
Certain Observations on ACORN v3
and the Implications to TMDTO Attacks

Akhilesh Anilkumar Siddhanti1(B), Subhamoy Maitra2, and Nishant Sinha3

1 BITS Pilani, Goa Campus, Goa, India
akhileshsiddhanti@gmail.com

2 Applied Statistics Unit, Indian Statistical Institute,
203, B. T. Road, Kolkata 700108, India

subho@isical.ac.in
3 Department of Computer Science and Engineering,

Indian Institute of Technology Roorkee, Roorkee 247667, India
nishantsinha.iitr@gmail.com

Abstract. ACORN is a lightweight authenticated cipher which is one
of the selected designs among the fifteen third round candidates. This
is based on the underlying model of a stream cipher with 6 LFSRs of
different lengths and three additional bits. In this paper we consider the
scenario that certain amount of key stream bits and some portion of
the state is known. Then we try to discover the rest of the state bits.
For example, we show that the LFSR of length 47 can be recovered
from 47 key stream bits and guessing the rest of the state bits. We
also present the implication of such results towards mounting TMDTO
attack on ACORN v3. We show that a TMDTO attack can be mounted
with preprocessing complexity 2171 and 2180 (without and with the help
of a SAT solver) and the maximum of online time, memory and data
complexity 2122 and 2120 respectively. While our results do not refute
any claim of the designer, these observations might be useful for further
understanding of the cipher.

Keywords: ACORN v3 · Authenticated encryption · CAESAR ·
Cryptanalysis · Stream cipher

1 Introduction

A new competition CAESAR (Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness) [4] has been initiated recently with the first
submission deadline in March 2014. The selected candidates of the third round
are now available and ACORN v3 is one among those [10]. This is a light-
weight authenticated stream cipher composed of 6 Linear Feedback Shift Regis-
ters (LFSRs) and four additional bits, making a state size of 293 bits. It promises
a 128-bit security using a 128-bit secret key and IV.

Given that the present ciphers are designed with well informed efforts, refut-
ing the designer’s claim are quite challenging and sometimes even elusive. How-
ever, there are important observations discovered by the cryptanalysts that help
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 264–280, 2017.
https://doi.org/10.1007/978-3-319-71501-8_15

Certain Observations on ACORN v3 265

in providing more robust ciphers. This is the reason ACORN has been revised
twice and the current version is ACORN v3. In this paper we concentrate on
this cipher and try to see how well one can obtain certain portion of the state
bits of ACORN v3 given some key stream bits and the rest of the bits of the
state. This is related to sampling resistance as noted in [2,3]. In particular, we
observe that the LFSR of length 47 (S107, . . . , S153) can be recovered from 47
key stream bits and knowing the rest 293 − 47 = 246 state bits of ACORN v3.
This is achieved by writing a set of several equations and feeding them to a SAT
solver such as SAGE [8]. Similarly, the 60 bits (S0, . . . , S59) of the LFSR having
length 61 (S0, . . . , S60) could be recovered from 72 key stream bits and the rest
233 state bits of the cipher. This is presented in Sect. 2. This kind of observation
helps in mounting Time-Memory-Data-Trade-Off (TMDTO) attack on stream
ciphers with varied parameters.

In TMDTO attack, we have four parameters, the preprocessing time P , the
amount of Memory (table in secondary storage) required M , the amount of
Data D (which is the key stream in case of a stream cipher) and the time T
(the number of accesses to the table, i.e., the secondary storage). In case the key
is of k-bits and all the parameters P,M, T,D are less than 2k, then it can be
considered as a break. It has been pointed out in [10, Sect. 3.3.2] that as the state
size (n = 293) of ACORN v3 is more than twice the secret key size (k = 128),
such an attack is elusive. However, there is another implication of TMDTO
attack, where we allow the preprocessing time to be more than the exhaustive
key search and then try to minimize the maximum of the online parameters
M,T,D. In case the online parameters are less than 2k, that attracts some
interest in terms of cryptanalysis. In case of BG attack [1,5], the best situation
is achieved when P = T = M = D = 2

n
2 and M,D can be reduced at the cost

of increasing P = T . Thus, achieving max{T,M,D} < 2
n
2 is not possible even

when P > 2
n
2 . Rather, we follow the idea of [2,3], where it is possible to reduce

all three of the online parameters T,M,D less than 2
n
2 at the cost of increasing

the preprocessing time P over 2
n
2 . In this regard, we obtain parameters like

P = 2171,M = T = D = 2120, where all the online parameters are less than
the complexity of exhaustive key search 2128 in case of ACORN v3 [10]. This is
presented in Sect. 3. Before proceeding further, let us describe the cipher first.

1.1 Description of ACORN v3

We briefly state here the description of ACORN v3 relevant to our work. We
assume the plaintext message to be a stream of 0’s and we concentrate only on the
Pseudo Random Generation Algorithm (PRGA) that provides the key stream.
We omit the Key Loading Algorithm (KLA) and the Key Scheduling Algorithm
(KSA) of the cipher that are available at [10]. This is because the recovery
of secret state bits during the PRGA and further the TMDTO attack can be
studied irrespective of the initialization process. As stated before, ACORN v3
has 6 LFSRs and four additional bits concatenated to form the 293 bit state.
The block diagram of ACORN is represented in Fig. 1 where ft represents the
feedback bit and mt represents the message bit at tth step [10]. We denote the

266 A.A. Siddhanti et al.

state of the cipher by St and its respective bits as: St+0 . . . St+292. The cipher
has the following three functions.

Fig. 1. The internal state of ACORN cipher.

Output Function. The output bit zt for any state t is generated as:

zt =St+12 ⊕ St+154 ⊕ maj(St+235, St+61, St+193)
⊕ ch(St+230, St+111, St+66)

(1)

Feedback Function. The feedback bit ft for any state t is generated as:

ft =St+0 ⊕ (∼St+107) ⊕ maj(St+244, St+23, St+160)
⊕ (cat &St+196) ⊕ (cbt&zt)

(2)

State Update Function. Before performing the shift, the bits St+289, St+230,
St+193, St+154, St+107, St+61 are updated as follows:

S(t+289) = S(t+289) ⊕ S(t+235) ⊕ S(t+230) (3)
S(t+230) = S(t+230) ⊕ S(t+196) ⊕ S(t+193) (4)
S(t+193) = S(t+193) ⊕ S(t+160) ⊕ S(t+154) (5)
S(t+154) = S(t+154) ⊕ S(t+111) ⊕ S(t+107) (6)
S(t+107) = S(t+107) ⊕ S(t+66) ⊕ S(t+61) (7)
S(t+61) = S(t+61) ⊕ S(t+23) ⊕ S(t+0) (8)

And then the next bit is initialized with the feedback bit:

St+293 = ft (9)

2 Methods to Recover Certain Bits of the State

The underlying motivation of BSW sampling [2,3] is the fact that certain bits
of the state can be recovered by observing the key stream sequence zt and
guessing the remaining part of the state. This reduces the search space and offers
a wider range of parameters to choose from in TMDTO attack. We consider two
approaches here. The first one is using the SAT solver and the other one is by
discovering the equations by hand using trial and error.

Certain Observations on ACORN v3 267

2.1 Using SAT Solver

Towards this we first form a family of equations and then feeding them into a SAT
solver. While forming the equations, the degree of equations formed increases
rapidly, which makes it very difficult to find solutions. Hence, we have to adopt
a specific approach for formulating equations by introducing new variables. This
is in line of [9]. Consider some PRGA round t of ACORN v3. The equations for
the same round are:

1. 1 output bit equation,
2. 1 feedback bit equation, and
3. 6 state update equations.

At the beginning of PRGA, the adversary has 293 state variables S0, S1, . . . , S292.
The adversary has access to an �-length key stream z0, z1, . . . z�−1. We will now
explain how the output equation is introduced into the system of equations. The
output equation as mentioned in (1) is:

zt = St+12 ⊕ St+154 ⊕ maj(St+235, St+61, St+193)
⊕ ch(St+230, St+111, St+66) (10)

To add an equation to the SAT solver, the equations are represented in a way
such that it is zero in the ring of Boolean polynomials. That is, the output
equation is written as

zt ⊕ St+12 ⊕ St+154 ⊕ maj(St+235, St+61, St+193)
⊕ ch(St+230, St+111, St+66) ≡ 0, (11)

for t = 0, 1, 2, . . . , � − 1 and added to the system. Thus we have an array of
output equations as:

z0 ⊕ S12 ⊕ S154 ⊕ maj(S235, S61, S193) ⊕ ch(S230, S111, S66) ≡ 0
z1 ⊕ S13 ⊕ S155 ⊕ maj(S236, S62, S194) ⊕ ch(S231, S112, S67) ≡ 0
... .

z(�−1) ⊕ S(�−1+12) ⊕ S(�−1+154) ⊕ maj(S(�−1+235), S(�−1+61), S(�−1+193))
⊕ ch(S(�−1+230), S(�−1+111), S(�−1+66)) ≡ 0

Next we discuss the inclusion of feedback bit equation into the system of equa-
tions. The equation as mentioned in (2) for PRGA is:

ft = St+0 ⊕ (∼St+107) ⊕ maj(St+244, St+23, St+160) ⊕ St+196 (12)

However, the feedback bit generated is not known. Thus directly substituting
the state variable St+293 by feedback equations increases non-linearity. Instead,
the we introduce new variables f0, f1, . . . f�−1 and add these equations to the
SAT solver in the following manner:

268 A.A. Siddhanti et al.

f0 ⊕ S0 ⊕ (∼S107) ⊕ maj(S244, S23, S160) ⊕ S196 ≡ 0
f1 ⊕ S1 ⊕ (∼S108) ⊕ maj(S245, S24, S161) ⊕ S197 ≡ 0
... .

... .

f(�−1) ⊕ S(�−1) ⊕ (∼S(�−1+107))
⊕ maj(S(�−1+244), S(�−1+23), S(�−1+160)) ⊕ S(�−1+196) ≡ 0

By now, 2� new equations and � new variables have been introduced into the
system. The variables St+289, St+230, St+193, St+154, St+107, St+61 are updated in
Step 3 as mentioned earlier. For this, we introduce 6� new variables a0

1, a0
2, a0

3,
a0
4, a0

5, a0
6, . . ., a�−1

1 , a�−1
2 , a�−1

3 , a�−1
4 , a�−1

5 , a�−1
6 and add the following equations

to the system (for t = 0, 1, . . . , � − 1):

at
1 ⊕ S(t+289) ⊕ S(t+235) ⊕ S(t+230) ≡ 0

at
2 ⊕ S(t+230) ⊕ S(t+196) ⊕ S(t+193) ≡ 0

at
3 ⊕ S(t+193) ⊕ S(t+160) ⊕ S(t+154) ≡ 0

at
4 ⊕ S(t+154) ⊕ S(t+111) ⊕ S(t+107) ≡ 0

at
5 ⊕ S(t+107) ⊕ S(t+66) ⊕ S(t+61) ≡ 0

at
6 ⊕ S(t+61) ⊕ S(t+23) ⊕ S(t+0) ≡ 0

Since new variables have been introduced, new equations need to be introduced
to maintain consistency of the system. That is, the following equations are added
to the system:

at
1 ⊕ S(t+288) ≡ 0

at
2 ⊕ S(t+229) ≡ 0

at
3 ⊕ S(t+192) ≡ 0

at
4 ⊕ S(t+153) ≡ 0

at
5 ⊕ S(t+106) ≡ 0

at
6 ⊕ S(t+60) ≡ 0

for t = 0, 1, . . . , � − 1. Finally, we substitute the feedback bit into the state
variable:

S293+t = ft ∀t ∈ [0, � − 1].

Therefore, the number of variables used are 293 + � + 6� = 293 + 7� and the
number of equations formulated are � + � + 6� = 8� equations. All the equations
are collected and fed to the SAT solver.

Certain Observations on ACORN v3 269

We set the SAT solver to find all possible solutions for the above system of
equations. In this way, we are guaranteed that if the SAT solver returns only one
solution, no other solution exists for the system of equations, and hence we are
able to solve for the state. However, in few cases of our experiments we could
not achieve that. For example, when we consider recovery of 60 bits with the
help of 70 key stream bits, we sometimes obtain two solutions. The reason for
the same is that the number of key stream bits is not enough and thus the SAT
solver provides more solutions instead of a unique solution.

We use the SAT solver Cryptominisat-2.9.6 available with Sage-7.6 [8]. The
experiments were performed on a laptop having hardware configuration Intel(R)
Core(TM) i5-4200M CPU @ 2.50 GHz and 8 GB RAM running with Ubuntu-
16.10. A few experimental data are provided where each row is based on 215

experiments.

Table 1. Experimental results for solving the equations. The time required to run the
PRGA for 293 clocks is 0.088 s on an average.

Key stream bits
used

State bits
recovered

Location of recovered bits Proportion of
multiple (two)
solutions

Average
time (sec)

47 47 S107 . . . S153 0 0.076

43 43 S12 . . . S54 0 0.067

72 60 S0 . . . S59 1/210 0.127

60 53 S107 . . . S150, S56, . . . S64 1/214 0.097

2.2 Formation of Equations by Observation, not Using SAT Solver

In this section, we build the system of equations used to recover 49 bits of internal
state by using first 49 bits of keystream. To perform this recovery, we need to
fix 10 bits of internal state with a particular pattern and guess remaining state
bits. The internal state bits to be recovered are represented by set R = R1∪R2,
where R1 = {S(t+107) : t = 0, . . . , 43} and R2 = {S(t+56) : t = 0, . . . , 4}. The
Eq. (1) for genrating keystream can be written as:

zt = S(t+12) ⊕ S(t+154) ⊕ S(t+235)S(t+61) ⊕ S(t+235)S(t+193) ⊕ S(t+193)S(t+61)

⊕ S(t+230)S(t+111) ⊕ S(t+230)S(t+66) ⊕ S(t+66).
(13)

Note that in the above equation, over-lined bits are feedback bits. The state bits
are updated according to the following equations before generating the output
bit:

270 A.A. Siddhanti et al.

S(t+289) = S(t+289) ⊕ S(t+235) ⊕ S(t+230)

S(t+230) = S(t+230) ⊕ S(t+196) ⊕ S(t+193)

S(t+193) = S(t+193) ⊕ S(t+160) ⊕ S(t+154)

S(t+154) = S(t+154) ⊕ S(t+111) ⊕ S(t+107)

S(t+107) = S(t+107) ⊕ S(t+66) ⊕ S(t+61)

S(t+61) = S(t+61) ⊕ S(t+23) ⊕ S(t+0)

(14)

Thus, the Eq. (13) can be written as

S(t+107) = zt ⊕ S(t+12)⊕ S(t+154) ⊕ S(t+111) ⊕ St+235(S(t+61) ⊕ S(t+23) ⊕ S(t+0))
⊕ S(t+235)(S(t+193) ⊕ S(t+160) ⊕ S(t+154))
⊕ (S(t+193) ⊕ S(t+160) ⊕ S(t+154))(S(t+61) ⊕ S(t+23) ⊕ S(t+0))
⊕ (S(t+230) ⊕ S(t+196) ⊕ S(t+193))S(t+111)

⊕ (S(t+230) ⊕ S(t+196) ⊕ S(t+193))S(t+66) ⊕ S(t+66),
(15)

which makes the recovery simpler, because all the bits on the RHS of the equa-
tion are state bits (and not feedback bits) for t = 0, . . . , 32. However when we
place t = 33, . . . , 48 in Eq. (15), feedback bits are also involved and need to be
calculated.

Now we use Eq. (15) to recover internal state bits of set R1. The recovery of
state bits is done in a certain order. For example, if we attempt to recover S107

by placing t = 0 in Eq. (15), then S111 appears on the RHS of the equation and
requires the knowledge of S111. Thus, S111 is recovered before performing the
recovery of S107.

We define four sets R3,R4,R5, R6, where

R3 = {S(t+107) : t = 40, 36, . . . , 0}
R4 = {S(t+107) : t = 41, 37, . . . , 1}
R5 = {S(t+107) : t = 42, 38, . . . , 2}
R6 = {S(t+107) : t = 43, 39, . . . , 3}

and each Ri ⊂ R1, for i = 3 . . . , 6. The order of recovery of state bits is
R3,R4,R5,R6 and R2, respectively, i.e. the state bits of R3 are recovered first
then R4 and so on. For each set Ri : i = 2 . . . , 6, the higher index elements are
recovered first. We need not fix any internal state bits for recovering R1. How-
ever, to recover R2, the internal state bits are fixed according to Table 2. Let
the set F represent the internal state bits which are fixed according to Table 2.

Now we describe recovery of R3. The internal state bit S147 is recovered by
substituting t = 40 in Eq. (15). From this we have

S147 = z40 ⊕ S52 ⊕ S194 ⊕ S151 ⊕ S275(S101 ⊕ S63 ⊕ S40)

⊕ S275(S233 ⊕ S200 ⊕ S194) ⊕ (S233 ⊕ S200 ⊕ S194)(S101 ⊕ S63 ⊕ S40)

⊕ (S270 ⊕ S236 ⊕ S233)S151 ⊕ (S270 ⊕ S236 ⊕ S233)S106 ⊕ S106.
(16)

Certain Observations on ACORN v3 271

Table 2. State bits fixed.

Row no. State bits and value

1 Si+268 = 0 : i = 0 . . . , 4

2 Si+187 = S[i + 226] ⊕ S[i + 193] ⊕ S[i + 160] ⊕ S[i + 154] : i = 0 . . . , 3

3 S191 = S[230] ⊕ S[196] ⊕ S[193] ⊕ S[197] ⊕ S[164] ⊕ S[158]

In Eq. (16), all the bits appearing on the RHS of the equation are guessed,
except the over-lined bits. The over-lined bits are feedback bits, and not internal
state bits due to Eq. (14). Thus, we need to guess more internal state bits to
calculate the value of S63, S194, S200, S233 and S236 using Eq. (14). In this way,
we recover S147.

Now the internal state bit of S143 is recovered by placing t = 36 in Eq. (15)
and we derive

S143 = z36 ⊕ S48 ⊕ S190 ⊕ S147 ⊕ S271(S97 ⊕ S59 ⊕ S36)

⊕ S271(S229 ⊕ S196 ⊕ S190) ⊕ (S229 ⊕ S196 ⊕ S190)(S97 ⊕ S59 ⊕ S36)

⊕ (S266 ⊕ S232 ⊕ S229)S147(⊕S266 ⊕ S232 ⊕ S229)S102 ⊕ S102.

(17)

Similarly, in Eq. (17), all the state bits appearing on the right side of equa-
tion need to be guessed, except S271, S190 and the over-lined bits. The internal
state bits S271 and S190 are fixed according to Table 2. The over-lined bits are
calculated using Eq. (14). Thus, we need to guess more internal state bits to
calculate the value of S196, S232 and recover S143.

The remaining state bits of R3 i.e. S139, S135, . . . , S107 are recovered by
substituting t = 32, 28, . . . , 0, respectively, in Eq. (15). While placing t =
32, 28, . . . , 0 in Eq. (15), the internal state bits appearing on the RHS of the
equation are guessed, except state bits belonging to R and F . Following the
same methodology, the internal state bits of set R4,R5 and R6 are recovered.

To recover the state bits of set R2, all things are same as done earlier, except
for Eq. (13) which is rewritten as

St+12 = zt ⊕ S(t+107) ⊕ S(t+154) ⊕ S(t+111) ⊕ St+235(S(t+61) ⊕ S(t+23) ⊕ S(t+0))
⊕ St+235(S(t+193) ⊕ S(t+160) ⊕ S(t+154))
⊕ (S(t+193) ⊕ S(t+160) ⊕ S(t+154))(S(t+61) ⊕ S(t+23) ⊕ S(t+0))
⊕ (S(t+230) ⊕ S(t+196) ⊕ S(t+193))St+111

⊕ (S(t+230) ⊕ S(t+196) ⊕ S(t+193))St+66 ⊕ St+66.
(18)

Thus, the internal state bits S56, . . . , S60 are recovered by using t = 44, . . . , 48 in
Eq. (18), respectively. Another difference between recovery of R1 and R2 is that
it is not necessary to recover the higher index elements first (as done before).

In this way, we recover 49 bits of R by fixing the 10 internal state bits
of set F and guessing the remaining 234 state bits. However, there are nine

272 A.A. Siddhanti et al.

internal state bits i.e. S284, . . . , S292 which are not appeared in the equations
used for recovery. However these bits are also considered as guessed bits during
application of TMDTO attack. In the Table 3, the details of equations are given
used for recovery of state bits of set R. The over-lined state bits and underlined
state bits in Table 3 are feedback bits and fixed state bits (according to Table 2),
respectively.

3 Complexity of TMDTO Attack

Now we will describe the TMDTO attack in complete detail. We have a state
size of n = 293 bits. Thus, the standard TMDTO formula [2,3] with a single
table will be as follows:

– TM2D2 = N2, where N = 2n,
– D2 ≤ T ,
– P = N

D .

During the preprocessing phase, we will prepare a table with m rows and t columns,
where mt2 = N for a successful attack. The number of tables is t

D and given a
single table we have t = D. Each row of the table contains a chain of t elements.
Consider that a specific state of n = 293 bits is ζ and f is the one way function.
Here by one way function f , we mean that the cipher with the state ζ will be run for
n times again to generate n many key stream bits. Those bits will be loaded as the
new state, which is called η. That is η = f(ζ). We will start with a random state
and then generate a row of t elements by this method. There will be m such rows.
Thus, the total table size is mt. However, the complete row will not be saved. Only
the starting and the final element will be saved. Thus, the storage requirement of
the table will be O(m), which is actually the memory parameter M .

3.1 Knowledge of 47 Bits of State from 47 Key Stream Bits

Now consider the case when we are able to recover ψ bits of the state from
ψ consecutive key stream bits and the rest of the state bits. In this case, we
consider a fixed pattern for the key stream bits and only when that pattern is
found in the key stream, we try to search the state in the table. Thus, in this
case, we consider a state size of n − ψ bits and the parameters are referred as
N ′ = 2n−ψ, P ′,M ′, T ′,D′. Let us now consider the exact parameters referring
to Table 1, where ψ = 47. Thus, T ′M ′D′2 = N ′2 = 22(293−47). Let us consider
D′2 = T . Thus, we have T ′M ′ = 2293−47 = 2246. Now, one can consider, T ′ =
M ′ = 2123 and D′ = 261.5. However, as we have discussed that during the online
phase, we can only mount the attack when a specific ψ-bit pattern comes, we
have D = 2ψD′. Thus, finally, we will have the parameters T = T ′ = 2123,
M = M ′ = 2123, D = 2ψD′ = 247 · 261.5 = 2108.5, P = P ′ = N ′

D′ = 2184.5.
This provides the maximum of online parameters as 2123, which is less than
the exhaustive secret key search of complexity 2128. However, as expected, the
pre-processing time is much larger than the exhaustive key search.

Certain Observations on ACORN v3 273

Table 3. Recovery of 49 bits of the internal state after fixing 10 bits

Steps Equations used for recovery Guessed bits

0

S147 = z40 ⊕ S52 ⊕ S194 ⊕ S151 ⊕ S275(S101 ⊕ S63 ⊕ S40)

⊕ S275(S233 ⊕ S200 ⊕ S194) ⊕ (S233 ⊕ S200 ⊕ S194)

(S101 ⊕ S63 ⊕ S40) ⊕ (S270 ⊕ S236 ⊕ S233)S151

⊕ (S270 ⊕ S236 ⊕ S233)S106 ⊕ S106

S52, S101, S63, S25, S2,

S40, S275, S233, S199,

S196, S200, S167, S161,

S194, S155, S236, S202,

S151, S106

1

S143 = z36 ⊕ S48 ⊕ S190 ⊕ S147 ⊕ S271(S97 ⊕ S59 ⊕ S36)

⊕ S271(S229 ⊕ S196 ⊕ S190) ⊕ (S229 ⊕ S196 ⊕ S190)

(S97 ⊕ S59 ⊕ S36) ⊕ (S266 ⊕ S232 ⊕ S229)S147

⊕ (S266 ⊕ S232 ⊕ S229)S102 ⊕ S102

S48, S97, S36, S229,

S163, S157, S266, S232,

S198, S195, S102

2

S139 = z32 ⊕ S44 ⊕ S186 ⊕ S143 ⊕ S267(S93 ⊕ S55 ⊕ S32)

⊕ S267(S225 ⊕ S192 ⊕ S186) ⊕ (S225 ⊕ S192 ⊕ S186)

(S93 ⊕ S55 ⊕ S32) ⊕ (S262 ⊕ S228 ⊕ S225)S143

⊕ (S262 ⊕ S228 ⊕ S225)S98 ⊕ S98

S44, S93, S55, S32,

S267, S225, S192, S186

S262, S228, S98

3

S135 = z28 ⊕ S40 ⊕ S182 ⊕ S139 ⊕ S263(S89 ⊕ S51 ⊕ S28)

⊕ S263(S221 ⊕ S188 ⊕ S182) ⊕ (S221 ⊕ S188 ⊕ S182)

(S89 ⊕ S51 ⊕ S28) ⊕ (S258 ⊕ S224 ⊕ S221)S139

⊕ (S258 ⊕ S224 ⊕ S221)S94 ⊕ S94

S89, S51, S28, S263,

S221, S182, S258, S224,

S94

4

S131 = z24 ⊕ S36 ⊕ S178 ⊕ S135 ⊕ S259(S85 ⊕ S47 ⊕ S24)

⊕ S259(S217 ⊕ S184 ⊕ S178) ⊕ (S217 ⊕ S184 ⊕ S178)

(S85 ⊕ S47 ⊕ S24) ⊕ (S254 ⊕ S220 ⊕ S217)S135

⊕ (S254 ⊕ S220 ⊕ S217)S90 ⊕ S90

S85, S47, S24, S259,

S217, S184, S178, S254,

S220, S90

5

S127 = z20 ⊕ S32 ⊕ S174 ⊕ S131 ⊕ S255(S81 ⊕ S43 ⊕ S20)

⊕ S255(S213 ⊕ S180 ⊕ S174) ⊕ (S213 ⊕ S180 ⊕ S174)

(S81 ⊕ S43 ⊕ S20) ⊕ (S250 ⊕ S216 ⊕ S213)S131

⊕ (S250 ⊕ S216 ⊕ S213)S86 ⊕ S86

S81, S43, S20, S255,

S213, S180, S174,

S250, S216, S86

6

S123 = z16 ⊕ S28 ⊕ S170 ⊕ S127 ⊕ S251(S77 ⊕ S39 ⊕ S16)

⊕ S251(S209 ⊕ S176 ⊕ S170) ⊕ (S209 ⊕ S176 ⊕ S170)

(S77 ⊕ S39 ⊕ S16) ⊕ (S246 ⊕ S212 ⊕ S209)S127

⊕ (S246 ⊕ S212 ⊕ S209)S82 ⊕ S82

S77, S39, S16, S251,

S209, S176, S170, S246,

S212, S82

7

S119 = z12 ⊕ S24 ⊕ S166 ⊕ S123 ⊕ S247(S73 ⊕ S35 ⊕ S12)

⊕ S247(S205 ⊕ S172 ⊕ S166) ⊕ (S205 ⊕ S172 ⊕ S166)

(S73 ⊕ S35 ⊕ S12) ⊕ (S242 ⊕ S208 ⊕ S205)S123

⊕ (S242 ⊕ S208 ⊕ S205)S78 ⊕ S78

S73, S35, S12, S247,

S205, S172, S166, S242,

S208, S78

8

S115 = z8 ⊕ S20 ⊕ S162 ⊕ S119 ⊕ S243(S69 ⊕ S31 ⊕ S8)

⊕ S243(S201 ⊕ S168 ⊕ S162) ⊕ (S201 ⊕ S168 ⊕ S162)

(S69 ⊕ S31 ⊕ S8) ⊕ (S238 ⊕ S204 ⊕ S201)S119

⊕ (S238 ⊕ S204 ⊕ S201)S74 ⊕ S74

S69, S31, S8, S243,

S201, S168, S162, S238,

S204, S74

9

S111 = z4 ⊕ S16 ⊕ S158 ⊕ S115 ⊕ S239(S65 ⊕ S27 ⊕ S4)

⊕ S239(S197 ⊕ S164 ⊕ S158) ⊕ (S197 ⊕ S164 ⊕ S158)

(S65 ⊕ S27 ⊕ S4) ⊕ (S234 ⊕ S200 ⊕ S197)S115

⊕ (S234 ⊕ S200 ⊕ S197)S70 ⊕ S70

S65, S27, S4, S239,

S197, S164, S158, S234,

S70

(continued)

274 A.A. Siddhanti et al.

Table 1. (continued)

Steps Equations used for recovery Guessed bits

10

S107 = z0 ⊕ S12 ⊕ S154 ⊕ S111 ⊕ S235(S61 ⊕ S23 ⊕ S0)

⊕ S235(S193 ⊕ S160 ⊕ S154) ⊕ (S193 ⊕ S160 ⊕ S154)

(S61 ⊕ S23 ⊕ S0) ⊕ (S230 ⊕ S196 ⊕ S193)S111

⊕ (S230 ⊕ S196 ⊕ S193)S66 ⊕ S66

S61, S23, S0, S235,

S193, S160, S154, S230,

S66

11

S148 = z41 ⊕ S53 ⊕ S195 ⊕ S152 ⊕ S276(S102 ⊕ S64 ⊕ S41)

⊕ S276(S234 ⊕ S201 ⊕ S195) ⊕ (S234 ⊕ S201 ⊕ S195)

(S102 ⊕ S64 ⊕ S41) ⊕ (S271 ⊕ S237 ⊕ S234)S152

⊕ (S271 ⊕ S237 ⊕ S234)S107 ⊕ S107

S53, S64, S26, S3,

S41, S276, S156, S237,

S203, S152

12

S144 = z37 ⊕ S49 ⊕ S191 ⊕ S148 ⊕ S272(S98 ⊕ S60 ⊕ S37)

⊕ S272(S230 ⊕ S197 ⊕ S191) ⊕ (S230 ⊕ S197 ⊕ S191)

(S98 ⊕ S60 ⊕ S37) ⊕ (S267 ⊕ S233 ⊕ S230)S148

⊕ (S267 ⊕ S233 ⊕ S230)S103 ⊕ S103

S49, S37, S103

13

S140 = z33 ⊕ S45 ⊕ S187 ⊕ S144 ⊕ S268(S94 ⊕ S56 ⊕ S33)

⊕ S268(S226 ⊕ S193 ⊕ S187) ⊕ (S226 ⊕ S193 ⊕ S187)

(S94 ⊕ S56 ⊕ S33) ⊕ (S263 ⊕ S229 ⊕ S226)S144

⊕ (S263 ⊕ S229 ⊕ S226)S99 ⊕ S99

S45, S94, S33,

S226, S99

14

S136 = z29 ⊕ S41 ⊕ S183 ⊕ S140 ⊕ S264(S90 ⊕ S52 ⊕ S29)

⊕ S264(S222 ⊕ S189 ⊕ S183) ⊕ (S222 ⊕ S189 ⊕ S183)

(S90 ⊕ S52 ⊕ S29) ⊕ (S259 ⊕ S225 ⊕ S222)S140

⊕ (S259 ⊕ S225 ⊕ S222)S95 ⊕ S95

S29, S264, S222,

S183, S95

15

S132 = z25 ⊕ S37 ⊕ S179 ⊕ S136 ⊕ S260(S86 ⊕ S48 ⊕ S25)

⊕ S260(S218 ⊕ S185 ⊕ S179) ⊕ (S218 ⊕ S185 ⊕ S179)

(S86 ⊕ S48 ⊕ S25) ⊕ (S255 ⊕ S221 ⊕ S218)S136

⊕ (S255 ⊕ S221 ⊕ S218)S91 ⊕ S91

S260, S218, S185,

S179, S91

16

S128 = z21 ⊕ S33 ⊕ S175 ⊕ S132 ⊕ S256(S82 ⊕ S44 ⊕ S21)

⊕ S256(S214 ⊕ S181 ⊕ S175) ⊕ (S214 ⊕ S181 ⊕ S175)

(S82 ⊕ S44 ⊕ S21) ⊕ (S251 ⊕ S217 ⊕ S214)S132

⊕ (S251 ⊕ S217 ⊕ S214)S87 ⊕ S87

S21, S256, S214,

S181, S175, S87

17

S124 = z17 ⊕ S29 ⊕ S171 ⊕ S128 ⊕ S252(S78 ⊕ S40 ⊕ S17)

⊕ S252(S210 ⊕ S177 ⊕ S171) ⊕ (S210 ⊕ S177 ⊕ S171)

(S78 ⊕ S40 ⊕ S17) ⊕ (S247 ⊕ S213 ⊕ S210)S128

⊕ (S247 ⊕ S213 ⊕ S210)S83 ⊕ S83

S17, S252, S210,

S177, S171, S83

18

S120 = z13 ⊕ S25 ⊕ S167 ⊕ S124 ⊕ S248(S74 ⊕ S36 ⊕ S13)

⊕ S248(S206 ⊕ S173 ⊕ S167) ⊕ (S206 ⊕ S173 ⊕ S167)

(S74 ⊕ S36 ⊕ S13) ⊕ (S243 ⊕ S209 ⊕ S206)S124

⊕ (S243 ⊕ S209 ⊕ S206)S79 ⊕ S79

S13, S248, S206,

S173, S79

19

S116 = z9 ⊕ S21 ⊕ S163 ⊕ S120 ⊕ S244(S70 ⊕ S32 ⊕ S9)

⊕ S244(S202 ⊕ S169 ⊕ S163) ⊕ (S202 ⊕ S169 ⊕ S163)

(S70 ⊕ S32 ⊕ S9) ⊕ (S239 ⊕ S205 ⊕ S202)S120

⊕ (S239 ⊕ S205 ⊕ S202)S75 ⊕ S75

S9, S244, S169, S75

(continued)

Certain Observations on ACORN v3 275

Table 1. (continued)

Steps Equations used for recovery Guessed bits

20

S112 = z5 ⊕ S17 ⊕ S159 ⊕ S116 ⊕ S240(S66 ⊕ S28 ⊕ S5)

⊕ S240(S198 ⊕ S165 ⊕ S159) ⊕ (S198 ⊕ S165 ⊕ S159)

(S66 ⊕ S28 ⊕ S5) ⊕ (S235 ⊕ S201 ⊕ S198)S116

⊕ (S235 ⊕ S201 ⊕ S198)S71 ⊕ S71

S5, S240, S165,

S159, S71

21

S108 = z1 ⊕ S13 ⊕ S155 ⊕ S112 ⊕ S236(S62 ⊕ S24 ⊕ S1)

⊕ S236(S194 ⊕ S161 ⊕ S155) ⊕ (S194 ⊕ S161 ⊕ S155)

(S62 ⊕ S24 ⊕ S1) ⊕ (S231 ⊕ S197 ⊕ S194)S112

⊕ (S231 ⊕ S197 ⊕ S194)S67 ⊕ S67

S62, S1, S231, S67

22

S149 = z42 ⊕ S54 ⊕ S196 ⊕ S153 ⊕ S277(S103 ⊕ S65 ⊕ S42)

⊕ S277(S235 ⊕ S202 ⊕ S196) ⊕ (S235 ⊕ S202 ⊕ S196)

(S103 ⊕ S65 ⊕ S42) ⊕ (S272 ⊕ S238 ⊕ S235)S153

⊕ (S272 ⊕ S238 ⊕ S235)S108 ⊕ S108

S54, S42, S277, S153

23

S145 = z38 ⊕ S50 ⊕ S192 ⊕ S149 ⊕ S273(S99 ⊕ S61 ⊕ S38)

⊕ S273(S231 ⊕ S198 ⊕ S192) ⊕ (S231 ⊕ S198 ⊕ S192)

(S99 ⊕ S61 ⊕ S38) ⊕ (S268 ⊕ S234 ⊕ S231)S149

⊕ (S268 ⊕ S234 ⊕ S231)S104 ⊕ S104

S50, S38, S273, S104

24

S141 = z34 ⊕ S46 ⊕ S188 ⊕ S145 ⊕ S269(S95 ⊕ S57 ⊕ S34)

⊕ S269(S227 ⊕ S194 ⊕ S188) ⊕ (S227 ⊕ S194 ⊕ S188)

(S95 ⊕ S57 ⊕ S34) ⊕ (S264 ⊕ S230 ⊕ S227)S145

⊕ (S264 ⊕ S230 ⊕ S227)S100 ⊕ S100

S46, S34, S227

S100

25

S137 = z30 ⊕ S42 ⊕ S184 ⊕ S141 ⊕ S265(S91 ⊕ S53 ⊕ S30)

⊕ S265(S223 ⊕ S190 ⊕ S184) ⊕ (S223 ⊕ S190 ⊕ S184)

(S91 ⊕ S53 ⊕ S30) ⊕ (S260 ⊕ S226 ⊕ S223)S141

⊕ (S260 ⊕ S226 ⊕ S223)S96 ⊕ S96

S30, S265, S223, S96

26

S133 = z26 ⊕ S38 ⊕ S180 ⊕ S137 ⊕ S261(S87 ⊕ S49 ⊕ S26)

⊕ S261(S219 ⊕ S186 ⊕ S180) ⊕ (S219 ⊕ S186 ⊕ S180)

(S87 ⊕ S49 ⊕ S26) ⊕ (S256 ⊕ S222 ⊕ S219)S137

⊕ (S256 ⊕ S222 ⊕ S219)S92 ⊕ S92

S261, S219, S92

27

S129 = z22 ⊕ S34 ⊕ S176 ⊕ S133 ⊕ S257(S83 ⊕ S45 ⊕ S22)

⊕ S257(S215 ⊕ S182 ⊕ S176) ⊕ (S215 ⊕ S182 ⊕ S176)

(S83 ⊕ S45 ⊕ S22) ⊕ (S252 ⊕ S218 ⊕ S215)S133

⊕ (S252 ⊕ S218 ⊕ S215)S88 ⊕ S88

S22, S257, S215, S88

28

S125 = z18 ⊕ S30 ⊕ S172 ⊕ S129 ⊕ S253(S79 ⊕ S41 ⊕ S18)

⊕ S253(S211 ⊕ S178 ⊕ S172) ⊕ (S211 ⊕ S178 ⊕ S172)

(S79 ⊕ S41 ⊕ S18) ⊕ (S248 ⊕ S214 ⊕ S211)S129

⊕ (S248 ⊕ S214 ⊕ S211)S84 ⊕ S84

S18, S253, S211, S84

29

S121 = z14 ⊕ S26 ⊕ S168 ⊕ S125 ⊕ S249(S75 ⊕ S37 ⊕ S14)

⊕ S249(S207 ⊕ S174 ⊕ S168) ⊕ (S207 ⊕ S174 ⊕ S168)

(S75 ⊕ S37 ⊕ S14) ⊕ (S244 ⊕ S210 ⊕ S207)S125

⊕ (S244 ⊕ S210 ⊕ S207)S80 ⊕ S80

S14, S249, S207, S80

(continued)

276 A.A. Siddhanti et al.

Table 1. (continued)

Steps Equations used for recovery Guessed bits

30

S117 = z10 ⊕ S22 ⊕ S164 ⊕ S121 ⊕ S245(S71 ⊕ S33 ⊕ S10)

⊕ S245(S203 ⊕ S170 ⊕ S164) ⊕ (S203 ⊕ S170 ⊕ S164)

(S71 ⊕ S33 ⊕ S10) ⊕ (S240 ⊕ S206 ⊕ S203)S121

⊕ (S240 ⊕ S206 ⊕ S203)S76 ⊕ S76

S10, S245, S76

31

S113 = z6 ⊕ S18 ⊕ S160 ⊕ S117 ⊕ S241(S67 ⊕ S29 ⊕ S6)

⊕ S241(S199 ⊕ S166 ⊕ S160) ⊕ (S199 ⊕ S166 ⊕ S160)

(S67 ⊕ S29 ⊕ S6) ⊕ (S236 ⊕ S202 ⊕ S199)S117

⊕ (S236 ⊕ S202 ⊕ S199)S72 ⊕ S72

S6, S241, S72

32

S109 = z2 ⊕ S14 ⊕ S156 ⊕ S113 ⊕ S237(S63 ⊕ S25 ⊕ S2)

⊕ S237(S195 ⊕ S162 ⊕ S156) ⊕ (S195 ⊕ S162 ⊕ S156)

(S63 ⊕ S25 ⊕ S2) ⊕ (S232 ⊕ S198 ⊕ S195)S113

⊕ (S232 ⊕ S198 ⊕ S195)S68 ⊕ S68

S68

33

S150 = z43 ⊕ S55 ⊕ S197 ⊕ S154 ⊕ S278(S104 ⊕ S66 ⊕ S43)

⊕ S278(S236 ⊕ S203 ⊕ S197) ⊕ (S236 ⊕ S203 ⊕ S197)

(S104 ⊕ S66 ⊕ S43) ⊕ (S273 ⊕ S239 ⊕ S236)S154

⊕ (S273 ⊕ S239 ⊕ S236)S109 ⊕ S109

S278

34

S146 = z39 ⊕ S51 ⊕ S193 ⊕ S150 ⊕ S274(S100 ⊕ S62 ⊕ S39)

⊕ S274(S232 ⊕ S199 ⊕ S193) ⊕ (S232 ⊕ S199 ⊕ S193)

(S100 ⊕ S62 ⊕ S39) ⊕ (S269 ⊕ S235 ⊕ S232)S150

⊕ (S269 ⊕ S235 ⊕ S232)S105 ⊕ S105

S274, S105

35

S142 = z35 ⊕ S47 ⊕ S189 ⊕ S146 ⊕ S270(S96 ⊕ S58 ⊕ S35)

⊕ S270(S228 ⊕ S195 ⊕ S189) ⊕ (S228 ⊕ S195 ⊕ S189)

(S96 ⊕ S58 ⊕ S35) ⊕ (S265 ⊕ S231 ⊕ S228)S146

⊕ (S265 ⊕ S231 ⊕ S228)S101 ⊕ S101

−

36

S138 = z31 ⊕ S43 ⊕ S185 ⊕ S142 ⊕ S266(S92 ⊕ S54 ⊕ S31)

⊕ S266(S224 ⊕ S191 ⊕ S185) ⊕ (S224 ⊕ S191 ⊕ S185)

(S92 ⊕ S54 ⊕ S31) ⊕ (S261 ⊕ S227 ⊕ S224)S142

⊕ (S261 ⊕ S227 ⊕ S224)S97 ⊕ S97

−

37

S134 = z27 ⊕ S39 ⊕ S181 ⊕ S138 ⊕ S262(S88 ⊕ S50 ⊕ S27)

⊕ S262(S220 ⊕ S187 ⊕ S181) ⊕ (S220 ⊕ S187 ⊕ S181)

(S88 ⊕ S50 ⊕ S27) ⊕ (S257 ⊕ S223 ⊕ S220)S138

⊕ (S257 ⊕ S223 ⊕ S220)S93 ⊕ S93

−

38

S130 = z23 ⊕ S35 ⊕ S177 ⊕ S134 ⊕ S258(S84 ⊕ S46 ⊕ S23)

⊕ S258(S216 ⊕ S183 ⊕ S177) ⊕ (S216 ⊕ S183 ⊕ S177)

(S84 ⊕ S46 ⊕ S23) ⊕ (S253 ⊕ S219 ⊕ S216)S134

⊕ (S253 ⊕ S219 ⊕ S216)S89 ⊕ S89

−

(continued)

Certain Observations on ACORN v3 277

Table 1. (continued)

Steps Equations used for recovery Guessed bits

39

S126 = z19 ⊕ S31 ⊕ S173 ⊕ S130 ⊕ S254(S80 ⊕ S42 ⊕ S19)

⊕ S254(S212 ⊕ S179 ⊕ S173) ⊕ (S212 ⊕ S179 ⊕ S173)

(S80 ⊕ S42 ⊕ S19) ⊕ (S249 ⊕ S215 ⊕ S212)S130

⊕ (S249 ⊕ S215 ⊕ S212)S85 ⊕ S85

S19

40

S122 = z15 ⊕ S27 ⊕ S169 ⊕ S126 ⊕ S250(S76 ⊕ S38 ⊕ S15)

⊕ S250(S208 ⊕ S175 ⊕ S169) ⊕ (S208 ⊕ S175 ⊕ S169)

(S76 ⊕ S38 ⊕ S15) ⊕ (S245 ⊕ S211 ⊕ S208)S126

⊕ (S245 ⊕ S211 ⊕ S208)S81 ⊕ S81

S15

41

S118 = z11 ⊕ S23 ⊕ S165 ⊕ S122 ⊕ S246(S72 ⊕ S34 ⊕ S11)

⊕ S246(S204 ⊕ S171 ⊕ S165) ⊕ (S204 ⊕ S171 ⊕ S165)

(S72 ⊕ S34 ⊕ S11) ⊕ (S241 ⊕ S207 ⊕ S204)S122

⊕ (S241 ⊕ S207 ⊕ S204)S77 ⊕ S77

S11

42

S114 = z7 ⊕ S19 ⊕ S161 ⊕ S118 ⊕ S242(S68 ⊕ S30 ⊕ S7)

⊕ S242(S200 ⊕ S167 ⊕ S161) ⊕ (S200 ⊕ S167 ⊕ S161)

(S68 ⊕ S30 ⊕ S7) ⊕ (S237 ⊕ S203 ⊕ S200)S118

⊕ (S237 ⊕ S203 ⊕ S200)S73 ⊕ S73

−

43

S110 = z3 ⊕ S15 ⊕ S157 ⊕ S114 ⊕ S238(S64 ⊕ S26 ⊕ S3)

⊕ S238(S196 ⊕ S163 ⊕ S157) ⊕ (S196 ⊕ S163 ⊕ S157)

(S64 ⊕ S26 ⊕ S3) ⊕ (S233 ⊕ S199 ⊕ S196)S114

⊕ (S233 ⊕ S199 ⊕ S196)S69 ⊕ S69

−

44

S56 = z44 ⊕ S151 ⊕ S198 ⊕ S155 ⊕ S279(S105 ⊕ S67 ⊕ S44)

⊕ S279(S237 ⊕ S204 ⊕ S198) ⊕ (S237 ⊕ S204 ⊕ S198)

(S105 ⊕ S67 ⊕ S44) ⊕ (S274 ⊕ S240 ⊕ S237)S155

⊕ (S274 ⊕ S240 ⊕ S237)S110 ⊕ S110

S279

45

S57 = z45 ⊕ S152 ⊕ S199 ⊕ S156 ⊕ S280(S106 ⊕ S68 ⊕ S45)

⊕ S280(S238 ⊕ S205 ⊕ S199) ⊕ (S238 ⊕ S205 ⊕ S199)

(S106 ⊕ S68 ⊕ S45) ⊕ (S275 ⊕ S241 ⊕ S238)S156

⊕ (S275 ⊕ S241 ⊕ S238)S111 ⊕ S111

S280

46

S58 = z46 ⊕ S153 ⊕ S200 ⊕ S157 ⊕ S281(S107 ⊕ S69 ⊕ S46)

⊕ S281(S239 ⊕ S206 ⊕ S200) ⊕ (S239 ⊕ S206 ⊕ S200)

(S107 ⊕ S69 ⊕ S46) ⊕ (S276 ⊕ S242 ⊕ S239)S157

⊕ (S276 ⊕ S242 ⊕ S239)S112 ⊕ S112

S281

47

S59 = z47 ⊕ S154 ⊕ S201 ⊕ S158 ⊕ S282(S108 ⊕ S70 ⊕ S47)

⊕ S282(S240 ⊕ S207 ⊕ S201) ⊕ (S240 ⊕ S207 ⊕ S201)

(S108 ⊕ S70 ⊕ S47) ⊕ (S277 ⊕ S243 ⊕ S240)S158

⊕ (S277 ⊕ S243 ⊕ S240)S113 ⊕ S113

S282

48

S60 = z48 ⊕ S155 ⊕ S202 ⊕ S159 ⊕ S283(S109 ⊕ S71 ⊕ S48)

⊕ S283(S241 ⊕ S208 ⊕ S202) ⊕ (S241 ⊕ S208 ⊕ S202)

(S109 ⊕ S71 ⊕ S48) ⊕ (S278 ⊕ S244 ⊕ S241)S159

⊕ (S278 ⊕ S244 ⊕ S241)S114 ⊕ S114

S283

278 A.A. Siddhanti et al.

At this point, we like to explain about certain ‘unit’ cost related to exact
complexity. Such unit cost may involve several computations related to the cipher
operations. In a most generic way, given a k-bit secret key, the exhaustive attack
asks for a complexity of 2k units, where each unit may require several CPU
clocks. While mounting the TMDTO attack the same situation is valid. Thus,
in our technique, we also consider all the operations as unit cost. However, we
will point out a few cases when our calculations are most costly and that should
be taken care of in the complexity analysis. For example, simply generating a
293-bit key stream (that will become the state η) of ACORN v3 from a state
ζ requires 0.088 s in our computing facility. However, to recover the 47 bits of
the state from 47 bits of key stream and the remaining state bits requires a
time of 0.076 s, which is almost as same as the time taken to generate ζ. Thus,
no additional complexity is required for solving. Hence for this scenario our
parameters are as follows. We can take T ′ = 2122,M ′ = 2124 and D′ = 261.
Then, T = T ′ · 20 = 2122, M = M ′ = 2124, D = 2ψ · D′ = 247 · 261 = 2108,
P = P ′ = N ′

D′ = 2185.

3.2 Knowledge of 53 Bits of State from 60 Key Stream Bits

We follow a similar procedure as mentioned in Sect. 3.1. However, when the SAT
solver is populated with equations and is set to find all possible solutions for 53
state bits using only 53 key stream bits, the SAT solver fails to find a unique
solution. Instead, we get multiple solutions, where each solution provides the
same 53-bit key stream pattern. To combat this problem, we involve a new idea.
Instead of searching for a 53-bit pattern (say 53 continuous 0’s), we search for
a 240-bit pattern where the first 53-bit sequence and the last 7-bit sequence
are fixed (say to 0’s). This is based on the fact that the key stream sequence
generated by all solutions are different. The SAT solver identifies the difference
between the sequence of last 7 bits and removes all additional solutions. However,
this gives us an additional Data complexity of 27. Considering this constraint
into the SAT solver in a similar fashion, (as explained in Sect. 2.1), we get the
data mentioned in Table 1. However, in very few cases, two solutions sets are
possible which generate the same keystream. Since the proportion is very small
and our success probability is 214−1

214 , the time complexity should be multiplied
by T ′ = T ′ × 214

214−1 ≈ T ′ × 1 = T ′. However, we still attempt to deal with this
edge case scenario of two solutions. The idea is to simply discard the second
solution during the offline phase and continue with the first solution set. The
matrix stopping rule ensures the entire search space is covered with negligible
collision. During the online phase, the adversary can access few more key stream
bits following the fixed pattern in the key stream and hence conclude with the
final solution. Our experiments show that 7 more key stream bits, i.e. 67 key
stream bits in total are enough to find a unique solution.

Similar to Sect. 3.1 the time taken for solving equations is of the same order
of generating ζ, hence T = T ′.

– T = T ′ = 2120 is the total time complexity of the attack,

Certain Observations on ACORN v3 279

– M = M ′ = 2120 is the amount of memory required,
– D = D′ × 260 = 2120 where D′ = 260, since the adversary must succeed in

finding a 60-bit pattern,
– P = N ′

D′ = 2180 is the preprocessing time for formulating tables.

3.3 Knowledge of 49 Bits of State from 49 Key Stream Bits
and Fixing 10 State Bits

Here we consider the third approach which is similar to what has been recently
considered in [7] for a TMDTO attack against Lizard [6]. We consider that ψ
state bits can be recovered from ψ many key stream bits and rest of the state
bits, but τ many state bits has to be fixed to a specific pattern. This follows the
idea mentioned in Sect. 2.2. In this case we go back to single preprocessing table.
We will consider ψ = 49 here, with τ = 10. That is from ψ bits of key stream and
the remaining (n−ψ) state bits (out of which τ are fixed to a specific pattern), we
will be able to solve for the ψ bits of the state. The initial table preparation goes
as follows. We start with a (n−ψ−τ) bit random pattern and then take a specific
pattern for ψ. Also the fixed pattern of φ is known. Now, using the equations
as described in Sect. 2.2, we solve for the rest ψ bits of the state. This gives the
complete state. Then we run the PRGA for n−τ times. The initial ψ bits will be
as fixed. The remaining (n−ψ − τ) pseudorandom bits will be considered as the
part of the next state bits. Thus, we have T ′M ′ = 2n−ψ−τ = 2293−49−10 = 2234.
Let us take T ′ = 2112 and M ′ = 2122, which also gives, D′ =

√
T ′ = 256. Thus,

we will now have the following parameters.

– D = D′ · 2ψ+τ = 256+49+10 = 2115, as the specific pattern ψ should come
towards consulting the table, and also for a good success rate to have the
specific τ bit pattern in the state we need to try 2τ many times,

– M = M ′ = 2122,
– T = T ′ ·2τ = 2112+10 = 2122, as we only consult the preprocessing table when

the specific ψ bit pattern appears in the key stream, but we need to try 2τ

times as we have that more data and here the solution time can be estimated
from the operations in the equations and that can subsumed in the PRGA
effort,

– P = P ′ = N ′
D′ = 2234−56 = 2178.

A similar online parameter in this respect can be obtained considering the equa-
tion 5ψ+2τ = n. Here, ψ = 49, by fixing τ = 10. However, we can easily increase
τ to 24 to satisfy the equation 5ψ+2τ = 5 ·49+2 ·24 = 293 = n. That is we will
fix 24 state bits to a specific pattern. In this case the online complexity becomes
T = M = D = 2

n−ψ
2 = 2

293−49
2 = 2122. However, the preprocessing becomes less,

which is P = 2
n+ψ

2 = 2
293+49

2 = 2171.

4 Conclusion

In this paper we have studied how certain portion of the state of ACORN v3 can
be obtained from key stream and guessing or fixing the remaining state bits. We

280 A.A. Siddhanti et al.

attempt that problem by generating a set of equations and feeding that to SAT
solver. At the same time, we try to consider the structure of the equations and
solve a set of equations without using the SAT solver. Several examples with
different parameters are presented. Based on those parameters, we note different
time-memory-data trade-off for attacking ACORN v3. Indeed it is possible to
mount the attack where the online complexity is less than the exhaustive key
search. The pre-processing effort is higher than exhaustive search but it can be
reduced further by increasing the amount of data or by recovering more internal
sate bits. While our observations do not refute any security claim of the cipher,
the study adds certain insight towards the cryptanalysis and may lead to further
research in this area.

Acknowledgements. The first author would like to thank Department of Science
and Technology DST-FIST Level-1 Program Grant No. SR/FST/MSI-092/2013 for
providing the computational facilities.

References

1. Babbage, S.: A space/time tradeoff in exhaustive search attacks on stream ciphers.
In: European Convention on Security and Detection. IEEE Conference Publication,
no. 408, May 1995

2. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a
PC. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000.
LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44706-7 1

3. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 1

4. CAESAR. http://competitions.cr.yp.to/caesar.html
5. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-

CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 17

6. Hamann, M., Krause, M., Meier, W.: LIZARD - a lightweight stream cipher for
power-constrained devices. In: FSE 2017. http://eprint.iacr.org/2016/926, http://
tosc.iacr.org/index.php/ToSC/article/view/584

7. Maitra, S., Sinha, N., Siddhanti, A., Anand, R., Gangopadhyay, S.: A TMDTO
attack against lizard (2017). http://eprint.iacr.org/2017/647

8. SAGE Mathematics Software. Free Software Foundation Inc. (2009). http://www.
sagemath.org. (Open source project initiated by W. Stein and contributed by
many)

9. Sarkar, S., Banik, S., Maitra, S.: Differential fault attack against grain family with
very few faults and minimal assumptions. IEEE Trans. Comput. 64(6), 1647–1657
(2015)

10. Wu, H.: ACORN: a lightweight authenticated cipher (v3). https://competitions.
cr.yp.to/round3/acornv3.pdf

https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1007/3-540-44448-3_1
http://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
http://eprint.iacr.org/2016/926
http://tosc.iacr.org/index.php/ToSC/article/view/584
http://tosc.iacr.org/index.php/ToSC/article/view/584
http://eprint.iacr.org/2017/647
http://www.sagemath.org
http://www.sagemath.org
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf

	Certain Observations on ACORN v3 and the Implications to TMDTO Attacks
	1 Introduction
	1.1 Description of ACORN v3

	2 Methods to Recover Certain Bits of the State
	2.1 Using SAT Solver
	2.2 Formation of Equations by Observation, not Using SAT Solver

	3 Complexity of TMDTO Attack
	3.1 Knowledge of 47 Bits of State from 47 Key Stream Bits
	3.2 Knowledge of 53 Bits of State from 60 Key Stream Bits
	3.3 Knowledge of 49 Bits of State from 49 Key Stream Bits and Fixing 10 State Bits

	4 Conclusion
	References

