4
4 6 1 2
6 4 2 1

⎞
⎟⎟⎠ M1 =

⎛
⎜⎜⎝

1 8 2 A
8 1 A 2
2 A 1 8
A 2 8 1

⎞
⎟⎟⎠

The whitening requires four whitening keys WK0, WK1, WK2 and WK3

along with thirty six round keys RK0, · · · , RK35. A two step key expansion
process is used. Firstly, from the secret key a 128 bit intermediate key L is
generated, using a GFN function [14]. Then, the round keys and the whitening
keys are generated from this. The structure of Clefia is such that the knowledge of
any set of 4 round keys (RK4m, RK4m+1, RK4m+2, RK4m+3), where m mod 2 =
0, is sufficient to revert the key expansion process to obtain the secret key.

2.3 Time Obfuscating Countermeasures

The main principle for cache-timing attacks is the profiling and analysis of timing
information returned by the Time-Stamp Counter (TSC). An adversary uses
RDTSC instructions to access these TSC for granular timing information. A very
common countermeasure to thwart attacks using timing channel is to provide the
adversary a modified timing information instead of the real one. The obfuscation
of RDTSC [11] can be done in two ways, first by introducing the concept of
the real offset, which is the insertion of a real-time delay that stalls RDTSC
execution, and then using the apparent offset that is by modification of the
return value of the instruction by a small amount. The time is conceptually
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divided into epochs (denoted by E) to calculate these offsets. Epochs vary in
length randomly from 2e−1 to 2e − 1 cycles, where e is denoted as the current
level of obfuscation.

The real offset delays the execution of each RDTSC until a random time in
the subsequent epoch, and this requires that the TSC register is always read on
an epoch boundary. The current execution will be stalled until the end of the
current epoch, Whenever an RDTSC instruction is encountered. TSC register
will be read, on the epoch boundary. The instruction will be stalled continuously
for a random number of cycles in the range [0, E) of the subsequent epoch. The
real offset denoted by DR, is defined by the sum of these two stalls. These mod-
ifications result in hindering the malicious processes in user-space from making
fine grain timing measurements to a granularity smaller than 2e−1. This makes
micro-architectural events undetectable as long as the largest difference between
on-chip micro-architectural latencies is less than 2e−1.

2.4 Hardware Performance Counters

Hardware Performance Counters (HPCs) are a set of special purpose registers,
which are present in most of the modern microprocessor’s Performance Mon-
itoring Unit (PMU). These registers can be programmed to store the number
of occurrences of different types of hardware and software events related to the
execution of a program, such as cache misses, retired instructions, retired branch
instructions, and so on. HPCs were primarily designed to debug the performance
of complex software systems, but currently, they are widely used for collecting
the run-time behavioral information of software execution. HPCs work along
with the event selectors, which specify the hardware events to be monitored
and a digital logic which increments a counter based on the occurrence of the
specified hardware events. These performance counters can be accessed very fast
without affecting or slowing down any software execution. Some of the recent
literature [25–27] have used HPCs to dynamically profile a system.

The most useful mode of operation of PMUs is the interrupt-based mode.
The main working principle behind this mode of operation is, a system interrupt
is generated when a specified event occurs more than or equal to a predefined
threshold value or a preset amount of time has elapsed. This mode of operation
makes both event-based and time-based sampling possible. High-level libraries
like PAPI [18], OProfile [15] provide interfaces to HPCs. Linux perf [17] among
them is a widely used new implementation of performance counters support
for all Linux 2.6+ based systems, which we can access from user-space. This
tool is capable of providing per-process, per-CPU, and system-wide statistical
profile. We used this tool for our experimentation purpose. Perf tool is based
on Linux perf event open() system call, which can be used to profile system
in very low granularity. Almost every popular operating systems have HPC-
based profilers, though the type and number of hardware events may vary across
different Instruction Set Architectures [9].
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2.5 Metrics of Evaluation

Several formal security metrics [12] have been proposed in the literature to eval-
uate various attack methods and compare different cryptographic design with
side channel perspective.

Success Rate. A side channel attack is defined as an experiment ExpAEK,L
,

where AEK ,L is an adversary with time complexity τ , memory complexity m and
making q queries to the target implementation of the cryptographic algorithm,
where K denotes the key space and a leakage model for the key is denoted by
L. In the experiment, for any k chosen randomly from K, when the adversary,
AEk,L outputs the guessing vector g, the attack is considered as a success if the
corresponding key class denoted as s = f(k) is such that s ∈ g. The success or
failure of the attack is indicated by ‘0’ or ‘1’, returned by the experiment. The
oth order success rate of the side channel attack AEK ,L against the key classes
is defined as [12]:

SuccoAEK
,L(τ,m, k) = Pr[ExpAEK,L

= 1]

Guessing Entropy. The above-mentioned metric for an oth order attack
implies the success rate for an attack where the remaining workload is o-key
classes. Thus the attacker has a maximum of o-key classes to which the required
k may belong. While the success rate for a given order is fixed with respect to
the remaining work load, the guessing entropy provides a more flexible defini-
tion for the remaining work load. It actually measures the average number of
key candidates to test after the attack. The Guessing Entropy of the adversary
AEk,L is defined as [12]:

GEAEK,L
(τ,m, k) = E[ExpAEK,L

]

In the next section we analyze a new source of side-channel in the form of
instruction count using AES as a case study.

3 Information Leakage Due the Event Instruction Count

In this section, we describe the basics of performance monitoring tools which we
used to observe the total number of retired instructions during the execution of
the encryption process. In this context, we have explored the types of instructions
using a more detailed analysis. The tools that we used are perf and PAPI, which
we discuss next.

Perf is a performance analyzing tool in Linux which is available to all user level
processes and has been included in the Linux kernel source tree for version 2.6.31
onwards. This user-space tool can be accessed from command line providing
many sub-commands. It is capable of statistical profiling of the entire system
by instrumenting the hardware performance counters. perf supports a list of
hardware events to monitor, like cache-misses, branch-misses, cpu-cycles, etc.
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For our proposed attack we observe the event instruction to analyze the source
of side-channel. The total number of instructions executed for a single iteration
of an encryption algorithm (say AES) is measured using the following command
in perf:

perf stat − e instructions ./aes <plaintext>

The executable ./aes has a specific secret key and provides an output cipher-
text value for a given <plaintext>.

PAPI. One limitation of the perf tool is that we can observe the total number
of instruction executed but can not further distinguish between types of instruc-
tions. Performance Application Programming Interface (PAPI) provides a user
with a consistent interface and methodology for monitoring performance coun-
ters and can even show counts of finer hardware events like number of control
instructions, number of data transfer instructions, etc.

PAPI is more sophisticated than perf tool since it provides a larger number
of hardware events for monitoring. The total monitored instruction count, as
measured by perf tool, is further divided into specialized hardware events in
PAPI interface such as:

– PAPI BR INS: This event can be used to measure the total branch instructions
executed for an encryption algorithm.

– PAPI LST INS: This event can be used to measure the total load/store instruc-
tions executed for an encryption algorithm.

The above two events provide us with the handle to analyze and investigate
the source of information leakage.

3.1 Correlation of Cache Events to Instruction Counts

Efficient implementations of block ciphers use lookup tables to perform the com-
putations involved in encryption and decryption operations. As described in
Sect. 2.1, the look up table accesses during the encryption process are dependent
on both the input plaintext and the secret key. The respective memory addresses
of these lookup table accesses vary depending on the input plaintext as well as
the secret key. The cache timing attacks reported in literature exploit the non-
uniformity in access times of these table lookup requests to retrieve the secret
information. The non-uniformity of timing observations are typically attributed
to cache memory events such as cache hit and miss.

A cache-miss occurs whenever the requested data is not present in the cache.
On a cache-miss event, the memory controller needs to fetch the requested data
from the main memory and loads it into the cache. Thus on a cache miss, a
memory element from the cache memory (which is being replaced by the newly
requested data block) is written back in the main memory, followed by loading of
a new data element in the particular location of the cache. The decision of which
block to be replaced for a new request is partially determined by the virtual to
physical address mapping of the data block and partially governed by the cache
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replacement strategies implemented by the memory controller. Thus the number
of instructions executed by the processor has a direct correspondence to the event
encountered by the cache memory. Since on a cache miss, the processor requests
the memory element to be brought from main memory to the cache; this event
is inherently performed with a higher number of instructions. However, in the
case of a cache-hit event, the processor will not issue any additional instructions
to load the data from the memory as the required data is already present in
the cache. This brings us to the conclusion that the cache events will have an
alternative effect on the instruction count event.

3.2 Profiling the Instruction Counts

In the previous subsection, we have elaborated that individual cache events have
a direct correspondence to the instruction counts. In this subsection, we demon-
strate that the average deviation for instruction counts have a similar profile
as that of the timing profile constructed for cache timing attacks. We conduct
an experiment on the OpenSSL [23] AES encryption. The plaintext byte p0 is
varied randomly from 0 to 255, keeping all other bytes unchanged. Initially, we
obtained a timing profile using RDTSC instructions as shown in Fig. 1a for the
key byte k0. Keeping the experimental setup unchanged, next, we observed the
instruction profile as in Fig. 1b which plots the deviation from the mean of the
total instruction count. The deviation from the average value of the monitored
event for each byte of p0 is shown in Fig. 1. This graph is known to be the
characteristics curves for the monitored events. A significant deviation from the
average for a particular key byte shows the existence of information leakage. We
can easily see that both the characteristics curves for timing and instructions
are similar and hence supports our claim that instruction can be used as an
alternative to the timing profile.

However, the event cache-misses can also be observed from the HPCs, and
thus we had replicated the same experiment replacing instruction count with
cache misses, and the cache miss profile is illustrated in Fig. 1c. The event

Fig. 1. Deviation of total execution time (a), total instruction counts (b), and total
L3 cache-misses (c) during an AES encryption operation from average for different
plaintext byte p0 generated randomly keeping the other bytes unchanged
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monitored through PAPI observes the cache misses from all the three levels
of cache. This information is highly noisy as in the figure and bears no resem-
blance to the timing observation. The reason for this behavior is mainly because
the cache misses plotted in the figure are for the L3 cache, while we assume the
lookup accesses for encryptions are mostly happening from L1 and L2 caches.
Liu et al. presented the practicality of a cross-core, cross-VM LLC-cache based
Prime+Probe attack [10] and showed that a proper eviction algorithm is needed
to mount a successful attack, which is difficult in the real noisy environment.

We can conclude from the figures presented in Fig. 1 that instruction count
bears a direct correspondence to the timing side channel rather than the event
cache misses. In the next section, we will move a step deeper to validate the
claims that we have made in this section.

3.3 Analyzing Load/Store Instruction Counts

In the previous subsection, we have observed that the total instruction count
generates similar profiles as that of timing attacks. In this section, we further
explore the different types of instructions using the tool PAPI to investigate
the type of instructions responsible for generating similar profile as timing. The
hardware events which are related to the total instructions are given as follows:

1. Data Manipulation Instructions
– Consists of arithmetic instructions, logical instructions, shift instructions,

etc. Provides computational capabilities to the computer by performing
different operations on data.

– The hardware events for monitoring these instructions are PAPI INT INS,
PAPI FP INS, etc., which measure the total integer instructions, total
floating point instructions respectively, spawned by the processor. How-
ever, the PAPI tool does not provide the handle to observe these hardware
events.

2. Data Transfer Instructions
– Transfer data between memory and registers, register & input or output,

and between processes register without changing the data content.
– PAPI tool gives the handle to monitor these instructions using the hard-

ware event PAPI LST INS.
3. Program Control Instructions

– Direct or change the flow of a program. Mainly consists of all the branch
instructions.

– We can observe these instructions with PAPI tool by using the hardware
event PAPI BR INS.

We demonstrate another experiment as the previous one to find and validate
the actual type of instructions which are mainly responsible for generating the
profile same as timing. Here, we observe the events PAPI BR INS (type 3) and
PAPI LST INS (type 2) using the PAPI tool to get the characteristics curve for
each event. The cache-miss and cache-hits are related to data transfer instruc-
tions as a cache miss will result in loading data into a particular cache line.
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Fig. 2. Deviation of total branch instructions (a) executed and total load/store instruc-
tions (b) executed during an AES encryption operation from average for different plain-
text byte p0 generated randomly keeping the other bytes unchanged

We can validate this from Fig. 2b, where we can observe, the profile generated
by the event PAPI LST INS has the same resemblance to the profile of the total
instructions. However, Fig. 2a, shows that the profile generated by the branch
instructions are not at all similar to that of the total instructions, and hence
works as noise in the observations. Figure 2 shows both the characteristic curves
for branch instructions and load/store instructions respectively and the behav-
ior of the characteristics plots validates that load and store instructions bear a
direct resemblance to the timing characteristics and thus are a potential source
of leakages.

In the next section, we present a formal description of the proposed attack
methodology, IPA, with a case study on AES block cipher.

4 Instruction Profiling Attack Description

The previous section describes the hardware event instruction as a potential
side-channel threat because of the resemblance of its profile to that of time. In
this section, we give a formal description of our attack methodology that we
have used in this paper.

4.1 Instruction Count Analysis for AES

For an AES encryption each table T0, T1, T2, and T3 is accessed four times in
every round for the first nine rounds, while table T4 is accessed 16 times in the
final round. In all, there are 160 table accesses. Following the analysis presented
in [19], if nh is the number of cache hits and nm is the number of misses, then
the total instructions executed during the encryption process can be written as:

I = nh ∗ Ih + nm ∗ Im

= nh ∗ Ih + (160 − nh) ∗ Im
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Here, Ih is the number of instructions executed when a cache-hit occurs and
Im is the same when a cache-miss occurs. Note, we are focussing on data transfer
instructions, as they are the suspected contributors to the leakage. Furthermore,
it may be emphasized here that when we perform the actual attacks, we consider
the variation of the total instruction count, and not exclusively instructions of
any specific type. This improves the practicality of the attack. The difference of
instruction counts between two encryption processes can be written as:

ΔI = Δnh ∗ ΔIh + Δnm ∗ ΔIm

= Δnh ∗ (ΔIh − ΔIm)

Now, the parameters Δnh,ΔIh, and ΔIm depend on the cache-access pat-
terns. The difference in number of hits, Δnh, occurs because of the differences
in accessing the Tables T0 to T3 during the encryption for AES. The difference
(ΔIh − ΔIm) depends on both plaintexts and the key, which are inputs to the
cipher. So, by monitoring and statistically analyzing the instruction count we
can obtain a profile which is dependent on the secret key, and thus potentially
determine it by comparing with templates for known keys.

4.2 Description of IPA

In this subsection, we describe the proposed attack methodology taking Bern-
stein’s attack on AES as a case study [13]. The proposed attack consists of
three different phases: offline profiling, online attack, and correlation, which are
discussed below.

Offline Profiling. In the profiling phase, we generate a set of random plaintext
P = {p0, p1, · · · , pl} and submit each of them to the encryption server with a
known secret key k. We observe the total instruction count for each encryption,
which can be written as ins(EAES(pi, k)). We store the average instruction count
for each byte and for each value of that byte in a matrix I[16][256]. This can be
formally stated as, for each plaintext pi (0 ≤ i ≤ l) and for each byte (0 ≤ j ≤ 15)
we successively compute the elements of the matrix I[16][256] as below:

I[j][pj,i] = I[j][pj,i] + ins(EAES(pi, k))

where, pj,i is the jth byte of the ith plaintext. Eventually, we have for 0 ≤
j ≤ 16 and x ∈ {0, 1, · · · , 255}

I[j][x] =
∑

{i|pj,i=x}
ins(EAES(pi, k))

We then calculate the average number of instructions taken by each byte for
each value of that byte using

v[j][y] =
I[j][y]

num[j][y]
−

∑
j

∑
x I[j][x]∑

j

∑
x num[j][x]
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where, num[16][256] stores the total number of measurements per value of a byte
value. This phase profiles the encryption server for randomly chosen but known
plaintexts and a known key.

Online Attack. In this phase, we again generate a random set of plaintexts
P ′ = {p′

0, p
′
1, · · · , p′

l}. We follow the same approach as discussed in profiling
phase and calculate two matrices I ′ and num′ for the unknown key k′. We then
calculate the matrix v′ as defined before.

Correlation. In this phase, we correlate the two matrices v and v′ obtained from
the previous steps. A matrix c[16][256] is created using the following definition
for 0 ≤ j ≤ 15 and 0 ≤ u ≤ 255.

c[j][u] =
255∑
w=0

v[j][w] · v′[j][u ⊕ w]

The elements of the matrix c are then sorted in decreasing order for each
row. The highest correlated key value for a particular byte is the candidate key
for that key byte.

The results of the correlation phase will provide us with partial secret key
recovery based on the quality of instruction profile for the known key. The full
secret key can be recovered by Brute Force search for the remaining secret key
bytes with very narrow search space.

In the following section, we discuss and validate our claims using experimental
results in two different environments, and for two different block ciphers.

5 Results and Discussion

In this section, we focus on the performance and qualitative evaluation of the
proposed attack scheme. We demonstrate the instruction profiling attack on two
very well-known block ciphers such as AES and Clefia, implementation provided
by OpenSSL library. To illustrate the performance of this attack we follow the
same principle demonstrated in the work by Bernstein on AES [4] and Rebeiro
et al. on Clefia [21]. The attack has been performed in following steps:

– Instruction Profiling for Known key: In this phase of the attack, the
adversary observes the total instruction counts from the HPCs for an execu-
tion of AES/Clefia. Following the steps discussed in the previous section, we
construct an instruction profiling table consisting of the cumulative values of
the instruction counts suffered by the executable under the assumption of a
known key.

– Instruction Profiling for Unknown key: In this phase, similar profile for
instruction counts are constructed for the same executable, but with the
assumption that the key is unknown.
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Table 1. Description of experimental setups

1 Setup 1 Intel Core i5-4570 CPU with 3.20 GHz clock frequency,
256 KB of L1 Data Cache, 1 MB L2 Data Cache, 6 MB L3 Data Cache

2 Setup 2 AMD A10-8700P CPU with 1.8 GHz clock frequency,
320 KB of L1 Data Cache, 2 MB of L2 Data Cache

– Correlating known and unknown key profiles: In this phase, we chose
very popular Pearson’s correlation metric to determine the shift between
the instruction profiles observed over the known and the unknown keys.

It has to be noted that the entire analysis is performed based on a particular
byte of the input. So to retrieve the entire key, this analysis has been carried
out for each byte of the input. The effect of each byte being independent of
each other, this analysis is usually performed concurrently on each byte using a
divide and conquer approach which adds to the elegance of the attack and does
not add up to the time complexity. In this paper, without loss of generality, we
have demonstrated all our experiments on the first secret byte of the key. Also,
we have validated all the experiments in two different environments like Intel
and AMD systems to get a generalized performance measure of the proposed
technique. Table 1 briefly states different setups used in our experiment.

5.1 Performance Evaluation of IPA in Comparision to Classical
Timing Attack

In this subsection, we evaluate the efficiency of the proposed attack methodology
to the timing attack proposed in [4] using the formalism for Guessing Entropy as
discussed in Sect. 2.5. The convergence of the plot to a lower rank for a particular
key byte signifies the successful retrieval of that byte. Figure 3a illustrates the

Fig. 3. Guessing Entropy plots of proposed attack in comparison to cache-timing attack
for setup 1 to predict secret key-byte k0 of AES (a) and round key-byte RK0 0 of Clefia
(b) respectively (Color figure online)
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guessing entropy plots of cache-timing attack and profiled instruction attack to
predict the secret key byte k0 of AES on setup 1 (as in Table 1).

We illustrate in Fig. 3a that cache-timing attack needs 224 iterations, whereas,
IPA requires 222 iterations of the AES encryption algorithm to correctly predict
the secret key byte k0. Thus IPA needs to profile instruction counts from perf
for orders of magnitude lesser than cache-timing attack to correctly retrieve the
secret key bytes. Similarly, Fig. 3b shows that, the proposed attack methodology
is much faster to predict the round key byte RK0 0 of Clefia encryption by
profiling 220 iterations in comparison to 226 iterations of cache-timing attack.

5.2 Performance of Timing Attack in Presence of Time Obfuscation

A popular countermeasure to obfuscate timing channel is to randomize the tim-
ing observation from the RDTSC instruction. One such implementation is pro-
posed in [11] named Timewarp. In this paper, we show that the classical timing
attack fails to retrieve the correct key bits when timewarp has been implemented.
The blue lines in Fig. 4 displays the ineffectiveness of the cache-timing attack in
the presence of timewarp defense mechanism. The blue lines plotted in Fig. 4a
and b shows that even after 228 iterations of both the AES and Clefia algorithms,
the cache timing attack fails to predict the correct secret key bytes.

Fig. 4. Guessing Entropy plot of proposed attack to predict key-byte k0 of AES (a) and
round key-byte RK0 0 of Clefia (b) in comparison to cache-timing attack in presence
of timewarp implementation on setup 1 (Color figure online)

5.3 Performance of IPA in Presence of Timewarp

In this subsection, we perform the same attack strategy using instruction count
from HPCs in the presence of the time obfuscation countermeasure: Timewarp,
implemented in the system. We elaborate the results with Fig. 4, which shows
the competency of our proposed attack method to retrieve the secret key bytes of
the encryption algorithm even in the presence of timewarp defense mechanism.
The figure demonstrates the results for both AES and Clefia algorithms.
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The yellow lines in Fig. 4a and b show that the proposed profiled instruction
attack can retrieve the secret key bytes even in the presence of timewarp imple-
mentation with 220 and 222 iterations of AES and Clefia algorithms respectively.
The line plotted with yellow in Fig. 4 establishes the superiority of the proposed
IPA to cache-timing attack as shown in blue plotted line, since it fails to retrieve
the secret key-byte k0 of AES and round key-byte RK0 0 of Clefia respectively
in the presence of the defense mechanism.

Retrieving the Secret Keys. Here, we discuss the effectiveness of our pro-
posed attack methodology regarding the extraction of the secret key. We con-
ducted each of the experiments in the presence of timewarp implementation.
Here, we present the results for both AES and Clefia and for both the setups.

AES. In this section, we demonstrate the full-key recovery of the AES-128
implementation. As explained in the earlier sections, the entire key recovery
can be done in a divide and conquer approach such that, all the key bits can
be retrieved simultaneously since there is no mutual dependence. We have per-
formed our experiments over several random key sequences of 128 bits.

Without loss of generality, we illustrate all of our results on a randomly chosen
bit sequence. The bold bytes in the following results represent the correctly
predicted secret key bytes.

Table 2 presents the final retrieved key bytes of AES using the proposed IPA
in the presence of timewarp implementation. We can clearly see from Table 2
that the proposed IPA is able to retrieve the correct secret key bytes apart from
k2, k8 and k11 in Setup 1 and k5 and k11 in Setup 2 respectively, which we
could later recover with brute-force search with lesser search space. This result
shows the high effectiveness of the proposed attack methodology in recovering
the secret keys of AES even in the presence of time obfuscation defense.

Table 3 shows the retrieved key bytes (having highest correlation value) of
AES for both the setups using the cache-timing attack. We can clearly observe

Table 2. Correctly retrieving secret key of AES using IPA with Timewarp counter-
measure

Table 3. Fail to retrieve secret key of AES using timing channel with Timewarp
countermeasure
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Table 4. Fail to retrieve secret key of AES using branch instructions with Timewarp
countermeasure

from the table that, the cache-timing attack fails to retrieve any of the secret key
bytes of AES for both the setups (as expected). Table 4 shows the final retrieved
values of the AES secret keys considering branch instructions for profiling. We
can easily verify from the table that, for profiling using branch instructions the
attack method can not retrieve any of the secret key bytes correctly, which
validates our claim that branch instructions do not play any role for the secret
information leakage for these class of ciphers. This is also intuitive as block cipher
implementations do not have conditional branches, which could leak information
about the key. But the interesting part is that there the overall instruction count
can still be exploited, because of the reasons as mentioned above to determine
the secret key.

Clefia. In this subsection, we demonstrate the full-key recovery of Clefia imple-
mentation. We have experimented using different secret keys for Clefia to vali-
date our proposed attack methodology, though for the demonstration purpose
the 128-bit secret Clefia key that we considered is 6a 1a 58 e2 12 30 35 e7 fd
aa 3b 6e f4 8e d4 5f. The Round Keys corresponding to the given secret key are
given in Table 5. Without loss of generality, we show the recovery of round key
RK0 0. We perform the experimentation with the assumption of clean cache at
the start of every encryption. The correct value of the round keys depend on
the previous round keys for Clefia; thus we considered at least 220 iterations so
that the correlation value of the predicted key is at least twice the higher than
all other probable keys. Like previous results, the bytes written in bold face
represent the correct key bytes.

Tables 6 and 7 presents the final retrieved values for the RK0 round key
in Setup 1 and Setup 2 respectively using proposed IPA. Both the table shows
the top four candidate for the probable round key bytes. The values in the

Table 5. Round keys for Clefia

RK0 0xbe 0xf8 0xe7 0xae

RK1 0x75 0x61 0xb8 0x30

RK2WK0 0x91 0xe1 0x3e 0x46

RK3WK1 0x34 0x1f 0x5f 0x6f

RK4 0x70 0xc7 0xcc 0xd8

RK5 0xb8 0x90 0xb3 0xec
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Table 6. Retrieving round keys RK0 for Clefia in Setup 1 using total instruction count
with Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0xbe (250.167) 0x6b (30.158) 0x7e (31.148) 0xee (23.137)

RK0 1 0xf8 (260.326) 0xd1 (34.242) 0xfc (33.682) 0xe8 (31.024)

RK0 2 0xe7 (255.388) 0x9f (57.648) 0x31 (56.957) 0x7a (54.515)

RK0 3 0xae (255.851) 0x87 (33.130) 0xbe (32.455) 0x41 (30.312)

Table 7. Retrieving round keys RK0 for Clefia in Setup 2 using total instruction count
with Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0xbe (260.166) 0x6b (34.153) 0x7e (31.147) 0xee (30.130)

RK0 1 0xf8 (265.456) 0xd1 (33.478) 0xfc (32.147) 0xe8 (31.200)

RK0 2 0xe7 (247.457) 0xae (57.124) 0x43 (57.008) 0x95 (54.214)

RK0 3 0xae (259.567) 0x87 (47.247) 0xbe (46.211) 0x41 (40.589)

Table 8. Retrieving round keys RK0 for Clefia in Setup 1 using timing attack with
Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0xce (314.699) 0x65 (289.491) 0x20 (276.232) 0xae (213.873)

RK0 1 0xac (775.449) 0x68 (761.411) 0xbb (603.751) 0xb2 (577.428)

RK0 2 0x56 (453.751) 0xd7 (417.697) 0xc8 (347.645) 0xfe (249.147)

RK0 3 0x37 (598.248) 0xac (548.479) 0x6b (497.268) 0xd5 (457.314)

Table 9. Retrieving round keys RK0 for Clefia in Setup 2 using timing attack with
Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0xd7 (478.324) 0xba (421.984) 0x2e (394.157) 0xcf (350.496)

RK0 1 0x1e (367.459) 0xf9 (314.496) 0xa1 (296.549) 0xd9 (247.693)

RK0 2 0x8a (724.967) 0x4d (695.349) 0xa0 (645.945) 0x09 (634.235)

RK0 3 0xe4 (676.935) 0x45 (645.453) 0x00 (601.239) 0xda (509.486)

braces are the correlation value of the probable keys. We can easily
observe from the tables that the proposed IPA is able to recover all the bytes
of the round key RK0 for both the setups in the presence of timewarp defense
mechanism. The correlation values for the correctly predicted key bytes are much
greater than the subsequent candidate keys.

Tables 8 and 9 presents the final retrieved values for the RK0 round key in
Setup 1 and Setup 2 respectively using cache-timing attack like the previous
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Table 10. Retrieving round keys RK0 for Clefia in Setup 1 using branch instructions
with Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0x2f (869.143) 0xda (649.786) 0x38 (575.880) 0x62 (561.020)

RK0 1 0xde (668.557) 0x3e (615.218) 0xdd (587.463) 0xab (499.769)

RK0 2 0xdd (584.990) 0x6d (512.642) 0xd3 (456.590) 0xaa (448.524)

RK0 3 0xd (703.281) 0x90 (619.583) 0x3f (577.043) 0x3e (552.067)

Table 11. Retrieving round keys RK0 for Clefia in Setup 2 using branch instructions
with Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0x2f (749.457) 0xda (657.457) 0x38 (602.983) 0x62 (597.237)

RK0 1 0xde (457.698) 0x3e (421.697) 0xdd (403.743) 0xab (347.573)

RK0 2 0xdd (726.147) 0x6d (689.478) 0xd3 (623.951) 0xaa (599.974)

RK0 3 0xd (714.649) 0x90 (687.967) 0x3f (567.697) 0x3e (547.546)

Table 12. Top-2 predicted round keys of Clefia

Round key bytes Correct key Predicted key (Setup 1) Predicted key (Setup 2)

RK0 0 be be (250.548) 6b (33.518) be (331.478) 72 (30.347)

RK0 1 f8 f8 (236.478) d1 (34.398) f8 (347.149) 0e (32.478)

RK0 2 e7 e7 (259.496) 9f (31.759) e7 (312.479) e9 (35.478)

RK0 3 ae ae (249.247) 87 (30.974) ae (299.647) 5e (31.479)

RK1 0 75 75 (239.479) 6e (29.647) 75 (357.457) 14 (29.475)

RK1 1 61 61 (213.795) 0a (37.198) 61 (378.147) 2d (47.149)

RK1 2 b8 b8 (297.347) 54 (30.789) b8 (249.647) 64 (36.759)

RK1 3 30 30 (267.126) 7c (31.496) 30 (432.148) 1f (26.478)

RK2 0 + WK0 0 91 91 (257.214) d3 (34.189) 91 (496.487) 77 (31.478)

RK2 1 + WK0 1 e1 e1 (269.147) b6 (33.698) e1 (249.657) 36 (32.768)

RK2 2 + WK0 2 3e 3e (259.347) fb (31.478) 3e (387.162) 32 (26.479)

RK2 3 + WK0 3 46 46 (249.347) df (29.678) 46 (321.338) 3c (47.147)

RK3 0 + WK1 0 34 34 (298.147) 87 (35.148) 34 (410.814) cc (43.549)

RK3 1 + WK1 1 1f 1f (267.348) 8d (31.987) 1f (490.703) c6 (29.647)

RK3 2 + WK1 2 5f 5f (249.347) ff (34.158) 5f (228.757) f9 (33.679)

RK3 3 + WK1 3 6f 6f (219.347) 38 (36.489) 6f (353.479) f2 (29.624)

RK4 0 70 70 (278.498) 1a (32.489) 70 (228.749) 7e (45.697)

RK4 1 c7 c7 (264.369) b0 (29.634) c7 (249.647) 53 (49.547)

RK4 2 cc cc (249.149) 66 (34.214) cc (349.248) 04 (23.452)

RK4 3 d8 d8 (278.694) 24 (28.365) d8 (324.479) 2e (32.479)

RK5 0 b8 b8 (324.496) 68 (49.324) b8 (367.457) 33 (36.139)

RK5 1 90 90 (257.354) 83 (31.647) 90 (246.479) e6 (29.498)

RK5 2 b3 b3 (264.236) 2c (26.498) b3 (226.714) bf (36.249)

RK5 3 ec ec (321.698) 43 (45.268) ec (314.789) f2 (33.149)
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results. We can observe from the tables that cache-timing attack fails to recover
the round key RK0 for both the setups in the presence of timewarp defense
mechanism. The correlation values for the top four candidate keys are very close
to each other, in both the setups, thereby creating the difficulty in predicting
the actual secret key correctly. Similarly, Tables 10 and 11 presents the final
retrieved values for the RK0 round key in Setup 1 and Setup 2 respectively by
profiling through branch instructions, which shows the expected inefficiency in
retrieving the secret keys using branch instructions.

Table 12 shows the retrieval of all the Clefia round keys using IPA in the
presence of timewarp defense mechanism to show the efficiency of the proposed
attack. The table shows the top two candidate key with respective correlation
in the braces for both the setups. We observe that full recovery of the secret key
is possible with the proposed IPA for Clefia encryption.

5.4 Success Rate of the Proposed IPA

The success rate for a side-channel attack is represented as the fraction of the
secret key bytes recovered. For any successful side-channel attack, success rate
increases with the number of iterations of the monitored encryption algorithm.
Here, we present the success rate of the proposed IPA with the cache timing
attack in the absence of timewarp defense mechanism to show the effectiveness
of the IPA in retrieving the secret key bytes with lesser time. Figure 5 shows
the success rate of both IPA and cache-timing attack in Setup 1. The figures
represent the part of the secret keys retrieved successfully with the increase in
the number of iterations. Figure 5a and b show the success rate in retrieving the
secret key bytes of AES and Clefia. The lines plotted with blue color represent
the success rate of the proposed IPA, and the success rate of classical cache-
timing attacks is represented by yellow colored lines. It is to be noted that the
yellow line is always below the blue line for both AES and Clefia, signifying the
better success rate of IPA than the classical timing attacks for both the ciphers.

In the next section, we discuss the practicality of the proposed attack method-
ology in different environments along with a possible countermeasure.

Fig. 5. Comparison of Success rate of IPA with cache-timing attack in Setup 1 in
predicting secret key-bytes of AES (a) and Clefia (b) respectively (Color figure online)
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6 Practicality of the Proposed Attack

The proposed attack methodology discussed in this paper is a primitive imple-
mentation, which does not require the assumption of shared cache memory
between different users. This gives the attack an advantage over other types
of attacks like Prime + Probe attacks. There are inherent protections in most of
the modern processor architectures, like Intel SGX, which guard against cache
trace based attacks using secure enclaves. However, the event instruction count
reflects the effect of cache access patterns in spite of this security. We aim to
explore these architectures in our future study.

A possible countermeasure for this attack is the implementation of block
ciphers without requiring any table lookups. There are some modern crypto-
graphic libraries like NaCl [5], which provide us the block cipher implementa-
tions having no table accesses. This provides an interesting approach to mitigate
the proposed attack methodology.

7 Conclusion

In this paper, we have investigated a new side-channel leakage through the HPC
event instructions and successfully designed an attack methodology, namely
Instruction Profiling Attack (IPA). We demonstrate that surprisingly even total
instruction counts can be utilized to perform side channel analysis on block
ciphers, which because of the absence of conditional branch instructions were not
targeted previously for instruction based attacks. In fact, we demonstrate that
the proposed IPA has better performance than classical cache- timing attacks,
and are better side channels than the customary timing information. We also
attempt to bring out an implication of the attack, that defenses against timing
attacks which are based on time fuzzing, will not be able to prevent the pro-
posed IPA. We validate our claims with results for two different environments,
namely Intel and AMD. The paper proves once again that the cache memory is
an important artifact for side channel leakage; rather than trying to obfuscate
channels like timing it is more important to design micro- architectures with
security-awareness in the early phase of the design cycle.
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