
Differential Fault Attack on Grain v1,
ACORN v3 and Lizard

Akhilesh Siddhanti1, Santanu Sarkar2(B), Subhamoy Maitra3,
and Anupam Chattopadhyay4

1 BITS Pilani KK Birla Goa Campus, Zuarinagar 403 726, Goa, India
akhileshsiddhanti@gmail.com

2 Department of Mathematics, IIT Madras, Chennai 600 036, India
sarkarsantanubir@gmail.com

3 Applied Statistics Unit, ISI Kolkata, 203 B T Road, Kolkata 700 108, India
subho@isical.ac.in

4 School of Computer Engineering, NTU, Singapore 639 798, Singapore
anupam@ntu.edu.sg

Abstract. Differential Fault Attack (DFA) is a very well known tech-
nique to evaluate security of a stream cipher. This considers that the
stream cipher can be weakened by injection of the fault. In this paper
we study DFA on three ciphers, namely Grain v1, Lizard and ACORN
v3. We show that Grain v1 (an eStream cipher) can be attacked with
injection of only 5 faults instead of 10 that has been reported in 2012.
For the first time, we have mounted the fault attack on Lizard, a very
recent design and show that one requires only 5 faults to obtain the state.
ACORN v3 is a third round candidate of CAESAR and there is only one
hard fault attack on an earlier version of this cipher. However, the ‘hard
fault’ model requires a lot more assumption than the generic DFA. In
this paper, we mount a DFA on ACORN v3 that requires 9 faults to
obtain the state. In case of Grain v1 and ACORN v3, we can obtain
the secret key once the state is known. However, that is not immediate
in case of Lizard. While we have used the basic framework of DFA that
appears in literature quite frequently, specific tweaks have to be explored
to mount the actual attacks that were not used earlier. To the best of
our knowledge, these are the best known DFAs on these three ciphers.

Keywords: Differential Fault Attack · Stream cipher · Grain v1 ·
ACORN v3 · Lizard

1 Introduction

In search of stream ciphers suitable for widespread adoption, the eStream portfo-
lio [20] was started in 2004 by EU ECRYPT network. By this date, three ciphers
form the hardware profile of the portfolio, namely Grain v1 [10], Trivium [7] and
MICKEY 2.0 [1]. Stream ciphers find a special application in providing secu-
rities in case of resource-constrained or low power scenarios like RFID tags or
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 247–263, 2017.
https://doi.org/10.1007/978-3-319-71501-8_14

248 A. Siddhanti et al.

hearing aids, due to their very low gate requirements. A natural attention was
drawn towards Grain v1 for being the ‘lightest’ in terms of the state size and the
Boolean functions used among the three, and many lightweight stream ciphers
have been hence proposed based on Grain v1. The DFA proposed in [2,18] shows
that by injecting 10 or more faults during the Pseudo Random bit Generation
Algorithm (PRGA), the secret key can be deduced hence compromising the secu-
rity of the cipher. However, the attack can be further optimized. In this work,
we claim that the fault requirement can be further brought down to just 5 using
optimized techniques.

Following the estream portfolio, a new competition for authenticated ciphers
called CAESAR [21] has been hosted. Enlisting fifteen different ciphers as final
candidates, a cipher with unique design has emerged called ACORN v3 [22].
A lightweight stream cipher composed of 6 Linear Feedback Shift Registers
(LFSRs) making a state size of 293 bits, ACORN v3 promises a 128-bit security
using a 128-bit secret key and IV. Since very limited study has been done on such
type of cipher constructs, we explore how the design performs against mounting
of a DFA. As per our experiments, cryptanalysis is possible in this case with a
requirement of 9 faults. We are aware of a fault attack on an earlier version of
ACORN as in [8], but that is only in a restricted model of hard fault, which
considers a fault to be permanent. Our model of DFA here is much more well
accepted in literature.

Inheriting the ideas from Grain v1, another interesting lightweight stream
cipher Lizard has been designed. A unique feature of Lizard [9] is that the secret
key cannot be found even if the secret state is known. This ensures additional
security, specifically in places where the secret state can get compromised. Till
now, there has been no reported cryptanalysis on Lizard apart from a related
key/IV (Initialization Vector) attack shown in [5]. We show that a successful
DFA can be performed against Lizard using a minimum of 5 faults.

For all the above mentioned ciphers viz. Grain v1, Lizard and ACORN v3,
we follow a similar approach as in [14] that has been used many times in earlier
papers too (see references in [14]). We choose these three ciphers because of
their similarities. The correct location of the fault is obtained by finding the
correlation between faulty and fault-free key streams. Using the given set of
faulty and fault-free key streams, equations are generated and fed into a SAT
solver.

1.1 Our Contribution

While a specific mode of DFA, that we discuss in this paper, is well standardized,
most of the stream cipher designers do not consider evaluating such attack on
the new designs. This leaves an open space towards implementing such attacks
on specific ciphers. Further, blind implementation of some standard techniques
do not immediately help in mounting a successful DFA. For this the exact imple-
mentation related to a specific cipher requires certain optimization. In this paper,
we have two specific modes of optimization.

Differential Fault Attack on Grain v1, ACORN v3 and Lizard 249

– What we feed to the SAT solver for obtaining the states are some equations
based on the differential key streams. For the first time we show that cor-
responding to a state we should consider the equations both forward and
backward. Earlier we have only considered the equations while moving for-
ward. This drastically reduces the number of faults as experienced in Grain
v1 and the method succeeded for Lizard too.

– Due to the large state of ACORN v3 and the clever state update, it is not
easy to obtain the solutions through the SAT solver directly. Thus we need
to consider fixing some bits before exploiting the SAT solver. This indeed
increases the overall complexity, but at the same time makes the DFA possi-
ble. The exhaustive search over the assumed bits can be trivially parallelized
keeping the complete attack practical. However, our attack on ACORN works
only when all bits of the plaintext are zero. So our fault attack on ACORN is
chosen plaintext attack model, whereas our attacks on Grain and Lizard are
known plaintext attack model.

1.2 Paper Organisation

The outline of DFA will be discussed in Sect. 2. In Sect. 3, we describe the process
of finding the exact location of fault. In Sect. 4, we explain the procedure of
finding the state variables and the recovery of secret key once the exact location
of fault is known. For optimizing the SAT solver to find solutions faster, we
consider key stream bits from previous rounds as well. This is the main tweak in
our approach over the existing works and briefly mentioned in Sects. 4.1, 4.2, 4.3.
In Sect. 5, we conclude the paper summarizing our work. The description of the
ciphers is available in the Appendix.

2 Proposed Outline of DFA

Fault Attacks have always been studied in cryptanalytic literature with great
interest. By inducing a fault, we mean flipping one bit (1 → 0 or 0 → 1) for
some particular state of the cipher. Such faults can be induced at the beginning of
the PRGA round, hence causing a change in the key stream bits. The difference
between the key stream bits can be used to deduce the internal state of the cipher.
Fault attack techniques range from simple glitches (caused by perturbations in
the clock or power supply), focused laser beam injection, Body Bias injection to
Electromagnetic injection. The range of attacks is much wider if one considers
the non-volatile memories, for which, one may use hot air gun or even software-
based Rowhammer attack. Depending on the level of intrusion that is enabled
by the attack setup, attacks can be classified to be non-invasive, semi-invasive
and invasive.

Fault injection attacks of various forms [6] is becoming an important tool
in the arsenal of modern cryptanalysts. Rapidly evolving techniques for attacks
and their countermeasures [17] indicate that a proper feasibility analysis of the

250 A. Siddhanti et al.

implementation is imperative. Although inducing a fault might seem quite com-
plicated, there have been many works in this area. Implementations of well-
known ciphers like RSA, AES and DES have already been cryptanalyzed. In
fact, all the final candidates of eStream [20] hardware portfolio (namely Grain
v1, MICKEY 2.0 and Trivium) have been cryptanalyzed using DFA [2–4,11–
13,18]. This work aims to highlight that ACORN v3 and Lizard can also be
cryptanalyzed using DFA and the existing knowledge against Grain v1 can be
improved.

Let us now clearly explain the assumptions while mounting the DFA. Gener-
ally too many assumptions can make an attack impractical. Further, the number
of faults injected should be low, as there is a chance of damaging the device com-
pletely. Based on the documents in cryptanalytic literature on fault attacks, we
consider that the attacker:

1. can restart the cipher and re-key it as well with the original Key/IV more
than once,

2. can inject the fault with certain precision of timing,
3. has the equipment/required technology for injecting the fault,
4. does not need to know the exact location during fault injection.

Next we will discuss several steps of DFA. Note that the basic methodology
is the same which is basically the Differential Attack, but the Key Scheduling
Algorithm (KSA) is ignored. That is, we consider that one can inject the fault
during the PRGA. We will follow the basic methodology as in [14] and the
references in this work which are in the same line. Our specific tweaks will be
described in the process.

3 Identifying Fault Locations

The first step of the DFA requires identification of fault signatures. We consider
the most common signature methods that had been used in [14] too. Consider
that the certain changes in the key stream bits are achieved by injecting a fault
at some random location f . By random location, we mean some LFSR (Lin-
ear Feedback Shift Register) or NFSR (Non-linear Feedback Shift Register) bit,
which is a part of secret state of the cipher. Thus, by injecting a fault at location
f means it might be a location in the LFSR or NFSR according to the specific
description of the cipher. For example, in case of Grain v1, f ∈ [0, 79] means
injecting a fault at LFSR bit lf , whereas f ∈ [80, 159] underlines injecting a fault
in NFSR bit n(f−80).

In the attack model, we consider that for some fault location f , it is possible
to obtain the respective fault-free key stream zi and faulty key stream z

(f)
i for

λ key stream bits. To form a unique pattern of the key stream sequence, we
compute a signature vector Q(f) which we define as:

Q(f) = (q(f)0 , q
(f)
1 , . . . , q

(f)
λ−1) (1)

Differential Fault Attack on Grain v1, ACORN v3 and Lizard 251

where

q
(f)
i =

1
2

− Pr(zi �= z
(f)
i),∀ i ∈ [0, λ − 1]. (2)

This probability is estimated by sufficient number of experiments beforehand.
The sharpness of a signature is defined as follows:

σ(Q(f)) =
1
λ

λ−1∑

i=0

|q(f)i |. (3)

Following similar convention for ACORN v3, the fault in location f simply cor-
responds to fault in bit Sf . The corresponding plot is presented in Fig. 1. For
Lizard, the convention is fault location in Sf for first 31 bits and fault location
in B(f−90) for next 90 bits. With λ = 90, 64, 64 respectively, we execute 215

runs with random key-IV pairs to obtain the signatures Q(0), Q(1), . . . for each
of Grain v1, ACORN v3 and Lizard.

(a) Grain v1: Signature (b) ACORN v3: Signature

(c) Lizard: Signature

Fig. 1. Signatures for Grain v1 (plot of Q(f) ∀f ∈ [0, 159]), ACORN v3 (plot of
Q(f) ∀f ∈ [0, 292]) and Lizard (plot of Q(f) ∀f ∈ [0, 120]) with λ = 64 for ACORN
v3 and Lizard, and λ = 90 for Grain v1.

As we can see in Fig. 1, the Z-axis has been plotted from −0.5 to 0.5. The
signatures are said to be strong if the curve is closer to −0.5 or 0.5 for some
fault location f . In all the three cases of Grain v1, ACORN v3 and Lizard, the

252 A. Siddhanti et al.

signatures are quite strong, in fact stronger than Plantlet [14] and Sprout [15].
Hence, the identification of the fault will be easier for these ciphers. The signa-
tures are pre-computed during the offline phase of the attack, and they are stored
for comparisons with differential key stream later. To clarify this, we require to
explain a few more definitions.

Suppose we inject a fault in a random unknown location g and obtain the
fault-free and faulty key streams zi and z

(g)
i respectively. Then we define the

following:

ν
(g)
i =

1
2

− η
(g)
i (4)

where η
(g)
i = zi ⊕ z

(g)
i .

Definition 1. The vector

Γ(g) = (ν(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1)

is called trail of the fault at the unknown location g.

Note that there is no probability involved in this scenario, as one actually injects
a fault and checks against the signatures. That is, one can compare Γ(g) for each
of the Q(f)’s, to estimate the exact fault location.

Definition 2. We call a relation between the signature Q(f) = (q(f)0 , q
(f)
1 , . . . ,

q
(f)
λ−1) and a trail Γ(g) = (ν(g)

0 , ν
(g)
1 , . . . , ν

(g)
λ−1) a mismatch, if there exists at least

one i, (0 ≤ i ≤ λ − 1) such that (q(f)i = 1
2 , ν

(g)
i = − 1

2) or (q(f)i = − 1
2 , ν

(g)
i = 1

2)
hold true.

However, this is for excluding some locations for possible faults, but to identify
the location, this definition needs to be extended. For this purpose, we incorpo-
rate the correlation coefficient between two sets of data.

Definition 3. It is natural to use correlation coefficient μ(Q(f),Γ(g)) between
the signature Q(f) = (q(f)0 , q

(f)
1 , . . . , q

(f)
λ−1) and a trail Γ(g) = (ν(g)

0 , ν
(g)
1 , . . . , ν

(g)
λ−1)

for checking a match. Naturally, −1 ≤ μ(Q(f),Γ(g)) ≤ 1. In case of a mismatch,
(as per the Definition 2), then μ(Q(f),Γ(g)) = −1.

Let us now explain how one can locate the faults. For each known fault g, it
is possible to calculate the trail Γ(g) = (ν(g)

0 , ν
(g)
1 , . . . , ν

(g)
λ−1), and hence the

corresponding μ(Q(f),Γ(g)) for each of the faults f . The following quantities are
noted:

1. maxf μ(Q(f),Γ(g)),
2. μ(Q(g),Γ(g)), and
3. α(Q(g)) = #f |{μ(Q(f),Γ(g)) > μ(Q(g),Γ(g))}|.

Differential Fault Attack on Grain v1, ACORN v3 and Lizard 253

0 20 40 60 80 100 120 140 160
i

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

co
rr

el
at

io
n

co
ef

fic
ie

nt

Maximum Correlation
Expected value

(a) Grain v1

0 50 100 150 200 250

i

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

Maximum correlation
Expected value

(b) ACORN

0 20 40 60 80 100 120

g

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

Maximum Correlation
Expected value

(c) Lizard

Fig. 2. Plot of max100
f=0 μ(Q(f), Γ(g)) (blue) and μ(Q(g), Γ(g)) (red) for all three ciphers.

(Color figure online)

In the following Fig. 2, when μ(Q(g),Γ(g)) (drawn in red) is close to max100
f=0

μ(Q(f),Γ(g)) (drawn in blue), α(Q(g)) is small, it is easier to locate these faults.
However, if μ(Q(g),Γ(g)) is much smaller than maxf μ(Q(f),Γ(g)) (blue), i.e.,
α(Q(g)) is large, that means it is harder to locate the fault for that particular
fault location f from differential key stream. In fact, the difference between the
red and blue lines for ACORN v3 is so small that it is barely visible. Hence,
we should expect ACORN v3 to have better expected ranks than Grain v1 and
Lizard.

Given α(Q(g)), for each g, we can estimate how many attempts we should
require to obtain the actual fault location. As one can see in Fig. 3, the rank
of the correct set of fault locations is very low for all three ciphers, with ranks
for ACORN v3 being the strongest. The ranks for ACORN v3 and Grain v1
lie between 1 and 2, hence we can get the correct set of fault locations very
quickly using this technique. The ranks of correct set of fault locations for Lizard
also comes very close to the other two ciphers. However ACORN v3 has the
highest fault requirement (9 faults) due to its large state size, and also due to
an additional complexity of 220 incorporated (explained in Sect. 4) for faster
solving, ACORN v3 has higher complexity (225.40) than Grain v1 (23.49) and
Lizard (210.69).

Thus, to summarize, the exact algorithm for mounting a fault is as follows.
Consider that every fault is injected at the same round t of PRGA routine.

– Inject a fault at some random fault location.
– Obtain the differential trail (for some unknown g) Γ(g)=(ν(g)

0 , ν
(g)
1 , . . . , ν

(g)
λ−1).

– For each f in [0, 159] (for e.g. Grain v1), calculate μ(Q(f),Γ(g)).

254 A. Siddhanti et al.

0 20 40 60 80 100 120 140 159
f

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
R

a
n

k

(a) Grain v1

0 50 100 150 200 250 292
f

1

1.1

1.2

1.3

1.4

1.5

1.6

R
a

n
k

(b) ACORN

0 20 40 60 80 100 120

g

1

1.5

2

2.5

3

3.5

4

4.5

5

R
a

n
k

(c) Lizard

Fig. 3. Ranks of actual fault locations in list of predicted fault locations for all the
three ciphers. (lower the better).

– For the fault, prepare a ranked table Tg arranging the possible fault locations
f with more priority according to μ(Q(f),Γ(g)).

– After creating tables Tg for the required number of faults, compute using SAT
solvers as mentioned in Sect. 4 for each of the combinations.

In case, the correct fault set can be selected in the above algorithm, one can
obtain the correct state, which will in turn discover the secret key bits. This can
be confirmed as one can check and match with the existing fault free and faulty
key streams at hand. To obtain the streams, the attacker needs to re-key the
cipher a few times and inject the required number of faults.

3.1 Estimated Complexity to Find the Correct Set of Faults

The DFA will be more efficient when the faults are in the locations where it
is easier to identify them. That is a location g such that α(Q(g)) is small will
provide better result. That is, lower the α(Q(g)), lesser the the number of possible
combinations of faults, and lesser the number of times one needs to run the SAT
solver. It has been noted in [14] that for Plantlet, the signature of the faults
are quite sharp. Interestingly, signatures of Grain v1, Lizard and ACORN v3
are sharper than Plantlet. As we will see later, for the actual attack, we require
at least 5, 9 and 5 faults for Grain v1, ACORN v3 and Lizard respectively. In
the following table we provide the experimental estimation of the number of
attempts to get the exact fault locations for these three ciphers. Note that the
data provided in Table 1 is logarithm to the base 2.

Differential Fault Attack on Grain v1, ACORN v3 and Lizard 255

Table 1. Maximum and average number of combinations to check for all three ciphers
for different number of faults. The values (except for faults) have been given in loga-
rithm to the base 2.

Cipher Faults reqd. Maximum Average

Grain v1 5 3.49 2.44

6 4.10 2.93

7 4.71 3.42

ACORN v3 7 4.21 3.78

8 4.80 4.32

9 5.40 4.86

Lizard 5 10.69 6.16

6 12.76 7.39

7 14.71 8.62

4 Deducing the State Variables and Secret Key

Once we obtain the differential key streams for some set of fault locations, we
need to find at least one state of the cipher for some round t which in-turn can
help us find the secret key. We start off by noting that for every key stream bit
produced, we can formulate following three equations:

1. The output function,
2. The NFSR feedback function,
3. The LFSR feedback function.

Hence, at the beginning of the first round of PRGA, we have 160 unknown
variables (80 for each LFSR and NFSR) in case of Grain v1, 293 variables in
case of ACORN v3 and 121 variables in case of Lizard. With every new round of
the ciphers, the complexity of the above equations increase sharply. To combat
this, new variables are introduced at every step, and hence new equations are
formed. Two new variables are added and three new equations are formed for
every round of the ciphers. Note than in case of ACORN v3, there are 6 LFSRs
hence 7 new variables are added with each cycle (6 from LFSRs and 1 from
feedback) and 8 new equations are formed. We collect all these equations and
feed them into a SAT solver. However, the number of equations becomes very
high and hence the SAT solver cannot find a solution, hence steps specific to
each cipher need to be taken.

4.1 Optimizing SAT Solver for Grain v1

Grain v1 has been constructed in such a way that the higher 16 bits of LFSR
and NFSR are not used at all. Hence, we can safely discard the equations formed
during the last 16 rounds of our set of equations. Next, we observe that if the

256 A. Siddhanti et al.

fault has taken place in LFSR, the NFSR equations do not change till the fault
reaches location l0. Hence, we remove all such NFSR equations. Now, if the fault
has taken place in NFSR, we need not consider any equation of LFSR because
LFSR remains unaffected throughout the clocking. Since LFSR equations are
linear and easier to calculate for the SAT solver, we consider injecting faults in
LFSR only.

Note that Grain v1 is reversible, i.e. given one state, we can easily determine
the previous state of the cipher by solving feedback equations. Considering that
the fault has been injected at PRGA round t, we can form more equations by
considering key stream bits of round t−1, t−2 and so on. Although the number
of equations increase, it is added only once (not for every fault) and helps in
finding a solution faster.

After performing the above optimizations, the fault requirement for Grain
v1 is 5 faults with a time complexity of 23.49.

Example 1. Consider the following set of 5 fault locations for Grain v1: S =
{6, 16, 50, 51, 69}. (This set of numbers is randomly generated and not specifi-
cally chosen.) The estimated number of fault locations to check for is 22.29. The
equations are formed and fed into the SAT solver. The number of key stream
bits considered is 250, with 40 reverse key stream bits considered, and the total
time required by the SAT solver for the correct set of fault locations is 1756.45 s.

4.2 Optimizing SAT Solver for ACORN v3

The state size of ACORN v3 is much larger than Grain v1, Lizard, Plantlet
and Sprout. Also, the number of equations added at each clock cycle is much
higher than compared to the latter. Hence, we propose a different approach -
we consider that some n bits for example l0, l1, . . . , ln−1 are known. Now we try
to find a solution assuming these n bits are correct. Now the SAT solver is able
to find a solution much faster. Note that this raises our attack complexity by
2n, but we can try getting as small value of n as possible while still being able
to find solutions faster. Our experiments show that for n = 20 we can deduce
the state using 9 faults, whereas with n = 40 or n = 60 we can deduce the
state even with 8 or 7 faults. From Table 1, we know the maximum number of
combinations to be 24.21, 24.80, 25.40 in case of 7, 8 and 9 faults. Considering the
above optimizations, the complexity will be 264.21 in case of 7 faults, 244.80 and
225.40 in case of 8 and 9 faults. However, there are some cases in which we cannot
solve for the entire state with 7 or 8 faults, and hence we consider 9 faults to be
minimum for a successful attack.

Since the solving time depends upon which n bits (say 20) are known, a
good choice would be choosing the 15 tap locations of ACORN v3 and then
further considering higher bits like S292, S291, . . . , S287 and so on. Like Grain v1
and Lizard, we can further reduce the number of faults by using key stream
bits from rounds prior to injecting of the fault. We have not performed this
optimization in our work for ACORN v3, but we believe that this could better
our results further.

Differential Fault Attack on Grain v1, ACORN v3 and Lizard 257

Example 2. Suppose we have the following set of 9 locations for ACORN v3,
S = {279, 238, 10, 129, 9, 121, 271, 225, 166}. The number of variables considered
to be known are s0, . . . , s19, i.e. n = 20 bits. The number of combinations to
check, for this set of fault locations will be 24.92. Thus the number of times
SAT solver is run will be 220 × 24.92 = 224.92. The number of key stream bits
considered is 1200. For solving the correct set of fault locations, the SAT solver
takes 342.43 s.

4.3 Optimizing SAT Solver for Lizard

In case of Lizard, the fault requirement is comparatively very high (more than
ten) when we adopt the strategy used in case of ACORN v3 and Grain v1. How-
ever, we use some optimizations to improve our results. Firstly, we have used
90 key stream bits zt, zt+1, zt+2, . . . , zt+89 to formulate equations, where t refers
to the round in which the fault has been injected. Since Lizard is reversible
without using key bits during the PRGA, we reverse the state (St, Bt) upto
(S(t−90), B(t−90)) and formulate equations for zt−1, zt−2, . . . , zt−89. Next, we con-
sider that if we are able to inject faults in NFSR2 (register B) only, we can
reduce the number of variables drastically, and hence obtain results faster. This
is because the S register is independent of B register, and we need not include
more variables for NFSR1 update equations (NFSR1 remains same post fault
injection in NSFR2). Also, we note that the highest bit used in NFSR2 update
function is B84, hence we need not include any variables from round 85 for all
faults.

As mentioned before, we can only solve for the secret state and not for the
secret key in case of Lizard. However, we can obtain the secret key once the
secret state is known in case of Grain v1 and ACORN v3. Solving for the state
of Lizard takes a fault requirement of 5 faults with a time complexity of 210.69.

Example 3. Considering 5 fault locations S = {33, 59, 10, 5, 43} and combina-
tions to check for being 25.52, the SAT solver takes 2092.41 s to compute the
states of LFSR and NFSR. The number of key stream bits considered is 90 and
40 key stream bits are taken from the previous rounds.

4.4 Summary of Comparison

Here we present the summary of DFA on the three ciphers based on our theory
and experiments. According to our study, all the ciphers could be attacked using

Table 2. Results observed while obtaining state from fault attack.

Cipher #Faults Time complexity Time taken by SAT solver

Max Avg Min

Grain v1 5 23.49 26798.64 7165.48 204.48

ACORN v3 9 225.40 369.56 293.75 194.80

Lizard 5 210.69 720.42 201.82 20.46

258 A. Siddhanti et al.

DFA with very few faults. The above experiments were performed on ciphers
implemented in Sage-7.6 [19] along with Cryptominisat-2.9.6 as SAT solver on a
laptop running Ubuntu-17.04. The hardware configuration is based on Intel (R)
Core (TM) i5-4200M CPU @ 2.50 GHz and 8 GB RAM (Table 2).

5 Conclusion

Most of the popular and commercial Feedback Shift Register (FSR) based stream
ciphers have come out to be vulnerable against Differential Fault Attack. In
this paper, we presented successful DFA against a finalist of eStream portfolio
Grain v1 (improvisation over previous DFA), a phase-3 candidate of CAESAR
called ACORN v3 and a lightweight stream cipher Lizard. We explored the
identification of fault locations using correlation of signatures and trail of a faulty
key stream for all the three ciphers and expected number of checks required
to obtain a correct state was presented. Equations were formed from faulty
and fault-free key streams and fed into a SAT solver. Further cipher-specific
optimizations were performed towards minimizing the number of faults as well
as to speed up solving time. This is the novel contribution of this work. The
analysis performed in this work can be further extended to other stream ciphers
as well, and future work in this area could be promising. We are working towards
optimizing our attacks on these three ciphers to succeed with even fewer faults.
Further, our technique on Grain v1 can also be implemented on Grain 128 and
Grain 128a. These we will include in the final version of the paper. Based on our
work and the development in this domain, it is evident that FSR based ciphers
in nonlinear combiner/filter generator model will generally be vulnerable against
DFA. Implementors need to come up with new ways to protect against such fault
attack scenarios.

Acknowledgements. The first author would like to thank Department of Science
and Technology DST-FIST Level-1 Program Grant No. SR/FST/MSI-092/2013 for
providing the computational facilities.

Appendix: Description of the ciphers

A1: Grain v1

Grain v1 has two registers, LFSR and NFSR of 80 bits each and we use the nota-
tion si, s1+i, . . . , s79+i and bi, b1+i, . . . , b79+i for state bits of LFSR and NFSR
respectively. The output function calculates the key stream bit and then the
LFSR and NFSR states are updated. The output function is given by:

zi = bi+1 ⊕ bi+2 ⊕ bi+4 ⊕ bi+10 ⊕ bi+31

⊕ bi+43 ⊕ bi+56 ⊕ h(si+3, si+25, si+46, si+64, bi+63)

Differential Fault Attack on Grain v1, ACORN v3 and Lizard 259

where h(x0, x1, x2, x3, x4) is given by:

h(x0, x1, x2, x3, x4) = x1 ⊕ x4 ⊕ x0x3 ⊕ x2x3 ⊕ x3x4 ⊕ x0x1x2

⊕ x0x2x3 ⊕ x0x2x4 ⊕ x1x2x4 ⊕ x2x3x4.

The LFSR feedback bit si+80 is calculated as:

si+80 = si+62 ⊕ si+51 ⊕ si+38 ⊕ si+23 ⊕ si+13si

and the NFSR feedback bit is calculated as:

bi+80 = si ⊕ bi+62 ⊕ bi+60 ⊕ bi+52 ⊕ bi+45 ⊕ bi+37

⊕ bi+33 ⊕ bi+28 ⊕ bi+9 ⊕ bi ⊕ bi+63bi+60 ⊕ bi+37bi+33

⊕ bi+15bi+9 ⊕ bi+60bi+52bi+45 ⊕ bi+33bi+28bi+21

⊕ bi+63bi+45bi+28bi+9 ⊕ bi+60bi+52bi+37bi+33

⊕ bi+63bi+60bi+52bi+45bi+37 ⊕ bi+33bi+28bi+21bi+15bi+9

⊕ bi+52bi+45bi+37bi+33bi+28bi+21

The cipher is initialized using the key and IV bits as per the following:

bi = ki for 0 ≤ i ≤ 79,

si = IVi for 0 ≤ i ≤ 63
si = 1 for 64 ≤ i ≤ 79

After initialization, the cipher is clocked 160 times without producing any
key stream bit. In fact, the key stream bit is XOR’d with the feedback bit during
the KSA. After 160 rounds, we get our first key stream bit.

A2: ACORN v3

We briefly state here the description of ACORN v3 relevant to our work, i.e. we
assume the plaintext message to be a stream of 0’s and are concerned only about
the key stream generation process (PRGA), hence initialization of the cipher has
been omitted. As stated before, ACORN v3 has 6 LFSRs concatenated to form
a 293 bit state. We denote the state of the cipher by St and its respective bits
as: St

0 . . . St
292. The cipher has the following three functions:

1. Output Function. The output bit zt for any state t is generated as:

zt = St
12 ⊕ St

154 ⊕ maj(St
235, S

t
61, S

t
193)

⊕ ch(St
230, S

t
111, S

t
66), (5)

where maj(x, y, z) = xy ⊕ xz ⊕ yz and ch(x, y, z) = xy ⊕ (∼ x)z.
2. Feedback Function. The feedback bit ft for any state t is generated as:

ft = St
0 ⊕ (∼ St

107) ⊕ maj(St
244, S

t
23, S

t
160)

⊕ (cat &St
196) ⊕ (cbt&zt), (6)

where cat and cbt are binary values based on the length of the message.

260 A. Siddhanti et al.

3. State Update Function. Before performing the shift, the bits St
289, S

t
230,

St
193, S

t
154, S

t
107, S

t
61 are updated as follows:

St
289 = St

289 ⊕ St
235 ⊕ St

230

St
230 = St

230 ⊕ St
196 ⊕ St

193

St
193 = St

193 ⊕ St
160 ⊕ St

154

St
154 = St

154 ⊕ St
111 ⊕ St

107

St
107 = St

107 ⊕ St
66 ⊕ St

61

St
61 = St

61 ⊕ St
23 ⊕ St

0

And then the bits are shifted in the following manner:

St+1
i = St

i+1 ∀ i ∈ [0, 291]

with the last bit initialized with the feedback bit is

St+1
292 = ft,

when all bits of the pliantext are zero.

A3: Lizard

The 121-bit inner state of Lizard is divided into two NFSRs namely NFSR1 and
NFSR2. At time t, the first NFSR, NFSR1 is denoted by (St

0, . . . , S
t
30) and the

second NFSR, NFSR2 by (Bt
0, . . . , B

t
89). NFSR1 is of 31 bit and the update rule

of this NFSR is

St+1
30 = St

0 ⊕ St
2 ⊕ St

5 ⊕ St
6 ⊕ St

15 ⊕ St
17 ⊕ St

18 ⊕ St
20

⊕ St
25 ⊕ St

8S
t
18 ⊕ St

8S
t
20 ⊕ St

12S
t
21 ⊕ St

14S
t
19

⊕ St
17S

t
21 ⊕ St

20S
t
22 ⊕ St

4S
t
12S

t
22 ⊕ St

4S
t
19S

t
22

⊕ St
7S

t
20S

t
21 ⊕ St

8S
t
18S

t
22 ⊕ St

8S
t
20S

t
22 ⊕ St

12S
t
19S

t
22

⊕ St
20S

t
21S

t
22 ⊕ St

4S
t
7S

t
12S

t
21 ⊕ St

4S
t
7S

t
19S

t
21

⊕ St
4S

t
12S

t
21S

t
22 ⊕ St

4S
t
19S

t
21S

t
22 ⊕ St

7S
t
8S

t
18S21

⊕ St
7S

t
8S

t
20S

t
21 ⊕ St

7S
t
12S

t
19S

t
21 ⊕ St

8S
t
18S

t
21S

t
22

⊕ St
8S

t
20S

t
21S

t
22 ⊕ St

12S
t
19S

t
21S

t
22. (7)

The second register NFSR2 is of 90 bit and the update rule of this NFSR is

Bt+1
89 = St

0 ⊕ Bt
0 ⊕ Bt

24 ⊕ Bt
49 ⊕ Bt

79 ⊕ Bt
84 ⊕ Bt

3B
t
59

⊕ Bt
10B

t
12 ⊕ Bt

15B
t
16 ⊕ Bt

25B
t
53 ⊕ Bt

35B
t
42

⊕ Bt
55B

t
58 ⊕ Bt

60B
t
74 ⊕ Bt

20B
t
22B

t
23

⊕ Bt
62B

t
68B

t
72 ⊕ Bt

77B
t
80B

t
81B83. (8)

Differential Fault Attack on Grain v1, ACORN v3 and Lizard 261

Output bit zt is a function from {0, 1}53 to {0, 1}. At time t,

zt = Lt ⊕ Qt ⊕ Tt ⊕ T t, (9)

where

– Lt = Bt
7 ⊕ Bt

11 ⊕ Bt
30 ⊕ Bt

40 ⊕ Bt
45 ⊕ Bt

54 ⊕ Bt
71

– Qt = Bt
4B

t
21 ⊕ Bt

9B
t
52 ⊕ Bt

18B
t
37 ⊕ Bt

44B
t
76

– Tt = Bt
5 ⊕ Bt

8B
t
82 ⊕ Bt

34B
t
67B

t
73 ⊕ Bt

2B
t
28B

t
41B

t
65 ⊕ Bt

13B
t
29B

t
50B

t
64B

t
75⊕

Bt
6B

t
14B

t
26B

t
32B

t
47B

t
61 ⊕ Bt

1B
t
19B

t
27B

t
43B

t
57B

t
66B

t
78

– T t = St
23 ⊕ St

3S
t
16 ⊕ St

9S
t
13B

t
48 ⊕ St

1S
t
24B

t
38B

t
63

The state initialization process is divided into 4 phases.

Phase 1: Key and IV Loading. Let K = (K0, . . . , K119) be the 120-bit key
and IV = (IV0, . . . , IV63) the 64-bit public IV. The state is initialized as follows:

B0
j =

{
Kj ⊕ IVj , for 0 ≤ j ≤ 63
Kj , for 64 ≤ j ≤ 89

S0
j =

⎧
⎨

⎩

Kj+90, for 0 ≤ j ≤ 28
K119+1, for j = 29
1, for j = 30

Phase 2: Grain-like Mixing. In this phase the output bit zt is fed back into
both NFSRs for 0 ≤ t ≤ 127. This type of approach is used in Grain family.

Phase 3: Second Key Addition. In this phase, the 120-bit key is XORed to
both NFSRs as follows:

B129
j = B128

j ⊕ Kj , for 0 ≤ j ≤ 89

S129
j =

{
S128

j ⊕ Kj+90, for 0 ≤ j ≤ 29
1, for j = 30

Phase 4: Final Diffusion. This phase is exactly similar to phase 2 except zt

is not fed back into the NFSRs. In this phase, one has to run both NFSRs 128
rounds. So after this phase, registers are (S257

0 , . . . , S257
30) and (B257

0 , . . . , B257
89).

Now Lizard is ready to produce output key stream bits. The first keystream bit
that is used for encryption is z257. For t ≥ 257, the states (St+1

0 , . . . , St+1
30) and

(Bt+1
0 , . . . , Bt+1

89) and the output bit zt are computed using Eqs. (7), (8) and (9)
respectively.

262 A. Siddhanti et al.

References

1. Babbage, S., Dodd, M.: The stream cipher MICKEY 2.0. ECRYPT stream cipher
project report. http://ecrypt.eu.org/stream/p3ciphers/mickey/mickey p3.pdf

2. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain fam-
ily of stream ciphers. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 122–139. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33027-8 8

3. Banik, S., Maitra, S.: A differential fault attack on MICKEY 2.0. In: Bertoni, G.,
Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 215–232. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40349-1 13

4. Banik, S., Maitra, S., Sarkar, S.: Improved differential fault attack on MICKEY 2.0.
J. Cryptogr. Eng. 5(1), 13–29 (2015). https://doi.org/10.1007/s13389-014-0083-9

5. Banik, S., Isobe, T.: Some cryptanalytic results on Lizard. http://eprint.iacr.org/
2017/346.pdf

6. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault Injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012). https://doi.org/10.1109/JPROC.2012.2188769

7. De Cannire, C., Preneel, B.: TRIVIUM specifications. eSTREAM, ECRYPT
Stream Cipher Project, Report

8. Dey, P., Rohit, R.S., Adhikari, A.: Full key recovery of ACORN with a single fault.
J. Inf. Secur. Appl. 29(C), 57–64 (2016). https://doi.org/10.1016/j.jisa.2016.03.
003. Elsevier Science Inc. New York, NY, USA

9. Hamann, M., Krause, M., Meier, W.: LIZARD - a lightweight stream cipher
for power-constrained devices. IACR Trans. Symmetric Cryptol. 2017(1), 45–79
(2017). http://tosc.iacr.org/index.php/ToSC/article/view/584

10. Hell, M., Johansson, T., Meier, W.: Grain - a stream cipher for constrained envi-
ronments. ECRYPT stream cipher project report 2005/001 (2005). http://www.
ecrypt.eu.org/stream

11. Hojśık, M., Rudolf, B.: Differential fault analysis of Trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71039-4 10

12. Hojśık, M., Rudolf, B.: Floating fault analysis of Trivium. In: Chowdhury, D.R.,
Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 239–250.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5 19

13. Hu, Y., Gao, J., Liu, Q., Zhang, Y.: Fault analysis of Trivium. Des. Codes Cryp-
tograph. 62(3), 289–311 (2012)

14. Maitra, S., Siddhanti, A., Sarkar, S.: A dierential fault attack on plantlet.
IEEE Trans. Comput. 66(10), 1804–1808 (2017). https://doi.org/10.1109/TC.
2017.2700469. An earlier version is available at Cryptology ePrint Archive: Report
2017/088, 4 February 2017. http://eprint.iacr.org/2017/088

15. Maitra, S., Sarkar, S., Baksi, A., Dey, P.: Key recovery from state information
of sprout: application to cryptanalysis and fault attack (2015). http://eprint.iacr.
org/2015/236

16. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the
non-volatile key. In: FSE 2017. TOSC, vol. 2016, no. 2, pp. 52–79 (2016). http://
tosc.iacr.org/index.php/ToSC/article/view/565/507

17. Sugawara, T., Suzuki, D., Fujii, R., Tawa, S., Hori, R., Shiozaki, M., Fujino, T.:
Reversing stealthy dopant-level circuits. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 112–126. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44709-3 7

http://ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
https://doi.org/10.1007/978-3-642-33027-8_8
https://doi.org/10.1007/978-3-642-33027-8_8
https://doi.org/10.1007/978-3-642-40349-1_13
https://doi.org/10.1007/s13389-014-0083-9
http://eprint.iacr.org/2017/346.pdf
http://eprint.iacr.org/2017/346.pdf
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1016/j.jisa.2016.03.003
https://doi.org/10.1016/j.jisa.2016.03.003
http://tosc.iacr.org/index.php/ToSC/article/view/584
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
https://doi.org/10.1007/978-3-540-71039-4_10
https://doi.org/10.1007/978-3-540-71039-4_10
https://doi.org/10.1007/978-3-540-89754-5_19
https://doi.org/10.1109/TC.2017.2700469
https://doi.org/10.1109/TC.2017.2700469
http://eprint.iacr.org/2017/088
http://eprint.iacr.org/2015/236
http://eprint.iacr.org/2015/236
http://tosc.iacr.org/index.php/ToSC/article/view/565/507
http://tosc.iacr.org/index.php/ToSC/article/view/565/507
https://doi.org/10.1007/978-3-662-44709-3_7
https://doi.org/10.1007/978-3-662-44709-3_7

Differential Fault Attack on Grain v1, ACORN v3 and Lizard 263

18. Sarkar, S., Banik, S., Maitra, S.: Dierential fault attack against grain family with
very few faults and minimal assumptions. IEEE Trans. Comput. 64(6), 1647–1657
(2015)

19. Stein, W.: Sage Mathematics Software. Free Software Foundation, Inc., (2009).
http://www.sagemath.org. (Open source project initiated by W. Stein and con-
tributed by many)

20. The ECRYPT stream cipher project. eSTREAM portfolio of stream ciphers.
http://www.ecrypt.eu.org/stream/

21. The project CAESAR on authenticated ciphers. http://competitions.cr.yp.to/
caesar.html

22. Wu, H.: ACORN: a lightweight authenticated cipher (v3) (2016). https://
competitions.cr.yp.to/round3/acornv3.pdf

http://www.sagemath.org
http://www.ecrypt.eu.org/stream/
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf

	Differential Fault Attack on Grain v1, ACORN v3 and Lizard
	1 Introduction
	1.1 Our Contribution
	1.2 Paper Organisation

	2 Proposed Outline of DFA
	3 Identifying Fault Locations
	3.1 Estimated Complexity to Find the Correct Set of Faults

	4 Deducing the State Variables and Secret Key
	4.1 Optimizing SAT Solver for Grain v1
	4.2 Optimizing SAT Solver for ACORN v3
	4.3 Optimizing SAT Solver for Lizard
	4.4 Summary of Comparison

	5 Conclusion
	References

