
Sk Subidh Ali
Jean-Luc Danger
Thomas Eisenbarth (Eds.)

 123

LN
CS

 1
06

62

7th International Conference, SPACE 2017
Goa, India, December 13–17, 2017
Proceedings

Security, Privacy, and 
Applied Cryptography 
Engineering



Lecture Notes in Computer Science 10662

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Sk Subidh Ali • Jean-Luc Danger
Thomas Eisenbarth (Eds.)

Security, Privacy, and
Applied Cryptography
Engineering
7th International Conference, SPACE 2017
Goa, India, December 13–17, 2017
Proceedings

123



Editors
Sk Subidh Ali
Indian Institute of Technology
Tirupati, Andhra Pradesh
India

Jean-Luc Danger
Institut Mines-Télécom
Paris
France

Thomas Eisenbarth
University of Lübeck
Lübeck
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-71500-1 ISBN 978-3-319-71501-8 (eBook)
https://doi.org/10.1007/978-3-319-71501-8

Library of Congress Control Number: 2017959611

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This volume contains the papers accepted for presentation at the 7th International
Conference on Security, Privacy, and Applied Cryptography Engineering 2017
(SPACE 2017), held during December 13–17, 2017, at the Don Bosco College of
Engineering, Goa, India. This annual event is devoted to various aspects of security,
privacy, applied cryptography, and cryptographic engineering. This is indeed a very
challenging field, requiring expertise from diverse domains, ranging from mathematics
to solid-state circuit design.

This year we received 49 submissions from about eight different countries, out of
which, after an extensive review process, 13 papers were accepted for presentation at
the conference, and one shorter paper was accepted for short presentation. The sub-
missions were evaluated based on their significance, novelty, technical quality, and
relevance to the SPACE conference. The submissions were reviewed in a double-blind
mode by at least three members of the 36-member Program Committee (one more if at
least one of the authors was member of the Program Committee). The Program
Committee was aided by 50 additional reviewers. The Program Committee meetings
were held electronically, with intensive discussions.

The program also included seven invited talks and four tutorials on several aspects
of applied cryptology, delivered by world-renowned researchers: Asaf Ashkenazi,
Shivam Bhasin, Jean-Luc Danger, Thomas Eisenbarth, Harry Halpin, Mike Hamburg,
Gary Kenworthy, Victor Lomne, Axel Poschmann, Karim Tobich, Ingrid Ver-
bauwhede, and Yuval Yaron. We sincerely thank the invited speakers for accepting our
invitations in spite of their busy schedules. Like its previous editions, SPACE 2017 was
organized in co-operation with the International Association for Cryptologic Research
(IACR). We are thankful to Don Bosco College of Engineering for being the gracious
host of SPACE 2017.

There is a long list of volunteers who invested their time and energy to put together
the conference, and who deserve accolades for their efforts. We are grateful to all the
members of the Program Committee and the additional reviewers for all their hard
work in the evaluation of the submitted papers. We thank Cool Press Ltd., owner of the
EasyChair conference management system, for allowing us to use it for SPACE 2017,
which was a great help. We thank our publisher Springer for agreeing to continue to
publish the SPACE proceedings as a volume in the Lecture Notes in Computer Science
(LNCS) series. We are grateful to the local Organizing Committee, especially to the
organizing chair, Roseline Fernandes, who invested a lot effort for the conference to
run smoothly. We are further very grateful to Vishal Saraswat, program chair of
SPACE 2016, for his guidance and active support toward organizing SPACE 2017.
Special thanks to our general chairs, Rev. Fr. Kinley D’Cruz, Neena Panandikar, and
Sandeep Shukla, for their support and encouragement. Our sincere gratitude to Deb-
deep Mukhopadhyay, Veezhinathan Kamakoti, and Sanjay Burman for being



constantly involved in SPACE since its very inception and responsible for SPACE
reaching its current status.

Last, but certainly not least, our sincere thanks go to all the authors who submitted
papers to SPACE 2017, and to all the attendees. The conference is made possible by
you, and it is dedicated to you. We sincerely hope you find the proceedings stimulating
and inspiring.

October 2017 Sk Subidh Ali
Jean-Luc Danger

Thomas Eisenbarth

VI Preface



Organization

Honorary General Chair

Rev. Fr. Kinley D’Cruz DBCE, India

General Co-chairs

Neena Panandikar DBCE, India
Sandeep Shukla IIT Kanpur, India

Program Co-chairs

Sk Subidh Ali IIT Tirupati, India
Jean-Luc Danger Institut Mines-Telecom, France
Thomas Eisenbarth Worcester Polytechnic Institute, USA

Organizing Chair

Roseline Fernandes DBCE, India

Steering Committee

Sanjay Burman CAIR-DRDO, India
Veezhinathan Kamakoti IIT Madras, India
Debdeep Mukhopadhyay IIT Kharagpur, India

Program Committee

Sk Subidh Ali (Co-chair) IIT Tirupati, India
Reza Azarderakhsh Florida Atlantic University, USA
Lejla Batina Radboud University Nijmegen, The Netherlands
Guido Marco Bertoni STMicroelectronics, Italy
Shivam Bhasin NTU, Singapore
Swarup Bhunia University of Florida, USA
Lilian Bossuet University St. Etienne, France
Claude Carlet University of Paris, France
Rajat Subhra Chakraborty IIT Kharagpur, India
Pandu Rangan

Chandrasekaran
Indian Institute of Technology Chennai, India

Anupam Chattopadhyay NTU, Singapore
Dipanwita Roy Chowdhury IIT Kharagpur, India
Jean-Luc Danger (Co-chair) Institut Mines-Telecom, France



Thomas Eisenbarth
(Co-chair)

Worcester Polytechnic Institute, USA

Junfeng Fan Open Security Research, China
Sylvain Guilley GET/ENST, CNRS/LTCI, France
Tim Guneysu Universität Bremen, Germany
Indivar Gupta DRDO, Delhi, India
Naofumi Homma Tohoku University, Japan
Subhamoy Maitra Indian Statistical Institute, India
Bodhi Satwa Majumdar IIT Indore, India
Stefan Mangard TU Graz, Austria
Mitsuru Matsui Mitsubishi, Japan
Philippe Maurine LIRMM Montpellier, France
Debdeep Mukhopadhyay IIT Kharagpur, India
Svetla Nikova KU Leuven, Belgium
Thomas Poeppelmann Infineon Technologies, Germany
Emmanuel Prouff ANSSI, France
Bimal Roy Indian Statistical Institute, India
Kazuo Sakiyama UEC Tokyo, Japan
Somitra Sanadhya IIT Ropar, India
Vishal Saraswat Indian Statistical Institute, India
Francois-Xavier Standaert UCL Crypto Group, Belgium
Mostafa Taha Western University, Canada
Ming Tang Wuhan University, China
Carolyn Whitnall Bristol, UK
Yuval Yarom University of Adelaide, Australia
Amr Youssuf Concordia University, Canada
Yongbin Zhou CAS Beijing, China

Additional Reviewers

Alexandre Berzati
Sarani Bhattacharya
Urbi Chatterjee
Wei Cheng
Guillaume Dabosville
Joan Daemen
Nilanjan Datta
Dhananjoy Dey
S.V. Dilip Kumar
Lorenzo Grassi
Daniel Gruss
Nupur Gupta
Amir Jalali
Dirmanto Jap

Bernhard Jungk
Brian Koziel
Manoj Kumar
Yogesh Kumar
Hui Ma
Marco Martinoli
Pedro Maat Massolino
Sihem Mesnager
Yasin Muhammad
Zakaria Najm
Sikhar Patranabis
Shuang Qiu
Francesco Regazzoni
Guenael Renault

VIII Organization



Aniket Roy
Debapriya Basu Roy
Rajat Sadhukhan
Peter Schwabe
Michael Schwarz

Raphael Spreitzer
Diangarti Bhalang Tariang
Srinivas Vivek
Tim Wood
Yan Yan

Organizing Institute

Don Bosco College of Engineering, Goa, India

Organization IX



Invited Talks/Tutorials



On the (in)Security of ChaCha20
Against Physical Attacks

Shivam Bhasin

Temasek Labortaries, Nanyang Technological University Singapore
sbhasin@ntu.edu.sg

The stream cipher ChaCha20 and the Poly1305 authentication are adopted in several
products including Google Chrome [1], or OpenSSL [2] etc. For instance, Google
Chome often uses ChaCha20 for secure communication when the underlying platform
lacks hardware support for AES. The two algorithms have potential to be adopted
across multiple domains in the future. The ChaCha20-Poly1305 cipher suite is
advertised as being easier to implement in a side-channel resistant way [3], especially
compared to ciphers based on substitution permutation networks. However, the
side-channel security claim is only limited to timing based leakage. In this talk, we
investigate the security of ChaCha20 against two commonly known physical attacks:
side-channel attacks and fault attacks.

The first part focuses on power [4] or electromagnetic [5] based side-channels. The
development of the omnipresent Internet of Things (IoT), or the connected car
increases the amount of embedded appliances, which can be attacked using these
side-channels. Hence, it is important to understand the security of deployed crypto-
graphic algorithms not only against attacks on the timing side-channels but a wider
attack suite. We analyze the stream cipher ChaCha20 [3, 6] and show how the secret
key can be completely extracted. While first attack recovers the key from initial round
of ChaCha20, another attack demonstrates key retrieval exploiting the final addition.

The second part will look into active attacks realised using fault injection [7]. Often
stream ciphers are believed to be harder to attack against fault injection attacks owing
to the complexity of the required offline analysis. We propose four differential fault
analysis (DFA) attacks on ChaCha20 running on a low cost microcontroller, using the
instruction skip and instruction replacement fault models. The attacks target the key-
stream generation module at the decryption site, and entirely avoid nonce misuse. We
practically demonstrate our proposed attacks using a laser fault injection setup.

The talk is based on recent joint works. The part on side-channel attack is based on
recent work with Bernhard Jungk from NTU, Singapore [8]. Fault attacks was inves-
tigated with co-authors from IIT Kharagpur, India and NTU, Singapore [9].



References

1. Bursztein, E.: Speeding up and strengthening HTTPS connections for Chrome on Android
(2014). https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html

2. Staruch, M.: Support for ChaCha20-Poly1305 (2015). https://github.com/openssl/openssl/
issues/304

3. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF Protocols. IETF RFC 7539 (2015)
4. Kocher P., Jaffe J., Jun B.: Differential power analysis. In: Wiener, M. (eds.) CRYPTO 1999.

LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48405-1_25

5. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s). In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5_4

6. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC - The State
of the Art of Stream Ciphers (2008)

7. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic
devices: theory, practice, and countermeasures. Proc. IEEE 100, 3056–3076 (2012)

8. Jungk, B., Bhasin, S.: Don’t fall into a trap: physical side-channel analysis of
chacha20-poly1305. In: 2017 Design, Automation and Test in Europe Conference and
Exhibition (DATE). IEEE, pp. 1110–1115 (2017)

9. Kumar, S.D., Patranabis, S., Breier, J., Mukhopadhyay, D., Bhasin, S., Chattopadhyay, A.,
Baksi, A.: A practical fault attack on arx-like ciphers with a case study on chacha20. In: 2017
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). IEEE (2017)

XIV S. Bhasin

https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://github.com/openssl/openssl/issues/304
https://github.com/openssl/openssl/issues/304
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-36400-5_4


How to Digitally Construct and Validate
TRNG and PUF Primitives Which Are Based

on Physical Phenomenon?
(Tutorial)

Jean-Luc Danger

Telecom ParisTech, University Paris-Saclay, Scientific Advisor at Secure-IC
September 23, 2017

Abstract. In digital devices, the cryptographic functions are dependant on
peripheral primitives, like the True Random Number Generation (TRNG) and
Physically Unclonable Function (PUF) which generates a random number and
an identifier respectively. The source of these primitives is not defined by a
digital algorithm but comes from physical phenomenon, notably the noise.
Consequently a conversion is necessary to output a digital random number or
identifier. Indeed, these two types of primitives exploit the noise, but at different
stage. At the manufacturing stage, the variance of the manufacturing process
creates mismatches between transistors. These slight differences are fixed once
the chip is fabricated, they should be transformed by the PUF to a digital
variable when an identifer is called by the application. When the chip is in used,
the environmental noise is extracted by the TRNG to generate a digital random
number. In case of PUF, we can say that the entropy is “static”, whereas the
entropy for the TRNG is “dynamic”. The dynamic entropy is a major problem
for the PUF which is natively not steady because of the environmental noise.
The TRNG is very sensitive to an external noise, which can be malevolently
generated by an attacker, and can bias the TRNG output. Consequently, it is
necessary to add to the primitives an evaluation or correction block to detect or
enhance their behavior. This means that some tests and metrics have to be be
specified to define what is a good identifier and a good random number.

We will see in this tutorial, the different constructions of PUF and TRNG,
but also the methods to validate their quality to ensure a minimum level of trust.



Cache Attacks: From Cloud to Mobile

Thomas Eisenbarth

University of Lübeck and Worcester Polytechnic Institute
thomas.eisenbarth@uni-luebeck.de

Abstract. The microarchitecture of modern CPUs features many optimizations
that result in data-dependent runtime behavior. Data-dependent execution
behavior can result in information leakage, enabling malicious co-located pro-
cesses to overcome logical isolation boundaries of hypervisors and operating
systems. For instance, cache attacks that exploit access time variations when
retrieving data from the cache or the memory are a powerful tool to extract
critical information such as cryptographic keys from co-located processes.

This tutorial introduces several methods of how to exploit cache-based side
channels. Modern attacks and their behavior in various application scenarios,
from cloud to mobile and embedded processors will be discussed. It will be
shown of the introduced techniques can be applied to extract sensitive infor-
mation from a co-located processes or VMs across cores and even across pro-
cessor boundaries and how such attacks can be prevented.



May the Fourth Be With You:
A Microarchitectural Side Channel Attack

on Several Real-World Applications
of Curve25519

Daniel Genkin1,2 Luke Valenta1, and Yuval Yarom3,4

1 University of Pennsylvania
{danielg3,lukevg}@cis.upenn.edu

2 University of Maryland
3 University of Adelaide
yval@cs.adelaide.edu.au

4 Data 61, CSIRO

In recent years, applications increasingly adopt security primitives designed with
better countermeasures against side channel attacks. A concrete example is
Libgcrypt’s implementation of ECDH encryption with Curve25519. The
implementation employs the Montgomery ladder scalar-by-point multiplication,
uses the unified, branchless Montgomery double-and-add formula and imple-
ments a constant-time argument swap within the ladder. However, Libgcrypt’s
field arithmetic operations are not implemented in a constant-time side-
channel-resistant fashion.

Based on the secure design of Curve25519, users of the curve are advised
that there is no need to perform validation of input points. In this work we
demonstrate that when this recommendation is followed, the mathematical
structure of Curve25519 facilitates the exploitation of side-channel weaknesses.

We demonstrate the effect of this vulnerability on three software applica-
tions—encrypted git, email and messaging—that use Libgcrypt. In each case,
we show how to craft malicious OpenPGP files that use the Curve25519 point of
order 4 as a chosen ciphertext to the ECDH encryption scheme. We find that the
resulting interactions of the point at infinity, order-2, and order-4 elements in the
Montgomery ladder scalar-by-point multiplication routine create side channel
leakage that allows us to recover the private key in as few as 11 attempts to
access such malicious files.



Parameter Choices for LWE

Mike Hamburg

Rambus, USA

Abstract. All widely-deployed public-key encryption algorithms are threatened
by the possibility of a quantum computer that can run Shor’s algorithm. The
most popular approach for future, “post-quantum” encryption is the “learning
with errors” (LWE) problem, and its variants Ring-LWE, Module-LWE,
Integer-Module-LWE, etc. Compared to elliptic curves, LWE systems are tricky
to parameterize. The relationship between the parameters and the security they
provide is complex, and there is also the threat of attacks based on decryption
failures.

In this talk, I will cover how to choose parameters for LWE systems. I will
focus especially on how to estimate failure probabilities, and the difficulty of
attacks based on decryption failure.



IoT Insecurity – Innovation
and Incentives in Industry

Axel Y. Poschmann

DarkMatter, Abu Dhabi, United Arab Emirates

Abstract. Why is the Internet of Things going to be a security and privacy
nightmare (it is already, but we have only seen the beginning)? What does it
have to do with disruptive innovation, incentives in industry, time-to-market
trade-offs, and quantifiability? This talk—a collection of thoughts and obser-
vations, really—walks along these questions to conclude with a set of promising
research directions.



Hardware Enabled Cryptography:
Physically Unclonable Functions

and Random Numbers as Roots of Trust

Ingrid Verbauwhede

KU Leuven – COSIC
Ingrid.verbauwhede@esat.kuleuven.be

Abstract. Intelligent things, medical devices, vehicles and factories, are all part
of so-called cyber-physical systems. These systems will only be secure if we can
build devices that can perform the mathematically demanding cryptographic
protocols and algorithms in an efficient way in an embedded context. Unfor-
tunately, many of devices operate under extremely limited power, energy and
area constraints. At the same time, we request that the implementations are also
secure against a wide range of physical attacks and that keys or other sensitive
material are stored securely. Often forgotten but of utmost important are the
sources of randomness to support the cryptographic protocols and algorithms.
This will be the focus of this presentation. We will therefore focus on two roots
of trust: Physically Unclonable Functions and True Random Number generators.
We will discuss design principles and how to make them suit embedded devices.
We will explain how they can fit in FPGA or ASIC. We will also discuss
possible attacks and test strategies. We will include myths and realities and
discuss future trends for PUF and TRNGs.

Acknowledgements. This research summarizes the work of several PhD students, who are
gratefully acknowledged. The research is funded in part by the Research Council KU Leuven:
C16/15/058, and the Horizon 2020 research and innovation programs under grant agreement No
644052 HECTOR and Cathedral ERC Advanced Grant 695305.



Efficient Side Channel Testing
of Cryptographic Devices Using TVLA

(Tutorial)

Gary Kenworthy

Rambus Cryptography Research
gkenworthy@rambus.com

Abstract. Power and EM side channels are very powerful attack vectors for
cryptographic devices. Protecting against these attacks is an important design
consideration for any cryptographic implementation, and validating the effec-
tiveness of countermeasures is critical to verify their effectiveness. Whereas an
attacker has potentially unlimited time and resources to mount an attack, the
validation against such attacks must be done in an efficient and cost effective
way. Test Vector Leakage Assessment (TVLA) is a methodology that can “level
the field” and provide an objective, quantified assessment of leakage and the
protection afforded by the design. In this tutorial, we will first review the risks of
simple power analysis (SPA) and differential power analysis (DPA) and their
EM counterparts (SEMA and DEMA). The concepts behind TVLA will be
presented, with case studies and demonstrations correlating the TVLA mea-
surements with actual attacks. TVLA measurements will be demonstrated on
protected and unprotected hardware cores. Limitations and cautions of using
TVLA will also be discussed.



Contents

An Industrial Outlook on Challenges of Hardware Security
in Digital Economy—Extended Abstract—. . . . . . . . . . . . . . . . . . . . . . . . . 1

Shivam Bhasin, Victor Lomné, and Karim Tobich

The Crisis of Standardizing DRM: The Case of W3C Encrypted
Media Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Harry Halpin

Tackling the Time-Defence: An Instruction Count Based
Micro-architectural Side-Channel Attack on Block Ciphers. . . . . . . . . . . . . . 30

Manaar Alam, Sarani Bhattacharya, and Debdeep Mukhopadhyay

Hey Doc, Is This Normal?: Exploring Android Permissions
in the Post Marshmallow Era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Efthimios Alepis and Constantinos Patsakis

Efficient Software Implementation of Laddering Algorithms
Over Binary Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Diego F. Aranha, Reza Azarderakhsh, and Koray Karabina

Analysis of Diagonal Constants in Salsa . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Bhagwan N. Bathe, Bharti Hariramani, A.K. Bhattacharjee,
and S.V. Kulgod

Practical Fault Attacks on Minalpher: How to Recover Key
with Minimum Faults?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Avik Chakraborti, Nilanjan Datta, and Mridul Nandi

eSPF: A Family of Format-Preserving Encryption Algorithms
Using MDS Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Donghoon Chang, Mohona Ghosh, Arpan Jati, Abhishek Kumar,
and Somitra Kumar Sanadhya

Similarity Based Interactive Private Information Retrieval . . . . . . . . . . . . . . 151
Sashank Dara and V.N. Muralidhara

A Secure and Efficient Implementation of the Quotient Digital
Signature Algorithm (qDSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Armando Faz-Hernández, Hayato Fujii, Diego F. Aranha,
and Julio López

http://dx.doi.org/10.1007/978-3-319-71501-8_1
http://dx.doi.org/10.1007/978-3-319-71501-8_1
http://dx.doi.org/10.1007/978-3-319-71501-8_2
http://dx.doi.org/10.1007/978-3-319-71501-8_2
http://dx.doi.org/10.1007/978-3-319-71501-8_3
http://dx.doi.org/10.1007/978-3-319-71501-8_3
http://dx.doi.org/10.1007/978-3-319-71501-8_4
http://dx.doi.org/10.1007/978-3-319-71501-8_4
http://dx.doi.org/10.1007/978-3-319-71501-8_5
http://dx.doi.org/10.1007/978-3-319-71501-8_5
http://dx.doi.org/10.1007/978-3-319-71501-8_6
http://dx.doi.org/10.1007/978-3-319-71501-8_7
http://dx.doi.org/10.1007/978-3-319-71501-8_7
http://dx.doi.org/10.1007/978-3-319-71501-8_8
http://dx.doi.org/10.1007/978-3-319-71501-8_8
http://dx.doi.org/10.1007/978-3-319-71501-8_9
http://dx.doi.org/10.1007/978-3-319-71501-8_10
http://dx.doi.org/10.1007/978-3-319-71501-8_10


Variable-Length Bit Mapping and Error-Correcting Codes
for Higher-Order Alphabet PUFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Vincent Immler, Matthias Hiller, Qinzhi Liu, Andreas Lenz,
and Antonia Wachter-Zeh

Mutual Friend Attack Prevention in Social Network Data Publishing . . . . . . . 210
Kamalkumar R. Macwan and Sankita J. Patel

Short Integrated PKE+PEKS in Standard Model . . . . . . . . . . . . . . . . . . . . . 226
Vishal Saraswat and Rajeev Anand Sahu

Differential Fault Attack on Grain v1, ACORN v3 and Lizard . . . . . . . . . . . 247
Akhilesh Siddhanti, Santanu Sarkar, Subhamoy Maitra,
and Anupam Chattopadhyay

Certain Observations on ACORN v3 and the Implications
to TMDTO Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Akhilesh Anilkumar Siddhanti, Subhamoy Maitra, and Nishant Sinha

Efficient Implementation of Private License Plate Matching Protocols . . . . . . 281
Harshul Vaishnav, Smriti Sharma, and Anish Mathuria

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

XXIV Contents

http://dx.doi.org/10.1007/978-3-319-71501-8_11
http://dx.doi.org/10.1007/978-3-319-71501-8_11
http://dx.doi.org/10.1007/978-3-319-71501-8_12
http://dx.doi.org/10.1007/978-3-319-71501-8_13
http://dx.doi.org/10.1007/978-3-319-71501-8_14
http://dx.doi.org/10.1007/978-3-319-71501-8_15
http://dx.doi.org/10.1007/978-3-319-71501-8_15
http://dx.doi.org/10.1007/978-3-319-71501-8_16


An Industrial Outlook on Challenges
of Hardware Security in Digital Economy

—Extended Abstract—

Shivam Bhasin1(B), Victor Lomné2, and Karim Tobich3

1 Temasek Laboratories, Nanyang Technological University,
Singapore, Singapore
sbhasin@ntu.edu.sg

2 NinjaLab, Montpellier, France
victor@ninjalab.fr

3 UL Transaction Security, Basingstoke, UK
karim.tobich@ul.com

Thanks to the seminal works of Kocher on side-channel attacks [1,2] and
Boneh et al. on fault injection attacks [3] in the 1990s, the domain of phys-
ical attacks has emerged as an active research domain as well as a potential
threat on commercial devices. Practical hacks using physical attacks have been
demonstrated on commercial products like NXP MiFare [4], KEELOQ [5], Sony
PlayStation, etc. The threat becomes even bigger with the emergence of the
Internet of Things (IoT), digital economy and identity. Digital economy is a
push towards cashless society, encouraging digital banking with use of modern
payment methods based on smartcards and now smartphones. Digital identity
now uses biometric data, like fingerprints, to authenticate people. Several gov-
ernments are giving a push for digital economy and identity. This has led to rapid
adoption of mobile payments, cashless solutions, biometric identities. Often bio-
metrics are linked to payment solution.

However, the deployed systems must be secure and trusted to avoid frauds
and malicious exploitation. This is even more relevant now as the attackers have
cyber as well as physical access to the devices (credit cards, passports, smart-
phones, etc.) and almost unlimited attack time (as the lifetime of banking cards
and passports are of several years). The objective of this work is to give a high-
level overview on how manufacturers, evaluation laboratories and certification
schemes are assessing the security of such products. The overview is divided in
two distinct parts: payment solution and biometric passport.

The first part will present the certification process of a Secure Element (SE)
in banking evaluation context. It will start with a review of the banking trans-
action flow, based on a contact protocol. Then a practical banking evaluation
process will be described from an evaluation lab, by giving concrete examples
of assessment on some EMVCo [6,7], VISA [8] or MasterCard applications [9].
The concept of successful evaluation will be discussed as well.

The second part will present the certification process of a Common Criteria
evaluation of a biometric passport. First some basics about Common Crite-
ria certification will be given, explaining how it works, and how the different

c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 1–9, 2017.
https://doi.org/10.1007/978-3-319-71501-8_1



2 S. Bhasin et al.

stakeholders interact with each other (manufacturer, evaluation laboratory, cer-
tification scheme). Then a concrete example of a biometric passport certification
will be described, explaining the different tasks performed to assess its security.

1 A Successful Evaluation of a Banking Transaction

1.1 Three Parties’ Process

To reduce the risk of bribery or corruption and keep independence between
certification body and client, the industry pushed to have a three party process
with the creation of evaluation labs. These labs are paid by customers to assess
their products but they are under the authority and agreement of the certification
body. This means that without agreement there is no work for them and without
customers there is no revenue. A service based on a trust and a business to
business model (B2B) became a reference, since quite a while now at least in the
security domain. As a main role, the certification bodies are leading the industry
by setting consortium and creating specifications and reference documents. They
are assessing labs to give them the accreditation, or getting it back. They are
reviewing the evaluation labs reports and guiding them about any new attack
techniques that need to be used within these evaluations. The evaluation labs
need to please to customers to get revenue but are watched by the certification
body to do a proper assessment. They have to innovate by following the scheme
recommendation but as well based on their own expertise and their own proper
R&D and innovation strategy.

1.2 Banking Transaction Flow

As any industrial process, a strong flow was implemented and has been updated
over the time to meet the market demand. The security was the main concern
and is still the case over all these updates. A global view of this transaction flow
is given in Fig. 1(a).

Based on the Application Data Protocol Unit (APDU) the transaction is
initiated by the terminal using a set of library command (see Fig. 1(b)). This
step is used to SELECT the right payment application as the card may have
different ones (credit, debit . . . ) followed by a GET PROCESSING OPTIONS
to initiate the application by incrementing the Application Transaction Counter
(ATC). This is updated for each new transaction which make it unique and secure
against any replay attack. A read application data is performed by using a READ
RECORD command to get all these data related to the card capabilities such as
the Primary Account Number (PAN), the Card Risk Management (CRM) and
other details as the Application Interchange Profile (AIP) that might be needed
for the transaction. The INTERNAL AUTHENTICATE command initiates the
computation of the Signed Dynamic Application Data to perform an Offline Data
Authentication. Depending on the capabilities of the card and the terminal, a
Static Data Authentication (SDA) or a Dynamic Data Authentication (DDA) or



An Industrial Outlook on Challenges of Hardware Security 3

Fig. 1. (a) Transaction flow, (b) command library

a Combined Dynamic Data Authentication/Application Cryptogram Generation
(CDA) will be performed to authenticate the application.

Next, a processing restrictions function is performed to determine the degree
of compatibility of the application in the terminal with the application in the
Integrated Circuit Card (ICC) and to make any necessary adjustments, includ-
ing possible rejection of the transaction. The Cardholder verification is then
performed to ensure that the person presenting the ICC is the person to whom
the application in the card was issued. Based on the Cardholder Verification
Methods (CVM) the terminal will ask for a paper signature or a PIN verifica-
tion by using a VERIFY command. This one can be processed offline or online.
A terminal risk management is then performed to ensure that transactions ini-
tiated from the ICC go online periodically to protect against threats. It consists
of: A floor limits checking, a random transaction selection and usually a velocity
checking. These checks will be performed by using GET DATA command.

Further, the terminal and card action analysis is performed. This starts with
the terminal, which will make the first decision as to whether the transaction
should be approved offline, declined offline, or transmitted online. Followed by
the ICC that may decide to complete a transaction online with an Authorisation
ReQuest Cryptogram (ARQC) or offline with a Transaction Certificate (TC) or
reject it with an Application Authentication Cryptogram (AAC). This will be
done by using a GENERATE AC (Application Cryptogram) command, com-
monly known as 1st GAC. Online processing is performed to ensure the issuer



4 S. Bhasin et al.

can review and authorise or reject transactions that are outside acceptable limits
of risk defined by the issuer, the payment system, or the acquirer. As a response
the issuer may generate an Authorisation ResPonse Cryptogram (ARPC) to val-
idate the transaction. The terminal shall issue then an EXTERNAL AUTHEN-
TICATE command to the card only if the card indicates in byte 1 bit 3 of
the Application Interchange Profile (AIP) that it supports issuer authentication
using the EXTERNAL AUTHENTICATE command. Followed by the genera-
tion of an AC using a GENERATE AC (Application Cryptogram) to complete
and accept the transaction with a Transaction Certificate (TC) or reject it with
an Application Authentication Cryptogram (AAC). This is usually called the 2nd

GAC. A completion step will be done with a last variables update. It closes the
processing of a transaction. A script processing may then be performed.

1.3 Banking Evaluation Process

To be able to assess deeply the security of a product, a white box evaluation is
considered since few years now. Under a Non-Disclosure Agreement (NDA), an
evaluation lab can have access to the source code, analyses it and highlights the
finding to the customer. This can be done in the client premise or in the evalu-
ation lab. This vulnerability analysis will lead to a list of findings and different
phases of attacks. These could be classified as software attack using malwares
and Application Protocol Data Unit (APDU) command, or more hardware and
firmware attacks using side-channel attack and fault injection techniques. A com-
bined attack regrouping software and hardware attacks could be used as well to
assess the security of a product. Each command may contain different assets and
each asset is associated with a level:

– A primary level is: a successful attack on the asset breaks the core security
level expected from the application and may lead to harmful consequences
for the payment process. Compromising a primary asset leads to a security
evaluation failure.

– A secondary level is: a successful attack on the asset may expose a primary
asset. Compromising a secondary asset usually leads to a specific notice in
the evaluation report.

The level of these assets varies from one application to another and from one
scheme to another due to their specific implementation.

To maintain a high level of security, security architects and developers need
to follow different guidelines. Some are more related to the core of the secu-
rity, whereas some are more related to a performance issues, pushing security
architects and developers to balance between security and performance.

As an example of recommendation the following could be considered as
generic guidance to protect assets against software attacks, side-channel attacks
and fault injection attacks:

– Every time the platform or the application is run, raise security errors upon
detection of a configuration not compliant with the functional specifications.



An Industrial Outlook on Challenges of Hardware Security 5

– Every time an APDU command is received by the platform or by the appli-
cation, raise security errors upon detection of parameter combinations not
compliant with the functional specifications.

– When possible, implement checks to any functions that have assumptions on
parameters and execution context.

– Make all operations on sensitive data independent of the sensitive
data value from the attacker’s perspective: timing, power consumption
level/electromagnetic emanation level.

– Avoid implementing two consecutive operations on sensitive data that provide
exactly the same electrical or electromagnetic behavior, such as
• Adding random masking
• Involving changing parameters in calculations (such as in counters)

– Reduce freedom on chosen input format on sensitive data with values known
or unknown to the attacker.

– Make time synchronization with the targeted operation difficult for the
attacker.

– Cross-check every sensitive operation, such as:
• Redundancy
• Complementary checks (such as RSA verification after signature)

– Cross-check every sensitive data value (such as integrity checking).
– Cross-check program execution, such as: sequence of instructions, function

calls.
– Add hidden dummy operations with random timing.
– Add global random execution time of operations.

The evaluation laboratories will have the mission to assess the conformity of
the implementation with these security guidelines and mainly the one related
to the core security. This will be done using tools and techniques which are
at the state of the art. Nowadays a laboratory who hasn’t got these tools or
equipments can be under surveillance process and can loose its accreditation. As
well as the expertise of the evaluators and their skills sets need to be considered
to keep an accreditation. In fact, to keep a consensus between evaluation labs,
certification labs and schemes started setting skills matrix and jobs descriptions
to differentiate proficient form expert and senior expert in their accredited labs.
Skills matrix and job specification to define a real expert in their accredited labs.
From tools perspective, the major needed ones are listed by the scheme or the
certification lab, the following ones can be considered as a generic example. The
pattern recognition tool used to detect and find targeted timing area and avoid
any random jitter, the tearing card mechanism tools to interrupt the saving
process of the any fault detection counters and extend the sample live time, the
bandwidth frequency analyser tool to reduce the noise and distinguish operations
such cryptographic operations . . . these tools are common for side-channel and
fault injection attacks.

Specific benches might be used to assess a product these could be based on
Electromagnetic fault injections [10], glitching using the FBBI or RBBI tech-
nique [11], some recent research highlighted the use of X-ray tools to reprogram
a circuit [12], some labs may use Infrared laser or blue laser instead, but the most
common goal is to fire with 3 or 4 spots as the circuits are more and more based



6 S. Bhasin et al.

Fig. 2. Multi-spot laser system

on multi-core architecture or on hardware redundancy security mechanism. The
first 2 spots will be on the targeted area and its redundancy, while the 3rd one
on the cross-check operation (See Fig. 2 [13,14]). Side-channel technique are as
well used to assess the code execution leakage different attack technique are used
DPA, DEMA, HO, and recently the deep learning.

1.4 Concept of Successful Evaluation

Concept of successful evaluation is a complex notion. In fact, as the evaluation is
a three parties process, each of them will have its own goal and criteria of success.
For sure the main goal will be to ensure that the product will not be hacked
during its lifetime in the market. But this is an absolute goal shared by the three
entities. In day to day work, the manufacturer will push to spend less time on
evaluation as the market is not going to wait for them. A successful evaluation
will be a quick one with minor findings which will keep or set them as pioneer
in the market with this product. From an evaluation lab, a successful evaluation
will be based on different findings which will induce proper break during the
attack phase. These could be on primary assets or secondary assets. From a
certification lab or scheme, a successful evaluation will be based on good report
highlighting the findings and the patches that have been applied, along with the
techniques and tools that has been used and deployed for that assessment.

2 Common Criteria Certification of a Smartcard -
Application to Biometric Passport

Common Criteria is an international standard (ISO/IEC 15408) for IT products
security certification. It is especially used for assessing the security of embedded



An Industrial Outlook on Challenges of Hardware Security 7

devices like smartcards and similar products, e.g. biometric passport. More pre-
cisely, Common Criteria works as a framework in which:

1. Users specify their security requirements
2. Vendors implement the security requirements in their products
3. Evaluation laboratories evaluate the security of the products
4. Certification bodies certify the products security by checking the correctness

of all steps.

Among the key concepts, the Target Of Evaluation (TOE) is (a part of) the
product that is the subject of the evaluation, e.g. the biometric passport and
its environnment. The Security Target (ST) is a document that identifies the
security properties of the TOE, and may refer to a Protection Profile (PP).

A PP is a document, typically created by a user or users community, which
identifies security requirements for a class of security devices. For instance PP
for biometric passport can be found at [15].

Common Criteria provides key documents defining an evaluation methodol-
ogy where six different classes must be verified, each one being linked to a step
of the product development or to its features. Whereas five classes check TOE
conformity, one class checks the TOE security (AVA VAN), in regards to the ST.
Furthermore, for every Common Criteria certification, an Evaluation Assurance
Level (EAL) is defined. EAL can be seen as a global rating of the classes, where
each class has to reach a certain value.

For the certification of smartcards and similar devices like biometric passport,
the final product usually follows several certification steps. First the security
Integrated Circuit (IC) developed by an IC manufacturer is evaluated, in regards
of the security of its hardware functionalities (e.g. CPU, RAM, non volatile
memory, cryptographic co-processors, ...).

Once the security IC is certified, a smartcard vendor develops an Operat-
ing System (OS) and a dedicated application (in our case a biometric passport
application) on top of the IC. The full product follows then a second evaluation
procedure. This concept is called a composite evaluation, where an evaluation
of a product relies on the certification of a part of the product.

When assessing the security of smartcards and similar products, a specific
methodology has to be used [16], where several attack paths have to be con-
sidered. More precisely, physical attacks (microprobing, FIB attack, memory
reading attack, ...), perturbation attacks (glitch, laser, electromagnetic injec-
tion), fault based cryptanalysis, side-channel attacks and software attacks are
applied to the TOE.

When an attack is successful, its rating is computed by considering two steps:

1. Identification: effort required to imagine, develop and apply the attack to the
TOE for the first time.

2. Exploitation: effort required to apply the attack to the TOE by knowing the
methodology developed in the identification step.



8 S. Bhasin et al.

An attack is divided in attack factors, allowing to evaluate the difficulty of
the different attack aspects. The more an attack factor is difficult to apply, the
more its rating is high. The full rating of an attack is obtained by summing the
rating of all attack factors of both steps.

If one successful attack has a rating higher than the one defined by the EAL
the TOE has to reach, then the evaluation is not successful. In this case, the
developer can patch its product, and the evaluation laboratory has to perform
once again the attack to check that the patch corrects the vulnerability previ-
ously discovered.

Finally, when no attack is successful, or has a rating higher than the one
defined by the EAL, then the TOE can be certified.

3 Conclusion

A brief overview of process followed by industry and challenges faced to eval-
uate a secure product. In particular, the overview covers two key components
of a digital economy, payment and identity. The first part discusses aspects of
certifying a SE in context of banking and payment evaluation. Next, the role of
Common Criteria is discussed in evaluation of a smart card oriented for biomet-
ric passport. Owing to these certification and trusted processes, the foundation
of a safe and secure digital economy can be realised.

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

2. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic
protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp.
37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 4

4. de Koning Gans, G., Hoepman, J.-H., Garcia, F.D.: A practical attack on the
MIFARE classic. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 267–282. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85893-5 20

5. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A practical
attack on KeeLoq. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 1

6. EMV Book 2 - Integrated Circuit Card Specifications for Payment Systems - Secu-
rity and Key Management v4.2 (2011). https://www.emvco.com/

7. EMV Book 3 - Integrated Circuit Card Specifications for Payment Systems - Appli-
cation Specification v4.3 (2011). https://www.emvco.com/

8. VISA. https://technologypartner.visa.com/Library/
9. PayPass-M/Chip Requirements. https://www.paypass.com/PP Imp Guides/PayP

ass-MChip-Requirements-2013.pdf

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-540-85893-5_20
https://doi.org/10.1007/978-3-540-85893-5_20
https://doi.org/10.1007/978-3-540-78967-3_1
https://www.emvco.com/
https://www.emvco.com/
https://technologypartner.visa.com/Library/
https://www.paypass.com/PP_Imp_Guides/PayPass-MChip-Requirements-2013.pdf
https://www.paypass.com/PP_Imp_Guides/PayPass-MChip-Requirements-2013.pdf


An Industrial Outlook on Challenges of Hardware Security 9

10. Poucheret, F., Tobich, K., Lisarty, M., Chusseauz, L., Robissonx, B., Maurine, P.:
Local and direct EM injection of power into CMOS integrated circuits. In: FDTC,
pp. 100–104. IEEE, Nara (2011). http://ieeexplore.ieee.org/document/6076472/

11. Tobich, K., Maurine, P., Liardet, P.-Y., Lisart, M., Ordas, T.: Voltage spikes on
the substrate to obtain timing faults. In: 2013 Euromicro Conference on Digital
System Design, DSD 2013, Los Alamitos, CA, USA, pp. 483–486, 4–6 September
2013. http://ieeexplore.ieee.org/document/6628318/

12. Anceau, S., Bleuet, P., Clédière, J., Maingault, L., Rainard, J., Tucoulou, R.:
Nanofocused X-ray beam to reprogram secure circuits. In: Fischer, W., Homma, N.
(eds.) CHES 2017. LNCS, vol. 10529, pp. 175–188. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66787-4 9

13. https://www.errol-laser.com/
14. http://www.alphanov.com/
15. Biometric passport Protection Profile. https://www.sogis.org/uk/pp en.html
16. Application of Attack Potential to Smartcards. https://www.sogis.org/documents/

cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v2-9.pdf

http://ieeexplore.ieee.org/document/6076472/
http://ieeexplore.ieee.org/document/6628318/
https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1007/978-3-319-66787-4_9
https://www.errol-laser.com/
http://www.alphanov.com/
https://www.sogis.org/uk/pp_en.html
https://www.sogis.org/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v2-9.pdf
https://www.sogis.org/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v2-9.pdf


The Crisis of Standardizing DRM: The Case
of W3C Encrypted Media Extensions

Harry Halpin(B)

Inria, 2 rue Simone Iff, 75012 Paris, France
harry.halpin@inria.fr

Abstract. The process of standardizing DRM via the W3C Encrypted
Media Extensions (EME) Recommendation has caused a crisis for W3C
and potentially other open standards organizations. While open stan-
dards bodies are considered by definition to be open to input from
the wider security research community, EME led civil society and secu-
rity researchers asking for greater protections to be positioned actively
against the W3C. This analysis covers both the procedural issues in open
standards at the W3C that both allowed EME to be standardized as well
as for vigorous opposition by civil society. The claims of both sides are
tested via technical analysis and quantitative analysis of participation in
the Working Group. We include recommendations for future standards
that touch upon some of the same issues as EME.

Keywords: Digital Rights Management · W3C · Security · Privacy ·
Standardization

1 Introduction

Encrypted Media Extensions (EME) has been recommended by Tim Berners-
Lee in his role as director of the World Wide Web Consortium (W3C) as the first
official Web standard for Digital Rights Management (DRM).1 This has been a
controversial decision: A large number of security researchers, ranging from Ron
Rivest to Bruce Schneier, have signed a petition demanding the W3C not rec-
ommend Encrypted Media Extensions until protections for security researchers
could be put into place, as suggested by a “covenant” put forward by the Elec-
tronic Frontier Foundation [8].

Encrypted Media Extensions (EME) is the only standard to enable DRM
across all major web browsers (including Google, Microsoft, Apple, and Mozilla),
deploying an open standards body to enable spread of DRM, a technology tradi-
tionally associated with preventing open access to information. It is also the only
Web standard to lead to street protests outside of the office of W3C/MIT,2 state-
ments from civil society and academics against standardizing EME, and massive

1 https://lists.w3.org/Archives/Public/public-html-media/2017Jul/0000.html.
2 On a personal aside, including my resignation from W3C staff.

c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 10–29, 2017.
https://doi.org/10.1007/978-3-319-71501-8_2

https://lists.w3.org/Archives/Public/public-html-media/2017Jul/0000.html


The Crisis of Standardizing DRM 11

negative feedback on social media. Although EME was eventually in 2017 even-
tually approved by Tim Berners-Lee as a W3C Recommendation, overriding
the objections, the repercussions of this decision could threaten the continued
existence of W3C itself in the future.

The crisis brought about by standardizing DRM at the W3C goes beyond the
particulars of the W3C and EME, as the entire episode shows the benefits and
difficulties of an open standards process where civil society, security researchers,
and the private sector all can directly participate. Open standards are defined as
“open” in terms of participation, in contrast to “closed” standards bodies such
as the ITU or ISO where participation requires government status. While open
standards are typically required by commercial actors for anti-trust reasons,
open processes also tend to be good practice from a security perspective, as the
review of multiple experts typically discovers security flaws. However, when an
open standards body like the W3C decides to standardize DRM at the bequest
of a few actors in private industry, despite many security researchers protesting
that EME will lead to increased security vulnerabilities, what can and should
be done in terms of standardization?

Judging the harm to users caused by enabling a new capability that also
introduces a new attack surface in a browser is not a straightforward trade-off,
but requires serious analysis of both technical and social claims in the process
of security standardization. After first exploring the often labyrinthine process
of standardization at the W3C in Sect. 2, we’ll explore the Encrypted Media
Extension standard itself, including its relationship to HTML5 in Sect. 4. This
lets us analyze each of the arguments made both for and against standardizing
EME in Sect. 5. Section 6 presents a data analysis of the mailing-lists to validate
claims around the composition and participation of the W3C Working Group
that standardized EME. Lastly, we’ll suggest ways forward to avoid the problems
inherent in standardizing DRM in security standards in general in Sect. 7 before
summarizing our findings in Sect. 8.

2 The World Wide Web Consortium

The World Wide Web Consortium is one of the pre-eminent standards bodies of
the Internet, founded by Tim Berners-Lee in 1994 as a “break away” standards
organization from the IETF (Internet Engineering Task Force) [4]. The W3C
would specialize in web standards focused on the application layer in the browser,
in contrast to standards focused on the networking layer as done in the IETF.
The W3C is a “virtual organization” that maintains no official incorporated
(non-profit or otherwise) status, and does not even have its own bank account,
instead relying on its hosts and offices. This is unusual among standards bodies,
as the IETF has its bank accounts ran through the Internet Society (ISOC),
an officially registered non-profit. Unlike ISOC’s relationship to the IETF, the
W3C is a sponsored research activity within MIT (similar to a DARPA or NSF
contract). As global headquarters of W3C, MIT maintains three host agreements
with Keio, Beihang, and ERCIM (France) for regional hosts. The costs of running



12 H. Halpin

the consortium are paid by annual re-occurring membership dues from their (as
of July 2017) 475 members, where the dues range from 77,000 USD for a large
enterprise to 7,900 USD for non-profits and government agencies (although costs
are lower developing countries).3 The revenue from membership dues primarily
goes to pay W3C employees and the corresponding overhead costs from their
host. The W3C staff are paid to be neutral technical and administrative arbiters,
which the W3C states justifies the cost of membership.

3 W3C Patent Policy

A crucial advantage to W3C membership is that the W3C is in effect a patent
pool for the World Wide Web.4 W3C standards are explicitly licensed by W3C
members under a royalty-free license.5 In contrast, the IETF “Note Well” policy
simply requires disclosure of known patents by individuals.6 The much stronger
W3C policy essentially creates a kind of “patent war-chest” composed of all
W3C standards, from XML to HTML5. This patent war-chest is then enforced
by a ‘balance of terror’ so that any member that makes a patent claim on a W3C
standard triggers their loss of royalty-free licensing for all W3C standards.

This patent policy is purported to defend W3C members against patent
trolls, and as most large Silicon Valley companies (with the noticeable absence
of Amazon, but including Google, Microsoft, Oracle, IBM, Apple, and the like)
are members of the W3C, one likely result of the Royalty-Free licensing policy is
to prevent lawsuits between W3C members as well. It can even be hypothesized
that this is one explanation for the success of Javascript as a common cross-
platform programming language, a role originally envisioned to be that of Java.

One of the victories of the W3C is the preservation and extension of the Web
as one of the world’s largest and continually evolving programming platform
that is not under the control of a single vendor. Given the history of patents
stifling innovation and deployment in cryptography, ranging from the RSA to
Schnorr to Certicom patents, there has been moves to even add work such as
Curve 25519 to the W3C Web Cryptography API solely in order to provide
patent protection.7

3.1 W3C Process

Another benefit of open standards bodies such as the W3C and IETF is gover-
nance. For the W3C, this is defined by the W3C Process Document, an elab-
orate document that is updated nearly yearly, although most of the process of
standardization has remained nearly the same since the W3C was founded [15].

3 https://www.w3.org/Consortium/membership.
4 Note that a patent holder can still claim patent infringement even if an idea is

embodied in a standard (such as an IETF RFC) and in open source code.
5 https://www.w3.org/Consortium/Patent-Policy-20040205/.
6 http://www.rfc-editor.org/rfc/rfc3979.txt.
7 https://www.w3.org/2014/08/18-crypto-minutes.html.

https://www.w3.org/Consortium/membership
https://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.rfc-editor.org/rfc/rfc3979.txt
https://www.w3.org/2014/08/18-crypto-minutes.html


The Crisis of Standardizing DRM 13

In contrast to the IETF’s slogan of “We reject kings, presidents, and voting ...
we believe in rough consensus and running code,” the W3C is ran as a sort of
parliamentary monarchy, with all decisions ultimately resting on the authority
of the Director, who has always been Tim Berners-Lee. There is no way to nom-
inate another Director or transition plan if he departs from the role. Although
the Director ultimately makes all decisions, his decisions are ratified and voted
on by the W3C Advisory Committee, where each W3C member gets a single
vote regardless of the type or size of the member. For example, in the Advisory
Committee, both Google and the EFF have a single vote. The goal of the W3C is
to make decisions by consensus, with the Director being able to override any lack
of consensus, although members can launch a “formal objection” that requires
the Director and W3C staff to provide an official written comment on why the
objection has been overridden in their decision-making.

In order to create a new standard, the W3C runs workshops with open invi-
tations (as the “open invitation” is needed to recruit new dues-paying members)
in order to determine if there is enough momentum for standardization. If suc-
cessful, the W3C staff and Director create a charter for a new W3C Working
Group, with the charter going out to the Advisory Committee for approval via
voting. If the vote garners a substantial amount of approval, the Working Group
is launched and W3C members may join, as long as they commit their patents
to the charter of the Working Group (as the standard itself does not yet exist
yet). Eventually, a draft of the standard is matured by the Working Group to
be a Candidate Recommendation after the text of the standard is considered
complete in terms of features by the Working Group and interoperability has
been shown for each feature by at least two implementations.

If the membership agrees with continuing the standardization process, the
standard becomes a Proposed Recommendation, which is expected to be stable
(as textual stability is needed for the royalty-free patent licensing) and pre-
sented for an Advisory Committee vote. During this stage, it is expected that
each W3C member that votes on the standard is prepared to commit its patents
to the Proposed Recommendation. If the vote is successful, the finalized stan-
dard is published as an official W3C Recommendation.8 In order to update a
standard, the Working Group must be rechartered and the another vote must
go on, although the Working Group may begin again directly at the Candidate
Recommendation phase [15].

3.2 HTML and EME at the W3C

While having democratic features, the power of determining what precisely to
standardize in the traditional W3C process lies entirely with the W3C staff and
the Director, as there is no ability for members to vote to create a new Working

8 Note that patent protections are not given by all W3C member companies, but only
those that commit to the final vote. Therefore, this considerably weakens the patent
protections, as they are effectively “opt-in.”.



14 H. Halpin

Group Charter.9 After the success of W3C XML, the W3C decided to stop
development of HTML in 2000 and replace HTML with XHTML. Although the
XHTML 1.0 W3C Recommendation was finished in 2002 with modest deploy-
ment, the work started at W3C on a XHTML 2.0 standard had no backing
or implementation from browsers. As the W3C HTML standards increasingly
diverged from the reality of browser implementations, all browser vendors except
Microsoft started the informal WHATWG (Web Hypertext Application Technol-
ogy Working Group), an informal “standards” body to curate the future of the
HTML in 2004.10 Rather than follow the cumbersome W3C process, HTML was
considered to be a “living standard” that reflected consensus amongst browser
implementations. Berners-Lee and the W3C focused primarily on standardizing
Semantic Web technologies, which are considered irrelevant by the browser ven-
dors to the future of the Web. Yet when Berners-Lee saw the rapid uptake
of WHATWG’s version of HTML, the W3C decided to formally “fork” the
WHATWG HTML standard into HTML5 by putting the text of the WHATWG
HTML specification through W3C Process in 2007 and ending work on XHTML
2.0 in 2009. As there was concern from browser vendors that the W3C was too
slow-moving and the rechartering process would limit the ability of HTML to be
extended, two new processes were made. The first was a fully automated system
for creating W3C Community Groups meant for pre-standardization work.11

The second process, unique to the W3C HTML Working Group, was to allow
HTML Extensions to be defined without rechartering in order to speed up the
W3C HTML Working Group and counter criticisms from WHATWG that W3C
Process made it impossible for the W3C HTML Working Group to evolve HTML
in an agile manner.12

Although there had been workshops on standardizing DRM at the W3C since
2001,13 the W3C had never managed to create a DRM Working Group until 2012.
Technically, the reason had been due to the W3C’s desire to build on work such as
MPEG-4 IPMP but add a more flexible (and likely in RDF or XML) language for
expressing “intellectual property rights.” Legally, standardizing DRM in HTML
was mired in the vast number of patents on the DRM systems themselves.14

With the rising popularity of streaming video in 2012, new W3C member Netflix

9 Instead, W3C members may submit “Member Submissions” of potential standard,
but the only requirement is that the W3C staff provide textual feedback on the
maturity and suitability of the work as a W3C standard, and historically very few
eventual W3C Recommendations have been Team submissions.

10 https://whatwg.org.
11 https://www.w3.org/community/.
12 https://www.w3.org/html/wg/wiki/ExtensionSpecifications.
13 In particular, the highly attended “Workshop on Digital Rights Management for

the Web” hosted by W3C Staff Rigo Wenning in January, see https://www.w3.org/
2000/12/drm-ws/.

14 Personal communication with Daniel Weitzner in 2016, W3C Staff Counsel in 2000.

https://whatwg.org
https://www.w3.org/community/
https://www.w3.org/html/wg/wiki/ExtensionSpecifications
https://www.w3.org/2000/12/drm-ws/
https://www.w3.org/2000/12/drm-ws/


The Crisis of Standardizing DRM 15

proposed “Encrypted Media Extensions” in 2012 as an HTML Extension. This
was approved as an extension by the chair of the HTML Working Group, Paul
Cotton (Microsoft), and work proceeded on EME in a unofficial “task force” of
the W3C HTML Working Group, unnoticed by the outside world.

Yet when EME was brought up to be part of the official W3C HTML Rec-
ommendation as an extension, a number of members issued concerns over EME
and the Electronic Frontier Foundation joined W3C in order to organize against
what they considered the dangerous addition of DRM to Web standards; this
first took the place of an argument over the extension of the HTML Working
Group’s charter to include the use-case of “content protection.”15 After objec-
tions from the HTML Working Group that the controversial and (at the time)
unimplemented EME standard would slow the development of HTML5, EME
and MSE (Media Source Extensions16), were spun off from the HTML Working
Group into the separate HTML Media Extensions Working Group in 2013. This
new Working Group was joined by all major browser vendors, including Mozilla.
The Electronic Frontier Foundation (EFF) and others filed formal objections to
the creation of the Working Group after I wrote, as a W3C employee at the time,
that it was “now or never to save the open web.” [13]. However, the work con-
tinued and EME was soon deployed later in 2013 by Netflix. The standard soon
reached the point where it was a Candidate Recommendation in 2016, with all
major browser vendors (Google Chrome, Microsoft Edge, Mozilla Firefox, and
Apple Safari) demonstrating interoperable support of EME.

As it became clear that EME would move from Candidate Recommendation
to Proposed Recommendation, the EFF circulated a petition in January 2016
stating that all work on EME should be halted until a “covenant” could be put in
place to defend users and security researchers from prosecution under Chap. 12 of
the DMCA [8]. At the Advisory Committee meeting in April 2016 at Cambridge,
the W3C decided not to go forward with an official vote on the adoption of the
covenant and to progress Encrypted Media Extensions to a Candidate Recom-
mendation regardless. This led to the first-ever street protest against the W3C
organized by the Free Software Foundation (FSF). I threatened to quit if W3C
continued to approve EME, and at the time I was the staff contact for both the
Web Cryptography and Web Authentication Working Groups.17 A number of
objections were filed by W3C members, W3C employees (including both myself
and staff legal counsel Wendy Seltzer18), and ordinary programmers (with no
official W3C affiliation) to the continuation of EME. Despite the protest and
even staff resignation from the W3C, the W3C approved the transition to a Pro-
posed Recommendation in July 2016. The issue finally started to gain attention

15 https://www.eff.org/deeplinks/2013/10/lowering-your-standards.
16 MSE is standard needed to select the source of streaming media.
17 https://motherboard.vice.com/en us/article/jpgpjx/we-marched-with-richard-stall

man-at-a-drm-protest-last-night-w3-consortium-MIT-joi-ito.
18 https://lists.w3.org/Archives/Public/public-html-media/2016Aug/0007.html.

https://www.eff.org/deeplinks/2013/10/lowering-your-standards
https://motherboard.vice.com/en_us/article/jpgpjx/we-marched-with-richard-stallman-at-a-drm-protest-last-night-w3-consortium-MIT-joi-ito
https://motherboard.vice.com/en_us/article/jpgpjx/we-marched-with-richard-stallman-at-a-drm-protest-last-night-w3-consortium-MIT-joi-ito
https://lists.w3.org/Archives/Public/public-html-media/2016Aug/0007.html


16 H. Halpin

from outside the W3C, with civil society organizations ranging from UNESCO
to the JustNet Coalition (NGOs from the Global South) filing statements ask-
ing Berners-Lee not to approve EME. After a nearly tied W3C vote on whether
or not to approve W3C EME as a Recommendation (and thus, quite far from
consensus), Tim Berners-Lee in his role of W3C Director finally approved EME
as a Recommendation in July 2017. Given that more than 5% of W3C members
were against W3C, the EFF triggered the never before used option to repeal
a Director’s decision.19 The recall vote was divided, but the majority (108) of
W3C members approved of the progress towards Recommendation while a sub-
stantial minority (57) objected and (20) abstained.20 Therefore, EME is now an
official W3C Recommendation.

4 Encrypted Media Extensions

EME is a Javascript API that provides access to a Content Decryption Module
(CDM) in order to restrict the playback of video to only those who possess an
authorized cryptographic secret key on their own client device. Without this key,
the encrypted media stream cannot be decrypted and so can not be displayed on
the video output of the user’s client device. EME does not mandate a single CDM
to decrypt encrypted video media. This allows the various patent pools around
CDM itself to be avoided while applying the W3C patent royalty-free licensing
to the API itself, allowing interoperability between “plug and play” CDMs. In
terms of EME support, Microsoft Edge supports the PlayReady DRM system,
Google supports the Widevine CDM, and Mozilla has removed Adobe Primetime
for Windows and switched to Google’s Widevine CDM.21

EME is an extension to the standard HTMLMediaElement element. In brief,
this element unifies both popular video and audio elements into a single frame-
work, as well as defining text tracks for subtitles via track attribute. EME
extends HTMLMediaElement (and thus both audio and video) to include a new
MediaEncryptEvent, so that there can be encrypted blocks waiting for decryp-
tion or playback but blocked due to waiting for a key. EME defines the frame-
work for the use of these decryption keys for DRM systems, and consists of the
following components, whose relationship is given in Fig. 1.

– Content Decryption Module: The component in the platform or browser
that provides decryption for a Key System.

– Key System: A uniquely identified CDM that is bound to the server that
served the request for a key.

– License: Licenses are an array of one or more MediaKeys IDs that can be
used to decrypt the media.

19 https://boingboing.net/2017/07/12/save-the-web.html.
20 https://lists.w3.org/Archives/Member/chairs/2017JulSep/0154.html.
21 https://www.ghacks.net/2017/01/10/firefox-52-adobe-primetime-cdm-removal/.

https://boingboing.net/2017/07/12/save-the-web.html
https://lists.w3.org/Archives/Member/chairs/2017JulSep/0154.html
https://www.ghacks.net/2017/01/10/firefox-52-adobe-primetime-cdm-removal/


The Crisis of Standardizing DRM 17

Fig. 1. Encrypted Media Extensions (from W3C Recommendation [9])

– MediaKeys: One or more uniquely identified decryption keys needed to
decrypt encrypted media data and bound to a session. These can be manually
loaded into a CDM via an explicit update call.

– MediaKeySession: An ID for a series of uses of a MediaKeys object to
decrypt media. License information and associated MediaKeys are cleared
from the browser after the end of a session, but may be re-used across sessions.

Simplified code of an example usage of EME using a single key (and license
requested from a server and data to discover the key) is given below in Fig. 4. The
typical flow of EME is as follows to decrypt media from an MediaEncryptEvent
is as follows:

1. Call the requestMediaKeySystemAccess with a licenseUrl variable that
designates the URL where the license with the needed MediaKey IDs is. The
license is retrieved using the licenseRequestReady function either from the
URL (which the Web Server redirects to a License Server) or from a licenses
stored locally on the Web Server.

2. This license request is passed via the browser to the CDM. If the key IDs
requested by the license are returned to the browser from the CDM, new
MediaKeys are created via the createMediaKeys, where the keys are bound
with a Web Server using a server certificate.

3. After a MediaKeySession is created, these MediaKeys are sent to the CDM
where, if they fulfill the license, they can be used. If needed, the license is
updated and provided to the CDM in order to request more keys and thus a
new MediaKeySession. This step may repeat one or more time in the form
of multiple MediaKeySessions.

4. Once all MediaKeySessions have been created that fulfill the license, the
media is decrypted by calling the originating HTMLMediaElement with a
MediaKey as well as any needed initialization data.



18 H. Halpin

<script>
var licenseUrl;
var serverCertificate;

function createSupportedKeySystem() {
someSystemOptions = [
{ initDataTypes: [’keyids’,’webm’],

videoCapabilities: [
{ contentType:’video/webm; codecs="vp8"’ }

]
}

];
return navigator.requestMediaKeySystemAccess(’com.example.keysystem’,x-options).then(

function(keySystemAccess) {
licenseUrl = ’https://example.com/getkey’;
serverCertificate = new Uint8Array([ 0x01111fef010 ]);
return keySystemAccess.createMediaKeys();

}
).catch(

console.error.bind(console, ’Needed DRM system not present or license not supported’)
);
promise.then(

function(createdMediaKeys) {
return video.setMediaKeys(createdMediaKeys);

}
).catch(

console.error.bind(console, ’Unable to set MediaKeys’)
);
promise.then(

function(createdMediaKeys) {
var initData = new Uint8Array([...]);
var keySession = createdMediaKeys.createSession();
keySession.addEventListener(’message’, handleMessage,

false);
return keySession.generateRequest(’webm’, initData);

}
).catch(

console.error.bind(console,
’Unable to create or initialize key session’)

);
}

);
}

function handleInitData(event) {
var video = event.target;

createSupportedKeySystem().then(
function(createdMediaKeys) {

video.mediaKeysObject = createdMediaKeys;
if (serverCertificate)

createdMediaKeys.setServerCertificate(serverCertificate);
for (var i = 0; i < video.pendingSessionData.length; i++) {

var data = video.pendingSessionData[i];
makeNewRequest(video.mediaKeysObject, data.initDataType, data.initData);

}
return video.setMediaKeys(createdMediaKeys);

}
).catch(

console.error.bind(console, ’Failed to create and initialize a MediaKeys object’)
);

}
}

</script>
<video autoplay onencrypted=’handleInitData(event)’></video>
}



The Crisis of Standardizing DRM 19

5 Objections to W3C EME

The arguments for EME is that the Web itself needs to be extensible to include
“access to protected content” without the use of a plug-in.22 As many content
producers require DMCA-compliance, platform providers such as Netflix believe
that enabling DRM in the browser is necessary for streaming video in order
to “say goodbye to third-party plugins, making for a safer and more reliable
web”23. The W3C holds the position that EME is necessary for a Web without
plug-ins for DRM: “Developers who use HTML5 for video can create play back
video directly without external dependency on third party apps (like Adobe
Flash or Microsoft Silverlight) and without inheriting security vulnerabilities
from those third party apps.”24 The W3C maintains that EME improves security
and privacy without impacting accessibility negatively.

The general argument against the standardization of Encrypted Media
Extensions at W3C is that DRM contradicts the W3C’s official mission to lead to
“Web to its full potential”, in particular to the make benefits of the Web “avail-
able to all people, whatever their hardware, software, network infrastructure,
native language, culture, geographical location, or physical or mental ability”
via open standards.25 Objectors like EFF and FSF believe that DRM by design
is meant to prevent users from accessing content that is encrypted via DRM in
a manner that by definition discriminates against both security researchers and
users, including those lawfully exercising their rights. A more broad objection
to adding DRM is that by making DRM a W3C standard, the amount of DRM
on the Web will increase, as DRM will now work seamlessly in a cross-platform
manner across all major browsers, which previously led DRM systems to be too
cumbersome to use by many video content providers. The lack of cross-platform
compatibility was one of the major reasons why DRM systems were ultimately
not adopted by the music industry [17]. As EME makes it much easier for con-
tent providers to add DRM, there is concern that the Web itself may eventually
become a “pay-to-play” closed space similar to pre-Web services [13].

Although Encrypted Media Extensions only covers media, the proposed W3C
Digital Publishing Working Group includes general purpose DRM for text in
HTML in its use-cases for future W3C standardization.26 Although the W3C
has stated that “EME is not DRM for HTML” as EME “defines a common
API that may be used to discover, select and interact with such systems as well
as with simpler content encryption systems,” it is unclear what other purpose
EME could possibly serve except to enable DRM-based systems inside of HTML.
The concerns therefore are with DRM on the Web. The concerns can be given in
terms of (1) user control and fair-use (2) accessibility (3) privacy and (4) security.
For each of these arguments, first we will first state the W3C argument for stan-
dardizing EME and then summarize the arguments against standardizing EME.
22 https://www.w3.org/2013/09/html-charter.html.
23 https://www.w3.org/2017/09/pressrelease-eme-recommendation.html.en.
24 https://www.w3.org/2016/03/EME-factsheet.html.
25 https://www.w3.org/Consortium/mission.
26 https://www.w3.org/dpub/IG/wiki/DRM UC#DRM-1.

https://www.w3.org/2013/09/html-charter.html
https://www.w3.org/2017/09/pressrelease-eme-recommendation.html.en
https://www.w3.org/2016/03/EME-factsheet.html
https://www.w3.org/Consortium/mission
https://www.w3.org/dpub/IG/wiki/DRM_UC#DRM-1


20 H. Halpin

5.1 User Control and Fair Use

The W3C has stated that users demand protected content, and any attempt to
halt the standardization of DRM on the Web is effectively limiting their rights to
watch DRM-protected content [3]. In contrast, EFF holds the position that DRM
systems seek to take away control from users of what Doctorow calls “general
purpose computing” in order to enforce copyright restrictions.27 This is the same
concern brought up by free software advocates, namely that DRM restricts user
control over their own computer and thus violates user freedom. Even under laws
like the DMCA that DRM systems are meant to enforce, a user often has “fair
use” rights to copy even copyrighted material, such as for educational purposes,
parody, or sharing the same media across multiple devices [19]. However, the “fair
use” doctrine cannot be implemented via the strictly technically enforced key-
based decryption enabled by DRM systems, as “fair use” depends on knowledge
of social context that cannot be accessed by the purely technical capabilities of
DRM systems. There are a wide variety of limitations and exceptions to copyright
law across various nation-states, and any purely technical system such as EME is
unlikely to be able to justice to all of these heterogeneous legal regimes. As W3C
is a global standards body, it is surprising that various national legal regimes are
ignored. For example, there are even heterogeneous limitations and exceptions
between European nations as shown by the fact that re-streaming certain content
may be legal in Greece but not in the United Kingdom [2]. Due to this reason,
EME has caused a motion in the European Parliament to determine if EME
violates limitations and exceptions to European copyright law.28 Some countries
like India had for years copyright protection that did not clearly “criminalise the
manufacture and distribution of circumvention tools” and still today give courts
more leeway than in the DMCA [18].

5.2 Accessibility

DRM has been thought to damage accessibility, but accessibility experts at W3C
have claimed that EME is compatible with accessibility goals,29 as EME only
encrypts the media content and HTMLMediaElement has a separate track for
textual descriptions (such as subtitles) that is not encrypted by EME. Therefore,
EME does not present any obstacles for the playing of subtitles, although it
also offers no improvement per se over HTML5 without EME. However, this
feature shows a potential weakness in EME as a DRM system, as EME may
not fully satisfy the needs for copyright control if the copyright claims include
the text given by subtitle tracks. More importantly, EME cannot support access
to audio and video media for accessibility reasons, because the media itself can
still only be decrypted only by EME. This prevents accessibility tools that can
automatically create accessible subtitles from the media content directly using
27 https://www.youtube.com/watch?v=gbYXBJOFgeI.
28 https://juliareda.eu/2017/04/open-letter-to-the-european-commission-on-encrypte

d-media-extensions/.
29 https://www.w3.org/2017/03/eme-accessibility.html.

https://www.youtube.com/watch?v=gbYXBJOFgeI
https://juliareda.eu/2017/04/open-letter-to-the-european-commission-on-encrypted-media-extensions/
https://juliareda.eu/2017/04/open-letter-to-the-european-commission-on-encrypted-media-extensions/
https://www.w3.org/2017/03/eme-accessibility.html


The Crisis of Standardizing DRM 21

automatic speech detection and other machine-learning techniques that require
access to video and audio before it is played. These tools for the automatic
creation of accessible media are likely to become more widespread in the future.30

5.3 Privacy

Tim Berners-Lee wrote that “the EME system can sandbox the DRM code
to limit the damage it can do to the users privacy” [3]. As given in Sect. 4,
EME functions in virtue of the request and retrieval of uniquely identified keys
(MediaKeys). In this way, EME could violate privacy for a single origin. The EME
specification states that “key IDs may contain any value” and thus “these data
items could be abused to store user-identifying information” [9]. Furthermore,
EME key systems “may access or create persistent or semi-persistent identifier(s)
for a device or user of a device” and thus as “identifiers are present in Key
System messages, then devices and/or users may be tracked” [9]. Although care
is taken to note that CDM instances should abide by the same origin policy
by associating only one MediaKey for a CDM per origin and usage identifiers
“must ensure that... session data is not shared between MediaKeys objects or
CDM instances,” these goals are nowhere enforced in EME, as the naming control
and duration of MediaKey objects are entirely left to the control of the content
provider. EME even admits that MediaKey objects are likely to be used for
tracking, as “within a single origin, a site can continue to track the user during
a session, and can then pass all this information to a third party” [9].31

Despite these vague recommendations not to use personally identifiable infor-
mation to attach a user to key material, these gestures towards privacy are not
technically enforced in the specification. For example, EME states that “user
agents must take responsibility for providing users with adequate control over
their own privacy” although the W3C rejected a formal objection that would dis-
able the CDM without user consent.32 Although the EME specification clearly
outlines the privacy dangers of the technique of associating a user with a uniquely
identified key, given the functioning of DRM requires uniquely identified keys to
be associated with a uniquely identified CDM in order to see if a user has ful-
filled the licensing conditions, there is no testing to see if the various guidelines
given by EME to enforce user privacy will be respected in EME implementa-
tions.33 Even if they were respected, these privacy properties are not tested for
conformance in the W3C test suite, possibly due to fears of violating the anti-
circumvention provisions of the DMCA, which may apply not just to the CDM
but to handling of key material by EME. In this way, the statements in the
specification about EME respecting user privacy appear to be red herrings that
are contradicted by the real-world functioning of DRM.
30 https://www.technologyreview.com/s/603899/machine-learning-opens-up-new-way

s-to-help-disabled-people/.
31 Although if they are used, they “must be encrypted, together with a timestamp or

nonce, such that the Key System messages are always different” [9].
32 https://github.com/w3c/encrypted-media/issues/386.
33 https://w3c.github.io/test-results/encrypted-media/all.html.

https://www.technologyreview.com/s/603899/machine-learning-opens-up-new-ways-to-help-disabled-people/
https://www.technologyreview.com/s/603899/machine-learning-opens-up-new-ways-to-help-disabled-people/
https://github.com/w3c/encrypted-media/issues/386
https://w3c.github.io/test-results/encrypted-media/all.html


22 H. Halpin

5.4 Security

The EFF and other opponents clam that the DMCA makes it illegal to dis-
cuss the security of the underlying CDM. While the DMCA’s 1201 clause does
state that “no person shall circumvent a technological measure that effectively
controls access to a work protected under this title” and EME enables such
a technological measure across web browsers, there are explicit exemptions for
security research in the DMCA [7]. However, these exemptions are difficult to
enforce in practice, because while it is legal under the DMCA to reveal “infor-
mation derived used solely to promote the security of the owner or operator of
the tested computer system” as long as that “information obtained is shared
directly with the developer of the system,” this information becomes illegal as
soon as “information obtained distributed in a way that might enable copy-
right infringement or other legal violations” [7]. This final restriction essentially
forces the vulnerability to only be disclosed to the DRM system manufacturer,
even if the DRM system manufacturer does not fix the flaw. This law was used
against security researchers first in the threats to Snosoft by Hewlett-Packard in
2002,34 and over fifty court-cases have been launched against security research
as of 2016.35 Unfortunately, legal precedent also shows academic publications on
vulnerabilities in DRM systems violate the DMCA and so result in the censor-
ship of the academic work, as shown by the Felten case over Sony DRM [12].
Although no known DRM case has involved EME and browser-based DRM, it is
reasonable to hypothesize that security audits by researchers on browser-based
DRM systems will suffer a “chilling effect” due to the DMCA and that there
will be increased DRM circumvention cases if DRM on the Web grows.

The W3C recognizes the possible security threats of CDMs in the EME spec-
ification as well, noting that “user agent implementers must ensure CDM imple-
mentations can and will be quickly and proactively updated in the event of secu-
rity vulnerabilities” [9]. However, the W3C also claims that, unlike browser plug-
ins that have privileges for every origin in an entire browser, EME is restricted
per origin and that the CDMs may be sandboxed, providing “security and pri-
vacy superior to native platform alternatives.”36 In particular, the W3C con-
tinues to note that sandboxing may at least limit the damage as “DRMs under
EME can be sandboxed” to enforce the requirement of the EME specification
that “the CDM must not make direct out-of band network requests” [9].

Unfortunately, there is more sand than box in ‘sandboxing’ on the Web.
Although a browser may be sandboxed from the rest of the computer in the same
way any other computer program, origins are not defended adequately from each
other inside the browser. Javascript is constrained per origin, but security flaws
are not constrained per origin in browser memory. In modern web browsers,
there are a limited number of content processes (Firefox recently went up to 4 or
5, while mobile browsers often have one). Normally, each origin does not have its

34 https://www.cnet.com/news/security-warning-draws-dmca-threat/.
35 https://www.eff.org/files/2016/03/17/1201 reported case list revised.xls.
36 https://lists.w3.org/Archives/Public/public-html-media/2017Jul/0000.html.

https://www.cnet.com/news/security-warning-draws-dmca-threat/
https://www.eff.org/files/2016/03/17/1201_reported_case_list_revised.xls
https://lists.w3.org/Archives/Public/public-html-media/2017Jul/0000.html


The Crisis of Standardizing DRM 23

own content process, as that would cause a performance slowdown and so each
content process shares memory. Therefore, if there is a flaw in the underlying
CDM that has access to the browser via EME, it’s access will not be limited
to the origin, but to the entire shared memory space of the content process. As
security flaws are simply more likely in a CDM that can’t be inspected to see if
it has flaws or follows EME security’s guidelines and by default this CDM will
be sharing a content process, thus the CDM is not sandboxed in any actual sense
of the word if there is a security vulnerability.

Another concern is the scope of the DMCA and whether or not it can be
implemented in open source. EME provides a technique to keep the key material
unencrypted in the browser, called “clear key” that can be implemented with-
out a CDM in order to keep compliance possible for open-source browsers and
browsers without CDMs, as the keys are generated locally and stored in cleartext
in the browser take the place of the license server. However, one danger is that
the “clear key” technique is subject to DMCA, and thus the EME specification
inflicts an inherently insecure yet DMCA-compliant system on all browsers due
to the “clear key” option.

In order to protect security researchers, the EFF created a “covenant”
modelled on the W3C Royalty-Free Licensing Policy that would allow W3C
members to make a legally binding commitment not to prosecute security
researchers investigating EME-related DRM systems. In a petition, over 100
security researchers as well as many W3C staff members [8]. The EFF covenant
stated that: “Each participant irrevocably covenants that it will not bring or
join suit against any person under 17 U.S.C 1203, or under any other law of any
jurisdiction that regulates the circumvention of technological measures that effec-
tively control access to a work protected by copyright, where the act complained
of relates to (a) the circumvention of any implementation of the specification; (b)
the publication of any non-compliant implementation of the specification; or (c)
the publication or disclosure of any vulnerability in the specification or in any
implementation of the specification”[10]. The issue of security also caused inter-
ventions from civil society, with UNESCO pointed out that the same infrastruc-
ture used by DRM to control content could also be used for censorship and sur-
veillance.37 However, the W3C stated that “despite much work those efforts were
not successful and consensus among the W3C Membership was not achieved”
on the covenant. Yet the EFF covenant was never formally put forward to an
actual vote by W3C, so the EFF called for a revocation of the W3C Director’s
decision to make EME a W3C Recommendation through a repeal process that
requires 5% of the Advisory Committee to uphold. As of July 2017, the process
of appeal is underway. However, as it has historically never happened at W3C,
it is unclear if the result will be the removal of EME as a Recommendation and
its patent status.

37 http://en.unesco.org/news/be-careful-about-proposed-technical-change-web-says-u
nesco-s-rue.

http://en.unesco.org/news/be-careful-about-proposed-technical-change-web-says-unesco-s-rue
http://en.unesco.org/news/be-careful-about-proposed-technical-change-web-says-unesco-s-rue


24 H. Halpin

6 Quantitative Analysis

Two claims have been made by opponents of EME standardization at W3C
that touch upon actual involvement in “open standards.” The Free Software
Foundation has claimed that the W3C is controlled by content providers and
browser vendors without suitable representation from wider civil society and
security researchers: “It looks like a select few organizations are pushing and
influencing their power unduly.”38 The JustNet Coalition (JNC) has called EME
a form of “digital colonialism,” as JNC claimed that EME excludes those in the
Global South who are struggling for access to information at the expense of a
few North American and European corporations.39

In terms of participation, the total number of members in the group is 273,
with 70 invited experts. Using the origin country of the member to determine a
rough estimate of the geographical breakdown of the Working Group (and thus
excluding Invited Experts), there was a majority participation from the United
States (66%) and less from Asia (33%). Asian representation did not include any-
one from India. There were a few representatives from South America (1%), one
member from Australia, and none from Africa. In terms of the types of participa-
tion (excluding Invited Experts), the majority of the Working Group consisted of
browsers and DRM manufacturers (53%) with smaller representation from civil
society (4%) and accessibility experts (4%), and these being roughly balanced
by pro-DRM trade associations (4%), as given in Fig. 2. The amount of email
sent on the list is 3,427, with clear spikes of activity that correspond to debates
where civil society tried to stop progress on EME advancing in the formal W3C
process, as given by Fig. 3. There was indeed little participation from the Global
South outside large companies like Baidu from China, Samsung from Korea, and

Fig. 2. Categories of members of the EME Working Group

38 https://www.youtube.com/watch?v=SPfdOOiuOHI.
39 https://justnetcoalition.org/2017/W3C EME objection.pdf.

https://www.youtube.com/watch?v=SPfdOOiuOHI
https://justnetcoalition.org/2017/W3C_EME_objection.pdf


The Crisis of Standardizing DRM 25

Fig. 3. Email frequency to EME mailing list

Sony from Japan. There was domination by browsers and for-profit corporations
in the Working Group, but there was significant if much smaller representation
from civil society and accessibility experts, with civil society (in particular EFF)
being active in bursts. This analysis of the HTML Media Extensions Group is
in line with similar analysis done of participation in the HTML Working Group
that also noticed a lack of participation from the Global South [11].40

7 Is Harm Reduction for DRM Possible?

Is there a solution towards standardizing DRM that can avoid the problems of the
EME specification that the W3C has encountered? As explored in Sect. 5, stan-
dards bodies should recognize that there are legitimate concerns with privacy and
security with DRM systems for end-users. Both legal and technical approaches
can be applied to reduce the harm of EME, but to the generic problem of the
need for DRM standards. While it is too late to pursue these approaches for
EME at W3C, applying these approaches should be best practices for future
standards.

Technically, DRM has the potential to be privacy-invasive and possible secu-
rity issues, but this is true of all software. However, modern DRM implementa-
tions in the consumer market essentially work by violating Kerckhoffs’ principle,
namely that the security of cryptosystem should rely only on the protection of
key material, so that the cryptosystem must be secure even if everything else

40 Note these numbers are preliminary, and a more detailed and careful analysis is under
preparation that also takes into account the origins and roles of Invited Experts and
git repo of EME is underway.



26 H. Halpin

about the system is public. To ignore Kerckhoffs’ principle produces broken sys-
tems, as cryptographic history has shown [16]. It is in the best interest in terms of
security for standards bodies, content providers, and users to base standards on
security reductions to well-studied cryptographic primitives and securing cryp-
tographic key material. There exist many alternatives to classical DRM, such as
traitor tracing, have been well developed in the research literature and do not
require security by obscurity [6]. Lastly, there has been a corresponding growth
of “trusted computing” environments in consumer deployment, such as the ARM
Trustzone, and increasing research into making these trusted computing plat-
forms capable of remote attestation [1]. This research into attestable “trusted
computing” is not ready for market: The ill-fated Microsoft Next-Generation
Secure Computing Base that was canceled after having been found to have secu-
rity vulnerabilities [5]. Still, research into more secure and auditable computing
systems for access control is ongoing [14].

Access control, of which DRM systems attempt to enforce by obscurity on
the client device should be based only on having any key material on the client
under user control. This key material can be stored in a trusted and attestable
way, including the usage of hardware tokens or “trusted computing” with secure
enclaves. In terms of usability, users can correctly handle private user-centric key
material and this key material can respect the same origin policy, as shown by
a new generation of standards like the W3C Web Authentication API.41 Future
standards may avoid the controversy of DRM systems as long as (1) the key is
under user control and (2) the security of the DRM system is reducible to the
security of the key and the publicly known cryptographic primitives.

As current DRM systems are not deployed following Kerckhoffs’ principle and
thus there are possible security bugs that cannot be detected by an audit of the
CDM, DRM systems should simply be installed only when officially requested
by a user, and should be not installed by default. A user can be empowered to
take the risk of installing and activating a CDM, but a DRM system should be
disabled by default. At least with plug-ins, a user had the chance to refuse to
install the plug-in, so standards should not remove that user choice. A modifica-
tion enforcing “opt-in” of DRM could be easily added to W3C EME by forcing
a dialogue with the user warning them that they are installing or activating a
CDM, similar to the user interaction needed to install Adobe Flash-based DRM
systems pre-EME as well as the use of a user-prompt to access the potentially
privacy-invasive microphone and video as needed by WebRTC.42 Although the
W3C Working Group claimed that a one-time user-centric privacy prompt would
defeat usability (as “being able to visit a site and watch video without annoying
and confusing consent prompts is a user experience benefit”), but no evidence
of prompts causing retention issues was provided.43 A “one time” prompt at
first use of EME-encrypted video seems unlikely to reduce usage, and is less
restrictive than WebRTC’s usage of getUserMedia). This standpoint risks being

41 https://www.w3.org/TR/webauthn/.
42 https://www.w3.org/TR/webrtc/.
43 https://lists.w3.org/Archives/Public/public-html-media/2017Apr/0013.html.

https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webrtc/
https://lists.w3.org/Archives/Public/public-html-media/2017Apr/0013.html


The Crisis of Standardizing DRM 27

hypocritical, as the W3C has argued that controversial privacy-invasive features
to web browsers should require user interaction, and this would logically include
EME. At least with a DRM plug-in, a user could refuse to install the plug-in if
they had security concerns.

On the legal framework, there is a long-term gain for security to made
by supporting reform of the DMCA. The primary reason for the controversy
around EME is not due to the technical details of the specification itself, but the
legal framework that prevents reasonable security audits. The EFF has claimed
to W3C that DMCA ends up handing too much power to the companies in
terms of their control of the disclosure of vulnerabilities.44 On a larger note, the
EFF has also started a court-case arguing that the DMCA should be overturned
as it violates the free-speech of researchers, stifles innovation, and damages
cybersecurity.45 The Copyright Office of the United States has recently issued a
statement agreeing that the provisions of the DMCA restrictions requiring the
need for security researchers to require authorization from vendors, stating that
“the exemption for encryption research under section 1201(g) may benefit from
similar revision, including removal of the requirement to seek authorization and
clarification or removal of the multifactor test.”46

Times have changed since the DMCA has been passed: Today, security should
be more important than copyright enforcement. As it the best of interest of
any security standard to have open review, security standards bodies should
provide legally binding guarantees that there can be open and legal audits of the
standard (as well as of the implementations of a standard) that do not require
permission in order to check conformance to specified normative security and
privacy properties. More concretely, although the W3C created a “W3C Security
Disclosures Best Practices” document, it failed to have any support (much less
adoption), as most companies already have security disclosure policies.47 While
it is possible the DMCA will be revised to allow open security audits, the EFF
covenant was likely unacceptable to many vendors as it would override their
existing commitments to enforce the DMCA without clear benefits, such as that
provided by W3C Patent Policy. However, if each member changed their existing
security disclosure policy to agree to not prosecute with both security researchers
engaged in audits of implementations and users who are not violating copyright
law, as well as co-operate with security disclosures, then concrete harm reduction
could be done around the possible security vulnerabilities introduced by DRM
systems.

In terms of the W3C EME standard, this would require not signing a single
covenant, but to engage with each member of the Working Group to ensure that
their security disclosure document included suitable language that prioritized

44 https://www.eff.org/deeplinks/2017/02/indefensible-w3c-says-companies-should-ge
t-decide-when-and-how-security.

45 https://www.eff.org/press/releases/eff-lawsuit-takes-dmca-section-1201-research-an
d-technology-restrictions-violate.

46 https://www.copyright.gov/policy/1201/section-1201-full-report.pdf.
47 https://w3c.github.io/security-disclosure/.

https://www.eff.org/deeplinks/2017/02/indefensible-w3c-says-companies-should-get-decide-when-and-how-security
https://www.eff.org/deeplinks/2017/02/indefensible-w3c-says-companies-should-get-decide-when-and-how-security
https://www.eff.org/press/releases/eff-lawsuit-takes-dmca-section-1201-research-and-technology-restrictions-violate
https://www.eff.org/press/releases/eff-lawsuit-takes-dmca-section-1201-research-and-technology-restrictions-violate
https://www.copyright.gov/policy/1201/section-1201-full-report.pdf
https://w3c.github.io/security-disclosure/


28 H. Halpin

the security of the Web in terms of CDM implementations for EME, where the
decision over whether a particular security policy complied was left to a neutral
third party, such as the independent policy council of the W3C. As there are
only three major EME systems supported by the four major browser vendors
(Microsoft, Google, and Apple, as Mozilla has dropped support for Adobe’s CDM
in favor of simply using Google’s Widevine CDM) and one non-browser system
(Netflix), there are only four major security disclosure policies to be taken into
account.

8 Conclusion

In conclusion, the W3C EME standard has garnered unheard of controversy, but
the security standardization community should learn from their example in order
to determine how to successfully deal with the standardization of DRM systems
that present possible security and privacy threats. We have shown that the con-
troversy is founded due to the privacy concerns inherent in uniquely identifying
keys and CDMs, and that there are also real dangers posed in terms of security
and the prevention of open security audits by the DMCA. Otherwise, no actual
technical guarantees can be given about the security and privacy properties of
a system. Quantitative analysis shows that the critiques of the large amount of
influence by vendors and content providers from Europe and North America is
indeed correct. We have suggested two ways forward that have not been consid-
ered by the W3C but that are easily considered by future standards. Security
standards should indeed by open to inspection and depend only on the security
of the key material, which should remain under the control of the user. If there
is any reason to believe a system may introduce privacy and security issues,
explicit user consent should be required. Lastly, companies should expand their
security disclosure policies to include co-operation and explicit non-prosecution
of security researchers. By taking these steps, security standards can regain the
trust of the general public, and have that trust validated by scientific research.

References

1. Bai, G., Hao, J., Wu, J., Liu, Y., Liang, Z., Martin, A.: TrustFound: towards a
formal foundation for model checking trusted computing platforms. In: Jones, C.,
Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 110–126. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 8

2. Batchelor, B., Jenkins, T.: FA premier league: the broader implications for copy-
right licensing. Eur. Compet. Law Rev. 33(4), 157–164 (2012)

3. Berners-Lee, T.: On EME in HTML5 (2016). https://www.w3.org/blog/2017/02/
on-eme-in-html5

4. Berners-Lee, T., Fischetti, M.: Weaving the Web: The Original Design and Ulti-
mate Destiny of the World Wide Web by its Inventor. Harpers Information, New
York (2000)

5. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

https://doi.org/10.1007/978-3-319-06410-9_8
https://www.w3.org/blog/2017/02/on-eme-in-html5
https://www.w3.org/blog/2017/02/on-eme-in-html5


The Crisis of Standardizing DRM 29

6. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

7. US Congress: Digital millennium copyright act. Pub. Law 105(304), 112 (1998)
8. Doctorow, C.: Security researchers: tell the W3C to protect researchers who inves-

tigate browsers (2016). https://www.eff.org/deeplinks/2016/03/security-resear
chers-tell-w3c-protect-researchers-who-investigate-browsers

9. Dorwin, D., Smith, J., Bateman, A., Watson, M.: Encrypted Media Extensions
(2017). https://www.w3.org/TR/encrypted-media/

10. EFF: Objection to the rechartering of the W3C EME group: Covenant (2016).
https://www.eff.org/pages/objection-rechartering-w3c-eme-group

11. Gupta, H.: (Lack of) representation of non-western world in process of creation of
web standards (2016). https://arxiv.org/pdf/1609.01996.pdf

12. Halderman, J.A., Felten, E.W.: Lessons from the Sony CD DRM episode. In:
USENIX Security Symposium, pp. 77–92 (2006)

13. Halpin, H.: DRM and HTML5: it’s now or never for the Open Web. Guardian
(2013). https://www.theguardian.com/technology/2013/jun/06/html5-drm-w3c-
open-web

14. LaMacchia, B.A.: Key challenges in DRM: an industry perspective. In: Feigen-
baum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 51–60. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-44993-5 4

15. McCathie-Neville, C.: W3C process document (2016). https://www.eff.org/deep
links/2016/03/security-researchers-tell-w3c-protect-researchers-who-investigate-
browsers

16. Mercuri, R.T., Neumann, P.G.: Security by obscurity. Commun. ACM 46(11), 160
(2003)

17. Petrick, P.: Why DRM should be cause for concern: an economic and legal analy-
sis of the effect of digital technology on the music industry. Berkman Center for
Internet and Society at Harvard Law School Research Publication (2004)

18. Prakash, P.: Technological protection measures in the Copyright (Amendment) Bill
2010 (2016). http://cis-india.org/a2k/blogs/tpm-copyright-amendment

19. Rosenblatt, B.: DRM, law and technology: an American perspective. Online Inf.
Rev. 31(1), 73–84 (2007)

https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://www.eff.org/deeplinks/2016/03/security-researchers-tell-w3c-protect-researchers-who-investigate-browsers
https://www.eff.org/deeplinks/2016/03/security-researchers-tell-w3c-protect-researchers-who-investigate-browsers
https://www.w3.org/TR/encrypted-media/
https://www.eff.org/pages/objection-rechartering-w3c-eme-group
https://arxiv.org/pdf/1609.01996.pdf
https://www.theguardian.com/technology/2013/jun/06/html5-drm-w3c-open-web
https://www.theguardian.com/technology/2013/jun/06/html5-drm-w3c-open-web
https://doi.org/10.1007/978-3-540-44993-5_4
https://www.eff.org/deeplinks/2016/03/security-researchers-tell-w3c-protect-researchers-who-investigate-browsers
https://www.eff.org/deeplinks/2016/03/security-researchers-tell-w3c-protect-researchers-who-investigate-browsers
https://www.eff.org/deeplinks/2016/03/security-researchers-tell-w3c-protect-researchers-who-investigate-browsers
http://cis-india.org/a2k/blogs/tpm-copyright-amendment


Tackling the Time-Defence: An Instruction
Count Based Micro-architectural Side-Channel

Attack on Block Ciphers

Manaar Alam(B), Sarani Bhattacharya, and Debdeep Mukhopadhyay

Indian Institute of Technology, Kharagpur, Kharagpur, India
alam.manaar@iitkgp.ac.in,

{sarani.bhattacharya,debdeep}@cse.iitkgp.ernet.in

Abstract. Hardware Performance Counters (HPCs) are present in most
modern processors and provide an interface to user-level processes to
monitor their processor performance in terms of the number of micro
architectural events, executed during a process execution. In this paper,
we analyze the leakage from these HPC events and present a new micro-
architectural side-channel attack which observes number of instruction
counts during the execution of an encryption algorithm as side-channel
information to recover the secret key. This paperfirst demonstrates
the fact that the instruction counts can act as a side-channel and then
describes the Instruction Profiling Attack (IPA) methodology with the
help of two block ciphers, namely AES and Clefia, on Intel and AMD
processors. We follow the principles of profiled instruction attacks and
show that the proposed attack is more potent than the well-known
cache timing attacks in literature. We also perform experiments on
ciphers implemented with popular time fuzzing schemes to subvert tim-
ing attacks. Our results show that while the countermeasure success-
fully stops leakages through the timing channels, it is vulnerable to the
Instruction Profiling Attack. We validate our claims by detailed experi-
ments on contemporary Intel and AMD platforms to demonstrate that
seemingly benign instruction counts can serve as side-channels even for
block cipher implementations which are hardened against timing attacks.

Keywords: Micro-architectural side-channel attack · Hardware perfor-
mance counters · Cache-timing attack · Block-cipher

1 Introduction

The state of a computing environment gets affected by the processes executing
on it. Modern cryptosystems are vulnerable against growing threats in the form
of information leakages about the secret key through side-channels like power,
radiation, timing, etc. One category of such threats uses the information leakages
created because of the variations (in say timing) caused due to the presence of a
cache memory in processors. The cause of the variation is that the access time for
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 30–52, 2017.
https://doi.org/10.1007/978-3-319-71501-8_3



Tackling the Time-Defence: Instruction Count Based Attack 31

a data present in the cache is much lower than the data not present in it, as the
processor first looks into the cache memory before processing with a data. This
disparity in the access time is the fundamental notion of all cache-attacks. Block
ciphers like Data Encryption Standard (DES), Advanced Encryption Standard
(AES), Clefia, Blowfish, etc. are vulnerable to cache-attacks as they require key
dependent table lookup for their encryption operations.

Two important classes of cache-attacks are - cache trace attacks and cache
timing attacks. For a cache trace attack, an adversary needs to profile the cache
access patterns, in terms of cache-hits and cache-misses during the encryption
operation. Cache timing attacks, on the other hand, only require the informa-
tion regarding overall execution time of the encryption process, thus making
it more threatening than the other form of cache-attacks. An adversary can
easily capture the timing information over a network, without the need of any
sophisticated measuring instrumentation, thereby, creating a chance of possible
remote attacks. It can be pointed here that these threats have been shown to be
pertinent even in a remote server running an encryption algorithm [2,4].

There have been some seminal works of cache timing attack on block ciphers,
both with large tables like AES and small tables like Clefia. Bernstein [4] demon-
strated that statistical correlation between the profiles of the execution time of
AES for a known key and an unknown key could be used to extract the secret key
bytes. In the same way Rebeiro et al. [20,21] described that the timing profiles
for the Clefia encryption for both the known and unknown key could be used to
obtain the round keys and thereby trivially determine the secret key.

Numerous works have been done to counter the risks of cache timing
attacks [8,11,16,19]. A notable work to prevent these attacks is described in [11]
by Martin et al. They presented a general mitigation strategy to limit the
fidelity of fine-grained time-keeping, thereby making it difficult for the adver-
sary to distinguish between different time-stamps. The authors mainly focused
on the RDTSC (Read Time Stamp Counter) instructions, which returns the
current value of TSC (Time Stamp Counter) register, to design their counter-
measures and eliminated the possibility of information leakages through other
micro-architectural events. But, on the contrary to their claim, the advent of
perf event system call and performance monitoring tool PAPI [18] allows an
adversary to monitor any micro-architectural event of a system with user priv-
ilege and with higher granularity. Also, the work reported in [6] has shown the
possibility of timing attack in spite of the presence of time obfuscation. Most
modern processors contain hardware performance counters which count the total
occurrences of different micro-architectural events. The PAPI tool gives an upper
hand to an adversary to mount an attack in the presence of the defense by time
fuzzing technique.

A micro-architectural attack has been proposed based on Instruction cache
(I-cache) [1] for public key cryptographic implementation, however, the hard-
ware event instruction count has not been quite explored in the case of block
ciphers. A possible reason could be as block ciphers do not have key-dependent
conditional branches like public key ciphers, the number of instructions does not



32 M. Alam et al.

intuitively leak the secret key. In this paper, we look into this issue of explor-
ing whether the micro-architectural event, instruction-count, can be utilized to
reveal secret keys of block ciphers. We propose an Instruction Profiling Attack
(IPA), which thus exploits this not-so-researched side-channel, i.e., instruction
counts, and determines secret keys from block cipher executions faster than tra-
ditional cache timing attacks. A related fall-out of this attack is that, block
cipher implementations which are time-resistant by fuzzing time stamp counters
are still vulnerable against the proposed IPA.

The attack methodology is validated on two different types of block ciphers,
namely AES and Clefia on two separate processors, Intel Core i5 and AMD A10.

Main Idea and Motivation

The cache timing attacks work on the intuition of non-uniform cache memory
accesses due to cache hits and cache misses. These memory operations are noth-
ing but simple load- store instructions spawned by the CPU. In the presence
of timing obfuscation defense mechanism, an adversary is unable to analyze the
timing differences and gain secret information but can monitor the number of
instructions executed in the system. The total number of load-store instructions
executed during the encryption process will vary based on the secret key, as the
cache access pattern will be different for different secret keys. A cache-miss oper-
ation will result in an extra load instruction and this disparity in the executed
instructions is the main idea behind this work. The motivation is to use the
instruction count event as an information leakage source and mount an attack.

Most of the modern encryption implementations use time obfuscation tech-
nique, which can be implemented easily with little performance overhead, to
mitigate the threats of cache-timing attacks. Distributions, like OSX, Ubuntu
use deliberate time delay after entering the wrong password to invalidate the
timing analysis done by an adversary [24]. The present paper strives to evaluate
the security of such apparently secured systems against timing attacks in the
face of the newly proposed threat.

Our Contribution

We have investigated the presence of information leakage of an encryption
process using the hardware event instruction count. The prime contributions
that we made through this work are:

– We have proposed a new side-channel attack, namely Instruction Profiling
Attack (IPA), tailored for block ciphers using HPC event: instruction. We
have also demonstrated the effectiveness of IPA by successfully retrieving the
secret key bits.

– We have evaluated our proposed attack method on both Intel and AMD
platforms. The time complexity of a successful IPA is shown to be much
lesser than a successful cache-timing attack.



Tackling the Time-Defence: Instruction Count Based Attack 33

– Additionally, in this paper, we show that the success rate of IPA is not affected
by time-obfuscation countermeasures like timewarp, which can successfully
thwart attacks based on timing channels.

The rest of the paper is organized as follows: the next section presents an
overview of the necessary preliminaries related to this work. Section 3 analyzes
a new form of side-channel leakage by analyzing the security of block ciphers.
Section 4 discusses our attack methodology with the help of a case study on AES
block cipher. Section 5 demonstrates all the experimental results, and Sect. 6 dis-
cusses the practicality of the proposed attack methodology in different environ-
ments. Finally, Sect. 7 presents the conclusion of this work.

2 Preliminaries

In this section, we first discuss the basic operations of two block ciphers, namely
AES and Clefia. Next, we describe a time obfuscating countermeasure to thwart
cache-timing attacks. Then we present a brief overview of hardware performance
counters which are instrumental to the proposed attack. We follow for evaluating
the proposed attack methodology.

2.1 AES Block Cipher

AES [7] is a 10 round cipher which takes a 16 byte secret key K =(k0, k1, · · · , k15)
and an input of 16 byte plain text P = (p0, p1, · · · , p15). Its implementation in
software, based on Barreto’s code, is widely recognized [3]. The first 9 rounds
of the algorithm uses four 1 KB lookup tables T0, T1, T2, and T3 and then an
additional look up table T4 for the final round. Though the use of lookup tables
optimizes the performance of the algorithm, the size of the lookup table is large.
The following equation shows the structure of the cipher in each round, encap-
sulating the four basic operations of AES, namely the SubBytes, ShiftRows,
MixColumns and AddRoundKey : For each round r, (1 ≤ r ≤ 9) the input is the
state Sr comprising of 16 bytes (sr0, s

r
1, · · · , sr15) and the key Kr to the round

is split into 16 bytes (kr
0, k

r
1, · · · , kr

15). The next state Sr+1 is the output of the
rth round. The input and round key to the first round S1 is (P ⊕ K) and K1

respectively.

Sr+1 = {T0[sr0] ⊕ T1[sr5] ⊕ T2[sr10] ⊕ T3[sr15] ⊕ {kr
0, k

r
1, k

r
2, k

r
3}

T0[sr4] ⊕ T1[sr9] ⊕ T2[sr14] ⊕ T3[sr3] ⊕ {kr
4, k

r
5, k

r
6, k

r
7}

T0[sr8] ⊕ T1[sr13] ⊕ T2[sr2] ⊕ T3[sr7] ⊕ {kr
8, k

r
9, k

r
10, k

r
11}

T0[sr12] ⊕ T1[sr1] ⊕ T2[sr6] ⊕ T3[sr11] ⊕ {kr
12, k

r
13, k

r
14, k

r
11}}

2.2 Clefia Block Cipher

Clefia is a small lookup table based 128-bit block cipher [21]. It has a generalized
Feistel structure. There are three key lengths of 128, 192 and 256 bits defined in



34 M. Alam et al.

the specification [22]. For the 128-bit key based specification the input is of 16
bytes, P0 to P15, grouped into 4 byte words. For each of the 18 rounds in the
cipher, the first and third words are fed into functions F0 and F1 respectively.
These functions are non-linear in nature. The collective outputs of F0 and F1, is
known as F functions. These outputs are ex-ored with second and fourth words.
In addition to this, at the beginning and end of the encryption the second and
the fourth words are whitened.

To create the non-linearity in the F functions two sboxes S0 and S1 are used.
These sboxes are in the form of 256 byte lookup tables, from each F function
they are invoked twice. This makes a total of eight table lookups per round.
Thus, for the entire encryption 144 such lookups are needed. Following are the
equations of the functions F0 and F1:

F0 : {y0, y1, y2, y3} = (S0[x0 ⊕ k0], S1[x1 ⊕ k1], S0[x2 ⊕ k2], S1[x3 ⊕ k3]) · M0

F1 : {y0, y1, y2, y3} = (S1[x0 ⊕ k0], S0[x1 ⊕ k1], S1[x2 ⊕ k2], S0[x3 ⊕ k3]) · M1

Along with four round keys, k0, k1, k2, k3 the F functions take four input bytes
x0, x1, x2 and x3. After the sbox lookups, the bytes are diffused by multiplying
them with (4 × 4) matrices M0 and M1. Following are the structure of the
matrices M0 and M1:

M0 =

⎛
⎜⎜⎝

1 2 4 6
2 1 6 4
4 6 1 2
6 4 2 1

⎞
⎟⎟⎠ M1 =

⎛
⎜⎜⎝

1 8 2 A
8 1 A 2
2 A 1 8
A 2 8 1

⎞
⎟⎟⎠

The whitening requires four whitening keys WK0, WK1, WK2 and WK3

along with thirty six round keys RK0, · · · , RK35. A two step key expansion
process is used. Firstly, from the secret key a 128 bit intermediate key L is
generated, using a GFN function [14]. Then, the round keys and the whitening
keys are generated from this. The structure of Clefia is such that the knowledge of
any set of 4 round keys (RK4m, RK4m+1, RK4m+2, RK4m+3), where m mod 2 =
0, is sufficient to revert the key expansion process to obtain the secret key.

2.3 Time Obfuscating Countermeasures

The main principle for cache-timing attacks is the profiling and analysis of timing
information returned by the Time-Stamp Counter (TSC). An adversary uses
RDTSC instructions to access these TSC for granular timing information. A very
common countermeasure to thwart attacks using timing channel is to provide the
adversary a modified timing information instead of the real one. The obfuscation
of RDTSC [11] can be done in two ways, first by introducing the concept of
the real offset, which is the insertion of a real-time delay that stalls RDTSC
execution, and then using the apparent offset that is by modification of the
return value of the instruction by a small amount. The time is conceptually



Tackling the Time-Defence: Instruction Count Based Attack 35

divided into epochs (denoted by E) to calculate these offsets. Epochs vary in
length randomly from 2e−1 to 2e − 1 cycles, where e is denoted as the current
level of obfuscation.

The real offset delays the execution of each RDTSC until a random time in
the subsequent epoch, and this requires that the TSC register is always read on
an epoch boundary. The current execution will be stalled until the end of the
current epoch, Whenever an RDTSC instruction is encountered. TSC register
will be read, on the epoch boundary. The instruction will be stalled continuously
for a random number of cycles in the range [0, E) of the subsequent epoch. The
real offset denoted by DR, is defined by the sum of these two stalls. These mod-
ifications result in hindering the malicious processes in user-space from making
fine grain timing measurements to a granularity smaller than 2e−1. This makes
micro-architectural events undetectable as long as the largest difference between
on-chip micro-architectural latencies is less than 2e−1.

2.4 Hardware Performance Counters

Hardware Performance Counters (HPCs) are a set of special purpose registers,
which are present in most of the modern microprocessor’s Performance Mon-
itoring Unit (PMU). These registers can be programmed to store the number
of occurrences of different types of hardware and software events related to the
execution of a program, such as cache misses, retired instructions, retired branch
instructions, and so on. HPCs were primarily designed to debug the performance
of complex software systems, but currently, they are widely used for collecting
the run-time behavioral information of software execution. HPCs work along
with the event selectors, which specify the hardware events to be monitored
and a digital logic which increments a counter based on the occurrence of the
specified hardware events. These performance counters can be accessed very fast
without affecting or slowing down any software execution. Some of the recent
literature [25–27] have used HPCs to dynamically profile a system.

The most useful mode of operation of PMUs is the interrupt-based mode.
The main working principle behind this mode of operation is, a system interrupt
is generated when a specified event occurs more than or equal to a predefined
threshold value or a preset amount of time has elapsed. This mode of operation
makes both event-based and time-based sampling possible. High-level libraries
like PAPI [18], OProfile [15] provide interfaces to HPCs. Linux perf [17] among
them is a widely used new implementation of performance counters support
for all Linux 2.6+ based systems, which we can access from user-space. This
tool is capable of providing per-process, per-CPU, and system-wide statistical
profile. We used this tool for our experimentation purpose. Perf tool is based
on Linux perf event open() system call, which can be used to profile system
in very low granularity. Almost every popular operating systems have HPC-
based profilers, though the type and number of hardware events may vary across
different Instruction Set Architectures [9].



36 M. Alam et al.

2.5 Metrics of Evaluation

Several formal security metrics [12] have been proposed in the literature to eval-
uate various attack methods and compare different cryptographic design with
side channel perspective.

Success Rate. A side channel attack is defined as an experiment ExpAEK,L
,

where AEK ,L is an adversary with time complexity τ , memory complexity m and
making q queries to the target implementation of the cryptographic algorithm,
where K denotes the key space and a leakage model for the key is denoted by
L. In the experiment, for any k chosen randomly from K, when the adversary,
AEk,L outputs the guessing vector g, the attack is considered as a success if the
corresponding key class denoted as s = f(k) is such that s ∈ g. The success or
failure of the attack is indicated by ‘0’ or ‘1’, returned by the experiment. The
oth order success rate of the side channel attack AEK ,L against the key classes
is defined as [12]:

SuccoAEK
,L(τ,m, k) = Pr[ExpAEK,L

= 1]

Guessing Entropy. The above-mentioned metric for an oth order attack
implies the success rate for an attack where the remaining workload is o-key
classes. Thus the attacker has a maximum of o-key classes to which the required
k may belong. While the success rate for a given order is fixed with respect to
the remaining work load, the guessing entropy provides a more flexible defini-
tion for the remaining work load. It actually measures the average number of
key candidates to test after the attack. The Guessing Entropy of the adversary
AEk,L is defined as [12]:

GEAEK,L
(τ,m, k) = E[ExpAEK,L

]

In the next section we analyze a new source of side-channel in the form of
instruction count using AES as a case study.

3 Information Leakage Due the Event Instruction Count

In this section, we describe the basics of performance monitoring tools which we
used to observe the total number of retired instructions during the execution of
the encryption process. In this context, we have explored the types of instructions
using a more detailed analysis. The tools that we used are perf and PAPI, which
we discuss next.

Perf is a performance analyzing tool in Linux which is available to all user level
processes and has been included in the Linux kernel source tree for version 2.6.31
onwards. This user-space tool can be accessed from command line providing
many sub-commands. It is capable of statistical profiling of the entire system
by instrumenting the hardware performance counters. perf supports a list of
hardware events to monitor, like cache-misses, branch-misses, cpu-cycles, etc.



Tackling the Time-Defence: Instruction Count Based Attack 37

For our proposed attack we observe the event instruction to analyze the source
of side-channel. The total number of instructions executed for a single iteration
of an encryption algorithm (say AES) is measured using the following command
in perf:

perf stat − e instructions ./aes <plaintext>

The executable ./aes has a specific secret key and provides an output cipher-
text value for a given <plaintext>.

PAPI. One limitation of the perf tool is that we can observe the total number
of instruction executed but can not further distinguish between types of instruc-
tions. Performance Application Programming Interface (PAPI) provides a user
with a consistent interface and methodology for monitoring performance coun-
ters and can even show counts of finer hardware events like number of control
instructions, number of data transfer instructions, etc.

PAPI is more sophisticated than perf tool since it provides a larger number
of hardware events for monitoring. The total monitored instruction count, as
measured by perf tool, is further divided into specialized hardware events in
PAPI interface such as:

– PAPI BR INS: This event can be used to measure the total branch instructions
executed for an encryption algorithm.

– PAPI LST INS: This event can be used to measure the total load/store instruc-
tions executed for an encryption algorithm.

The above two events provide us with the handle to analyze and investigate
the source of information leakage.

3.1 Correlation of Cache Events to Instruction Counts

Efficient implementations of block ciphers use lookup tables to perform the com-
putations involved in encryption and decryption operations. As described in
Sect. 2.1, the look up table accesses during the encryption process are dependent
on both the input plaintext and the secret key. The respective memory addresses
of these lookup table accesses vary depending on the input plaintext as well as
the secret key. The cache timing attacks reported in literature exploit the non-
uniformity in access times of these table lookup requests to retrieve the secret
information. The non-uniformity of timing observations are typically attributed
to cache memory events such as cache hit and miss.

A cache-miss occurs whenever the requested data is not present in the cache.
On a cache-miss event, the memory controller needs to fetch the requested data
from the main memory and loads it into the cache. Thus on a cache miss, a
memory element from the cache memory (which is being replaced by the newly
requested data block) is written back in the main memory, followed by loading of
a new data element in the particular location of the cache. The decision of which
block to be replaced for a new request is partially determined by the virtual to
physical address mapping of the data block and partially governed by the cache



38 M. Alam et al.

replacement strategies implemented by the memory controller. Thus the number
of instructions executed by the processor has a direct correspondence to the event
encountered by the cache memory. Since on a cache miss, the processor requests
the memory element to be brought from main memory to the cache; this event
is inherently performed with a higher number of instructions. However, in the
case of a cache-hit event, the processor will not issue any additional instructions
to load the data from the memory as the required data is already present in
the cache. This brings us to the conclusion that the cache events will have an
alternative effect on the instruction count event.

3.2 Profiling the Instruction Counts

In the previous subsection, we have elaborated that individual cache events have
a direct correspondence to the instruction counts. In this subsection, we demon-
strate that the average deviation for instruction counts have a similar profile
as that of the timing profile constructed for cache timing attacks. We conduct
an experiment on the OpenSSL [23] AES encryption. The plaintext byte p0 is
varied randomly from 0 to 255, keeping all other bytes unchanged. Initially, we
obtained a timing profile using RDTSC instructions as shown in Fig. 1a for the
key byte k0. Keeping the experimental setup unchanged, next, we observed the
instruction profile as in Fig. 1b which plots the deviation from the mean of the
total instruction count. The deviation from the average value of the monitored
event for each byte of p0 is shown in Fig. 1. This graph is known to be the
characteristics curves for the monitored events. A significant deviation from the
average for a particular key byte shows the existence of information leakage. We
can easily see that both the characteristics curves for timing and instructions
are similar and hence supports our claim that instruction can be used as an
alternative to the timing profile.

However, the event cache-misses can also be observed from the HPCs, and
thus we had replicated the same experiment replacing instruction count with
cache misses, and the cache miss profile is illustrated in Fig. 1c. The event

Fig. 1. Deviation of total execution time (a), total instruction counts (b), and total
L3 cache-misses (c) during an AES encryption operation from average for different
plaintext byte p0 generated randomly keeping the other bytes unchanged



Tackling the Time-Defence: Instruction Count Based Attack 39

monitored through PAPI observes the cache misses from all the three levels
of cache. This information is highly noisy as in the figure and bears no resem-
blance to the timing observation. The reason for this behavior is mainly because
the cache misses plotted in the figure are for the L3 cache, while we assume the
lookup accesses for encryptions are mostly happening from L1 and L2 caches.
Liu et al. presented the practicality of a cross-core, cross-VM LLC-cache based
Prime+Probe attack [10] and showed that a proper eviction algorithm is needed
to mount a successful attack, which is difficult in the real noisy environment.

We can conclude from the figures presented in Fig. 1 that instruction count
bears a direct correspondence to the timing side channel rather than the event
cache misses. In the next section, we will move a step deeper to validate the
claims that we have made in this section.

3.3 Analyzing Load/Store Instruction Counts

In the previous subsection, we have observed that the total instruction count
generates similar profiles as that of timing attacks. In this section, we further
explore the different types of instructions using the tool PAPI to investigate
the type of instructions responsible for generating similar profile as timing. The
hardware events which are related to the total instructions are given as follows:

1. Data Manipulation Instructions
– Consists of arithmetic instructions, logical instructions, shift instructions,

etc. Provides computational capabilities to the computer by performing
different operations on data.

– The hardware events for monitoring these instructions are PAPI INT INS,
PAPI FP INS, etc., which measure the total integer instructions, total
floating point instructions respectively, spawned by the processor. How-
ever, the PAPI tool does not provide the handle to observe these hardware
events.

2. Data Transfer Instructions
– Transfer data between memory and registers, register & input or output,

and between processes register without changing the data content.
– PAPI tool gives the handle to monitor these instructions using the hard-

ware event PAPI LST INS.
3. Program Control Instructions

– Direct or change the flow of a program. Mainly consists of all the branch
instructions.

– We can observe these instructions with PAPI tool by using the hardware
event PAPI BR INS.

We demonstrate another experiment as the previous one to find and validate
the actual type of instructions which are mainly responsible for generating the
profile same as timing. Here, we observe the events PAPI BR INS (type 3) and
PAPI LST INS (type 2) using the PAPI tool to get the characteristics curve for
each event. The cache-miss and cache-hits are related to data transfer instruc-
tions as a cache miss will result in loading data into a particular cache line.



40 M. Alam et al.

Fig. 2. Deviation of total branch instructions (a) executed and total load/store instruc-
tions (b) executed during an AES encryption operation from average for different plain-
text byte p0 generated randomly keeping the other bytes unchanged

We can validate this from Fig. 2b, where we can observe, the profile generated
by the event PAPI LST INS has the same resemblance to the profile of the total
instructions. However, Fig. 2a, shows that the profile generated by the branch
instructions are not at all similar to that of the total instructions, and hence
works as noise in the observations. Figure 2 shows both the characteristic curves
for branch instructions and load/store instructions respectively and the behav-
ior of the characteristics plots validates that load and store instructions bear a
direct resemblance to the timing characteristics and thus are a potential source
of leakages.

In the next section, we present a formal description of the proposed attack
methodology, IPA, with a case study on AES block cipher.

4 Instruction Profiling Attack Description

The previous section describes the hardware event instruction as a potential
side-channel threat because of the resemblance of its profile to that of time. In
this section, we give a formal description of our attack methodology that we
have used in this paper.

4.1 Instruction Count Analysis for AES

For an AES encryption each table T0, T1, T2, and T3 is accessed four times in
every round for the first nine rounds, while table T4 is accessed 16 times in the
final round. In all, there are 160 table accesses. Following the analysis presented
in [19], if nh is the number of cache hits and nm is the number of misses, then
the total instructions executed during the encryption process can be written as:

I = nh ∗ Ih + nm ∗ Im

= nh ∗ Ih + (160 − nh) ∗ Im



Tackling the Time-Defence: Instruction Count Based Attack 41

Here, Ih is the number of instructions executed when a cache-hit occurs and
Im is the same when a cache-miss occurs. Note, we are focussing on data transfer
instructions, as they are the suspected contributors to the leakage. Furthermore,
it may be emphasized here that when we perform the actual attacks, we consider
the variation of the total instruction count, and not exclusively instructions of
any specific type. This improves the practicality of the attack. The difference of
instruction counts between two encryption processes can be written as:

ΔI = Δnh ∗ ΔIh + Δnm ∗ ΔIm

= Δnh ∗ (ΔIh − ΔIm)

Now, the parameters Δnh,ΔIh, and ΔIm depend on the cache-access pat-
terns. The difference in number of hits, Δnh, occurs because of the differences
in accessing the Tables T0 to T3 during the encryption for AES. The difference
(ΔIh − ΔIm) depends on both plaintexts and the key, which are inputs to the
cipher. So, by monitoring and statistically analyzing the instruction count we
can obtain a profile which is dependent on the secret key, and thus potentially
determine it by comparing with templates for known keys.

4.2 Description of IPA

In this subsection, we describe the proposed attack methodology taking Bern-
stein’s attack on AES as a case study [13]. The proposed attack consists of
three different phases: offline profiling, online attack, and correlation, which are
discussed below.

Offline Profiling. In the profiling phase, we generate a set of random plaintext
P = {p0, p1, · · · , pl} and submit each of them to the encryption server with a
known secret key k. We observe the total instruction count for each encryption,
which can be written as ins(EAES(pi, k)). We store the average instruction count
for each byte and for each value of that byte in a matrix I[16][256]. This can be
formally stated as, for each plaintext pi (0 ≤ i ≤ l) and for each byte (0 ≤ j ≤ 15)
we successively compute the elements of the matrix I[16][256] as below:

I[j][pj,i] = I[j][pj,i] + ins(EAES(pi, k))

where, pj,i is the jth byte of the ith plaintext. Eventually, we have for 0 ≤
j ≤ 16 and x ∈ {0, 1, · · · , 255}

I[j][x] =
∑

{i|pj,i=x}
ins(EAES(pi, k))

We then calculate the average number of instructions taken by each byte for
each value of that byte using

v[j][y] =
I[j][y]

num[j][y]
−

∑
j

∑
x I[j][x]∑

j

∑
x num[j][x]



42 M. Alam et al.

where, num[16][256] stores the total number of measurements per value of a byte
value. This phase profiles the encryption server for randomly chosen but known
plaintexts and a known key.

Online Attack. In this phase, we again generate a random set of plaintexts
P ′ = {p′

0, p
′
1, · · · , p′

l}. We follow the same approach as discussed in profiling
phase and calculate two matrices I ′ and num′ for the unknown key k′. We then
calculate the matrix v′ as defined before.

Correlation. In this phase, we correlate the two matrices v and v′ obtained from
the previous steps. A matrix c[16][256] is created using the following definition
for 0 ≤ j ≤ 15 and 0 ≤ u ≤ 255.

c[j][u] =
255∑
w=0

v[j][w] · v′[j][u ⊕ w]

The elements of the matrix c are then sorted in decreasing order for each
row. The highest correlated key value for a particular byte is the candidate key
for that key byte.

The results of the correlation phase will provide us with partial secret key
recovery based on the quality of instruction profile for the known key. The full
secret key can be recovered by Brute Force search for the remaining secret key
bytes with very narrow search space.

In the following section, we discuss and validate our claims using experimental
results in two different environments, and for two different block ciphers.

5 Results and Discussion

In this section, we focus on the performance and qualitative evaluation of the
proposed attack scheme. We demonstrate the instruction profiling attack on two
very well-known block ciphers such as AES and Clefia, implementation provided
by OpenSSL library. To illustrate the performance of this attack we follow the
same principle demonstrated in the work by Bernstein on AES [4] and Rebeiro
et al. on Clefia [21]. The attack has been performed in following steps:

– Instruction Profiling for Known key: In this phase of the attack, the
adversary observes the total instruction counts from the HPCs for an execu-
tion of AES/Clefia. Following the steps discussed in the previous section, we
construct an instruction profiling table consisting of the cumulative values of
the instruction counts suffered by the executable under the assumption of a
known key.

– Instruction Profiling for Unknown key: In this phase, similar profile for
instruction counts are constructed for the same executable, but with the
assumption that the key is unknown.



Tackling the Time-Defence: Instruction Count Based Attack 43

Table 1. Description of experimental setups

1 Setup 1 Intel Core i5-4570 CPU with 3.20 GHz clock frequency,
256 KB of L1 Data Cache, 1 MB L2 Data Cache, 6MB L3 Data Cache

2 Setup 2 AMD A10-8700P CPU with 1.8 GHz clock frequency,
320 KB of L1 Data Cache, 2 MB of L2 Data Cache

– Correlating known and unknown key profiles: In this phase, we chose
very popular Pearson’s correlation metric to determine the shift between
the instruction profiles observed over the known and the unknown keys.

It has to be noted that the entire analysis is performed based on a particular
byte of the input. So to retrieve the entire key, this analysis has been carried
out for each byte of the input. The effect of each byte being independent of
each other, this analysis is usually performed concurrently on each byte using a
divide and conquer approach which adds to the elegance of the attack and does
not add up to the time complexity. In this paper, without loss of generality, we
have demonstrated all our experiments on the first secret byte of the key. Also,
we have validated all the experiments in two different environments like Intel
and AMD systems to get a generalized performance measure of the proposed
technique. Table 1 briefly states different setups used in our experiment.

5.1 Performance Evaluation of IPA in Comparision to Classical
Timing Attack

In this subsection, we evaluate the efficiency of the proposed attack methodology
to the timing attack proposed in [4] using the formalism for Guessing Entropy as
discussed in Sect. 2.5. The convergence of the plot to a lower rank for a particular
key byte signifies the successful retrieval of that byte. Figure 3a illustrates the

Fig. 3. Guessing Entropy plots of proposed attack in comparison to cache-timing attack
for setup 1 to predict secret key-byte k0 of AES (a) and round key-byte RK0 0 of Clefia
(b) respectively (Color figure online)



44 M. Alam et al.

guessing entropy plots of cache-timing attack and profiled instruction attack to
predict the secret key byte k0 of AES on setup 1 (as in Table 1).

We illustrate in Fig. 3a that cache-timing attack needs 224 iterations, whereas,
IPA requires 222 iterations of the AES encryption algorithm to correctly predict
the secret key byte k0. Thus IPA needs to profile instruction counts from perf
for orders of magnitude lesser than cache-timing attack to correctly retrieve the
secret key bytes. Similarly, Fig. 3b shows that, the proposed attack methodology
is much faster to predict the round key byte RK0 0 of Clefia encryption by
profiling 220 iterations in comparison to 226 iterations of cache-timing attack.

5.2 Performance of Timing Attack in Presence of Time Obfuscation

A popular countermeasure to obfuscate timing channel is to randomize the tim-
ing observation from the RDTSC instruction. One such implementation is pro-
posed in [11] named Timewarp. In this paper, we show that the classical timing
attack fails to retrieve the correct key bits when timewarp has been implemented.
The blue lines in Fig. 4 displays the ineffectiveness of the cache-timing attack in
the presence of timewarp defense mechanism. The blue lines plotted in Fig. 4a
and b shows that even after 228 iterations of both the AES and Clefia algorithms,
the cache timing attack fails to predict the correct secret key bytes.

Fig. 4. Guessing Entropy plot of proposed attack to predict key-byte k0 of AES (a) and
round key-byte RK0 0 of Clefia (b) in comparison to cache-timing attack in presence
of timewarp implementation on setup 1 (Color figure online)

5.3 Performance of IPA in Presence of Timewarp

In this subsection, we perform the same attack strategy using instruction count
from HPCs in the presence of the time obfuscation countermeasure: Timewarp,
implemented in the system. We elaborate the results with Fig. 4, which shows
the competency of our proposed attack method to retrieve the secret key bytes of
the encryption algorithm even in the presence of timewarp defense mechanism.
The figure demonstrates the results for both AES and Clefia algorithms.



Tackling the Time-Defence: Instruction Count Based Attack 45

The yellow lines in Fig. 4a and b show that the proposed profiled instruction
attack can retrieve the secret key bytes even in the presence of timewarp imple-
mentation with 220 and 222 iterations of AES and Clefia algorithms respectively.
The line plotted with yellow in Fig. 4 establishes the superiority of the proposed
IPA to cache-timing attack as shown in blue plotted line, since it fails to retrieve
the secret key-byte k0 of AES and round key-byte RK0 0 of Clefia respectively
in the presence of the defense mechanism.

Retrieving the Secret Keys. Here, we discuss the effectiveness of our pro-
posed attack methodology regarding the extraction of the secret key. We con-
ducted each of the experiments in the presence of timewarp implementation.
Here, we present the results for both AES and Clefia and for both the setups.

AES. In this section, we demonstrate the full-key recovery of the AES-128
implementation. As explained in the earlier sections, the entire key recovery
can be done in a divide and conquer approach such that, all the key bits can
be retrieved simultaneously since there is no mutual dependence. We have per-
formed our experiments over several random key sequences of 128 bits.

Without loss of generality, we illustrate all of our results on a randomly chosen
bit sequence. The bold bytes in the following results represent the correctly
predicted secret key bytes.

Table 2 presents the final retrieved key bytes of AES using the proposed IPA
in the presence of timewarp implementation. We can clearly see from Table 2
that the proposed IPA is able to retrieve the correct secret key bytes apart from
k2, k8 and k11 in Setup 1 and k5 and k11 in Setup 2 respectively, which we
could later recover with brute-force search with lesser search space. This result
shows the high effectiveness of the proposed attack methodology in recovering
the secret keys of AES even in the presence of time obfuscation defense.

Table 3 shows the retrieved key bytes (having highest correlation value) of
AES for both the setups using the cache-timing attack. We can clearly observe

Table 2. Correctly retrieving secret key of AES using IPA with Timewarp counter-
measure

Table 3. Fail to retrieve secret key of AES using timing channel with Timewarp
countermeasure



46 M. Alam et al.

Table 4. Fail to retrieve secret key of AES using branch instructions with Timewarp
countermeasure

from the table that, the cache-timing attack fails to retrieve any of the secret key
bytes of AES for both the setups (as expected). Table 4 shows the final retrieved
values of the AES secret keys considering branch instructions for profiling. We
can easily verify from the table that, for profiling using branch instructions the
attack method can not retrieve any of the secret key bytes correctly, which
validates our claim that branch instructions do not play any role for the secret
information leakage for these class of ciphers. This is also intuitive as block cipher
implementations do not have conditional branches, which could leak information
about the key. But the interesting part is that there the overall instruction count
can still be exploited, because of the reasons as mentioned above to determine
the secret key.

Clefia. In this subsection, we demonstrate the full-key recovery of Clefia imple-
mentation. We have experimented using different secret keys for Clefia to vali-
date our proposed attack methodology, though for the demonstration purpose
the 128-bit secret Clefia key that we considered is 6a 1a 58 e2 12 30 35 e7 fd
aa 3b 6e f4 8e d4 5f. The Round Keys corresponding to the given secret key are
given in Table 5. Without loss of generality, we show the recovery of round key
RK0 0. We perform the experimentation with the assumption of clean cache at
the start of every encryption. The correct value of the round keys depend on
the previous round keys for Clefia; thus we considered at least 220 iterations so
that the correlation value of the predicted key is at least twice the higher than
all other probable keys. Like previous results, the bytes written in bold face
represent the correct key bytes.

Tables 6 and 7 presents the final retrieved values for the RK0 round key
in Setup 1 and Setup 2 respectively using proposed IPA. Both the table shows
the top four candidate for the probable round key bytes. The values in the

Table 5. Round keys for Clefia

RK0 0xbe 0xf8 0xe7 0xae

RK1 0x75 0x61 0xb8 0x30

RK2WK0 0x91 0xe1 0x3e 0x46

RK3WK1 0x34 0x1f 0x5f 0x6f

RK4 0x70 0xc7 0xcc 0xd8

RK5 0xb8 0x90 0xb3 0xec



Tackling the Time-Defence: Instruction Count Based Attack 47

Table 6. Retrieving round keys RK0 for Clefia in Setup 1 using total instruction count
with Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0xbe (250.167) 0x6b (30.158) 0x7e (31.148) 0xee (23.137)

RK0 1 0xf8 (260.326) 0xd1 (34.242) 0xfc (33.682) 0xe8 (31.024)

RK0 2 0xe7 (255.388) 0x9f (57.648) 0x31 (56.957) 0x7a (54.515)

RK0 3 0xae (255.851) 0x87 (33.130) 0xbe (32.455) 0x41 (30.312)

Table 7. Retrieving round keys RK0 for Clefia in Setup 2 using total instruction count
with Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0xbe (260.166) 0x6b (34.153) 0x7e (31.147) 0xee (30.130)

RK0 1 0xf8 (265.456) 0xd1 (33.478) 0xfc (32.147) 0xe8 (31.200)

RK0 2 0xe7 (247.457) 0xae (57.124) 0x43 (57.008) 0x95 (54.214)

RK0 3 0xae (259.567) 0x87 (47.247) 0xbe (46.211) 0x41 (40.589)

Table 8. Retrieving round keys RK0 for Clefia in Setup 1 using timing attack with
Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0xce (314.699) 0x65 (289.491) 0x20 (276.232) 0xae (213.873)

RK0 1 0xac (775.449) 0x68 (761.411) 0xbb (603.751) 0xb2 (577.428)

RK0 2 0x56 (453.751) 0xd7 (417.697) 0xc8 (347.645) 0xfe (249.147)

RK0 3 0x37 (598.248) 0xac (548.479) 0x6b (497.268) 0xd5 (457.314)

Table 9. Retrieving round keys RK0 for Clefia in Setup 2 using timing attack with
Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0xd7 (478.324) 0xba (421.984) 0x2e (394.157) 0xcf (350.496)

RK0 1 0x1e (367.459) 0xf9 (314.496) 0xa1 (296.549) 0xd9 (247.693)

RK0 2 0x8a (724.967) 0x4d (695.349) 0xa0 (645.945) 0x09 (634.235)

RK0 3 0xe4 (676.935) 0x45 (645.453) 0x00 (601.239) 0xda (509.486)

braces are the correlation value of the probable keys. We can easily
observe from the tables that the proposed IPA is able to recover all the bytes
of the round key RK0 for both the setups in the presence of timewarp defense
mechanism. The correlation values for the correctly predicted key bytes are much
greater than the subsequent candidate keys.

Tables 8 and 9 presents the final retrieved values for the RK0 round key in
Setup 1 and Setup 2 respectively using cache-timing attack like the previous



48 M. Alam et al.

Table 10. Retrieving round keys RK0 for Clefia in Setup 1 using branch instructions
with Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0x2f (869.143) 0xda (649.786) 0x38 (575.880) 0x62 (561.020)

RK0 1 0xde (668.557) 0x3e (615.218) 0xdd (587.463) 0xab (499.769)

RK0 2 0xdd (584.990) 0x6d (512.642) 0xd3 (456.590) 0xaa (448.524)

RK0 3 0xd (703.281) 0x90 (619.583) 0x3f (577.043) 0x3e (552.067)

Table 11. Retrieving round keys RK0 for Clefia in Setup 2 using branch instructions
with Timewarp countermeasure

Top-4 probable RK0 round keys (correlation value)

RK0 0 0x2f (749.457) 0xda (657.457) 0x38 (602.983) 0x62 (597.237)

RK0 1 0xde (457.698) 0x3e (421.697) 0xdd (403.743) 0xab (347.573)

RK0 2 0xdd (726.147) 0x6d (689.478) 0xd3 (623.951) 0xaa (599.974)

RK0 3 0xd (714.649) 0x90 (687.967) 0x3f (567.697) 0x3e (547.546)

Table 12. Top-2 predicted round keys of Clefia

Round key bytes Correct key Predicted key (Setup 1) Predicted key (Setup 2)

RK0 0 be be (250.548) 6b (33.518) be (331.478) 72 (30.347)

RK0 1 f8 f8 (236.478) d1 (34.398) f8 (347.149) 0e (32.478)

RK0 2 e7 e7 (259.496) 9f (31.759) e7 (312.479) e9 (35.478)

RK0 3 ae ae (249.247) 87 (30.974) ae (299.647) 5e (31.479)

RK1 0 75 75 (239.479) 6e (29.647) 75 (357.457) 14 (29.475)

RK1 1 61 61 (213.795) 0a (37.198) 61 (378.147) 2d (47.149)

RK1 2 b8 b8 (297.347) 54 (30.789) b8 (249.647) 64 (36.759)

RK1 3 30 30 (267.126) 7c (31.496) 30 (432.148) 1f (26.478)

RK2 0 + WK0 0 91 91 (257.214) d3 (34.189) 91 (496.487) 77 (31.478)

RK2 1 + WK0 1 e1 e1 (269.147) b6 (33.698) e1 (249.657) 36 (32.768)

RK2 2 + WK0 2 3e 3e (259.347) fb (31.478) 3e (387.162) 32 (26.479)

RK2 3 + WK0 3 46 46 (249.347) df (29.678) 46 (321.338) 3c (47.147)

RK3 0 + WK1 0 34 34 (298.147) 87 (35.148) 34 (410.814) cc (43.549)

RK3 1 + WK1 1 1f 1f (267.348) 8d (31.987) 1f (490.703) c6 (29.647)

RK3 2 + WK1 2 5f 5f (249.347) ff (34.158) 5f (228.757) f9 (33.679)

RK3 3 + WK1 3 6f 6f (219.347) 38 (36.489) 6f (353.479) f2 (29.624)

RK4 0 70 70 (278.498) 1a (32.489) 70 (228.749) 7e (45.697)

RK4 1 c7 c7 (264.369) b0 (29.634) c7 (249.647) 53 (49.547)

RK4 2 cc cc (249.149) 66 (34.214) cc (349.248) 04 (23.452)

RK4 3 d8 d8 (278.694) 24 (28.365) d8 (324.479) 2e (32.479)

RK5 0 b8 b8 (324.496) 68 (49.324) b8 (367.457) 33 (36.139)

RK5 1 90 90 (257.354) 83 (31.647) 90 (246.479) e6 (29.498)

RK5 2 b3 b3 (264.236) 2c (26.498) b3 (226.714) bf (36.249)

RK5 3 ec ec (321.698) 43 (45.268) ec (314.789) f2 (33.149)



Tackling the Time-Defence: Instruction Count Based Attack 49

results. We can observe from the tables that cache-timing attack fails to recover
the round key RK0 for both the setups in the presence of timewarp defense
mechanism. The correlation values for the top four candidate keys are very close
to each other, in both the setups, thereby creating the difficulty in predicting
the actual secret key correctly. Similarly, Tables 10 and 11 presents the final
retrieved values for the RK0 round key in Setup 1 and Setup 2 respectively by
profiling through branch instructions, which shows the expected inefficiency in
retrieving the secret keys using branch instructions.

Table 12 shows the retrieval of all the Clefia round keys using IPA in the
presence of timewarp defense mechanism to show the efficiency of the proposed
attack. The table shows the top two candidate key with respective correlation
in the braces for both the setups. We observe that full recovery of the secret key
is possible with the proposed IPA for Clefia encryption.

5.4 Success Rate of the Proposed IPA

The success rate for a side-channel attack is represented as the fraction of the
secret key bytes recovered. For any successful side-channel attack, success rate
increases with the number of iterations of the monitored encryption algorithm.
Here, we present the success rate of the proposed IPA with the cache timing
attack in the absence of timewarp defense mechanism to show the effectiveness
of the IPA in retrieving the secret key bytes with lesser time. Figure 5 shows
the success rate of both IPA and cache-timing attack in Setup 1. The figures
represent the part of the secret keys retrieved successfully with the increase in
the number of iterations. Figure 5a and b show the success rate in retrieving the
secret key bytes of AES and Clefia. The lines plotted with blue color represent
the success rate of the proposed IPA, and the success rate of classical cache-
timing attacks is represented by yellow colored lines. It is to be noted that the
yellow line is always below the blue line for both AES and Clefia, signifying the
better success rate of IPA than the classical timing attacks for both the ciphers.

In the next section, we discuss the practicality of the proposed attack method-
ology in different environments along with a possible countermeasure.

Fig. 5. Comparison of Success rate of IPA with cache-timing attack in Setup 1 in
predicting secret key-bytes of AES (a) and Clefia (b) respectively (Color figure online)



50 M. Alam et al.

6 Practicality of the Proposed Attack

The proposed attack methodology discussed in this paper is a primitive imple-
mentation, which does not require the assumption of shared cache memory
between different users. This gives the attack an advantage over other types
of attacks like Prime + Probe attacks. There are inherent protections in most of
the modern processor architectures, like Intel SGX, which guard against cache
trace based attacks using secure enclaves. However, the event instruction count
reflects the effect of cache access patterns in spite of this security. We aim to
explore these architectures in our future study.

A possible countermeasure for this attack is the implementation of block
ciphers without requiring any table lookups. There are some modern crypto-
graphic libraries like NaCl [5], which provide us the block cipher implementa-
tions having no table accesses. This provides an interesting approach to mitigate
the proposed attack methodology.

7 Conclusion

In this paper, we have investigated a new side-channel leakage through the HPC
event instructions and successfully designed an attack methodology, namely
Instruction Profiling Attack (IPA). We demonstrate that surprisingly even total
instruction counts can be utilized to perform side channel analysis on block
ciphers, which because of the absence of conditional branch instructions were not
targeted previously for instruction based attacks. In fact, we demonstrate that
the proposed IPA has better performance than classical cache- timing attacks,
and are better side channels than the customary timing information. We also
attempt to bring out an implication of the attack, that defenses against timing
attacks which are based on time fuzzing, will not be able to prevent the pro-
posed IPA. We validate our claims with results for two different environments,
namely Intel and AMD. The paper proves once again that the cache memory is
an important artifact for side channel leakage; rather than trying to obfuscate
channels like timing it is more important to design micro- architectures with
security-awareness in the early phase of the design cycle.

References

1. Aciiçmez, O.: Yet another microarchitectural attack: : exploiting I-cache. In: Pro-
ceedings of the 2007 ACM Workshop on Computer Security Architecture, CSAW
2007, Fairfax, VA, USA, 2 November 2007, pp. 11–18 (2007)

2. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack on the
AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668 18

3. Barreto, P.S.L.M.: The AES block cipher in C++
4. Bernstein, D.J.: Cache-timing attacks on AES. Techical report (2005)

https://doi.org/10.1007/11967668_18


Tackling the Time-Defence: Instruction Count Based Attack 51

5. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryp-
tographic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS,
vol. 7533, pp. 159–176. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33481-8 9

6. Bhattacharya, S., Rebeiro, C., Mukhopadhyay, D.: Unraveling timewarp: what all
the fuzz is about? In: HASP 2013, The Second Workshop on Hardware and Archi-
tectural Support for Security and Privacy, Tel-Aviv, Israel, 23–24 June 2013, p. 8
(2013)

7. Federal Information Processing Standards Publication 197. Announcing the
Advanced Encryption Standard (AES)

8. Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic
for pairing-based cryptography in characteristic three. IEEE Trans. Comput. 54(7),
852–860 (2005)

9. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3 (3A, 3B,
3C & 3D): System Programming Guide (2010)

10. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, 17–21 May 2015, pp. 605–622 (2015)

11. Martin, R., Demme, J., Sethumadhavan, S.: Timewarp: rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. In: 39th
International Symposium on Computer Architecture (ISCA 2012), Portland, OR,
USA, 9–13 June 2012, pp. 118–129 (2012)

12. Mukhopadhyay, D., Chakraborty, R.S.: Hardware Security: Design, Threats, and
Safeguards, 1st edn. Chapman & Hall/CRC, Boca Raton (2014)

13. Neve, M., Seifert, J., Wang, Z.: A refined look at Bernstein’s AES side-channel
analysis. In: Proceedings of the 2006 ACM Symposium on Information, Computer
and Communications Security, ASIACCS 2006, Taipei, Taiwan, 21–24 March 2006,
p. 369 (2006)

14. Nyberg, K.: Generalized Feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0034838

15. OProfile (2015). http://oprofile.sourceforge.net/news/
16. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the

case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

17. perf: Linux profiling with performance counters (2015)
18. Performance Application Programming Interface (2016)
19. Rebeiro, C., Mondal, M., Mukhopadhyay, D.: Pinpointing cache timing attacks on

AES. In: VLSI Design 2010: 23rd International Conference on VLSI Design, 9th
International Conference on Embedded Systems, Bangalore, India, 3–7 January
2010, pp. 306–311 (2010)

20. Rebeiro, C., Mukhopadhyay, D., Bhattacharya, S.: Timing Channels in Cryptog-
raphy: A Micro-Architectural Perspective. Springer Publishing Company, Incorpo-
rated, Cham (2014). https://doi.org/10.1007/978-3-319-12370-7

21. Rebeiro, C., Mukhopadhyay, D., Takahashi, J., Fukunaga, T.: Cache timing
attacks on clefia. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS,
vol. 5922, pp. 104–118. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-10628-6 7

22. Sony Corporation: The 128-bit blockcipher Clefia: Algorithm specification (2007)
23. The OpenSSL Project. http://www.openssl.org

https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/BFb0034838
https://doi.org/10.1007/BFb0034838
http://oprofile.sourceforge.net/news/
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/978-3-319-12370-7
https://doi.org/10.1007/978-3-642-10628-6_7
https://doi.org/10.1007/978-3-642-10628-6_7
http://www.openssl.org


52 M. Alam et al.

24. Unix Stack Exchange. https://unix.stackexchange.com/questions/2126/why-is-the
re-a-big-delay-after-entering-a-wrong-password

25. Wang, X., Karri, R.: Numchecker: detecting kernel control-flow modifying rootkits
by using hardware performance counters. In: The 50th Annual Design Automation
Conference 2013, DAC 2013, Austin, TX, USA, 29 May–07 June 2013, pp. 79:1–
79:7 (2013)

26. Wang, X., Karri, R.: Reusing hardware performance counters to detect and identify
kernel control-flow modifying rootkits. IEEE Trans. CAD Integr. Circuits Syst.
35(3), 485–498 (2016)

27. Wang, X., Konstantinou, C., Maniatakos, M., Karri, R.: Confirm: detecting
firmware modifications in embedded systems using hardware performance coun-
ters. In: Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, ICCAD 2015, Austin, TX, USA, 2–6 November 2015, pp. 544–551
(2015)

https://unix.stackexchange.com/questions/2126/why-is-there-a-big-delay-after-entering-a-wrong-password
https://unix.stackexchange.com/questions/2126/why-is-there-a-big-delay-after-entering-a-wrong-password


Hey Doc, Is This Normal?: Exploring Android
Permissions in the Post Marshmallow Era

Efthimios Alepis and Constantinos Patsakis(B)

Department of Informatics, University of Piraeus,
80, Karaoli & Dimitriou, 18534 Piraeus, Greece

kpatsak@unipi.gr

Abstract. Billions of hand-held devices are used globally in daily basis.
The main reasons for their wide adoption can be considered the intro-
duction of various sensors that have completely reshaped user interaction
standards as well as the development of myriads of applications that pro-
vide various services to the users. Due to the daily usage of these appli-
cations and the wide information that can be deduced from the sensors,
a lot of private and sensitive information can be leaked unless access
control is applied to the installed applications. In Android, this control
was applied upon installation of each application, when the user would
be asked to grant the requested permissions. However, this policy has
changed in the last versions, allowing users to revoke permissions and
grant “dangerous” permissions on demand. In this work we illustrate
several flaws in the new permission architecture that can be exploited to
gain more access to sensitive user data than what the user considers to
have granted.

Keywords: Android · Security · Permissions · Privacy

1 Introduction

Android is the most widely used platform for hand-held devices having a huge
user base of the scale of millions. While the core of Android is Linux, the plat-
form has been radically redefined by Google to meet the specific needs of the
users in devices with constrained resources. Android as well as iOS are less than
a decade old and entered the market when other operating systems were monop-
olizing. Nonetheless, they quickly conquered the market, currently owning more
than 90% of the market share. This quick shift in the market can be attributed
to a big transformation in the functionality that both operating systems allowed:
the installation of third party applications. Companies and independent devel-
opers quickly started developing mobile applications for both these platforms
exploiting the new capabilities that these devices are equipped with, creating a
new ecosystem.

Evidently, over the last years of smartphone development, modern mobile
devices needed more fine-grained security models for their users since very sen-
sitive data were handled, other can be extracted from the embedded sensors
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 53–73, 2017.
https://doi.org/10.1007/978-3-319-71501-8_4



54 E. Alepis and C. Patsakis

and most importantly, because these devices are being constantly used in most
peoples’ everyday life. As a result, users who were inexperienced with comput-
ers, as well as children and elderly are nowadays smartphone users. Therefore,
users are nowadays more prone to experience security and privacy threats. To
address these issues, a security model that would inform users about permission
settings only once during application installation has been considered as insuffi-
cient. Unfortunately, the main reason for this was the fact that many users did
not take these permission settings into consideration and this has often resulted
in them being misled or even deceived. An improved model that would han-
dle security and privacy threats during runtime was first introduced in iOS 7
from Apple, and in Android Marshmallow from Google. The intention of these
models is to provide the required information and request permissions during
applications’ runtime once the application needs to access them. Therefore, an
application must not only declare which permissions are necessary for its incor-
porated functions, but users would also have a broader view of how their sensitive
data are handled whenever and even each time these data were handled by the
application. Hence, access to the respective resources and sensors has the explicit
permissions granted by the user.

Having used the new security model of Android, developers have significantly
changed their programming logic, since a large amount of smartphone applica-
tions dependends on the granted permissions to interact with the operating
system’s environment. As a next step after the incorporation of the new permis-
sion “logic”, an evaluation of the first results of the new model must follow to
determine whether the applications’ behavior has been improved compared with
the older model. In this sense, the authors of this paper have developed some
smartphone applications that would be used as testbeds for the new security
model.

Main Contributions: Recently, Android has received a lot of criticism due to
the revelation of severe security issues e.g. breaking full disk encryption1 or even
exploiting vulnerabilities on Android devices built on Qualcomm to gain root
privileges2. Our goal in this work is to go a step before the implementation, and
discuss the actual permission model of Android, which essentially describes how
sensitive information is handled by applications. In this regard, the contributions
of this work are twofold. First we provide a detailed description of Android’s
permission model, analysing the needs that led to its introduction. Further to
just stating the new features of the model, we proceed to an in depth analysis
of problems we have identified and others that are augmented. To validate our
claims we have developed a number of test applications some of which are used
for comparison, while others expose serious security and privacy issues.

Road Map: The rest of this work is structured as follows. We first provide a
brief overview of Android platform and related work in Sect. 2. Then, in Sect. 3
we detail the new permission model in Android and how it is applied. Section 4

1 http://bits-please.blogspot.gr/2016/06/extracting-qualcomms-keymaster-keys.html.
2 http://blog.checkpoint.com/2016/08/07/quadrooter/.

http://bits-please.blogspot.gr/2016/06/extracting-qualcomms-keymaster-keys.html
http://blog.checkpoint.com/2016/08/07/quadrooter/


Hey Doc, Is This Normal?: Exploring Android Permissions 55

highlighs several fallacies of the model and the risks that users are exposed
to. Section 5 discusses remedies for the security issues that are presented in this
work. Finally, the article concludes with some remarks and ideas for future work.

2 Related Work

Each application in Android is installed through an APK file which is a com-
pressed package that contains everything that the application needs to be exe-
cuted, such as the bytecode, icons and metadata. This APK is installed by invok-
ing the Package Manager. The official and most widely used method is through
Google Play, an application which connects to Google’s application market and
downloads the requested applications enabling also the indexing and a repu-
tation system. Users may also invoke the Package Installer by downloading or
copying an application to the phone storage and asking Android to open it.
Finally, advanced users may use Android Debug Bridge (ADB) a tool, provided
by Google which provides additional functionalities. If a user selects to install
an application using the first scenarios, he will be presented with a screen which
notifies him which permissions have to be granted in order to run in his device.
Up to Marshmallow, the user was forced to either accept the proposed permis-
sions and install the application, or to reject them, thus canceling the installation
process. Therefore, permissions were given once to application and they could
not be revoked, unless the user decided to uninstall the application.

This “take-it-or-leave-it” policy was also present in iOS, nevertheless, mod-
ding communities introduced fine grained policies in rooted devices3,4. In this
case, users were allowed to explicitly revoke access on installed applications,
nonetheless, this quite often affected the stability of these apps. Therefore, while
users gained more control of their devices and data, it reduced the quality of
user experience.

When Android and iOS first introduced their application markets, developers
were not requesting a lot of permissions. However, they soon realised that the
capabilities of these devices, such as location awareness, access to contact lists,
usage patterns etc. could provide them a great wealth of information that could
be exploited and therefore monetized, and became greedy. In many occasions,
simple applications require absurd permissions only to harvest user data [32].
While in some instances this can lead to malicious acts, unfortunately it has
paralyzed user reflexes towards such requests. As shown by Felt et al. [22], the
continuous increase of application permission requests for access to sensitive
permissions or unrelated to their core functionality, made users to ignore Android
warnings and install them without understanding to what risks they expose
themselves, a result which was also verified in other cases [7,27].

While Android permission model is considered secure, from time to time,
several issues have appeared. For instance, Davi et al. [13] showed that they
could escalate the access privileges of applications by performing calls to other
3 http://repo.xposed.info/module/biz.bokhorst.xprivacy.
4 http://www.cyanogenmod.org/.

http://repo.xposed.info/module/biz.bokhorst.xprivacy
http://www.cyanogenmod.org/


56 E. Alepis and C. Patsakis

applications which had already granted the respective privileges. Since Android
does not perform checks on transitive calls, they managed to create a chain of
calls between applications, so that the combination of the applications gains
the necessary privileges. In the scenario of Davi et al. a malicious application
exploits the vulnerabilities of a legitimate application to execute the malicious
code. Since the malicious application was not initially granted the privileges to
perform an action, it is most likely to evade the respective checks and continue
its nefarious acts. Orthacker et al. [29] extended the aforementioned scenario to
show that an adversary could use permission spreading, that is split the necessary
privileges to different applications, and through intercommunication launch the
attack. Similar approaches regarding app collusion and spread of permissions
have been reported by Dimitriadis et al. [15] as well as Blasco and Chen [10].

On top of the aforementioned issues, Grace et al. [25] found that many appli-
cations would use plain HTTP to download code and execute it on client’s device.
While insecure, this method is often seen in Android applications [31], allowing
an adversary to alter the downloaded file during its transfer. This is amplified by
an inherent threat to all Android applications: The access level to a resource is
granted per application and not per component. Theoretically, this does not raise
any important issue, since all the components are handled by the same entity,
the developer who created the app. However, as discussed in the following para-
graphs, this is not always the case.

In general, ads have started becoming more and more greedy about users’
information. In fact, the more installations an app has, the more privacy invasive
it tends to be [12]. Apart from requests to get user’s location, ad libraries, may
perform WiFi scans to determine users’ location, scan whether the user has
accounts in social networks or even scan the device to find which applications
have been installed [11]. Recently, more advanced ad libraries manage to link
devices by playing inaudible sounds from one device and collecting them from
the microphone of mobile devices that use applications where such an ad library
has been embedded [24].

Yang et al. [35] attempted to crowdsource users’ permissions preferences in
a semi-automatic way. Their application, Droidganger, executed an application
monitoring its behavior, and gradually revoked permissions to determine prob-
lems with its execution. When issues appeared, the user would be prompted to
comment them, and the results were aggregated in a central server. This app-
roach could potentially remove unnecessary permissions from applications which
requested far more permissions than they actually needed, which accounts for a
huge market share and whose acts could be characterised as malicious [11,34].
To decrease user interaction, automated approaches have been introduced such
as the work of Bartel et al. [9] and Tsiakos’ and Patsakis’ [33], with the latter
aiming towards advertisement networks.

Marshmallow, introduced many changes in Android, many of which are
focused on the security and privacy of the platform. The new version has dras-
tically decreased the number of dangerous permissions, which had reached more
than 260 in API level 22. Some of these permissions are illustrated in Table 1.



Hey Doc, Is This Normal?: Exploring Android Permissions 57

Contrary to the line of previous versions where, as highlighted by Wei et al. [34],
the permissions were made to satisfy vendors, the new permission model is
focused towards developers. Nonetheless, as it is going to be discussed, by no
means the new model has become more fine grained, and more importantly, it
cannot be considered transparent. Nonetheless, starting from Marshmallow, the
user can revoke permissions or grant them upon request to further refine access
rights.

Table 1. Some of the Android permissions in API level 22.

Permissions

ACCESS ALL EXTERNAL STORAGE ACCESS LOCATION EXTRA COMMANDS ACCOUNT MANAGER

ACCESS CACHE FILESYSTEM ACCESS MOCK LOCATION ALLOW ANY CODEC FOR PLAYBACK

ACCESS CHECKIN PROPERTIES ACCESS MTP ASEC ACCESS

ACCESS COARSE LOCATION ACCESS NETWORK CONDITIONS ASEC CREATE

ACCESS CONTENT PROVIDERS EXTERNALLY ACCESS NETWORK STATE ASEC DESTROY

ACCESS DRM CERTIFICATES ACCESS NOTIFICATIONS ASEC MOUNT UNMOUNT

ACCESS FINE LOCATION ACCESS PDB STATE ASEC RENAME

ACCESS FM RADIO ACCESS SURFACE FLINGER AUTHENTICATE ACCOUNTS

ACCESS INPUT FLINGER ACCESS WIFI STATE BACKUP

ACCESS KEYGUARD SECURE STORAGE ACCESS WIMAX STATE BATTERY STATS

Prior to Android Marshmallow, when a user decided to install an applica-
tion, the first check that would be performed was about its permissions. Should
the user accept the requested permissions, the application is installed. How-
ever, since Marshmallow, the installation of the application is made regardless of
the required permissions. Then, whenever the user opens an application which
requires dangerous permissions, pop up windows are going to request them,
allowing the user to select which ones should be granted. Therefore, the user has
more control over his phone, as he can selectively grant permissions. Moreover,
the user is able to revoke permissions after the installation.

To provide more fine-grained permissions, Jeon et al. [26] developed some
tools which can be used to detail which permissions are granted to an application
and which are not, in order to make them comply with the principle of least
“permissions”. For more on Android the old permission model and security, the
interested reader may refer to [19,20]

3 The New Permission Model

From the very beginning of Android, in 2007, until version 6 (all API levels
until 23), application permissions were accepted by users in the first steps of
their installation. With this move, Google wanted to achieve two goals: firstly
to inform the user which operations an application may perform and secondly
to mitigate possible attacks by limiting the application access. The permission
model provided a “take-it-or-leave-it” approach as users would either accept



58 E. Alepis and C. Patsakis

the requested permissions and install the application, or the application would
not be installed. After many years of using this approach, the Android team
brought a new model in October 5, 2015, with the code name Marshmallow. As
Google states, Android 6.0 (API level 23) includes a variety of system changes
and API behavior changes, improving resource allocation, stability and perfor-
mance. Nevertheless, probably the most notable change, is the complete redesign
of its permission model, which is listed on the top of Google’s list of changes
as “Runtime Permissions”. According to Google’s developer site5, Android 6.0
introduces a new permission model, where users can directly manage app permis-
sions at runtime. It is also noted that this model gives users improved visibility
and control over application permissions.

The new permission model allows users to selectively revoke dangerous per-
missions, Fig. 1a, and facilitates users’ privacy control by grouping applications
according to granted permissions, Fig. 1b. Moreover, the applications are not
granted dangerous permissions during installation, but on runtime, even if they
are included in the system image. The new model mandates all apps to check
for and request permissions at runtime.

(a) Changing permissions after installa-
tion.

(b) An overview of the granted permis-
sions.

Fig. 1. Managing permissions in Marshmallow.

Permissions in Android are characterized according to the risk implied when
granting them into the following four categories:

5 https://developer.Android.com/about/versions/marshmallow/Android-6.0-changes.
html.

https://developer.Android.com/about/versions/marshmallow/Android-6.0-changes.html
https://developer.Android.com/about/versions/marshmallow/Android-6.0-changes.html


Hey Doc, Is This Normal?: Exploring Android Permissions 59

– Normal: These permissions can be regarded as the ones that expose the user
or the system to the least possible risk when granted. Therefore, the sys-
tem automatically grants them at installation, without asking for the user’s
explicit approval.

– Dangerous: In this category the risk is higher as granting these permissions
can expose private user data or allow control of the device. Since these per-
missions imply a potential high risk, explicit user approval is required to be
granted. Typical such permissions include access to the microphone, contacts,
camera etc.

– To allow interoperability, Android application may exchange information
through inter component communication (ICC). Nonetheless, to guarantee
that specific applications are granted some permissions, Google has intro-
duced the signature permission. Therefore, Android grants access to an appli-
cation only if the requesting application is signed with the same certificate as
the application that declared the permission without user notification.

– In order to cater for the needs of applications that are supplied by the man-
ufacturers, Google has introduced the signatureOrSystem permission. This
permission is granted only to apps that reside in the Android system image
or that are signed with the same certificate as the application that declared
the permission. Such privileges allow apps to reboot a device or to allow
an application to clear the caches of all installed applications on the device.
Essentially, this permission is designed for manufacturers.

Apart from the above four main categories, several additional flags can be
used to further characterise the protection level of a permission such as privi-
leged, also known as system, used when multiple vendors have applications built
in to a system image to determine who can use what, installer, verifier for appli-
cations which install and verify packages respectively etc. For a detailed list of
these permissions and where they apply, the interested reader may refer to [6].
Moreover, since many unprotected APIs were found in previous versions [28],
additional protection mechanisms have been integrated for many intents.

According to Google6, the categorization of permissions to normal and dan-
gerous implies the existence of a direct privacy risk. It is worth noticing that
prior to Marshmallow, Android had numerous permissions, part of them shown
in Table 1, flooding the user with information. This fact was often exploited by
developers who for instance would request many permissions which would not
actually be used, so that the user would not be able see in the landing screen
the dangerous ones on top. The normal permissions since API 23 are illustrated
in Table 2.

To counter such issues, Android further grouped “dangerous” permissions
according to their access level in terms of functionality, as it is illustrated in
Fig. 2. These groups facilitate users, as they group permissions according to a
specific functionality, e.g. “Manage SMS”, instead of granting permissions to
each functionality independently e.g. receive, read, send SMS, the user grants
permissions per application to a group of permissions, enabling full access to the
6 https://developer.Android.com/training/permissions/requesting.html.

https://developer.Android.com/training/permissions/requesting.html


60 E. Alepis and C. Patsakis

Table 2. Normal permissions in Marshmallow.

Permissions

ACCESS LOCATION EXTRA COMMANDS NFC

ACCESS NETWORK STATE READ SYNC SETTINGS

ACCESS NOTIFICATION POLICY READ SYNC STATS

ACCESS WIFI STATE RECEIVE BOOT COMPLETED

BLUETOOTH REORDER TASKS

BLUETOOTH ADMIN REQUEST IGNORE BATTERY OPTIMIZATIONS

BROADCAST STICKY REQUEST INSTALL PACKAGES

CHANGE NETWORK STATE SET ALARM

CHANGE WIFI MULTICAST STATE SET TIME ZONE

CHANGE WIFI STATE SET WALLPAPER

DISABLE KEYGUARD SET WALLPAPER HINTS

EXPAND STATUS BAR TRANSMIT IR

GET PACKAGE SIZE UNINSTALL SHORTCUT

INSTALL SHORTCUT USE FINGERPRINT

INTERNET VIBRATE

KILL BACKGROUND PROCESSES WAKE LOCK

MODIFY AUDIO SETTINGS WRITE SYNC SETTINGS

Fig. 2. Dangerous permissions groups.

rest of the permissions in the same group. Certainly, this approach significantly
improves user interaction and experience as users have to respond to significantly
less notifications.



Hey Doc, Is This Normal?: Exploring Android Permissions 61

Prominently, Google introduced several features in the permission model
which are not apparent from the description above in order to further pro-
tect users’ privacy. For instance, since Marshmallow, developers are expected
to request ACCESS FINE LOCATION or ACCESS COARSE LOCATION permissions to
access hardware identifiers of nearby external devices via Bluetooth and Wi-Fi
scans. This change was introduced to prevent location disclosure, as many appli-
cations were trying to exploit this knowledge to correlate this information with
the location of already known devices. However, hardware identifiers can still be
still be extracted to locate users, e.g. as shown in [3] unique hardware identifiers
can be extracted by the use of WiFi-P2P.

Moreover, to protect users from phishing and ransomware attacks, since
Marshmallow, an app has to explicitly request the permission to overlay itself
over others. In fact, to indicate the criticality of granting such a permission,
Android breaks the usual user interface redirecting the user to another settings
menu to grant this permission, with indicative screens. Nonetheless, this protec-
tion mechanism is rather flawed as it will be discussed later on.

The enforcement of the permission model is a multi-step process, but before
we describe this process we have to highlight that each application in Android
is considered as a different user, hence it is granted a different UID. The reason
for this choice is in order to prevent applications from accessing the data and
private resources of the other installed apps. Once an app performs a call to
the framework API, this is accompanied by the UID of the app. The framework
then checks whether it has been assigned upon installation in the AndroidMan-
ifest.xml file. Should this be the case, Android checks the permission level of
this call (normal, dangerous etc.). If it is a normal permission it is granted and
access to the API is provided. However, if it is a dangerous permission, the sys-
tem will query whether access to this resource has been granted by the user and
accordingly allow or deny the access. Finally, if the permission is signature or
signatureOrSystem, then the system will have to check the signature of the app
with the requesting UID before granting the corresponding access.

4 Drawbacks of the New Model

The aforementioned permission categorization may seem quite secure, improving
the previous model, as sensitive information seems to be protected and selectively
disclosed. Nonetheless, the implementation of the new model introduces several
drawbacks which are going to be discussed in the following paragraphs.

4.1 Privilege Escalation via Intents

As already discussed, Kywe et al. [28] identified plenty of unsecured APIs
that could be taken advantage of allowing applications without permissions to
exploit them therefore, the new versions of Android have introduced security
mechanisms to address these issues. However, the authors have identified and
responsibly disclosed to Google, that there are even more issues which rise from



62 E. Alepis and C. Patsakis

intents. For instance, in order to access the microphone, the dangerous permis-
sion “RECORD AUDIO” needs to be granted, nonetheless, an adversary can
use an intent to launch the Speech-to-Text API and automatically convert all
microphone input to text without requesting any permission. The latter can be
used in combination with the Text-to-Speech API or simple audio to execute
arbitrary commands on the device via intents to Voice Assistants [2], extending
and automating the attacks of [14].

4.2 Transparency and Lack of Control

Inarguably, both user interaction and user experience are improved due to the
introduction of the new permission model. Nonetheless, we argue that the current
implementation lacks in terms of transparency and fails to provide fine grained
control to its full potential. Additionally, we argue that the process of granting
permissions on runtime does not necessarily improve the previous state where
permissions were granted prior installation.

To validate our claims we experimented by developing PoC applications
which enable us to compare the previous approaches to the current one. First,
we start the comparison with the previous model trying to indicate the actual
changes during the installation and execution of some applications. To this end,
we developed an application which requests a small number of security permis-
sions, more precisely, permissions to receive, read and send SMSs, and also the
permissions to access the location of the device through fine and coarse location
permissions. For the evaluation, we created two versions of the application, one
that is targeted to API level 22 (Android 5.1) and one that is targeted to API
level 23 (Android 6).

In API level 22, during the installation process, the user is prompted to
accept all the permissions in order to proceed with the installation, Fig. 3a.

(a) Application installation. (b) Application running. (c) Application info.

Fig. 3. API level 22.



Hey Doc, Is This Normal?: Exploring Android Permissions 63

Having successfully acquired the device’s location, the application runs smoothly,
Fig. 3b, and the user can later review the permissions that are granted to the
application, Fig. 3c, without of course being able to revoke them.

Similarly, we perform the same actions using API level 23, which incorporates
the new permission model. Notably, Fig. 3a shows that there is no permission
required to proceed with the application’s installation. Even more interestingly,
a user facing this screen is informed that “This application does not require
any special access”. This information is already misleading since the application
really requires some “dangerous” permissions, however they are going to be
requested after the installation, to be discussed afterwards. Figures 4b and c
illustrate the first launch of the application where two groups of permissions
are deliberately requested. Perhaps the most important thing to notice in this
process is the fact that these two permissions have not been requested by the
application when they were really needed during runtime, but surprisingly during
an unrelated to them event, namely the application’s first launch. Apparently,
granting permissions is not performed on usage request, but when the application
is executed. As illustrated in screenshot of Fig. 3b, the mobile application uses
both location and SMS features in the corresponding events of two buttons.
The application successfully acquires the devices exact location, nevertheless, no
popup window or alert message informs the user that location service is being
used by the application. Finally, Fig. 4d illustrates the application’s settings, in
the application manager.

(a) Application in-
stallation.

(b) Granting loca-
tion pemission.

(c) Granting access
to SMS.

(d) Application info.

Fig. 4. API level 23.

Having carefully examined the above two use cases where the same appli-
cation is running targeted to API level 22 and 23 respectively, some important
issues arise. Firstly, newer applications, targeted to APIs equal to or greater than



64 E. Alepis and C. Patsakis

23 do not inform users properly about permissions during installation. Clearly,
the information that users receive during installation that all applications do not
require any special access can be considered as either unnecessary or misleading.
Moreover, the timing of appearance of the alert requesting a specific permission
is also misleading. One would expect that a permission notification would appear
once an application tries to access a resource related to that permission. How-
ever, applications may ask access to dangerous permission groups on unrelated
occasions, when there is no actual need for using them. In our case, this was
made during the first launch of the application. Afterwards, the application was
able to access these dangerous resources, namely SMSs and Location services,
at any time, even if the application was restarted.

This behaviour is rather important for the user. More precisely, the user
is constantly being “nagged” to accept a permission, but when it is accepted
he will not be prompted again. The naive user for example would therefore
accept the permission permanently, whereas, if he was prompted again, even if
he had accepted once, he would occasionally revoke this permission. A typical
example can be considered in location-aware applications where users would like
to selectively disclose their location to the service provider and not to perform
a long sequence of actions to revoke such a permission.

Going a step further, one can claim that the permission model can become
even more misleading in the cases of the dangerous permission groups. For
instance, we discuss the use case where a user installs an application that requires
some access to the phone’s capabilities. When the app requests to read the phone
state (permission READ PHONE STATE); a widely used permission, the user will be
asked to grant access for this request. Nonetheless, after accepting the permis-
sion, the user has granted, indirectly, more access to the application, as the appli-
cation is actually granted full access to the dangerous “phone” permission group.
Therefore, the application may read and change the call history (READ CALL LOG,
WRITE CALL LOG), or even make phone calls (CALL PHONE) without any user noti-
fication. Actually the permission request is stated as “Allow ApplicationName
to make and manage phone calls?”. The statement is quite vague, so it may
frighten the user, nevertheless, as users are accustomed to such requests most
likely they will accept. Nonetheless, the user cannot determine which of the
actual permissions has been granted to the application and cannot revoke the
permission to a single member of the category.

The confusion of the user may even be greater than the aforementioned
notification, as the new permission categorization does not improve transparency.
During installation users are not allowed to see what actual permissions are going
to be requested by an application. More interestingly, since many permissions of
Table 1 have not been categorized as dangerous, the user is not prompted about
them and they are automatically granted on installation. More on these issues
are discussed in a following section.

An important factor that was overseen in this radical shift is that users
would be accustomed to use the new permission model. Therefore, a user is
expected to always have the control of dangerous permissions during runtime,
regardless of what he has done in the installation procedure. Exploiting this



Hey Doc, Is This Normal?: Exploring Android Permissions 65

false concept, malware authors have specifically targeted Marshmallow, using
the backwards compatibility which allows it to install and execute applications
developed for previous API versions. However, in this case, things are not as
users would expect. If an application has been developed for target sdk 22,
then once a victim installs the application to Marshmallow, it will be granted
the permissions upon installation. Definitely, the victim will be shown the “dan-
gerous” permissions upon installation, but since the user is not accustomed to
following this procedure during installation (as a result of being used to the
new runtime permission model), it is highly likely that he will accept it, hoping
that when he launches the application, he will be able to apply his permis-
sion policies. This user experience gap has already been exploited by malware
such as Android.Bankosy and Android.Cepsohord. Although apps do not launch
automatically, such apps would exploit this gap to collect as much personal
information as possible before the user revokes his permissions.

A final consideration concerning the lack of transparency that has been intro-
duced since the Android Marshmallow is introduced by another experiment con-
ducted by the authors of this paper. More specifically, we have showcased that
by requesting only normal permissions, Android apps obscure these permission
from their users. In the cases where a dangerous permission is included in a set of
requested permissions, users are able to navigate to the app’s settings and reveal
both the dangerous and also the normal permissions that are required by the
app. However, after installing an app that has no dangerous permission included
in its “Manifest” file, users have no access to the underlying permissions through
the app’s settings menu, since this capability is surprisingly disabled. This can
be considered as a very important security issue, not only because of its “lack of
transparency” dimension, but also since its exploitation can lead to obvious app
metamorphoses attacks. In this case, apps could be initially installed without
any permission requirements and would subsequently acquire an arbitrary num-
ber of normal permissions in automatic updates, leaving users with complete
lack of control over them. One could argue that since these permission are not
marked as dangerous, the impact could be rather small. However, this is not
the case since both normal permissions have been proven to conceal security
threats [3,4,28], and also because our research has also revealed that even “Sys-
tem” permissions are mistakenly handled by the system behaving as normal.
The SYSTEM ALERT WINDOW permission, is considered by Google, as a “System”
permission that: “Very few apps should use this permission; these windows are
intended for system-level interaction with the user” [5]. Nonetheless, our research
has revealed that not only it is automatically granted for all apps that come from
the Google Play store, without user interaction, but also, in the case of being
include in the “normal permission set”, described above, it is also hidden by
the users.

4.3 Access to External Resources

Clearly, the INTERNET permission, as its name suggests, allows an application to
connect to the Internet. Up to API 22, Google considered INTERNET permission a



66 E. Alepis and C. Patsakis

dangerous one, however, since Marshmallow this is not the case. It is considered a
normal one so the user is not notified about it during installation nor afterwards.
Notably, due to the Android security model, the user cannot block an application
from accessing a domain or the Internet, and additionally, he will not be notified
of such actions. One of the core ideas behind this change is the fact that many
applications were requesting this permission. As highlighted in [17,21], while the
INTERNET permission is widely used and in many cases it is used only to fetch
advertisements [8], yet it is often used to leak private user information, such
as location. Google considers that since in Marshmallow there is an inherent
mechanism to control access to sensitive pieces of information, an application
cannot leak important data about the user without his consent, that is grant
access to dangerous permissions.

In order to illustrate the changes in this particular permission, since the run-
time permission model we have used Tacyt7. More specifically, we have noticed
that there is a significant change in the usage of the Internet permission. Since
Tacyt reports the results according to app versions and not per app, in what
follows the reported figures refer to versions. Up to the release of Marshmallow,
89.24% of the uploaded versions were using the Internet permission. With the
introduction of Marshmallow, this percentage has been increased by more than
7%, reaching 96.26%, indicating that many apps took advantage of this change
to allow themselves to have access to the Internet.

Nonetheless, the very existence of a channel that enables an application to
connect to the outer world through the Internet, without the user’s consent or
control essentially augments many security and privacy issues. The reason is that
several “benign” actions do not imply any risk for the user, however, if someone
can control them remotely or get a result out of them, can greatly expose the user.
A typical example of this problem is the clipboard, used by every user to transfer
information between applications. Clearly, due to the physical constraints for
data input, most mobile users use this functionality to copy passwords, links or
other content from one application to another. Apparently, the sensitivity of the
content that is temporarily stored can easily be used to launch an attack [18,36].
Since there is no special permission for accessing the content of the clipboard, any
application can sniff it and transmit it to a predefined location or modify it (e.g.
injecting a malicious link). Clearly, this risk could be avoided if the applications
had no Internet access or the user could define Internet access policies.

Apparently, the existence of such a channel, facilitates the leakage of other
sensitive information. Another example is the access, without requesting any
permission e.g. to local storage, to the drawable area of the wallpaper (reported
by the authors, triaged and currently awaiting for a bug fix). While drawing on
a canvas cannot be considered harmful, one has to consider that most users use
personal photos as their wallpapers, which may depict their beloved, express their
political or religious beliefs. Allowing an application to collect this information
without user explicit consent could allow it to extract sensitive information,
which apart from the aforementioned could include music and sexual preferences,

7 https://www.elevenpaths.com/technology/tacyt/index.html.

https://www.elevenpaths.com/technology/tacyt/index.html


Hey Doc, Is This Normal?: Exploring Android Permissions 67

relationship status etc. Clearly, if most users knew that this information could
be mined and processed from apps without their explicit consent, they would be
quite reluctant to use many of the photos that they currently do. Moreover, as
shown in [4], this can be exploited to leak the user’s unlock PIN or pattern.

It should also be highlighted that if users were able to block Internet access
per application it is most certain that in many instances they would so. The
reason is that most applications only need Internet access to display ads which
for the vast majority of them is the only monetization source8. Apparently, if
apps are not able to display ads, developers will have to result in other means
for monetization in order to support their apps, e.g. shifting to the traditional
paid model, which would radically change the Play store, as well as Google’s
monetization policy from Android. We argue that the answer to this question is
not obvious, and there are several ways to avoid this dilemma, e.g. by providing
unrestricted Internet access to applications only to fetch ads.

4.4 API Version Security Issues

One would expect that after the introduction of Marshmallow, all of the afore-
mentioned functionality would be immediately provided to the systems that have
the novel permission model installed. However, this is subject to the targeting
API of the installed app. Practically, this means that apps may exploit this fea-
ture to extend their permissions. For instance, if an app is targeting an “old”
API, prior to Marshmallow, then the app will request the permissions on instal-
lation, and if the user accepts them, then once the app is loaded, the permissions
have been granted, as in the pre-Marshmallow era, so the user has to disable
the dangerous permissions manually and no granting screen will be displayed to
the user. The issue is rather important as researchers have shown that permis-
sions like SYSTEM ALERT WINDOW are automatically granted if they refer to older
targeting APIs, allowing an adversary to create overlays that can lure the user
to grant almost full control of the device to the adversary [23]. However, the
overlay issues are far more severe and may apply to all Android versions [4].

4.5 User Profiling

While Android has been introducing many restrictions to unique identifiers, e.g.
since Nougat most content of /proc has become inaccessible by apps, there are
many ways that apps which use only normal permissions can profile the users.

The ACCESS WIFI STATE, as well as CHANGE NETWORK STATE and CHANGE
WIFI STATE permissions have been removed in the new permission categoriza-
tion. Automatically granting these permission allows an application to connect
and disconnect from a WiFi. More interestingly, it allows the application to

8 According to AppBrain (http://www.appbrain.com/stats/free-and-paid-android-ap
lications) the ratio of free to paid apps is more than 10 at the time of writing. Free
apps with in app purchases are considered free.

http://www.appbrain.com/stats/free-and-paid-android-aplications
http://www.appbrain.com/stats/free-and-paid-android-aplications


68 E. Alepis and C. Patsakis

retrieve the information of the connected WiFi which can expose a lot of infor-
mation [1]. On a first level of a nefarious scenario this could allow an application
to enforce extra charges to the user by disconnecting from the WiFi and using a
3G/4G connection. Nonetheless, going a step further, one could determine the
location of the user from the name of the connected WiFi, but more interestingly,
the application can create a user profile as it has access to all stored networks.
Apparently, collecting this information, one could correlate it with others to
determine social connections using other sources of information such as time to
infer e.g. how long two users stay in proximity, what times of day etc. harvesting
users’ relative location and potential relationship.

A lot of usage statics and preferences can be extracted by the apps using the
GET PACKAGE SIZE permission, a normal permission as well. Using this permis-
sion, an application can profile a user as it can list all the installed applications
and determine the user interests. Additionally, since this permission retrieves the
space used by an application, an adversary could also infer how much an appli-
cation is being used. Interestingly, the permission KILL BACKGROUND PROCESSES
is also a normal permission, allowing it to kill other process, apart from system
ones. Essentially, this permission can be used to sabotage other applications as
they could shutdown, losing needed information or without notifying the user
about e.g. an important event.

Finally, despite the upcoming changes to Android ID from Android O, apps
can use a non user-resettable identifier which is app metadata. In this regard, an
adversary can keep track of when apps were installed by reading the metadata
of the /data directory which constitute a unique identifier.

5 Remedies

The most obvious change that is probably needed in the post Marshmallow era
is to allow users to have full access to the underlying permissions. This would
allow them to both review the permissions that they grant to each application;
improving transparency, but also to revoke access on both normal permissions as
well as categories from dangerous permission groups. This does not essentially
have to confuse the user since for instance Android would automatically grant
normal permissions, but request permission for each dangerous permission and
not for a group. Such an interface could be conceived as the right hand side in
Fig. 5, which showcases our approach in comparison with the current one. The
user can easily see what are the granted permissions per application and revoke
those when deemed necessary.

While the latter does not request many changes in the core of Android, a
significant change should be introduced in the runtime permission model. As
already discussed, applications request permissions to a resource at an irrelevant
point, thus misleading users. While the developers may add an explanatory text
of why they request a permission, the fact that the user cannot determine when
it is actually used by the application does not create a trust relationship with
it. For instance, a user cannot understand when an application needs to send an



Hey Doc, Is This Normal?: Exploring Android Permissions 69

Fig. 5. Proposed interface for managing normal and dangerous permissions.

SMS, that might infer some additional cost. Such functionality might be needed
once, e.g. for initialization and authorization of the application and never be used
again, or be a part of a functionality that the user never uses. Having granted
this permission prior to the actual request, authorizing arbitrary such actions,
can lead to malicious applications exploiting this initial trust.

Going a step further, even normal permissions can lead to user profiling and
expose sensitive user information, as outlined in the previous section. Therefore,
Google has to consider what an application can infer from combinations of such
permissions through communication between applications and alert the user of
possible consequences.

6 Conclusions

The Android security for API levels prior to Marshmallow had several important
issues that should be addressed, something that became apparent after many
attacks in core libraries [16,30] and functionalities that had to be introduced to
counter other attacks such as storage encryption or even setting the device to
charge-only mode by default when connected to USB. Google’s Android team,
made a reasonable decision towards an implementation that would offer more
and better protection to Android smartphone users of all ages and backgrounds.
A good example is the presence of permission settings in the application manager,
where users have real time access to specific groups of dangerous permissions,
after an application is installed. However, major changes in software models that
existed for several years can be easily accompanied by new security issues that
may arise and new situations where end users may turn out not to be satisfied,
nor actually protected.



70 E. Alepis and C. Patsakis

This paper focused on highlighting several security issues that have risen
since the introduction of the “Runtime Permission” model in the Android OS.
Some of them may be addressed by re-organizing permission groups, and perhaps
endorse a more “strict” permission policy in terms of “dangerous” and “normal”
(not dangerous) permissions. Other issues regarding user notifications and espe-
cially what information is given to users are also quite important. Moreover, we
detailed security and privacy issues which are either introduced or augmented
by the new permission model. Undoubtedly, a core issue in all our apps is the
unrestricted Internet access which provides applications with a communication
channel that cannot be stopped or even filtered. As discussed, blocking this path
may result to other sideffects which may radically change Android market. Nev-
ertheless, we believe that Android needs to incorporate more precise explanations
to users and/or the ability to inform users in more detail. Finally, the runtime
permission model should handle more sufficiently the need to inform users when
a dangerous permission is required, by means of exact time and purpose. At its
current implementation the proposed security model in Android leaves “more
freedom” to Android developers to ask for permissions even when they do not
need them and keep them for future uses. This combined with the “click once
but permanent acceptance” of dangerous permissions, can lead to the destruc-
tion of what is meant as runtime permission and even more importantly what
users expect by it. We argue that a possible solution to this problem would be
to stop expecting developers to do the checks and request permissions in their
programs but to force this operation to happen by the OS. Correspondingly,
this could be accomplished by properly reconstructing Android’s programming
classes and interfaces involved in dangerous permissions so as to automatically
request user permissions every time a dangerous resource is handled in code.

Acknowledgments. This work was supported by the European Commission under
the Horizon 2020 Programme (H2020), as part of the OPERANDO project (Grant
Agreement no. 653704). The authors would like to thank ElevenPaths for their valuable
feedback and granting them access to Tacyt.

References

1. Achara, J.P., Cunche, M., Roca, V., Francillon, A.: WifiLeaks: underestimated
privacy implications of the access wifi state Android permission. In: Proceedings
of the 2014 ACM Conference on Security and Privacy in Wireless and Mobile
Networks, pp. 231–236. ACM (2014)

2. Alepis, E., Patsakis, C.: Monkey says, monkey does: security and privacy on voice
assistants. IEEE Access 5, 17841–17851 (2017)

3. Alepis, E., Patsakis, C.: Theres wally! location tracking in Android without permis-
sions. In: Proceedings of the 3rd International Conference on Information Systems
Security and Privacy, ICISSP, vol. 1, pp. 278–284. INSTICC, ScitePress (2017)

4. Alepis, E., Patsakis, C.: Trapped by the UI: the Android case. In: Dacier, M., Bailey,
M., Polychronakis, M., Antonakakis, M. (eds.) RAID 2017. LNCS, vol. 10453, pp.
334–354. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66332-6 15

https://doi.org/10.1007/978-3-319-66332-6_15


Hey Doc, Is This Normal?: Exploring Android Permissions 71

5. Android Developer: Manifest.permission - System Alert Window. https://develop
er.android.com/reference/android/Manifest.permission.html#SYSTEM ALERT
WINDOW. Accessed 28 Mar 2017

6. Android Source Code: platform frameworks base/core/res/AndroidManifest.xml
(2017). https://github.com/Android/platform frameworks base/blob/master/cor
e/res/AndroidManifest.xml

7. Balebako, R., Jung, J., Lu, W., Cranor, L.F., Nguyen, C.: Little brothers watching
you: raising awareness of data leaks on smartphones. In: Proceedings of the Ninth
Symposium on Usable Privacy and Security, p. 12. ACM (2013)

8. Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A.: A methodology
for empirical analysis of permission-based security models and its application to
Android. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, pp. 73–84. ACM (2010)

9. Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Automatically securing
permission-based software by reducing the attack surface: an application to
Android. In: Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, pp. 274–277. ACM (2012)

10. Blasco, J., Chen, T.M.: Automated generation of colluding apps for experimental
research. J. Comput. Virol. Hacking Tech. 1–12 (2017). https://doi.org/10.1007/
s11416-017-0296-4

11. Book, T., Pridgen, A., Wallach, D.S.: Longitudinal analysis of Android ad library
permissions. arXiv preprint arXiv:1303.0857 (2013)

12. Book, T., Wallach, D.S.: A case of collusion: a study of the interface between ad
libraries and their apps. In: Proceedings of the Third ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices, pp. 79–86. ACM (2013)

13. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-18178-8 30

14. Diao, W., Liu, X., Zhou, Z., Zhang, K.: Your voice assistant is mine: how to abuse
speakers to steal information and control your phone. In: Proceedings of the 4th
ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp.
63–74. ACM (2014)

15. Dimitriadis, A., Efraimidis, P.S., Katos, V.: Malevolent app pairs: an Android per-
mission overpassing scheme. In: Proceedings of the ACM International Conference
on Computing Frontiers, pp. 431–436. ACM (2016)

16. Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver,
N., Amann, J., Beekman, J., Payer, M., et al.: The matter of heartbleed. In: Pro-
ceedings of the 2014 Conference on Internet Measurement Conference, pp. 475–488.
ACM (2014)

17. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS)
32(2), 5 (2014)

18. Fahl, S., Harbach, M., Oltrogge, M., Muders, T., Smith, M.: Hey, you, get off of
my clipboard. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 144–161.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 12

19. Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti, M., Rajara-
jan, M.: Android security: a survey of issues, malware penetration, and defenses.
IEEE Commun. Surv. Tutor. 17(2), 998–1022 (2015)

https://developer.android.com/reference/android/Manifest.permission.html#SYSTEM_ALERT_WINDOW
https://developer.android.com/reference/android/Manifest.permission.html#SYSTEM_ALERT_WINDOW
https://developer.android.com/reference/android/Manifest.permission.html#SYSTEM_ALERT_WINDOW
https://github.com/Android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
https://github.com/Android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
https://doi.org/10.1007/s11416-017-0296-4
https://doi.org/10.1007/s11416-017-0296-4
http://arxiv.org/abs/1303.0857
https://doi.org/10.1007/978-3-642-18178-8_30
https://doi.org/10.1007/978-3-642-18178-8_30
https://doi.org/10.1007/978-3-642-39884-1_12


72 E. Alepis and C. Patsakis

20. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, pp. 627–638. ACM (2011)

21. Felt, A.P., Greenwood, K., Wagner, D.: The effectiveness of application permis-
sions. In: Proceedings of the 2nd USENIX Conference on Web Application Devel-
opment, p. 7 (2011)

22. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permis-
sions: user attention, comprehension, and behavior. In: Proceedings of the Eighth
Symposium on Usable Privacy and Security, p. 3. ACM (2012)

23. Fratantonio, Y., Qian, C., Chung, S., Lee, W.: Cloak and Dagger: from two per-
missions to complete control of the UI feedback loop. In: Proceedings of the IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2017

24. Goodin, D.: Beware of ads that use inaudible sound to link your phone,
TV, Tablet, and PC (2015). http://arstechnica.com/tech-policy/2015/11/beware-
of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/

25. Grace, M.C., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability
leaks in stock Android smartphones. In: NDSS (2012)

26. Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N., Foster, J.S., Mill-
stein, T.: Dr. Android and Mr. Hide: fine-grained permissions in Android applica-
tions. In: Proceedings of the Second ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, pp. 3–14. ACM (2012)

27. Kelley, P.G., Consolvo, S., Cranor, L.F., Jung, J., Sadeh, N., Wetherall, D.: A
conundrum of permissions: installing applications on an Android smartphone. In:
Blyth, J., Dietrich, S., Camp, L.J. (eds.) FC 2012. LNCS, vol. 7398, pp. 68–79.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34638-5 6

28. Kywe, S.M., Li, Y., Petal, K., Grace, M.: Attacking Android smartphone systems
without permissions. In: 2016 14th Annual Conference on Privacy, Security and
Trust (PST), pp. 147–156. IEEE (2016)

29. Orthacker, C., Teufl, P., Kraxberger, S., Lackner, G., Gissing, M., Marsalek, A.,
Leibetseder, J., Prevenhueber, O.: Android security permissions – can we trust
them? In: Prasad, R., Farkas, K., Schmidt, A.U., Lioy, A., Russello, G., Luccio,
F.L. (eds.) MobiSec 2011. LNICSSITE, vol. 94, pp. 40–51. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30244-2 4

30. Peles, O., Hay, R.: One class to rule them all: 0-day deserialization vulnerabilities
in Android. In: 9th USENIX Workshop on Offensive Technologies (WOOT 2015)
(2015)

31. Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C., Vigna, G.: Execute this!
analyzing unsafe and malicious dynamic code loading in Android applications. In:
21st Annual Network and Distributed System Security Symposium, NDSS 2014,
San Diego, California, USA, 23–26 February 2014. The Internet Society (2014)

32. SnoopWall: Flashlight apps threat assessment report (2014). http://www.snoop
wall.com/wp-content/uploads/2015/02/Flashlight-Spyware-Report-2014.pdf

33. Tsiakos, V., Patsakis, C.: AndroPatchApp: taming rogue ads in Android.
In: Boumerdassi, S., Renault, É., Bouzefrane, S. (eds.) MSPN 2016. LNCS,
vol. 10026, pp. 183–196. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50463-6 15

34. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Permission evolution in the Android
ecosystem. In: Proceedings of the 28th Annual Computer Security Applications
Conference, pp. 31–40. ACM (2012)

http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
https://doi.org/10.1007/978-3-642-34638-5_6
https://doi.org/10.1007/978-3-642-30244-2_4
http://www.snoopwall.com/wp-content/uploads/2015/02/Flashlight-Spyware-Report-2014.pdf
http://www.snoopwall.com/wp-content/uploads/2015/02/Flashlight-Spyware-Report-2014.pdf
https://doi.org/10.1007/978-3-319-50463-6_15
https://doi.org/10.1007/978-3-319-50463-6_15


Hey Doc, Is This Normal?: Exploring Android Permissions 73

35. Yang, L., Boushehrinejadmoradi, N., Roy, P., Ganapathy, V., Iftode, L.: Short
paper: enhancing users’ comprehension of Android permissions. In: Proceedings of
the Second ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices, pp. 21–26. ACM (2012)

36. Zhang, X., Du, W.: Attacks on Android clipboard. In: Dietrich, S. (ed.) DIMVA
2014. LNCS, vol. 8550, pp. 72–91. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08509-8 5

https://doi.org/10.1007/978-3-319-08509-8_5
https://doi.org/10.1007/978-3-319-08509-8_5


Efficient Software Implementation of Laddering
Algorithms Over Binary Elliptic Curves

Diego F. Aranha1(B), Reza Azarderakhsh2, and Koray Karabina2

1 University of Campinas, Campinas, Brazil
dfaranha@ic.unicamp.br

2 Florida Atlantic University, Boca Raton, USA
{razarderakhsh,kkarabina}@fau.edu

Abstract. Designing efficient and secure implementations of Elliptic
Curve Cryptography (ECC) has attracted enormous interest from both
theoreticians and practitioners. The main contenders in terms of per-
formance are curves defined over binary extension fields or large prime
characteristic fields. In addition to the efficiency requirements, security
advantages such as implementation simplicity and resistance to side-
channel attacks are receiving increasing attention in research and com-
mercial applications. In this paper, we keep pushing in this direction and
study efficient implementation of regular scalar multiplication algorithms
for binary curves equipped with efficient endomorphisms. Our focus is on
implementing the Galbraith-Lin-Scott (GLS) family of binary curves by
exploring the space of different models and laddering algorithms, for their
high performance, reasonable implementation simplicity, lower memory
consumption and side-channel resistance. Our results demonstrate that
laddering implementations can be competitive with window-based meth-
ods by obtaining a new speed record for laddering implementations of
elliptic curves on high-end Intel processors.

1 Introduction

Secure and efficient implementation of Elliptic Curve Cryptography (ECC) has
received a lot of interest by researchers and implementers alike. The security of
ECC cryptosystems relies on the hardness of the Elliptic Curve Discrete Log-
arithm Problem (ECDLP) conjectured as fully exponential, which consists in
recovering the scalar k ∈ Z from the given points P and Q = kP in some elliptic
curve E defined over a finite field Fq.

Scalar multiplication (k, P → kP ) is the main operation required when eval-
uating ECC protocols and corresponds to adding point P to itself k − 1 times.
The performance and security of a curve-based cryptosystem strictly relates to
the choice of curve parameters, scalar multiplication algorithm, finite field arith-
metic, and implementation quality. Algorithms for scalar multiplication can be
broadly classified in window-based methods, composed of a precomputation step
for computing small multiples of the input point, and a main loop exploiting this
precomputation through table lookups; and simpler and more compact laddering
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 74–92, 2017.
https://doi.org/10.1007/978-3-319-71501-8_5



Efficient Software Implementation of Laddering Algorithms 75

methods [4,23] that execute the same operation across all iterations. These algo-
rithms can be further classified in fixed-base when the input is a known point G
(generator), variable-base when the input is unknown point P and double-point
when two points P and Q are simultaneously multiplied as �P + mQ by scalars
� and m. These scenarios typically occur in key generation, key exchange and
signature verification, respectively.

In practice, the main contenders in terms of performance are curves defined
over large prime characteristic fields (prime curves), or over binary extension
fields (binary curves). Performance is not the only metric, and security advan-
tages such as implementation simplicity and resistance to side-channel attacks
are receiving more attention in research and industry. In the prime case, for
instance, Edwards curves [3] and FourQ [7] have provided most of the recent
performance and/or security improvements by adopting more conservative or
aggressive choices of parameters, respectively. In the binary case, recent advances
firmly rely on exploiting efficient endomorphisms and optimized parameters in
Koblitz [18,22] and Galbraith-Lin-Scott (GLS) [12,20] curves.

Thanks to many improvements introduced in modern processors as power-
ful vector instructions, binary curves arguably now enjoy better native support
for their underlying field arithmetic in some micro-architectures. Combined with
algorithmic developments such as the lambda coordinate system [20,21] and effi-
cient endomorphisms, binary curves currently hold the speed record for the most
efficient scalar multiplication in software targeting Intel desktop processors [19].
Despite advances in solving the ECDLP for these curves [10], binary curves are
still considered secure for cryptographic applications [23] and were standardized
by IEEE [13] and NIST [17].

In this paper, we study the efficient implementation of laddering algorithms
for variable-base scalar multiplication under different models of elliptic curves
defined over binary extension fields. Laddering algorithms offer some built-in
side-channel protection because of their regularity, and implementation friend-
liness due to the simplicity of not requiring all coordinates of a point to be
computed. The Montgomery ladder over the x-coordinate is the most popular
algorithm pertaining to this class [16].

We target binary GLS curves equipped with efficient endomorphisms, allow-
ing multi-dimensional laddering algorithms such as the DJB chain proposed by
Bernstein in [2] to be used. The DJB algorithm is uniform, in the sense that
all iterations in the main loop require the same number and type of field opera-
tions [6], and can be implemented in an isochronous way (constant time) because
the number of loop iterations can be made constant. Recently, Azarderakhsh and
Karabina proposed the AK laddering algorithm tailored for the computation
of point multiplication on elliptic curves with efficiently computable endomor-
phisms. The AK algorithm can be faster than DJB but has a variable number
of loop iterations (with small standard deviation). More recently, AK and DJB
laddering algorithms have been employed by Costello et al. for the implementa-
tion of point multiplication and x-coodinate only key exchange on elliptic curves
defined over prime fields [6]. The main contributions of this work are:



76 D.F. Aranha et al.

– Concrete strategies for efficiently implementing the Montgomery, DJB and
AK variable-base laddering algorithms, minimizing the number of conditional
operations for side-channel protection. As long as the efficiency of finite field
arithmetic continues to improve due to progress in instruction sets, these
overheads become significant and must be handled properly. Also, an efficient
uniform algorithm for AK recoding is proposed and evaluated.

– Techniques for converting between binary GLS curves in the Weierstraß model
to alternate models such as Huff and Edwards while keeping coefficients com-
pact and efficient to operate with. Faster formulas for evaluating differential
addition and doubling operations required by laddering algorithms are pre-
sented for these models, applying lazy reduction and other recent techniques
from the literature [9].

– A set of GLS curve parameters at the 128-bit security level which maximize
the efficiency of the proposed techniques, followed by a state-of-the-art imple-
mentation which demonstrate that laddering algorithms can be competitive
with window-based methods while setting new speed records for laddering
implementations.

The work is organized as follows. In Sect. 2, Weierstraß, Huff and Edwards
elliptic curve models are introduced, together with efficient formulae and algo-
rithms for converting from binary GLS curves in the Weierstraß model. In Sect. 3,
the Montgomery, DJB and AK laddering algorithms for scalar multiplication are
discussed together with improvements. Section 4 presents experimental results
and discussion, and Sect. 5 concludes.

2 Binary GLS Curves

Let EW,a,b be an ordinary binary elliptic curve in short Weierstraß form defined
by the equation

EW,a,b : y2 + xy = x3 + ax2 + b, (1)

where a, b ∈ F2m . The set of affine points P = (x, y) with x, y ∈ FF2m that satisfy
the above equation, together with the point at infinity O, forms an additive
abelian group with respect to the elliptic point addition operation. This group
is denoted as EW,a,b(F2m) and its order can be written as #EW,a,b(F2m) =
2m − t + 1, where t is the trace of Frobenius and satisfies |t| ≤ 2m.

In order to define a Galbraith-Linn-Scott (GLS) curve [11,12], choose a
quadratic extension F22m of F2m as F22m = F2m [s]/(s2 + s + 1) and pick a field
element a′ ∈ F22m such that Tr(a′) = 1, where Tr is the trace function from F22m

to F2m defined as Tr : c �→ ∑2m−1
i=0 c2

i

. It follows that #E(F22m) = (2m+1)2−t2.
Let us define

E′/F22m : y2 + xy = x3 + a′x2 + b, (2)

with #E′
W,a′,b(F22m) = (2m − 1)2 + t2. E′ is the quadratic twist of EW,a,b which

means that both curves are isomorphic over F24m under the endomorphism φ :
E → E′, (x, y) �→ (x, y + σx), with σ ∈ F24m\F22m satisfying σ2 + σ = a + a′.



Efficient Software Implementation of Laddering Algorithms 77

Fix a′ = s and choose b such that #E′
a′,b(F22m) = 2r, where r is prime with

(2m − 1) bits. Let a1 = b−1/8, Eq. (2) is isomorphic over F22m to

E′′/F22m : Y 2 + a1XY = X3 + a2
1sX

2 + 1/a2
1, (3)

with isomorphism given by Φ : E′ → E′′, (x, y) �→ (a2
1x, a3

1y) [24].
Let π : E → E be the Frobenius map and let ψ be the composite GLS

endomorphism ψ = φπφ−1 given as ψ(x, y) = (x2m

, y2m

+ x2m

s). Hankerson
et al. showed in [12] that ψ(P ) = λP for some λ ∈ Z satisfying λ2 + 1 ≡ 0
(mod r). For k ∈ Z, the scalar multiplication kP can then be decomposed in
k1P + k2ψ(P ) such that k ≡ k1 + k2λ (mod r).

Parameters. A concrete GLS curve targeting approximately the 128-bit secu-
rity level can be found by choosing m = 127 and binary field F2m defined as
F2[z]/(f(z) = z127 + z63 + 1). Two possible choices for curve coefficient b defin-
ing curves E1 and E2, respectively, can be found below:

1. b1 = 0x54045144410401544101540540515101 in polynomial representation
(hexadecimal form) with short 64-bit square root

√
b = 0xE2DA921E91E38DD1.

This parameter is widely used in the literature [18,20] to optimize a multipli-
cation by b in the Montgomery ladder due to the short square root, and here
is chosen for comparison with related work.

2. b2 = z85 + z21 in polynomial form with short root b−1/8, introduced here to
simplify curve coefficients when converted to other curve models.

Both concrete curves E1 and E2 have large 253-bit prime subgroup order r and
thus satisfy common security requirements for the discrete logarithm setting.

The basic computation in each step of a laddering algorithm (ladd oper-
ation) is differential addition (dadd) and doubling (doub) evaluated over the
base field where the curve is defined. Given points P1 and P2 on elliptic curve
E(Fq) with known difference P0 = P1 −P2, this operation computes point addi-
tion P1 + P2 and point doubling 2P1. In general, the formulas can be evaluated
over a smaller set of coordinates. Let w be a rational function defined over elliptic
curve E(Fq) given by the fraction of polynomials in the coordinate ring of E, with
w(P ) = w(−P ) [9]. For any points P1, P2 given by the values w(P1), w(P2) and
difference w(P1−P2), differential addition and doubling formulae again compute
w(P1 + P2) and w(2P1) in w-coordinates. A projective w-coordinate represen-
tation w(P ) = (W : Z) of a point P can also be defined to eliminate expensive
inversions in curve arithmetic, and the corresponding affine representation can
be simply recovered by computing W

Z .
Let m, s,d, r,a and i denote the costs of field multiplication, squaring, mul-

tiplication by short curve parameter, modular reduction by f(z), addition and
inversion in F22m , respectively. The lazy reduction technique evaluates an expres-
sion (ab + cd) over a field Fq by accumulating the multiplication results before
modular reduction, incurring a performance trade-off of (a − r). Because addi-
tion in a binary field is trivial, typically r > a and the technique incurs a



78 D.F. Aranha et al.

small speedup. Notation [·]f here denotes an explicit modular reduction oper-
ation of a double-precision result, implying that multiplication and squaring
results are automatically reduced otherwise. In the next subsections, we improve
state-of-the-art differential addition and doubling formulas for several binary
curve models presented in [9] by using lazy reduction and compare their relative
performance.

2.1 Formulae for Weierstraß Curves

In Weierstraß curves, the w-coordinate representation w(P ) of a point P can be
simplified to the x-coordinate x(P ). The formulae below compute the projective
w-coordinate differential addition and doubling (ladd) operation among points
P1 = (X1 : Z1) and P2 = (X2 : Z2), producing the results (X3 : Z3) = (X1 :
Z1) + (X2 : Z2) and (X4 : Z4) = 2(X1 : Z1), given the difference point in
projective coordinates P0 = (X0 : Z0) = (X1 : Z1) − (X2 : Z2):

A = (X1 + Z1), B = (X2 + Z2), T = [X1 · X2 + Z1 · Z2]f ,

Z3 = (T + A · B)2 · X0, X3 = T 2 · Z0,

Z4 = (a1 · X1 · Z1)2, X4 = A4.

This formula was improved from [24] by using lazy reduction of (X1X2 + Z1Z2)
and can be used over the curve isomorphic to the set of parameters E2 defined
by Eq. (3). Total cost in this case is (6m + 5s + d + 5a − r) by trading an
additional modular reduction (r) by a double-precision addition (extra a). If
Z0 = 1, the formulae below can be used instead by switching to López-Dahab
coordinates over curve E1 defined by Eq. (2) with difference point w(P0) = x0

in affine coordinates [15], costing (5m + 4s + d + 4a − r):

A = X1 · Z2, B = X2 · Z1, T = (X2)2, U = (Z2)2

X4 = (T + U
√

b1)2, Z4 = T · U

Z3 = (A + B)2, X3 = [x0 · Z4 + A · B]f .

Multiplication by b1 is efficient because b1 is chosen such that its square root
is a 64-bit polynomial.

2.2 Formulae for Edwards Curves

Let d1, d2 ∈ F22m with d1 �= 0 and d2 �= d21 +d1, the binary Edwards curve is the
non-singular curve

EE,d1,d2 : (x + y)(d1 + d2(x + y)) = xy(1 + x)(1 + y). (4)

When Tr(d2) = 1, the curve is complete and there are no exceptions to the
addition law. The Edwards model is birationally equivalent to the Weierstraß
model

v2 + uv = u3 + (d21 + d2)u2 + d41(d
4
1 + d21 + d22) (5)



Efficient Software Implementation of Laddering Algorithms 79

under the map (x, y) �−→ (u, v) and its inverse defined by [5]

u = (d31 + d21 + d1d2)(x + y)/(xy + d1(x + y)), (6)

v = (d31 + d21 + d1d2)(d1 + 1 + x/(xy + d1(x + y)).

Since the curve used in this work has no rational points of order 4, it is not
isomorphic to an Edwards curve with coefficients d1 = d2 and cannot enjoy the
simpler arithmetic in that case.

We still obtain efficient arithmetic by selecting parameters of curve E2 and
choosing curve coefficients d1 = (s·z84) ∈ F22m and d2 = d21+d1+

√
b/d21 ∈ F22m .

A subfield constant is thus obtained for evaluating the differential addition and
doubling formula. Define function w(x, y) = (x + y)/(d1(x + y + 1)) such that
w(P ) = w(−P ) for all affine points except when x + y = 1 [9]. Assuming that
w(P1) and w(P2) are represented in projective coordinates (W1 : Z1) and (W2 :
Z2), respectively, and given precomputed w-coordinate z0 = 1/w0 of difference
point P0, the formulae below compute differential addition and doubling with
cost (5m + 4s + d + 4a − r):

A = W1 · Z1, B = W1 · Z2, C = W2 · Z1,

W4 = A2, Z4 = ( 4

√
d41 + d31 + d21d2W1 + Z1)4,

W3 = (B + C)2, Z3 = [B · C + z0 · W3]f .

These formulae are faster than the almost complete formular given in [9] by
(r − a), due to lazy reduction. Compared to the affine Weierstraß formula, it
apparently has the same cost, but the multiplication by the curve coefficient is
slower because (d41 + d31 + d21d2) is a polynomial in F2m with degree 91 in our set
of parameters E2.

2.3 Formulae for Huff Curves

Let ha �= hb ∈ F22m the coefficients of the generalized binary Huff curve given
by the set of coordinates satisfying the equation

EH,ha,hb
: hax(y2 + fy + 1) = hby(x2 + fx + 1). (7)

This equation is birationally equivalent to the Weierstrass curve

v(v + (ha + hb)fu) = u(u + h2
a)(u + h2

b). (8)

under the map (x, y) �−→ (u, v) and its inverse defined by [8]

(x, y) =
(

hb(u + h2
a)

v
,

ha(u + h2
b)

v + (ha + hb)fu

)

, (9)

(u, v) =
(

hahb

xy
,
hahb(haxy + hb)

x2y

)

.



80 D.F. Aranha et al.

In order to convert a GLS curve to the Huff curve model, we adapt the
method in [8, Proposition 2] by defining f = g(z) · s, where g is a polynomial
of small degree such that Tr(1/f) = Tr(s) and Tr(f8b) = 0. For simplicity,
parameters ha, hb will be chosen as hb = 1 and ha ∈ F2m as the solution h2

a

to equation t2 + 1

f4
√

(b)
t = 1 in a subfield. This guarantees that the constant

γ = f2 (ha+hb)
2

hahb
and its inverse 1/γ will have small degree and reside in a subfield,

allowing fast multiplication by these constants.
We adapt the almost complete formulae from [9] to general binary Huff

curves. By choosing w(x, y) = (xy) · γ, and given the w-coordinate w0 of differ-
ence point P0 precomputed as z0 = 1/w0, we propose the following formulae for
differential addition and doubling costing (5m + 4s + d + 4a − r):

A = W1 · Z1, B = W1 · Z2, C = W2 · Z1,

W3 = A2, Z3 = (W1/γ + Z1)4,

W3 = (B + C)2, Z3 = [B · C + z0 · W3]f .

These formula are again faster than [9] by (r − a) due to lazy reduction. Com-
pared to the Edwards model, this formula is faster in our parameters because
the multiplication by curve coefficient with cost d involves a multiplication by
a polynomial of degree 54. This is equivalent to the cost of the Weierstraß for-
mulae. There is another advantage of this curve model: it is easy to observe
that w(x, y) = xyγ = ha

u for our choice of parameters, thus converting from
the x-coordinate Weierstraß representation requires only an inversion and mul-
tiplication by a subfield constant. When working over w-coordinates only, this
allows the GLS endomorphism to be computed as a simple 2m-power over F22m

because ha lies in a subfield.
At last, there are formulas in the binary Hessian model with this exact

same cost [9], but which result in larger curve coefficients after conversion from
Weierstrasß for our choices of parameters, so they are not discussed in this work.

3 Laddering Algorithms

Scalar multiplication is the performance-critical operation for protocols based
on elliptic curves and the algorithms follow two general ideas. In window-based
methods, a table of points containing small multiples Pi = diP is precomputed,
the scalar is recoded to another representation and the scalar multiplication
follows by adding and doubling multiples obtained from the table according
to the recoded scalar digits di. This strategy usually consumes more memory
due to the precomputed table, and side-channel countermeasures are needed to
prevent leaks from the recoding process or differences in memory access during
table lookups. Laddering methods uniformly iterate a ladder step consisting of
point doubling and addition over a smaller set of variables, reducing memory
consumption. From the point of view of efficiency and simplicity, almost complete
formulae as in the previous section which do not compute all coordinates are



Efficient Software Implementation of Laddering Algorithms 81

preferable and sufficient to prevent exceptional cases within the laddering. Side-
channel countermeasures protect the selection of variables to be updated with
conditional operations.

Below we summarize and propose optimizations for three different laddering
algorithms: the original Montgomery ladder, Bernstein’s double point multiplica-
tion algorithm based on the new binary chain and a recent double multiplication
algorithm due to Azarderakhsh and Karabina. The algorithms heavily depend on
three branchless operations depending on a bit condition: select for selecting
among two inputs, cswap for conditionally swapping variables, and ccopy for
conditionally copying the input to the output. These conditional operations are
usually considered to be cheap, but their cost is becoming increasingly significant
due to faster finite field and elliptic curve arithmetic, and more powerful instruc-
tion sets. Our proposed versions of the algorithms will then focus on simplifying
conditional operations when merging two consecutive loop iterations.

3.1 Montgomery Ladder

A version of the Montgomery scalar multiplication based on the projective w-
coordinate representation is given in Algorithm 1. The algorithm receives as
input w(P ), the affine w-coodinate of P , and the integer scalar k. Two accu-
mulator points P1 = (W1 : Z1) and P2 = (W2 : Z2) are initialized as w(P )
and w(2P ), respectively, which are doubled and added depending on the cur-
rent bit of the key. Iteration j starts with accumulators [w(lP ), w((l + 1)P )],
where l is the integer represented by the j leftmost bits of k, and computes
[w(2lP ), w((2l+1)P )] or [w((2l+1)P ), w((2l+2)P ). By induction, the last iter-
ation produces [kP, (k + 1)P ], where the first point is the result and the second
point may be useful for recovering the full coordinates of the result. Following
previous work, this version merges two consecutive iterations and only performs
real swaps when necessary (consecutive bits are different).

When operating over Weierstraß curves with w(P ) = x(P ), the y-coordinate
y1 of kP can be recovered from (X1 : Z1) = w(P ), (X2 : Z2) = w((k + 1)P ) and
P = (x, y) with the following formula from [15]:

y3 = (x + X1/Z1)[(X1 + xZ1)(X2 + xZ2) + (x2 + y)(Z1Z2)](xZ1Z2)−1 + y.

Although not explictly mentioned in the literature, this formula can be used to
fully recover kP = (x3, y3) with cost of (i+10m+1s+6a), at a relatively small
increase from the cost (i + m) of computing x3 = X1/Z1:

A = Z1 · Z2, B = (X1 + x · Z1), C = x · Z2, D = C · X1,

E = B · (X2 + C), F = (x2 + y) · A + E, G = (x · A)−1, H = F · G,

x3 = D · G, y3 = y + (x + x3) · H.

3.2 Two-Dimensional DJB Ladder

As described in Sect. 2, a scalar multiplication kP can be computed as k1P +k2Q,
for Q = ψ(P ). Hence, two-dimensional laddering algorithms can be used to eval-
uate a single scalar multiplication exploiting endomorphisms. We briefly explain



82 D.F. Aranha et al.

Algorithm 1. Montgomery ladder using differential addition and doubling for-
mulae (ladd). The auxiliary function cswap conditionally swaps the two first
arguments depending on the value of the third parameter.
Input: k = (kl−1, . . . , k1, k0) ∈ Z such that k > 0 and w(P ), for P ∈ E(F22m)
Output: w(kP ), w((k + 1)P ) ∈ E(F22m)
1: (W1 : Z1) ← w(P )
2: (W2 : Z2) ← w(2P )
3: p ← 0
4: for j ← l − 2 downto 0 do
5: c ← kj ⊕ p
6: p ← kj

7: (W1,W2) ← cswap(W1,W2, c)
8: (Z1, Z2) ← cswap(Z1, Z2, c)
9: ((W1 : Z1), (W2 : Z2)) ← ladd((W1 : Z1), (W2 : Z2), w(P ))
10: end for
11: (W1,W2) ← cswap(W1,W2, p)
12: (Z1, Z2) ← cswap(Z1, Z2, p)
13:return (W1 : Z1) = w(kP ), (W2 : Z2) = w((k + 1)P )

Bernstein’s double point multiplication algorithm based on the new binary
chain [2]. The chain for (k1, k2) is computed as follows. Let (M,N) = (k1, k2) and
D = k1 mod 2. CD(0, 0) is defined as the base case (0, 0), (1, 0), (0, 1), (1,−1).
For (M,N) �= (0, 0), CD(M,N) is defined recursively:

CD(M,N) =Cd(	M/2
, 	N/2
),
(M + (M + 1 mod 2), N + (N + 1 mod 2)),
(M + (M mod 2), N + (N mod 2)),
(M + (M + D mod 2), N + (N + D + 1 mod 2)), and

d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if (	M/2
 + M, 	N/2
 + N) mod 2 = (0, 1)
1 if (	M/2
 + M, 	N/2
 + N) mod 2 = (1, 0)
D if (	M/2
 + M, 	N/2
 + N) mod 2 = (0, 0)
1 − D if (	M/2
 + M, 	N/2
 + N) mod 2 = (1, 1).

Building the new binary chain for the integers (k1, k2) requires a number of
max(�log2 k1�, �log2 k2�) iterations, and at the each iteration three vectors are
added to the sequence. Given two elliptic curve points P,Q ∈ E(Fq), the new
binary chain for (k1, k2) allows us to compute k1P + k2Q at a cost of two point
additions and one point doubling per iteration. The algorithm generates a chain
sequence specifying the input to the doubling and addition operations at each
iteration and a sequence of differences which encodes the differences of the points
that are the input points to the addition operations at each iteration [1].



Efficient Software Implementation of Laddering Algorithms 83

Algorithm 2 presents our optimized version of the DJB laddering algo-
rithm. The algorithm starts by computing the chain sequence, returning four bit
sequences S0, S1, S2, S3 representing the recoded versions of the input scalars k1
and k2, a value fa determining the first addition and the correct point fi among
three accumulators to be returned at the end of the algorithm. Accumulators
(W0 : Z0), (W1 : Z1), (W2 : Z2) are initialized in projective coordinates using the
dadd and doub and later keep track of the multiples of P and Q inside the main
loop. Accumulator (W2 : Z2) starts with value w(P +2Q) or w(2P +Q) depend-
ing on the chosen difference point and accumulator (W1 : Z1) always starts with
w(2(P + Q)). Differences wP+Q, wP−Q can be computed in affine coordinates
sharing an inversion, to avoid slower projective representation of differences.

At the beginning of each iteration of our implementation, the condition bit t
evaluates what operand will be copied to temporary variable (W4 : Z4). This is
needed because the doub operation inside the laddering can receive any of the
three accumulators copied to (W3 : Z3). Then the correct differences are copied
to w0 and w1, followed by two differential additions using the chosen differences
and a point doubling. These conditions were tediously derived and minimized
from the bit combinations in the sequences S0, S1, S2, S3 to correctly position
the inputs and outputs of the curve arithmetic operations. An advantage of this
algorithm is always returning (k+1)P = (k1+1)P +k2ψ(P ) among the two other
unused results, in a position depending on the parities of k1 and k2. This allows
to recover the full coordinates of P using the same formulas in the previous
subsection, increasing the scenarios in which the laddering can be applied.

3.3 Two-Dimensional AK Ladder

Let k1 and k2 be again two positive integers. In order to compute k1P +k2Q, the
AK laddering algorithm starts with the initial values d = k1, e = k2, 
R = (P,Q),

u = (1, 0), 
v = (0, 1), and 
Δ = (1,−1). Define also Ru = 
u · 
R, Rv = 
v · 
R, and
RΔ = 
Δ · 
R. The initial values yield Ru = P , Rv = Q, RΔ = Ru − Rv = P − Q,
and dRu +eRv = k1P +k2Q, and the values d, e, 
u,
v, 
Δ,Ru, Rv, RΔ are updated
according to the rules in Table 1 so that dRu + eRv = k1P + k2Q and RΔ =
Ru − Rv hold, d, e > 0, and (d + e) decreases until d = e. When d = e, we have
k1P + k2Q = dRu + eRv = d(Ru + Rv) which can be computed using a single
point multiplication algorithm with base Ru + Rv and scalar d. Note that when
gcd(k1, k2) = 1, (d + e) in the algorithm will decrease until d = e = 1 and we
have k1P + k2Q = Ru + Rv [1].

Algorithm 3 computes a recoded format for the scalars according to Table 1
in a branchless manner. The recoded sequence stores in each position a value
among the four rules in the table. First conditions t and t′ are computed in lines

3 and 4 as d
?≡ e (mod 2) and d

?≡ 0 (mod 2), respectively. Variable f is assigned
to |d − e| in line 6, values (d, e) are swapped before division by 2 (shifting to
the right by 1) if the conditions for rules R′

1 or R′
2 apply, and d conditionally

receives f to update the correct value, after which the swapping is restored in
line 10. At the end of each iteration, the sequence is increased by one element
storing the rule and the current length if incremented.



84 D.F. Aranha et al.

Algorithm 2. DJB laddering algorithm, employing the dadd and doub opera-
tions. The chain computation returns recoded scalars and two additional values
determining the first addition (fa) and the correct point (fi) to be returned at
the end of the algorithm. Auxiliary functions select conditionally selects among
two arguments and ccopy copies the input to the destination depending on the
last parameter.
Input: Integers k1, k2 > 0 and w(P ), w(Q) for P,Q ∈ E(F22m)
Output: w(k1P + k2Q) ∈ E(F22m)
1: S0, S1, S2, S3, fa, fi ← chain(k1, k2)
2: (W0 : Z0) ← w(P + Q), wP ← w(P ), wQ ← w(Q)
3: wP+Q ← w(P + Q), wP−Q ← w(P − Q)

4: (wP , wQ) ← cswap(wP , wQ, fa
?
= 1)

5: (W2 : Z2) ← dadd((wP+Q : 1), (wP : 1), wQ)
6: (W1 : Z1) ← doub((W0 : Z0))

7: (wP , wQ) ← cswap(wP , wq, fa
?
= 1)

8: for j ← max(�log2 k1�, �log2 k2�) downto 0 do
9: t ← S1,j ⊕ (S3,j ∧ S0,j)
10: w0 ← select(wP , wQ,¬S3,j)
11: w1 ← select(wP+Q, wP−Q, S2,j)
12: (W4 : Z4) ← select((W1 : Z1), (W0 : Z0), t)
13: (W3 : Z3) ← select((W2 : Z2), (W4 : Z4),¬S0,j)
14: (W2 : Z2) ← dadd((W2 : Z2), (W4 : Z4), w0)
15: (W0 : Z0) ← dadd((W1 : Z1), (W0 : Z0), w1)
16: (W1 : Z1) ← doub((W3 : Z3))
17: end for
18: R ← (W0 : Z0)

19: R ← ccopy((W1 : Z1), fi
?
= 1)

20: R ← ccopy((W2 : Z2), fi
?
= 2)

21: return R

The authors of the algorithm discuss in [1] that, if k1 and k2 are �-bit inte-
gers, then k1P + k2Q can on average be computed in about 1.4� point additions
and 1.4� point doublings. Moreover addition and doubling operations can be
performed using differential addition and differential doubling formulas as the
differences of the group elements to be added are known by construction. Algo-
rithm 4 presents our implementation of the AK laddering approach by merging
consecutive iterations. Expressions for the conditions determining the condi-
tional operations at the beginning of each iteration were tediously evaluated
and minimized to reduce the number of required conditional operations for a
correct execution. In contrast with the previous laddering algorithms, the ladd
operation now performs the laddering step with difference point in projective
coordinates because the differences are not fixed in the AK algorithm, as it can
be observed at the end of the conditional swap operations that RΔ can be among
the updated variables.



Efficient Software Implementation of Laddering Algorithms 85

Algorithm 3. AK recoding, returning the sequence S and its length l according
to the rules in Table 1. Auxiliary function cswap conditionally swaps the two
arguments and select returns one of the arguments based on the condition,
respectively.
Input: Integers k1, k2 > 0
Output: Recoded sequence S and its length l
1: d ← k1, e ← k2, i ← 0
2: while d �= e do

3: t ← (d
?≡ e) (mod 2)

4: t′ ← d
?≡ 0 (mod 2)

5: c ← (d − e)
6: f ← select(c,−c, (c < 0))
7: (d, e) ← cswap(d, e, ((c < 0) ∧ t) ∨ (¬t ∧ ¬t′))
8: d ← select(d, f, t)/2
9: d ← d/2
10: (d, e) ← cswap(d, e, ((c < 0) ∧ t) ∨ (¬t ∧ ¬t′))
11: Si ← select(select(R1, R

′
1, (c < 0)), select(R2, R

′
2,¬t′),¬t)

12: i ← i + 1
13: end while
14: return S, i

Table 1. Update rules for double point multiplication in the AK algorithm.

Rule Condition d e �u �v �Δ Ru Rv RΔ

R1 d ≡ e (mod 2)

and d > e

(d − e)/2 e 2�u �u + �v �Δ 2Ru Ru + Rv RΔ

R1′ d ≡ e (mod 2)

and d < e

d (e − d)/2 �u + �v 2�v �Δ Ru + Rv 2Rv RΔ

R2 d ≡ 0 (mod 2) d/2 e 2�u �v �u + �Δ 2Ru Rv Ru + RΔ

R2′ e ≡ 0 (mod 2) d e/2 �u 2�v �Δ + (−�v) Ru 2Rv RΔ + (−Rv)

4 Experimental Results and Discussion

In order to detect what curve model was more promising in terms of performance,
we started the implementation from the differential addition and doubling for-
mulas, because the operation counts for the multiple curve models were very
similar. We largely followed and reused publicly available code1 for finite field
arithmetic from [19,23] to enjoy optimizations for our high-end target platforms.
This implementation employs compiler intrinsics to take advantage of 128-bit
vector instructions for binary field arithmetic, especially the carryless multiplier
available through instruction PCLMULQDQ to accelerate polynomial multiplica-
tion. The base binary field was defined as F

127
2

∼= F2[z]/(z127 + z63 + 1) and its
quadratic extension as F2254

∼= F2127 [s]/(s2+s+1). Curve arithmetic for the two

1 SUPERCOP: https://bench.cr.yp.to.

https://bench.cr.yp.to


86 D.F. Aranha et al.

Algorithm 4. AK laddering, employing a projective version of the ladd opera-
tion. The recode computation returns recoded scalars and the sequence length
according to the recoding rules. The auxiliary function cswap conditionally
swaps the two arguments depending on the value of the last condition.
Input: k1 > 0, k2 > 0 ∈ Z with gcd(k1, k2) = 1 and w(P ), w(Q) for P,Q ∈ E(F22m)
Output: w(k1P + k2Q) ∈ E(F22m)
1: (S, l) ← recode(k1, k2)
2: Ru ← w(P ), Rv ← w(Q), RΔ ← w(P − Q)
3: b′

0 ← 0, b′
1 ← 0, b′

2 ← 0
4: for j ← l − 1 downto 0 do

5: b0 = (Sj
?
= R2), b1 = (Sj

?
= R′

1), b2 = (Sj
?
= R′

2)
7: c0 ← b′

0 ⊕ b0, c2 ← b′
2 ⊕ b2, c

′
1 ← (b′

1 ∨ b′
2)

6: c1 ← c′
1 ⊕ (b1 ∨ b2)

7: (Rv, RΔ) ← cswap(Rv, RΔ, (c0 ∧ ¬c′
1) ∨ (c2 ∧ c′

1))
8: (Ru, RΔ) ← cswap(Ru, RΔ, (c0 ∧ c′

1) ∨ (c2 ∧ ¬c′
1))

9: (Ru, Rv) ← cswap(Ru, Rv, c1)
10: (Rv, Ru) ← laddP (Ru, Rv, RΔ)
11: b′

0 ← b0, b
′
1 ← b1, b

′
2 ← b2

12: end for
13: (Ru, Rv) ← cswap(Ru, Rv, b

′
1 ∨ b′

2)
14: (Ru, RΔ) ← cswap(Ru, RΔ, b′

2)
15: (Rv, RΔ) ← cswap(Rv, RΔ, b′

0)
16: (Ru, Rv) ← laddP (Ru, Rv, RΔ)
17: return Ru

sets of parameters described in Sect. 2 was implemented on top of the finite field
arithmetic and the GLV recoding code for scalar decomposition was extended to
work with the new curve parameters. Conditional operations were implemented
based on the 128-bit version of the BLENDV instruction.

Our target platforms are an Intel Ivy Bridge Core i5-3510M running at
3.1 GHz, an Intel Haswell Core i7-4770 running at 3.4 GHz and an Intel Skylake
Core i7-6700K clocked at 4 GHz, all three with Turbo Boost and HyperThread-
ing disabled to make benchmarking more stable. The code was compiled with gcc
7.1.1, icc 17.0.4 and clang 4.0.1 with the optimization flags -O3 -march=native
-fomit-frame-pointer in the three machines. Performance figures under dif-
ferent compilers were somewhat close, with clang producing marginally better
results for the vectorized field arithmetic. Hence we decided to report only the
numbers for the last compiler.

4.1 Laddering Steps

Table 2 presents our performance numbers for evaluating the differential addi-
tion and doubling formulae in the target platforms. Field operations within the
routines were carefully scheduled to avoid dependencies and exploit the high
throughput of vector instructions in the target platforms. Performance clearly



Efficient Software Implementation of Laddering Algorithms 87

increases in more recent microarchitecture families due to faster carryless mul-
tiplication instruction.

Differential addition and doubling was faster for all curve models in affine
coordinates when compared to Weierstraß in projective coordinates due to the
smaller number of multiplications, following our operation counts in Sect. 2. The
implementations of the Huff model enjoyed a slightly better instruction schedul-
ing for the field operations and were faster than Weierstraß in affine coordinates.
The Edwards model was competitive with Weierstraß, but suffers from larger
coefficients and an inefficient way of applying the GLS endomorphism spending
expensive inversions to convert points from and to Weierstraß coordinates, which
makes it less competitive in the big picture. This was much simpler for the Huff
model, because our choice of parameters allows the GLS endomorphism to be
applied with a single Frobenius application (Sect. 2.3), amounting to one field
addition and some cheap word shuffling instructions. We observe that the Huff
model was the best representation in terms of performance for the laddering step.

Table 2. Timings in clock cycles for evaluating the ladd operation in the Ivy Bridge,
Haswell and Skylake platforms. Numbers were taken as the average of 104 executions
and cycles were counted with help of the rdtsc instruction with TurboBoost and
HyperThreading turned off.

Curve model Cycles on Ivy Cycles on Haswell Cycles on Skylake

Weierstraß affine 630 225 168

Weierstraß projective 758 250 149

Huff 621 215 152

Edwards 643 223 178

4.2 Laddering Algorithms

The observations from Table 2 allow us to reduce the combinations of scalar mul-
tiplication algorithm and curve model to select only the most promising ones.
Because we could not evaluate the GLS endomorphism in the Edwards model
efficiently, we did not implement the two-dimensional DJB and AK laddering
algorithms in this curve model. The DJB algorithm was then implemented for
the Weierstraß and Huff models, where the GLS endomorphism can be efficiently
applied, and the AK algorithm was implemented in the projective Weierstraß
model due to the restrictions imposed by the difference point changing at every
iteration (difference in projective coordinates). We present the execution times
for scalar multiplication in Table 3 below. Following [6], implementations are
classified in terms of resistance against timing attacks (TAR) in uniform (U)
where the same number of field operations is executed at every laddering itera-
tion, but the number of iterations may be variable; and constant-time (CT) when
the two requirements are satisfied. Timings for DJB and AK include recoding
routines, although this step is negligible only in the DJB chain.



88 D.F. Aranha et al.

Table 3. Results from related work and for our implementation for uniform (U) and
constant-time (CT) scalar multiplication algorithms over binary and prime curves at
the 128-bit security level. Performance figures are presented for Ivy Bridge (I), Haswell
(H) or Skylake (S) platforms. Timings for FourQ in the Skylake processor were obtained
by benchmarking code available by [7] in our platform (*). Our best numbers for each
platform are highlighted in bold and best numbers overall in italic.

Related work (laddering/window) Curve TAR Cycles on I Cycles on H Cycles on S

DJB laddering [6] prime CT 148,000 - -

AK laddering [6] prime U 133,000 - -

FourQ (window-based) [7] prime CT 69,000 56,000 46,467∗

Montgomery ladder [18,23] binary CT - 70,800 50,823

2-GLV double-and-add [19,20] binary CT 114,800 48,312 38,044

This work (laddering) Curve TAR Cycles on I Cycles on H Cycles on S

Montgomery on Weierstraß binary CT 142,660 60,838 46,446

Montgomery on Huff binary CT 147,914 58,214 44,373

Montgomery on Edwards binary CT 150,483 60,083 46,538

DJB on Weierstraß binary CT 123,145 50,851 39,800

DJB on Huff binary CT 122,541 51,995 38,658

AK on Weierstraß binary U 124,267 55,524 41,492

The table demonstrates that binary curves are only competitive in Haswell
and Skylake platforms supporting efficient vectorized binary field arithmetic
through a very fast carry-less multiplier. Laddering approaches can be com-
petitive with the window-based methods employed in FourQ [7] and 2-GLV
double-and-add [19] if our techniques are employed. For the Weierstraß model, a
direct comparison for the Montgomery Ladder algorithm between our implemen-
tation and [23] gives a 8.6% speedup on Haswell. We implemented formulas from
Sect. 3.1 for y-coordinate recovery and the resulting cost was negligible, amount-
ing to 333 cycles in Haswell and 312 cycles in Skylake, almost 4 times faster than
the 1203 Skylake cycles in [23]. We strongly suspect that their implementation
uses two inversions for computing both x and y coordinates.

In particular, performance figures for our implementation of the DJB algo-
rithm in the Huff model were very close to speed records presented in [19], being
slower by 5% and 1.6% in the Haswell and Skylake platforms, respectively. This
is an interesting result, given that the laddering algorithms are simpler to imple-
ment with protection against side-channel attacks, and require smaller amounts
of storage. These approaches are somewhat penalized by an affine point addi-
tion at the beginning of the laddering algorithm to compute difference points
w(P ± Q). The AK laddering algorithm suffers from a slow recoding routine
costing 6.4% and 8.7% of the whole scalar multiplication in the two platforms,
respectively. This cost comes mostly from the side-channel protections in Algo-
rithm 3 and the penalty could be alleviated if scalars were already generated in



Efficient Software Implementation of Laddering Algorithms 89

recoded form, given that the constant time requirement is not mandatory. We
now discuss application of our techniques in the broader context of key exchange
protocols.

4.3 Discussion

Our techniques can be applied for accelerating the curve-based Diffie-Hellman
key exchange. In the ephemeral version of the protocol, two parties negotiate a
shared key by first generating an ephemeral key pair (a,A) (respectively (b,B))
using a fixed-base scalar multiplication A = aG of generator G (respectively B =
bG), exchanging the resulting ephemeral public keys A and B and computing the
variable-base scalar multiplication of the received public key by the ephemeral
private key as K = abG.

After restricting the scalar multiplication approaches exclusively to laddering
algorithms, there are a few options. The DJB algorithm in the Weierstraß and
Huff model is well suited for the fixed-base scalar multiplication, because the
affine point addition required for computing w(G ± ψ(G)) can be precomputed
and provided together with the curve parameters. The curve models also allow
simple recovery of the y-coordinate to allow any receiving party to efficiently
evaluate the GLS endomorphism and employ a two-dimensional laddering algo-
rithm for its variable-base scalar multiplication. Notice that this is not true for
the AK algorithm, which is more useful for the variable-base multiplication. In
the latter case, subscalars can be generated in recoded form to avoid the high cost
of the AK recoding. Table 4 reports our timings for implementing the ephemeral
Diffie-Hellman key exchange using the proposed optimizations in three scenarios:
for comparison with related work, the Montgomery laddering algorithm is used
in the Weierstraß model; the DJB algorithm in the Huff model is used for the
two scalar multiplications to achieve constant time execution; and side-channel
security is relaxed by using the AK algorithm in the Weierstraß model for the
second scalar multiplication with previously recoded subscalars.

We restrict the comparison to Haswell and Skylake platforms where binary
curves enjoy faster vector instruction sets. Compared to the state-of-the-art in
laddering implementations for the Skylake platform, our implementation of the
standard Montgomery laddering in the Weierstraß model improves upon [23]
by 2.9%, but is not competitive with the window-based method in [19]. The
DJB algorithm in the Huff model increases the performance improvement to
21.3% and becomes close to window-based methods. Notice, however, that FourQ
employs a large 7.5 KB precomputed table for accelerating the window-based
fixed-base portion of the key exchange protocol, a technique from which we
do not benefit in this work. We anticipate such an optimization would reach a
new speed record for key exchange implementations in the target platform. The
performance for key exchange can be slightly increased by using a combination of
the DJB and AK laddering algorithms, if one is willing to sacrifice constant-time
execution for uniform execution only.



90 D.F. Aranha et al.

Table 4. Results for related work and our implementations of the Diffie-Hellman key
exchange, using different approaches for instantiating the protocol. Benchmarks are
presented for Ivy Bridge (I), Haswell (H) or Skylake (S) platforms. Timings for FourQ
in the Skylake processor were obtained by benchmarking code available by [7] in our
platform (*). Our best numbers in each platform are highlighted in bold and best
numbers overall in italic.

Related work (laddering/window) Curve TAR Cycles on I Cycles on H Cycles on S

FourQ (window-based) [7] prime CT 104,000 88,000 74,032*

2-GLV double-and-add [19] binary CT 120,000 96,624 76,088

Montgomery ladder [23] binary CT - - 95,702

This work (laddering) Curve TAR Cycles on I Cycles on H Cycles on S

Montgomery on Weierstraß binary CT 295,828 121,676 92,890

DJB on Huff binary CT 245,682 101,696 75,318

DJB + AK on Weierstraß binary U 243,188 101,769 74,440

5 Conclusion

This work presented several contributions. First, we proposed tricks to convert
GLS curves to alternative models and obtained parameters optimized for elliptic
curve arithmetic. The latest formulas for differential addition and doubling in the
Weiertraß, Huff and Edwards models were slightly improved by using lazy reduc-
tion and short coefficients allowed by the parameters. The resulting implemen-
tations were combined with efficient implementations of the Montgomery, DJB
and AK algorithms to obtain efficient scalar multiplication based on laddering,
achieving a new speed record in laddering algorithms for high-end Intel desktop
processors and performance improvements for executing the Diffie-Hellman key
exchange protocol.

As future work, we plan to extend our strategies to the recently proposed
twisted μ4-normal form binary curves [14] to enjoy their efficient arithmetic in
the case of elliptic curves with endomorphisms. The entire code for our implemen-
tations is available at https://github.com/dfaranha/ladd-gls254 to allow repro-
ducibility and facilitate further improvements by independent researchers.

Acknowledgements. The authors would like to thank the reviewers for their com-
ments. This work is supported in parts by the Intel/FAPESP grant 14/50704-7
under project “Secure Execution of Cryptographic Algorithms”, and the grants NIST-
60NANB16D246, NSF CNS-1661557, and ARO W911NF-17-1-0311.

References

1. Azarderakhsh, R., Karabina, K.: A new double point multiplication algorithm and
its application to binary elliptic curves with endomorphisms. IEEE Trans. Comput.
63(10), 2614–2619 (2014)

2. Bernstein, D.J.: Differential addition chains, Preprint (2006)

https://github.com/dfaranha/ladd-gls254


Efficient Software Implementation of Laddering Algorithms 91

3. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.: High-speed high-
security signatures. J. Cryptograph. Eng. 2(2), 77–89 (2012)

4. Bernstein, D.J., Lange, T.: Montgomery curves and the Montgomery ladder. In:
Bos, J.W., Lenstra, A.K. (eds.) Topics In Computational Number Theory Inspired
by Peter L. Montgomery. Cambridge University Press (2017, to appear). https://
eprint.iacr.org/2017/293

5. Bernstein, D.J., Lange, T., Rezaeian Farashahi, R.: Binary edwards curves. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 244–265. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 16

6. Costello, C., Hisil, H., Smith, B.: Faster compact Diffie–Hellman: endomorphisms
on the x -line. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 183–200. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-55220-5 11

7. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve
over the mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9452, pp. 214–235. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 10

8. Devigne, J., Joye, M.: Binary huff curves. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 340–355. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19074-2 22

9. Rezaeian Farashahi, R., Hosseini, S.G.: Differential addition on binary elliptic
curves. In: Duquesne, S., Petkova-Nikova, S. (eds.) WAIFI 2016. LNCS, vol. 10064,
pp. 21–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55227-9 2

10. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm
problem. Des. Codes Crypt. 78(1), 51–72 (2016)

11. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Cryptol. 24(3), 446–469 (2011)

12. Hankerson, D., Karabina, K., Menezes, A.: Analyzing the Galbraith-Lin-scott point
multiplication method for elliptic curves over binary fields. IEEE Trans. Comput.
58(10), 1411–1420 (2009). http://dx.doi.org/10.1109/TC.2009.61

13. Institute of Electrical and Electronics Engineers: Traditional public-key cryptog-
raphy (IEEE Std 1363–2000 and 1363a–2004) (2004). http://grouper.ieee.org/
groups/1363/

14. Kohel, D.: Twisted µ4-normal form for elliptic curves. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 659–678. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 23

15. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF (2m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 27

16. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

17. National Institute of Standards and Technology: Recommended Elliptic Curves for
Federal Government Use. NIST Special Publication (1999). http://csrc.nist.gov/
groups/ST/toolkit/documents/dss/NISTReCur.pdf

18. Oliveira, T., Aranha, D.F., López, J., Rodŕıguez-Henŕıquez, F.: Fast point multi-
plication algorithms for binary elliptic curves with and without precomputation.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 324–344. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 20

19. Oliveira, T., Aranha, D.F., Hernandez, J.L., Rodŕıguez-Henŕıquez, F.: Improving
the performance of the GLS254 curve. In: CHES Rump Session (2016)

https://eprint.iacr.org/2017/293
https://eprint.iacr.org/2017/293
https://doi.org/10.1007/978-3-540-85053-3_16
https://doi.org/10.1007/978-3-642-55220-5_11
https://doi.org/10.1007/978-3-642-55220-5_11
https://doi.org/10.1007/978-3-662-48797-6_10
https://doi.org/10.1007/978-3-662-48797-6_10
https://doi.org/10.1007/978-3-642-19074-2_22
https://doi.org/10.1007/978-3-642-19074-2_22
https://doi.org/10.1007/978-3-319-55227-9_2
http://dx.doi.org/10.1109/TC.2009.61
http://grouper.ieee.org/groups/1363/
http://grouper.ieee.org/groups/1363/
https://doi.org/10.1007/978-3-319-56620-7_23
https://doi.org/10.1007/3-540-48059-5_27
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
https://doi.org/10.1007/978-3-319-13051-4_20


92 D.F. Aranha et al.

20. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Lambda coordi-
nates for binary elliptic curves. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013.
LNCS, vol. 8086, pp. 311–330. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40349-1 18

21. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Two is the fastest
prime: lambda coordinates for binary elliptic curves. J. Cryptograph. Eng. 4(1),
3–17 (2014)

22. Oliveira, T., López, J., Rodŕıguez-Henŕıquez, F.: Software implementation of
Koblitz curves over quadratic fields. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 259–279. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53140-2 13

23. Oliveira, T., López, J., Rodŕıguez-Henŕıquez, F.: The Montgomery ladder on binary
elliptic curves. J. Cryptograph. Eng. (2017, to appear). https://eprint.iacr.org/
2017/350

24. Stam, M.: On montgomery-like representations for elliptic curves over GF (2k). In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 240–254. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6 18

https://doi.org/10.1007/978-3-642-40349-1_18
https://doi.org/10.1007/978-3-642-40349-1_18
https://doi.org/10.1007/978-3-662-53140-2_13
https://doi.org/10.1007/978-3-662-53140-2_13
https://eprint.iacr.org/2017/350
https://eprint.iacr.org/2017/350
https://doi.org/10.1007/3-540-36288-6_18


Analysis of Diagonal Constants in Salsa

Bhagwan N. Bathe1(B), Bharti Hariramani2(B), A.K. Bhattacharjee2,
and S.V. Kulgod1

1 Bhabha Atomic Research Centre, Mumbai, India
{bathebn,svkulgod}@barc.gov.in

2 Bhabha Atomic Research Centre (CI), Homi Bhabha National Institute,
Mumbai, India

{bhartih,anup}@barc.gov.in

Abstract. In this paper, we study the effect of diagonal constants in
the software oriented stream ciphers Salsa and Chacha. So far, there has
not been any clear justification why such constants are chosen. We con-
centrate on differential cryptanalysis to evaluate how different constants
affect the biases after a few rounds in these ciphers. We are using Measure
of Uniformity in bias as a measure for differentiating constants as good
or bad constants w.r.t. original constant. We have observed that after
4 rounds of Salsa20, for an Input Differential (ID) at Most Significant
Bit (MSB) of the third word of quarterround function, the specific pat-
terns in constant involved in that quarterround function leads to increase
or decrease in Measure of Uniformity in bias. The location of specific
patterns in those diagonal constants varies with the change in last two
rotation constants. We did not observe any pattern for ChaCha after 3
rounds. We have also observed a slight increase and decrease in time and
data complexity for good and bad constants respectively as compared to
an original constant. The designer constants are a good constant however
it can be even better with a slight change in constant c0 or c3.

Keywords: Constants · Stream cipher · ChaCha · Salsa · Bias ·
Measure of Uniformity in bias · ARX Cipher · Input Differential · Output
differential · Hamming distance

1 Introduction

Stream cipher, Salsa20 [4] was designed by Daniel Bernstein as a candidate for
eStream [9] competition in 2006. It was submitted in both hardware and software
category. Salsa20 was originally designed for 20 rounds of operations. Salsa20/12
and Salsa20/8 are reduced round versions of Salsa20. Salsa20 was designed for
the 256-bit key, however, 128-bit and 80-bit key version are also available.

ChaCha20 [5] is a variant of Salsa20, which provides better diffusion and
resistance against cryptanalytic attacks using less number of rounds as compared
to Salsa20. Recent CHACHA20-POLY1305-AEAD [16] TLS 1.3 implementation
includes ChaCha20 as a symmetric cipher. This, in turn, merits further analysis
of both Salsa and ChaCha due to their similar structure.
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 93–110, 2017.
https://doi.org/10.1007/978-3-319-71501-8_6



94 B.N. Bathe et al.

Related work. Since it had been published by Bernstein in eStream, significant
amount of cryptanalysis [2,6,8,10–15,17,18] was done on both Salsa and ChaCha.

Although several attacks have been found on reduced round versions of the
cipher, there is no attack better than exhaustive key search on either Salsa20/12
or Salsa20/20 till date. Most of the attacks are based on differential cryptanaly-
sis where one can apply some input differences to the initial state and observe
output differences after certain rounds. Since round function of both Salsa20
and ChaCha are reversible, it is possible to invert a few rounds from a final state
to obtain further non-randomness. At SASC 2006, Crowley [8] presented a key
recovery attack on Salsa20/5, where he had attacked the Salsa20 PRF directly;
the resulting attack on the Salsa20 stream cipher followed straightforwardly.
Tsunoo et al. [17] reported the significant bias in the fourth round of Salsa20,
which was further used to break 8 rounds of Salsa20 with reduced complexity.
Aumasson et al. at FSE 2008 [2] introduced a novel method based on Proba-
bilistic Neutral Bits (PNBs). The work by Shi et al. [15] introduced the concept
of Column Chaining Distinguisher (CCD) to achieve some incremental advance-
ments over [2] for both Salsa and ChaCha. Maitra et al. [13] studied an interesting
observation regarding round reversal of Salsa, but no significant cryptanalytic
improvement could be obtained using this method. An important contribution
of the authors in [13] is to correct some parameter values of [2] to obtain better
attack complexity. Maitra [12] used a technique of Chosen IVs to obtain certain
improvements over existing results. Choudhuri and Maitra [7] used multibit dif-
ferentials to significantly improve the bias and attack the 6 rounds of Salsa and
5 rounds of ChaCha.

Salsa20 is an ARX-C type cipher. It uses three simple operations: addition
modulo 2n, bit rotation and exclusive or (XOR) with constants at its diagonal
position of initial state matrix. It was previously [1] shown that ARX opera-
tions with the injection of constants can be used to implement any function.
As mentioned in the Salsa20 security document [3]: ‘Each Salsa20 column round
affects each column, in the same way, starting from diagonal; each Salsa20 row
round affects each row, in the same way, starting from the diagonal. Conse-
quently shifting entire row along the diagonal has exactly the same effect on
the output. The Salsa20 expansion function eliminates this shift structure by
limiting the attacker’s control over the hash function input. In particular, the
input diagonal is always c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32,
c3 = 0x6b206574, which is different from all its nontrivial shifts. In other words,
two distinct arrays with this diagonal are always in distinct orbits under the
shift group’. The constants are not invariant under rotation hence introduce the
asymmetry. The precise value of the constant is not important as long as it is
sufficiently asymmetric. The designer did not give any formal logic or expla-
nation for selecting those constants however, it is suggested to change certain
constants when being used with reduced key size version or used multiple times
in compression function (Rumba). We believe that serious statistical analysis of
constants should be carried out before selecting them.



Analysis of Diagonal Constants in Salsa 95

Many government organizations use tweaked ciphers instead of proprietary
designs as their security is well understood. Salsa20, being very efficient in soft-
ware and hardware, is a promising candidate for tweaking. Possible choices for
tweaking the design in Salsa20 are round function, rotation constants and diag-
onal constants.

Our Contribution. In this paper, we have studied the effect of randomly chosen
diagonal constants on the overall security of the cipher. Our main strategy for
evaluation is to use differential cryptanalysis. We introduced a new term, Mea-
sure of Uniformity in bias. It is Root Mean Square (RMS) value of variance from
the mean value (Bias) observed over output differential matrix. We introduced
some Input Differential (ID) at an initial state and observed the Measure of
Uniformity in bias after applying few rounds. We run this experiment for dif-
ferent sets of randomly chosen constants over uniform choices of Key and IV.
After 4 rounds, we observed that for the different set of constants, we get dif-
ferent values of Measure of Uniformity in bias. Thus, the set of constants were
divided into two categories i.e. good and bad constants w.r.t. original constant.
Good constants are those for which the Measure of Uniformity in bias is low
and vice versa for bad constants. So, the assumption that constants are chosen
randomly may not be complete. We have done more statistical analysis of con-
stants based on Measure of Uniformity in bias as well as published attacks on
Salsa and ChaCha.

We have observed that there are a group of constants for which the Measure of
Uniformity in bias is very near to each other. Those group of constants having
similar Measure of Uniformity in bias has some pattern. Those patterns are
observed in the last nibble i.e. 4 LSBs in one of the constant i.e. either c0, c1,
c2 or c3. Among the four constants, similar patterns can be observed in any one
of them which depends on the location of ID. In general, if we create an ID
at MSB of the third word of quarterround function, the patterns are observed
in the corresponding value of constant involved in that quarterround function.
Group is always formed by pair where the 4 LSBs of those particular constants
are a complement to each other irrespective of other bits of constant. Group of
constants with very low hamming distance have Measure of Uniformity in bias
very near to each other except for some specific values at 4 LSBs of the particular
constant.

In addition to diagonal constant, Salsa20 uses 4 different rotation constant
in quarterround function. We have shown theoretically and experimentally that,
there is a certain relation between the location of the pattern in a diagonal
constant and the rotation constants. In particular, the location of nibble with a
specific pattern in constant varies with the change in values of third and fourth
rotation constants. It has been observed that addition (modulo 32) of third
and fourth rotation constant point to the second bit of nibble (from RHS) with
specific patterns.

Our result is based on a Measure of Uniformity in bias after four rounds
of operations on Salsa20 with ID at MSB of 7th word. We studied the effect
of constants on Multi-bit Output differential as in [7]. We did not observe any



96 B.N. Bathe et al.

significant change in bias w.r.t. good or bad constants after 4 rounds in Salsa.
We have also tested good and bad sets of constants for neutrality measures,
forward bias, reverse bias and corresponding time as well as data complexity. It
has been observed that there is a slight gain in time and data complexity for
good constants and vice versa for bad constants. The constants being used by
the designer are in fact near to a good set of constants but few better constants
are also available.

Organization of the paper. The paper is organized in 5 Sections. In Sect. 2, Salsa,
Chacha and differential cryptanalysis is described in brief. Section 2 also gives a
brief description of hardware setup used for running our experiments. Section 3
gives the description of Measure of Uniformity in bias. Our experiments and
observations are described in Sect. 4. Finally, we conclude in Sect. 5.

2 Specifications and Preliminaries

The notations to be used in this paper are presented in the Table 1.

Table 1. Notation

Notation Description

X The state matrix of the cipher of 16 words

X(0) Initial state matrix

X(R) State matrix after application of R round functions

xi ith word of the state matrix (words arranged in row major)

xi[j] jth bit of ith word

x + y Addition of x and y modulo 232

x ⊕ y Bitwise XOR of x and y

x ≪ n Rotation of x by n bits to the left

Δx XOR difference of x and x′. Δx = x ⊕ x′

D Measure of Uniformity in Bias

Cij No of times jth bit of ith word changes i.e., bit counter

Aij Average of bit counter

2.1 Salsa

The core of the Salsa20 is a hash function with 64-byte input and 64-byte output.
The hash function is used in a counter mode as a stream cipher. Salsa20 encrypts
a 64-byte block plaintext by hashing the key, nonce, and block number and
XORing the result with the plaintext. The initial state of cipher consists of 16
words represented as 4 × 4 matrix. Each element of the matrix is 32-bit words.
The initial matrix can be defined as follows,



Analysis of Diagonal Constants in Salsa 97

X(0) =

⎛
⎜⎜⎜⎝

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

⎞
⎟⎟⎠ ,

where,
c0, c1, c2, c3 are diagonal constants.
k0, . . . , k7 is 256-bits key
v0, v1 is 64-bits nonce
t0, t1 is 64-bits counter

Values of diagonal constants are fixed and predefined as c0 = 0x61707865,
c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574. For the 128-bit version
of Salsa, the key words are repeated twice and the constant values differ slightly.
In this paper, we consider the 256-bit version for all the experiments. Further,
we will refer to the nonce and counter words together as IV words.

Each Salsa20 round function consists of 4 simultaneous applications of quar-
terround. The quarterround function is performed on vector

(
x
(r)
a , x

(r)
b , x

(r)
c , x

(r)
d

)

to update its values as defined below:

x
(r+1)
b = x

(r)
b ⊕ ((x(r)

a + x
(r)
d ) ≪ 7),

x
(r+1)
c = x

(r)
c ⊕ ((x(r+1)

b + x
(r)
a ) ≪ 9),

x
(r+1)
d = x

(r)
d ⊕ ((x(r+1)

c + x
(r+1)
b ) ≪ 13),

x
(r+1)
a = x

(r)
a ⊕ ((x(r+1)

d + x
(r+1)
c ) ≪ 18).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1)

The Salsa20 round function is applied alternatively on columns and rows.
Round function is applied on each of the four columns (x0, x4, x8, x12),
(x5, x9, x13, x1), (x10, x14, x2, x6) and (x15, x3, x7, x11) in odd numbered rounds,
called as columnrounds. Round function is applied on each of the four rows
(x0, x1, x2, x3), (x5, x6, x7, x4), (x10, x11, x8, x9) and (x15, x12, x13, x14) in even
numbered rounds, called as rowrounds. The consecutive rounds (a columnround
and rowround) together are called a doubleround. The output matrix after R
rounds is combined with initial matrix to generate 16 words (or 512 bits)
keystream output as Z = X(0) +X(R), where “+” symbolizes wordwise addition
modulo 232, and X(R) = roundR(X(0)). Salsa20 is designed for R = 20, i.e. for
20 rounds however software portfolio of eSTREAM [9] has accepted Salsa20/12
version, where R = 12.

Each Salsa20 round is reversible as the state-transition operations are
reversible, i.e., if X(r+1) = round(X(r)), then X(r) = round−1(X(r+1)), where
round−1 is the inverse of round. The inverse of the quarterround function on the
vector

(
x
(r+1)
a , x

(r+1)
b , x

(r+1)
c , x

(r+1)
d

)
is defined as:

x
(r)
a = x

(r+1)
a ⊕ ((x(r+1)

d + x
(r+1)
c ) ≪ 18),

x
(r)
d = x

(r+1)
d ⊕ ((x(r+1)

c + x
(r+1)
b ) ≪ 13),

x
(r)
c = x

(r+1)
c ⊕ ((x(r+1)

b + x
(r)
a ) ≪ 9),

x
(r)
b = x

(r+1)
b ⊕ ((x(r)

a + x
(r)
d ) ≪ 7).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2)



98 B.N. Bathe et al.

2.2 ChaCha

ChaCha is a 256-bit stream cipher based on Salsa. ChaCha core was proposed
by Bernstein as an improvement over Salsa core to increase diffusion over the
same number of operations. It was designed to improve diffusion per round,
conjecturally increasing resistance to cryptanalysis, while preserving and often
improving time per round. ChaCha12 and ChaCha20 are analogous modifications
of the 12-round and 20-round ciphers Salsa20/12 and Salsa20/20. ChaCha20 has
the similar construction as that of Salsa20. Initial Matrix of ChaCha is as follows,

X(0) =

⎛
⎜⎜⎜⎝

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

⎞
⎟⎟⎠

Similar to Salsa, the rightmost matrix shows the initial state that takes four
predefined constants c0, . . . , c3 (similar to Salsa), 256-bit key k0, . . . , k7, 32-bit
block counter t0 and 96-bit nonce v0, v1, v2. ChaCha builds the initial matrix with
all attacker controlled input words at the bottom. The quarterround function on
the vector

(
x
(r)
a , x

(r)
b , x

(r)
c , x

(r)
d

)
is defined below:

x
(r)
a′ = x

(r)
a + x

(r)
b ; x

(r)
d′ = x

(r)
d ⊕ x

(r)
a′ ; x

(r)
d′′ = x

(r)
d′ ≪ 16;

x
(r)
c′ = x

(r)
c + x

(r)
d′′ ; x

(r)
b′ = x

(r)
b ⊕ x

(r)
c′ ; x

(r)
b′′ = x

(r)
b′ ≪ 12;

x
(r+1)
a = x

(r)
a′ + x

(r)
b′′ ; x

(r)
d′′′ = x

(r)
d′′ ⊕ x

(r+1)
a ; x

(r+1)
d = x

(r)
d′′′ ≪ 8;

x
(r+1)
c = x

(r)
c′ + x

(r+1)
d ; x

(r)
b′′′ = x

(r)
b′′ ⊕ x

(r+1)
c ; x

(r+1)
b = x

(r)
b′′′ ≪ 7;

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3)

Chacha, like Salsa, uses 4 additions, 4 xors and 4 rotations to invertibly update
four 32-bit state words. However, Chacha applies the operation in a different
order. Unlike the Salsa quarterround, ChaCha quarterround gives each input word
a chance to affect each output word and each word is updated twice. In each of
the odd rounds, called columnround, we apply quarterround to the four columns
(x0, x4, x8, x12), (x1, x5, x9, x13), (x2, x6, x10, x14), and (x3, x7, x11, x15). In each
of the even rounds, called diagonalround, we apply quarterround to the diag-
onals (x0, x5, x10, x15), (x1, x6, x11, x12), (x2, x7, x8, x13), and (x3, x4, x9, x14).
As before, we define X(R) = roundR(X(0)), and the keystream block Z =
X(0) + X(R). For ChaCha20, R = 20. As with Salsa, each round of ChaCha
is reversible.

2.3 Differentials

Given two states X(r),X ′(r), we denote the differential of individual words by
Δx

(r)
i = x

(r)
i ⊕ x

′(r)
i . For example, ‘Δx

(0)
13 = 25’ means that we have two initial

states X(0),X ′(0) that differ at the 5th bit of the 13th word.
From the perspective of cryptanalysis, we are interested in introducing a

difference in the initial state (call it Input Differential or ID) and then attempt



Analysis of Diagonal Constants in Salsa 99

to obtain certain biases corresponding to combinations of some output bits (call
it Output Differential or OD). In this direction, one can compute

Pr(Δx(r)
p [q] = 0|Δx

(0)
i = 2j) =

1
2
(1 + εd), (4)

where the probability is estimated for a fixed key and all possible choices of
nonces and counter words, other than the constraints imposed due to the input
differences. Here, the bias is denoted by εd.

2.4 Hardware Setup

We are using The ANUPAM-AGGRA supercomputer for our experiments. The
system consists of 8160 processor cores, 40960 Graphics Processing cores and
32 Terabytes of memory. The nodes of the system are interconnected by high
speed Infiniband network with a bandwidth of 40 Gigabits per second. The peak
performance of the system is 150 Teraflops and the sustained performance mea-
sured using the High Performance Linpack benchmark is 109 Teraflops. Scientific
Linux 5.5 is used as the operating system along with OpenMPI, MVAPICH and
MVAPICH2 libraries providing the parallel environment. We are using about
120 processor cores for our experiments. Most of the experiments are run for 226

data samples and 4 rounds of Salsa20.

3 Measure of Uniformity in Bias

Security of ARX cipher is not well understood, but they are very efficient in soft-
ware and hardware. There is always a trade-off between security and efficiency,
but since this trade-off is not well understood, typically large number of rounds
are preferred to provide larger security margin. Due to this, there are many
published attacks on reduced round versions of ARX ciphers. Linear and differ-
ential cryptanalysis are the two major tools used against ARX ciphers. Salsa20
being an ARX cipher is also subjected to differential cryptanalysis. In differen-
tial cryptanalysis, input differential (ID) is introduced at an initial state with
intent to observe output differential (OD) in a particular bit or group of bits as
a distinguisher after applying few rounds. We observed that for the different set
of diagonal constants, the bias in particular bit may increase or decrease. Hence,
we have introduced a general term called Measure of Uniformity in bias (D).
It is Root Mean Square (RMS) value of variance from the mean value (Bias)
observed over output differential matrix after applying few number of rounds,
for some ID. Measure of Uniformity in bias (D) is calculated as,

DID
R (c0, c1, c2, c3) =

√
Σi=15

i=0 Σj=31
j=0 ( 12 − Cij

μ )2

N
(5)



100 B.N. Bathe et al.

where,
ID = Input Differential
R = Number of Rounds
c0, c1, c2, c3 = Set of diagonal constants.
i = word location
j = bit location
Cij = No of times jth bit of ith word changes.
N = Number of output bits
μ = Number of operations

In above Eq. 5, number of operations represents randomly chosen key and IV
for given ID and set of constants (c0, c1, c2, c3). Counter (Cij) is normalized
using number of operations (μ) and subtracted from theoretically expected value
to represent the measure of bias. The RMS value of this bias is then calculated
as a Measure of Uniformity in bias over N output bits. Details of an algorithm
for calculation of Measure of Uniformity in bias (D) for ID is as follows:

Input: ID, R, (c0, c1, c2, c3), μ, N
Result: Measure of Uniformity in Bias (DID

R (c0, c1, c2, c3))
Set constant values to c0, c1, c2, c3;
loop=0;
while While loop < μ do

Generate X(0) and X
′(0), two valid initial states with a given ID ;

Calculate X(R) and X
′(R) i.e. state after applying R rounds;

For each bit in X(R) and X
′(R)

if X
(R)
ij ⊕ X

′(R)
ij == 0 then

Increment counter Cij ;
end
Increment loop;

end
Calculate Aij = Cij

μ // Average of bit counter

Calculate DID
R (c0, c1, c2, c3) =

√
Σi=15

i=0 Σj=31
j=0 ( 1

2−Aij)2

N // Measure of
Uniformity in bias

Algorithm 1: Calculates the Measure of Uniformity in bias for the random
set of constants for a given ID after R rounds over N bits.

4 Experiments and Observations

Experiment 1. Comparison among different sets of random constants.

As per the designer, rotational invariance with some asymmetry is sufficient
condition for choosing constant. However, we believe that this condition may
not be sufficient. In order to evaluate correctness of his statement, we have
calculated the Measure of Uniformity in bias for three different set of constants,



Analysis of Diagonal Constants in Salsa 101

1. Designer constants,
2. Worst constants like all one or all zero constants,
3. Random constants.

The experiment (Algorithm 1) is run for each set of constants with 226 uniformly
distributed values of Key and IV. The experiment is repeated for ID in each bit
of 7th word. 7th word is selected because many published results are based on
ID at 7th word. Measure of Uniformity in bias is observed after four rounds of
Salsa20. Results of an experiment are presented in Fig. 1.

Fig. 1. Measure of Uniformity in bias with 4 set of constants

Observation 1. Measure of Uniformity in bias is higher for worst constants.
It is in the same range for random and designer constants. This observation is
valid for ID at each bit of 7th word.

Observation 1 indicates that designers statement about constant may not be
complete. We need to do the serious statistical analysis of those constants before
selecting them. There can be a certain set of constants which can be better or
worst than designer constants. This leads to a definition of two categories of
constants w.r.t. designer constants and they are as follows,

– Good constants: Whose Measure of Uniformity in bias is less than designer
constants.

– Bad constants: Whose Measure of Uniformity in bias is more than designer
constants.

Experiment 2. Choosing optimal ID for evaluation.

The aim of this experiment is to select optimal ID for further cryptanalysis.
Most of the published attacks are based on ID in 7th word. So, we selected 7th

word for creating an ID. For ID in each bit of 7th word, we calculated Measure
of Uniformity in bias for n sets of randomly chosen constants. Then for each bit,
we calculated minimum, maximum and average of Measure of Uniformity in bias
as follows,



102 B.N. Bathe et al.

– Min D7,k
4 : Minimum Measure of Uniformity in bias among n set of random

constants when ID is at x7[k].
– Max D7,k

4 : Maximum Measure of Uniformity in bias among n set of random
constants when ID is at x7[k].

– Average D7,k
4 : Average Measure of Uniformity in bias among n set of random

constants when ID is at x7[k].

Results of the above experiment are presented in Fig. 2.

Fig. 2. Minimum, maximum and average Measure of Uniformity in bias for ID in 7th

word

Observation 2. Minimum, Maximum and Average Measure of Uniformity in
bias is higher for ID at x7[31].

Above observation implies that the Measure of Uniformity in bias is maxi-
mum when ID is created at the most significant bit (i.e. 31st or the leftmost
bit). Hence for further work, ID x7[31] is selected.

Experiment 3. Evaluation of the random set of constants w.r.t. designer con-
stants with ID at MSB of 7th word.

In this experiment, Measure of Uniformity in bias is calculated for a very large
number of the randomly chosen set of constants with ID at MSB of 7th word.
Each set is evaluated for 226 uniformly distributed values of key and IV. Set of
constants are then sorted as per increasing order of Measure of Uniformity in
bias after four rounds of operations. The plot of such sorted data is shown in
Fig. 3. Measure of Uniformity in bias for designer constant is taken as reference
bias.

Observation 3. There are certain values of uniformity in bias which are further
away from reference bias in both positive and negative side (i.e. above and below
reference bias value).



Analysis of Diagonal Constants in Salsa 103

Fig. 3. Plot of the set of randomly chosen constant versus Measure of Uniformity in
bias after 4 rounds for ID at x7[31]. The set of random constants are sorted based on
increasing order of Measure of Uniformity in bias.

Table 2. Patterns observed in the last nibble of c3 for ID in x7[31]

Group number Nibble pattern in
last byte of c3

Range of measure of
Uniformity in bias

1 0x2, 0xd, 0x5, 0xa 0.008877 to 0.008912

2 0x1, 0x6, 0x9, 0xe 0.008913 to 0.008955

3 0x4, 0x3, 0xc, 0xb 0.008981 to 0.009013

4 0x7, 0x8 0.009136 to 0.009166

5 0xf , 0x0 0.009167 to 0.009212

Observation 4. The graph shows 5 steps. The flat portion of the graph indicates
that the Measure of Uniformity in bias is very near to each other for some group
of constants. It is observed that those groups are having some patterns in the last
nibble (4 LSBs) of constant c3. The group is formed by the pair of complementary
nibbles. Following Table 2 shows those 5 groups with patterns and corresponding
values of Measure of Uniformity in bias in increasing order.

Constant c3 and x7[31] are involved in same quarterround function during ini-
tial rounds. In order to analyze other constants for similar patterns, we extended
the similar experiment for ID in x8, k6 and k1. For ID in x8, k6 and k1, we
observed similar patterns in c0, c1, c2 respectively. From this, we can say that if
we create an ID at MSB of the third word of quarterround function, Measure of
Uniformity in bias varies as per above patterns in corresponding constant. Since
the third word for quarterround which involves constant c1 and c2 are keywords
which are not user controlled hence, are not considered further. However, for c0
and c3, ID location is in user controlled bits like IV and counter.

Designer constant c3 consist of 0x4 at last nibble and hence belong to Group 3
in Table 2 and Fig. 3. As per definition of good and bad constants, Group 1 (0x2,
0xd, 0x5, 0xa) & Group 2 (0x1, 0x6, 0x9, 0xe) belong to set of good constants
and Group 4 (0x7, 0x8) & Group 5 (0xf , 0x0) belongs to set of bad constants.



104 B.N. Bathe et al.

Observation 5. Similar experiment has been carried out for one to five rounds.
Some patterns were visible after 2nd and 3rd round but more clear results were
obtained after 4th round. No pattern is observed after 5th round.

For further experiments, we selected some set of constants from the good and
bad category from experiment 3. Now onwards they will be referred as good and
bad constants. Set of designer constant is taken as a reference. All our further
experiments are based on designer constants, good constants and bad constants.

Experiment 4. Calculation of Forward bias for the designer, good and bad
constants.

In Experiment 3, we sorted the constants w.r.t. Measure of Uniformity in Bias.
Taking Measure of Uniformity in bias for designer constant as a reference, we
can put the set of constants above the reference line into the set of bad constants
and below the reference into the set of good constants. In order to reconfirm this
segregation, we selected few constants from the set of good and bad constants
and calculated forward bias (εd).

Let X, X ′ be two valid initial states with a given ID Δ(0)
i,j = 1, for which

an OD Δ(r)
p,q is observed after r < R Salsa rounds. Thus, Pr(Δ(r)

p,q = 1|Δ(0)
i,j ) =

1
2 (1+ εd). In this experiment, forward bias (εd) is evaluated for ID at Δ(0)

7,31 = 1
for designer constants, good constants and bad constants. After 4 rounds, we
evaluated bias in both positive and negative direction. A Negative bias (−εd)
is referred as minimum bias while a positive bias (+εd) is referred as maximum
bias. With ID at x7[31], minimum bias occurs at output bit x1[12] and maximum
bias at output bit x6[26]. Figure 4 shows the plot of bias for the designer, good
and bad constants.

Fig. 4. Plot of constants versus bias. Line denotes reference as bias with designer
constants (a) Left Figure: plot for constant versus minimum bias. (b) Right Figure:
plot for constant versus maximum bias



Analysis of Diagonal Constants in Salsa 105

Observation 6. The location of bias is same for the designer, good and bad
constants. For bad constants, the forward bias is more as compared to designer
constants while it is less for good constants.

Initially, an experiment was run for 226 data samples on the designer, good
and bad constants. Results were also confirmed for 240 data samples for few
selected constants.

Experiment 5. Measure of Uniformity in bias for the designer, good and bad
constants with a group of the hamming distance of one.

The Hamming distance between two strings of equal length is the number of
positions at which the corresponding symbols are different. In this experiment,
we are analyzing variation in Measure of Uniformity in bias for the group of
constants having very low hamming distance between them. For each constant
in the set of designer, good and bad constants, we follow the procedure as defined
below,

1. Calculate Measure of Uniformity in bias for selected constants with ID at
Δ

(0)
7,31 = 1.

2. Flip one bit (hamming distance one) of selected constant and repeat step one.
3. Repeat step 2 for all possibilities of hamming distance one on selected

constant.
4. Plot the Measure of Uniformity in bias for a group of the constant having

hamming distance one.

The graph for one set of constants from designer, bad and good constants is
shown in Fig. 5.

Fig. 5. Plot of constants with hamming distance one versus uniformity in bias. (a) Left
Figure: plot for designer constants. (b) Middle Figure: plot for bad constants. (c) Right
Figure: plot for good constant



106 B.N. Bathe et al.

Observation 7. The Measure of Uniformity in bias for any group of constants
with hamming distance one are very near to each other except for some cases.
More importantly, those cases had occurred for patterns as per Observation 4. For
example, for bad constants, the Measure of Uniformity in bias is maximum. After
creating hamming distance one if last nibble changes to a group of good constants
then the Measure of Uniformity in bias reduces significantly. We observed that
for bad constants when the last nibble of constant c3 becomes either 0x2, 0x5,
0xd or 0xa then Measure of Uniformity in bias becomes less. For good constants,
if it is either 0xf or 0x0, then Measure of Uniformity in bias becomes more.

Observation 8. One more important observation is that for designer constant,
last nibble of constant c3 (0x6b206574) is 0x4. If hamming distance one is created
at 0th bit of this constant, then nibble becomes 0x5, thereby reducing the Measure
of Uniformity in bias than that of designer constant. If hamming distance one
is created at 2nd bit of this constant, then the last digit becomes 0x0, thereby
increasing the Measure of Uniformity in bias than that of designer constant.
This is in line with our Observation 4 above.

Experiment 6. Effect of good and Bad constants on Multi-bit OD.

In [7] Choudhuri and Maitra have chosen multi-bit differentials as an exten-
sion of suitable single bit differentials with linear approximations, which is essen-
tially a differential-linear attack. They obtained very high bias by the combina-
tion of many output bits (19 for Salsa and 21 for ChaCha) in Salsa after 6 rounds
and in ChaCha after 5 rounds. In order to see the effect of random constants on
their result, we extended similar experiment for the set of a designer, good and
bad constants.

Observation 9. We observed that there is a slight change in bias for bad and
good constants in Salsa till round 4, but no significant change is observed in bias
after round 5 in Salsa. We did not observe any significant change in bias for
ChaCha.

Experiment 7. Relation between rotation constants and diagonal constants of
Salsa20.

Salsa20 quarterround function use two type of constants, diagonal constants and
rotation constants. So far we have seen the effect of a change in diagonal con-
stants on the overall security of cipher. Salsa20 use 7, 9, 13, 18 as rotation con-
stants in its quarterround function. In this experiment, we are analyzing the
different diagonal constants with different rotation constants while creating ID
at 31st bit of 7th word. Table 3 shows the results of this experiment.

With ID at x7[31], Measure of Uniformity in bias is increasing based on a
certain pattern in the last constant i.e. c3 after 4 round (as per Observation 4).
With the change in rotation constant value, we still observe pattern on c3 but
at different bit locations.

Observation 10. It has been observed that all the above Observations are valid
for different values of rotation constants. However, the location of nibble with
those specific patterns is different for different values of rotation constants.



Analysis of Diagonal Constants in Salsa 107

Table 3. Location of pattern with different rotation constant

x y z w Location of pattern on c3 (z + w)mod32

28 18 21 12 0 to 3 1

10 28 5 1 5 to 8 6

27 16 20 20 7 to 10 8

21 6 20 22 9 to 12 10

8 20 11 1 11 to 14 12

7 9 21 25 13 to 16 14

5 15 3 12 14 to 17 15

7 9 9 10 18 to 21 19

8 20 11 10 20 to 23 21

8 20 11 16 26 to 29 27

In order to understand the relation between rotation constants and location
of nibble with specific patterns, let us write the quarterround function in general
form.

Let x, y, z, w be the rotation constants, then the quarterround function is as:

x
(r+1)
b = x

(r)
b ⊕ ((x(r)

a + x
(r)
d ) ≪ x),

x
(r+1)
c = x

(r)
c ⊕ ((x(r+1)

b + x
(r)
a ) ≪ y),

x
(r+1)
d = x

(r)
d ⊕ ((x(r+1)

c + x
(r+1)
b ) ≪ z),

x
(r+1)
a = x

(r)
a ⊕ ((x(r+1)

d + x
(r+1)
c ) ≪ w).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)

From our earlier experiment, We know that if we create ID at the third word
(xc) of quarterround, we get the pattern on first word (xa) of quarterround. We
can rewrite above quarterround operation in bit format as in [7]:

xr
b [i + x] = xr−1

b [i + x] ⊕ xr−1
a [i] ⊕ xr−1

d [i] ⊕ Carryb[i]
xr

c [i + y] = xr−1
c [i + y] ⊕ xr−1

a [i] ⊕ xr
b [i] ⊕ Carryc[i]

xr
d[i + z] = xr−1

d [i + z] ⊕ xr
b [i] ⊕ xr

c [i] ⊕ Carryd[i]
xr

a[i + w] = xr−1
a [i + w] ⊕ xr

c [i] ⊕ xr
d[i] ⊕ Carrya[i]

⎫⎪⎪⎬
⎪⎪⎭

(7)

So xa can be written as,

xr
a[i + w]

= xr−1
a [i + w] ⊕ xr

c [i] ⊕ xr
d[i] ⊕ Carrya[i]

= xr−1
a [i+w]⊕xr−1

c [i]⊕xr−1
a [i−y]⊕xr

b [i−y]⊕Carryc[i−y]⊕xr
d[i]⊕Carrya[i]

= xr−1
a [i+w]⊕xr−1

c [i]⊕xr−1
a [i− y]⊕xr−1

b [i− y]⊕xr−1
a [i− y −x]⊕xr−1

d [i−
y − x] ⊕ Carryb[i − y − x] ⊕ Carryc[i − y] ⊕ xr

d[i] ⊕ Carrya[i]



108 B.N. Bathe et al.

= xr−1
a [i+w]⊕xr−1

c [i]⊕xr−1
a [i− y]⊕xr−1

b [i− y]⊕xr−1
a [i− y −x]⊕xr−1

d [i−
y − x] ⊕ Carryb[i − y − x] ⊕ Carryc[i − y] ⊕ xr−1

d [i] ⊕ xr
b [i − z] ⊕ xr

c [i − z] ⊕
Carryd[i − z] ⊕ Carrya[i]

= xr−1
a [i+w]⊕xr−1

c [i]⊕xr−1
a [i− y]⊕xr−1

b [i− y]⊕xr−1
a [i− y −x]⊕xr−1

d [i−
y − x] ⊕ Carryb[i − y − x] ⊕ Carryc[i − y] ⊕ xr−1

d [i] ⊕ xr−1
b [i − z] ⊕ xr−1

a [i − z −
x] ⊕ xr−1

d [i − z − x] ⊕ Carryb[i − z − x] ⊕ xr
c [i − z] ⊕ Carryd[i − z] ⊕ Carrya[i]

= xr−1
a [i+w]⊕xr−1

c [i]⊕xr−1
a [i− y]⊕xr−1

b [i− y]⊕xr−1
a [i− y −x]⊕xr−1

d [i−
y − x] ⊕ Carryb[i − y − x] ⊕ Carryc[i − y] ⊕ xr−1

d [i] ⊕ xr−1
b [i − z] ⊕ xr−1

a [i − z −
x] ⊕ xr−1

d [i − z − x] ⊕ Carryb[i − z − x] ⊕ xr−1
c [i − z] ⊕ xr−1

a [i − z − y] ⊕ xr
b [i −

z − y] ⊕ Carryc[i − z − y] ⊕ Carryd[i − z] ⊕ Carrya[i]

= xr−1
a [i+w]⊕xr−1

c [i]⊕xr−1
a [i−y]⊕xr−1

b [i−y]⊕xr−1
a [i−y−x]⊕xr−1

d [i−y−x]⊕
Carryb[i−y−x]⊕Carryc[i−y]⊕xr−1

d [i]⊕xr−1
b [i−z]⊕xr−1

a [i−z−x]⊕xr−1
d [i−z−

x]⊕Carryb[i−z−x]⊕xr−1
c [i−z]⊕xr−1

a [i−z−y]⊕xr−1
b [i−z−y]⊕xr−1

a [i−z−y−x]⊕
xr−1

d [i−z−y−x]⊕Carryb[i−z−y−x]⊕Carryc[i−z−y]⊕Carryd[i−z]⊕Carrya[i]

Above equation indicates that xr
a[i + w] depends on xr−1

c [i] and xr−1
c [i − z]

and hence, xr
a[i] will depend on xr−1

c [i − w] and xr−1
c [i − z − w]. This relation

gives the indication that the location of the pattern depends on two rotation
constants, z and w.

Observation 11. It has been observed that the location of the pattern depends
on two rotation constants z and w i.e. third and fourth rotation constant. As
shown in Table 3, (z +w) mod 32 (last column) indicates the second bit of nibble
with specific patterns. For rotation constants 7,9,21 and 25, the value of z and
w is 21 and 25 respectively. So (21+25) mod 32 = 14 which is second bit of the
nibble (bit 13 to bit 16), with a specific pattern.

4.1 Experiments and Observations for ChaCha

We carried out all above experiments for ChaCha also. We did not observe any
patterns which can divide them into the set of good or bad constants. Surpris-
ingly, patterns that we observed in Salsa does not show any significant results in
ChaCha.

5 Conclusion

We have done the systematic statistical analysis based on Measure of Unifor-
mity in bias for diagonal constants used by Salsa20 and ChaCha. Some significant
results are observed for Salsa after 4 rounds but those results are not applicable
to ChaCha. We have shown that there are some set of constants which are good
and bad than designer constants. Constants c3 or c0 having 0x2, 0xd, 0x5, 0xa,
0x1, 0x6, 0x9, 0xe in the last nibble are good set of constants. Constants c3 or



Analysis of Diagonal Constants in Salsa 109

c0 having 0x7, 0x8, 0x0, 0xf in the last nibble are bad set of constants. We have
also shown that for bad constants, the bias is more and for good constants, the
bias is less. We have observed that the location of the pattern in a particular
constant also depends on third and fourth rotation constant. The designer con-
stants are near to a good set of constants however it can be even better with
a slight change in constant c0 or c3. We do not claim that there is a weakness
in original algorithm if we use the designer constants but we believe that using
good constants can improve the security margin. We can use Measure of Unifor-
mity in bias as a parameter while choosing random constants for tweaked design
based on Salsa20.

Acknowledgments. The authors would like to thank anonymous reviewers for
detailed comments. The authors are also thankful to Computer Division of Bhabha
Atomic Research Centre for use of super computing facility.

References

1. Ashur, T., Liu, Y.: Rotational cryptanalysis in the presence of constants. IACR
Cryptology ePrint Archive 2016, 826 (2016). http://eprint.iacr.org/2016/826

2. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features
of Latin dances: analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-71039-4 30

3. Bernstein, D.: Salsa20 security (2005). http://cr.yp.to/snuffle/security.pdf
4. Bernstein, D.J.: Salsa20 specification. eSTREAM Project algorithm description

(2005). http://www.ecrypt.eu.org/stream/salsa20pf.html
5. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC, vol.

8 (2008)
6. Hernandez-Castro, J.C., Tapiador, J.M.E., Quisquater, J.-J.: On the Salsa20 core

function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 462–469. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4 29

7. Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials for
reduced round salsa and chacha. IACR Cryptology ePrint Archive 2016, 1034
(2016). http://eprint.iacr.org/2016/1034

8. Crowley, P.: Truncated differential cryptanalysis of five rounds of Salsa20. IACR
Cryptology ePrint Archive 2005, 375 (2005). http://eprint.iacr.org/2005/375

9. The ECRYPT stream cipher project. eSTREAM portfolio of stream ciphers.
http://www.ecrypt.eu.org/stream/

10. Fischer, S., Meier, W., Berbain, C., Biasse, J.-F., Robshaw, M.J.B.: Non-
randomness in eSTREAM candidates Salsa20 and TSC-4. In: Barua, R., Lange, T.
(eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 2–16. Springer, Heidelberg (2006).
https://doi.org/10.1007/11941378 2

11. Ishiguro, T., Kiyomoto, S., Miyake, Y.: Latin dances revisited: new analytic results
of Salsa20 and ChaCha. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS
2011. LNCS, vol. 7043, pp. 255–266. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25243-3 21

12. Maitra, S.: Chosen IV cryptanalysis on reduced round ChaCha and Salsa. Discret.
Appl. Math. 208, 88–97 (2016). http://www.sciencedirect.com/science/article/
pii/S0166218X16300841

http://eprint.iacr.org/2016/826
https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/978-3-540-71039-4_30
http://cr.yp.to/snuffle/security.pdf
http://www.ecrypt.eu.org/stream/salsa20pf.html
https://doi.org/10.1007/978-3-540-71039-4_29
http://eprint.iacr.org/2016/1034
http://eprint.iacr.org/2005/375
http://www.ecrypt.eu.org/stream/
https://doi.org/10.1007/11941378_2
https://doi.org/10.1007/978-3-642-25243-3_21
https://doi.org/10.1007/978-3-642-25243-3_21
http://www.sciencedirect.com/science/article/pii/S0166218X16300841
http://www.sciencedirect.com/science/article/pii/S0166218X16300841


110 B.N. Bathe et al.

13. Maitra, S., Paul, G., Meier, W.: Salsa20 cryptanalysis: new moves and revisiting
old styles. In: WCC 2015, the Ninth International Workshop on Coding and Cryp-
tography, Paris, France, 13–17 April 2015 (2015). http://eprint.iacr.org/2015/217,
http://eprint.iacr.org/2015/217

14. Mouha, N., Preneel, B.: A proof that the ARX Cipher Salsa20 is secure against dif-
ferential cryptanalysis. IACR Cryptology ePrint Archive 2013, 328 (2013). http://
eprint.iacr.org/2013/328

15. Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved key recovery attacks on reduced-
round Salsa20 and ChaCha. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC
2012. LNCS, vol. 7839, pp. 337–351. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37682-5 24

16. https://tools.ietf.org/html/draft-ietf-tls-tls13-12
17. Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T., Nakashima, H.: Differential Crypt-

analysis of Salsa20/8 (2007). http://ecrypt.eu.org/stream/papersdir/2007/010.pdf
18. Velichkov, V., Mouha, N., De Cannière, C., Preneel, B.: UNAF: a special set

of additive differences with application to the differential analysis of ARX. In:
Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 287–305. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34047-5 17

http://eprint.iacr.org/2015/217
http://eprint.iacr.org/2015/217
http://eprint.iacr.org/2013/328
http://eprint.iacr.org/2013/328
https://doi.org/10.1007/978-3-642-37682-5_24
https://doi.org/10.1007/978-3-642-37682-5_24
https://tools.ietf.org/html/draft-ietf-tls-tls13-12
http://ecrypt.eu.org/stream/papersdir/2007/010.pdf
https://doi.org/10.1007/978-3-642-34047-5_17


Practical Fault Attacks on Minalpher: How
to Recover Key with Minimum Faults?

Avik Chakraborti1, Nilanjan Datta2(B), and Mridul Nandi1

1 Indian Statistical Institute, Kolkata, 203, B.T. Road, Kolkata 700108, India
avikchkrbrti@gmail.com, mridul.nandi@gmail.com

2 Indian Institute of Technology, Kharagpur, Kharagpur 721302, West Bengal, India
nilanjan isi jrf@yahoo.com

Abstract. This work presents two differential fault attacks (or DFA)
on Minalpher, a second round CAESAR candidate under practical fault
model with as few faults as possible. Minalpher uses a new primitive
called tweakable Even-Mansour, based on a permutation-based block-
cipher proposed by Even and Mansour and to the best of our knowledge,
no practical DFA has yet been reported on it. In the first DFA, only two
random faults have been injected on two consecutive 4-bit nibbles (i.e.
within total 8 bits) of a specific internal state. We show that (i) if both the
faults are injected at the same nibble the key-space for the intermediate
key can be reduced significantly from 2256 to 232 and (ii) if the faults are
injected at different positions, the key-space for the intermediate key can
be reduced further to only 216. In the second DFA, we first consider two
faults into a single nibble, which reduces the keyspace from 2256 to 248.
Moreover, we show that one additional fault (i.e. total three faults) helps
to reduce the key-space significantly to 28. We can compute the correct
intermediate key by observing a few more plain-text, cipher-text pairs,
which helps in computing valid cipher-text, tag pairs for any message
and associated data under a fixed nonce.

Keywords: Minalpher · Fault · DFA · Tweakable Even Mansour ·
Nibble

1 Introduction

Fault attacks pose a serious threat in modern cryptographic implementations.
In this type of attacks, the analyzed device is forced to operate under some
unusual operating conditions (injecting faults through modifications of the power
supply, clock source by injecting glitches) to produce erroneous outputs, by
virtue of which secret informations (from internal states of a cipher to the entire
secret key) can be revealed. Introduction of several hardwares like smart cards,
mobile devices and many other devices associated with cryptographic applica-
tions requires fault resistance.

One of the most popular fault based attack, named as differential fault analy-
sis (DFA) has been applied on DES by Biham and Shamir in [8]. Later DFA
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 111–132, 2017.
https://doi.org/10.1007/978-3-319-71501-8_7



112 A. Chakraborti et al.

on both block-ciphers and stream-ciphers like AES [11,22,23,25], LED [20,21],
Trivium [16,17], RC4 [9], Grain [3,5], Mickey 2.0 [2] have been proposed. AES
proposed by Daemen and Rijnmen [10] is one of the most analyzed block-cipher.
Lot of differential fault analysis have been done on AES. The first such attack
has been proposed by [22]. To the best of our knowledge, the best fault analysis
on AES has been Proposed by Tunshell et al. [25].

1.1 Fault Attacks on AE Schemes

Fault attacks are trivial to mount on block-cipher based AE scheme where the
cipher-text blocks are affine functions of the plain-text and some intermediate
block-cipher outputs. The standard technique for such an attack is, first mount a
fault attack on the underlying block-cipher, and then trivially extend that attack
due to the aforementioned property. In [23] Saha et al. have proposed a DFA on
a CAESAR candidate APE. The attack reduces the key search space for APE-80
by injecting two 5-bit diagonal faults. Recently Dobraunig et al. [15] have devel-
oped a statistical fault attacks on several nonce-based authenticated encryption
modes for AES. Their attack is applicable to the ISO/IEC standards GCM [13],
CCM [26], EAX [7], and OCB [14], as well as several second-round candidates
of the ongoing CAESAR competition like ELmD [12], CLOC [19], SILC [18]. All
these attacks are based on the Statistical Fault Attacks by Fuhr et al., which
use a biased fault model and operate on collections of faulty ciphertexts.

1.2 Motivation of the Work

Central to our work is the second round CAESAR [1] candidate Minalpher, that
uses a new primitive called tweakable Even-Mansour, based on a permutation-
based block-cipher proposed by Even and Mansour. Minalpher has been well-
evaluated and the designers has provided an extensive cryptanalysis report on
it, however the analysis does not provide much information on the security of
Minalpher against fault attacks. In [6], Yoshikawa and Nozaki presented a statis-
tical fault analysis on Minalpher, capturing multiple correct and faulty cipher-
texts to recover the correct secret key, using clock glitch. It is interesting to
see that, there is no proper theoretical fault attacks on Minalpher has been
yet reported and one can easily see that, the previous mentioned fault attack
approaches no longer works for it. So, analyzing the fault resistance of Minalpher,
is an interesting and non-trivial research problem.

1.3 Our Contribution

In this work, we investigate the resistance of Minalpher against fault attacks
and demonstrate the vulnerability of the cipher against differential fault attack
(DFA) under relaxed and practical fault model. Our results are two fold:
� DFA with 2 single-nibble fault injected queries. This analysis consid-
ers injection of two random faults both at two consecutive nibbles at a specific



Practical Fault Attacks on Minalpher 113

internal state of the cipher. We make one general encryption query and two fault
injected encryption queries. Our analysis shows that,

• If both the faults are injected at the same location, the key space for the
intermediate key can be reduced from 2256 to only 232 with a practical time
complexity of O(232).

• Further, if both the faults are injected at different locations (i.e., two different
consecutive nibble positions), the key space for the intermediate key can be
reduced further from 2256 to only 216 with a reduced time complexity of
O(216).

This key can be used further to forge a cipher-text for any message and associated
data with the same nonce.
�� DFA with 3 single-nibble fault injected queries. Here we consider
the fault model with three random faults all injected at a single nibble of the
cipher’s internal state. We make one general encryption query and three fault
injected encryption queries. In this case, we first observed that, two random
faults (instead of three) injection at different nibble locations reduces the key
space from 2256 to 248 with a time complexity of O(248). More importantly, if we
inject one more additional fault (total three faults) at a different location, the
key space for the intermediate key can be reduced significantly from 2256 to 28.
This analysis follows exactly the same procedure as the previous fault analysis
mentioned for the first case. Note that, an earlier version of this result has been
presented in DIAC [4].

1.4 Significance of the Work

This work presents the first DFA against Minalpher using only 2 and 3 faults,
with an in-depth theoretical analysis. However, this result does not refute any
standard security claims made by the designers but presents the behavior of
Minalpher against differential fault attack. Minalpher uses a newly designed
permutation in its structure, and this attack exploits the design of this per-
mutation. This work not only mentions the fault attack against Minalpher, it
also opens an avenue to update the underlying permutation that can resist on
increase the complexity of differential fault attacks.

2 Preliminaries

2.1 Minalpher Authenticated Encryption Mode

Here we provide a complete technical description of Minalpher AEAD mode,
with most of the notations and variable names borrowed from the original
proposal [24]. Minalpher is based on a new primitive called Tweakable Even-
Mansour mode (TEM), which essentially is a tweakable block cipher based on a
256-bit permutation P . It is described by an algorithm called TEM Enc.



114 A. Chakraborti et al.

TEM Enc takes as input a 128-bit secret key MK, a flag flag, a nonce N , two
index i, j and a message M , with |flag‖N | = 128. The algorithm first computes
L = (MK‖flag‖N) ⊕ P (MK‖flag‖N), and returns a ciphertext C = αi(α +
1)jL ⊕ P (M ⊕ αi(α + 1)jL). Here α is a primitive element of F2256 with some
pre-defined primitive polynomial say g(α).

Process AD

M1

⊕ϕ1

P

⊕

C1

⊕ψ1

P

⊕
⊕

Mm−1

⊕ϕm−1

P

⊕

Cm−1

⊕ψm−1

P

⊕
⊕

Mm

⊕ϕm

P

⊕

Cm

⊕
⊕ψ

′
m

P

⊕

t

t

A1 Aa
.....

MK

N

ϕi = α2i−1L, ψi = α2iL

ψ
′
m = α2m−1(α + 1)L

L = (MK||flagM ||N) ⊕ P (MK||flagM ||N)

Fig. 1. Minalpher message processing and tag generation phase.

Now, we describe minalpher AEAD algorithm, defined through TEM Enc:
The minalpher AEAD algorithm takes as input MK,N and M = (M1, . . . ,Mm)
∈ ({0, 1}n)m and returns the

• ciphertext C = (C1, . . . , Cm) where

Ci = TEM Enc(MK, flagM , N, 2i − 1, 0,Mi)

• tag t = TEM Enc(MK, flagM , N, 2m − 1, 1, Cm ⊕ tm−1) where

ti = ti−1 ⊕ TEM Enc(MK, flagM , N, 2i, 0, Ci), i = 1, . . . ,m − 1

The above algorithm is pictorially depicted in Fig. 1.

2.2 Description of P

P is a 256-bit substitution permutation based permutation, which runs for 17.5
rounds. The 256-bit state can be viewed as two 2-D matrix A and B, where each
of them are 4×8, 4-bit nibbles. The permutation state Xi at round i computed by

Xi = R(Xi−1) = M(T (S(Xi))) ⊕ RCi−1



Practical Fault Attacks on Minalpher 115

for 1 ≤ i ≤ 17, where RCi−1 is a constant depending upon the round i. The round
function R is also shown in Fig. 2. It actually works on Ai and Bi, which are state
representation of Xi. The final state X18 is computed by X18 = T (S(X17)). Here
the use of RCi−1 is omitted as it is not relevant for our attack. The sub-functions
S, T and M are described below.

Xi−1 SS T

256

M
⊕

RCi−1

Xi

256

Fig. 2. R function

• S Function. This function is realized by a 4-bit Sbox s which replaces a
nibble x by s(x). S receives two 4 × 8 matrices Ain, Bin and applies s to all
of the nibbles of both Ain and Bin, to produce the output Aout and Bout.
The description of s is given by the Table 1 in the appendix.

• T Function. T receives two 4 × 8 nibble matrices Ain and Bin and outputs
Aout = SR2(Bin) and Bout = SR1(Ain) ⊕ SR2(Bin) respectively. Here SR1

and SR2 are two positional matrices depicted in Fig. 3. By choice, SR1 and
SR2 are inverse of each other.

Table 1. s Function

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

s(x) B 3 4 1 2 8 C F 5 D E 0 6 9 A 7

Fig. 3. SR1 and SR2



116 A. Chakraborti et al.

• M Function. M takes as input Ain and Bin and multiplies each of the
columns of Ain and Bin by the matrix described below to produce the output
Aout and Bout. The matrix is as follows:

⎛
⎜⎜⎝

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

⎞
⎟⎟⎠

2.3 Integrity Security Models

Let AE = (K, E ,D,V) be an authenticated encryption scheme, where K is the key
generation algorithm, E is the encryption algorithm, D is decryption algorithm
and V is the verification algorithm. We use a special symbol ⊥ (abort) when the
output of the verification algorithm is false. Denote uniform random sampling
of x from a finite set X by x

$←− X. The integrity security notion with both
encryption and verification oracle access is defined as below.

Definition 1. The INT-CTXT advantage of a distinguisher D with respect to
AE, is defined as

AdvINT-CTXTAE (D) = |Pr[K $←− K : DEK ,VK 
= ⊥]|

We assume that D does not make a verification query (N,AD,C, T ) if it
ever obtained (C, T ) ← EK(N,AD,M) for some M . We use the notation
AdvINT-CTXT

AE (q, l) to denote the supremum taken over all distinguishers making
q queries with maximum message length as l bits.

By AdvINT-CTXT
AE (q, l) ≤ 2−s, we mean AE has s bit INT-CTXT security

against all adversaries making q queries with maximum query length l bits. In
nonce respect settings D can not repeat N for distinct queries to EK . In nonce
misuse settings D can repeat N for distinct queries to EK .

2.4 Security Claims for Minalpher

The designers of Minalpher proposed (Sects. 2.2 and 2.3 in [24]) the following
claim.

Claim. Minalpher has 128-bit security for both privacy and integrity in the nonce
respect settings as well as in nonce misuse settings.

2.5 Symbols and Notations

For any two X,Y ∈ {0, 1}128, the xor operation is denoted by X ⊕ Y . Let
M1 be a single block message. We denote ϕ1, the key for computing C1 =
TEM Enc(MK, flagM , N, 1, 0,M1) by ϕ1 = I||K, with |I| = |K|. Note that,



Practical Fault Attacks on Minalpher 117

ϕi = α2i−1L, such that L = α−1ϕ1. Both I,K are described by 4×8 nibble matri-
ces. For any three a, b, c ∈ {0, 1}128, we represent a, b and c by 4×8 nibble matri-
ces. We use the notation SNa,b,c

ij to denote SN−1(ai,j⊕bi,j⊕ci,j). Let, the initial
state of P is State = LS‖RS, with |LS| = |RS|. The state after S, T and M func-
tions at round i is denoted by Statei,S = LSi,S‖RSi,S , Statei,T = LSi,T ‖RSi,T

and Statei,M = LSi,M ||RSi,M respectively. For the ease of understanding, we
use SN,SR and MC instead of S, T and M respectively in the figures and the
equation sets.

3 A Practical DFA with a Two Random Faults

This section briefly describes the attack techniques. In this work, we attempted
to make the fault injection practical. We also aimed to decrease the number
of faults and the attack complexity as low as possible. Thus, we simulated the
fault propagation by programming for all the consecutive nibble positions (as
injecting random faults into two consecutive 4-bit nibbles i.e., into a byte may be
practical). Also note that, injecting random faults into two consecutive nibbles
is almost the same as injecting random fault into a byte. The only difference is
the need of nonzero fault injection into both the halves (first 4-bits and second 4-
bits) of the byte. Thus, if the fault is random then with high probability, nonzero
faults are injected into both the halves. We found 9 pairs of ((i, j), (i, j + 1))
coordinates in the cipher’s state such that, if we inject two faults (for two different
encryption queries) into two of these 9 locations, the keyspace reduction and
the time complexity of the attack are optimized. These 9 pairs of locations are
described by the set

F = {((0, 0), (0, 1)), ((0, 4), (0, 5)), ((1, 0), (1, 1)), ((1, 6), (1, 7)), ((2, 2), (2, 3)),
((2, 3), (2, 4)), ((2, 6), (2, 7)), ((3, 2), (3, 3)), ((3, 4), (3, 5))}

We have computed the differential propagation for each of these locations in F
and constructed the cipher-text differences. We can choose any two locations
from F and the attack complexity are very much practical. We have for some
pair of locations in F × F , there are 4 nonoverlapping inactive nibbles for the
cipher-text difference at LS18,T . By nonovelapping nibble, we mean that this
nibble is inactive for both the differential propagations. Otherwise there is an
overlap. For example, if we inject both the faults at the same location say at
LS15,T

3,4 and LS15,T
3,5 , the overlaps will be minimum (4 nonoverlapped nibbles).

In that case the intermediate keyspace is reduced from 2256 to 232 with a time
complexity of O(232). White cells in both Figs. 4a and b are inactive and at the
same position and hence are nonoverlapping with each other.

However, if we inject faults at two different locations say (LS15,T
3,4 , LS15,T

3,5 )
and (LS15,T

3,2 , LS15,T
3,3 ), the overlaps will be maximum (no nonoverlapped nibbles).



118 A. Chakraborti et al.

(a) The Two Inactive
Nibbles at LS18,T for the
First Fault

(b) The Two Inactive
Nibbles at LS18,T for the
Second Fault

Fig. 4. Nonoverlapping inactives nibbles

(a) The Two Inactive
Nibbles at LS18,T for the
First Fault

(b) The Two Inactive
Nibbles at LS18,T for the
Second Fault

Fig. 5. Overlapping inactives nibbles. The dashed circle denotes one overlap

In that case the intermediate keyspace is reduced significantly from 2256 to 216

with a much reduced time complexity of O(216). White cells in both Figs. 5a and
b are inactive and at different positions and hence all the nibbles in the state
are overlapped by the same in the other state. We have observed that, for all
((i, j), (i, j + 1)) ∈ F × F , either all 4 inactive nibbles are overlapping or none
of them are overlapping. Now we describe the attack in following steps:

3.1 Make an Encryption Query and Two Fault Injected Encryption
Queries

The attack first make an encryption query (N,AD,M1) and receive (C1, T1),
where M1 is a single block message. The attack next make another encryption
query (N,AD,M1) and inject random faults f1, f2 at two consecutive nibbles
LS15,T

3,4 and LS15,T
3,5 respectively to obtain the faulty cipher-text (C ′

1, T
′
1). Let,

C1 ⊕C ′
1 = A||B, with |A| = |B| = 128. The difference relations for this fault are

given in Fig. 6. Next, we make another encryption query (N,AD,M1) and inject
random faults f ′

1, f
′
2 at two consecutive nibbles LS15,T

3,2 and LS15,T
3,3 respectively

to obtain the faulty cipher-text (C ′′
1 , T ′

1). Let, C1 ⊕ C ′′
1 = A′||B′, with |A′| =

|B′| = 128. The difference relations for this fault are given in Fig. 7.



Practical Fault Attacks on Minalpher 119

Fig. 6. Difference relations for the first fault. Here H1 = F1 ⊕ G3, I1 = G1 ⊕ F3, T
j
i =

Ri ⊕Pj , U
j
i = Si ⊕Qj , V

j
i = Pi ⊕Qj ,W

4
2 = R2 ⊕Q4, X

4
2 = S2 ⊕P4, Y = P1 ⊕R2 ⊕Q4

and Z = Q1 ⊕ S2 ⊕ P4.

3.2 Construct the Difference Propagation and the Difference
Relations

Observe the Differential Trail. The difference propagations and difference
relations for the first fault at LS15,T

3,4 and LS15,T
3,5 are described by Figs. 8a and 6

respectively. The difference propagations and difference relations for the second



120 A. Chakraborti et al.

Fig. 7. Difference relations for the second fault. Here H ′
1 = F ′

3⊕G′
2, I

′
1 = F ′

2⊕G′
3, T

′j
i =

R′
i ⊕ P ′

j , U
′j
i = S′

i ⊕ Q′
j , V

′j
i = P ′

i ⊕ Q′
j ,W

′3
3 = R′

3 ⊕ Q′
3, X

′3
3 = S′

3 ⊕ P ′
3, D

′3
1 = R′

1 ⊕
S′
3, D

′1
3 = R′

3 ⊕ S′
1 Y ′ = P ′

3 ⊕ R′
1 ⊕ S′

3 and Z′ = Q′
3 ⊕ S′

1 ⊕ R′
3.

fault at LS15,T
3,2 and LS15,T

3,3 are described by Figs. 8b and 7 respectively. Note
that all the values in Fig. 6 are random as we inject random faults in three nibble
positions. Figure 13 in the appendix describes the backward propagation of the
cipher-text differences along with the key mixing from State18,T to State17,M .
We form three sets of equations parallely for both faults from the difference
relations to reduce the keyspace for I and K.



Practical Fault Attacks on Minalpher 121

Fig. 8. Difference propagation and backward propagation of I and K for the faults at
(LS15,T

3,4 , LS15,T
3,5 ) and (LS15,T

3,2 , LS15,T
3,3 ).

Fig. 9. Backward propagation of I and K.



122 A. Chakraborti et al.

Backward Propagation of I and K . Figure 9 describes how the effect of I
and K are propagated in the backward direction from State18,T to State16,M .
Note that, influence of I over a State means that Ii,j is XOR-ed with Statei,j ,
for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 8.

3.3 Form Three Sets of Equations to Filter Out Invalid I and K
Candidates

The attack forms 3 sets of equations to filter out invalid I and K candidates and
construct the unique I||K. The sets of equations are mentioned in the Appendix.

Fig. 10. Active nibbles for the first and the second set of equations

Form the First Set of Equations. We denote C1 as C1 = X||Y , with |X| =
|Y | = 128 and the 256 intermediate key ϕ1 as ϕ = I||K. By observing Fig. 10a
we can form a set of 28 equations with each equation corresponding to an active
nibble in RS17,M . Below, we present few such equations to describe the attack
procedure. The set of all of the equations are provided in appendix.

Filter Out the Invalid I Nibbles. For the first fault, consider the four nibbles
corresponding to R1 and P3. Here, we can enumerate all 28 possible values of
R1 and P3 and retrieve a value of I03, I12, I26 and I34 for each of the values of
R1 and P3. Assuming that there is one solution x in an average of the equation
SN−1(x) ⊕ SN−1(x ⊕ a) = b, we can reduce the key space for 4 nibbles of I to
28. The equations are given below:

R1 = SN I,X,0
03 ⊕ SN I,X,A

03 , T 3
1 = SN I,X,0

12 ⊕ SN I,X,A
12

T 3
1 = SN I,X,0

26 ⊕ SN I,X,A
26 , P3 = SN I,X,0

34 ⊕ SN I,X,A
34

Again consider the three active nibbles with P2. We can enumerate P2 to
rescue the keyspace of I04, I16 and I21 from 212 to 24. Thus, the keyspace for the
three I nibbles are reduced to 24 and we have to enumerate all the 24 values of
I30 to reduce the keyspace for I04, I16 I21 and I30 from 216 to 28. The equations
are given below:

P2 = SN I,X,0
04 ⊕ SN I,X,A

04 , P2 = SN I,X,0
16 ⊕ SN I,X,A

16

P2 = SN I,X,0
21 ⊕ SN I,X,A

21



Practical Fault Attacks on Minalpher 123

We can enumerate all of the 212 possible values of P1, R2 and Q4 and retrieve a
value of I06, I10, I22 and I37 for each P1, R2 and Q4. valuesof these 4 nibbles of
I to 212. The equations are given below:

V 4
1 = SN I,X,0

06 ⊕ SN I,X,A
06 , T 1

2 = SN I,X,0
10 ⊕ SN I,X,A

10

W 4
2 = SN I,X,0

22 ⊕ SN I,X,A
22 , Y = SN I,X,0

37 ⊕ SN I,X,A
37

Following the same procedure for all the equation we can reduce the keyspace
from 2112 to 28+8+8+8+4+4+8+8 i.e., 256 using the 28 active I nibbles corre-
sponding to the 28 equations. We can guess the remaining 4 nibbles and the
total keyspace of I can be reduced from 2128 to 256+16 = 272. We denote this
reduced keyspace by IS . The time complexity of this step is O(212).

For the second fault, we can similarly observe the differential relation
described in Fig. 7 and use the already reduced keyspace for I to reduce it fur-
ther. In this case also, the key propagates in the backward direction in the same
way as described in Fig. 9. Thus, same nibble appears in the same column for
both the faults. As we, have reduced the keyspace for 6 of the columns of I
from 216 to 28 and two of the columns from 216 to 212, we can further reduce
the keyspace of I columns (i.e., 4 nibbles) from 28 to 1 for the 6 corresponding
columns and 212 to 28 for the 2 corresponding columns. This actually happens,
as the active nibbles in RS17,M for the first fault overlaps with the same for the
second fault. If this is not the case, for example, if both the faults are injected
at LS15,T

3,4 and LS15,T
3,5 , then for both the cases we have to enumerate all the

24 vaues of I30 in the reduced keyspace of I04, I16 I21 and I30. Thus, we can
not reduce the keyspace for I04, I16 I21 and I30 to 1 in this case. Hence, more
overlaps will reduce the keyspace further.

Thus, in our case with faults injected at different positions, we can reduce
the keyspace for I from 2128 to 216. More formally, we can deduce the reduction
of the keyspace as 272.272

2#overlapped bits = 2144

2128 = 216.
Note that, if we inject both the faults at LS15,T

3,4 and LS15,T
3,5 . Then the

keyspace for I can be reduced from 2128 to 2144

2128−16 = 232 as there are 4 non-
overlapped nibbles.

Form the Second Set of Equations. The second set of equations are formed
using Fig. 10b. In this state we form 28 equations with different IK nibbles cor-
responding to the active nibbles in LS17,M . We provide a few of these equations
below. The set of all of the equations are given in the appendix.

Filter Out the Invalid IK Nibbles. We follow exactly the same procedure
described for filtering out invalid I nibbles. For example, we can enumerate all
28 possible values of R1 and P3 and retrieve a value of IK06, IK14, IK23 and
IK32 for each of the values of R1 and P3. We can reduce the key space for 4
nibbles of IK to 28. The equations are given below.

R1 = SN IK,XY,0
06 ⊕ SN IK,XY,AB

06 , T 3
1 = SN IK,XY,0

14 ⊕ SN IK,XY,AB
14

T 3
1 = SN IK,XY,0

23 ⊕ SN IK,XY,AB
23 , P3 = SN IK,XY,0

32 ⊕ SN IK,XY,AB
32



124 A. Chakraborti et al.

We can enumerate P2 to rescue the keyspace of IK01, IK10 and IK24 from
212 to 24. Thus, the keyspace for the three IK nibbles are reduced to 24 and we
have to enumerate all the 24 values of IK36 to reduce the keyspace for IK01, IK10

IK24 and IK36 from 216 to 28. The equations are given below.

P2 = SN IK,XY,0
01 ⊕ SN IK,XY,AB

01 , P2 = SN IK,XY,0
10 ⊕ SN IK,XY,AB

10

P2 = SN IK,XY,0
24 ⊕ SN IK,XY,AB

24

We can enumerate all of the 212 possible values of P1, R2 and Q4 and retrieve
a value of IK02, IK17, IK26 and IK30 for each P1, R2 nd Q4. Thus, we can reduce
the key space of these 4 nibbles of I to 212. The equations are given below.

V 4
1 = SN IK,XY,0

02 ⊕ SN IK,XY,AB
02 , T 1

2 = SN IK,XY,0
17 ⊕ SN IK,XY,AB

17

W 4
2 = SN IK,XY,0

26 ⊕ SN IK,XY,AB
26 , Y = SN IK,XY,0

30 ⊕ SN IK,XY,AB
30

We can reduce the keyspace of IK from 2128 to 216 by following the same
reduction technique. We name this valid reduced keyspace for IK by IKS . The
time complexity of this step is O(212).

Note that, in this case also, injection of faults at the same position reduces
the keyspace for IK can be reduced from 2128 to 2144

2128−16 = 232 as there are 16
non-overlapped nibbles. Also note that, invalid I and IK nibbles filtering can
be computed parallely and total time complexity for these two steps are O(212).

Form the Third Set of Equations. The third set of equations are formed
using Fig. 11. This set consists of 14 equations with each equation corresponding
to each active nibble in RS16,M . One such equation corresponding to the F2

in RS16,M
1,2 is given below. The remaining equations are formed by exactly the

similar way given in the appendix.

F2 = SN−1(SN IK,XY,0
06 ⊕ SN IK,XY,0

14 ⊕ SN IK,XY,0
23 )

⊕SN−1(SN IK,XY,AB
06 ⊕ SN IK,XY,AB

14 ⊕ SN IK,XY,AB
23 )

Fig. 11. Active nibbles for the third set of equations



Practical Fault Attacks on Minalpher 125

Further Filtration of Invalid IK Nibbles. We first enumerate all the 216

filtered IK nibbles and check them against each of the 14 equations. Both the
RHS and LHS of the equations are assumed to be uniform and random. Thus,
the probability that a ik ∈ IKS satisfies all the equations above is 2−32, as for
each of the fixed F1, F2, F3, G1, G2 and G3 assignment the probability that ik
satisfies all the above equations is 2−56 and for each and their are 224 possible
values of F1, F2, F3, G1, G2 and G3. Thus we can uniquely compute the valid IK.
Hence, the key space for IK reduces from 216 to 1. The time complexity of this
step is O(216).

In the case of fault injection at the same position, the keyspace of IK is
reduced from 232 to 1 using the same probability calculation. Thus the time
complexity in this case will be O(232).

Find the Unique I ||K . Thus, we can form the set of 216 I||K values and one
of them is valid. We can find the valid key by making one more encryption query
with the same N and A. The time complexity of this phase is O(216).

In the case of fault injection at the same position, the time complexity will
be O(232) as there are 232 possible I values.

Total Time Complexities of This Attack. The total time complexity
required to uniquely compute IK is O(216) for fault injections at two differ-
ent positions and O(232) for fault injections at the same position. This time is
required to reduce the keyspace for IK by observing the third set of equations.
The rest of the phases requires less time complexity than this phase. Note that,
For all the time complexity analysis, we have used the O notation, as there
are nominal overheads for some constant number of computations is addition to
these computations.

3.4 Forge a Valid Ciphertext-Tag Pair for Any Message
and Associated Data Under the Same Nonce

The attacker can forge a valid cipher-text-tag pair for any message M∗ and
associated data A∗ under the same N . Now for the valid key L = α−1ϕ1 (ϕ1 =
I||K), the attacker can simulate the message processing phase, but to forge
valid cipher-text-tag the attacker must compute the intermediate value t∗ for A∗

(described by the variable t in Fig. 1). This can be done by making an additional
encryption query with N,A∗ and empty message $ to receive (C, T ). Note that,
t∗ can be computed using the candidates in LS . The message processing phase
can now be simulated for any message M∗ starting with t∗ and to produce valid
(C∗, T ∗). Thus, one forging attempt can forge a valid cipher-text-tag pair.

4 A Practical DFA with a Three Random Faults
at a Single Nibble Position

We have also considered another practical fault model with random faults
injected at a single nibble. We have observed that, if the faults are injected



126 A. Chakraborti et al.

at different positions, then with three random faults we can recover the interme-
diate key with a very low time complexity of O(28). Here, we follow exactly the
same procedure as describe in the previous section. More formally, this attack
forms three sets of equations in a similar way to filter out invalid I and IK
values. Thus, we simply provide results with respect to the number of faults,
size of the reduced keyspace and the time complexity of the attack. We also
provide the difference relations for the propagations of the first fault in Fig. 12.
We simply omit the difference relations for the second and the third faults as
they can be observed in a similar way. We also omit the attack description, as
it is the same as that of the previous analysis except the active nibble positions
in the internal cipher states. We first provide the attack complexities when only

Fig. 12. Difference relation for the first fault. Here T j
i = Ri + Pj , V

j
i = Pi + Qj and

W j
i = Ri + Qj .



Practical Fault Attacks on Minalpher 127

two random faults at different locations are injected for two different encryption
queries. We next provide the attack complexities when three random faults at
different locations are injected for three different encryption queries.

Attack Complexities with Two Random Faults. In this case, we make one
general encryption query and two single nibble random fault injected encryption
queries all with the same nonce, associated data and message. We have observed
that, if the faults are injected at different locations, for example at LS15,T

3,4 and
LS15,T

3,3 , the keyspace of the intermediate key can be reduced from 2256 to 248

with a time complexity of O(248). Figure 12 describes the faults propagation with
fault injected at LS15,T

3,4 . This attack will work for faults at any two different
locations at LS15,T .

Attack Complexities with Three Random Faults. In this case, we make
one general encryption query and three single nibble random fault injected
encryption queries all with the same nonce, associated data and message. We
have observed that, if the faults are injected at three different locations, for
example at LS15,T

3,4 , LS15,T
3,3 and LS15,T

3,2 , the keyspace of the intermediate key
can be significantly reduced from 2256 to 28 with a time complexity of O(28).
This attack will work for faults at any three different locations at LS15,T .

5 Conclusion

In this paper, we propose two differential fault analysis on Minalpher. Both the
attacks we describe, recover the intermediate key. We have chosen two relaxed
fault models, such that in the first model, we inject random faults into two
consecutive nibbles (or 1 byte). We have analyzed several such fault locations and
found 9 of them correspond to optimal attack complexities. In the second model,
we analyzed all the single nibble positions and found that with three faults at
different locations significantly reduces the attack complexities. Finally, we show
that this intermediate key provides the attacker a significant power of forging
a valid ciphertext-tag pair for any message and associated data pair under a
fixed nonce. However, our attack does not refute the claim of the desginers of
Minalpher, rather it shows the vulnerability of Minalpher if faults are injected
under the two above fault models.

A Appendix

A.1 Backward Propagation of the Ciphertext Differences Along
with the Keys



128 A. Chakraborti et al.

Fig. 13. Backward propagation of the ciphertext differences along with I and K

A.2 Three Sets of Equations for the First Fault

First Set of Equations

R1 = SN I,X,0
03 ⊕ SN I,X,A

03 , T 3
1 = SN I,X,0

12 ⊕ SN I,X,A
12

T 3
1 = SN I,X,0

26 ⊕ SN I,X,A
26 , P3 = SN I,X,0

34 ⊕ SN I,X,A
34

S1 = SN I,X,0
02 ⊕ SN I,X,A

02 , U3
1 = SN I,X,0

13 ⊕ SN I,X,A
13

U3
1 = SN I,X,0

27 ⊕ SN I,X,A
27 , Q3 = SN I,X,0

35 ⊕ SN I,X,A
35

P2 = SN I,X,0
04 ⊕ SN I,X,A

04 , P2 = SN I,X,0
16 ⊕ SN I,X,A

16

P2 = SN I,X,0
21 ⊕ SN I,X,A

21

Q2 = SN I,X,0
05 ⊕ SN I,X,A

05 , Q2 = SN I,X,0
17 ⊕ SN I,X,A

17

Q2 = SN I,X,0
20 ⊕ SN I,X,A

20

V 4
1 = SN I,X,0

06 ⊕ SN I,X,A
06 , T 1

2 = SN I,X,0
10 ⊕ SN I,X,A

10



Practical Fault Attacks on Minalpher 129

W 4
2 = SN I,X,0

22 ⊕ SN I,X,A
22 , Y = SN I,X,0

37 ⊕ SN I,X,A
37

V 1
4 = SN I,X,0

07 ⊕ SN I,X,A
07 , U3

2 = SN I,X,0
11 ⊕ SN I,X,A

11

X4
2 = SN I,X,0

23 ⊕ SN I,X,A
23 , Z = SN I,X,0

36 ⊕ SN I,X,A
36

R3 = SN I,X,0
00 ⊕ SN I,X,A

00 , R3 = SN I,X,0
24 ⊕ SN I,X,A

24

R3 = SN I,X,0
32 ⊕ SN I,X,A

32

S3 = SN I,X,0
01 ⊕ SN I,X,A

01 , S3 = SN I,X,0
25 ⊕ SN I,X,A

25

S3 = SN I,X,0
33 ⊕ SN I,X,A

33

Second Set of Equations

R1 = SN IK,XY,0
06 ⊕ SN IK,XY,AB

06 , T 3
1 = SN IK,XY,0

14 ⊕ SN IK,XY,AB
14

T 3
1 = SN IK,XY,0

23 ⊕ SN IK,XY,AB
23 , P3 = SN IK,XY,0

32 ⊕ SN IK,XY,AB
32

S1 = SN IK,XY,0
07 ⊕ SN IK,XY,AB

07 , U3
1 = SN IK,XY,0

15 ⊕ SN IK,XY,AB
15

U3
1 = SN IK,XY,0

22 ⊕ SN IK,XY,AB
22 , Q3 = SN IK,XY,0

33 ⊕ SN IK,XY,AB
33

P2 = SN IK,XY,0
01 ⊕ SN IK,XY,AB

01 , P2 = SN IK,XY,0
10 ⊕ SN IK,XY,AB

10

P2 = SN IK,XY,0
24 ⊕ SN IK,XY,AB

24

Q2 = SN IK,XY,0
00 ⊕ SN IK,XY,AB

00 , Q2 = SN IK,XY,0
11 ⊕ SN IK,XY,AB

11

Q2 = SN IK,XY,0
25 ⊕ SN IK,XY,AB

25

V 4
1 = SN IK,XY,0

02 ⊕ SN IK,XY,AB
02 , T 1

2 = SN IK,XY,0
17 ⊕ SN IK,XY,AB

17

W 4
2 = SN IK,XY,0

26 ⊕ SN IK,XY,AB
26 , Y = SN IK,XY,0

30 ⊕ SN IK,XY,AB
30

V 1
4 = SN IK,XY,0

03 ⊕ SN IK,XY,AB
03 , U3

2 = SN IK,XY,0
16 ⊕ SN IK,XY,AB

16

X4
2 = SN IK,XY,0

27 ⊕ SN IK,XY,AB
27 , Z = SN IK,XY,0

31 ⊕ SN IK,XY,AB
31

R3 = SN IK,XY,0
04 ⊕ SN IK,XY,AB

04 , R3 = SN IK,XY,0
20 ⊕ SN IK,XY,AB

20

R3 = SN IK,XY,0
35 ⊕ SN IK,XY,AB

35

S3 = SN IK,XY,0
05 ⊕ SN IK,XY,AB

05 , S3 = SN IK,XY,0
21 ⊕ SN IK,XY,AB

21

S3 = SN IK,XY,0
34 ⊕ SN IK,XY,AB

34



130 A. Chakraborti et al.

Third Set of Equations

F2 = SN−1(SN IK,XY,0
06 ⊕ SN IK,XY,0

14 ⊕ SN IK,XY,0
23 )

⊕ SN−1(SN IK,XY,AB
06 ⊕ SN IK,XY,AB

14 ⊕ SN IK,XY,AB
23 )

F2 = SN−1(SN IK,XY,0
17 ⊕ SN IK,XY,0

26 ⊕ SN IK,XY,0
30 )

⊕ SN−1(SN IK,XY,AB
17 ⊕ SN IK,XY,AB

26 ⊕ SN IK,XY,AB
30 )

F2 = SN−1(SN IK,XY,0
04 ⊕ SN IK,XY,0

20 ⊕ SN IK,XY,0
35 )

⊕ SN−1(SN IK,XY,AB
04 ⊕ SN IK,XY,AB

20 ⊕ SN IK,XY,AB
35 )

G2 = SN−1(SN IK,XY,0
07 ⊕ SN IK,XY,0

15 ⊕ SN IK,XY,0
22 )

⊕ SN−1(SN IK,XY,AB
07 ⊕ SN IK,XY,AB

15 ⊕ SN IK,XY,AB
22 )

G2 = SN−1(SN IK,XY,0
16 ⊕ SN IK,XY,0

27 ⊕ SN IK,XY,0
31 )

⊕ SN−1(SN IK,XY,AB
16 ⊕ SN IK,XY,AB

27 ⊕ SN IK,XY,AB
31 )

G2 = SN−1(SN IK,XY,0
05 ⊕ SN IK,XY,0

21 ⊕ SN IK,XY,0
34 )

⊕ SN−1(SN IK,XY,AB
05 ⊕ SN IK,XY,AB

21 ⊕ SN IK,XY,AB
34 )

H1 = SN−1(SN IK,XY,0
02 ⊕ SN IK,XY,0

17 ⊕ SN IK,XY,0
30 )

⊕ SN−1(SN IK,XY,AB
02 ⊕ SN IK,XY,AB

17 ⊕ SN IK,XY,AB
30 )

F1 = SN−1(SN IK,XY,0
01 ⊕ SN IK,XY,0

10 ⊕ SN IK,XY,0
24 )

⊕ SN−1(SN IK,XY,AB
01 ⊕ SN IK,XY,AB

10 ⊕ SN IK,XY,AB
24 )

G1 = SN−1(SN IK,XY,0
14 ⊕ SN IK,XY,0

23 ⊕ SN IK,XY,0
32 )

⊕ SN−1(SN IK,XY,AB
14 ⊕ SN IK,XY,AB

23 ⊕ SN IK,XY,AB
32 )

H1 = SN−1(SN IK,XY,0
03 ⊕ SN IK,XY,0

27 ⊕ SN IK,XY,0
31 )

⊕ SN−1(SN IK,XY,AB
03 ⊕ SN IK,XY,AB

27 ⊕ SN IK,XY,AB
31 )

I1 = SN−1(SN IK,XY,0
03 ⊕ SN IK,XY,0

16 ⊕ SN IK,XY,0
31 )

⊕ SN−1(SN IK,XY,AB
03 ⊕ SN IK,XY,AB

16 ⊕ SN IK,XY,AB
31 )

G1 = SN−1(SN IK,XY,0
00 ⊕ SN IK,XY,0

11 ⊕ SN IK,XY,0
25 )

⊕ SN−1(SN IK,XY,AB
00 ⊕ SN IK,XY,AB

11 ⊕ SN IK,XY,AB
25 )

F3 = SN−1(SN IK,XY,0
15 ⊕ SN IK,XY,0

22 ⊕ SN IK,XY,0
33 )

⊕ SN−1(SN IK,XY,AB
15 ⊕ SN IK,XY,AB

22 ⊕ SN IK,XY,AB
33 )

I1 = SN−1(SN IK,XY,0
02 ⊕ SN IK,XY,0

26 ⊕ SN IK,XY,0
30 )

⊕ SN−1(SN IK,XY,AB
02 ⊕ SN IK,XY,AB

26 ⊕ SN IK,XY,AB
30 )



Practical Fault Attacks on Minalpher 131

References

1. (no editor): CAESAR Competition. http://competitions.cr.yp.to/caesar.html
2. Banik, S., Maitra, S.: A differential fault attack on MICKEY 2.0. In: Bertoni, G.,

Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 215–232. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40349-1 13

3. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain fam-
ily of stream ciphers. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 122–139. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33027-8 8

4. Chakraborti, A., Nandi, M.: Differential fault analysis on Minalpher. Presented at
DIAC (2015)

5. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family
under reasonable assumptions. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT
2012. LNCS, vol. 7668, pp. 191–208. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34931-7 12

6. Yoshikawa, M., Nozaki, Y.: Two stage fault analysis against a falsification detection
cipher Minalpher. In: IEEE International Conference on Smart Cloud (2016)

7. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-25937-4 25

8. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

9. Biham, E., Granboulan, L., Nguyên, P.Q.: Impossible fault analysis of RC4 and
differential fault analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005). https://doi.org/10.
1007/11502760 24

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

11. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4 23

12. Bossuet, L., Datta, N., Mancillas-López, C., Nandi, M.: ELmD: a pipelineable
authenticated encryption and its hardware implementation. IEEE Trans. Comput.
65, 3318–3331 (2016)

13. Viega, J., McGraw, D.: The use of Galois/Counter Mode (GCM) in IPsec Encap-
sulating Security Payload (ESP), RFC Editor, United States (2005)

14. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 18

15. Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault
attacks on nonce-based authenticated encryption schemes. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 369–395. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 14

16. Hojśık, M., Rudolf, B.: Floating fault analysis of Trivium. In: Chowdhury, D.R.,
Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 239–250.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5 19

http://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/978-3-642-40349-1_13
https://doi.org/10.1007/978-3-642-33027-8_8
https://doi.org/10.1007/978-3-642-33027-8_8
https://doi.org/10.1007/978-3-642-34931-7_12
https://doi.org/10.1007/978-3-642-34931-7_12
https://doi.org/10.1007/978-3-540-25937-4_25
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/11502760_24
https://doi.org/10.1007/11502760_24
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-540-45203-4_23
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/978-3-662-53887-6_14
https://doi.org/10.1007/978-3-540-89754-5_19


132 A. Chakraborti et al.

17. Hojśık, M., Rudolf, B.: Differential fault analysis of Trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71039-4 10

18. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: SILC: SImple
Lightweight CFB (2014). http://competitions.cr.yp.to/round1/silcv1.pdf

19. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: CLOC: compact
low-overhead CFB (2014). http://competitions.cr.yp.to/round1/clocv1.pdf

20. Jeong, K., Lee, C.: Differential fault analysis on block cipher LED-64. In: (Jong
Hyuk) Park, J.J., Leung, V., Wang, C.L., Shon, T. (eds.) Future Information Tech-
nology, Application and Service. LNEE, vol. 164, pp. 747–755. Springer, Dordrecht
(2012). https://doi.org/10.1007/978-94-007-4516-2 79

21. Jovanovic, P., Kreuzer, M., Polian, I.: A fault attack on the LED block cipher. In:
Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 120–134.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4 10

22. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6 7

23. Saha, D., Kuila, S., Roy Chowdhury, D.: EscApe: diagonal fault analysis of APE.
In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp.
197–216. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13039-2 12

24. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Mat-
sui, M., Hirose, S.: Minalpher v1 (2014). http://competitions.cr.yp.to/round1/
minalpherv1.pdf

25. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21040-2 15

26. Whiting, D., Houeley, R., Ferguson, N.: Counter with CBC-MAC. Sub-
mission to NIST 2002 (2002). http://csrc.nist.gov/groups/ST/toolkit/BCM/
modesdevelopment.html

https://doi.org/10.1007/978-3-540-71039-4_10
https://doi.org/10.1007/978-3-540-71039-4_10
http://competitions.cr.yp.to/round1/silcv1.pdf
http://competitions.cr.yp.to/round1/clocv1.pdf
https://doi.org/10.1007/978-94-007-4516-2_79
https://doi.org/10.1007/978-3-642-29912-4_10
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/978-3-319-13039-2_12
http://competitions.cr.yp.to/round1/minalpherv1.pdf
http://competitions.cr.yp.to/round1/minalpherv1.pdf
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1007/978-3-642-21040-2_15
http://csrc.nist.gov/groups/ST/toolkit/BCM/modesdevelopment.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modesdevelopment.html


eSPF: A Family of Format-Preserving Encryption
Algorithms Using MDS Matrices

Donghoon Chang1, Mohona Ghosh2, Arpan Jati1, Abhishek Kumar1(B),
and Somitra Kumar Sanadhya3

1 Indraprastha Institute of Information Technology, Delhi, India
{donghoon,arpanj,abhishekk}@iiitd.ac.in

2 Indian Institute of Information Technology Design and Manufacturing,
Jabalpur, India

mohona@iiitdmj.ac.in
3 Indian Institute of Technology, Ropar, India

somitra@iitrpr.ac.in

Abstract. The construction SPF, presented in Inscrypt-2016 was the
first known SPN based format-preserving encryption algorithm. In this
work, we significantly improve its performance and flexibility. We term
this new construction as eSPF. Unlike SPF, all the basic transformations
of eSPF are defined under the field Fp. This allows us to use a MDS
matrix instead of the binary matrix used in SPF. The optimal diffusion
of MDS matrix leads to an efficient and secure design. However, this
change leads to violations in the message format. To mitigate this, we
propose a discarding algorithm to drop the symbols that are not the ele-
ments of the format thus preserving it.

We also present a concrete instantiation of eSPF for digits and its
comparison with existing FPE algorithms like FFX and SPF. The perfor-
mance analysis shows that the proposed design is at least 15 times faster
than FFX for most of the practical applications.

Keywords: Format-preserving encryption · MDS matrix · SSN · Crypt-
analysis · Substitution-permutation network

1 Introduction

Motivation. Maintaining the confidentiality of messages is one of the main goals
of cryptography. Block ciphers are the most popular cryptographic primitives to
fulfil this purpose. The conventional block ciphers such as AES [15] and DES [13]
handle binary data of specific sizes, for example 128-bit for AES [15]. In many
real world applications, it is desirable and essential to have the ciphertext follow
the same format as the plaintext. Moreover, ciphertext length expansion is also
not allowed in these situations. Encryption of Credit Card Numbers (CCN) or
Social Security Numbers (SSN) are examples of such applications. Unfortunately,
the conventional block ciphers and their modes such as ECB, CBC, CTR, etc.
are not suitable for this purpose.
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 133–150, 2017.
https://doi.org/10.1007/978-3-319-71501-8_8



134 D. Chang et al.

Format-Preserving Encryption (FPE) refers to transformation of data that
is formatted as a sequence of the symbols in such a way that the encrypted form
of the data has the same format and length as the original data. Many financial
or e-commerce databases contain CCN or SSN and for both practical and legal
reasons, encryption of these values are important. However, these fields that
need to be encrypted have fixed formats and a plain use of conventional block
cipher will produce ciphertexts violating the specified format.

The problem of encryption over fixed formats was first investigated in the
database community by Brightwell and Smith [11]. Schoroeppel and Orman
proposed the Hasty Pudding Cipher [32] which first demonstrated an encryp-
tion scheme that worked for arbitrary domain. A few years later, Black and
Rogaway [9] made the first systematic study of this problem and suggested some
approaches to achieve the desired functionality. Being motivated by the real
world application, many FPE designs have been proposed such as FFSEM [34],
FFX [3], BPS [10], VFPE [33], FEA-1 and FEA-2 [25]. A special publication of NIST
SP800-38G [20] specifies three modes of operation for format-preserving algo-
rithms namely FF1, FF2 and FF3. Each of these modes employ an unbalanced
Feistel structure and use AES-128 algorithm as the internal round function. FF1
and FF2 invokes AES-128 algorithm at least 11 times and FF3 invokes it eight
times thus leading to high number of AES-128 invocations. Moreover, Bellare et
al. [2] have been shown some message recovery attacks on FF1 and FF3. This was
followed by an attack presented in [18] where Durak and Vaudenay presented
a practical attack to the FF3 scheme. Apart from Feistel based FPE schemes
another important mechanism of designing FPEs based on card shuffling was
adopted in [23,28–30]. In 2016, Chang et al. [12] proposed a new FPE algorithm
SPF, based on a substitution permutation network (SPN) strategy. SPF is the
first known SPN based FPE algorithm and it has been shown that it is almost
5 times faster than the other known FPE algorithms such as FF1, FF2 and FF3.
However, the use of binary matrix in the linear layer of SPF has two limitations.
Firstly, it doesn’t allow SPF to be applied to formats of all sizes. Secondly, it
restricts SPF to achieve maximal diffusion and hence the optimal efficiency. In
this paper, we aim to address these limitations.

1.1 Our Contribution

We present a new substitution permutation design approach to construct effi-
cient format-preserving encryption family. This is realized by using MDS matrix
in the diffusion layer unlike SPF construction where binary matrix is used. As
a result, higher diffusion is achieved in lesser number of rounds. Moreover, SPF
construction doesn’t work for format sizes which are multiples of 3 due to its
design of the binary matrix. Our proposed construction does not have this limita-
tion and works for any domain size. The other notable advantage of our proposed
construction is that one instantiation may work for many formats.

We define the basic transformations for the proposed construction and a con-
crete instance for digits. The construction uses an iterated block cipher as the



eSPF: A Family of Format-Preserving Encryption Algorithms 135

underlying building block. It consists of two algorithms - a non format preserv-
ing encryption scheme to generate the keystream and a discarding algorithm to
ensure that the format is preserved.

The domain size of real-world applications of FPE motivates us to incorpo-
rate tweak in the proposed design. We propose a new key scheduling and tweak
scheduling algorithm to realize our design goal. Further, we estimate a lower
bound on the number of active S-boxes for different number of rounds for the
proposed construction. The security of our design is then analyzed against dif-
ferential, linear, square, related tweak and key scheduling attacks. Finally, we
compare the efficiency of a concrete instance of our proposed construction for
the most popular and widely used format - ‘digit’, with FFX and BPS and show
that the proposed design is almost 15 times faster than FFX.

The rest of the paper is organized as follows. In Sect. 2, the important pre-
liminaries are described. The proposed eSPF construction is presented in Sect. 3.
The concrete instance of eSPF for digits is presented in Sect. 4. We analyze the
security of the proposed scheme against the standard attacks in Sect. 5. This
is followed by performance analysis of the same in Sect. 6. Finally, we conclude
our work in Sect. 7.

2 Preliminaries

Let Σ = {0, 1, 2, . . . , N − 1} be the alphabet set, where N ≥ 2. The size N of
the set Σ is referred to as the ‘format size’ and the elements of Σ are referred to
as ‘symbols’, for example, for digits, N = 10. Σ∗ denotes the set of strings with
elements from Σ. We assume that the plaintext contains symbols only from Σ. If
this is not the case, suitable encoding and decoding functions could be used and
then one can apply the “rank-then-encipher” approach [3] to use the methods
described in this work.

2.1 The Notations Used in the Paper

The following notations have been used throughout the paper.

|Σ| : The number of elements in the set Σ.
�N : Symbol wise addition modulo N .
�x� : Smallest integer just greater than x.
S[i] : ith symbol of the string S from the left.
S || T : Concatenation of two strings S and T .
|S|N : Length of the string S in base N .
Fp : Galois Field GF(p) where p is prime.

2.2 Specification

An instance eSPFNr denotes a member of eSPF family that has format size N and
consists of r-rounds. The input/output of each intermediate round is denoted as



136 D. Chang et al.

state [15]. Each state consists of n = 16 symbols. For ease of representation and
discussion, we represent each state as a 4 × 4 two-dimensional array of symbols.

The transformation of an input string of length n over symbol set Σ to
state is described by the function STATE(X) (Algorithm 1); while the inverse
transformation of a state to produce a string over Σn is described by the function
STRING(state) (Algorithm 2).

Algorithm 1. STATE(X)
input : string X
output: state

for i ← 0 to (n − 1) do1

j ← i mod 4;2

k ← �i/4�;3

state[j, k] ← X[i];4

return state5

Algorithm 2. STRING(state)
input : state
output: string X

for i ← 0 to 3 do1

for j ← 0 to 3 do2

n ← (i + j × 4);3

X[n] ← state[i, j];4

return X5

3 The eSPF Construction

eSPF contains two components: a non format preserving encryption Ek and a
Discarding Algorithm (DA), followed by modular addition. To achieve diffusion
in our encryption scheme, we use MDS matrix. MDS matrices have tremendous
applications not only in the coding theory but also in the design of symmetric
cryptographic primitives, for example, AES [15], Camellia [1], SQUARE [14] etc.
owing to their highest possible branch number. This make them a natural choice
for the diffusion layer since higher branch number ensures higher diffusion rate as
well as lesser number of rounds, finally leading to a secure and efficient primitive
construction.

Having an MDS matrix for diffusion functionality, requires the operations
to be done over a finite field. This stringent requirement, limits the possible
format size N to the cardinality of Fpb , where p is a prime and b is an integer.
A suitable S-box and MDS matrix over the finite field Fpb is then used to realize
the substitution and permutation layer of our scheme.

As the operations are performed in Fpb , we need to perform a process to dis-
card symbols which are not in format. This discarding process is equivalent of
cycle-walking or using modular operation to ensure non-violation of the format.
We show that the rate of discarding symbols in our case is low for practical sce-
narios and it does not affect the efficiency of our scheme significantly. Another
important advantage of this construction is that, given one instance, the con-
struction may be used for other formats as well, if their format size is smaller
than or equal to pb which is not possible in the SPF family.

3.1 The Round Transformations

Each round of eSPF consists of the following five following transformations which
updates the internal state:



eSPF: A Family of Format-Preserving Encryption Algorithms 137

SB ◦ SR ◦ MC ◦ KA ◦ TA

SubBytes (SB): A SubBytes transformation S : Fpb → Fpb is used to create
confusion in the cipher. It is a permutation consisting of a bijective mapping
to each element of the state. Typically an S-box is the multiplicative inverse
function in the field Fpb , i.e.,

S : x → x−1

This mapping is very popular and believed to be a good choice for designing
differentially and linearly resistant cipher. However, another popular approach
is to do a brute force search and choosing substitution layer based on analyzing
the differential and linear properties along with the implementation cost. Many
lighweight ciphers adopt the second approach.

ShiftRows (SR): This transformation shifts the rows cyclically over different
offsets. Similar to AES, there is no shift over the first row, whereas symbols of
second, third and fourth row are shifted left by one, two and three positions
respectively.

MixColumns (MC): Permutation layer is used to introduce diffusion in the
cipher to make sure that any local differences of an internal state before permu-
tation layer propagates to the larger area of the state after this layer. In many
modern ciphers, the linear diffusion layer is realized by using a r × r matrix that
operates on the state column by column.

KeyAddition (KA): The key addition transformation modifies the state by
adding round key symbol wise using modulo addition pb.

TweakAddition (TA): Similar to KA step, given a sub tweak Twi and the current
state Si the tweak addition is a symbol wise addition modulo pb.

Counter1

Ek()

Discarding Algorithm
DA()

P1

C1

N

. . . . . . . . .

Counter2

Ek()

Discarding Algorithm
DA()

P2

C2

Countern

Ek()

Discarding Algorithm
DA()

Pn

Cn

N NN

Fig. 1. Encryption of eSPF.



138 D. Chang et al.

Algorithm 3. Enc SPFNr (K,M,T, Tw)
input : Key K, Message M ,

Counter T , Tweak Tw
output : Ciphertext C

Initialize two NULL strings Q, Q′;1

Initialize � ← |M |N ;2

state ← STATE(T );3

KA(state,K);4

TA(state,Tw);5

for j ← 1 to r − 1 do6

SubBytes(state);7

ShiftRow(state);8

MixColumns(state);9

KA(state,Kj);10

TA(state,Tw);11

SubBytes(state);12

ShiftRow(state);13

KA(state,Kj);14

TA(state,Tw);15

string Q′ ←STRING(state);16

Q ←DA(Q′);17

for i ← 0 to (� − 1) do18

C[i] ← (M [i] �N Q[i]);19

return C;20

Algorithm 4. DA(S)
input : String S
output : String S′

Initialize a string1

S′=NULL;
For i ← 1 to n2

if S[i] ∈ Σ3

S′ = S′||S[i];4

else5

S′ ;6

return S′;7

The Operating Mode of eSPF. We adopt the Counter Mode [19] of operation
for eSPF so that we can handle arbitrary length messages. For a large message
block, the message will be divided into sub-blocks and the eSPF routine is invoked
internally to generate the corresponding output block for a sequence of counters.
The ciphertext will be concatenation of all the output blocks (Fig. 1).

The main advantages of counter-mode are parallel encryption/decryption
and no requirement of padding, i.e., no length extension. However, malleability
is the major limitation of this mode. This constraint is applicable to other block
cipher modes like CBC, OFB etc. as well [31]. This limitation can be handled
by using an additional message authentication protocol in our eSPF scheme, the
design and analysis of which is currently beyond the scope of this work.

Algorithm 3 shows the encryption process of eSPF construction. The only
difference between encryption and decryption will be the use of modular sub-
traction in place of modular addition.

3.2 Discarding Algorithm DA()

Let Σ = {0, 1, 2, . . . , N − 1} be the alphabet set of format size N . Let Σ′ =
{0, 1, 2, . . . , N ′ − 1}, where Σ′ is the alphabet set containing all the elements



eSPF: A Family of Format-Preserving Encryption Algorithms 139

of Fpb and N ′ > N . Since, each state of Ek contains n-symbols, the output
of Ek is a string of n symbols. Let, the string Q′ be the output of Ek, i.e.,
Q′ = q′

0q
′
1q

′
2 . . . q′

n−1 such that q′
i ∈ Σ′, for 0 ≤ i ≤ n − 1. The output of

discarding algorithm DA() will be a string Q, i.e., Q = DA(Q) = q0q1q2 . . . qn′−1

such that qi ∈ Σ and n′ ≤ n.
We are interested in finding the probability of occurrence of an arbitrary

integer a ∈ Σ at the k-th trial after the occurrence of elements of (Σ′ − Σ) in
the first k − 1 trials.

Let X be the success event defined for the occurrence of a specific symbol
a ∈ Σ and the corresponding probability be pa = 1

N ′ . Let Z be a failure event
defined as the occurrence of a symbol of set (Σ′ − Σ) and the corresponding
probability p is N ′−N

N ′ .
For a ∈ Σ, Pr[X = a] = pk−1pa.
Thus, the total probability S of getting a can be estimated as:

S =
1

N ′ +
N ′ − N

N ′ · 1
N ′ +

N ′ − N

N ′ · N ′ − N

N ′ · 1
N ′ + · · · (1)

After multiplication with N ′−N
N ′ , Eq. 1 can be rewritten as

N ′ − N

N ′ · S =
N ′ − N

N ′ · 1
N ′ +

N ′ − N

N ′ · N ′ − N

N ′ · 1
N ′ + · · · (2)

From Eqs. 1 and 2, S = 1
N .

Without loss of generality, this can be shown for all elements of the set Σ
and thus it can be concluded that the discarding algorithm does not impact the
distribution of occurrence of symbols of Σ, i.e., it will not leak any additional
information.

Discarding Rate: By discarding, we mean ignoring a symbol if it does not
belong to alphabet set Σ. Let, pr be the probability of not discarding an output
symbol of Ek, i.e., pr = N

N ′ , then the probability of discarding a symbol is (1−pr).
Let, Z be a random variable with parameter n and pr, where n denotes the

number of independent trials and pr is the success probability of the experiment.
Then the random variable Z follows binomial distribution. Hence, the probability
that Z contains a0 symbol is Pr(Z = a0) =

(
n
a0

)
pr

a0(1 − pr)n−a0 and expected
value of a0 is n × pr.

To minimize the discarding rate, the field GF(pb) and the corresponding set
Σ′ should be chosen carefully. The small difference between (N ′ −N) will ensure
a higher value for pr. For example, if N = 10, F11 (p = 11, b = 1, N ′ = 11) is
the most suitable option. In this case the average value of a0 is 14.55, i.e., on
an average less than 1.45 symbols out of 16 symbols will be discarded by the
discarding algorithm.

4 eSPF for Digits

In this section, we present eSPF1010, which is a concrete instantiation of our con-
struction for digits. We choose, F11, i.e., GF(11) for our construction. Thus, all
the arithmetic operations are done modulo 11.



140 D. Chang et al.

4.1 The S-Box

The S-box for F11 is shown in Table 1. To choose the S-box mapping, we analyzed
all the possible mappings under different criteria such as maximal difference and
linear probabilities and hardware implementation. Based on these, an optimal
implementation of our S-box with logic gates is as follows:

y0 = {x2x̄0 + x3} y1 = {x̄1x̄2x3 + x̄0x̄1}
y2 = {x0x1 + x̄1x3} y3 = {x̄0x̄1x̄3 + x0x̄1x2}

where, our S-box can be represented as yn = S[xn]. The maximum differential
probability and the maximum correlation for this S-box are 2−2.45 and 2−1.45

respectively.

Table 1. Representation of S-box for F11.

x 0 1 2 3 4 5 6 7 8 9 10

S[x] 2 0 10 6 3 8 9 4 7 5 1

4.2 The ShiftRows

The ShiftRows operation in this construction works exactly like AES.

4.3 The Permutation

In [22], Gupta et al. analyzed the format preserving diffusion layers for digits and
showed that it is impossible to construct any cryptographically significant 4 × 4
matrices over the field F24 which yields a format preserving set of cardinality 10.
Further, for an arbitrary format, non-existence of MDS matrix under some rea-
sonable restrictions has been shown in [12]. Since, our motivation was to use a
MDS matrix for optimal efficiency, based on the findings of [12,22], we decided
to choose the diffusion layer such that it may violate the format size. The linear
diffusion layer for our case is realized by the following 4 × 4 MDS matrix over
GF(11).

M =

⎛

⎜
⎜
⎝

1 1 2 5
5 1 1 2
2 5 1 1
1 2 5 1

⎞

⎟
⎟
⎠

The branch number of this matrix is 5.

4.4 Key Addition

The key addition transformation is symbol wise modular addition for a state Si

and subkey Ki.



eSPF: A Family of Format-Preserving Encryption Algorithms 141

4.5 Tweak Addition

Inclusion of tweak for eSPF is motivated by the domain size of real world appli-
cations of FPE algorithms and birthday bound security of the associated block
ciphers. Tweak is public and it is used to randomize the instance of the block
cipher, i.e., different values of tweak correspond to different families of permuta-
tions. Its usage helps in case of FPE algorithms since now the same ciphertext
(e.g., if the two credit card numbers will provide the same plaintext for encryp-
tion, say middle 6 digits) will look different to the attacker due to different values
of the tweak and hence would be indistinguishable. The proposed construction
works in counter mode and use of different counter value ensures variability over
ciphertext. However, since in the real world applications of FPE algorithms, the
length of messages is mostly short (single block messages), same counter value
may be used to encrypt different messages. Further, as the domain sizes of vari-
ous formats are also small, enough variability may not be achieved in some cases.
To circumvent this issue, we are using a tweak in our design.

Initiated by the work of Liskov et al. [26], few tweakable block cipher designs
have been proposed in literature. In [24], Jean et al. presented the generic
TWEAKEY framework that can be used to convert any key alternating block
cipher into a tweakable one and proposed three instantiations - Deoxys-BC,
JoltiK-BC and KIASU-BC that were the first ad-hoc tweakable block ciphers
based on AES.

Injection of tweak in eSPF construction follows the tweak injection method
adopted in KIASU-BC [24], i.e., the the tweak will be added to the first two rows
of the state. Considering the block size of eSPF1010 (≈256 and the security, we
choose a 60-bit tweak Tw). Two subtweaks Tw0 and Tw1 will be generated by
a Tw using (Algorithm 6). Tw0 and Tw1 will then be added to the first two
rows of the state for each even and odd numbered rounds correspondingly.

4.6 Key Schedule

We propose a new scheduling algorithm (KSA) for eSPF1010. The key schedule
algorithm takes the 128-bit key K as input and generates (r + 1) round subkeys
as output. Let K be represented as k127k126 . . . k2k1k0. We first divide the K into
two bit string of equal size and find K0 = STATE(K mod 1116). We iterate Step
5 to Step 9 of the Algorithm 5 to extract the remaining r subkeys. Addition of
round constant i provides security against slide attack and the addition operation
is chosen to introduce non-linearity. The shift operation ensures that all the
bits of K will be used up to round 5. In [3] Bellare et al. estimated the lower
bound of statistical distance between the uniform distribution on Zp and the
distribution obtained by b mod p after picking b randomly in Za as p/a where
a > p. We estimate 2−72 (a = 2128, p = 1116 ≈ 256) as the statistical distance
for digits. This bound suggests that the mod 1116 operation does not impact the
distributions dramatically.



142 D. Chang et al.

Algorithm 5. KSA(K)
input : Key K
output: Round Keys

K0,K1, . . . ,Kr

x1 ← k127k126 . . . k65k64;1

y1 ← k63k62 . . . k1k0;2

K0 ← STATE(K mod 1116)3

for i ← 1 to r do4

yi ← ((yi 
 16) + xi) ⊕ i;5

xi ← (xi � 33) ⊕ yi;6

Ki ← STATE((xi||yi)7

mod 1116);
xi+1 ← xi;8

yi+1 ← yi;9

return (K0,K1, . . . ,Kr);10

Algorithm 6. TSA(Tw)
input : Tweak Tw
output: Round tweaks

Tw0, Tw1

Tw0 ← STATE(Tw mod 118);1

Tw ← (Tw 
 30);2

Tw1 ← STATE(Tw mod 118);3

return (Tw0, Tw1);4

5 Security Analysis

In this section, we evaluate the security of eSPF1010 construction against various
standard attacks.

5.1 Differential and Linear Cryptanalysis

Differential [7] and linear cryptanalysis [27] are two of the most powerful tech-
niques to analyze symmetric-key primitives. To resist the differential and linear
attacks, we choose to design our transformations according to the wide trail
design strategy [16] and estimate the lower bounds for active S-boxes for differ-
ent rounds of eSPF1010.

Number of Active S-boxes: The diffusion layer of eSPF uses a 4 × 4 MDS
matrix with branch number 5. Hence, any two round differential/linear charac-
teristic has a minimum of 5 active S-boxes and any four round differential/linear
characteristic has a minimum of 25 active S-boxes for eSPF. In Table 2, we men-
tion the number of rounds (r) and the corresponding minimum number of active
S-boxes (Ar) for eSPF. In FSE 2006, Granboulan et al. [21] presented a general
framework for differential and linear cryptanalysis of block cipher when the block
is not a bitstring. A M × M matrix Δ simulates the behavior of the S-box S
over differences by Δ(S)a,b = #{x|S(x + a) − S(x) = b}. The maximum entry
of the matrix, i.e., D(S) is defined as:

D(S) = max
(a,b) �={0,0}

Δ(S)a,b.

The corresponding maximum propagation probability is defined as differential
probability, DP(S) = D(S)/M . The D(S) is equal to 2 for eSPF1010 and the corre-
sponding maximum DP(S) is equal to 2−2.45 ( 2

11 ≈ 2−2.45).



eSPF: A Family of Format-Preserving Encryption Algorithms 143

Table 2. Minimum number of active S-boxes Ar for r rounds of eSPF.

r 1 2 3 4 5 6 8 10 12 16

Ar 1 5 6 25 26 30 50 55 75 100

In order to investigate the security against linear cryptanalysis of the
S-box, firstly we calculate the distribution vector Λ0(S){a,b} = (#{x ∈
Fpb |〈a, b|x, S(x)〉 = u})u∈{Z}, where 〈a, b|x, y〉 = 〈a|x〉 − 〈b|y〉 and 〈a, x〉 is
scalar product of a and x. The distribution vector represents the behavior
of the considered S-box. The random behavior can be defined as: fa,b;u =
1
M #(x, y) ∈ Fpb × Fpb |〈a, b|x, y〉 = u. The bias of the S-box represents the differ-
ence of behavior of S-box S and the random case and is defined as ΛS(S)a,b;u =
Λ0(S)a,b;u −fa,b;u. The highest bias measures the non linearity of the S-box. For
eSPF1010, the maximal bias is equal to 2

11 = 2−2.45 and the maximum correlation
is 2−1.45.

Based on the above parameters, the probability of any single 6-round dif-
ferential characteristic of eSPF1010 is upper bounded by 2−73 and the maximum
correlation of a 6-round linear trial is 2−43. These bounds ensure that the data
requirement to mount these attacks will exceed the available data 255(≈ 1116)
for 6-rounds.

5.2 Square Attack

In this section, we describe a 7-round square attack [14] against eSPF. This
attack is motivated by the attack shown in [17]. For our 7-round attack, we first
construct a 4-round distinguisher. Consider a Λ-set of 11 plaintexts in which
the first symbol takes all possible 11 values (active symbol) and the remaining
symbols take any constant value that remains same throughout the set. Since,
our construction involves tweak addition, in this attack, let us suppose that the
attacker uses Λ-sets for the two subtweaks as well, i.e., one symbol of both the
subtweaks (position being the same as that of the active symbol in the plaintexts)
are active. Considering these, Fig. 2 shows the four round transformations of
eSPF construction.

Let xj , yj , zj , wj denote the symbol values in round j after SubBytes,
ShiftRows, MixColumns and KeyAddition and stage respectively. Let A[p] denote
the pth symbol (column wise) in any intermediate state A where, 0 ≤ p ≤ 15.
Similarly, Ai

j [p] denotes the pth symbol of ith state A in round j where, (where,
0 ≤ i ≤ 10). In the pre-whitening stage, since Λ-sets of plaintexts and subtweaks
are in control of the attacker, he chooses the plaintexts P i and subtweaks TW i

0

(where, 0 ≤ i ≤ 10) such that for each i the sum (P i + Twi
0) mod 11 is a con-

stant. The state remains constant until S1 where the first symbol becomes active
again due to addition of the second sub-tweak Tw1. In, round 2 consider state
S2[0]. Due to sub-tweak addition of Tw1[0], we have:



144 D. Chang et al.

A C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

SB

C C C C

C C C C

C C C C

C C C C

SR

C C C C

C C C C

C C C C

C C C C

MC

C C C C

C C C C

C C C C

C C C C

A C C C

C C C C

C C C C

C C C C

A C C C

C C C C

C C C C

C C C C

A C C C

C C C C

C C C C

C C C C

A C C C

C C C C

A C C C

A C C C

SB SR MC

B C C C

C C C C

A C C C

A C C C

? C C C

C C C C

A C C C

A C C C

? C C C

C C C C

C C A C

C A C C

?

C

?

?

SB SR MC

C

A

A

A

A

A

A

C

SB SR MC

?

C

?

?

?

C

?

?

?

A

A

C

?

B

?

?

KA

A

?

?

?

?

?

?

B

P S0 SSB
1 SSR

1 SMC
1 S1

SSB
2 SSR

2 SMC
2 S2

SSB
3 SSR

3 SMC
3 S3

SSB
4 SSR

4 SMC
4 S4

TA

KA

TA

KA

TA

KA

TA

KA

TA

Round 2

Round 3

Round 4

C

C

C

C

C

A

A

A

A

A

A

C

C

C

C

C

?

?

?

?

SB SR MC

?

?

?

?

A A

A

A

C

?

?

?

C

A

?

A

?

?

A

?

?

A

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

KA

?

?

?

?

?

?

?

?

?

?

?

?

SSB
5 SSR

5 SMC
5 S5

TA
Round 5

?

?

?

?

?

?

?

C

A

A

A

A

A

A

C

C

C

C

C

C

A

C

?

A

C

?

A

C

C

A

C

A

A

A

C

?

?

?

?

?

?

?

B

?

? B

A A

A

A

C

Fig. 2. A five round distinguisher for eSPF. Here A denotes an active symbol, B denotes
that mod 10 sum of all values in that symbol is 0 and ? denotes unknown symbol.

wi
2[0] = (zi2[0] + Twi

1[0]) mod 11

Since tweak symbol as well as the state symbol are active, if we add all the values
in w2[0], then it can be shown that the sum mod 11 is always 0 as follows:

w0
2[0] + w1

2[0] + . . . w10
2 [0] = (

10∑

i=0

zi2 +
10∑

i=0

Twi
1) mod 11

= (55 + 55) mod 11 = 0

This shows that the set of values in the first symbol position after second round
tweak addition forms a balanced set with probability 1. After SubBytes operation
in round 3, the balanced set property is destroyed. Similar explanation can be
given till state transformation after ShiftRows in round 4. After MixColumns
operation in round 4, we get a completely unknown state. However, at state
SMC
4 , consider the first column. Here, we have:



eSPF: A Family of Format-Preserving Encryption Algorithms 145

10∑

i=0

zi5[0] +
10∑

i=0

zi5[3] = (
10∑

i=0

yi
5[0] +

10∑

i=0

yi
5[1] + 2

10∑

i=0

yi
5[2] + 5

10∑

i=0

yi
5[3]) mod 11 +

(
10∑

i=0

yi
5[0] + 2

10∑

i=0

yi
5[1] + 5

10∑

i=0

yi
5[2] +

10∑

i=0

yi
5[3]) mod 11

= (2
10∑

i=0

yi
5[0] + 3

10∑

i=0

yi
5[1] + 7

10∑

i=0

yi
5[2] + 6

9∑

i=0

yi
5[3]) mod 11

= (2
10∑

i=0

yi
5[0] + 0)mod11 = Even number

Again in the right hand side of the above equation, since y5[1, 2, 3] are active
cells, their sum over all 11 states is always going to be zero as discussed above.
Hence, the additive sum of Z5[0] + Z5[3] over all 11 states will always be an even
number with probability 1; which will be preserved even after tweak addition
in round 4. In the random case, the output will be even with a probability of
6/11. Hence, a valid distinguisher is constructed. This four round attack can be
extended up to seven rounds by adding one round in the backward and 2 rounds
in the forward directions to recover the secret key.

5.3 Impossible Differential Cryptanalysis

Impossible Differential Cryptanalysis (IDC) [5] uses impossible differential char-
acteristics to eliminate incorrect keys. Since the diffusion layer of eSPF construc-
tion is very similar to the AES algorithm, the basic 4 round impossible character-
istics presented in [6] for AES algorithm and the proposed construction is same.
The input and output characteristics for 4 rounds impossible characteristics is
as follows:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 4R
� (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1)

More rounds can be appended before and after the 4 round impossible distin-
guisher. We found up to 6 rounds characteristics, which can be used for key-
recovery attacks, but no such characteristics could be found when the number
of round is greater than 6.

5.4 Key Related Attacks

Slide attacks [8] and related-key attacks [4] are the two most important types
of key scheduling attacks. Our key scheduling algorithm for eSPF adds a round
dependent counter in each round to prevent sliding of the subkeys. For related key
attack to work, the attacker should be able to identify meaningful relationships
between different subkeys so that a related key differential can be constructed
over certain rounds. However, the non-linear addition operation and the modular
function in our key scheduling algorithms do not allow an adversary to deduce



146 D. Chang et al.

all the other round keys (and the master key) from one round key by working
through the key schedule. The modular function in particular also makes it very
hard for an attacker to control the difference propagation through different round
keys. Moreover, we also analyzed that each bit of the secret key K is used by the
fifth round for all format size 10 or more. Hence, we believe that these features
of the proposed KSA are sufficient to resist related key attacks.

5.5 Related Tweak Attack

Launching a related tweak attack to recover the secret key is easier for an attacker
compared to related key attack. This is because the tweak value is a public entity
and can be chosen by the attacker himself. This allows him to insert differences
in the tweak input of the block cipher and construct related tweak differentials.
Thus, it is imperative to assess the security of our schemes in this stronger related
tweak setting.

We developed an automated program to count the number of active S-boxes
and return an upper bound on the probability of the best related tweak truncated
differentials. Table 3 lists the number of active S-boxes for the first 8-rounds of
eSPF. It can be seen that the probability of any characteristic on more than 6
rounds is not higher than 2−36×2.45 = 2−88.2 for eSPF. This bound ensures that
the amount of data required to launch the attack will exceed the data available
to an attacker (i.e., 1116 ≈ 253). Hence, our construction can resist any related
tweak attack of practical complexity if the number of rounds is ≥ 6.

Table 3. Count of active S-box (Ar) and corresponding differential probability (Pr)
over different rounds r of eSPF for related tweak differentials.

r 1 2 3 4 5 6 7 8

Ar 0 0 1 5 20 36 50 66

Pr 0 0 2−2.45 2−9.8 2−49 2−88.2 2−122.5 2−161.7

Considering the attacks discussed above as well as efficiency we recommend
r = 10.

6 Performance

eSPF was designed with performance implementation costs in mind. In this
section, we provide performance comparison of eSPF with FPE designs FFX and
SPF.



eSPF: A Family of Format-Preserving Encryption Algorithms 147

6.1 Implementation

As eSPF is an AES-like block-cipher, the round-operations are best implemented
using table-lookups. The reference implementation was done for 32-bit platform,
but 64-bit processor support is ubiquitous and the implementation is also faster,
so all the results are for the 64-bit implementation. Table 4 shows the implemen-
tation results.

Table 4. Execution speed in symbols/second and cycles/symbol for eSPF10
10.

Processor Clock speed Speed for eSPF1010

Symbols/second Cycles/symbol

Core i7 6700 3.4 GHz 201.2 × 106 16.8

Core i7 4770 3.4 GHz 168.1 × 106 20.2

Core i5 2400 3.1 GHz 44.8 × 106 70.5

The lookup-table based implementation of eSPF1010 round function required
4 tables with 64 entries of 32-bit integers. The round functions and the MOD
(remainder) operation was combined. Each column required 4 table-lookups,
as a result there were 16 table-lookups in total. PDEP and PEXT instructions,
were used for various bit-manipulation operations needed, significantly improv-
ing the performance. Owing to the similarity with SPF for digits (which consists
of 14 rounds), the performance gains for eSPF1010 would primarily be the result
of reduced number of rounds, however the discarding algorithm would cause
some performance degradation. The expected speedup can be estimated to be
((14 ÷ 10) × (10 ÷ 11)), which is about 1.27.

6.2 Performance of eSPF10
10 Compared to FFX with Radix 10

Even for the smallest input sizes, FFX requires 11 invocations of AES-128 to
encrypt messages containing about 52 symbols of radix 10. FFX needs 10 AES-128
invocations with a MOD operation which is quite expensive, and an extra
AES-128. To test the expected performance, we used the inbuilt 128-bit inte-
ger support in gcc to perform MOD operations. On an Intel Core i7 4770 CPU at
3.4 GHz, the MOD operation was taking approximately 184 clock cycles at an
average. We also tested an assembly version of a fast 128-bit MOD implementa-
tion for MSVC which took 296 clock cycles. On the same machine, it was found
out that the AES-128 execution speed was 129 MiB/s by running openssl speed
aes-128-cbc, which comes down to about 400 cycles per AES-128 invocation.
As FFX uses 10 MOD operations and 11 AES-128 invocations, one FFX encrypt
operation should take about (184 × 10) = 1840 cycles for MOD and (400 ×
11) = 4400 cycles for AES, so in total it takes about 6240 cycles at least. So,
FFX should run at about 120 cycles/symbol (6240 ÷ 52) at max; this ignores



148 D. Chang et al.

any other performance loss due to copies, and other operations like NUMradix(),
STRradix() etc. So, eSPF is about 6 times faster than FFX for similar parame-
ters. Considering traditional applications of FPE such as encryption of SSN and
CCN, eSPF would be around 30 and 15 times faster than FFX respectively.

According to the definition of FFX, a large MOD (of size approximately
radixN/2, where N is the size of input string) operation is needed. As the
MOD can get very large, efficient implementation would need to use big-integer
libraries, which tend to be significantly slower (can be a few orders of magni-
tude, depending on parameters) than the AES-128, used. As a result the overall
implementation can get very slow. This is not a problem in eSPF.

7 Conclusion

In this work, we present a new efficient format-preserving encryption construc-
tion based on substitution-permutation networks. We present a concrete instance
of the proposed construction for format size 10. Further, to analyze the secu-
rity of the presented design, we consider conventional cryptanalytic techniques
as well as dedicated attacks. Finally, we compare the efficiency of the presented
construction with existing schemes. The construction is approximately ten times
faster than existing popular designs such as FFX and BPS for most of practical
uses of FPE. A similar construction for other popular format size is an interesting
open problem.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44983-3 4

2. Bellare, M., Hoang, V.T., Tessaro, S.: Message-recovery attacks on Feistel-based
format preserving encryption. Cryptology ePrint Archive, Report 2016/794 (2016).
http://eprint.iacr.org/2016/794

3. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-05445-7 19

4. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48285-7 34

5. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48910-X 2

6. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael (1999, unpub-
lished manuscript)

https://doi.org/10.1007/3-540-44983-3_4
http://eprint.iacr.org/2016/794
https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2


eSPF: A Family of Format-Preserving Encryption Algorithms 149

7. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 1

8. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6 41

9. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45760-7 9

10. Brier, E., Peyrin, T., Stern, J.: BPS: a format-preserving encryption proposal.
NIST. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/
bps/bps-spec.pdf

11. Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data
warehouse security, vol. PP, pp. 141–149 (1997). http://csrc.nist.gov/niccs/1997

12. Chang, D., Ghosh, M., Gupta, K.C., Jati, A., Kumar, A., Moon, D., Ray, I.G.,
Sanadhya, S.K.: SPF: a new family of efficient format-preserving encryption algo-
rithms. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143,
pp. 64–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54705-3 5

13. Coppersmith, D., Holloway, C., Matyas, S.M., Zunic, N.: The data encryption
standard. Inf. Secur. Tech. Rep. 2(2), 22–24 (1997)

14. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

15. Daemen, J., Rijmen, V.: The block cipher Rijndael. In: Quisquater, J.-J., Schneier,
B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg (2000).
https://doi.org/10.1007/10721064 26

16. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45325-3 20

17. Dobraunig, C., Eichlseder, M., Mendel, F.: Square attack on 7-round Kiasu-BC. In:
Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp.
500–517. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 27

18. Betül Durak, F., Vaudenay, S.: Breaking the FF3 format-preserving encryption
standard over small domains. Cryptology ePrint Archive, Report 2017/521 (2017).
http://eprint.iacr.org/2017/521

19. Dworkin, M.: NIST Special Publication 800–38A: Recommendation for Block
Cipher Modes of Operation-Methods and Techniques, December 2001

20. Dworkin, M.: Recommendation for block cipher modes of operation: methods for
format-preserving encryption. NIST Special Publication, 800:38G

21. Granboulan, L., Levieil, É., Piret, G.: Pseudorandom permutation families over
Abelian groups. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 57–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11799313 5

22. Gupta, K.C., Pandey, S.K., Ray, I.G.: Format preserving sets: on diffusion lay-
ers of format preserving encryption schemes. In: Dunkelman, O., Sanadhya, S.K.
(eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 411–428. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49890-4 23

23. Hoang, V.T., Morris, B., Rogaway, P.: An enciphering scheme based on a card
shuffle. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
1–13. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 1

https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45760-7_9
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/niccs/1997
https://doi.org/10.1007/978-3-319-54705-3_5
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/978-3-319-39555-5_27
http://eprint.iacr.org/2017/521
https://doi.org/10.1007/11799313_5
https://doi.org/10.1007/978-3-319-49890-4_23
https://doi.org/10.1007/978-3-642-32009-5_1


150 D. Chang et al.

24. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the
TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45608-8 15

25. Lee, J.-K., Koo, B., Roh, D., Kim, W.-H., Kwon, D.: Format-preserving encryption
algorithms using families of tweakable blockciphers. In: Lee, J., Kim, J. (eds.)
ICISC 2014. LNCS, vol. 8949, pp. 132–159. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-15943-0 9

26. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

27. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

28. Morris, B., Rogaway, P.: Sometimes-recurse shuffle. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 311–326. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 18

29. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer, Hei-
delberg (2009)

30. Ristenpart, T., Yilek, S.: The mix-and-cut shuffle: small-domain encryption secure
against N queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 392–409. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 22

31. Rogaway, P.: Evaluation of Some Blockcipher Modes of Operation. http://www.
cryptrec.go.jp/estimation/techrep id2012 2.pdf

32. Schroeppel, R., Orman, H.: The hasty pudding cipher. AES candidate submitted
to NIST, p. M1 (1998)

33. Sheets, J., Wagner, K.R.: Visa Format Preserving Encryption (VFPE). NIST Sub-
mission (2011)

34. Spies, T.: Feistel finite set encryption. NIST Submission, February 2008. http://
csrc.nist.gov/groups/ST/toolkit/BCM/modes-development.html

https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-319-15943-0_9
https://doi.org/10.1007/978-3-319-15943-0_9
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-642-55220-5_18
https://doi.org/10.1007/978-3-642-40041-4_22
https://doi.org/10.1007/978-3-642-40041-4_22
http://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
http://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes-development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes-development.html


Similarity Based Interactive Private
Information Retrieval

Sashank Dara1,2(B) and V.N. Muralidhara2

1 Cisco Systems Inc., Bangalore, India
sadara@cisco.com

2 International Institute of Information Technology, Bangalore, Bangalore, India
murali@iiitb.ac.in

Abstract. Private Information Retrieval (PIR) schemes address users’
privacy concerns while querying public databases. Two major advance-
ments that are needed for designing practical privacy preserving appli-
cations are: (i) constant communication complexity and (ii) private
retrieval of matching documents. In this paper, we propose a new family
of interactive schemes namely SIMPIR, that allow participating servers
to interact with each other. Our methods are similarity based (i.e. the
results could contain false positives but do not contain any false nega-
tives). Importantly our approach has constant communication complex-
ity agnostic of the size of database which is major improvement from
known schemes. We achieve these results by slightly relaxing the tradi-
tional requirements of PIR schemes.

Keywords: Private information retrieval · Encryption switching proto-
cols · Homomorphic encryption

1 Introduction

Private information retrieval (PIR) schemes enable a User to retrieve an item
from a database Server without revealing the item to the Server. To understand
the problem better, let’s assume that Bob is trying to retrieve an element from
a public database and he prefers that the database owner does not realize which
element is being retrieved. Note that if Bob wants to hide his identity while
retrieving the element he could simply use an anonymity service like ToR [1].
But Bob is interested in hiding the content of his query (and the element(s)
subsequently retrieved) from the database itself. A trivial approach to address
the issue is for Bob to download the whole database and query the downloaded
database locally. However, there is a huge communication overhead in the trivial
solution. PIR schemes have been proposed to address the problem in a non-trivial
manner. Two major PIR approaches that exist are (i) Information Theoretic
(IT-PIR) schemes and (ii) Computational PIR (CPIR) (discussed in detailed
later).

Numerous real world applications have been identified for PIR schemes like
private domain name searching, privately searching patent databases, privacy
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 151–169, 2017.
https://doi.org/10.1007/978-3-319-71501-8_9



152 S. Dara and V.N. Muralidhara

preserving threat intelligence databases etc. Let us consider a scenario where
Bob would like to register for a domain name www.bob-garage.com. He needs
to search whether such domain name is available. Domain name front running
is a practice whereby an adversary (say a malicious domain registrar) mis-uses
such insider information (from search queries) to pre-register domains for the
sole purpose of re-selling them at higher price. To address this Bob could use a
PIR scheme to privately search a public domain name database.

Traditional PIR schemes are based on the assumption that the user knows
the index (i.e. physical address) of the element that is being retrieved. In prac-
tice, however, it is unrealistic to know the index of the element and retrieval is
performed by keywords. For example, it is highly unlikely that Bob would know
the index of the desired domain name in the server. To address such a problem
a sub class of schemes called PrivatE Retrieval by KeY words (PERKY) are
proposed. As discussed later, we identify that these schemes are not any efficient
than trivial approach.

Also PERKY schemes proposed so far address exact string match and does
not perform similarity match. For example, Bob may have to perform repeated
searches for finding availability of similar domains like www.bob-garage.net,
www.bob-garage.com, www.bob-garage.biz etc. So it would be useful to build
PIR schemes that support similarity match.

For certain set of applications, it may be desirable to perform private searches
based on entire documents. For example, Alice has come up with a creative
solution for a problem and would like to patent it. Alice could perform a search
on patent database like that of Google Patents to ensure her solution is novel
and that no prior art exists. Hence it would be useful to build PIR schemes that
could privately match the similarity of documents rather than just words.

In order to address these challenges we propose a family of efficient simi-
larity based private information retrieval (SIMPIR) schemes with few relaxed
requirements.

1.1 Key Contributions

In this paper, we propose Computational Similarity PIR (C-SimPIR)1 scheme
by using encryption switching protocols. We also introduce Information Theo-
retic Similarity PIR(IT-SimPIR) using Secure Multi-Party Computation (MPC)
protocols and achieve better results.

– We propose similarity based PIR schemes. The results of retrieved records
could contain false positives but do not contain false negatives.

– Our schemes have constant communication complexity irrespective of the
size of database, where as best known previous result were O( d

√
n) where d

is dimension of database and n is total number of elements. We achieve this
by relaxing few requirements and assumptions of traditional PIR schemes.

1 A primitive construction and its applications in building privacy preserving threat
intelligence services is under review in Elsevier Journal of Information Security and
Applications.

http://www.bob-garage.com/
http://bobsgarage.net/
http://www.bob-garage.com/
http://www.bobsgarage.biz/


Similarity Based Interactive Private Information Retrieval 153

• In the computational variety (C-SimPIR) scheme, we introduce a non-
colluding trusted auxiliary server apart from the public database server,
where as contemporary CPIR schemes are known for their simplicity in
using a single server.

• In the information theoretic variety (IT-SimPIR) scheme, we intro-
duce communication between non-colluding servers to perform Secure
Multi-Party Computation, where as in contemporary IT-PIR schemes the
servers do not communicate with each other.

– Our schemes are flexible enough to address private similarity match of key-
words and also private similar document matching which is first of its kind.

2 Prior Art

We briefly recap both varieties of PIR schemes for benefit of the reader. Infor-
mally a PIR scheme enables a User to retrieve an element from the database
server without revealing.

Computational PIR (CPIR). CPIR scheme’s by large leverage homomorphic
encryption schemes. Their security guarantees relies the hardness assumptions
of underlying encryption schemes and on the computing resources available to
the adversary [3,8,9,20].

Fig. 1. Computational PIR

Note that the generic approach has a communication complexity of d
√

n i.e.
both the query size and the response size are function of size of the database n.
With the explosion in the amount of data in modern databases, such schemes are
highly impractical. Survey of CPIR schemes based on locally decodable codes, φ-
hiding assumption etc. could be found in [25]. Moreover, CPIR schemes require
only one server (as shown in Fig. 1) as opposed to IT-PIR schemes. Recently
CPIR protocols using BGV Fully Homomorphic Encryption have been proposed
that achieve O(log log n) in [15] they are single server based protocols.

C-SIMPIR schemes proposed by us deviate and assume the existence of mul-
tiple non-colluding servers in order to achieve constant communication com-
plexity.



154 S. Dara and V.N. Muralidhara

Information Theoretic PIR (IT-PIR). IT-PIR schemes leverage homomor-
phic properties of secret sharing schemes. They assume existence of multiple
non-colluding replicas of database servers as shown in Fig. 2. Subsequently secret
sharing techniques are applied on the input query for private retrieval of infor-
mation. They do not rely on any limitations for computing resources available
to the adversary and offer information-theoretic security [4,17,18,24].

Fig. 2. Information Theoretic PIR

Hybrid Protocols. In order to leverage best of both CPIR and IT-PIR schemes
hybrid PIR schemes have been proposed [14]. They leverage the recursive features
of CPIR schemes and low communication and computation overheads of IT-PIR
schemes. Our schemes are not in general comparable with hybrid schemes. Only
similarity is our C-SIMPIR scheme (discussed later) uses multiple non-colluding
servers. Their communication cost of input query is roughly O(n2) where n is
number of elements in the database. Their response cost is roughly O(l×6d−1×s)
where l is number of servers and d is dimension of the database. Where as both
our input query cost and response cost is constant which is major improvement.

Private Retrieval by Keyword (PERKY ). Private retrieval by keyword
(PERKY ) protocols were first proposed in [10] and later extended in [23]. Infor-
mally, the goal is to retrieve an element from the database using a keyword itself
rather than a physical address.

The main idea of these schemes is that the databases insert words
s1, s2, . . . , sn into a data structure which supports the search operations on
words. User, conducts an oblivious walk on the data structure until the word
w is found or the walk exhausts all possible n words in the database. If the
element is found after few rounds in the oblivious walk the user will still execute
the scheme until the last element, with arbitrary (dummy) queries. Otherwise,
the server learns the search length for this specific keyword. If the element w
does not exist in the database. User will not find the word even after a walk
of n rounds. So in either case, this is the same as the trivial scheme, i.e. User
retrieving all the n elements from the Server.

Where as our schemes are based on popular data mining techniques and do
not suffer the above mentioned issues.



Similarity Based Interactive Private Information Retrieval 155

PIR techniques have been applied in many practical scenarios such as: web
search, e-commerce, validation of the certificates, private LDAP lookups, anony-
mous communication etc. [18,19,22].

Related Areas. Cryptographic protocols such as: Oblivious Transfer (OT),
which guarantee that the database itself is kept private, or Searchable Encryp-
tion, which enables a user to search privately on encrypted data, are different.
This is because in our setup, Users would like to query public databases by
keeping their queries private.

3 Preliminaries

3.1 Homomorphic Encryption (HE)

Homomorphic encryption (HE) is a very useful tool in privacy preserving appli-
cations. Informally, such schemes allow one to perform operations on encrypted
data without decrypting it. Fully Homomorphic Encryption (FHE) schemes are
public key encryption (PKE) schemes that support both additions and multipli-
cations on the encrypted data. Partial Homomorphic Encryption (PHE) schemes
only one of them.

Apart from the typical KeyGen, Encrypt, Decrypt algorithms of PKE
schemes, PHE schemes support special algorithms that allow addition (or mul-
tiplication) of two cipher texts without decrypting them.

Additive Homomorphic Encryption (AHE). AHE schemes have following
interesting properties.

ENCPk
(a + b) = ENCPk

(a) + ENCPk
(b)

ENCPk
(a − b) = ENCPk

(a) − ENCPk
(b)

ENCPk
(a) × b = ENCPk

(a × b)
(1)

By large HE schemes are well defined in algebraic structures like finite fields
where subtraction is essentially addition (with additive inverse a−b = a+(−b)).
Also Note that every AHE scheme also supports homomorphic multiplication by
scalar (through repeated homomorphic addition); However, few schemes like
RING-LWE and Paillier support such operation natively in a more efficient way
[7,26]. We use this important property later in our schemes.

Multiplicative Homomorphic Encryption (MHE). MHE schemes have
following property

ENCPk
(a × b) = ENCPk

(a) × ENCPk
(b) (2)

The popular MHE schemes being ElGamal, RSA etc. From a security point of
view, the choice of PHE scheme (to be used in PIR later) should be based on



156 S. Dara and V.N. Muralidhara

its ability to achieve indistinguishability against chosen-plaintext attack (IND-
CPA). Informally it means an adversary could chose two plaintexts and obtain
corresponding ciphertexts but cannot distinguish between them with any prob-
ability negligibly greater than (1/2 + ε(k)), where ε(k) is a negligible function
for security parameter k.

3.2 Encryption Switching Protocols (ESP)

Encryption Switching Protocols (ESP) are special kind of interactive two-party
computation protocol which allows two players to obliviously convert an encryp-
tion of message m with a encryption scheme Π1 to encryption of same message
with another encryption scheme Π2. These protocols were first introduced in
[16,21]. Later both these approaches were proven to be error prone and much
better protocols were proposed by Couteau et al. [11]. Their protocols convert
ciphertext from Paillier encryption scheme to ElGamal-like encryption scheme
bi-directionally. Subsequently much better variants have been proposed in their
following work [12]. They also prove that ESP implies general two-party com-
putation (2-PC).

We briefly mention simplified definitions and related algorithms of ESP pro-
tocols. Although details of exact algorithms are out of scope for this paper and
readers recommended to refer [11] for such details.

Let E1, E2 be two encryption schemes with their respective algorithms (Setup,
KeyGen, Enc, Dec). An encryption switching protocol (ESP) between E1, E2 has
two algorithms (Share, Switch):

– Share(Pk, Sk): given the common keys Pk and Sk of both schemes, it outputs
a secret shares of Sk i.e. (Ska, Skb). The parties A and B are configured with
their respective Ska and Skb shares.

– Switch((Pk, Ska, c), (Pk, Skb, c)) is an interactive protocol that switches the
encryption of the message m i.e. c under one encryption scheme E1 to its
equivalent encryption c1 (of the same message m) under another encryption
scheme E2 (and vice versa).

Importantly both the parties A, B involved in the protocol are non-colluding.
We later use these protocols in building efficient C-PIR schemes.

3.3 Secret Sharing Schemes

Secret Sharing Schemes are interesting cryptographic primitives that enable
sharing of a secret into multiple shares [5,27]. As per the standard security
assumptions of SSS, if an adversary gains access to any number of shares less
than defined threshold, it gains no information of the original secret value. They
offer information theoretic security and has profound applications. Although
both were first introduced independently Shamir’s Secret Sharing (SSS) schemes
[27] is considered more popular one.

We give a informal details of the two main algorithms in SSS schemes.



Similarity Based Interactive Private Information Retrieval 157

– Share(secret, t, n): Shares a given secret secret into n shares such that a
threshold t share are required to reconstruct the secret.

– Reconstruct(secreti, t, n): Given the shares i.e. secreti∀i ∈ (1, n) this algo-
rithm reconstructs the original secret.

SSS schemes have different homomorphic properties that could be performed
in a non-interactive way. Homomorphic Addition could be performed on the indi-
vidual Shares of a given secret without reconstructing it. Similarly Homomor-
phic Multiplication by Scalar could also be performed. Where as Homomorphic
Multiplication requires an interactive protocol among the parties. A very good
tutorial of different properties could be found here [6].

SSS schemes are the heart of Secure Multi-Party Computation (MPC) tech-
niques that enable multiple parties to perform secure computations on their
private inputs. A very good introduction of MPC and its different adversary
models could be found here [13].

4 Private Differential Cosine Similarity

We briefly review popular information retrieval techniques based on cosine sim-
ilarity. We then introduce the concept of private differential cosine similarity
and leverage that subsequently in building efficient PIR schemes.

4.1 Term Frequency (tf) and Inverse Document Frequency (idf)

Term Frequency (tf) determines how frequently the word w appears in a given
document d. Inverse Document Frequency (idf) determines how common the
word appears in given set of documents. Combination of tf and idf, tf-idf, is the
numerical statistical measure for each word w used by the search engines and
the text mining applications.

tf(w, d) = fw,d

idf(w, d,D) = |{d ∈ D : w ∈ d}|
tf-idf(w, d,D) = |tf(w, d) × idf(w, d,D)|

There are many variants on how these measures are calculated, it is out of scope
of this paper to describe them and we refer readers to [2] for more details.

4.2 Similarity

We formally define similarity of two documents as below.

Definition 1 (Similarity). Let the database hold a set of documents DB =
{D1,D2, . . . , Dn}. Let each document Di = [w1, w2 . . . , wn] i.e. each document
Di is a vector of n terms. Let SIM(D1,D2) be a similarity function for docu-
ments D1,D2 and SF is similarity factor then

SIM(D1,D2) = SF where − 1 � SF � 1



158 S. Dara and V.N. Muralidhara

If SF = −1 then the documents are completely distinct.
If SF = 1 the documents are exactly same.

Although defined w.r.t. documents, the same definition could be general-
ized for arbitrary strings of (0, 1)l. Rest of the paper we consider document
level matching although the same definition could be extended for keyword level
matching too.

Cosine similarity has been found useful to determine how similar two given
documents [28] are. Documents are represented as vectors such that their com-
ponents are tf -idf measures of each word.

Let D1 = {w1, w2 . . . , wn}, and D2 = {v1, v2, . . . , vn} be two documents and
wi, vi be their respective words. Let the vectors Da = [a1, a2, . . . , an], and Db =
[b1, b2, . . . , bn] be their tf-idf vectors such that tf-idf(wi)=ai and tf-idf(vi)=bi.

Similarity Factor (SF) of two vectors Da,Db is defined as below.

SF = cos(θ) =
∑i=n

i=1 ai.bi
√∑i=n

i=1 a2
i ×

√∑i=n
i=1 b2i

where similarity factor (SF) ∈ {−1, . . . , 0, . . . 1}
(3)

If the resulting similarity factor is −1 then the documents are completely distinct
and if 1 the documents are exactly the same.

4.3 Private Differential Cosine Similarity

We define differential cosine similarity ( δ-sim) as below

δ-sim =
i=n∑

i=1

ai.bi − SF ×
√
√
√
√

i=n∑

i=1

a2
i ×

√
√
√
√

i=n∑

i=1

b2i (4)

Although trivial but important observation is that δ-sim = 0 when the two
documents are similar (as defined by similarity factor (SF)). For example, if
the User prefers exact match of input document then similarity factor (SF) is
set to 1. We further define private differential cosine similarity ( δ-psim) on the
ciphertext as below.

δ-psim = ENCPk
(δ-sim)

=
i=n∑

i=1

ENCPk
(ai.bi) − ENCPk

(SF ×
√
√
√
√

i=n∑

i=1

a2
i ×

√
√
√
√

i=n∑

i=1

b2i )
(5)

Similar observation is that, if the two documents are similar (as defined by sim-
ilarity factor (SF)) then δ-psim = ENCPk

(0). We later leverage this observation
in achieving efficient similarity based private information retrieval (SIMPIR)
schemes.



Similarity Based Interactive Private Information Retrieval 159

5 Similarity Based Private Information Retrieval
(SIMPIR)

Informally, SIMPIR scheme should enable User to match privately an input
document against a corpus of documents available in a public database.

5.1 Definition

We formally define a similarity based private information retrieval scheme and
its desired properties. In later sections we propose different protocols that achieve
them.

Definition 2 (SIMPIR). A SIMPIR scheme, S, allows the user to find out
for a given document Du and some j ∈ {0, 1, . . . , n} where Dj ∈ DBi ∀i ∈ (1, l)
server(s) and for predefined SF there is SIM(Du,Dj) = SF without leaking
any information about Du and SF to the database server(s) DBi.

5.2 Properties

Security

– The SIMPIR scheme should achieve at least Indistinguishability under cho-
sen plaintext attacks (IND-CPA). Informally, an adversary should not be
able to distinguish whether two different input documents are being privately
queried.

– Guessing Attacks: An adversary should not be able to guess the document
being retrieved with the probability >1/n where n is total number of docu-
ments in the database.

Efficiency. Any PIR scheme should be efficient than trivial approach. A trivial
scheme is where a User downloads the entire database of documents and sub-
sequently computes the similarity locally. Efficiency is usually defined by the
below parameters

– Communication Complexity of the scheme i.e. the amount of data retrieved
by the User in order to determine if the element exists in the database. The
communication complexity of the trivial scheme would be O(|DB)| and any
valid SIMPIR scheme should be lesser.

– Computational Complexity of a PIR scheme is defined as the number of docu-
ments processed by the database server before it returns the response. Notice
that this requirement is tightly linked with the Security of the scheme, if the
database server does not process any record then an adversary could deter-
mine the Users input with probability >1/n. So the lower bound for any valid
SIMPIR scheme should be Ω(n).



160 S. Dara and V.N. Muralidhara

6 Computational Similarity PIR (C-SIMPIR)

Intuitively the User could encrypt the input vector using a fully homomor-
phic encryption scheme (FHE) and submit to the Server for finding relevant
matches. The Server could evaluate the differential similarity blindfolded with-
out decrypting the input. But unfortunately FHE schemes are quite expensive.
So we have to achieve the same functionality using partial homomorphic encryp-
tion schemes that support either addition or multiplication on the ciphertext.

We first introduce the basic version of the protocol with additive homomor-
phic encryption (AHE) schemes alone. Later we provide an advanced version of
our efficient Computational SIMPIR scheme and provide its analysis.

6.1 Basic Protocol

Informally, User encrypts the input document and server processes against all
other documents blindfolded. This is achieved by leveraging the additive homo-
morphic properties of the encryption scheme. User subsequently retrieves the
encrypted similarity quotients, decrypts them and calculates the cosine simi-
larity in order to determine a match. We describe each of these steps of the
algorithm below:

1. DB Preparation: The tf-idf vectors for all the documents in the data-
base server are calculated. Lets say for each document Ds its vector is

[b1, b2, . . . , bk] and its magnitude ||Ds|| =
√∑j=k

j=1 b2j is calculated.
2. Query Gen: Let user ’s document Du = [a1, a2, . . . , ak] for which the private

similarity check need to be performed. An additive homomorphic encryption
(AHE) is used to encrypt the terms of the document. Query vector Qu =
[q1, q2, . . . , qk] is defined as below. User also sends ENCPk

(SF × ||Du||)).

Qu = ([ENCPk
(a1), ENCPk

(a2), .., ENCPk
(ak)]

3. Response Gen: The server receives query vector, Qu, and calculates the
dot product for each document in the database. This is done blindfold using
additive homomorphic properties of the encryption scheme. Subsequently the
response per each server’s document Ds is calculated, this would be a constant
RES is:

|Qu.Ds| =
j=k∑

j=1

qj .bj = q1.b1 + q2.b2 + . . . + qk.bk

= ENCPk
(a1).b1 + ENCPk

(a2).b2 + . . . + ENCPk
(ak).bk

= ENCPk
(a1.b1) + ENCPk

(a2.b2) + . . . + ENCPk
(ak.bk)

= ENCPk
(
j=k∑

j=1

aj .bj)



Similarity Based Interactive Private Information Retrieval 161

RES = ENCPk
(
j=k∑

j=1

aj .bj) − ENCPk
(SF × ||Du||) × ||Ds||

= ENCPk
(
j=k∑

j=1

aj .bj) − ENCPk
(SF × ||Du|| × ||Ds||)

= δ-psim

4. Process Res: User retrieves the response RES and decrypts it. If it is 0
then the input document Du matches with Server ’s document Ds as defined
by the similarity factor (SF).

Match =

{
if DECSk

(δ-psim) = 0 then SIM(Du,Ds) = SF
else SIM(Du,Ds) �= SF

The above process has to be repeated for every document Ds in DB.

6.2 Analysis

Security

– The input document Du is encrypted by the User using AHE. As long as the
choice of AHE is probabilistic (for example Paillier scheme) which achieves
indistinguishability under chosen plaintext attacks the basic protocol is secure
under same level. More detailed proofs could be referred in [26].

– Also since the protocol is repeated for every document by the User, irrespec-
tive of a match found, an adversary cannot guess the User ’s document with
probability (>1/n). For example, if the User finds a match after k < n rounds
and preempts the protocol, an adversary would know with good probability
(i.e. 1 − (k/n)) that the Users document Du is in first k documents.

Efficiency

– The amount of data retrieved is |δ-psim| per document i.e. constant number
of bits. So the communication complexity of basic protocol is efficient than
trivial scheme i.e. downloading entire document (assuming on average |Di| >
|δ-psim| ∀i ∈ (1, n)).
Also notice that the overall communication complexity is O(|δ-psim| × n),
where n is number of documents in the database.

– The overall computation complexity is O(n) since the protocol is repeated for
all the documents.

If the database is really large, the basic version, although efficient than trivial
version, would still be inefficient for practical consumption. The User has to run
the protocol for every input document.



162 S. Dara and V.N. Muralidhara

6.3 Advanced Protocol

In order to address the efficiency challenges further we propose an advanced
version of the protocol. Observe that only AHE scheme is used in the basic
protocol. Instead if a FHE scheme was used, the database server (DB) could
simply compute the product of all the δ-psim for a given document Du.

The intuition is that even if one document Dk matches (with Users document
Du) then its respective δ-simk = 0 and subsequently the product of all the
δ-psims would be 0. The resultant could be decrypted by the User to determine
if there was a match as shown below.

RES =
j=n∏

j=1

(δ-psimj) ∀j ∈ (1, n)

Match =

{
if DECSk

(RES) = 0 then Du ∈ (DB)
else Du /∈ (DB)

(6)

Unfortunately, FHE schemes are quite expensive for practical consumption
still. Also homomorphic multiplication is not supported in AHE schemes due to
which the database server cannot compute the product of all δ-psims. On the
other hand we cannot perform the basic protocol using multiplicative homomor-
phic encryption (MHE) schemes to compute the product. In order to address this
challenge, the trick is to convert the ciphertext from AHE to MHE on-demand
using encryption switching protocols (ESP) as a sub protocol.

We assume the presence of a trusted auxiliary server (AS) that does not
collude with the DB. User generates the relevant key pairs needed for ESP pro-
tocol and shares them with DB and AS as defined in Sect. 3.2. For a given User
document Du, the DB computes the δ-psima

j for all the documents i.e. j ∈ (1, n)
as described in basic protocol. Observe the additional superscript a to denote
that δ-psima

j is resultant of additive homomorphic encryption scheme. The DB
initiates the switch algorithm of encryption switching protocol (ESP) to convert
the (δ-psima

j → δ-psimm
j ) i.e. private differential similarity encrypted under

multiplicative homomorphic encryption without decrypting it. Subsequently DB
computes the product

∏j=n
j=1 (δ-psimm

j ) ∀j ∈ (1, n) through homomorphic mul-
tiplication. User retrieves the result and determines the match as defined in
Eq. 6 (Fig. 3).

6.4 Analysis

Contemporary C-PIR schemes are known for their simplicity of being single
server protocols. But with the assumption if this additional auxiliary server
(AS), we achieve a constant communication complexity and agnostic of size of
the database. In practice AS could be a separate virtual machine owned by the
User but not the database owner.

Security. Security requirements follow from the basic protocol. Additionally, as
long as AS and DB are non-colluding the security guarantees of the encryption
switching protocols hold good and could be referred in [11,12].



Similarity Based Interactive Private Information Retrieval 163

Fig. 3. Computational SIMPIR

Efficiency. The overall Communication Complexity is drastically simplified to
constant number of bits i.e. encryption of 0 or scalar depending upon whether
the Users input finds a match. The lower bound of Computational Complexity is
still Ω(n) because all the documents are being processed. There is an additional
overhead on the computation though due to the usage of ESP protocols.

7 Information Theoretic Similarity PIR (IT-SIMPIR)

IT-SIMPIR is conceptually similar to our C-SIMPIR protocols, except that
we leverage the homomorphic properties of secret sharing schemes and MPC
protocols. Informally, multiple replicas of database are made available DBl ∀l ∈
(1, k). The input tf-idf document vector Du is secret shared and sent to respective
DBl servers. Subsequently Share(δ-psim)i is computed for each document by
each server and returned. User subsequently reconstructs δ-psim from the shares
to find a match.

7.1 Basic Protocol

The approach is conceptually similar to that of basic protocol of C-SIMPIR
discussed in Sect. 6.1. In the interest of space we provide a high level overview
of the basic protocol of IT-SIMPIR here and complete version in AppendixB.

User secret shares the document vector Du and distributes across multiple
database servers DBi. Each database server uses additive homomorphic prop-
erties of secret sharing schemes in order to calculate their respective shares of
private differential cosine similarity i.e. Sharei(δ-sim). User retrieves all these
shares in order to reconstruct δ-sim for each document to determine a match.

Security

– The input document Du is secret shared by the User using SSS. As long
as random polynomial is used to secret share each document an adversary



164 S. Dara and V.N. Muralidhara

cannot distinguish between shares of different documents. Detailed proofs
could be referred in [27].

– Also since the protocol is repeated for every document by the User, irrespec-
tive of a match found, an adversary cannot guess the User ’s document with
probability (>1/n).

Efficiency

– The amount of data retrieved is l×|Sharei(δ-psim)|. The basic protocol need
not be efficient than trivial approach. Also notice that the overall communica-
tion complexity is O(l×|Sharei(δ-sim)|×n), where n is number of documents
in the database.

– The overall computation complexity is O(n) since the protocol is repeated for
all the documents.

7.2 Advanced Protocol

Notice that the participating database servers do not need to communicate
among themselves this is same as classic IT-PIR schemes. But in order to achieve
efficient schemes we make a newer assumption that the DB servers could com-
municate with each other without colluding. Under such assumptions, use Secure
Multi-Party Computation (MPC) protocols.

We use the same intuition (as in C-SIMPIR) that even if one document Dk

matches then its respective δ-simk = 0 and subsequently the product of all the
δ-sims would be 0 (Fig. 4).

Fig. 4. Information Theoretic SIMPIR

For a given User document Du, each DBi server has a respective
Sharei(δ-sim). Since the homomorphic multiplication of SSS schemes require
interactivity, the DBi collaboratively compute Πj=k

j=1 Sharei(δ-sim) and return
their respective values. User reconstructs the final result.

RES = reconstruct(
j=n∏

j=1

(δ-simj)) ∀j ∈ (1, n)

Match =

{
if (RES) = 0 then Du ∈ (DB)
else Du /∈ (DB)

(7)



Similarity Based Interactive Private Information Retrieval 165

Security

– The indistinguisability follows from security of basic protocol.
– Also since the protocol is based on oblivious product (δ-simj) of every doc-

ument, irrespective of a match found, an adversary cannot guess the User ’s
document with probability (>1/n).

Efficiency

– The amount of data retrieved is l × |∏j=n
j=1 Sharei(δ-psim)|. The basic pro-

tocol need not be efficient than trivial approach. But notice that the overall
communication complexity is constant and agnostic of number of documents
in the database.

– The overall computation complexity is Ω(n) since the protocol is repeated
for all the documents. There is an additional overhead of performing MPC
protocol for product computation.

8 Limitations and Future Work

Cosine Similarity is prone to false positives (fps) i.e. two distinct documents
could have same tf-idf vectors, so this might result in a match although docu-
ments are different. The rate of the fps highly depends on the high level applica-
tions and the content types being applied. For example, fps could be very rare for
longer documents and more frequent when used for shorter keyword level match-
ing. Another important nuance is calculation of inverse document frequency (idf)
could be challenging. It is not known whether idf could calculated privately on
a public database. So we assume idf value to be 1.

We presented the simplest possible IT-SIMPIR using MPC protocols.
Advanced protocols based on scenarios like k-out-of-l threshold, t-private, v-
byzantine robust and τ independent could be built on top of these as a natural
extension in future. We would like to research on more variety of data mining
techniques that could be used to build efficient PIR schemes. We would also like
to experiment with practical implementations of SIMPIR schemes.

9 Conclusions

We introduced the concept of similarity based private information retrieval
(SIMPIR) to address the privacy concerns of Users while querying public data-
bases. We proposed both computational (C-SIMPIR) and information theoreti-
cal (IT-SIMPIR) variety protocols. Our methods are flexible to privately match
either keywords or entire documents which is first of its kind. Communication
Complexity of our protocols is constant and agnostic of size of the database
which is significant improvement from previous known results. We hope our
work would aide to develop practical systems that enable Users to privately
query public databases.

Acknowledgments. We would like to thank Cisco Systems for supporting this work.



166 S. Dara and V.N. Muralidhara

Appendix

A Computational - SIMPIR

We present the complete version of the advanced C-SIMPIR protocol here.

1. Setup: The User configures creates the keypairs and Shares them among
the auxiliary server (AS) and database server (DB) for encryption switching
protocols to function.

2. DB Preparation , Query Gen are same as basic protocol.
3. Response Gen: The database server generates δ-psima for each document

Di in the database and initiates ciphertext encryption switching protocol
(ESP) to switch the value to δ-psimm. Subsequently

∏j=n
j=1 δ-psimm is com-

puted w.r.t all the documents.
4. Process Res: User retrieves the response RES and decrypts it. If it is 0

then the input document Du matches with Server ’s document Ds as defined
by the similarity factor (SF).

Match =

{
if DECSk

(∏j=n
j=1 δ-psimm

)
= 0 then SIM(Du,Ds) = SF

else SIM(Du,Ds) �= SF

B Information Theoretic - SIMPIR

We present the complete version of the advanced IT-SIMPIR protocol here.

1. DB Preparation: The tf-idf vectors for all the documents are computed
and replicated in k database servers DBl. Lets say for each document Ds its

vector is [b1, b2, . . . , bk] and its magnitude ||Ds|| =
√∑j=k

j=1 b2j is calculated.
2. Query Gen: Let user ’s document Du = [a1, a2, . . . , ak] for which the private

similarity check need to be performed. An Secret Sharing Scheme is used to
share the terms of the document. Query vector Qi

u = ([q1, q2, . . . , qk] for DBi

is defined as below. User also computes respective shares of (SF × ||Du||))
for each DBi.

Qi
u = ([Sharei(a1), Sharei(a2), .., Sharei(ak)] ∀i ∈ (1, l) servers

3. Response Gen: Each database server (DBi) receives its respective query
vector, Qi

u, and computes the dot product for each document in the database.
This is done blindfold using additive homomorphic properties of the secret
sharing scheme. Subsequently the response per each server’s document Ds is
calculated, this would be a constant RES is:



Similarity Based Interactive Private Information Retrieval 167

|Qu.Ds| =
j=k∑

j=1

qj .bj = q1.b1 + q2.b2 + . . . + qk.bk

= Sharei(a1).b1 + Sharei(a2).b2 + . . . + Sharei(ak).bk

= Sharei(
j=k∑

j=1

aj .bj)

RES = Sharei(
j=k∑

j=1

aj .bj) − Sharei(SF × ||Du||) × ||Ds||

= Sharei(
j=k∑

j=1

aj .bj) − Sharei(SF × ||Du|| × ||Ds||)

= Sharei(δ-sim)

Subsequently MPC protocol is initiated among all the database servers (DBi)
in order to compute their respective share of Sharei(

∏j=n
j=1 (δ-simj)).

4. Process Res: User retrieves the all the respective shares of the RES from
the database servers DBi and reconstructs δ-sim. If it is 0 then the input
document Du matches with Server ’s document Ds as defined by the similarity
factor (SF).

δ-sim = reconstruct(Sharei(δ-sim))∀i ∈ (1, l)

Match =

{
if (δ-psim) = 0 then SIM(Du,Ds) = SF
else SIM(Du,Ds) �= SF

The deviation from original assumptions of IT-PIR schemes is that in our proto-
cols the servers communicate with each other in a non-colluding way to perform
MPC protocols.

References

1. https://www.torproject.org/ (2016)
2. Term frequency - inverse document frequency (2016). https://en.wikipedia.org/

wiki/Tf-idf
3. Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: Xpire: Private infor-

mation retrieval for everyone. Technical report, Cryptology ePrint Archive, Report
2014/1025 (2014)

4. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private
information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 55–73. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-44598-6 4

5. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National
Computer Conference 1979, vol. 48, pp. 313–317 (1979)

6. Bogdanov, D.: Foundations and properties of Shamir’s secret sharing scheme. Uni-
versity of Tartu, Institute of Computer Science, 1 May 2007

https://www.torproject.org/
https://en.wikipedia.org/wiki/Tf-idf
https://en.wikipedia.org/wiki/Tf-idf
https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/3-540-44598-6_4


168 S. Dara and V.N. Muralidhara

7. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

8. Chang, Y.-C.: Single database private information retrieval with logarithmic com-
munication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004.
LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27800-9 5

9. Chor, B., Gilboa, N.: Computationally private information retrieval. In: Proceed-
ings of the twenty-Ninth Annual ACM Symposium on Theory of Computing, pp.
304–313. ACM (1997)

10. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Citeseer
(1997)

11. Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. Technical
report, Cryptology ePrint Archive, Report 2015/990 (2015). http://eprint.iacr.org

12. Couteau, G., Peters, T., Pointcheval, D.: Secure distributed computation on pri-
vate inputs. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015.
LNCS, vol. 9482, pp. 14–26. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30303-1 2

13. Cramer, R., Damg̊ard, I.: Multiparty computation, an introduction. In: Catalano,
D., Cramer, R., Di Crescenzo, G., Darmg̊ard, I., Pointcheval, D., Takagi, T. (eds.)
Contemporary Cryptology, pp. 41–87. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-7643-7394-6 2

14. Devet, C., Goldberg, I.: The best of both worlds: combining information-theoretic
and computational PIR for communication efficiency. In: De Cristofaro, E., Mur-
doch, S.J. (eds.) PETS 2014. LNCS, vol. 8555, pp. 63–82. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08506-7 4

15. Dong, C., Chen, L.: A fast single server private information retrieval protocol with
low communication cost. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11203-9 22

16. Gavin, G., Minier, M.: Oblivious multi-variate polynomial evaluation. In: Roy, B.,
Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 430–442. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10628-6 28

17. Goldberg, I.: Improving the robustness of private information retrieval. In: IEEE
Symposium on Security and Privacy, SP 2007, pp. 131–148. IEEE (2007)

18. Henry, R., Olumofin, F., Goldberg, I.: Practical PIR for electronic commerce. In:
Proceedings of the 18th ACM Conference on Computer and Communications Secu-
rity, pp. 677–690. ACM (2011)

19. Kikuchi, H.: Private revocation test using oblivious membership evaluation proto-
col. In: 3rd Annual PKI R&D Workshop. Citeseer (2004)

20. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS, p. 364. IEEE (1997)

21. Lim, H.W., Tople, S., Saxena, P., Chang, E.C.: Faster secure arithmetic computa-
tion using switchable homomorphic encryption. IACR Cryptology ePrint Archive
2014/539 (2014)

22. Mittal, P., Olumofin, F.G., Troncoso, C., Borisov, N., Goldberg, I.: PIR-Tor: scal-
able anonymous communication using private information retrieval. In: USENIX
Security Symposium (2011)

https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-540-27800-9_5
https://doi.org/10.1007/978-3-540-27800-9_5
http://eprint.iacr.org
https://doi.org/10.1007/978-3-319-30303-1_2
https://doi.org/10.1007/978-3-319-30303-1_2
https://doi.org/10.1007/3-7643-7394-6_2
https://doi.org/10.1007/3-7643-7394-6_2
https://doi.org/10.1007/978-3-319-08506-7_4
https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1007/978-3-642-10628-6_28


Similarity Based Interactive Private Information Retrieval 169

23. Olumofin, F., Goldberg, I.: Privacy-preserving queries over relational databases.
In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 75–92.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14527-8 5

24. Olumofin, F., Goldberg, I.: Revisiting the computational practicality of private
information retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–
172. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27576-0 13

25. Ostrovsky, R., Skeith, W.E.: A survey of single-database private information
retrieval: techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71677-8 26

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

27. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
28. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull.

24(4), 35–43 (2001)

https://doi.org/10.1007/978-3-642-14527-8_5
https://doi.org/10.1007/978-3-642-27576-0_13
https://doi.org/10.1007/978-3-540-71677-8_26
https://doi.org/10.1007/978-3-540-71677-8_26
https://doi.org/10.1007/3-540-48910-X_16


A Secure and Efficient Implementation of the
Quotient Digital Signature Algorithm (qDSA)

Armando Faz-Hernández(B), Hayato Fujii, Diego F. Aranha, and Julio López

Institute of Computing, University of Campinas,
1251 Albert Einstein, Cidade Universitária, Campinas, São Paulo, Brazil

{armfazh,dfaranha,jlopez}@ic.unicamp.br, hayato@lasca.ic.unicamp.br

Abstract. Digital signatures provide a means to publicly authenticate
messages sent over an insecure channel. Recently, the Quotient Digital
Signature Algorithm (qDSA) was introduced aiming key-compatibility
with the Diffie-Hellman X25519 function. Due to the novelty of qDSA,
there remains a need for an optimized implementation that allows iden-
tifying the real impact of this new algorithm. In this work, we focus on
the secure and efficient implementation of qDSA. By leveraging the use
of precomputation on the right-to-left Joye’s algorithm, we reduced the
running time of signature generation by 30–35%, and the running time
of the verification procedure by 19%. In addition, for increased security,
we show a verification method that validates qDSA signatures unequiv-
ocally. All of these improvements were included into an optimized soft-
ware library targeting 32–bit ARM and 64–bit Intel architectures. The
improved performance achieved in these platforms, it positions qDSA as
a competitive alternative for deploying digital signatures efficiently and
securely.

Keywords: qDSA · Digital signatures · Elliptic curve cryptography ·
Secure software · Montgomery curves

1 Introduction

Digital signatures are public-key cryptographic schemes used to authenticate
messages sent over a public channel; thus, anyone with the knowledge of the
signer’s public-key is able to verify whether a signed message comes from a
reliable source. Digital signatures also provide other security services such as
data integrity, authentication, and non-repudiation. One of the most relevant
applications of digital signatures is the certification of public keys in the Public-
Key Infrastructure (PKI). In this scenario, a trusted authority issues and signs a

The authors acknowledge support during the development of this research from
Intel and FAPESP under project “Secure Execution of Cryptographic Algorithms”
(grant 14/50704-7), and from LG Electronics Inc. under project “Efficient and Secure
Cryptography for IoT”. The fourth author was partially supported by a research
productivity grant from CNPq.

c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 170–189, 2017.
https://doi.org/10.1007/978-3-319-71501-8_10



A Secure and Efficient Implementation of qDSA 171

digital certificate that binds a public key to its owner; then, whenever an entity
claims to be the owner of a public key, the digital certificate must be presented;
therefore, anybody with the knowledge of the authority’s public key is able to
verify the signature of the certificate that attests this relationship.

In the last decades, several digital signature algorithms have been stan-
dardized. In 1998, the National Institute of Standards and Technology (NIST)
approved the use of the Digital Signature Algorithm (DSA) [24] and the RSA
digital signature [34]. Later in 2000, NIST also adopted the use of a digital sig-
nature algorithm that relies on the computational intractability of the elliptic
curve discrete logarithm problem, such a method is known as the Elliptic Curve
Digital Signature Algorithm (ECDSA) [17,25]. Since their standardization, these
algorithms have been widely used in secure communication protocols, such as
the Transport Layer Security (TLS) protocol [33].

More recently, cutting-edge cryptographic research is in pursuit of efficient
digital signature algorithms. The introduction of the Edwards Digital Signa-
ture Algorithm (EdDSA) [2] is an example of the latest progress. EdDSA uses
Edwards curves, which belong to a special family of elliptic curves whose point
addition formulas are more efficient than the formulas used for an arbitrary curve
in the short Weierstrass model. Ed25519 [18] is an instance of EdDSA addressing
the 128-bit security level. Particularly, Ed25519 uses an Edwards curve derived
from the Montgomery curve known as Curve25519 [1]. This latter curve was
intended to accelerate the key exchange protocol leading to the Diffie-Hellman
X25519 function [41]. Although Ed25519 and X25519 can be used in conjunc-
tion benefiting from the common prime field arithmetic, the keys used in each
protocol are not entirely compatible.

To make this compatibility possible, novel alternatives were derived such
as the XEdDSA signature scheme [30]. In the past few months, an alternative
approach was proposed by Renes and Smith [32], who introduced a new signature
scheme based on Curve25519. They named this scheme as the Quotient Digital
Signature Algorithm (qDSA) because scalar point multiplications are performed
on an algebraic variety generated by the quotient of an algebraic curve.

The most salient properties of qDSA are: first, it allows to use X25519’s
keys (without modification) for signing; and second, elliptic curve operations
are performed using only the x-coordinate of points (provided by the use of
Montgomery elliptic curves). On the opposite side, given a qDSA signature, it
is easy to obtain a second signature that also passes the verification procedure.
Although this fact does not represent an attack per se, it does open a breach to
a misuse of the cryptographic scheme that could potentially become an effective
attack [7,8]. Therefore, there is a need for methods that allows verifying qDSA’s
signatures unequivocally.

Contributions. In view of the current scenario, our main contribution focuses on
the secure and efficient software implementation of qDSA. On the security side,
we provide a verification method that validates (without ambiguity) the correct
signature of a message, and we also analyze the overheads on space and time
introduced by our approach. On the efficiency side, we show a technique that



172 A. Faz-Hernández et al.

accelerates the key generation, signing, and verification procedures. This speedup
was achieved as a consequence of employing precomputed look-up tables during
the evaluation of the right-to-left Joye’s algorithm [19], using a similar app-
roach to the one introduced by Oliveira et al. [29]. Due to the novelty of qDSA,
there is a need for an optimized implementation beyond the one developed by
qDSA’s authors [32]. For this reason, we focus on the development of a software
library that supports both 32-bit ARM processors (Cortex M4, Cortex A7 and
Cortex A15 micro-architectures) and 64–bit Intel processors (Haswell and Sky-
lake micro-architectures). For all of these architectures, we use optimized prime
field arithmetic and elliptic curve operations leading to an efficient and secure
implementation of the qDSA signature scheme. The source code is available at:
[http://github.com/armfazh/qdsa-space17].

Regarding the scalar point multiplication algorithm presented in [29], it
requires the use of points that are in small subgroups of the elliptic curve,
i.e. low-order points. An attacker can leverage the use of low-order points to
weaken the security of a implementation; for example, by means of side-channel
attacks [9], or by exploiting vulnerabilities on unsecure implementations, like
the ones found in some cryptographic currencies [37]. For this reason and as
a side result, we describe a technique that avoids low-order points during the
calculation of scalar point multiplications.

The remainder of this document is divided as follows. In Sect. 2, we review
the qDSA scheme and the parameters used in our implementation. In Sect. 3, we
show how to accelerate the calculation of fixed-point multiplications. In Sect. 4,
we present a new verification procedure. In Sect. 5, we report the results of the
performance benchmark of our software library. Finally, in Sect. 6, we point out
some concluding comments.

2 The Quotient Digital Signature Algorithm

The Quotient Digital Signature Algorithm (qDSA) is a Schnorr-like signature
scheme [35] that operates over a Kummer variety K. This variety comes from
the quotient of an elliptic (or hyper-elliptic) curve E as K = E/〈±1〉, i.e. for the
case of elliptic curves, the points P,−P ∈ E are mapped to a single element in
E/〈±1〉. Although this mapping does not preserve the group structure of E, it is
still possible to compute multiplications by integers. When qDSA is instantiated
with elliptic curves the Kummer variety resultant is a one-dimensional projective
space P

1(Fp), also known as the x-line (see [6,32] for more details).
In this section, we revisit elliptic curve operations on Montgomery curves;

then, we detail the qDSA signature scheme together with the instance generated
from Curve25519’s parameters.

2.1 Arithmetic of Montgomery Curves

Let Fp be a prime field, a Montgomery elliptic curve is defined over Fp as:

EA,B/Fp : By2 = x3 + Ax2 + x, (1)

http://github.com/armfazh/qdsa-space17


A Secure and Efficient Implementation of qDSA 173

where A,B ∈ Fp, A2 �= 4, and B �= 0. The set of solutions of this equation
forms a commutative group having as identity the element O, which is known
as the point at infinity. Hence, given two points P and Q, we can obtain a third
point R such that R = P + Q. The inverse of a point P = (x, y) is obtained as
−P = (x,−y). For these curves, the order of the group is always divisible by
four [22]. Given an n-bit integer k and a point P , the scalar point multiplication
is defined as kP = sgn(k)

∑n−1
i=0 2ikiP , where ki is the i-th bit of |k|.

For adding points, Montgomery found efficient formulas that operate over
the x-coordinate of points [22]. In order to apply these operations the elliptic
curve must be embedded on a projective space. Let P2(Fp) be a projective space
of dimension two, then the projective representation of a point P = (xP , yP ) is
(λXP : λYP : λZP ), such that λ �= 0, xP = XP /ZP , and yP = YP /ZP . Mont-
gomery noted that, in the projective space, a point addition can be calculated
using only the x-coordinate of the points. Therefore, the following function maps
elliptic curve points to elements in the Kummer variety E/〈±1〉 as follows:

E → E/〈±1〉 ∼= P
1(Fp)

(XP : YP : ZP ) �→ (XP : ZP )
O �→ (1 : 0)

. (2)

Let P = (XP : ZP ) and Q = (XQ : ZQ) be two points mapped into the Kum-
mer variety. Montgomery devised a formula for computing differential additions
(dadd); thus, given P , Q, and R = P − Q (all in projective coordinates) the
differential addition formula computes P +R Q = (XP+RQ : ZP+RQ) as follows:

XP+RQ = ZR(XPXQ − ZPZQ)2,
ZP+RQ = XR(XPZQ − ZPXQ)2. (3)

For the particular case when the points to be added are equal, we have a point
doubling (doub) denoted as 2P = (X2P : Z2P ) and calculated as follows:

X2P = (XP
2 − ZP

2)2,
Z2P = 4XPZP (XP

2 + AXPZP + ZP
2).

(4)

Based on (3) and (4), Montgomery also introduced an algorithm for comput-
ing scalar point multiplications. The well-known Montgomery ladder algorithm
(Algorithm 1) computes the x-coordinate of kP , given the x-coordinate of P
and an n-bit integer scalar k. The cost of Algorithm 1 is mainly determined by
the number of operations performed in each iteration; hence, Montgomery lad-
der algorithm takes one doubling operation and one differential addition per bit
of k.

Algorithm 1 uses an auxiliary function cswap(b, U, V ), which interchanges
the values of U and V whenever b = 1, otherwise points are not modified.
Since this function could introduce a time variability in its execution, cswap
must be securely implemented by adding countermeasures that prevent of, for
example, timings attacks [4,20]. Consequently, we implemented cswap using



174 A. Faz-Hernández et al.

Algorithm 1. Montgomery Ladder Algorithm.
Input: k ∈ Z such that k > 0, and P = (XP : ZP ).
Output: kP = (XkP : ZkP ).
1: Let (kn−1 = 1, . . . , k0)2 be the binary representation of k.
2: Initialize Q0 ← 2P , Q1 ← P .
3: for i ← n − 2 to 0 do
4: (Q0, Q1) ← cswap(ki ⊕ ki+1, Q0, Q1)
5: (Q0, Q1) ← (doub(Q0),dadd(Q0, Q1, P )

)
⁄⁄Q0 ← 2Q0, Q1 ← Q0 +P Q1

6: end for
7: (Q0, Q1) ← cswap(k0, Q0, Q1)
8: return Q0 ⁄⁄Return also Q1 for y-coordinate recovery.

Boolean operations; thus, assuming U and V are n-bit strings cswap is computed
as follows:

(U ′, V ′) = cswap(b, U, V )
=

(
(¬M ∧ U) ⊕ (M ∧ V ), (M ∧ U) ⊕ (¬M ∧ V )

)
,

(5)

where M is an n-bit mask initialized to (111 . . . 1)2, i.e. n ones, if b = 1; otherwise
M = (000 . . . 0)2, i.e. n zeros.

2.2 Instantiating qDSA with Montgomery Curves

Domain Parameters of qDSA. Given an integer number N , the size of public
keys is fixed to N bits and the signature’s size is 2N bits. The following set
represents the domain parameters of the signature scheme:

D = {N, p,EA,B , �, G,H}, (6)

where: p is a large prime number such that N ≈ log2(p), EA,B is a Montgomery
elliptic curve defined over Fp, this curve has a large prime subgroup of order �,
G is a point of order �, and H is a hash function producing 2N–bit digests.

A qDSA Instance. Due to the performance features offered by the elliptic curve
named Curve25519 [1], it can also be used to produce an efficient instance of
qDSA; thus, D is specified as:

– Since p = 2255 − 19, we have N = 256.
– The Curve25519 is defined over Fp as E486662,1.
– This curve forms a group of order 8�, where

� = 2252 + 27742317777372353535851937790883648493 (7)

is a prime number.
– A point G = (xG, yG) of order � is fixed as xG = 9 and yG =

√
39420360 ∈ Fp

such that yG is odd.
– Regarding the cryptographic hash function, the authors of qDSA selected

an extendable-output function belonging to the Secure Hash Algorithm v3
(SHA3) standard [26]; therefore, they selected H as the SHAKE128 function
fixing its output size to 512 bits.



A Secure and Efficient Implementation of qDSA 175

2.3 Digital Signature Operations

The qDSA scheme consists of three algorithms: key generation (Algorithm2), sig-
nature generation (Algorithm 3), and signature verification (Algorithm4). This
latter procedure requires an auxiliary function (Algorithm5) that it will be
revised in Sect. 4.

Algorithm 2. Key generation.
Input: D, the domain parameters.
Output: (d0, d1) ∈ {0, 1}2N is a private

key, and xQ ∈ Fp is a public key.

1: d
$←− {0, 1}N

2: (h2N−1, . . . , h0)2 ← H(d)
3: d0 ← (h2N−1, . . . , hN )2
4: d1 ← (hN−1, . . . , h0)2
5: Q = (XQ : ZQ) ← d0G ⁄⁄Alg. 7.
6: xQ ← XQ/ZQ

7: return (d0, d1) and xQ

Algorithm 3. Signature generation.
Input: (d0, d1) and xQ are the signer’s

keys; and M ∈ {0, 1}∗ is a message.
Output: (xR ‖ s) is the signature of M ,

where xR ∈ Fp and s ∈ {0, 1}N .

1: r ← H(d1 ‖ M) mod �
2: R = (XR : ZR) ← rG ⁄⁄Alg. 7.
3: xR ← XR/ZR

4: h ← H(xR ‖ xQ ‖ M)
5: s ← r − hd0 mod �
6: return (xR ‖ s)

Algorithm 4. Signature verification.
Input: xQ is the public key of the signer,

(xR ‖ s) is a signature, and
M ∈ {0, 1}∗ is a message.

Output: True, if the signature is valid;
otherwise, False.

1: Q ← (xQ : 1)
2: h ← H(xR ‖ xQ ‖ M) mod �
3: R0 ← sG ⁄⁄Alg. 7.
4: R1 ← hQ ⁄⁄Alg. 1.
5: return Check(xR, R0, R1) ⁄⁄Alg. 5.

Algorithm 5. Check xR∈{x(P ±Q)}.
Input: xR ∈ Fp, and (P, Q) are elliptic

curve points in projective coordinates.
Output: True, if xR ∈ {x(P ± Q)}; oth-

erwise, False.
1: Let f(x) ← f2x

2 + f1x + f0 such that
fi are defined as in Equation (10).

2: if f(xR) = 0 then
3: return True

4: else
5: return False

6: end if

By analyzing the elliptic curve operations required by qDSA, it was noted
that the running time is dominated by the computation of scalar point multipli-
cations. Consequently, we focused on the acceleration of this operation. Notice
that a multiple of the base point G is calculated in each qDSA operation. Since
G is fixed for the entire scheme, then we can precompute a table that stores some
multiples of G. Hence, a scalar multiplication algorithm can be modified to look
up in the table and to retrieve multiples of G for calculating kG; this scenario
is commonly known as a fixed-point multiplication, and it will be addressed in
the next section.

3 Accelerating Fixed-Point Multiplications

In the open literature, there exist specialized algorithms that accelerate the cal-
culation of fixed-point multiplications. In the general setting, the most used



176 A. Faz-Hernández et al.

algorithm is the Comb technique [21], which arranges the bits of k in a matrix
form, then the point multiplication algorithm interprets bit-columns as indexes
to look up in the precomputed table. Several fixed-point multiplication algo-
rithms were derived from the Comb technique, for example [10,11,14,15], among
others.

Comb-based algorithms have in common that indexes are directly derived
from the bits of the scalar. This implies that when the scalar is secret, every
access to the look-up table must be protected; otherwise, an attacker could
extract some bits of the scalar by correlating variations in the latency of access
to the cache memory. This kind of attack is known as a cache attack [40], which
in practice have been a successful method for recovering secret keys from insecure
implementations of tabled-based algorithms.

A common countermeasure to protect look-up table queries consists on using
a uniform accessing pattern. Hence, in spite of it occurs variations on the latency
of cache memory accessing, the attacker will not be able to determine from which
part of the table the requested entry was retrieved. However, in some cases
the cost of adding countermeasures impacts negatively on the performance of
point multiplication. A desirable solution for this scenario would be an algorithm
that uses non-secret indexes for accessing to the look-up table. In the following
section, we will show an algorithm that satisfies these conditions.

3.1 A Fixed-Point Multiplication Algorithm with Non-secret
Indexes

In 2007, Joye presented right-to-left algorithms to compute scalar point multipli-
cations [19]. As their name suggests, these algorithms scan the bits of the scalar
from the least- to the most-significant bit, unlike conventional methods such as
the double-and-add algorithm or the Montgomery ladder algorithm. Moreover,
Joye’s algorithm uses a regular execution pattern of elliptic curve operations
and without using dummy operations, these features aid on the prevention of
timings attacks [20] and fault-based attacks [3,42]. Joye’s algorithm has been
applied on the implementation of both Weierstrass curves [13] and Koblitz binary
curves [28,38].

More recently, Oliveira et al. [29] adapted the right-to-left Joye’s algorithm
to use precomputed look-up tables with the purpose of accelerating fixed-point
multiplications (see Algorithm 6). The central operation of Algorithm6 is to add
some precomputed multiples of G in two accumulators, namely Q0 and Q1. The
bits of the scalar k determine which accumulator must be updated in such a
way that, at the i-th iteration, Algorithm6 accumulates the point 2iG into Q0

using a differential addition (with Q1 as the difference) whenever ki ⊕ ki−1 = 0;
otherwise, it accumulates 2iG into Q1 also using a differential addition (but
this time with Q0 as the difference). Observe that Algorithm 6 is composed of
evaluations of differential additions, since no point doublings are required at all.
Notice that in either case, one operand of the differential addition is known in
advance. Hence, assuming Q is the known point, the differential addition can be
calculated saving one multiplication (as it was proposed in [29]). Let R = P −Q



A Secure and Efficient Implementation of qDSA 177

Algorithm 6. Right-to-left fixed-point multiplication algorithm (cf. [29]).
Input: (k, G, S), where k ∈ Z� and k �= 0; G is a point of order �; and S is a point of

order 4 such that S /∈ 〈G〉.
Precomputation: A look-up table storing (μ0, . . . , μn−1) as defined in Eq. (9).
Output: 8kG = (X8kG : Z8kG).

1: Let (kn−1, . . . , k0)2 be the n-bit binary repr. of k such that n = 	log2(�)
 + 1.
2: Initialize Q0 ← S, Q1 ← G − S, and define k−1 = 0.
3: for i ← 0 to n − 1 do
4: (Q0, Q1) ← cswap(ki ⊕ ki−1, Q0, Q1)
5: Q0 ← dadd*(μi, Q0, Q1) ⁄⁄Q0 ← Q0 +Q1 2iG
6: end for
7: Q1 ← doub(Q1)
8: Q1 ← doub(Q1)
9: Q1 ← doub(Q1)

10: return Q1

and μ = (xQ + 1)(xQ − 1)−1 ∈ Fp; then, we denote with dadd* the following
formula:

XP+RQ = ZR [(XP + ZP ) + μ(XP − ZP )]2 ,

ZP+RQ = XR [(XP + ZP ) − μ(XP − ZP )]2 .
(8)

To compute scalar point multiplications Algorithm 6 requires a precomputed
table storing one entry per bit of the scalar. Let n = 
log2(�)� + 1, then the
look-up table will store the values (μ0, . . . , μn−1), where μi is defined as:

μi = (xi + 1)(xi − 1)−1 ∈ Fp, such that (xi, yi) = 2iG. (9)

Remark 3.1. To retrieve a point from the look-up table, the index used is actually
a counting variable, and most importantly, this index is not derived from the
secret scalar. Thus, a query is performed by directly choosing the correspondent
value from the table. This enables a faster execution in contrast to Comb-based
methods which require a secure (and sometimes costly) look-up table accessing.

By using Oliveira et al.’s algorithm, we expect an increase on the performance
of fixed-point multiplications. Note that in each iteration, only one differential
addition is processed in contrast with the (left-to-right) Montgomery ladder
and the right-to-left Joye’s algorithm, which require an extra point doubling
per iteration. Before applying Oliveira et al.’s algorithm in the calculation of
fixed-point multiplications, in the following section, we will introduce a set of
modifications to avoid the use of low-order points.

3.2 Circumventing the Use of Low-Order Points

Attention is required during the initialization of the accumulators Q0 and Q1

in Algorithm 6, since the formula for differential point addition is not complete.
This means that for adding P +RQ such that R = P −Q, the differential addition
formula fails whenever R ∈ {O, (0, 0)}.



178 A. Faz-Hernández et al.

We recall that the goal of Algorithm 6 in Oliveira et al.’s work [29] is to
calculate the point 8kG required by the Diffie-Hellman X25519 function. For
this reason, Algorithm 6 initializes accumulators with Q0 ← S and Q1 ← G − S
such that S /∈ 〈G〉. For the case of Curve25519, S was chosen as a point of
order four (i.e. 4S = O). Thus, Algorithm 6 will compute S + kG, and after
applying three consecutive point doublings, the point S will vanish resulting in
8kG. Although this procedure is correct, some vulnerabilities could appear due
to a misuse of low-order points [9,37]. Therefore, it is imperative to protect the
implementation against this potential threat.

To avoid the use of low-order points, we show a technique that accomplishes
this requirement. Our technique relies on the observation that if the order of G is
odd, like in the case of Curve25519; then, the point S is not required any more.
Notice that replacing S by O in Algorithm 6 causes a failure when the least-
significant bit of k is zero; nonetheless, it always computes the correct point
multiplication whenever k is odd. This observation indicates that Algorithm6
with S = O computes scalar point multiplications only for odd scalars. There-
fore, we introduce a modification in Algorithm6 that supports even and odd
scalars, and avoids using low-order points.

Let � be the order of G. The key observation is that if � is odd, then the
parity of an element in {1, . . . , �−1} determines a bijection between the disjoint
sets of even and odd elements.
Proposition 3.1. Let � be an odd number. For any value a such that 0 < a < �
define b = � − a; we have that if a is even, then b is odd.

Proof. First, note that b is bounded as 0 < b < �. Since a < �, then b = �−a > 0.
Suppose b ≥ �, then by the definition of b we have that �−a ≥ �, i.e. a ≤ 0, which
is a contradiction, since a > 0; thus, 0 < b < �. Now, since � is odd and a is even,
then there exist some i, j ∈ Z such that b = � − a = 2i + 1 − 2j = 2(i − j) + 1;
showing that b is odd. ��
Using this proposition, we can calculate kG as k′G, for k′ = � − k, whenever
the scalar k is even. Note that if this operation was computed using points in
the affine space, then the point k′G must be inverted to obtain kG. Fortunately,
this is not required since we are operating with elements in the Kummer variety,
which maps kG and k′G to the same element in E/〈±1〉. All of these observations
led to Algorithm 7, which supports both even and odd scalars, and does not
require low-order points in the computation of the fixed-point multiplication.

Among the changes made, Algorithm 7 starts by computing r = � − k and
then selects the scalar between r and k. This selection could introduce a time
variability in its execution, and consequently, it must be processed using a regular
execution pattern. This task can be achieved using the cswap function as shown
in line 2 of Algorithm 7. Thus after computing a conditional swapping, r will be
odd allowing to start the main-loop from the second iteration.

Finally, we apply Algorithm7 to compute multiples of G during the qDSA
signature scheme. Since the fixed-point multiplication appears in all operations
of the qDSA scheme, we improve the running time of the entire scheme. Section 5
reveals the impact on performance obtained by our software implementation.



A Secure and Efficient Implementation of qDSA 179

Algorithm 7. Our proposed right-to-left fixed-point multiplication algorithm
without using low-order points.
Input: (k, G), where k ∈ Z� and k �= 0; and G is a point of odd-order �.
Precomputation: A look-up table storing (μ0, . . . , μn−1) as defined in Eq. (9).
Output: kG = (XkG : ZkG).
1: r ← � − k
2: (k, r) ← cswap(k0, k, r)
3: Let (rn−1, . . . , r0 = 1)2 be the n-bit binary repr. of r such that n = 	log2(�)
 + 1.
4: Initialize Q0 ← G, Q1 ← G.
5: for i ← 1 to n − 1 do
6: (Q0, Q1) ← cswap(ri ⊕ ri−1, Q0, Q1)
7: Q0 ← dadd*(μi, Q0, Q1) ⁄⁄Q0 ← Q0 +Q1 2iG
8: end for
9: (Q0, Q1) ← cswap(rn−1, Q0, Q1)

10: return Q1 ⁄⁄Return also Q0 for y-coordinate recovery.

4 A New qDSA Signature Verification Method

Given an alleged signature (xR ‖ s) of a message M , the qDSA signature veri-
fication procedure must determine whether xR is the x-coordinate of R0 + R1,
where R0 = sG and R1 = hQ for h defined as in Algorithm 4. For that purpose,
the authors of qDSA provided Algorithm5, which checks a weaker relation. Such
a method accepts the signature whenever f(xR) = 0, where f is the quadratic
polynomial f(x) = f2x

2 + f1x + f0, such that:

f2 = (xR0 − xR1)
2,

f1 = −2(xR0 xR1 + 1)(xR0 + xR1) − 4AxR0 xR1 ,
f0 = (xR0 xR1 − 1)2.

(10)

This method works since one of the roots of f is xR, however one disadvantage
of this approach is that there is another value x′ that also passes the verifica-
tion procedure. Specifically, x′ is the other root of f and corresponds to the
x-coordinate of R0 − R1. Therefore, M has another valid signature (x′ ‖ s).

Although a low adversarial advantage can be exploited from this relaxed
verification method, it has a high risk to introduce a misuse of the cryptographic
scheme, such as the ones reported in [7,8,16]. To avoid potential issues in future
implementations, we looked for an efficient method that verifies qDSA signature
of a message unequivocally.

4.1 Unequivocal Techniques for Signature Verification

Let xS and xD be the x-coordinate of R0 +R1 and R0 −R1, respectively. Given
an alleged signature (xR ‖ s), we look for a relation that allows us to deter-
mine whether xR = xS from the coordinates of R0 and R1, instead of verifying



180 A. Faz-Hernández et al.

whether xR ∈ {xS , xD} as Algorithm 5 does. Thus, inspired by Montgomery’s
insights [22], we derive the following equivalences:

xS + xD = β/α, (11)
xS × xD = γ/α, (12)
xS − xD = δ/α, (13)

such that α, β, γ and δ are defined as follows1:

α = (xR0 − xR1)
2,

β = 2(xR0 xR1 + 1)(xR0 + xR1) + 4AxR0 xR1 ,
γ = (xR0 xR1 − 1)2,
δ = −4ByR0yR1 .

(14)

The coefficients of f can be derived by solving Eq. (11) for xD, and plugging
in this into Eq. (12), what results in a second-degree polynomial function of xS .
Thus, f can also be written as f(x) = αx2−βx+γ. We note that solving Eq. (11)
for xS and substituting this into Eq. (12) yields into a second-degree polynomial
function of xD that has the same coefficients as f . This means that both xS

and xD are the roots of f . Therefore, f does not help to distinguish between xS

and xD.
Our key idea is to obtain a (linear) polynomial that has a zero in xS . For that

end, we start by solving Eq. (13) for xS and substituting this into Eq. (12); thus
we obtain g0(x) = αx2 − δx−γ. Analogously, we apply the same procedure, but
this time solving for xD, and we obtain g1(x) = αx2+δx−γ. So far, we have that
g0 �= g1, which means that by using g0, we are now able to distinguish between
xS and xD, since g0(xS) = 0 and g0(xD) �= 0. However, g0 has zeros in xS and
in −xD. Now, using f(x) = (x − xS)(x − xD) and g0(x) = (x − xS)(x + xD), we
show how to unequivocally identify xS . Note that f(xS) = 0 and g0(xS) = 0;
therefore, we define:

h0(x) = (f + g0)/x = 2αx − δ − β, and
h1(x) = f − g0 = (δ − β)x + 2γ,

(15)

such that xS is a zero of both h0 and h1. Listing 4.1 shows a SageMath [31]
computer script that validates the formulas used in this section. In summary,
either h0 or h1 aids to determine the validity of an alleged signature.

Our signature verification method proceeds as follows: given (xR ‖ s), it
calculates α, β, and δ from the coordinates of R0 and R1; then, it declares a
signature as valid if h0(xR) = 0 (alternatively, it calculates γ instead of α and
accepts the signature if h1(xR) = 0). We have shown two relations that allow to
verify a signature unequivocally.

4.2 Trade-Off Analysis of Our Signature Verification Method

In contrast to the original signature procedure, our method requires calculating
the δ term, which implies the knowledge of the y-coordinate of both R0 = sG
and R1 = hQ.
1 To avoid inversions, these terms can also be calculated using projective coordinates.



A Secure and Efficient Implementation of qDSA 181

1 QQ = Rationals()

2 R.<x1,y1,x2,y2,A,B> = PolynomialRing(QQ,6,"x1,y1,x2,y2,A,B")

3 I = R.ideal([

4 B*y1**2-x1**3-A*x1**2-x1,

5 B*y2**2-x2**3-A*x2**2-x2 ])

6 FQuo = Frac(R.quotient(I))

7 evaluate = lambda F,X: FQuo(F.subs(x=X).rational_simplify())

8

9 def addMontgomery(X1,Y1,X2,Y2):

10 global A, B

11 Xs = B*((Y1-Y2)/(X1-X2))**2-A-X1-X2

12 Ys = (2*X1+X2+A)*(Y2-Y1)/(X2-X1)-B*(Y2-Y1)**3/(X2-X1)**3-Y1

13 return Xs,Ys

14

15 xs,ys = addMontgomery(x1,y1,x2,y2)

16 xd,yd = addMontgomery(x1,y1,x2,-y2)

17

18 alpha = (x1-x2)**2

19 betta = 2*(x1*x2+1)*(x1+x2)+4*A*x1*x2

20 gamma = (x1*x2-1)**2

21 delta = -4*B*y1*y2

22

23 relAdd = FQuo(xs+xd)

24 relPro = FQuo(xs*xd)

25 relDif = FQuo(xs-xd)

26 # Verifying Relations

27 assert( relAdd == betta/alpha )

28 assert( relPro == gamma/alpha )

29 assert( relDif == delta/alpha )

30 # Renes&Smith’s f polynomial and testing its zeros

31 f = alpha*x**2-betta*x+gamma

32 assert( evaluate(f,xs) == evaluate(f,xd) == 0 )

33 # Defining g0 and g1 and testing their zeros

34 g0 = alpha*x**2-delta*x-gamma

35 g1 = alpha*x**2+delta*x-gamma

36 assert( evaluate(g0, xs) == evaluate(g0,-xd) == 0 )

37 assert( evaluate(g1,-xs) == evaluate(g1, xd) == 0 )

38 # Defining h0 and h1 and testing their zeros

39 h0 = 2*alpha*x-delta-betta

40 h1 = (delta-betta)*x+2*gamma

41 assert( evaluate(h0,xs) == evaluate(h1,xs) == 0 )

Listing 4.1: SageMath script for the validation of formulas in Q.

One can use the Okeya-Sakurai’s [27] method for recovering the y-coordinate
of R0 = sG and R1 = hQ. This technique requires some auxiliary points, namely
R2 = (s+1)G and R3 = (h+1)Q, which are also computed by the Montgomery
ladder algorithm (Algorithm1). Thus, following Theorem 2 of [27], we have:

yR0 = [(xR0xG + 1)(xR0 + xG + 2A) − 2A − (xR0 − xG)2xR2 ](2ByG)−1,
yR1 = [(xR1xQ + 1)(xR1 + xQ + 2A) − 2A − (xR1 − xG)2xR3 ](2ByQ)−1; (16)

then, δ can be written as δ = −4ByR0yR1 = (ByGyQ)−1T , where T is:

T = − [
(xR0xG + 1)(xR0 + xG + 2A) − 2A − (xR0 − xG)2xR2

]

× [
(xR1xQ + 1)(xR1 + xQ + 2A) − 2A − (xR1 − xG)2xR3

]
.

(17)



182 A. Faz-Hernández et al.

Algorithm 8. Unequivocally qDSA Verification Procedure.
Input: (xR ‖ s) is a signature, M ∈ {0, 1}∗ is a message, and (xQ ‖ yQ(0)) is the public

key of the signer.
Constants: (xG, yG) are the affine coordinates of the generator G ∈ EA,B .
Output: True, if the signature is valid; otherwise, False.
1: h ← H(xR ‖ xQ ‖ M) mod �
2: Q ← (xQ : 1), R0 ← sG, R1 ← hQ
3: {y′, y′′} ← ±√B−1(xQ

3 + AxQ
2 + xQ) ∈ Fp.

4: Set yQ ← y′, if y′ ≡ yQ(0) mod 2; otherwise, yQ ← y′′.
5: Calculate α, β, and δ as in Eq. (14).
6: if h0(xR) = 0 then ⁄⁄h0 as defined in Eq. (15).
7: return True

8: else
9: return False

10: end if

The most important thing to be noticed here is that yGyQ must be known
by the verifier. There are several alternatives to obtain such value:

– The simplest one is to append yGyQ (or (ByGyQ)−1) to the public key; hence
the calculation of δ is straightforward, however the public-key’s size doubles.

– Alternatively, the public key could contain an extra bit yQ(0), which is
the least-significant bit of yQ; thus, the verification procedure calculates
{y′, y′′} = ±√

B−1(xQ
3 + AxQ

2 + xQ); then, if y′ ≡ yQ(0) mod 2, it sets
yQ ← y′; otherwise it assigns yQ ← y′′. After that, it calculates yGyQ.
Note that yG must be also known, fortunately, this is a fixed parameter of
the scheme. This method has the advantage that the public key size is not
increased significantly; for example using Curve25519, (xQ ‖ yQ(0)) fits in 256
bits. However, the cost of verification increases by computing one square-root
and a few multiplications. This approach is summarized in Algorithm8.

We want to remark that for verifying a qDSA signature unambiguously, it is
mandatory that the verification method knows the y-coordinate of G (which is
a fixed parameter) and the y-coordinate of Q as inputs.

5 Performance Results and Comparisons

We focused on the development a software library that supports the 32-bit ARM
architecture, which is designed for embedded devices, and the 64-bit Intel archi-
tecture, which is wide-spread distributed from commodity computers to high-end
servers. For measuring execution times, we use the clock cycle counter available
in each architecture. Besides that on Intel processors, the advanced hardware
technologies Intel Turbo Boost, Intel Speed Step, and Intel Hyper-Threading
were disabled to obtain stable and reproducible measurements.



A Secure and Efficient Implementation of qDSA 183

5.1 Performance of Prime Field Arithmetic

For the arithmetic operations over F2255−19, we use an optimized library for Cor-
tex M4 ARM-based processors taken from [12]; and for the 64-bit Intel proces-
sors, we use the optimized library available in [29]. In Table 1, we summarize the
clock cycle measurements of the arithmetic operations.

Table 1. Latency (in clock cycles) of the arithmetic operations on F2255−19. The last
columns list the ratio of the latency between square and multiplication, and the ratio
between inversion and multiplication.

Archi-
tecture

Micro-
architecture

Processor
model

Arithmetic operations Ratios

Add Mul Sqr Inv Sqrt S/M I/M

32-bit Cortex M4 Teensy 3.2 85 278 250 66,637 132,416 0.90 239.7

Cortex A7 Odroid XU4 49 290 233 63,095 132,785 0.80 217.6

Cortex A15 Odroid XU4 36 225 139 41,978 97,242 0.62 186.6

64-bit Intel Haswell Core i7-4770 8 64 48 14,925 29,344 0.75 233.2

Intel Skylake Core i7-6700K 6 48 39 11,090 22,598 0.81 231.0

The 32–bit implementation of the integer multiplier uses the full consecutive
operand caching technique [36], which in turn utilizes multiply-and-accumulate
instructions (UMLAL/UMAAL instructions). The scheduling of these instructions
was ordered in such a way that reduces the presence of carry values dur-
ing the evaluation of the product. The 64–bit implementation of the inte-
ger multiplier followed the operand scanning technique, which is highly com-
patible with the MULX instruction. For Skylake, the latency of the multiplier
was improved even more, by using the newest integer addition instructions
(ADCX/ADOX instructions).

5.2 Performance of Our Optimized Implementation of qDSA

First of all, we want to highlight the acceleration introduced by the right-to-left
fixed-point multiplication algorithm presented in Sect. 3. To that end, we mea-
sured the percentage of improvement introduced by Algorithm7 in the execution
time of the qDSA operations. Table 2 shows the timings obtained on a Cortex
M4 and on an Intel Haswell processor.

As it can be noted, the timings for computing qDSA operations were sig-
nificantly reduced; the impact was more evident on the key generation and the
signing procedures achieving, respectively, a 35–40% and 30–34% reduction in
the execution time. Likewise the verification procedure was accelerated by 19%.

Regarding memory footprint, the last row of Table 2 shows the overhead
introduced by integrating the use of precomputation. The code’s size (includ-
ing the 8 KB table stored in ROM) of our implementation was increased by
around 36% and 44% on the 64-bit and 32-bit platforms, respectively. We recall



184 A. Faz-Hernández et al.

Table 2. Performance comparison of the qDSA operations by replacing the Mont-
gomery ladder algorithm (Algorithm 1) by the right-to-left fixed-point multiplication
algorithm (Algorithm 7). For each processor, the third column shows the percentage of
improvement achieved. Entries represent 103 clock cycles, except the last row.

Processor ARM Cortex M4 Intel Haswell

Scalar point mult. Algorithm1 Algorithm7 Savings Algorithm1 Algorithm7 Savings

Key generation 927.9 604.9 34.8% 171.5 103.8 39.5%

Signing 1,059.1 736.2 30.5% 197.3 130.1 34.1%

Verification 1,746.2 1,422.8 18.5% 347.3 279.5 19.5%

Code size (bytes) 20,898 30,058 −43.8% 30,037 41,000 −36.4%

Table 3. Summary of the performance rendered by our optimized implementation.
Table entries show the latency, reported in 103 clock cycles, of each qDSA operation.

qDSA operation ARM (32-bit) Intel (64-bit)

Cortex M4 Cortex A7 Cortex A15 Haswell Skylake

Key generation 604.9 538.8 366.5 103.8 86.8

Signing 736.2 652.1 422.7 130.1 114.6

Verification (Algorithm 4) 1,422.8 1,271.7 870.6 279.5 231.1

Verification (Algorithm 8) 1,555.2 1,404.4 967.8 309.6 253.5

that computations aided by precomputation always incur on trade-offs between
space and time; hence, the best approach will depend on several engineering
aspects.

The inclusion of the optimized prime field arithmetic in conjunction with
the use of the fixed-point multiplication algorithm reduced considerably the
execution time in comparison to the original implementation given by qDSA’s
authors [32]. In Table 3, we summarize the timings of our qDSA implementation
measured in several ARM and Intel platforms.

Table 3 also shows the latency of the proposed verification method (Algo-
rithm8) described in Sect. 4. Recall that our method must calculate one square-
root and a few multiplications to recover the y-coordinate of the public key. The
use of our method has an overhead increment from 8% to 10% in the execution
time. This timing penalty is compensated by the security benefits that our ver-
ification method provides, besides it prevents some issues that could appear in
future applications of qDSA.

In Table 4, we show a performance comparison of qDSA with other digital
signature algorithms. As can be seen, the qDSA’s signing procedure has a better
performance than RSA and DSA signature schemes. In addition, qDSA generates
signatures as fast as ECDSA does; however, the qDSA’s verification procedure is
faster than ECDSA’s verification. This positions qDSA as a more efficient alter-
native for deploying digital signatures in contrast with standardized signature
algorithms.



A Secure and Efficient Implementation of qDSA 185

Table 4. Performance comparison of qDSA and other digital signature schemes.

Signature scheme Instance 32-bit ARM Cortex A7 64-bit Intel Haswell

Sign/sec Verify/sec Sign/sec Verify/sec

RSAa 2048 41.3 1,596.9 1,618 36,576

DSAa 2048 146.3 137.9 2,071 1,883

ECDSAa P-256 940.5 250.7 25,344 10,198

EdDSA Ed25519 3,414.6b 1,840.9b 48,701c 17,167c

qDSAd Curve25519 2,148.0 1,001.6 25,109 12,109
aTimings taken using OpenSSL library (v.1.0.2) [39].
bMoon’s implementation [23] using the prime field arithmetic from [12].
cMoon’s implementation [23] compiled for 64-bit architectures.
dThis work.

From the comparison table, one can observe that, in both architectures, the
calculation of Ed25519 signatures is approximately twice as fast as the calcula-
tion of qDSA signatures. One of the reasons for this performance gap relies on
the properties of the elliptic curve model used by each scheme, which imposes
certain limitations on the point multiplication algorithms.

On Edwards curves, the point addition formula is complete and unified. This
allows to associate point additions in many different ways, like in the Comb-based
algorithms; and because of that, the fixed-point multiplication algorithms for
Edwards curves have more degrees of freedom on their construction. For example,
it allows the use of larger look-up tables; this property has been reflected in state-
of-the-art implementations of Ed25519; for instance, Moon’s [23] implementation
uses a look-up table of 24 KB, whereas Chou’s [5] implementation increased look-
up table’s size to 30 KB for further speed up.

On the other hand, the point addition formula for Montgomery curves is not
complete, meanwhile the differential point addition depends on the coordinates
of an auxiliary third point. These facts restrict point multiplication algorithms
to be, in fact, addition-chain evaluations; for example, the Montgomery lad-
der algorithm (Algorithm 1) or the right-to-left Joye’s algorithm [19]. With the
introduction of precomputation in the right-to-left method, the look-up table size
depends now on the size of � (the order of the main elliptic curve subgroup), since
the look-up table stores the sequence (μ0, . . . , μn−1) where n = 
log2(�)� + 1.
Thus, for the case of Curve25519, the look-up table used in our implementation
is not larger than 8 KB, which is a third of the table size used in Ed25519’s
implementations.

Alternatively, qDSA can be also implemented using Edwards curves (through
a birational equivalence with Montgomery curves [6]) for obtaining a perfor-
mance closer to the Ed25519’s one; however, note that our implementation uses
a smaller look-up table, which is a relevant factor that must be noticed when
targeting memory-constrained architectures. We left the Edwards approach as a
future work.



186 A. Faz-Hernández et al.

6 Closing Remarks

The novel Quotient Digital Signature Algorithm was designed with the aim to
provide key compatibility with Diffie-Hellman functions based in Montgomery
curves. These curves are also employed for performing the signature opera-
tions of qDSA; hence, the implementation of qDSA benefits from reusing the
prime field and the elliptic curve arithmetic that support the Diffie-Hellman
protocol.

Like other elliptic curve based schemes, the performance-critical operation of
qDSA is the calculation of scalar point multiplications. To attend to this issue,
we revisited the fixed-point multiplication proposed by Oliveira et al. [29]. One
advantage of this algorithm is the use of precomputed tables, which reduces
the execution time of point multiplications. However, this algorithm operates
with low-order points during its computation, and it must be recalled that an
improper utilization of these points could open a breach to vulnerabilities.

For that reason and with the aim to provide not only an efficient but also a
secure implementation, we showed modifications on Oliveira et al.’s algorithm
that circumvent the use of low-order points. We noticed that whenever k is odd,
the x-coordinate of kP can be calculated without requiring low-order points;
and in the case k is even, the x-coordinate of −kP is calculated instead. In both
cases, the x-coordinate resultant will be the same, since in the Kummer variety,
scalar multiplication is performed regardless the scalar’s sign. Our observations
led to Algorithm 7 which computes fixed-point multiplications on Montgomery
curves faster and does not require low-order points.

Additionally, we derived a new method to verify qDSA signatures unequiv-
ocally. Our method was inspired by Montgomery’s work and revealed than the
public key must contain not only the x-coordinate of Q, but also its y-coordinate;
with this information the verifier will be able to validate signatures unequivo-
cally. This requirement introduces a trade-off between time and space. On the
one hand, if the public key contain both coordinates, then the verification pro-
cedure will remain as efficient as the original method; however, the public key’s
size is increased to double. On the other hand, in order to avoid increasing the
size of keys, the y-coordinate can be encoded into a bit value; nonetheless, the
execution time of the verification procedure increases by 8–10% with respect to
the original method. We remark that opting by the either alternative enables
the unequivocally verification of qDSA signatures, which further prevents against
potential vulnerabilities and the misuse of the original method.

According to the timings obtained in the performance benchmark, it can be
concluded that, for the evaluated platforms, qDSA can be considered as com-
petitive alternative for deploying digital signatures.

Acknowledgments. The authors want to thank the anonymous reviewers of SPACE
2017 conference for the comments given to this research project.



A Secure and Efficient Implementation of qDSA 187

References

1. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

2. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012). https://doi.org/10.1007/
s13389-012-0027-1

3. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 8

4. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceed-
ings of the 12th Conference on USENIX Security Symposium, USENIX
Association, pp. 1–13, August 2003. https://www.usenix.org/conference/
12th-usenix-security-symposium/remote-timing-attacks-are-practical

5. Chou, T.: Sandy2x: new curve25519 speed records. In: Dunkelman, O., Keliher, L.
(eds.) SAC 2015. LNCS, vol. 9566, pp. 145–160. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-31301-6 8

6. Costello, C., Smith, B.: Montgomery curves and their arithmetic. J. Cryptogr.
Eng. (Special Issue on Montgomery Arithmetic) 1–14 (2017). http://dx.doi.org/
10.1007/s13389-017-0157-6

7. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of crypto-
graphic misuse in Android applications. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2013, pp. 73–84.
ACM, New York (2013). http://doi.acm.org/10.1145/2508859.2516693

8. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why Eve and Mallory love Android: an analysis of Android SSL (in)security. In:
Proceedings of the 2012 ACM Conference on Computer and Communications Secu-
rity, CCS 2012, pp. 50–61. ACM, New York (2012). http://doi.acm.org/10.1145/
2382196.2382205

9. Fan, J., Gierlichs, B., Vercauteren, F.: To infinity and beyond: combined attack
on ECC using points of low order. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 143–159. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23951-9 10

10. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves
(extended version). J. Cryptogr. Eng. 5(1), 31–52 (2015). https://doi.org/10.1007/
s13389-014-0085-7

11. Feng, M., Zhu, B.B., Zhao, C., Li, S.: Signed MSB-set comb method for elliptic
curve point multiplication. In: Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC
2006. LNCS, vol. 3903, pp. 13–24. Springer, Heidelberg (2006). https://doi.org/10.
1007/11689522 2

12. Fujii, H., Aranha, D.F.: Curve25519 for the cortex-M4 and beyond. In: Progress
in Cryptology - LATINCRYPT 2017: 5th International Conference on Cryptology
and Information Security in Latin America 2017, Proceedings. LNCS, Springer
International Publishing, September 2017, to appear

13. Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication
on Weierstraß elliptic curves from Co-Z arithmetic. J. Cryptogr. Eng. 1(2), 161
(2011). https://doi.org/10.1007/s13389-011-0012-0

https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/3-540-44598-6_8
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-319-31301-6_8
http://dx.doi.org/10.1007/s13389-017-0157-6
http://dx.doi.org/10.1007/s13389-017-0157-6
http://doi.acm.org/10.1145/2508859.2516693
http://doi.acm.org/10.1145/2382196.2382205
http://doi.acm.org/10.1145/2382196.2382205
https://doi.org/10.1007/978-3-642-23951-9_10
https://doi.org/10.1007/978-3-642-23951-9_10
https://doi.org/10.1007/s13389-014-0085-7
https://doi.org/10.1007/s13389-014-0085-7
https://doi.org/10.1007/11689522_2
https://doi.org/10.1007/11689522_2
https://doi.org/10.1007/s13389-011-0012-0


188 A. Faz-Hernández et al.

14. Hamburg, M.: Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309, May 2012. http://eprint.iacr.org/2012/309

15. Hedabou, M., Pinel, P., Bénéteau, L.: A comb method to render ECC resis-
tant against Side Channel Attacks. Cryptology ePrint Archive, Report 2004/342,
December 2004. http://eprint.iacr.org/2004/342

16. Jager, T., Schwenk, J., Somorovsky, J.: Practical invalid curve attacks on
TLS-ECDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015.
LNCS, vol. 9326, pp. 407–425. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24174-6 21

17. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001). https://doi.org/10.1007/
s102070100002

18. Josefsson, S., Liusvaara, I.: Edwards-Curve Digital Signature Algorithm (EdDSA).
RFC 8032, January 2017. https://dx.doi.org/10.17487/rfc8032

19. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 10

20. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

21. Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 11

22. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987). https://doi.org/10.2307/2007888

23. Moon, A.: Implementations of a fast Elliptic-curve Digital Signature Algorithm,
March 2012. https://github.com/floodyberry/ed25519-donna

24. NIST: Digital Signature Standard (DSS). Technical report FIPS 186–1, National
Institute for Standards and Technology, December 1998

25. NIST: Digital Signature Standard (DSS). Technical report FIPS 186–2, National
Institute of Standards and Technology, January 2000. http://csrc.nist.gov/
publications/fips/archive/fips186-2/fips186-2.pdf

26. NIST: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-
tions. Technical report FIPS-202, National Institute of Standards and Technology,
August 2015. http://dx.doi.org/10.6028/NIST.FIPS.202

27. Okeya, K., Sakurai, K.: Efficient elliptic curve cryptosystems from a scalar mul-
tiplication algorithm with recovery of the y-coordinate on a montgomery-form
elliptic curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 126–141. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44709-1 12

28. Oliveira, T., Aranha, D.F., López, J., Rodŕıguez-Henŕıquez, F.: Fast point multi-
plication algorithms for binary elliptic curves with and without precomputation.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 324–344. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 20

29. Oliveira, T., López, J., Hışıl, H., Faz-Hernández, A., Rodŕıguez-Henŕıquez, F.: How
to (pre-)compute a ladder. In: Selected Areas in Cryptography - SAC 2017: 24th
International Conference, Ottawa, Ontario, Canada, 16–18 August 2017, Revised
Selected Papers, Springer International Publishing, August 2017, to appear

30. Perrin, T.: The XEdDSA and VXEdDSA Signature Schemes. Technical
report, Open Whisper Systems, October 2016. https://whispersystems.org/docs/
specifications/xeddsa/xeddsa.pdf

http://eprint.iacr.org/2012/309
http://eprint.iacr.org/2004/342
https://doi.org/10.1007/978-3-319-24174-6_21
https://doi.org/10.1007/978-3-319-24174-6_21
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://dx.doi.org/10.17487/rfc8032
https://doi.org/10.1007/978-3-540-74735-2_10
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48658-5_11
https://doi.org/10.2307/2007888
https://github.com/floodyberry/ed25519-donna
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://dx.doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1007/3-540-44709-1_12
https://doi.org/10.1007/3-540-44709-1_12
https://doi.org/10.1007/978-3-319-13051-4_20
https://whispersystems.org/docs/specifications/xeddsa/xeddsa.pdf
https://whispersystems.org/docs/specifications/xeddsa/xeddsa.pdf


A Secure and Efficient Implementation of qDSA 189

31. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
7.6) (2017). http://www.sagemath.org

32. Renes, J., Smith, B.: qDSA: small and secure digital signatures with curve-based
Diffie-Hellman key pairs. In: Advances in Cryptology - ASIACRYPT 2017: 23nd
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Hong Kong, China, 3–7 December 2017, December 2017, to appear

33. Rescorla, E., Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, August 2008. https://dx.doi.org/10.17487/rfc5246

34. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.
org/10.1145/359340.359342

35. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

36. Seo, H., Kim, H.: Consecutive operand-caching method for multiprecision multipli-
cation, revisited. J. Inf. Commun. Convergence Eng. 13(1), 27–35 (2015). https://
doi.org/10.6109/jicce.2015.13.1.027

37. Spagni, R.: Disclosure of a Major Bug in CryptoNote Based Curren-
cies, May 2017. Announment on https://getmonero.org/2017/05/17/
disclosure-of-a-major-bug-in-cryptonote-based-currencies.html

38. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodŕıguez-Henŕıquez, F., Hanker-
son, D., López, J.: Speeding scalar multiplication over binary elliptic curves using
the new carry-less multiplication instruction. J. Cryptogr. Eng. 1(3), 187 (2011).
https://doi.org/10.1007/s13389-011-0017-8

39. The OpenSSL Project: OpenSSL: The Open Source toolkit for SSL/TLS, April
2003. www.openssl.org

40. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and
countermeasures. J. Cryptol. 23(1), 37–71 (2010). https://doi.org/10.1007/
s00145-009-9049-y

41. Turner, S., Langley, A., Hamburg, M.: Elliptic Curves for Security. RFC 7748,
January 2016. https://dx.doi.org/10.17487/rfc7748

42. Yen, S.M., Joye, M.: Checking before output may not be enough against fault-
based cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000). https://doi.
org/10.1109/12.869328

http://www.sagemath.org
https://dx.doi.org/10.17487/rfc5246
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/BF00196725
https://doi.org/10.6109/jicce.2015.13.1.027
https://doi.org/10.6109/jicce.2015.13.1.027
https://getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://doi.org/10.1007/s13389-011-0017-8
www.openssl.org
https://doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1007/s00145-009-9049-y
https://dx.doi.org/10.17487/rfc7748
https://doi.org/10.1109/12.869328
https://doi.org/10.1109/12.869328


Variable-Length Bit Mapping
and Error-Correcting Codes

for Higher-Order Alphabet PUFs

Vincent Immler1(B), Matthias Hiller1, Qinzhi Liu1,2, Andreas Lenz3,
and Antonia Wachter-Zeh3

1 Fraunhofer Institute for Applied and Integrated Security (AISEC),
Garching bei München, Germany

{vincent.immler,matthias.hiller,qinzhi.liu}@aisec.fraunhofer.de
2 RWTH Aachen University, Aachen, Germany
3 Institute for Communications Engineering,

Technical University of Munich (TUM), Munich, Germany
andreas.lenz@mytum.de, antonia.wachter-zeh@tum.de

Abstract. Device-specific physical characteristics provide the founda-
tion for Physical Unclonable Functions (PUFs), a hardware primitive for
secure storage of cryptographic keys. So far, they have been implemented
by either directly evaluating a binary output or by mapping outputs from
a higher-order alphabet to a fixed-length bit sequence. However, the lat-
ter causes a significant bias in the derived key when combined with an
equidistant quantization.

To overcome this limitation, we propose a variable-length bit mapping
that reflects the properties of a Gray code in a different metric, namely
the Levenshtein metric instead of the classical Hamming metric. Subse-
quent error-correction is therefore based on a custom insertion/deletion
correcting code. This new approach effectively counteracts the bias in
the derived key already at the input side.

We present the concept for our scheme and demonstrate its feasibility
based on an empirical PUF distribution. As a result, we increase the
effective output bit length of the secret by over 40% compared to state-
of-the-art approaches while at the same time obtaining additional advan-
tages, e.g., an improved tamper-sensitivity. This opens up a new direction
of Error-Correcting Codes (ECCs) for PUFs that output responses with
symbols of higher-order output alphabets.

Keywords: Physical Unclonable Functions · Fuzzy extractor · Secrecy
leakage · Coding theory · Quantization · Varshamov-Tenengolts (VT)
code

1 Introduction

For a variety of applications, PUFs provide cryptographic keys with an increased
level of security when compared to previous approaches, e.g., keys stored in non-
volatile memory that can be extracted while the device is powered off. Most
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 190–209, 2017.
https://doi.org/10.1007/978-3-319-71501-8_11



Variable-Length Bit Mapping and Error-Correcting Codes 191

PUFs are implemented in silicon, such as the Ring Oscillator (RO) [1] or SRAM
PUF [2]. Other more specialized approaches include the Coating PUF [3] which
additionally provides tamper-evidence, i.e., a property that is required to deter-
mine if the device has been physically tampered with. At their core, all PUFs
output quasi-continuous physical measurement data that is processed by a quan-
tization and error correction to generate reliable keys.

For the ease of implementation, most PUFs map these quasi-continuous val-
ues to a single-bit response, as it is the case for the RO PUF. However, this
discards large portions of the information provided by the PUF response. It was
shown, e.g., for the Coating PUF, that a multi-bit quantization step increases
the output entropy and also facilitates a first error reduction step [3].

So far, the non-uniformly distributed input data of the quantization is
mapped to symbols by a fixed-length bit mapping. Depending on the selected
type of quantization this has several drawbacks. For equiprobable quantization,
helper data vectors leak significant amounts of secret information and also the
tamper-sensitivity is poor, i.e., physical changes in the underlying PUF structure
may not necessarily cause a change in the output of the quantization [4]. For
an equidistant quantization, the resulting binary sequence is heavily biased and
causes secrecy leakage in the helper data of a subsequent ECC.

To address this issue, we follow the information-theoretical intuition of quan-
tizing values with different probabilities of occurrence to binary sequences of
varying length, i.e., values that occur more often are assigned a shorter binary
representation and vice-versa. A good compression algorithm maps a non-
uniform sequence to a shorter uniformly distributed sequence. Therefore, the
output binary data is nearly unbiased and the underlying equidistant quantiza-
tion does not leak secret information. Moreover, for tamper-evident PUFs, an
equidistant quantization is more sensitive towards physical attacks [4].

Unfortunately, following this idea comes at the expense that a large body
of previous work on error correction [5–13] can no longer be applied to the
quantized bit sequence of a PUF. This is owed to the fact that if noise exceeds
the tolerance of the quantization scheme, the length of the considered sequence
changes. A change in length is either called an insertion if it gets longer, or a
deletion if it gets shorter. For more advanced cases not specifically considered in
the paper, they may occur also at the same time.

In contrast, commonly known ECCs are directed towards correcting substitu-
tion errors, typically by taking into account the Hamming distance of sequences.
Since one insertion or deletion does not only affect the erroneous symbol itself,
but also shifts all subsequent symbols, codes in the Hamming metric are not
able to efficiently correct insertion or deletion errors.

The challenge therefore is to use codes capable of correcting errors that stem
from variable-length bit mappings within the context of PUFs, i.e., they must
address common design issues of PUF key derivation schemes such as reliability
and secrecy leakage in the helper data. To do so, we leverage the properties of
Varshamov-Tenengolts (VT) codes [14–16] that are able to correct insertion and
deletion errors. In fact, we use a variation of the original VT codes that also
covers substitution errors.



192 V. Immler et al.

To further elaborate on our scheme, let us briefly introduce the PUF system
model, as illustrated in Fig. 1. The upper part represents the enrollment of the
PUF, i.e., the point in time when it is initialized in a secure environment and
helper data is created to enable later error correction. The lower part depicts
the reconstruction in the field where the PUF key is extracted again to serve as
secret input for cryptographic applications. As part of this processing chain, the
PUF values are affected by noise which makes it necessary to compensate for
this influence by suitable schemes, e.g., a combination of quantization and ECC.
In this work, we focus on the specifics of this algorithmic part.

Fig. 1. PUF system model with enrollment and reconstruction. X is the quantized
PUF response and Y the secret bit sequence. Added noise is denoted as (·)′.

1.1 Contributions

In short, this work presents the following three contributions:

– A variable-length bit-mapping scheme that is well-adjusted in terms of the
Levenshtein distance to the properties of an equidistant quantization.

– First application of codes with insertion and deletion error-correcting capa-
bility in the domain of PUFs including necessary code modifications.

– Practical design and comparison to state-of-the-art approaches, showcasing
a gain of over 40% in effective output secret bits while at the same time
improving tamper-sensitivity and ensuring sufficient reliability.

1.2 Organization

A brief outline of our paper is as follows. Related work is discussed in Sect. 2,
while the required background information on insertion/deletion-correcting
codes is reviewed in Sect. 3. Subsequently, we introduce our custom VT based
key derivation scheme in Sect. 4. This new scheme is then evaluated in Sect. 5.
Eventually, we conclude our work in Sect. 6.



Variable-Length Bit Mapping and Error-Correcting Codes 193

1.3 Notation

Unless specifically noted otherwise, random variables and their distributions
are represented by capital letters, whereas numbers and specific realizations of
random variables are denoted as small letters. Subscripts refer to indices of
vectors, and superscripts show the length of vectors (in either symbols or bit).
CVT is the ECC and c stands for the n-bit codeword with m information bits
and r parity bits.

For the helper data W ∗, a quantized PUF response Xv with either super-
script v as the symbol-wise length with alphabet size q or superscript n as length
in bit, the mutual information between PUF response and helper data I(Xv;W ∗)
measures the information leakage. The min-entropy definition for H̃∞(Xv|W ∗)
is given in [6]:

I(Xv;W ∗) = H(Xv) − H(Xv|W ∗) ≤ v · log2(q) − H̃∞(Xv|W ∗), (1)

H̃∞(Xv|W ∗) = − log2

(
E
w∗

[
max

xv
Pr

Xv|W ∗
[xv|w∗]

])
. (2)

2 State of the Art

We align our work with two other domains. In Sect. 2.1, we discuss previous
work on quantization schemes and bit mappings. Subsequently, in Sect. 2.2 we
briefly consider other ECC proposals for PUFs and explain why they cannot be
applied to our setting.

2.1 Quantization Schemes and Bit Mappings

A common approach for generating secret keys from PUFs with continuous out-
put values is to apply an equiprobable quantization as in [3] or [17]. The Prob-
ability Density Function (PDF) over all analog PUF responses is divided into
intervals of equal probability and each interval is mapped to a symbol from a
higher-order alphabet as illustrated in Fig. 2a. In order to decrease the probabil-
ity of an erroneous quantization value, an offset is stored during enrollment that
shifts the PUF response to the center of its corresponding quantization interval.
However, as shown in [4], equiprobable quantization with these correcting vec-
tors causes significant helper data leakage and requires precise knowledge of the
distribution of the sampled PUF values. Hence, investigating other schemes is
necessary.

Other equiprobable quantization schemes implement a partitioning scheme
to avoid helper data leakage but again require precise knowledge of the dis-
tribution [18]. Also, for equiprobable approaches, tamper-sensitivity varies sig-
nificantly due to the varying size of the quantization intervals [4]. Equidistant
quantization intervals mitigate these effects but come at the downside of biased
quantized PUF outputs. Here, the PDF is divided into intervals of equal width
but different probability as shown in Fig. 2b. As a consequence, a suboptimal



194 V. Immler et al.

assignment of the interval boundaries relative to the PDF only has a minor
impact on the resulting entropy of the quantized output.

For both cases, the resulting symbols can be represented with a Gray code bit
mapping, i.e., neighboring intervals differ only in a single bit position in terms
of the Hamming distance. This results in a practical scheme for an equiprobable
quantization, neglecting the challenge of precisely knowing the PDF. However,
when combining equidistant quantization with fixed-length binary outputs and
a linear fuzzy extractor scheme, significant amounts of secret information are
leaked by the helper data due to the induced bias [19].

(a) Equiprobable quantization. (b) Equidistant quantization.

Fig. 2. Visualization of equiprobable and equidistant quantization schemes.

2.2 Error-Correcting Codes for PUFs

A significant amount of work was carried out in the domain of PUFs rang-
ing from formalizing PUFs [20] to generic ECC constructions, and proto-
cols [21] in addition to analyses in terms of implementation and information
efficiency [19,22].

As outlined before, previous work is mostly specifically tailored towards PUFs
with a binary alphabet. The strong focus on these PUFs has been a valid require-
ment due to their large availability. While generally being suitable to provide a
sufficient reliability, these schemes suffer from other shortcomings mostly related
to helper data leakage that is caused by biased PUF data, as explained in [23].
Schemes targeting PUFs that provide higher-order alphabets must take these
possible effects into account, too.

While lacking the opportunity to use existing ECC constructions, we still
need to check if suitable ideas from the binary or fixed-length domain could be
applied to our scenario, e.g., to prevent helper data leakage and bias. To remove
this leakage, various debiasing schemes were proposed.

Index-Based Syndrome coding (IBS) [8] is a debiasing technique that also
improves the reliability by indexing only reliable PUF response bits. However, the
quantized input values all have the same reliability for equidistant quantization
such that IBS is not applicable for the discussed scenario.

The scheme presented in [24] improves the von Neumann (VN) corrector [25].
For i.i.d. PUF response bits, pairs of consecutive zeros or ones occur with dif-
ferent probabilities, while pairs (1, 0) and (0, 1) have the same probability.



Variable-Length Bit Mapping and Error-Correcting Codes 195

However, the approach is intended for PUFs with small output alphabets. It
evaluates groups of elements that occur with the same probability but differ
in their sequence, such that an increasing number of elements decreases the
probability of these equiprobable events. In [26], it was recently extended to
ternary outputs using reliability information. However, it cannot be efficiently
applied to higher-order alphabets. The multi-bit symbol approach in [27] is espe-
cially suited for PUFs with high bit error probabilities >20%. It is not explicitly
designed for bias reduction but can also handle biased inputs efficiently as well.
However, please note that it still has binary inputs and cannot compensate for
insertion/deletion errors so that it cannot by applied under our constraints.

As a result, none of the discussed techniques provide a promising foundation
to efficiently derive keys from PUFs with higher-order alphabets. To the best
of our knowledge, the case of a variable-length bit mapping for PUFs has not
been considered beforehand. We are aware of the threat of helper data manip-
ulation attacks [28]. However, for the presented work, we are interested in dis-
cussing more fundamental properties of variable-length bit mappings and the
corresponding ECCs.

3 Preliminaries

This section briefly introduces the two concepts that form the theoretical foun-
dation of our proposed scheme. First, the Levenshtein distance is presented and
its applicability to quantify the distortion caused by insertion/deletion errors is
discussed. Second, VT codes are covered as a code class to deal with errors of
this type.

3.1 Insertion/Deletion Errors and Levenshtein Distance

Let us briefly consider the following example: let X = [1, 0, 1, 0, 1, 0, 1] be the
designated bit sequence and X ′ = [1, 1, 0, 1, 0, 1] a shorter received sequence
where a deletion occurred at the second position of X. Since the Hamming
distance is not defined between vectors of unequal length, one could artificially
pad X ′ with a zero which results in dH(X, [X ′, 0]) = 6. This large distance
highlights that it is impractical to rate deletions (and similarly, insertions) with
the help of the Hamming metric.

To better reflect the nature of the error, Levenshtein [29] defined the distance
dL(X,X ′) as the smallest number of insertions, deletions, and substitutions that
are required to transform X ′ into X. Hence, dL(X,X ′) = 1 for the given example.
In the following, we review VT codes that form a class of codes that can correct
errors in the Levenshtein metric.

3.2 VT Codes for Insertion/Deletion Error Correction

Varshamov-Tenengolts (VT) codes have been introduced to address insertion
and deletion errors and correct a single insertion or deletion [15,30]. For a fixed



196 V. Immler et al.

integer a ∈ {0, . . . , n}, a binary VT code of length n is defined as the set of all
vectors Cn = (c1, c2, . . . , cn) ∈ {0, 1}n such that:

n∑
i=1

i · ci ≡ a (mod n + 1). (3)

The integer a is called the checksum (or syndrome). VT codes are conjectured
to be optimal in the sense that they have the largest cardinality of all single-
deletion correcting codes [30]. The largest code sizes are obtained for a = 0. The
size of the code for a = 0 is at least 2n

n+1 and its redundancy therefore at most
�log2(n + 1)� bits. Please note that this basic construction is unable to correct
substitutions and only works when the type of error is already known, i.e., the
length of the received word must be provided.

The procedure to construct systematic VT-like codes according to [31] is as
follows: For a binary input sequence (x1, . . . , xm), the corresponding codeword
has the form (c1, . . . , cn) where x1 = ci1 , x2 = ci2 , . . . , xm = cim , 1 ≤ i1 < i2 <
· · · < im ≤ n. The bits ck, where k /∈ {i1, i2, · · · , im} are called parity bits. For
a codeword of length n, the number of parity-check bits is r = �log2(n − 1)� + 1
and they are located at positions k = 2l, where 0 ≤ l ≤ r − 2, and at position n.

For M such that 2n ≤ M ≤ min(n + 2r−1, 2r), the parity-check bits
(p1, . . . , pr) are chosen according to

r−1∑
l=1

pl · 2l−1 + pr · n +
m∑

j=1

ij · xj ≡ 0 (mod M). (4)

Please note, that “systematic” in this setting does not imply that the first m bits
contain the information, they are distributed to positions which are not a power
of 2 or equal to n. Extending this systematic encoding with the capability to
also correct one substitution error comes at the expense of storing one additional
redundancy bit.

In our PUF use case, only parts of the codewords are transmitted since the
parity bits are stored as public helper data. The helper data is assumed not to
be corrupted, so we can retrieve it without errors, similarly to [32]. However, the
message bits may contain errors at unknown positions as they are drawn from
the noisy PUF.

The standard systematic VT code cannot be employed in PUFs, because
when recovering the response from the PUF, the positions where to insert the
parity-check bits cannot be determined. It is therefore necessary to fully sepa-
rate parity-check bits from the message containing secret information. This is
explained in Sect. 4.2.

4 Variable-Length Bit Mapping and New VT-Like Code

We first introduce the variable-length bit mapping of equidistant quantization
intervals and discuss how to encode them into VT-like codewords.



Variable-Length Bit Mapping and Error-Correcting Codes 197

4.1 Variable-Length Bit Mapping for Equidistant Quantization

Ideally, the bit mapping is such that the obtained sequence is not biased, i.e.,
the 1s and 0s are uniformly distributed. In addition, the bit mapping should
support the subsequent error correction in terms of low distance changes from
one to another quantization interval. At the same time this improves tamper-
sensitivity, as errors that result in a larger distance to the designated value
are almost certainly caused by a physical attack and therefore – as part of its
intended purpose – should cause the device to fail.

To achieve low distance changes for neighboring intervals in Hamming dis-
tance, i.e., dH = 1, one would use a Gray code [33]. However, it cannot be applied
in our case, since this scheme only works for fixed-length bit mappings. Another
disadvantage of fixed-length bit mappings is that some patterns of 1s and 0s
would occur more likely, i.e., cause a bias. To overcome these limitations, we
propose a new variable-length bit mapping scheme, as shown in Fig. 3b.

(a) Tree for variable-length bit mapping. (b) Resulting bit assignment.

Fig. 3. Proposed variable-length bit mapping for equidistant quantization.

In order to preserve the entropy of the quantization, i.e., when mapping its
symbols to the binary domain, the quantization procedure requires a uniquely
decodable code, e.g., it should be prefix-free. Therefore, we build a binary tree
to explicitly assign symbols to a variable-length bit mapping that differs only in
dL = 1 for neighboring intervals. Hence, it is the Levenshtein counterpart to the
Gray code. Notice that a Huffman code is not an eligible candidate here as it
neither ensures a debiasing characteristic due to the lack of same-probability of
0s and 1s, nor is the constraint of dL = 1 for neighboring intervals considered.

The example displayed for 14 intervals of Fig. 3a is explained by following
the conventions of graph theory. Let G = (V; E) be the graph G, whereas V
represents the set of vertices and E the set of edges. The effective vertices are
numbered from ±1 to ±7 to indicate the vertices’s corresponding quantization
interval to the left and right of the PDF’s mean.



198 V. Immler et al.

This construction follows the principle of a prefix-free code, where each effec-
tive vertex is connected to only one other vertex by one edge. For the resulting
symbols of adjacent quantization intervals, the desired distance of dL = 1 is
achieved. By traversing the graph either to the left or right, bit 1 or 0 is incorpo-
rated in the pattern. Unfortunately, we have not yet found a way to generalize
this construction. The resulting bit mapping for the case of 14 intervals as rep-
resented by Fig. 3b is therefore given in Table 1.

Table 1. Example for variable-length encoding with Levenshtein distance 1 between
adjacent intervals. The colors are matched to Fig. 3b.

Symbol 7 6 5 4 3 2 1 −1 −2 −3 −4 −5 −6 −7

Binary 01100 01101 0111 0011 0010 000 010 110 111 1011 1010 1000 10010 10011

The new bit mapping is well-suited for the application based on the following
perspective:

– As long as the input distribution is symmetric, 0s and 1s are balanced, since
equally probable intervals have an equal number of 1s and 0s.

– It fulfills the requirement that adjacent intervals only differ by one inser-
tion/deletion/substitution error, i.e., adjacent intervals have dL = 1.

– It is prefix-free, i.e., it preserves the information provided by the quantization
but with less redundant bits compared to a fixed-length bit mapping.

– It has a debiasing property, i.e., more probable symbols are assigned shorter
bit mappings and less probable symbols are assigned longer bit mappings.

4.2 Systematic VT-Like Code Construction for PUFs

This section introduces a code to address a single insertion, deletion or substi-
tution error that originates to a quantization error and subsequently stems from
the bit mapping as introduced in Sect. 4.1. We propose a VT-like code construc-
tion for the situation that the parity-check bits are not transmitted within the
input bit stream and are thus error-free. Our code construction is as follows:

CVT :=
{

(x1, · · · , xm, p1, · · · , pr) :
m∑

i=1

ixi +
r∑

j=1

2j−1pj ≡ 0 (mod 2m + 1)
}

,

(5)
where m information bits and r parity-check bits together for a codeword of
length n = m + r. The redundancy of this code construction is �log(2m + 1)�
and smaller than the redundancy of the systematic construction from [31]. In
the following, we will show how CVT can correct one deletion, insertion, or sub-
stitution error. The decoding procedure is similar to the decoding of classical
VT codes [30].

First consider an example with a single deletion. Assume that the π-th bit in
the original bit sequence was deleted, which has λ0 0s to the left of it, ρ0 0s to



Variable-Length Bit Mapping and Error-Correcting Codes 199

the right of it, λ1 1s left of it and ρ1 1s right of it. Therefore, π = 1+λ0 +λ1. Let
ω be the Hamming weight the received bit stream, i.e., ω = λ1 + ρ1. Evaluating
the sums in Eq. 5, the deficiency Δ of the new checksum compared to the original
one is

Δ = −(π · xπ +
m∑

i=π+1

xi) (mod (2 · m + 1)) (6)

When a 1 was deleted, the checksum deficiency is given by

Δ = −(π + ρ1) (7)
= −(1 + λ0 + λ1 + ρ1) (8)
= −(1 + λ0 + ω) (9)
≡ 2 · m + 1 − (1 + λ0 + ω) (mod 2 · m + 1) (10)

To recover the initial input, one needs to insert a 1 at the right side of λ0 0s in
the received sequence. When a 0 was deleted, the new checksum is ρ1 less than
the original, i.e., Δ = 2 · m + 1 − ρ1. To recover, one needs to insert a 0 on the
left side of ρ1 1s. The case for insertion errors can be solved in a similar manner.

For substitution errors, the error pattern where the 0 flips to 1 gives a defi-
ciency Δ of the position number, i.e., π. Vice-versa, if 1 changes to 0, the defi-
ciency Δ is the value of 2m + 1 − π. The range of values for the checksum
deficiency Δ for insertion, deletion, and substitution errors is given in Table 2.

Table 2. Checksum deficiency Δ vs. error pattern

Error type Error pattern Δ Range of Δ

Insertion Insert 0 ρ1 [0, ω]

Insertion Insert 1 π + ρ1 = ω + λ0 [ω, m + 1]

Deletion Delete 0 −ρ1 + 2m + 1 [2m + 1 − ω, 2m] ∪ {0}
Deletion Delete 1 −ρ1 − π + 2m + 1 [m + 1, 2m − ω]

Substitution Flip 0 to 1 π [1, m]

Substitution Flip 1 to 0 2m + 1 − π [m + 1, 2m]

The table shows that the range of the two cases of insertions overlap in ω. The
error correction here can be explained as follows: for an insertion error, if Δ = ω,
there is either a 0 or 1 inserted in the beginning. For this case, we delete the first
bit to correct the insertion error. Algorithm 1 shows the decoding procedure for
our proposed VT-like code construction. It generalizes the systematic decoding
process of the previously discussed example.

In Algorithm 1, lI denotes the length information m (mod 3) which is stored
as helper data. It allows to identify the error type. Recall that X ′ is the output
of the measured PUF values and Y ′ is the corrected secret.



200 V. Immler et al.

Algorithm 1. VT-like Systematic Decoding Algorithm for PUFs
Data: lI = (Length information)
Δ = (Checksum deficiency)
X ′ = (noisy PUF response)
m′ = (bit length for reference PUF response)
Result: Y ′ = (corrected secret bit sequence)

1 if m′ ≡ lI (mod 3) then
/* substitution error or error-free,i.e., m′ = m */

2 if Δ = 0 then
3 No error ; // Y ′ ← X ′

4 else
5 if Δ > m′ then
6 X ′[2 m′ + 1 − Δ] = 1 ; // substitution error from 1 to 0

7 else
8 X[Δ] = 0 ; // substitution error from 0 to 1

9 end

10 end
11 Y ′ ← X ′

12 else if m′ + 1 ≡ lI (mod 3) then
/* deletion error, i.e., m′ = m − 1 */

13 if Δ = 0 then
14 Y ′ ← X ′ with 0 inserted at the end
15 else
16 if Δ > 2 · m′ + 3 − ω then
17 insert 0 at left side of ρ1 1’s on the right ; // ρ1 = 2 m′ + 3 − Δ
18 else
19 insert 1 at right side of λ0 0’s on the left ; // λ0 = 2 m′ + 2 − ω − Δ
20 end
21 Y ′ ← X ′

22 end

23 else
/* insertion error, i.e., m′ = m + 1 */

24 if Δ = 0 then
25 Y ′ ← X ′ with 0 deleted at the end
26 else
27 if Δ > ω then
28 delete 1 at the right side of λ0 0’s on the left ; // λ0 = Δ − ω
29 else
30 delete 0 at the left side of ρ1 1’s on the right ; // ρ1 = Δ
31 end
32 Y ′ ← X ′

33 end

34 return Y ′



Variable-Length Bit Mapping and Error-Correcting Codes 201

We increase argument of the modulo operation to 2m + 1 to also guarantee
substitution error correction. If we only have insertion or deletion errors, we use
the following code definition which has one bit less redundancy:

{(x1 · · · xm, p1 · · · pr)|
m∑

i=1

i · xi +
r∑

j=1

2j−1 · pj ≡ 0 (mod m + 1)}. (11)

4.3 Helper Data

Our coding scheme stores two types of helper data, the length indicator infor-
mation lI and the parity bits pr. We could also directly store the length m in
lI. However, this significantly reduces the number of possible sequences which
is equivalent to a large helper data leakage. The VT-like code can only correct
a single insertion, deletion or substitution such that we only need to correctly
indicate whether the length of the sequence was increased by one, decreased by
one or remained the same. This can also be represented by m (mod 3) which
reveals less information than providing the precise length.

In addition, the parity information is stored as helper data according to [32].
It was shown in [34] that the other linear schemes have a higher efficiency for
the Hamming metric while the parity approach in [32] is less efficient and has
a higher secrecy leakage. However, the other schemes apply an XOR operation
between parts of the helper data and the PUF response. An insertion or deletion
error destroys the mapping such that error correction is no longer possible. This
makes the parity approach currently the only applicable scheme.

4.4 Toy Size Example

In the following toy example, we demonstrate the encoding and decoding of
our VT-like code. Based on PUF nodes with x8 = [5, 4,−3,−6, 7,−1, 2, 4]. The
symbols are encoded according to the bit mapping presented in Sect. 4.1, i.e.,

enc(x8) = [(0111), (0011), (1011), (10010), (01100), (110), (000), (0011)]. (12)

Afterwards, 4 symbols are combined to one VT codeword. The first 4 symbols are
encoded to a binary sequence of length 17. Therefore lI(x4) = 17 ≡ 2 (mod 3).
The left half of Eq. 5 is

17∑
i=1

i xi = 2 + 3 + 4 + 7 + 8 + 9 + 11 + 12 + 13 + 16 = 85 ≡ 15 (mod 35). (13)

The parity bits are a binary representation of 35 − 15 = 20, so p6 = (010100).
For the second part of the PUF response, we analogously calculate the helper
data lI = 15 ≡ 0 (mod 3) and p6 = (001111).

To demonstrate deletion and insertion error correction, let us assume that
during reconstruction one quantization error occurred in the third symbol and



202 V. Immler et al.

another one in the seventh symbol, such that x′8 = [5, 4,−2,−6, 7,−1,3, 4].
Therefore the third symbol is encoded to (111) instead of (1011), which cor-
responds to one deletion error. Computing lI(x′4) = 1 ≡ 16 (mod 3) shows that
the one bit was deleted:

Δ =
m∑

i=1

i x′
i +

r∑
j=1

2j−1 pj = 81 + 20 = 101 ≡ 31 (mod 33 + 2). (14)

Δ = 2 · (16+1)+1−ρ1, therefore we have ρ1 = 4 and insert 0 on the left of 4 1s
in the right. Thus, we were able to detect the position of the deletion and correct
the error. For the second half, let us assume that the third symbol shifted from
2 to 3 such that (0010) is forwarded instead of (000). Now lI(x′4) = 1. Since
I(x4) = 0, one insertion occurred. Δ = 13, so according to line 28 of Algorithm1,
we delete the 1 at the right side of 13 − 7 = 6 0s.

5 Evaluation

To allow a fair comparison to the state of the art, the results in this section have
been simulated according to the scenario in [3]. We therefore used the following
parameters: The device contains 128 PUF nodes with Gaussian distributed PUF
responses with μ = 1.8·10−13 and σ = 3.6·10−15. Individual measurements of the
nodes are affected by Gaussian distributed, mean-free noise with σN = 2 · 10−16.

5.1 Reliability

In the following, two mechanisms are considered to improve the reliability of the
PUF system. First, we evaluate the effects of the quantization. Afterwards, the
specifics of the VT-like code are analyzed in terms of number of secret bits and
reliability.

Error Reduction by Quantization. As a baseline, we first evaluate the per-
formance of a system that only relies on a quantization without any further error
correction or leakage mitigation steps. Following [4], the equidistant quantiza-
tion is applied to the PUF response of each individual node. The width of the
quantization intervals is set to

Qw = 2 · y · σN. (15)

As mentioned beforehand, by storing a helper data vector, the quantization
scheme itself has an error tolerance of [−y · σN,+y · σN], i.e., as long as the
error does not exceed this interval no error will occur. Here, y is a parameter
that determines the reliability. This is illustrated in Fig. 4a with a yellow arrow
indicating the interval Qw. Later, we will combine this quantization with Reed–
Solomon (RS) codes with different code parameters [35].



Variable-Length Bit Mapping and Error-Correcting Codes 203

(a) Quantization and VT-like code as ECC. (b) Quantization and RS code as ECC.

Fig. 4. Comparison of equidistant quantizations with differing subsequent ECCs. In
(a), only shifts by small errors are correct, as it is the preferred case to improve tamper-
sensitivity. In contrast, (b) corrects any shift to arbitrary intervals, as long as the overall
error-threshold of the RS code is not exceeded. (Color figure online)

Error Reduction by VT-Like Code. Figure 4a illustrates the difference of
the noise tolerance between the pure quantization and the combination of quan-
tization with error correction. After error correction using the VT-like code, the
noise tolerance has tripled to 3 · Qw for one value. Therefore, same values of y
now offer a much better reliability compared to a pure quantization.

However, for each segment of nodes still only one error can be corrected
due to the properties of the constructed code. This limitation is preferred, as a
physical attack which causes a large increase in Levenshtein distance from the
reference value should not be corrected. Heavily distorted measurement values
occur from noise only with small probability, so multiple errors outside of the
[−y · σN,+y · σN] interval should cause the system to fail, thereby improving
tamper-sensitivity.

In the following, we add a hat (̂·) to probabilities that refer to corrected
values after the VT-decoding. We calculate the error probability Pn of a node
by integrating over the PDF of the noise. Then we apply the VT-like code for
error correction to obtain the corresponding error probability for a segment, if
more than one node is corrupted with dL = 1. Finally, for an error-free device,
all of its segments must be correct. The node error probability is calculated by
the PDF of a Gaussian distribution with N (μ, σ) as follows:

Pn = 1 −
∫ +y·σN

−y·σN

N (0, σN).

Without error correction, a segment with m nodes will pass the authentication
process only if all its nodes are quantized correctly. This corresponds to a segment
error probability Ps of

Ps = 1 − (1 − Pn)m. (16)

In this paper, the aim is to correct the error when the encoded value shifts into
adjacent intervals. Hence, per segment, only one node with dL = 1 must be



204 V. Immler et al.

Table 3. Effect of varying parameters of the quantization and resulting data for
entropy, length of bit mapping, and reliability. The entropy is given in bits per node.

Number
of intervals

Min
entropy

Shannon
entropy

Bits per
node

Bits per
device

97% confidence
interval

Pd

12 (y = 4.95) 2.26 2.92 3.27 419 [406, 430] 9.5 × 10−5

14 (y = 4.24) 2.47 3.13 3.36 430 [417, 443] 2.8 × 10−3

16 (y = 3.71) 2.65 3.33 3.51 449 [433, 466] 2.6 × 10−2

18 (y = 3.30) 2.81 3.49 3.73 478 [457, 500] 1.2 × 10−1

20 (y = 2.97) 2.96 3.64 3.92 502 [482, 517] 3.1 × 10−1

corrected. The probability P̂n that a single node is correct after correction is:

P̂n = 1 −
∫ +3·y·σN

−3·y·σN

N (0, σN). (17)

The error probability P̂s after VT error correction is

P̂s ≤ 1 −
(
m(1 − Pn)m−1(Pn − P̂n) + (1 − Ps)

)
(18)

= 1 −
(
m(1 − Pn)m−1(Pn − P̂n) + (1 − Pn)m

)
(19)

The probability in (17) assumes that only adjacent intervals differ in one bit,
i.e., a single insertion/deletion/substitution error. However, in the process of
building the codebook, one cannot avoid that nearby intervals other than the
adjacent ones also differ in only one bit.

Hence, the probability of the analytically computed error rate upper bounds
the error probability and simulated results should slightly outperform the calcu-
lations. This difference can be practically observed, whereas the margin is larger
for a higher error-rate and smaller for a lower error-rate. For a device with ν
segments, the overall device error probability P̂d is finally given by

P̂d = 1 − (1 − P̂s)ν . (20)

If no error correction is carried out, P̂d and P̂s will be replaced by Pd and Ps.
As listed in Table 3, we observe for a device with 128 nodes that increasing y

leads to an improved reliability at the expense of loss in entropy and shortened
length of the bit sequence. Therefore, a designer’s goal is to maximize the number
of secret bits while meeting the reliability requirement.

5.2 Information Leakage Caused by ECC

To determine the amount of leakage between encoded sequence Xv helper data
W = (LI, P

∗), we select one of our later results from Table 4 that meets the



Variable-Length Bit Mapping and Error-Correcting Codes 205

reliability requirements and has the largest number of effective secret bits. For
other selected parameters, the calculation is similar.

The first source of leakage is caused by the stored length information lI. It is
stored for each segment and may have 3 possible values only. Therefore I(Xv;LI)
is considered as worst-case if rounded-up, i.e.,

I(Xv;LI) ≤ H(LI) ≤ �log2(3)� = 2bits

The second source of leakage is based on the parity bits P ∗ of the VT code. For
a segment with v = 128 node values, the maximum entropy of these parity bits
is therefore considered as information leakage I(Xv;P ∗). Please note, for the
subsequent calculation, the maximum length of the segment is used as upper
bound for the leaked bits. For the specific example, the code size determines
the maximum entropy, i.e., here, resulting in the size of P ∗. The remaining
multiplicative factor of 2 and additive component +1 is due to the structure of
the code, cf. Eq. (5):

I(X128;P ∗) ≤ H(P ∗) (21)
≤ �log2(2m + 1)� (22)
= �log2(2 · 5 · 128 + 1)� (23)
= 11 bits (24)

Hence, the overall number of leaked bits based on a worst-case assumption is

I(X128;W ∗) ≤ 2 + 11 = 13 bits (25)

Concerning the min-entropy that is extracted on average from a device, we con-
sider each node with y = 4.94 (resulting in 12 quantization intervals) which leads
to a min-entropy of 2.26 bit per node, according to Table 3. This gives

H̃∞(Xv) = 2.26 · 128 = 289.3 bits (26)

Hence, for a device with 128 nodes, the number of overall effective secret bits is

H̃∞(Xv) − I(Xv;W ∗) = 289.3 − 13 = 276.3 bits (27)

5.3 Comparison of Fuzzy Commitment and VT-Like Codes

In the following, we compare a fuzzy commitment scheme based on an RS code
and our VT-like code. The results for the RS code are given in Table 4. For the
VT-like code, the results are summarized in Table 5. In either case, we make use
of the min-entropy per node that we obtain from the quantization histogram as
listed in Table 3. The values for y range from 3 to 5 and result in 2.26 to 2.96
bits of min-entropy per node.

From the comparison of Tables 4 and 5, we observe a sufficient reliability for
both approaches. The VT-like entries with a lower numbers of effective bits have
been added for explanatory reasons. In terms of effective secret bits, the VT-like



206 V. Immler et al.

Table 4. Evaluation of RS codes for PUFs with v = 128 output symbols. Pn and
Pd are node and device error probabilities. Effective secret bit already account for the
information leakage of the helper data.

y z RS code

parameters

Pn

(before RS)

Pd (before

RS)

P̂n

(after RS)

P̂d

(after RS)

Effective

secret bits

5 8 (15, 13, 3) 5.73 × 10−7 7.34 × 10−5 4.60 × 10−12 4.79 × 10−10 ≈192

3.71 8 (15, 11, 5) 2.05 × 10−4 2.59 × 10−2 7.83 × 10−10 6.89 × 10−8 ≈178

3 4 (31, 23, 8) 2.67 × 10−3 2.90 × 10−1 3.72 × 10−9 3.42 × 10−7 ≈195

Table 5. Evaluation of error probability and information leakage for the proposed
VT-like code. Ps and Pd are segment and device error probabilities for a PUF with
v = 128 output symbols. Leakage I(Xv; W ∗) is given in terms of bit.

y Nodes per

segment

Ps

(before VT)

P̂s

(after VT)

P̂d

(after VT)

I(Xv ; W ∗)

(in bits)

Effective

secret bits

Comparison

against RS

4.95 4 3 × 10−6 3.3 × 10−12 1.1 × 10−10 ≤ 256 ≈ 33.3

4.95 8 6 × 10−6 1.6 × 10−11 2.5 × 10−10 ≤ 144 ≈145.3

4.95 16 1.2 × 10−5 6.6 × 10−11 5.3 × 10−10 ≤ 80 ≈209.3

4.95 32 2.4 × 10−5 2.7 × 10−10 1.1 × 10−9 ≤ 44 ≈245.3

4.95 64 4.7 × 10−5 1.1 × 10−9 2.2 × 10−9 ≤ 24 ≈265.3

4.95 128 9.5 × 10−5 4.5 × 10−9 4.5 × 10−9 ≤ 13 ≈276.3 ←
4.24 4 8.8 × 10−5 2.9 × 10−9 9.4 × 10−8 ≤ 256 ≈59.8

4.24 8 1.8 × 10−4 1.4 × 10−8 2 × 10−7 ≤ 144 ≈171.8

4.24 16 3.5 × 10−4 5.9 × 10−8 5 × 10−7 ≤ 80 ≈235.8

4.24 32 7.1 × 10−4 2 × 10−7 1 × 10−6 ≤ 44 ≈271.8

code outperforms the RS code by over 40%. Moreover, its expected implemen-
tation is simplified as no operations in Galois fields are required. Furthermore,
instead of the burst error-correction by the RS code, the VT-like code main-
tains a better tamper-sensitivity since mostly adjacent intervals are corrected.
Another advantage is that its bit mapping introduces less bias and therefore
leaks less information.

Considering Table 5 more closely, we observe that for smaller segments with
less nodes, a better reliability is achieved. However, at the same time more
information is leaked by the helper data. In the simulation of 1.2 × 107 devices,
no device failed, which gives a confident error rate �1 × 10−6.

6 Conclusion

The majority of previous fuzzy extractor schemes is limited to binary PUF out-
puts and therefore impractical to use for higher-order alphabets. Moreover, the
few existing works considering higher-order alphabets are limited to fixed-length
bit mappings and equiprobable quantization.

This work introduces a variable-length bit mapping and a corresponding
error correction scheme for an equidistant quantization. Its impact is manifold:



Variable-Length Bit Mapping and Error-Correcting Codes 207

it relieves designers of PUF systems of previously existing constraints regarding
the selection of the quantization scheme, it results in a more efficient scheme and
therefore a longer effective secret bit output, and also improves other desired
properties such as tamper-sensitivity.

For the practical scenario considered, we are able to increase the number of
effective secret bits by 40% while at the same time not requiring complex finite
field operations as it would be the case for an RS decoder. While the results are
already promising, we consider this only as a first step towards a more efficient
use of higher-order alphabet PUFs.

Acknowledgements. The authors from Fraunhofer AISEC have been supported by
the Fraunhofer Internal Programs under Grant No. MAVO 828 432. A. Lenz and
A. Wachter-Zeh have been supported by the Technical University of Munich–Institute
for Advanced Study, funded by the German Excellence Initiative and European Union
Seventh Framework Programme under Grant Agreement No. 291763. Many thanks to
Aysun Önalan for preparing the numbers of the RS-based fuzzy commitment scheme.

References

1. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: ACM/IEEE Design Automation Conference (DAC)
(2007)

2. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74735-2 5

3. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006). https://
doi.org/10.1007/11894063 29

4. Immler, V., Hennig, M., Kürzinger, L., Sigl, G.: Practical aspects of quantization
and tamper-sensitivity for physically obfuscated keys. In: Workshop on Cryptog-
raphy and Security in Computing Systems (CS2) (2016)

5. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM Conference on
Computer and Communications Security (CCS) (1999)

6. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

7. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper
data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85053-3 12

8. Yu, M., Devadas, S.: Secure and robust error correction for physical unclonable
functions. IEEE Des. Test Comput. 27(1), 48–65 (2010)

9. Maes, R.: Physically unclonable functions: constructions, properties and applica-
tions. Dissertation (2012)

https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/11894063_29
https://doi.org/10.1007/11894063_29
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/978-3-540-85053-3_12
https://doi.org/10.1007/978-3-540-85053-3_12


208 V. Immler et al.

10. Hiller, M., Merli, D., Stumpf, F., Sigl, G.: Complementary IBS: application spe-
cific error correction for PUFs. In: IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pp. 1–6 (2012)

11. Puchinger, S., Müelich, S., Bossert, M., Hiller, M., Sigl, G.: On error correction
for physical unclonable functions. In: International ITG Conference on Systems,
Communications and Coding (SCC), February 2015

12. Hiller, M., Yu, M., Sigl, G.: Cherry-picking reliable PUF bits with differential
sequence coding. IEEE Trans. Inf. Forensics Secur. 11(9), 2065–2076 (2016)

13. Puchinger, S., Müelich, S., Bossert, M., Wachter-Zeh, A.: Timing attack resilient
decoding algorithms for physical unclonable functions. In: International ITG Con-
ference on Systems, Communications and Coding (SCC), February 2017

14. Tenengolts, G.: Nonbinary codes, correcting single deletion or insertion (corresp.).
IEEE Trans. Inf. Theory 30(5), 766–769 (1984)

15. Varshamov, R.R., Tenengolts, G.M.: Codes which correct single asymmetric errors.
Automatika i Telemekhanika (1965). (in Russian)

16. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and rever-
sals. Doklady Akademii Nauk SSR 163(4), 845–848 (1965). (in Russian)

17. Günlü, O., Iscan, O.: DCT based ring oscillator physical unclonable functions.
In: IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8248–8251 (2014)

18. Stanko, T., Andini, F.N., Skoric, B.: Optimized quantization in zero leakage helper
data systems. IEEE Trans. Inf. Forensics Secur. (2017)

19. Delvaux, J., Gu, D., Verbauwhede, I., Hiller, M., Yu, M.-D.M.: Efficient fuzzy
extraction of PUF-induced secrets: theory and applications. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 412–431. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 20

20. Armknecht, F., Maes, R., Sadeghi, A.-R., Standaert, F.-X., Wachsmann, C.: A
formalization of the security features of physical functions. In: IEEE Symposium
on Security and Privacy (S&P), pp. 397–412 (2011)

21. Colombier, B., Bossuet, L., Fischer, V., Hely, D.: Key reconciliation protocols for
error correction of silicon PUF responses. IEEE Trans. Inf. Forensics Secur. 12,
1988–2002 (2017)

22. Hiller, M., Yu, M.-D.M., Pehl, M.: Systematic low leakage coding for physical
unclonable functions. In: ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS) (2015)

23. Ignatenko, T., Willems, F.M.: Information leakage in fuzzy commitment schemes.
IEEE Trans. Inf. Forensics Secur. 5(2), 337–348 (2010)

24. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure key generation
from biased PUFs: extended version. J. Cryptogr. Eng. 6(2), 121–137 (2016)

25. von Neumann, J.: Various techniques used in connection with random digits. In:
Applied Math Series (1951)

26. Suzuki, M., Ueno, R., Homma, N., Aoki, T.: Multiple-valued debiasing for phys-
ically unclonable functions and its application to fuzzy extractors. In: Guilley,
S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 248–263. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-64647-3 15

27. Yu, M., Hiller, M., Devadas, S.: Maximum likelihood decoding of device-specific
multi-bit symbols for reliable key generation. In: IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 38–43 (2015)

28. Delvaux, J., Verbauwhede, I.: Key-recovery attacks on various RO PUF construc-
tions via helper data manipulation. In: Design, Automation Test in Europe Con-
ference Exhibition (DATE) (2014)

https://doi.org/10.1007/978-3-662-53140-2_20
https://doi.org/10.1007/978-3-319-64647-3_15


Variable-Length Bit Mapping and Error-Correcting Codes 209

29. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet physics doklady (1966)

30. Sloane, N.J.A.: On single-deletion-correcting codes. In: Codes and Designs, pp.
273–292. de Gruyter (2002)

31. Saowapa, K., Kaneko, H., Fujiwara, E.: Systematic deletion/insertion error correct-
ing codes with random error correction capability. In: Defect and Fault Tolerance
in VLSI Systems (1999)

32. Davida, G.I., Frankel, Y., Matt, B.J.: On enabling secure applications through off-
line biometric identification. In: IEEE Symposium on Security and Privacy (S&P),
pp. 148–157 (1998)

33. Gray, F.: Pulse code communication. US Patent 2,632,058 (1953)
34. Delvaux, J., Gu, D., Verbauwhede, I., Hiller, M., Yu, M.: Secure sketch metamor-

phosis: tight unified bounds. IACR eprint archive (2015)
35. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-

Holland, Amsterdam (1977)



Mutual Friend Attack Prevention
in Social Network Data Publishing

Kamalkumar R. Macwan(B) and Sankita J. Patel

Sardar Vallabhbhai National Institute of Technology,
Surat 395007, Gujarat, India

kamal.macwan@yahoo.com, sankitapatel@gmail.com

Abstract. Due to increasing demand of publishing social network data,
privacy has raised more concern for data publisher. There are different
risks and attacks still exist that can breach user privacy. Online social
network such as Facebook, Google Plus and LinkedIn provide a feature
that allows finding out number of mutual friends (NMF) between two
users. Adversary can use such information to identify individual user and
his/her connections. As published dataset itself reveals mutual friends
information for each connection, it becomes very easy for an adversary
to re-identify the individual user.

Existing anonymization techniques for mutual friends attack are
based on edge anonymization. It performs edge anonymization operation
without considering the NMF-requirement of other edges that results
into more edge insertion operations. Due to that, the data utility of
anonymized dataset is very low. In this paper, we propose the anonymiza-
tion approach that works on the mutual friend sequence. It ensures that,
there exist at least k elements in mutual friend sequence that holds same
value. The vertex selection process to increase the number of mutual
friend (NMF) for one edge reduces the mutual friend anonymization
requirement for other edges too. The experimental results demonstrate
that the proposed anonymization approach preserve the privacy and the
utility of the published dataset against mutual friend attack.

Keywords: Social network data publishing · Mutual friend attack ·
k-NMF · Data utility

1 Introduction

Recently, social networking platforms have become very popular among people
to post and share information and to get connected, too. Users can create their
profile and maintain their connections on social networking sites. According to
Facebook statistics, they have over 1.94 billion monthly and 1.15 billion daily
users [1]. As this data becomes increasingly easy to access and collect, many web
providers publish this data for the research purpose. Social network analysis is
being used in marketing, modern sociology, geography, economics, information

c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 210–225, 2017.
https://doi.org/10.1007/978-3-319-71501-8_12



Mutual Friend Attack Prevention in Social Network Data Publishing 211

science and also in various fields [2]. However, publishing original social network
data has privacy threat. Adversary may try for documented threats that include
identity theft, digital stalking and personalized spam [3]. The publicly available
user information can be used to train predictive models which can infer user’s
private information and also predict user’s behaviour. Many works have been
proposed for the privacy preserving social network publication [2–4].

1.1 Privacy Preserving Data Publishing

There are three types of users involved to make the data publicly available.
Data owners are the users who share information on social networks, service
providers are responsible to gather and manage the social network data and third
parties who are interested in making use of the data. Although third parties are
interested in user’s data for marketing, advertisement or collecting and re-selling
it, some of them may have malevolent intentions. The combination of multiple
datasets and some background information can infer user privacy. The field of
research on privacy preserving data publishing studies how to publish data in
a way that it maintains user’s privacy whose records are being published, while
keeping the released dataset rich enough for data-mining purposes.

Most research on data disclosure focuses on protecting individuals from the
release of sensitive attributes which could be embarrassing or harmful, if released.
The objective of privacy preservation model is to prevent an individual user
from being identified by their published data. To prevent identity disclosure,
one common approach is to publish social data without disclosing the identity of
individual. Due to availability of user information from various sources, adversary
can use background knowledge of individual such as degree [5], neighbourhood
graph [2], and so on to re-identify the individual. So, simply removing the user
identity from published data is not sufficient to maintain user privacy [6,7].

Simple solution to maintain privacy is to make data anonymous.
K-anonymity approach was the first carefully studied model for data anonymity
[8]; the k-anonymity privacy assurance guarantees that a published record can
be identified as one of no fewer than k individuals. The k-anonymity problem has
traditionally been researched from the perspective of sensitive data disclosure–
a commonly cited domain is that of medical records released for data mining
purposes, where it is important to be able to link diseases to demographic data,
without revealing that an individual has a particular disease.

1.2 Mutual Friend Attack

Social networking platform helps to search new friends, make new connec-
tions and to maintain their connections. Most social networking sites, such as
Facebook, Twitter and LinkedIn provide facility to see friend list (connections)
and list of mutual friends too. Such information is very useful to search new
friends and to verify user identity. One can directly see the list of mutual friends
shared with any user on Facebook. Adversary can also get the number of mutual
friends of two users by intersecting their friend list.



212 K.R. Macwan and S.J. Patel

Here, we present link disclosure prevention approach based on the number
of mutual friends (NMF) of two individual users. Figure 1 shows an example of
the mutual friend attack. The original social network G is shown in Fig. 1(a).
Figure 1(b) represents the published dataset of same social network by replacing
the user identities with anonymous character.

(a) Original Social Network (b) naively anonymized social network

Fig. 1. Example of published social network

Each link that connects two vertices is assigned with a number that repre-
sents the number of mutual friends between the two end vertices. So, in order to
commit the mutual friend attack, the adversary only needs to retrieve the num-
ber of mutual friends of two victims. Based on this kind of simple background
knowledge, an adversary can issue the attack on the published social network to
re-identify the edge corresponding to the relationship between two victims. For
example, James and John are friends, and they have 4 mutual friends. Adversary
can retrieve such information and try it to map these users with vertices of pub-
lished dataset. Since no other edge than (A, B) contains weight as 4, adversary
can uniquely re-identify the edge (A, B) to (James, John) or (John, James). By
applying such information step by step, the adversary can uniquely re-identity
every users from the published dataset.

1.3 Motivation

Information regarding number of mutual friends between two users are easily
available on social networking platforms. So, to protect the privacy of rela-
tionship from the mutual friend attack, privacy-preserving model, k-anonymity
on the number of mutual friends (k-NMF Anonymity) is introduced [9]. There
should be at least k number of edges that have the same number of mutual
friends. In mutual friend attack, weight assigned to edge represents the number
of common connections. So, in order to change the edge weight, number of com-
mon connection should be changed. K-NMF approach proposed in [9] handles



Mutual Friend Attack Prevention in Social Network Data Publishing 213

one edge at a time. Edge insertion operation that brings favourable change in
multiple edges may reduce percentage edge difference in anonymized data.

The rest of the paper is organized as follows: Sect. 2 presents an overview of
the existing work related to the problem domain. Section 3 briefly explains the
proposed work for k-NMF anonymization. Section 4 considers the experimental
evaluation of the proposed work. Various experimental results presented in this
section describe the effectiveness of proposed approach. Finally, Sect. 5 states
the contributions of this work and demonstrates several possible directions for
future research.

2 Background and Related Work

We model a social network G = (V, E ) as a simple, undirected graph and it
contains no multiple egdes, where V is a set of vertices representing individual
users and E ⊆ V ×V is the set of edges representing the relationship between
individuals. Each edge is assigned with mutual friend value. Let f be the mutual
friend sequence for G, in which entries are in descending order, i.e. f1 ≥ f2 ≥
f3 ≥ ... ≥ fm.

2.1 Preliminaries

Definition 1 (NMF of an edge). It is defined as the number of mutual friends
between two users. For a given graph, it is calculated as number of common
neighbour vertices between two end vertices. For example, an edge e between v1
and v2 vertices, the NMF value of the edge e is the number of common neighbour
vertices of v1 and v2.

Definition 2 (Mutual Friend Sequence). For given social network G(V,E), set
of edge is defined as E = (v1, v2) where v1 ∈ V and v2 ∈ V . Mutual friend
sequence f is a vector that contains NMF value for each edge e ∈ E.

Definition 3 (Mutual Friend Attack). Given a social network G(V,E) and pub-
lished anonymized network G′(V ′, E′), adversary can get the number of mutual
friends for edge e as fe. Mutual friend attack will identify an edge e′ ∈ E′ from
G′ that satisfy fe′ = fe.

Definition 4 (k-Anonymous Sequence [5]). A sequence vector z is k-anonymous,
if for any entry with value as v, there exist at least k-1 other entries with the same
value as v.

If there is only one edge e′ ∈ E′ that satisfy the condition for mutual friend
attack, adversary can map e′ to e with high confidence. Suppose there are k
candidate edges for mutual friend attack, the probability to map edge e with
candidate edges is no more than 1

k . Our main goal is to make original graph
k-NMF anonymous for given anonymous parameter k. To make graph k-NMF
anonymous, mutual friend sequence should be converted into k-NMF anonymous
sequence.



214 K.R. Macwan and S.J. Patel

2.2 Literature Survey

The major goal of privacy preservation is to hide sensitive information of indi-
vidual. Privacy attacks re-identify the individual user or relationship between
two users by joining published dataset with some external dataset to model the
background knowledge of users. A privacy breach occurs when some sensitive
information about an individual is disclosed to an adversary. It poses various
threats and it also damages the image and reputation of an individual. There-
fore, published data should be ensured to provide privacy before it is released to
third parties. Privacy breaches in social networks can be categorized into three
types [4,10].

1. Identity disclosure: Identity disclosure occurs when an individual behind a
record is exposed. A simple way of defining identity disclosure is to say that
an adversary can map victim with query with full certainty.

2. Sensitive link disclosure: It occurs when an adversary is able to find out the
existence of a sensitive relationship between two users.

3. Sensitive attribute disclosure: Sensitive attribute disclosure takes place when
an adversary is able to determine the true value of a sensitive user attribute.

One of the fundamental issues when releasing social network data is avoid-
ing disclosure of individuals’ sensitive information while still permitting certain
analysis on the network. A straightforward approach of naive anonymization is
not sufficient [6,7], since background knowledge of individuals’ such as degree [5],
neighbourhood graph [11], and so on, provides additional information which can
be used by adversaries to re-identify the individuals from the published dataset.

Some proposed work [7,12] consider group of vertices as a single super-vertex
or partitions the graph into local substructure and treats each substructure as
a single unit to be anonymized. Although these approaches provide better link
privacy by hiding connection information between users, it decreases the utility
of published dataset. Ying and Wu [13] includes edge addition, edge deletion
and edge swap operations for anonymization operation to protect against link
disclosure. They focus on the change caused in the eigenvalues (spectrum) of
the network. Zheleva and Getoor [10] performs edge deletion and node merg-
ing operations to protect sensitive relationship among the individuals. As the
anonymized dataset hides so much useful information, it is not impressive for
aggregate user query.

Zhou and Pei [11] proposed a method to prevent 1-neighborhood attacks by
identifying neighbourhood configuration. Such attacks just focus on connectivity
among vertices in the subgraph. But, it does not consider the vertex degree of
neighbours. So, it fails to stand against friendship attacks. Zou [14] proposed
k-automorphism approach against subgraph attack by inserting many new ver-
tices and edges. Inserted new vertices and edges to protect any arbitrarily large
subgraph decrease the utility of social graph. Zhang [15] proposed an approach to
reduce the probability of the existence of an edge between two users by edge swap
and edge deletion operations. He assumes vertex degree as a vertex description
attribute. Although the probability of an edge connecting victim with his/her



Mutual Friend Attack Prevention in Social Network Data Publishing 215

friend is small, it is possible they can be uniquely re-identified by their friendship
information. Tai [16] introduced a friendship attack, in which the adversary uses
the degrees of two vertices to re-identify victim. As these works focus on the
vertex degree, it cannot achieve the k-NMK anonymity, which focuses on the
number of common neighbours of two vertices. Thus, it fails to preserve user
privacy against mutual friend attack. K-NMF approach proposed in [9] handles
one edge at a time. In our approach, we have made edge insertion operation
favourable for multiple edges to have increment in their NMF values that results
into less percentage edge difference in anonymized data.

3 Proposed Work

In this section, we aim to anonymize number of mutual friend (NMF) sequence
of social graph by edge insertion operation only. First step towards this operation
is to organize the entire NMF sequence into different groups. There should be at
least k entries in each group to meet k-anonymity requirement. Next step is to
anonymize edges to achieve same NMF value in each group. We first anonymize
the edges which have high NMF values, and due to that many low NMF values
will also be set. We have implemented one common data structure to store NMF
values and to keep track of updated NMF values.

3.1 Mutual Friend Sequence Partition

The goal of this step is to have target NMF value for each element of mutual
friend sequence of original social network. The entire NMF sequence is organized
into different groups. After that, for each group we will convert all element
value to some common mutual friend value. As we want to restrict our graph
modification operation to edge insertion only, first element in each partition will
be considered as target value for that partition.

Here, we consider MF sequence f is sorted in descending order. To have at
least k entries in MF sequence to share same values, we will keep at least k
elements in each group. After putting first k edges into one group, next step is
to check whether next successive element should be merged into current group
or to start another group. The decision should be made based on two different
partition cost for that element.

Algorithm 1 shows the steps for NMF sequence partition. For given social
graph G(V,E), the edge set <v1, v2> is given as input to k-anonymization
sequence partition algorithm. In each iteration, it calculates two parti-
tions cost and make a decision of optimal partitioning. For given fe =
{5, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1}, to have 4-NMF anonymous sequence, first 4 ele-
ments are placed into first group. Now, at 5th position, two partition cost is
calculated. First partition cost named as PC1 considers the case to merge that
element '4' into current partition. To satisfy k-anonymity, next k edges after
that element(i.e. {3, 3, 3, 3}) should be in new group. Second partition cost PC2

is to start another group from that element only. Hence, PC1 calculate the cost



216 K.R. Macwan and S.J. Patel

Algorithm 1. k-NMF Sequence Partition
MF Seq = [ ];
for each edge < v1, v2 > in edge set do

count = mutual friend(v1,v2)
insert count in MF Seq f in descending order

end for
last partition index = 0;
for i=k to No of edges − k do

PC1 = MF Seq[last partition index] - MF Seq[i];
PC2 = 0;
for j=i + 1 to i + k do

PC1 = PC1 + MF Seq[i + 1] - MF Seq[j];
PC2 = PC2 + MF Seq[i] - MF Seq[j − 1];

end for
if PC2 < PC1 then

last partition index = i;
i = i + k;

else
i + +;

end if
end for

to anonymize k + 1 edges by merging the current element in old group while
PC2 is cost for k edges by keeping them in new group. So, if PC2 is less than
PC1, then only the partition will be made and new group will be created. For
5th position (element 4), value of PC1 is 1 while PC2 is 3. So, that element
is merged into current group only. Following the same procedure for other ele-
ments, entire NMF sequence is divided into different partitions. Likewise, for any
NMF sequence, we iteratively calculate this partition cost at different positions
and follow the same procedure to have optimal partition. For given MF sequence
in fe, we get {{5, 5, 5, 4, 4}, {3, 3, 3, 3}, {2, 2, 1, 1}} as the final 4-NMF sequence
partition result. At each position, it looks ahead k edges to take a decision to
merge the current edge with old group or to start a new group. Hence, the time
complexity of Algorithm1 is O(k|E|).

3.2 k-NMF Based Edge Anonymization

Here, we consider how to anonymize an edge by edge insertion operation to meet
k-NMF anonymity requirement. Entire MF sequence is divided into different
groups as a result of k-NMF sequence partition. Let gf be the target NMF
of the group, then to anonymize edge <u, v>, the NMF value of edge <u, v>
should be increased to gf . To achieve the target gf value for each edge, number
of mutual friends for that edge should be increased.

As the anonymization operation performs edge insertion operation, it affects
NMF of other edges too. For any new inserted edge <m,n>, NMF value of all the
edges between them and their mutual friends are increased by 1. Therefore, the



Mutual Friend Attack Prevention in Social Network Data Publishing 217

vertex selection decision for edge insertion operation should be in favor of NMF
requirement of affecting edges too. k-NMF based edge anonymization operation
contains four steps and each step is briefly described below.

1. k-NMF requirement set implementation: To implement k-NMF require-
ment set, we make an entry for all elements of NMF sequence along with it’s
target value. Consider, for each element e of group g, ge is the value of that
element (NMF value) and gt is value of first element (target NMF value) in
that group. We implement a common data structure for all elements and make
a NMF requirement entry for each element in it. For each non-zero value of
gt − ge, we make an entry of (ge, gt − ge) as a (key, value) pair in k-NMF
requirement data structure. For example, for given social network in Fig. 2(a)
and for 3-NMF sequence anonymization partition in Fig. 2(b), data structure
for the same is shown in Table 1. It contains two fields: key and value. Key
referrers to NMF value of edge and value represents the increment for that
key to conform k-NMF anonymity.

(a) Originl social graph (b) 3-NMF Sequence partition

Fig. 2. Example of 3-NMF sequence partition

Table 1. 3-NMF Requirement data structure

Key Values

3 1 , 1

1 1 , 1

2. Candidate generation: Here, we select optimal candidate vertices pair to
add new edge between them to increment the key by 1. We access the keys
from NMF requirement data structure in decreasing order for anonymization
operation. Each key basically represents the NMF value of edges for given
social network. For a single key, there are many candidate edges. We create



218 K.R. Macwan and S.J. Patel

edge set ES for key y such that, ∀ e ∈ ES , NMF(e) = y. For given social
network in Fig. 2(a) and from k-NMF requirement shown in Fig. 2(b), edge set
for key value 3 is defines as ES = {(A, E),(B, E)}. Now, next task is to generate
candidate vertices for all the edges of edge set. We search the candidate
vertices for edge (u, v) in a Breadth First Search (BFS) manner to preserve
the graph topological properties. Candidate vertices for edge (u, v) contains
all neighbour vertices of end-vertex u and v. Moreover, it should not create
a complete triangle. It means it should be neighbour of vertex u or v, not
both. For given social graph in Fig. 2(a), for edge set ES = {(A, E), (B, E)},
candidate vertex set is defined as CS = {C, C}.

3. Candidate selection: Once the candidate vertex list is generated for edge
set, we can add new edge between one of the vertex of (u, v) ∈ ES and
w ∈ CS to increase the NMF value of edge (u, v) by 1. This new edge insertion
operation increases the NMF value of other edges too. Each candidate vertex
has its own impact on existing social network dataset in terms of NMF values.
So, it is required to select the suitable vertex for this edge insertion operation.
k-NMF requirement data structure constructed in previous step is useful to
calculate the impact of each candidate vertex. For the candidate vertex w,
if new inserted edge is (w, x) where x = u or v and MF(w, x) is the set of
mutual friends of vertices w and x, then the impact value, IV (w, x) can be
defined as :

IV (w, x) =
|MF(w,x)|∑

n=1

f(MFn) (1)

where f(MFn) = 1, if NMF(MFn) ∈ key set of k-NMF anonymization require-
ment data structure, otherwise f(MFn) = 0. The impact value represents the
effect of that vertex on k-NMF requirement. So, the vertex having maximum
impact value is selected for edge insertion operation. For given social graph
in Fig. 2(a), for CS = {C} and for edge (A,E) ∈ ES , the impact value of
new inserted edge (C, E), is calculated as IV(C,E) = MF(A,E) + MF(A,C) +
MF(B,E) + MF(B,C) = 1 + 1 + 1 + 1 = 4. Similarly, the impact value of C
for edge (B,E) is also 4. So, we can go for any option as both have the same
impact value.

4. Update k-NMF requirement set: After a new edge is inserted, we need to
update the k-NMF requirement data structure. Although, selected candidate
is supportive to k-NMF requirement, the change should be reflected in data
structure for further edge insertion operation. For all affected edge (w, x),
consider l = MF(w, x). If l ∈ key set(requirement data structure) then replace
the entry (l, value) by (l + 1, value-1). This shows that the value of the key
is incremented by 1 in order to reach the target value. The entry will be
discarded, if it is reaches to the target value. The same procedure is carried
out for each affected edge. For a new inserted edge (x, y), a new entry should
be inserted with target value as nearest target NMF value.

Algorithm 2 basically contains four steps of edge modification operation
for k-NMF sequence anonymization. The function define MF Inc Set() gathers



Mutual Friend Attack Prevention in Social Network Data Publishing 219

Algorithm 2. k-NMF Sequence Anonymization Algorithm
define MF Inc Set();
while MF Inc Set != empty do

key ← max(MF Key) ∈ MF Inc set
create edge set, ES = < v1, v2 > where MF(v1, v2)=key
for each edge < v1, v2 >∈ ES do

create cand vertices set CS

for each u ∈ CS do
select x ∈ CS where Impact Value(x)=MAX;

end for
end for
select edge < v1, v2 > and x where Impact Value(x, v)=MAX;
perform the edge insertion operation
update MF Inc Set

end while
while MF Inc Set != empty do

select candidate vertex z where dist(v1, z) >3 and dist(v2, z) >3
update MF Inc Set

end while

Fig. 3. 3-NMF anonymized social graph

<key, value> requirement for each edge and store it in one data structure as
shown in Table 1. Figure 3 shows 3-NMF anonymized social graph for original
social graph shown in Fig. 2(a). Algorithm 2 generates a candidate set CS for
edge (u, v) from the neighbours of end vertices. Candidate selection operation
create a new triangle by inserting new edge (x,w). So, the shortest path length
(SPL) between x ∈ (u, v) and w will decrease from 2 to 1. Selected candidate ver-
tices from 2-hop neighbours decrease their SPL to 1. If these steps for 1-hop and
2-hop cannot successfully anonymize the highest key value, we select candidate
vertices from distance ≥3. By the Breadth-First search, the time complexity to
get neig(u) and neig(v) is O(|V | + |E|). Candidate generation operation takes
O(|V |) time. In candidate selection step, it calculates impact value for each can-
didate vertex. This operation takes O(|E||V |) time. Therefore, the running time
for each candidate set is O(|E||V |2). It takes O(1) time for candidate selection



220 K.R. Macwan and S.J. Patel

from distance ≥3. For E edges, k-NMF requirement set have O(|E|) entries. So,
the total time complexity of proposed algorithm is O(|E|2|V |2).

4 Experimental Results

In this section, we present our experimental study on real dataset to evaluate
the performance of the proposed k-NMF sequence anonymization algorithm. We
evaluate the utility of anonymized social network graph by computing their graph
topological properties. We have also compared effectiveness of k-anonymization
approach with existing approaches. The experiments are conducted on an
Intel Core, 2 Quad CPU, 3.20 GHz machine with 4GB main memory running
Windows 7 OS. We have used Networkx package [17] to calculate graph topo-
logical properties in python.

4.1 Datasets

We conduct our experiments on two datasets: Facebook and Hamsterster. Both
datasets contains undirected graphs without self-loop and multiple edges. These
datasets is available at network repository [18].

1. SOCFB-USFCA72: This dataset is extracted from Facebook. It represents
social friendship network consisting of people (nodes) with edges representing
friendship ties. It contains 58,228 nodes and 214,078 edges.

2. SOC-HAMSTERSTER: This network also represents friendships and fam-
ily links(edges) between users(nodes). It contains 2426 nodes and 16,630
edges.

4.2 Evaluation Metrics

Anonymization methods convert original dataset G = (V,E) into anonymized
dataset G′ = (V ′, E′). In order to check the usefulness of dataset, we evaluate
some graph structural properties. Evaluation metrics [5,11,16,19,20] are listed
here:

– Average Clustering Coefficient (ACC): It is a measure of the degree
to which vertices in a graph tend to cluster together. It is calculated as the
average of local clustering coefficient of all the vertices:

ACCG(V,E) =
1

|V |
∑

v∈V

Cv (2)

Here, local clustering of vertx vi is calculated as follows:

Ci =
2|ejk : vj , vk ∈ Ni, ejk ∈ E|

kj(kj − 1)
(3)

where Ni represents the neighbors of vertex vi and ki is the degree of vertex vi.



Mutual Friend Attack Prevention in Social Network Data Publishing 221

– Average Path Length (APL): It is defined as the average number of steps
along the shortest paths for all possible pairs of network nodes.

APLG(V,E) =
1

|V |(|V | − 1)

∑

u,v∈V,u�=v

d(u, v) (4)

where d(u, v) is the shortest path length of vertices u and v.
– Average Betweenness (BW): It is defined as the average of betweenness

centrality of all nodes. It is equal to the number of shortest paths from all
vertices to all others that pass through that node. The betweenness centrality
of a vertex v is calculated as follows:

g(v) =
∑

s �=v �=t

σst(v)
σst

(5)

where σst is the number of shortest path from vertex s to vertex t and σst(v) is
the total number of those paths that pass through vertex v length of vertices
u and v. The normalization of betweenness centrality is calculated as follows:

norm(g(v)) =
g(v) − min(g)

max(g) − min(g)
(6)

– Percentage of Changed Edges (PCE): It evaluates the number of added
edges in the social network. Our anonymization approach considers only edge
insertion operations. So, this metric is calculated as follows:

PCEG,G’ =
|E′ − E|

|E| (7)

where E′ and E is the number of edges in anonymized and original social
network respectively.

The metrics listed above are widely used to evaluate the performance of pri-
vacy preserving algorithms. Also, the utility of anonymized dataset is inspected
in different aspects through these metrics. The first three metrics are related to
structure of social network. The closer the value of anonymized network to orig-
inal network, the utility of anonymized dataset is maintained. For PCE metric,
smaller values indicate better performance.

4.3 Experimental Evaluation

We use utility metrics listed in Sect. 4.2 as the performance metrics. The effect
of anonymization parameter k on different metrics are shown in Fig. 4. For this
experiment, we have used extracted dataset from Facebook. Candidate vertex
selection for edge insertion is based on BFS traversal. The value of average
path length (APL) decreases (Fig. 4(a)) and clustering coefficient (CC) increases
(Fig. 4(b)) as the value of k increases. Figure 4(b) shows that there is a negligible



222 K.R. Macwan and S.J. Patel

Fig. 4. Properties of k-NMF social network

change in betweenness (BW). Its value remains same for any value of k. The
more number of edge insertion operations are required with increasing value of
anonymization parameter k. Therefore, as shown in Fig. 4(d) percentage edge
change in anonymized dataset also increase with increasing value of k. Although
the value of k is reached up to 100, the changes in structural properties are not
greater than 1%.

4.4 Comparison with Existing Approach

Here, we have compared results of our proposed approach with BFSEA algorithm
for Hamsterster dataset. Comparison in terms of all four utility metrics are shown
in Fig. 5. As our proposed approach considers the requirement for other edges
too, it performs comparatively small number of graph modification operations.
That results into less deviation in graph topological properties (Fig. 5(a), (b),
(c)). Anonymization approach performs the optimal edge insertion operation
that can increment NMF value of other required edges too. So, as depicted in
Fig. 5(d), there is a significant improvement in percentage of changed edges for
our approach.

BFSEA algorithm takes O(|E||V |2) time to execute anonymization algo-
rithm [9]. Our proposed approach calculates impact value for each candidate
vertex. Therefore, the time complexity of our proposed anonymization approach
is O(|E|2|V |2). Figure 6 shows running time comparison of both approaches for
Hamsterster dataset. As time complexity of BFSEA algorithm is lower than our



Mutual Friend Attack Prevention in Social Network Data Publishing 223

Fig. 5. Comparison with existing approach

Fig. 6. Running time comparison with BFSEA algorithm

approach, running time is also lesser for BFSEA algorithm. But, the time com-
plexity for both the algorithm contains number of edges in the social network.
Figure 5(d) shows that as the value of k increased, there is high increment in
percentage of inserted edge for BFSEA algorithm compared to our proposed
approach. So, the less number of edges are inserted for our proposed approach,
the execution time is lesser for higher values of anonymization parameter k.



224 K.R. Macwan and S.J. Patel

5 Conclusion

In this paper, we propose a more efficient anonymization approach that pro-
tects the published social network dataset against mutual friend attack. BFS
search algorithm used for candidate vertex selection is helpful to retain struc-
tural properties in anonymized social dataset. We have implemented separate
data structure that highlights requirement for different NMF values. This infor-
mation is very useful in candidate vertex selection operation. Single edge inser-
tion operation fulfils the requirement for other edges too. So, it results into very
small deviation in APL, CC and BW value. The experimental results demon-
strate that the number of inserted edge is lesser compared to existing approach.
Hence, it preserves the data usefulness of anonymized dataset. We can ensure
k-NMF anonymity while preserving much of the data utility in original social
dataset.

This work can be extended to ensure k-degree anonymity based on k-NMF
anonymity. The proposed approach can be extended for neighbourhood attack
also.

References

1. Facebookstatistics: http://nvestor.fb.com/ Accessed on May 2017
2. Zhou, B., Pei, J., Luk, W.S.: A brief survey on anonymization techniques for privacy

preserving publishing of social network data. ACM Sigkdd Explor. Newsl. 10(2),
12–22 (2008)

3. Wu, X., Ying, X., Liu, K., Chen, L.: A survey of privacy-preservation of graphs
and social networks. In: Aggarwal, C., Wang, H. (eds.) Managing and Mining
Graph Data, pp. 421–453. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-1-4419-6045-0 14

4. Liu, K., Das, K., Grandison, T., Kargupta, H.: Privacy-preserving data analysis on
graphs and social networks, In: Next Generation Data Mining, pp. 415–431. CRC
Press (2008)

5. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data, pp.
93–106. ACM (2008)

6. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x? Anonymized
social networks, hidden patterns, and structural steganography. In: Proceedings of
the 16th International Conference on World Wide Web, pp. 181–190. ACM (2007)

7. Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting structural re-
identification in anonymized social networks. Proc. VLDB Endowment 1(1), 102–
114 (2008)

8. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertainty
Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002)

9. Xindong, W., Zhu, X., Gong-Qing, W., Ding, W.: Privacy preserving social network
publication against mutual friend attacks. IEEE Trans. Data Priv. 7(2), 71–77
(2014)

10. Zheleva, E., Getoor, L.: Preserving the privacy of sensitive relationships in graph
data. In: Bonchi, F., Ferrari, E., Malin, B., Saygin, Y. (eds.) PInKDD 2007.
LNCS, vol. 4890, pp. 153–171. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78478-4 9

http://nvestor.fb.com/
https://doi.org/10.1007/978-1-4419-6045-0_14
https://doi.org/10.1007/978-1-4419-6045-0_14
https://doi.org/10.1007/978-3-540-78478-4_9
https://doi.org/10.1007/978-3-540-78478-4_9


Mutual Friend Attack Prevention in Social Network Data Publishing 225

11. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood
attacks. In: 2008 IEEE 24th International Conference on Data Engineering, pp.
506–515. IEEE (2008)

12. He, X., Vaidya, J., Shafiq, B., Adam, N., Atluri, V.: Preserving privacy in social
networks: a structure-aware approach. In: Web Intelligence and Intelligent Agent
Technologies, WI-IAT 2009. IEEE/WIC/ACM International Joint Conferences on,
vol. 1, pp. 647–654. IET (2009)

13. Ying, X., Wu, X.: Randomizing social networks: a spectrum preserving approach.
In: Proceedings of the 2008 SIAM International Conference on Data Mining, pp.
739–750. SIAM (2008)

14. Zou, L., Chen, L., Tamer Özsu, M.: K-automorphism: a general framework for
privacy preserving network publication. Proc. VLDB Endowment 2(1), 946–957
(2009)

15. Zhang, L., Zhang, W.: Edge anonymity in social network graphs. In: International
Conference on Computational Science and Engineering CSE 2009, vol. 4, pp. 1–8.
IEEE (2009)

16. Tai, C.-H., Yu, P.S., Yang, D.-N., Chen, M.-S.: Privacy-preserving social network
publication against friendship attacks. In: Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1262–
1270. ACM (2011)

17. Networkx: http://networkx.lanl.gov/ Accessed on Mar 2017
18. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph

analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (2015)

19. Cheng, J., Fu, A.W., Liu, J.: K-isomorphism: privacy preserving network pub-
lication against structural attacks. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pp. 459–470. ACM (2010)

20. Tai, C.-H., Yu, P.S., Yang, D.-N., Chen, M.-S.: Structural diversity for privacy
in publishing social networks. In: Proceedings of the 2011 SIAM International
Conference on Data Mining, pp. 35–46. SIAM (2011)

http://networkx.lanl.gov/


Short Integrated PKE+PEKS in Standard
Model

Vishal Saraswat1(B) and Rajeev Anand Sahu2

1 R.C. Bose Centre for Cryptology and Security, Indian Statistical Institute,
Kolkata, India

vishal v@isical.ac.in
2 Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium

rajeev.sahu@ulb.ac.be

Abstract. At SeCrypt 2015, Buccafurri et al. [BLSS15] presented an
integrated public-key encryption (PKE) and public-key encryption with
keyword search (PEKS) scheme (PKE+PEKS) whose security relies on
the Symmetric eXternal Diffie-Hellman (SXDH) assumption but they did
not provide a security proof. We present a construction of PKE+PEKS
and prove its security in the standard model under the SXDH assump-
tion. We prove that our scheme is both IND-PKE-CCA secure, that is,
it provides message confidentiality against an adaptive chosen cipher-
text adversary, and IND-PEKS-CCA secure, that is, it provides keyword
privacy against an adaptive chosen ciphertext adversary. Ours is the
first secure PKE+PEKS construction to use asymmetric pairings which
enable an extremely fast implementation useful for practical applications.
Our scheme has much shorter ciphertexts than the scheme in [BLSS15]
and all other publicly known PKE+PEKS schemes. Finally, we com-
pare our scheme with other proposed PEKS and integrated PKE+PEKS
schemes and provide a relative analysis of various parameters including
assumption, security and efficiency.

Keywords: PKE+PEKS · Searchable encryption · Asymmetric pair-
ings (type 3) · Provable security · Standard model · SXDH

1 Introduction

The primary goal in cryptography is message-privacy which is usually achieved
by the encryption techniques. In practice, a recipient may wish to filter the
messages that come to her inbox based on the message content, or a user may
wish to download some encrypted files from a server whose content satisfies
certain criterion. In cryptography, this functionality is achieved by searching
on the encrypted data (that is, searchable encryption). Boneh et al. [BDOP04]
introduced a method of searching for certain keyword(s) in data encrypted using
public key encryption (PKE) and called it public key encryption with keyword

Second author is supported by the Brussels Region INNOVIRIS project SeCloud.

c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 226–246, 2017.
https://doi.org/10.1007/978-3-319-71501-8_13



Short Integrated PKE+PEKS in Standard Model 227

search (PEKS). Since then, applications of PEKS have been realized in various
issues such as the design of spam filter, searchable cloud storage, time released
encryption (TRE) etc.

The main advantage of this primitive is that it allows one to delegate to a
third party the capability of “searching on public key encrypted data” without
impacting privacy. Suppose a bank uses a third party cloud service provider
(CSP) to facilitate the banking services to its account holders. To prevent fraud-
ulent transactions, the bank must put some checks on the transactions being
conducted and needs constant monitoring of the transaction “contents”. For
example, for a certain account holder with address in the zipcode 20500 in DC,
USA, the bank may put checks as

– if the transaction location zipcode is not 20500 but the state is DC and
country is USA, a sms alert must be sent to the account holder informing
them of the activity outside home zipcode.

– if the transaction location state is not DC but the country is USA, a sms
alert must be sent to the account holder informing them of activity outside
home state and a red alert must be sent to the bank, and

– if the transaction country is not USA, the transaction must not be processed
further until intervention from the bank.

However, to protect the privacy of the users, the CSP must not be able to
get any information about the transactions that any of the account holders
conduct. Using a PEKS, the bank can enable the CSP with the ability to test
whether the zipcode, state and country values are certain values or not and
then act accordingly without learning anything else about the transaction. More
generally, the bank can specify a few “keywords” that the CSP can search for,
but learn nothing else about the transactions.

The primitive of PEKS basically acts as a “search” function on a PKE scheme
but does not retrieve any data by itself. So, in practice, a PEKS scheme is always
used together with an underlying PKE scheme and such a combination of these
two schemes is called integrated PKE and PEKS and is denoted as PKE+PEKS.

The generic approaches that simply combine a PKE scheme and a PEKS
scheme (as described in [BDOP04]) work as follows. Let (pkR, skR) be a receiver’s
(public-key, private-key) pair. A sender encrypts a message-keyword pair (m,w)
as Cm = PKE(m, pkR)‖Cw = PEKS(w, pkR). The mail server on receiving the
ciphertext Cm‖Cw parses Cw and tests it with its trapdoors tw′ and if the result
is ‘TRUE’, it forwards Cm to the receiver, who then decrypts it using its private
key skR. Note that in such a generic approach, the server acts only on the second
component Cw and the receiver acts only on the first component Cm.

The basic objective of security in an encryption scheme is data-privacy.
To achieve this property the standard notions like indistinguishability against-
chosen-plaintext attack (IND-CPA) and chosen-ciphertext attack (IND-CCA)
have been formalized [GM84,BDPR98,BF01]. The latter one is stronger. For the
PKE+PEKS scheme the privacy must be achieved for both, the message (that is,
data) and the keyword. Hence, the strongest security notion for a PKE+PEKS



228 V. Saraswat and R.A. Sahu

scheme corresponds to the idea to achieve CCA-security for both the message
and the keyword, that is, IND-PKE-CCA and IND-PEKS-CCA.

Further, we must consider the security of the whole system PKE+PEKS
rather than that of each of the components PKE and PEKS independently.
As pointed out by Baek et al. [BSS06], Zhang and Imai [ZI07] and Abdalla
et al. [ABN10], a PKE+PEKS scheme formed from a CCA secure PKE scheme
and a CCA secure PEKS scheme may not remain CCA secure as a whole system.
This is shown as follows: an adversary with a target ciphertext Cm‖Cw can
produce another valid ciphertext Cm‖Cw′ where Cw′ is a valid PEKS of some
keyword w′ and retrieve the plaintext m and thus breaking the CCA security of
the PKE+PEKS scheme. So, a unified security model for the joint CCA-security
of PKE+PEKS is desired.

1.1 Related Work

The related work on the subject of this paper is reasonably current and exhaus-
tive in related work section of [BLSS15] and we reproduce almost verbatim
from [BLSS15].

Abdalla et al. [ABC+05] have defined computational and statistical relax-
ations of perfect consistency for a PEKS scheme and showed that the BDOP
PEKS scheme [BDOP04] is computationally consistent. They have also proposed
a new statistically consistent scheme. Moreover, they have provided a transform
of an anonymous identity-based encryption (IBE) scheme to a PEKS scheme
that, unlike the BDOP PEKS scheme, gives consistency. Baek et al. [BSS06]
have formally defined a combined scheme for PKE and PEKS (denoted as
PKE/PEKS) based on the BDOP PEKS scheme and the variation of ElGa-
mal encryption scheme with the randomness reuse technique [Kur02]. Paral-
lel to these works, various other researchers have also studied the design and
efficiency of the PEKS schemes including [BW06,FP07,ZI07,BSS08,ABN10].
Crescenzo and Saraswat [DS07] have constructed the first PEKS scheme which
was not based on bilinear forms. Various other works [SVEG10,INHJ11,SR14]
have studied the application aspects of PEKS.

Boneh et al. [BDOP04] formalized the security precisely for the PEKS scheme
with IND-PEKS-CPA notion. Later Baek et al. [BSS08] combined PKE and
PEKS with a joint security notion. But as their idea covered only data pri-
vacy and not the keyword privacy, the notion lacks completeness. Zhang and
Imai [ZI07] first extended the security notion to achieve both data privacy and
keyword privacy. The security notion for data privacy is IND-PKE-CCA, which
is achieved in their scheme using a tag-based CCA-secure PKE scheme, and for
keyword privacy the notion is IND-PEKS-CPA, which they have achieved using a
CPA-secure PEKS scheme. Further their scheme achieves non-malleability with
respect to the PKE component only and not with respect to the PEKS compo-
nent. Hence their construction has IND-PKE-CCA security for data privacy but
only IND-PEKS-CPA security for keyword privacy. Also, the joint security of
their construction is built up on the key separation strategy, that is, using dif-
ferent keys for different cryptographic operations. Hence the construction suffers



Short Integrated PKE+PEKS in Standard Model 229

from double key size, which increases key-maintenance overheads unnecessarily
during the practical implementations. However, none of the works [BSS08,ZI07]
prove the joint security of a PKE+PEKS scheme in strongest notion, that is,
‘IND-PKE+PEKS-CCA security’. One reason for why they are unable to give an
IND-PEKS-CCA security for their schemes is that the adversary in their model is
not given access to a test oracle [ABN10]. In [ABN10], Abdalla et al. introduced a
new combined CCA-security notion on the standard model with a privilege to the
adversary to access both, decryption oracle and test oracle. To achieve the CCA
security for the PKE+PEKS scheme, they have followed the idea of [DK05], and
combined two schemes, a tag-based CCA-secure PKE scheme and a tag-based
CCA-secure PEKS scheme, but this idea leads to increase the computational
overhead of the resulting PKE+PEKS scheme which is not appreciated at the
practical platform. Additionally, their construction also suffers from double key
size due to the adoption of key separation strategy. Recently, [CZLZ14] have
minimized the key size of their PKE+PEKS scheme using a single key pair for
both PKE and PEKS operations. They have defined data privacy and keyword
privacy for PKE+PEKS schemes separately and claimed that the PKE+PEKS
scheme is said to achieve the joint CCA-security if it attains keyword privacy
and data privacy simultaneously.

1.2 Our Contribution

We present a construction of an efficient integrated PKE+PEKS scheme with
short ciphertexts and prove its security in the standard model. We prove that
our scheme is IND-PKE-CCA secure, that is, provides message confidentiality
against an adaptive chosen ciphertext adversary, and also achieves IND-PEKS-
CCA security, that is, provides keyword privacy against an adaptive chosen
ciphertext adversary, under the SXDH assumption.

Up till now, although there have been lot of research on searchable encryp-
tion, the only fully secure schemes [ABN10,CZLZ14,BLSS15] are inefficient to
be practical enough to be used in implementation. We propose a state of art effi-
cient, computationally and bandwidth-wise, fully secure practical scheme which,
we believe, can be used in real applications.

At SeCrypt 2015, Buccafurri et al. [BLSS15] presented an integrated public-
key encryption (PKE) and public-key encryption with keyword search (PEKS)
scheme (PKE+PEKS) whose security relies on the SXDH assumption. Their
scheme is relatively efficient and our scheme improves upon it. Our scheme
has much shorter ciphertexts and uses fewer number of the pairings. Please see
Tables 1 and 2 for detailed comparison with [BLSS15] and other PEKS schemes.

Also, in comparison to the scheme in [CZLZ14], our construction has shorter
public keys, shorter secret keys, shorter ciphertexts and a much improved effi-
ciency in terms of computation. Further, we provide a unified proof of the overall
security of the whole system in a much tighter way. Also, our scheme uses one
unified framework for the full PKE+PEKS scheme—the security of the scheme
relies on one single hardness assumption and we use the same bilinear pairing
map throughout the scheme, instead of using different groups/maps/structures



230 V. Saraswat and R.A. Sahu

at different stages of the scheme which makes the implementation of our scheme
much simpler both on hardware and on software.

We use the method of Paterson et al. [PSST11] of using bit prefix and a
one-time signature to enable us to use the same key-pair for our integrated
PKE+PEKS scheme and to obtain the joint security for our scheme. To obtain
the short size and efficiency, we use the short IBE and IBS schemes of [JR13]
which use asymmetric pairings to enable an extremely fast implementation useful
for practical applications.

1.3 Outline of the Paper

The rest of this paper is organized as follows. In Sect. 2, we introduce some
related mathematical definitions, problems and assumptions. In Sect. 3, we for-
mally define an integrated public key encryption (PKE) and public key encryp-
tion with keyword search (PEKS) scheme (PKE+PEKS) and a unified security
model for it. Our proposed PKE+PEKS scheme is presented in Sect. 4. In Sect. 5,
we analyse the security of our scheme and in Sect. 6, we do an efficiency com-
parison with the state-of-art. Finally, in Sect. 7, we conclude our work and point
a few improvements that can be made while implementing our scheme.

2 Preliminaries

In this section, we introduce some relevant definitions, mathematical prob-
lems and assumptions. Note that these definitions are standard and we repro-
duce these almost verbatim from [BLSS15] to maintain consistency and easier
comparison.

2.1 Notations

We denote by y ← A(x) the operation of running a randomized or deterministic
algorithm A(x) and storing the output to the variable y. If X is a set, then

v
$← X denotes the operation of choosing an element v of X according to the

uniform random distribution on X. We say that a given function f : N → [0, 1]
is negligible in n if f(n) < 1/p(n) for any polynomial p for sufficiently large n.
For a group G and g ∈ G, we write G = 〈g〉 if g is a generator of G.

2.2 Bilinear Maps

Let G1, G2 and GT be multiplicative cyclic groups of the same prime order q.
A map e : G1 × G2 → GT is called a cryptographic bilinear map or a pairing if
it satisfies the following properties:

Bilinearity: For all (g1, g2) ∈ G1×G2 and for all a, b ∈ Zq, e(ga
1 , gb

2) = e(g1, g2)ab.
Non-Degeneracy: There exists (g1, g2) ∈ G1 × G2 such that e(g1, g2) �= 1, the

identity of GT .



Short Integrated PKE+PEKS in Standard Model 231

Computability: There exists an efficient algorithm to compute e(g1, g2) ∈ GT ,
for all (g1, g2) ∈ G1 × G2.

A pairing e : G1 × G2 → GT is called a symmetric or a Type 1 pairing
if G1 = G2 otherwise it is called asymmetric. Asymmetric pairings are fur-
ther categorized into Type 2 and Type 3 pairings. If there exists an efficiently
computable isomorphism between G1 and G2 then the pairing is referred to as
Type 2, whereas if there is no efficiently computable isomorphism between G1

and G2, then the pairing is referred to as Type 3.

2.3 Symmetric eXternal Diffie-Hellman (SXDH) Assumption

Definition 1. Let G be a multiplicative cyclic group and g be its generator.
Let a, b, c ∈ Z

×
q be randomly chosen and kept secret. Given g, ga, gb, gc ∈ G,

the decisional Diffie-Hellman problem (DDHP) in the group G is to decide if
gab = gc.

Definition 2. The DDH assumption holds in a group G if there is no efficient
polynomial time algorithm which can solve DDHP in G. Specifically, let A be a
DDH adversary for a group G which takes as input a generator g ∈ G, and three
elements g1 = ga, g2 = gb, g3 = gc of the group G, and outputs 1 if g3 = gab

and 0 otherwise. Further, let the advantage of A be defined as

AdvA = |Pr[A(g, ga, gb, gab) = 1]| − |Pr[A(g, ga, gb, gc) = 1]|

where g
$← G×, a

$← Z
×
q , b

$← Z
×
q and c

$← Z
×
q . We say that (t, ε)-DDH assump-

tion holds in the group G if any DDH adversary running in time t has an
advantage at most ε.

Definition 3. Given two cyclic groups G1 and G2, we say the Symmetric eXter-
nal Diffie-Hellman (SXDH) assumption holds if the DDH assumption is true in
both the groups G1 and G2.

3 Integrated PKE and PEKS Scheme (PKE+PEKS)

Here we reproduce almost verbatim from [BLSS15] the formal definition of an
integrated public-key encryption (PKE) and public-key encryption with keyword
search (PEKS) scheme (PKE+PEKS).

In PEKS, three parties called sender, receiver and server are involved. The
sender is a party that creates and sends encrypted keywords, which we call PEKS
ciphertexts. The receiver is a party that creates trapdoors and sends them to the
server to find the data that it wants. The server is a party that receives PEKS
ciphertexts and performs search upon receiving trapdoors from the receiver.



232 V. Saraswat and R.A. Sahu

3.1 Formal Definition of PKE+PEKS

A PKE+PEKS scheme comprises of six algorithms: Setup, KeyGen, Encrypt,
Decrypt, TokenGen and Test.

Params ← Setup(1k): This is the system initialization algorithm run by the
receiver which takes as input a security parameter 1k and outputs public
parameters Params. In all the algorithms from here onward, Params will be
considered as an implicit input.

(pkX , skX) ← keyGen(X): This is the key generation algorithm run by a user
X which takes input Params and outputs a key pair (pkX , skX). For the
receiver X = R, the key pair is its (public key, private key) pair (pkR, skR)
and for a sender X = S, the key pair is its (verification key, signing key) pair
(vkS , skS).

U ← Encrypt(pkR,m,w): This is a randomized algorithm run by the sender
and takes input Params, the receiver’s public key pkR, a message m and a
keyword w, and outputs the joint PKE+PEKS ciphertext U .

m ← Decrypt(pkR, skR,U): This is a deterministic algorithm run by the
receiver and takes input Params, the receiver’s public key pkR and the secret
key skR and a ciphertext U , and outputs a message m or ⊥.

tw ← TokenGen(pkR, skR, w): This is a randomized algorithm run by the
receiver and takes input Params, the receiver’s public key pkR and the secret
key skR and a keyword w, and outputs a token tw which it gives to the server.

b ← Test(pkR, tw,U): This is a deterministic algorithm run by the server and
takes input Params, the receiver’s public key pkR, a token tw and a ciphertext
U , and outputs a bit b ∈ {0, 1} or ⊥.

From now on, where the context is clear, the inputs Params and the keys will
be assumed to be implicit and we will not write them explicitly in the algorithms.

3.2 Security Model for PKE+PEKS

Joint data and keyword privacy for PKE+PEKS schemes is defined via the
following experiment.

Setup: On input a security parameter 1k, the challenger C runs KeyGen(1k) to
generate the public parameter Params and the system key pair (pk, sk) and
gives the adversary A the public key pk.

Phase 1: A can adaptively make three types of queries:
– Decryption query 〈u〉: C responds with m ← Decrypt(sk, u).
– Token query 〈w〉: C responds with tw ← TokenGen(sk, w).
– Test query 〈u,w〉: C responds with Test(u, tw ← TokenGen(sk, w)).

Challenge: A outputs two messages m∗
0 and m∗

1 and two keywords w∗
0 and w∗

1 .

C picks a random bit b
$← {0, 1} and sends u∗ ← Encrypt(pk,m∗

b , w
∗
b ) to A as

the challenge ciphertext.
Phase 2: A can adaptively make more queries as in Phase 1 subject to the

restrictions that it is not allowed to make



Short Integrated PKE+PEKS in Standard Model 233

– Decryption query 〈u∗〉,
– Token queries 〈w∗

0〉 and 〈w∗
1〉, and

– Test queries 〈u∗, w∗
0〉 and 〈u∗, w∗

1〉.
C responds the same way as in Phase 1.

Guess: A outputs its guess (b∗) for (b).

Definition 4. The adversary succeeds in breaking the data privacy or the key-
word privacy if b∗ = b. We denote this event by SuccA and define A’s advan-
tage as

AdvA(1k) def= |Pr[SuccA] − 1/2|.
We say a PKE+PEKS scheme is IND-PKE+PEKS-CCA secure, that is, the
scheme achieves data privacy and keyword privacy simultaneously against an
adaptive chosen ciphertext adversary, if AdvA(1k) is negligible. A PKE+PEKS
scheme is said to be (t, qw, qt, qd, ε)-IND-PKE+PEKS-CCA secure, if for all t-
time adversaries making at most qw token queries, at most qt test queries, and
at most qd decryption queries have advantage at most ε.

Definition 5 (Data Privacy). We may define a game for just data privacy, if
w∗

0 = w∗
1 and the adversary has no restriction on Token queries and Test queries

in the above game. The adversary succeeds in breaking the data privacy if b∗ = b.
We denote this event by Succdp

A and define A’s advantage as

Advdp
A (1k) def= |Pr[Succdp

A ] − 1/2|.
A PKE+PEKS scheme is said to have (t, qw, qt, qd, ε)-data privacy if for all t-
time adversaries making at most qw token queries, at most qt test queries, and
at most qd decryption queries have advantage at most ε against its data privacy.
Informally, we say a PKE+PEKS scheme has data privacy if there is no PPT
adversary having non-negligible advantage in 1k in the above experiment.

Definition 6 (Keyword Privacy). We may define a game for just keyword
privacy, if m∗

0 = m∗
1 and the adversary has no restriction on Decryption queries

in the above game. The adversary succeeds in breaking the keyword privacy if
b∗ = b. We denote this event by Succkp

A and define A’s advantage as

Advkp
A (1k) def= |Pr[Succkp

A ] − 1/2|.
A PKE+PEKS scheme is said to have (t, qw, qt, qd, ε)-keyword privacy if for all t-
time adversaries making at most qw token queries, at most qt test queries, and at
most qd decryption queries have advantage at most ε against its keyword privacy.
Informally, we say a PKE+PEKS scheme has keyword privacy if there is no PPT
adversary having non-negligible advantage in 1k in the above experiment.

Remark 1. Note that our joint CCA-security notion for PKE+PEKS embodies
both IND-PKE-CCA security and IND-PEKS-CCA security in the joint sense
and is relatively unified and standard than previous ones considered in [CZLZ14,
BLSS15].



234 V. Saraswat and R.A. Sahu

4 Proposed Scheme

We present here our efficient and CCA secure integrated PKE+PEKS scheme.
As described in Sect. 3, our scheme consists of the following algorithms: Setup,
KeyGen, Encrypt, Decrypt, TokenGen and Test.

Setup: A receiver R wishing to receive joint PKE+PEKS messages uses a group
generation algorithm for which the SXDH assumption holds to generate the
public parameters of the system:

G := (q,G1, G2, GT , e)

where G1, G2, and GT are cyclic groups of prime order q and

e : G1 × G2 → GT

is a Type 3 pairing. The receiver R then chooses two cryptographic collision
resistant hash functions

H : {0, 1}∗ → Z
×
q and J : {0, 1}∗ → GT .

Finally, R publishes the public parameters of the system as

Params = (G,H, J).

(These may be considered as part R’s public key, but for sake of clarity we
keep these separate.)

KeyGen: To generate the keys for the system, the receiver does the following:

• samples two random generators g1
$← G×

1 and g2
$← G×

2 ;

• samples b, c, d, e, u, l,m, n, p
$← Z

×
q ;

• computes
– f1 = gb

1,
– f2 = gc

2,
– v1 = gd−bl

1 ,
– v2 = ge−bm

1 ,
– v3 = gc−bn

1 , and
– k = e(g1, g2)u−bp;

• sets the public key pkR = (g1, f1, v1, v2, v3, k); and
• sets the master secret skR = (g2, f2, l,m, n, p, d, e, u).

Encrypt: To encrypt a message m ∈ GT with a keyword w ∈ {0, 1}∗ for the
receiver R, a sender S does the following:

• samples two random generators g̃1
$← G×

1 and g̃2
$← G×

2 ;

• samples b̃, c̃, d̃, ẽ, ũ, l̃, m̃, ñ, p̃
$← Z

×
q ;

• computes
– f̃1 = g̃b̃

1,
– f̃2 = g̃c̃

2,



Short Integrated PKE+PEKS in Standard Model 235

– ṽ1 = g̃d̃−b̃l̃
1 ,

– ṽ2 = g̃ẽ−b̃m̃
1 ,

– ṽ3 = g̃c̃−b̃ñ
1 , and

– k̃ = e(g̃1, g̃2)ũ−b̃p̃;

• sets the verification key vkS = (g̃1, f̃1, ṽ1, ṽ2, ṽ3, k̃); and
• sets the signing key skS = (g̃2, f̃2, l̃, m̃, ñ, p̃, d̃, ẽ, ũ);
• sets v = J(vkS)

• picks x, y, z,tagm,tagw
$← Zq;

• computes
– iv = H(0‖v) and iw = H(1‖w);
– Cm0 = m · kx, Cm1 = gx

1 , Cm2 = fx
1 , and Cm3 = vx

1vxiv
2 vxtagm

3 ;
– Cw0 = v · ky, Cw1 = gy

1 , Cw2 = fy
1 , and Cw3 = vy

1vyiw
2 vytagw

3 ;
– h = H(Cm‖Cw);
– Rσ = g̃z

2 , Sσ = f̃z
2 , Tσ = g̃

ũ+z(d̃+hẽ)
2 , Wσ1 = g̃

−p̃−z(l̃+hm̃)
2 , and Wσ2 =

g̃−zñ
2 ;

• sets
– Cm = (Cm0, Cm1, Cm2, Cm3,tagm);
– Cw = (Cw0, Cw1, Cw2, Cw3,tagw);
– σ = (Rσ, Sσ, Tσ,Wσ1,Wσ2);

• and finally declares the ciphertext U = (vkS , Cm, Cw, σ).

Decrypt: To decrypt the ciphertext U = (u1, u2, u3, u4), the receiver does the
following:

• obtains g̃1, f̃1, ṽ1, ṽ2, ṽ3, k̃ from u1;
• obtains Rσ, Sσ, Tσ,Wσ1,Wσ2 from u4;
• computes h = H(u2‖u3);

• chooses m̃
$← GT , s̃

$← Z
×
q ,tagm̃

$← Z
×
q ;

• computes
– Cm̃0 := m̃ · k̃s̃,
– Cm̃1 := g̃s̃

1,
– Cm̃2 := f̃ s̃

1 ,
– Cm̃3 := ṽs̃

1ṽ
hs̃
2 ṽs̃tagm̃

3 ;
• checks whether the PKE+PEKS ciphertext U is valid. That is, whether

m̃ =
Cm̃0e(Cm̃3, Rσ)

e(Cm̃1, S
tagm̃
σ Tσ)e(Cm̃2,Wσ1W

tagm̃
σ2 )

. (1)

• If the above equality does not hold then outputs ⊥.
• Otherwise it obtains Cm0, Cm1, Cm2, Cm3,tagm from u2;
• computes v = J(u1);
• sets iv = H(0‖v);
• computes a corresponding decryption key

SKiv = (Rv, Sv, Tv,Wv1,Wv2);



236 V. Saraswat and R.A. Sahu

where

– r
$← Z

×
q ,

– Rv = gr
2,

– Sv = fr
2 ,

– Tv = g
u+r(d+ive)
2 ,

– Wv1 = g
−p−r(l+ivm)
2 , and

– Wv2 = g−rn
2 ;

• finally, it outputs

m ← Cm0e(Cm3, Rv)
e(Cm1, S

tagm
v Tv)e(Cm2,Wv1W

tagm
v2 )

. (2)

Tokengen: To generate a token tw for the keyword w to give to the server, the
receiver chooses r

$← Z
×
q , computes

• iw = H(1‖w),
• Rw = gr

2,
• Sw = fr

2 ,
• Tw = g

u+r(d+iwe)
2 ,

• Ww1 = g
−p−r(l+iwm)
2 , and

• Ww2 = g−rn
2 ,

and outputs the token:

tw = (Rw, Sw, Tw,Ww1,Ww2). (3)

Test: To test whether the ciphertext U = (u1, u2, u3, u4) includes the keyword
w or not using the token tw, the server does the following:

• obtains g̃1, f̃1, ṽ1, ṽ2, ṽ3, k̃ from u1;
• obtains Rσ, Sσ, Tσ,Wσ1,Wσ2 from u4;
• computes h = H(u2‖u3);
• chooses m̃

$← GT , s̃
$← Z

×
q , tagm̃

$← Z
×
q ;

• computes
– Cm̃0 := m̃ · k̃s̃,
– Cm̃1 := g̃s̃

1,
– Cm̃2 := f̃ s̃

1 ,
– Cm̃3 := ṽs̃

1ṽ
hs̃
2 ṽs̃tagm̃

3 ;
• checks whether the PKE+PEKS ciphertext U is valid. That is, whether

m̃ =
Cm̃0e(Cm̃3, Rσ)

e(Cm̃1, S
tagm̃
σ Tσ)e(Cm̃2,Wσ1W

tagm̃
σ2 )

. (4)

• If the above equality does not hold then outputs 0.
• Otherwise it obtains Cw0, Cw1, Cw2, Cw3,tagw from u3 and checks if

J(u1) =
Cw0e(Cw3, Rw)

e(Cw1, S
tagw
w Tw)e(Cw2,Ww1W

tagw
w2 )

. (5)

• If yes then outputs 1, else outputs 0.



Short Integrated PKE+PEKS in Standard Model 237

Remark 2. Note that to maintain a “uniformity” we have used the Naor trans-
form of the IBE of [JR13] as a signature. We could have used the signature
scheme of [JR13] for a little more efficiency of our proposed PKE+PEKS. Again,
to maintain “uniformity” and comparability with the previous schemes, in the
Decrypt and Test algorithms, we have done a generic Naor transform verifica-
tion of the ciphertext validity; we can improve the efficiency by making it more
direct. Finally, in the Decrypt algorithm, the receiver can use its secret key skR

to directly decrypt the ciphertext instead of generating the “secret key” corre-
sponding to iv to increase efficiency.

4.1 Correctness of the Proposed Scheme

Theorem 1. The proposed scheme is correct.

Proof. With the terms in the expressions below defined as in the algorithms
Setup, KeyGen, Encrypt, Decrypt, TokenGen, and Test defined in the pro-
posed scheme in Sect. 4, we note that for a correctly generated ciphertext
U = (u1, u2, u3, u4),

– u1 = vkS = (g̃1, f̃1, ṽ1, ṽ2, ṽ3, k̃);
– u2 = Cm = (Cm0 := m · kx, Cm1 := gx

1 , Cm2 := fx
1 , Cm3 := vx

1vxiv
2 vxtagm

3 ,tagm);
– u3 = Cw = (Cw0 := v ·ky, Cw1 := gy

1 , Cw2 := fy
1 , Cw3 := vy

1vyiw
2 vytagw

3 ,tagw);
and

– u4=σ=(Rσ = g̃z
2 , Sσ = f̃z

2 , Tσ = g̃
ũ+z(d̃+hẽ)
2 ,Wσ1= g̃

−p̃−z(l̃+hm̃)
2 ,Wσ2= g̃−zñ

2 ).

Thus, the three pairings in the Eq. (2) can be simplified as follows.

e(Cm3, Rv) = e(vx
1vxiv

2 vxtagm
3 , gr

2)

= e((gd−bl
1 )x(ge−bm

1 )xiv(gc−bn
1 )xtagm , gr

2)

= e(g(d−bl+eiv−bmiv+ctagm−bntagm)x
1 , gr

2)

= e(g1, g2)(d−bl+eiv−bmiv+ctagm−bntagm)xr; (6)

e(Cm1, S
tagm
v Tv) = e(gx

1 , (fr
2 )tagmg

u+r(d+ive)
2 )

= e(gx
1 , (gc

2)
rtagmg

u+r(d+ive)
2 )

= e(gx
1 , g

crtagm+u+r(d+ive)
2 )

= e(g1, g2)ux+(ctagm+d+ive)xr; (7)

e(Cm2,Wv1W
tagm
v2 ) = e(fx

1 , g
−p−r(l+ivm)
2 (g−rn

2 )tagm)

= e((gb
1)

x, g
−p−r(l+ivm)−rntagm

2 )

= e((g1, g2)−bxp−bxr(l+ivm+ntagm); (8)



238 V. Saraswat and R.A. Sahu

Hence, the decryption Eq. (2) is correct since

Cm0e(Cm3, Rv)
e(Cm1, S

tagm
v Tv)e(Cm2,Wv1W

tagm
v2 )

=
(m · kx)(e(g1, g2)(d−bl+eiv−bmiv+ctagm−bntagm)xr)

(e(g1, g2)ux+(ctagm+d+ive)xr)(e((g1, g2)−bxp−bxr(l+ivm−ntagm))
(from Equations (6), (7) and (8))

= (m · kx)e(g1, g2)−x(u−bp)

= (m · kx)k−x

= m. (9)

Since the terms in the Eqs. (1), (4) and (5) are generated similarly to those
in the Eq. (2), the correctness of the Test follows similarly as that of Decrypt.

Hence the proposed scheme is correct.

5 Security Proof

In this section, we analyse the security of our scheme. We prove that the pre-
sented scheme is secure under the SXDH assumption.

We follow the security proof of the IBE in [JR13] using the simulation tech-
nique of [Wat09] of using a sequence of games and adopting semi-functional
keys and semi-functional ciphertexts. For the notion of construction of these
semi-functional -values, [CLL+12,JR13] can be referred. The advantage of an
adversary in winning the IND-PKE+PEKS-CCA game is then shown to be
bounded in terms of its advantage in distinguishing between successive games.

Remark 3. For the sake of brevity and page limitation, the parts of the proof
which are already available in literature, has been cited and presented here only
briefly.

Theorem 2. If the DDH assumption holds in both the groups G1 and G2 then
there is no IND-PKE+PEKS-CCA adversary A for the presented integrated
PKE+PEKS scheme.

Proof: Let A be a t-time IND-PKE+PEKS-CCA adversary making at most qw

token queries, at most qt test queries and at most qd decryption queries, and
with advantage ε.

Let (m∗
0, w

∗
0) and (m∗

1, w
∗
1) be the target message-keyword output by A at

the end of Phase 1. Let b
$← {0, 1}, b̄ = 1 − b and u∗ = (u∗

1, u
∗
2, u

∗
3, u

∗
4) ←

Encrypt(pk,m∗
b , w

∗
b ) be the challenge ciphertext. Let b∗ be the guess output by

A at the end of Phase 2.
We prove that if the challenger C chooses a random message m̃

$← GT

and a random keyword w̃
$← {0, 1}∗ and gives ũ∗ = (ũ∗

1, ũ
∗
2, ũ

∗
3, ũ

∗
4) ←



Short Integrated PKE+PEKS in Standard Model 239

Encrypt(pk, m̃, w̃) instead of u∗ = (u∗
1, u

∗
2, u

∗
3, u

∗
4) to the adversary A as the chal-

lenge ciphertext, the view of the adversary will remain computationally indistin-
guishable (in view of the SXDH assumption on G) and A will not be any wiser
and will keep playing the game without aborting.

Since ũ∗ is completely random and independent of the target message-
keyword pairs (m∗

0, w
∗
0) and (m∗

1, w
∗
1) in the view of the adversary A, the guess

output b∗ by A at the end of Phase 2 must also be completely random.
Hence the advantage AdvA of A in winning the IND-PKE+PEKS-CCA

game is then bounded in terms of its advantage in distinguishing between suc-
cessive games and hence must be negligible and the scheme must be IND-
PKE+PEKS-CCA secure.

We achieve this through a sequence of games where each successive game
differs from the preceding game in such a way that the two games are either
statistically indistinguishable or computationally indistinguishable in view of
the SXDH assumption on G defined as follows:

Game G0: This is the actual IND-PKE+PEKS-CCA security game as defined
in Section 3.

Game G1: This game is similar to the previous game in all aspects except that
instead of actual ciphertexts, the challenger outputs partial semifunctional
ciphertexts as follows:

– Let U = (u1, u2, u3, u4) be the actual ciphertext with

u2 = Cm = (Cm0 := m · kx, Cm1 := gx
1 , Cm2 := fx

1 ,

Cm3 := vx
1vxiv

2 vxtagm
3 ,tagm) and

u3 = Cw = (Cw0 := v · ky, Cw1 := gy
1 , Cw2 := fy

1 ,

Cw3 := vy
1vyiw

2 vytagw

3 ,tagw).

– The challenger picks x′, y′ $← Zq and sets the corresponding partial semi-
functional components as:

u′
2 = C ′

m = (C ′
m0 := Cm0 · e(g1, g2)ux′

, C ′
m1 := Cm1 · gx′

1 , C ′
m2 := Cm2,

C ′
m3 := Cm3 · g

(d+eiv+ctagm)x
′

1 ,tagm)

= (C ′
m0 := m · kx · e(g1, g2)ux′

, C ′
m1 := gx

1 · gx′
1 , C ′

m2 := fx
1 ,

C ′
m3 := vx

1vxiv
2 vxtagm

3 · g
(d+eiv+ctagm)x

′

1 ,tagm)

and

u′
3 = C ′

w = (C ′
w0 := Cw0 · e(g1, g2)uy′

, C ′
w1 := Cw1 · gy′

1 , C ′
w2 := Cw2,

C ′
w3 := Cw3 · g

(d+eiv+ctagw)y
′

1 ,tagw)

= (C ′
w0 := v · ky · e(g1, g2)uy′

, C ′
w1 := gy

1 · gy′
1 , C ′

w2 := fy
1 ,

C ′
w3 := vy

1vyiw
2 vytagw

3 · g
(d+eiv+ctagm)y

′

1 ,tagw).



240 V. Saraswat and R.A. Sahu

– Finally, the challenger outputs the (partial semifunctional) ciphertext

U ′ = (u1, u
′
2, u

′
3, u4)

as the ciphertext.
In view of the DDH assumption in the group G1, the two pairs of tuples

(〈g1, gb
1, g

xb
1 , gx

1 〉, 〈g1, gb
1, g

xb
1 , gx+x′

1 〉)
and

(〈g1, gb
1, g

yb
1 , gy

1 〉, 〈g1, gb
1, g

yb
1 , gy+y′

1 〉)
are indistinguishable to the adversary. Hence from the view of the adversary
A, the games G0 and G1 are computationally indistinguishable.
We note here that the advantage gap between two consecutive games can be
proved by the reduction to the DDH assumption following the same proofs
given in [CLL+12,JR13]. From here onwards wherever we need to show this
reduction we mention it as ‘indistinguishable from the view of adversary’.

Game G2: This game is similar to the previous game in all aspects except that
instead of partial semifunctional ciphertexts, the challenger outputs semi-
functional ciphertexts as follows:

– Let U = (u1, u
′
2, u

′
3, u4) be the partial semifunctional ciphertext with

u1 = vkS = (g̃1, f̃1 = g̃b̃
1, ṽ1 = g̃d̃−b̃l̃

1 , ṽ2 = g̃ẽ−b̃m̃
1 , ṽ3 = g̃c̃−b̃ñ

1 ,

k̃ = e(g̃1, g̃2)ũ−b̃p̃ and

u4 = σ = (Rσ = g̃z
2 , Sσ = f̃z

2 , Tσ = g̃
ũ+z(d̃+hẽ)
2 ,

Wσ1 = g̃
−p̃−z(l̃+hm̃)
2 ,Wσ2 = g̃−zñ

2 ) .

– The challenger sets the corresponding semifunctional components as:

u′
1 = vk′

S = (g̃1, f̃1 = g̃b̃
1, ṽ1 = g̃−l̃

1 , ṽ2 = g̃−m̃
1 , ṽ3 = g̃−ñ

1 ,

k̃ = e(g̃1, g̃2)−p̃; and

u′
4 = σ′ = (Rσ = g̃z

2 , Sσ = f̃z
2 , Tσ = g̃

ũ+z(d̃+hẽ)
2 ,

Wσ1 = g̃
−p̃−ũ−z(l̃+d̃+h(m̃+ẽ))/b̃
2 ,Wσ2 = g̃

−z(ñ+c̃)/b̃
2 ) .

– Finally, the challenger outputs the (semifunctional) ciphertext

U ′ = (u1, u
′
2, u

′
3, u4)

as the ciphertext.

Since l̃, m̃, ñ, p̃
$← Z

×
q , from the view of the adversary A, the games G1 and

G2 are statistically indistinguishable.



Short Integrated PKE+PEKS in Standard Model 241

Game G3: This game is similar to the previous game in all aspects except
that instead of actual tokens, the challenger outputs partial semifunctional
keys/tokens as follows:

– Given a keyword w and the corresponding identity iw = H(1‖w), let the
corresponding public key and token be:

pkw = (g1, f1 = gb
1, v1 = gd−bl

1 , v2 = ge−bm
1 , v3 = gc−bn

1 ,

k = e(g1, g2)u−bp and

tw = (Rw = gz
2 , Sw = fz

2 , Tw = g
u+z(d+he)
2 ,

Ww1 = g
−p−z(l+hm)
2 ,Ww2 = g−zn

2 ).

– The challenger sets the corresponding partial semifunctional keys as:

pk′
w = (g1, f1 = gb

1, v1 = g−l
1 , v2 = g−m

1 , v3 = g−n
1 ,

k = e(g1, g2)−p and

t′w = (Rw = gz
2 , Sw = fz

2 , Tw = g
u+z(d+he)
2 ,

Ww1 = g
−p−u−z(l+d+h(m+e))/b
2 ,Ww2 = g

−z(n+c)/b
2 ).

Since l,m, n, p
$← Z

×
q , from the view of the adversary A, the games G2 and

G3 are statistically indistinguishable.
Game G4: This is a sequence of several hybrid games, used to generate tokens

on various keywords. For j = 0, we define the game G4,0 to be the same as
G3. We define the j-th hybrid game G4,j by changing the simulation of the
j-th token on the keyword wj , and outputs a semifunctional token instead of
the actual token as follows:

– Challenger randomly picks rj , r
′
j and r′′

j and sets the token twj
for the

keyword wj as:

Rw = g
rj

2 , Sw = g
rjc+r′

j

2 , Tw = g
r′′
j +rj ·(d+iwje)

2 ,

Ww1 = g
[−p′−r′′

j −rj(l
′+d+iwj(m

′+e))]/b

2 ,Ww2 = g
−r′

j−rj(n
′+c)/b

2 .

Observe that u has completely vanished from the j-th and earlier token
responses. In view of the DDH assumption in the group G2, it can be
seen [JR13] that the view of the adversary A in game G4,j is computationally
indistinguishable from the view of the adversary A in game G4,j−1.

Game G5: This game is just the game G4,q where q is the total number of
secret key queries. Observe that in the game G4, the only place where u
is used is in the ciphertext components Cm0 = m · kx · e(g1, g2)u·x′

and
Cw0 = v · ky · e(g1, g2)u·y′

. Hence Cm0 and Cw0 are completely random and
independent of the target message-keyword pairs (m∗

0, w
∗
0) and (m∗

1, w
∗
1) in

the view of the adversary A in the game G5. Note that u is non-zero with
high probability. Hence the SXDH assumption implies computational indis-
tinguishability from the chosen ciphertext adversary. That is, the scheme
achieves IND-PKE+PEKS-CCA security.



242 V. Saraswat and R.A. Sahu

6 Efficiency Analysis

In this section, we provide an efficiency comparison of various parameters in
existing PEKS schemes in Table 1 and the efficiency comparison of existing
PKE+PEKS schemes in Table 2.

We compare various PEKS schemes with ours in the Table 1 based on the
following parameters:

– #pk – number of group elements in the public parameters
– #sk – number of group elements in the master secret
– #ct – number of group elements in the ciphertext
– (a, b, c, d) denotes a elements from G1, b elements from G2, c elements from

GT and d elements from Zq where q = |G1|.

Table 1. Comparison of various PEKS schemes

Scheme → [BSS06] [ZI07] [CZLZ14] [BLSS15] Our scheme

Pairing Type 1 Type 1 Type 1 Type 3 Type 3

Security IK-PKE-CCA

IND-PEKS-CKA

IK-PKE-CCA

IND-PEKS-CKA

IND-PKE+

PEKS-CCA

IND-PKE+

PEKS-CCA

IND-PKE+

PEKS-CCA

Security

model

RO STD STD STD STD

Assumption CDH DADHE q-ABDHE /SDH SXDH SXDH

#pk (2, −, 0, 0) (3, −, 2, 0) (5, −, 0, 1) (8, 0, 1, 0) (5, 0, 1, 0)

#sk (0, −, 0, 1) (0, −, 0, 5) (0, −, 0, 1) (0, 8, 0, 1) (0, 2, 0, 7)

#ct (1, −, 0, 3)# (2, −, 3, 3)† (6, −, 4, 1) (12, 8, 3, 0) (11, 5, 3, 2)

1. * in [BDOP04], ciphertext contains one element from G1 and one element of
size log p, for more detail please refer [BDOP04].

2. # in [BSS06], ciphertext contains one element from G1 and three elements
of maximum bitlength ≈ l, where l = max(l1, l3, l4); for more details please
Refer to [BSS06].

3. † in [ZI07], ciphertext contains one MAC output and one element of the length
of the message which we have included in the integer count; for more detail
please refer [ZI07].

4. RO – Random Oracle, STD – Standard Model.
5. In the row “Assumption”, the standard abbreviations like BDH – Bilinear

Diffie-Hellman, CDH – Computational Diffie-Hellman are used. For details of
assumptions please refer respective paper.

Finally, in Table 2, we compare the efficiency of the proposed integrated
PKE+PEKS scheme with the existing PEKS and integrated PKE+PEKS
schemes [BSS06,BLSS15,CZLZ14,ZI07] and show that our scheme is more effi-
cient than these schemes. In each of the four phases: Encryption, Decryption,
Token Gen. and Test, we compare the total number of bilinear pairings (P),



Short Integrated PKE+PEKS in Standard Model 243

Table 2. Efficiency comparison

Operation Scheme P E(Zq) I(Zq) E(G1) M(G1) E(G2) M(G2) E(GT ) M(GT )

Encryption [BSS06] 1 0 0 2 0 - - 1 0

[ZI07] 2 0 0 2 1 - - 6 1

[CZLZ14] 5 0 1 7 2 - - 5 2

[BLSS15] 1 0 0 16 0 12 0 3 2

Our scheme 1 0 0 15 4 6 0 3 2

Decryption [BSS06] 0 0 0 1 0 - - 0 0

[ZI07] 0 0 0 0 0 - - 2 1

[CZLZ14] 3 0 1 3 2 - - 0 1

[BLSS15] 8 0 0 4 4 4 0 0 7

Our scheme 6 0 0 5 2 9 4 1 7

Token Gen [BSS06] 0 0 0 1 0 - - 0 0

[ZI07] 0 0 0 1 1 - - 0 0

[CZLZ14] 0 0 1 1 1 - - 0 0

[BLSS15] 0 0 0 0 0 4 0 0 0

Our scheme 0 0 0 0 0 5 0 0 0

Test [BSS06] 1 0 0 0 0 - - 0 0

[ZI07] 1 0 0 0 0 - - 1 1

[CZLZ14] 4 1 0 2 2 0 0 2 3

[BLSS15] 8 0 0 4 4 0 0 0 7

Our scheme 6 0 0 5 2 9 4 1 7

Overall

comparison

[BSS06] 2 0 0 4 1 - - 1 0

[ZI07] 3 0 0 3 2 - - 9 3

[CZLZ14] 12 1 3 13 7 - - 7 6

[BLSS15] 17 0 0 24 8 20 8 3 16

Our scheme 13 0 0 25 8 29 8 5 16

exponentiations and inverse in Zq denoted as E(Zq) and I(Zq), exponentia-
tions and multiplications in G1 (resp. G2 and GT ) denoted as E(G1) (resp.
E(G2) and E(GT )) and M(G1) (resp. M(G2) and M(GT )). Since [BLSS15] is
the only construction of PEKS other than ours with asymmetric pairing, that
is, Type 3 pairing (e : G1 × G2 → GT ), for these schemes, we have consid-
ered operations in all the three different groups, that is, in G1, G2 and GT , and
since all the previous schemes use symmetric pairings, that is, Type 1 pairing
(e : G1 × G1 → GT ) [GPS08], we have counted operations in groups G1 and G2

only for these schemes, considering |G1| ≈ |G2|.
From the efficiency comparison Table 1, it is evident that the proposed inte-

grated PKE+PEKS scheme is (computationally) more efficient than the schemes
given in [BSS06,ZI07,CZLZ14,BLSS15]. Note that first two schemes [BSS06,
ZI07] provide only CPA security so they are naturally a bit more efficient. The
third scheme [CZLZ14] uses symmetric pairings and even though the numbers
in some cells of the table show smaller number of operations, the operations
are much more expensive in their case. Finally, in the fourth scheme [BLSS15]
the smaller numbers in some cells are adequately compensated by the smaller
number of pairings in our scheme.



244 V. Saraswat and R.A. Sahu

7 Conclusion

We have proposed an efficient and practical integrated PKE+PEKS scheme and
proved its security in the strongest security notion for PKE+PEKS schemes.
The security of our scheme relies on SXDH assumption which is a much simpler
and more standard hardness assumption than the ones used in most of the
comparable schemes. Ours is the first fully secure integrated PKE+PEKS scheme
using asymmetric pairings which enable an extremely fast implementation useful
for practical applications. Finally, providing a relative analysis of parameters,
assumptions, securities and efficiency, we have compared our scheme with the
existing similar schemes and shown that our scheme is more efficient than those
schemes.

Acknowledgements. We thank the anonymous reviewers for the constructive and
helpful comments. We thank Francesco Buccafurri and Gianluca Lax for the useful
discussions. We are thankful to Olivier Markowitch for the support.

References

[ABC+05] Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange,
T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryp-
tion Revisited: Consistency Properties, Relation to Anonymous IBE, and
Extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–
222. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 13

[ABN10] Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio,
D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11799-2 28

[BDOP04] Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key
encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3 30

[BDPR98] Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among
notions of security for public-key encryption schemes. In: Krawczyk, H.
(ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0055718

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the weil pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 13

[BLSS15] Buccafurri, F., Lax, G., Sahu, R.A., Saraswat, V.: Practical and secure
integrated PKE+PEKS with keyword privacy. In: SECRYPT, pp. 448–
453. SciTePress (2015)

[BSS06] Baek, J., Safavi-Naini, R., Susilo, W.: On the integration of public key
data encryption and public key encryption with keyword search. In: Kat-
sikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC
2006. LNCS, vol. 4176, pp. 217–232. Springer, Heidelberg (2006). https://
doi.org/10.1007/11836810 16

https://doi.org/10.1007/11535218_13
https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/11836810_16
https://doi.org/10.1007/11836810_16


Short Integrated PKE+PEKS in Standard Model 245

[BSS08] Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with key-
word search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar,
D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072,
pp. 1249–1259. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-69839-5 96

[BW06] Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption
(without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol.
4117, pp. 290–307. Springer, Heidelberg (2006). https://doi.org/10.1007/
11818175 17

[CLL+12] Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and
signatures via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.)
Pairing 2012. LNCS, vol. 7708, pp. 122–140. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36334-4 8

[CZLZ14] Chen, Y., Zhang, J., Lin, D., Zhang, Z.: Generic constructions of inte-
grated PKE and PEKS. In: Designs, Codes and Cryptography, pp. 1–34
(2014)

[DK05] Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 11

[DS07] Di Crescenzo, G., Saraswat, V.: Public key encryption with search-
able keywords based on Jacobi symbols. In: Srinathan, K., Ran-
gan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859,
pp. 282–296. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-77026-8 21

[FP07] Fuhr, T., Paillier, P.: Decryptable searchable encryption. In: Susilo,
W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 228–236. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-75670-5 17

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptogra-
phers. Discrete Appl. Math. 156(16), 3113–3121 (2008). Applications of
Algebra to Cryptography

[INHJ11] Ibraimi, L., Nikova, S., Hartel, P., Jonker, W.: Public-key encryption with
delegated search. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol.
6715, pp. 532–549. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21554-4 31

[JR13] Jutla, C.S., Roy, A.: Shorter Quasi-adaptive NIZK proofs for linear sub-
spaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8269, pp. 1–20. Springer, Heidelberg (2013)

[Kur02] Kurosawa, K.: Multi-recipient public-key encryption with shortened
ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol.
2274, pp. 48–63. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45664-3 4

[PSST11] Paterson, K.G., Schuldt, J.C.N., Stam, M., Thomson, S.: On the joint
security of encryption and signature, revisited. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 161–178. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25385-0 9

https://doi.org/10.1007/978-3-540-69839-5_96
https://doi.org/10.1007/978-3-540-69839-5_96
https://doi.org/10.1007/11818175_17
https://doi.org/10.1007/11818175_17
https://doi.org/10.1007/978-3-642-36334-4_8
https://doi.org/10.1007/978-3-540-30576-7_11
https://doi.org/10.1007/978-3-540-77026-8_21
https://doi.org/10.1007/978-3-540-77026-8_21
https://doi.org/10.1007/978-3-540-75670-5_17
https://doi.org/10.1007/978-3-540-75670-5_17
https://doi.org/10.1007/978-3-642-21554-4_31
https://doi.org/10.1007/978-3-642-21554-4_31
https://doi.org/10.1007/3-540-45664-3_4
https://doi.org/10.1007/3-540-45664-3_4
https://doi.org/10.1007/978-3-642-25385-0_9


246 V. Saraswat and R.A. Sahu

[SR14] Strizhov, M., Ray, I.: Multi-keyword Similarity Search over Encrypted
Cloud Data. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El
Kalam, A., Sans, T. (eds.) SEC 2014. IAICT, vol. 428, pp. 52–65. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55415-5 5

[SVEG10] Shmueli, E., Vaisenberg, R., Elovici, Y., Glezer, C.: Database encryption:
an overview of contemporary challenges and design considerations. ACM
SIGMOD Rec. 38(3), 29–34 (2010)

[Wat09] Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE
under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03356-8 36

[ZI07] Zhang, R., Imai, H.: Generic combination of public key encryption
with keyword search and public key encryption. In: Bao, F., Ling,
S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol.
4856, pp. 159–174. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-76969-9 11

https://doi.org/10.1007/978-3-642-55415-5_5
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-540-76969-9_11
https://doi.org/10.1007/978-3-540-76969-9_11


Differential Fault Attack on Grain v1,
ACORN v3 and Lizard

Akhilesh Siddhanti1, Santanu Sarkar2(B), Subhamoy Maitra3,
and Anupam Chattopadhyay4

1 BITS Pilani KK Birla Goa Campus, Zuarinagar 403 726, Goa, India
akhileshsiddhanti@gmail.com

2 Department of Mathematics, IIT Madras, Chennai 600 036, India
sarkarsantanubir@gmail.com

3 Applied Statistics Unit, ISI Kolkata, 203 B T Road, Kolkata 700 108, India
subho@isical.ac.in

4 School of Computer Engineering, NTU, Singapore 639 798, Singapore
anupam@ntu.edu.sg

Abstract. Differential Fault Attack (DFA) is a very well known tech-
nique to evaluate security of a stream cipher. This considers that the
stream cipher can be weakened by injection of the fault. In this paper
we study DFA on three ciphers, namely Grain v1, Lizard and ACORN
v3. We show that Grain v1 (an eStream cipher) can be attacked with
injection of only 5 faults instead of 10 that has been reported in 2012.
For the first time, we have mounted the fault attack on Lizard, a very
recent design and show that one requires only 5 faults to obtain the state.
ACORN v3 is a third round candidate of CAESAR and there is only one
hard fault attack on an earlier version of this cipher. However, the ‘hard
fault’ model requires a lot more assumption than the generic DFA. In
this paper, we mount a DFA on ACORN v3 that requires 9 faults to
obtain the state. In case of Grain v1 and ACORN v3, we can obtain
the secret key once the state is known. However, that is not immediate
in case of Lizard. While we have used the basic framework of DFA that
appears in literature quite frequently, specific tweaks have to be explored
to mount the actual attacks that were not used earlier. To the best of
our knowledge, these are the best known DFAs on these three ciphers.

Keywords: Differential Fault Attack · Stream cipher · Grain v1 ·
ACORN v3 · Lizard

1 Introduction

In search of stream ciphers suitable for widespread adoption, the eStream portfo-
lio [20] was started in 2004 by EU ECRYPT network. By this date, three ciphers
form the hardware profile of the portfolio, namely Grain v1 [10], Trivium [7] and
MICKEY 2.0 [1]. Stream ciphers find a special application in providing secu-
rities in case of resource-constrained or low power scenarios like RFID tags or
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 247–263, 2017.
https://doi.org/10.1007/978-3-319-71501-8_14



248 A. Siddhanti et al.

hearing aids, due to their very low gate requirements. A natural attention was
drawn towards Grain v1 for being the ‘lightest’ in terms of the state size and the
Boolean functions used among the three, and many lightweight stream ciphers
have been hence proposed based on Grain v1. The DFA proposed in [2,18] shows
that by injecting 10 or more faults during the Pseudo Random bit Generation
Algorithm (PRGA), the secret key can be deduced hence compromising the secu-
rity of the cipher. However, the attack can be further optimized. In this work,
we claim that the fault requirement can be further brought down to just 5 using
optimized techniques.

Following the estream portfolio, a new competition for authenticated ciphers
called CAESAR [21] has been hosted. Enlisting fifteen different ciphers as final
candidates, a cipher with unique design has emerged called ACORN v3 [22].
A lightweight stream cipher composed of 6 Linear Feedback Shift Registers
(LFSRs) making a state size of 293 bits, ACORN v3 promises a 128-bit security
using a 128-bit secret key and IV. Since very limited study has been done on such
type of cipher constructs, we explore how the design performs against mounting
of a DFA. As per our experiments, cryptanalysis is possible in this case with a
requirement of 9 faults. We are aware of a fault attack on an earlier version of
ACORN as in [8], but that is only in a restricted model of hard fault, which
considers a fault to be permanent. Our model of DFA here is much more well
accepted in literature.

Inheriting the ideas from Grain v1, another interesting lightweight stream
cipher Lizard has been designed. A unique feature of Lizard [9] is that the secret
key cannot be found even if the secret state is known. This ensures additional
security, specifically in places where the secret state can get compromised. Till
now, there has been no reported cryptanalysis on Lizard apart from a related
key/IV (Initialization Vector) attack shown in [5]. We show that a successful
DFA can be performed against Lizard using a minimum of 5 faults.

For all the above mentioned ciphers viz. Grain v1, Lizard and ACORN v3,
we follow a similar approach as in [14] that has been used many times in earlier
papers too (see references in [14]). We choose these three ciphers because of
their similarities. The correct location of the fault is obtained by finding the
correlation between faulty and fault-free key streams. Using the given set of
faulty and fault-free key streams, equations are generated and fed into a SAT
solver.

1.1 Our Contribution

While a specific mode of DFA, that we discuss in this paper, is well standardized,
most of the stream cipher designers do not consider evaluating such attack on
the new designs. This leaves an open space towards implementing such attacks
on specific ciphers. Further, blind implementation of some standard techniques
do not immediately help in mounting a successful DFA. For this the exact imple-
mentation related to a specific cipher requires certain optimization. In this paper,
we have two specific modes of optimization.



Differential Fault Attack on Grain v1, ACORN v3 and Lizard 249

– What we feed to the SAT solver for obtaining the states are some equations
based on the differential key streams. For the first time we show that cor-
responding to a state we should consider the equations both forward and
backward. Earlier we have only considered the equations while moving for-
ward. This drastically reduces the number of faults as experienced in Grain
v1 and the method succeeded for Lizard too.

– Due to the large state of ACORN v3 and the clever state update, it is not
easy to obtain the solutions through the SAT solver directly. Thus we need
to consider fixing some bits before exploiting the SAT solver. This indeed
increases the overall complexity, but at the same time makes the DFA possi-
ble. The exhaustive search over the assumed bits can be trivially parallelized
keeping the complete attack practical. However, our attack on ACORN works
only when all bits of the plaintext are zero. So our fault attack on ACORN is
chosen plaintext attack model, whereas our attacks on Grain and Lizard are
known plaintext attack model.

1.2 Paper Organisation

The outline of DFA will be discussed in Sect. 2. In Sect. 3, we describe the process
of finding the exact location of fault. In Sect. 4, we explain the procedure of
finding the state variables and the recovery of secret key once the exact location
of fault is known. For optimizing the SAT solver to find solutions faster, we
consider key stream bits from previous rounds as well. This is the main tweak in
our approach over the existing works and briefly mentioned in Sects. 4.1, 4.2, 4.3.
In Sect. 5, we conclude the paper summarizing our work. The description of the
ciphers is available in the Appendix.

2 Proposed Outline of DFA

Fault Attacks have always been studied in cryptanalytic literature with great
interest. By inducing a fault, we mean flipping one bit (1 → 0 or 0 → 1) for
some particular state of the cipher. Such faults can be induced at the beginning of
the PRGA round, hence causing a change in the key stream bits. The difference
between the key stream bits can be used to deduce the internal state of the cipher.
Fault attack techniques range from simple glitches (caused by perturbations in
the clock or power supply), focused laser beam injection, Body Bias injection to
Electromagnetic injection. The range of attacks is much wider if one considers
the non-volatile memories, for which, one may use hot air gun or even software-
based Rowhammer attack. Depending on the level of intrusion that is enabled
by the attack setup, attacks can be classified to be non-invasive, semi-invasive
and invasive.

Fault injection attacks of various forms [6] is becoming an important tool
in the arsenal of modern cryptanalysts. Rapidly evolving techniques for attacks
and their countermeasures [17] indicate that a proper feasibility analysis of the



250 A. Siddhanti et al.

implementation is imperative. Although inducing a fault might seem quite com-
plicated, there have been many works in this area. Implementations of well-
known ciphers like RSA, AES and DES have already been cryptanalyzed. In
fact, all the final candidates of eStream [20] hardware portfolio (namely Grain
v1, MICKEY 2.0 and Trivium) have been cryptanalyzed using DFA [2–4,11–
13,18]. This work aims to highlight that ACORN v3 and Lizard can also be
cryptanalyzed using DFA and the existing knowledge against Grain v1 can be
improved.

Let us now clearly explain the assumptions while mounting the DFA. Gener-
ally too many assumptions can make an attack impractical. Further, the number
of faults injected should be low, as there is a chance of damaging the device com-
pletely. Based on the documents in cryptanalytic literature on fault attacks, we
consider that the attacker:

1. can restart the cipher and re-key it as well with the original Key/IV more
than once,

2. can inject the fault with certain precision of timing,
3. has the equipment/required technology for injecting the fault,
4. does not need to know the exact location during fault injection.

Next we will discuss several steps of DFA. Note that the basic methodology
is the same which is basically the Differential Attack, but the Key Scheduling
Algorithm (KSA) is ignored. That is, we consider that one can inject the fault
during the PRGA. We will follow the basic methodology as in [14] and the
references in this work which are in the same line. Our specific tweaks will be
described in the process.

3 Identifying Fault Locations

The first step of the DFA requires identification of fault signatures. We consider
the most common signature methods that had been used in [14] too. Consider
that the certain changes in the key stream bits are achieved by injecting a fault
at some random location f . By random location, we mean some LFSR (Lin-
ear Feedback Shift Register) or NFSR (Non-linear Feedback Shift Register) bit,
which is a part of secret state of the cipher. Thus, by injecting a fault at location
f means it might be a location in the LFSR or NFSR according to the specific
description of the cipher. For example, in case of Grain v1, f ∈ [0, 79] means
injecting a fault at LFSR bit lf , whereas f ∈ [80, 159] underlines injecting a fault
in NFSR bit n(f−80).

In the attack model, we consider that for some fault location f , it is possible
to obtain the respective fault-free key stream zi and faulty key stream z

(f)
i for

λ key stream bits. To form a unique pattern of the key stream sequence, we
compute a signature vector Q(f) which we define as:

Q(f) = (q(f)0 , q
(f)
1 , . . . , q

(f)
λ−1) (1)



Differential Fault Attack on Grain v1, ACORN v3 and Lizard 251

where

q
(f)
i =

1
2

− Pr(zi �= z
(f)
i ),∀ i ∈ [0, λ − 1]. (2)

This probability is estimated by sufficient number of experiments beforehand.
The sharpness of a signature is defined as follows:

σ(Q(f)) =
1
λ

λ−1∑

i=0

|q(f)i |. (3)

Following similar convention for ACORN v3, the fault in location f simply cor-
responds to fault in bit Sf . The corresponding plot is presented in Fig. 1. For
Lizard, the convention is fault location in Sf for first 31 bits and fault location
in B(f−90) for next 90 bits. With λ = 90, 64, 64 respectively, we execute 215

runs with random key-IV pairs to obtain the signatures Q(0), Q(1), . . . for each
of Grain v1, ACORN v3 and Lizard.

(a) Grain v1: Signature (b) ACORN v3: Signature

(c) Lizard: Signature

Fig. 1. Signatures for Grain v1 (plot of Q(f) ∀f ∈ [0, 159]), ACORN v3 (plot of
Q(f) ∀f ∈ [0, 292]) and Lizard (plot of Q(f) ∀f ∈ [0, 120]) with λ = 64 for ACORN
v3 and Lizard, and λ = 90 for Grain v1.

As we can see in Fig. 1, the Z-axis has been plotted from −0.5 to 0.5. The
signatures are said to be strong if the curve is closer to −0.5 or 0.5 for some
fault location f . In all the three cases of Grain v1, ACORN v3 and Lizard, the



252 A. Siddhanti et al.

signatures are quite strong, in fact stronger than Plantlet [14] and Sprout [15].
Hence, the identification of the fault will be easier for these ciphers. The signa-
tures are pre-computed during the offline phase of the attack, and they are stored
for comparisons with differential key stream later. To clarify this, we require to
explain a few more definitions.

Suppose we inject a fault in a random unknown location g and obtain the
fault-free and faulty key streams zi and z

(g)
i respectively. Then we define the

following:

ν
(g)
i =

1
2

− η
(g)
i (4)

where η
(g)
i = zi ⊕ z

(g)
i .

Definition 1. The vector

Γ(g) = (ν(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1)

is called trail of the fault at the unknown location g.

Note that there is no probability involved in this scenario, as one actually injects
a fault and checks against the signatures. That is, one can compare Γ(g) for each
of the Q(f)’s, to estimate the exact fault location.

Definition 2. We call a relation between the signature Q(f) = (q(f)0 , q
(f)
1 , . . . ,

q
(f)
λ−1) and a trail Γ(g) = (ν(g)

0 , ν
(g)
1 , . . . , ν

(g)
λ−1) a mismatch, if there exists at least

one i, (0 ≤ i ≤ λ − 1) such that (q(f)i = 1
2 , ν

(g)
i = − 1

2 ) or (q(f)i = − 1
2 , ν

(g)
i = 1

2 )
hold true.

However, this is for excluding some locations for possible faults, but to identify
the location, this definition needs to be extended. For this purpose, we incorpo-
rate the correlation coefficient between two sets of data.

Definition 3. It is natural to use correlation coefficient μ(Q(f),Γ(g)) between
the signature Q(f) = (q(f)0 , q

(f)
1 , . . . , q

(f)
λ−1) and a trail Γ(g) = (ν(g)

0 , ν
(g)
1 , . . . , ν

(g)
λ−1)

for checking a match. Naturally, −1 ≤ μ(Q(f),Γ(g)) ≤ 1. In case of a mismatch,
(as per the Definition 2), then μ(Q(f),Γ(g)) = −1.

Let us now explain how one can locate the faults. For each known fault g, it
is possible to calculate the trail Γ(g) = (ν(g)

0 , ν
(g)
1 , . . . , ν

(g)
λ−1), and hence the

corresponding μ(Q(f),Γ(g)) for each of the faults f . The following quantities are
noted:

1. maxf μ(Q(f),Γ(g)),
2. μ(Q(g),Γ(g)), and
3. α(Q(g)) = #f |{μ(Q(f),Γ(g)) > μ(Q(g),Γ(g))}|.



Differential Fault Attack on Grain v1, ACORN v3 and Lizard 253

0 20 40 60 80 100 120 140 160
i

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Maximum Correlation
Expected value

(a) Grain v1

0 50 100 150 200 250

i

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

Maximum correlation
Expected value

(b) ACORN

0 20 40 60 80 100 120

g

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

Maximum Correlation
Expected value

(c) Lizard

Fig. 2. Plot of max100
f=0 μ(Q(f), Γ(g)) (blue) and μ(Q(g), Γ(g)) (red) for all three ciphers.

(Color figure online)

In the following Fig. 2, when μ(Q(g),Γ(g)) (drawn in red) is close to max100
f=0

μ(Q(f),Γ(g)) (drawn in blue), α(Q(g)) is small, it is easier to locate these faults.
However, if μ(Q(g),Γ(g)) is much smaller than maxf μ(Q(f),Γ(g)) (blue), i.e.,
α(Q(g)) is large, that means it is harder to locate the fault for that particular
fault location f from differential key stream. In fact, the difference between the
red and blue lines for ACORN v3 is so small that it is barely visible. Hence,
we should expect ACORN v3 to have better expected ranks than Grain v1 and
Lizard.

Given α(Q(g)), for each g, we can estimate how many attempts we should
require to obtain the actual fault location. As one can see in Fig. 3, the rank
of the correct set of fault locations is very low for all three ciphers, with ranks
for ACORN v3 being the strongest. The ranks for ACORN v3 and Grain v1
lie between 1 and 2, hence we can get the correct set of fault locations very
quickly using this technique. The ranks of correct set of fault locations for Lizard
also comes very close to the other two ciphers. However ACORN v3 has the
highest fault requirement (9 faults) due to its large state size, and also due to
an additional complexity of 220 incorporated (explained in Sect. 4) for faster
solving, ACORN v3 has higher complexity (225.40) than Grain v1 (23.49) and
Lizard (210.69).

Thus, to summarize, the exact algorithm for mounting a fault is as follows.
Consider that every fault is injected at the same round t of PRGA routine.

– Inject a fault at some random fault location.
– Obtain the differential trail (for some unknown g) Γ(g)=(ν(g)

0 , ν
(g)
1 , . . . , ν

(g)
λ−1).

– For each f in [0, 159] (for e.g. Grain v1), calculate μ(Q(f),Γ(g)).



254 A. Siddhanti et al.

0 20 40 60 80 100 120 140 159
f

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
R

a
n

k

(a) Grain v1

0 50 100 150 200 250 292
f

1

1.1

1.2

1.3

1.4

1.5

1.6

R
a

n
k

(b) ACORN

0 20 40 60 80 100 120

g

1

1.5

2

2.5

3

3.5

4

4.5

5

R
a

n
k

 

(c) Lizard

Fig. 3. Ranks of actual fault locations in list of predicted fault locations for all the
three ciphers. (lower the better).

– For the fault, prepare a ranked table Tg arranging the possible fault locations
f with more priority according to μ(Q(f),Γ(g)).

– After creating tables Tg for the required number of faults, compute using SAT
solvers as mentioned in Sect. 4 for each of the combinations.

In case, the correct fault set can be selected in the above algorithm, one can
obtain the correct state, which will in turn discover the secret key bits. This can
be confirmed as one can check and match with the existing fault free and faulty
key streams at hand. To obtain the streams, the attacker needs to re-key the
cipher a few times and inject the required number of faults.

3.1 Estimated Complexity to Find the Correct Set of Faults

The DFA will be more efficient when the faults are in the locations where it
is easier to identify them. That is a location g such that α(Q(g)) is small will
provide better result. That is, lower the α(Q(g)), lesser the the number of possible
combinations of faults, and lesser the number of times one needs to run the SAT
solver. It has been noted in [14] that for Plantlet, the signature of the faults
are quite sharp. Interestingly, signatures of Grain v1, Lizard and ACORN v3
are sharper than Plantlet. As we will see later, for the actual attack, we require
at least 5, 9 and 5 faults for Grain v1, ACORN v3 and Lizard respectively. In
the following table we provide the experimental estimation of the number of
attempts to get the exact fault locations for these three ciphers. Note that the
data provided in Table 1 is logarithm to the base 2.



Differential Fault Attack on Grain v1, ACORN v3 and Lizard 255

Table 1. Maximum and average number of combinations to check for all three ciphers
for different number of faults. The values (except for faults) have been given in loga-
rithm to the base 2.

Cipher Faults reqd. Maximum Average

Grain v1 5 3.49 2.44

6 4.10 2.93

7 4.71 3.42

ACORN v3 7 4.21 3.78

8 4.80 4.32

9 5.40 4.86

Lizard 5 10.69 6.16

6 12.76 7.39

7 14.71 8.62

4 Deducing the State Variables and Secret Key

Once we obtain the differential key streams for some set of fault locations, we
need to find at least one state of the cipher for some round t which in-turn can
help us find the secret key. We start off by noting that for every key stream bit
produced, we can formulate following three equations:

1. The output function,
2. The NFSR feedback function,
3. The LFSR feedback function.

Hence, at the beginning of the first round of PRGA, we have 160 unknown
variables (80 for each LFSR and NFSR) in case of Grain v1, 293 variables in
case of ACORN v3 and 121 variables in case of Lizard. With every new round of
the ciphers, the complexity of the above equations increase sharply. To combat
this, new variables are introduced at every step, and hence new equations are
formed. Two new variables are added and three new equations are formed for
every round of the ciphers. Note than in case of ACORN v3, there are 6 LFSRs
hence 7 new variables are added with each cycle (6 from LFSRs and 1 from
feedback) and 8 new equations are formed. We collect all these equations and
feed them into a SAT solver. However, the number of equations becomes very
high and hence the SAT solver cannot find a solution, hence steps specific to
each cipher need to be taken.

4.1 Optimizing SAT Solver for Grain v1

Grain v1 has been constructed in such a way that the higher 16 bits of LFSR
and NFSR are not used at all. Hence, we can safely discard the equations formed
during the last 16 rounds of our set of equations. Next, we observe that if the



256 A. Siddhanti et al.

fault has taken place in LFSR, the NFSR equations do not change till the fault
reaches location l0. Hence, we remove all such NFSR equations. Now, if the fault
has taken place in NFSR, we need not consider any equation of LFSR because
LFSR remains unaffected throughout the clocking. Since LFSR equations are
linear and easier to calculate for the SAT solver, we consider injecting faults in
LFSR only.

Note that Grain v1 is reversible, i.e. given one state, we can easily determine
the previous state of the cipher by solving feedback equations. Considering that
the fault has been injected at PRGA round t, we can form more equations by
considering key stream bits of round t−1, t−2 and so on. Although the number
of equations increase, it is added only once (not for every fault) and helps in
finding a solution faster.

After performing the above optimizations, the fault requirement for Grain
v1 is 5 faults with a time complexity of 23.49.

Example 1. Consider the following set of 5 fault locations for Grain v1: S =
{6, 16, 50, 51, 69}. (This set of numbers is randomly generated and not specifi-
cally chosen.) The estimated number of fault locations to check for is 22.29. The
equations are formed and fed into the SAT solver. The number of key stream
bits considered is 250, with 40 reverse key stream bits considered, and the total
time required by the SAT solver for the correct set of fault locations is 1756.45 s.

4.2 Optimizing SAT Solver for ACORN v3

The state size of ACORN v3 is much larger than Grain v1, Lizard, Plantlet
and Sprout. Also, the number of equations added at each clock cycle is much
higher than compared to the latter. Hence, we propose a different approach -
we consider that some n bits for example l0, l1, . . . , ln−1 are known. Now we try
to find a solution assuming these n bits are correct. Now the SAT solver is able
to find a solution much faster. Note that this raises our attack complexity by
2n, but we can try getting as small value of n as possible while still being able
to find solutions faster. Our experiments show that for n = 20 we can deduce
the state using 9 faults, whereas with n = 40 or n = 60 we can deduce the
state even with 8 or 7 faults. From Table 1, we know the maximum number of
combinations to be 24.21, 24.80, 25.40 in case of 7, 8 and 9 faults. Considering the
above optimizations, the complexity will be 264.21 in case of 7 faults, 244.80 and
225.40 in case of 8 and 9 faults. However, there are some cases in which we cannot
solve for the entire state with 7 or 8 faults, and hence we consider 9 faults to be
minimum for a successful attack.

Since the solving time depends upon which n bits (say 20) are known, a
good choice would be choosing the 15 tap locations of ACORN v3 and then
further considering higher bits like S292, S291, . . . , S287 and so on. Like Grain v1
and Lizard, we can further reduce the number of faults by using key stream
bits from rounds prior to injecting of the fault. We have not performed this
optimization in our work for ACORN v3, but we believe that this could better
our results further.



Differential Fault Attack on Grain v1, ACORN v3 and Lizard 257

Example 2. Suppose we have the following set of 9 locations for ACORN v3,
S = {279, 238, 10, 129, 9, 121, 271, 225, 166}. The number of variables considered
to be known are s0, . . . , s19, i.e. n = 20 bits. The number of combinations to
check, for this set of fault locations will be 24.92. Thus the number of times
SAT solver is run will be 220 × 24.92 = 224.92. The number of key stream bits
considered is 1200. For solving the correct set of fault locations, the SAT solver
takes 342.43 s.

4.3 Optimizing SAT Solver for Lizard

In case of Lizard, the fault requirement is comparatively very high (more than
ten) when we adopt the strategy used in case of ACORN v3 and Grain v1. How-
ever, we use some optimizations to improve our results. Firstly, we have used
90 key stream bits zt, zt+1, zt+2, . . . , zt+89 to formulate equations, where t refers
to the round in which the fault has been injected. Since Lizard is reversible
without using key bits during the PRGA, we reverse the state (St, Bt) upto
(S(t−90), B(t−90)) and formulate equations for zt−1, zt−2, . . . , zt−89. Next, we con-
sider that if we are able to inject faults in NFSR2 (register B) only, we can
reduce the number of variables drastically, and hence obtain results faster. This
is because the S register is independent of B register, and we need not include
more variables for NFSR1 update equations (NFSR1 remains same post fault
injection in NSFR2). Also, we note that the highest bit used in NFSR2 update
function is B84, hence we need not include any variables from round 85 for all
faults.

As mentioned before, we can only solve for the secret state and not for the
secret key in case of Lizard. However, we can obtain the secret key once the
secret state is known in case of Grain v1 and ACORN v3. Solving for the state
of Lizard takes a fault requirement of 5 faults with a time complexity of 210.69.

Example 3. Considering 5 fault locations S = {33, 59, 10, 5, 43} and combina-
tions to check for being 25.52, the SAT solver takes 2092.41 s to compute the
states of LFSR and NFSR. The number of key stream bits considered is 90 and
40 key stream bits are taken from the previous rounds.

4.4 Summary of Comparison

Here we present the summary of DFA on the three ciphers based on our theory
and experiments. According to our study, all the ciphers could be attacked using

Table 2. Results observed while obtaining state from fault attack.

Cipher #Faults Time complexity Time taken by SAT solver

Max Avg Min

Grain v1 5 23.49 26798.64 7165.48 204.48

ACORN v3 9 225.40 369.56 293.75 194.80

Lizard 5 210.69 720.42 201.82 20.46



258 A. Siddhanti et al.

DFA with very few faults. The above experiments were performed on ciphers
implemented in Sage-7.6 [19] along with Cryptominisat-2.9.6 as SAT solver on a
laptop running Ubuntu-17.04. The hardware configuration is based on Intel (R)
Core (TM) i5-4200M CPU @ 2.50 GHz and 8 GB RAM (Table 2).

5 Conclusion

Most of the popular and commercial Feedback Shift Register (FSR) based stream
ciphers have come out to be vulnerable against Differential Fault Attack. In
this paper, we presented successful DFA against a finalist of eStream portfolio
Grain v1 (improvisation over previous DFA), a phase-3 candidate of CAESAR
called ACORN v3 and a lightweight stream cipher Lizard. We explored the
identification of fault locations using correlation of signatures and trail of a faulty
key stream for all the three ciphers and expected number of checks required
to obtain a correct state was presented. Equations were formed from faulty
and fault-free key streams and fed into a SAT solver. Further cipher-specific
optimizations were performed towards minimizing the number of faults as well
as to speed up solving time. This is the novel contribution of this work. The
analysis performed in this work can be further extended to other stream ciphers
as well, and future work in this area could be promising. We are working towards
optimizing our attacks on these three ciphers to succeed with even fewer faults.
Further, our technique on Grain v1 can also be implemented on Grain 128 and
Grain 128a. These we will include in the final version of the paper. Based on our
work and the development in this domain, it is evident that FSR based ciphers
in nonlinear combiner/filter generator model will generally be vulnerable against
DFA. Implementors need to come up with new ways to protect against such fault
attack scenarios.

Acknowledgements. The first author would like to thank Department of Science
and Technology DST-FIST Level-1 Program Grant No. SR/FST/MSI-092/2013 for
providing the computational facilities.

Appendix: Description of the ciphers

A1: Grain v1

Grain v1 has two registers, LFSR and NFSR of 80 bits each and we use the nota-
tion si, s1+i, . . . , s79+i and bi, b1+i, . . . , b79+i for state bits of LFSR and NFSR
respectively. The output function calculates the key stream bit and then the
LFSR and NFSR states are updated. The output function is given by:

zi = bi+1 ⊕ bi+2 ⊕ bi+4 ⊕ bi+10 ⊕ bi+31

⊕ bi+43 ⊕ bi+56 ⊕ h(si+3, si+25, si+46, si+64, bi+63)



Differential Fault Attack on Grain v1, ACORN v3 and Lizard 259

where h(x0, x1, x2, x3, x4) is given by:

h(x0, x1, x2, x3, x4) = x1 ⊕ x4 ⊕ x0x3 ⊕ x2x3 ⊕ x3x4 ⊕ x0x1x2

⊕ x0x2x3 ⊕ x0x2x4 ⊕ x1x2x4 ⊕ x2x3x4.

The LFSR feedback bit si+80 is calculated as:

si+80 = si+62 ⊕ si+51 ⊕ si+38 ⊕ si+23 ⊕ si+13si

and the NFSR feedback bit is calculated as:

bi+80 = si ⊕ bi+62 ⊕ bi+60 ⊕ bi+52 ⊕ bi+45 ⊕ bi+37

⊕ bi+33 ⊕ bi+28 ⊕ bi+9 ⊕ bi ⊕ bi+63bi+60 ⊕ bi+37bi+33

⊕ bi+15bi+9 ⊕ bi+60bi+52bi+45 ⊕ bi+33bi+28bi+21

⊕ bi+63bi+45bi+28bi+9 ⊕ bi+60bi+52bi+37bi+33

⊕ bi+63bi+60bi+52bi+45bi+37 ⊕ bi+33bi+28bi+21bi+15bi+9

⊕ bi+52bi+45bi+37bi+33bi+28bi+21

The cipher is initialized using the key and IV bits as per the following:

bi = ki for 0 ≤ i ≤ 79,

si = IVi for 0 ≤ i ≤ 63
si = 1 for 64 ≤ i ≤ 79

After initialization, the cipher is clocked 160 times without producing any
key stream bit. In fact, the key stream bit is XOR’d with the feedback bit during
the KSA. After 160 rounds, we get our first key stream bit.

A2: ACORN v3

We briefly state here the description of ACORN v3 relevant to our work, i.e. we
assume the plaintext message to be a stream of 0’s and are concerned only about
the key stream generation process (PRGA), hence initialization of the cipher has
been omitted. As stated before, ACORN v3 has 6 LFSRs concatenated to form
a 293 bit state. We denote the state of the cipher by St and its respective bits
as: St

0 . . . St
292. The cipher has the following three functions:

1. Output Function. The output bit zt for any state t is generated as:

zt = St
12 ⊕ St

154 ⊕ maj(St
235, S

t
61, S

t
193)

⊕ ch(St
230, S

t
111, S

t
66), (5)

where maj(x, y, z) = xy ⊕ xz ⊕ yz and ch(x, y, z) = xy ⊕ (∼ x)z.
2. Feedback Function. The feedback bit ft for any state t is generated as:

ft = St
0 ⊕ (∼ St

107) ⊕ maj(St
244, S

t
23, S

t
160)

⊕ (cat &St
196) ⊕ (cbt&zt), (6)

where cat and cbt are binary values based on the length of the message.



260 A. Siddhanti et al.

3. State Update Function. Before performing the shift, the bits St
289, S

t
230,

St
193, S

t
154, S

t
107, S

t
61 are updated as follows:

St
289 = St

289 ⊕ St
235 ⊕ St

230

St
230 = St

230 ⊕ St
196 ⊕ St

193

St
193 = St

193 ⊕ St
160 ⊕ St

154

St
154 = St

154 ⊕ St
111 ⊕ St

107

St
107 = St

107 ⊕ St
66 ⊕ St

61

St
61 = St

61 ⊕ St
23 ⊕ St

0

And then the bits are shifted in the following manner:

St+1
i = St

i+1 ∀ i ∈ [0, 291]

with the last bit initialized with the feedback bit is

St+1
292 = ft,

when all bits of the pliantext are zero.

A3: Lizard

The 121-bit inner state of Lizard is divided into two NFSRs namely NFSR1 and
NFSR2. At time t, the first NFSR, NFSR1 is denoted by (St

0, . . . , S
t
30) and the

second NFSR, NFSR2 by (Bt
0, . . . , B

t
89). NFSR1 is of 31 bit and the update rule

of this NFSR is

St+1
30 = St

0 ⊕ St
2 ⊕ St

5 ⊕ St
6 ⊕ St

15 ⊕ St
17 ⊕ St

18 ⊕ St
20

⊕ St
25 ⊕ St

8S
t
18 ⊕ St

8S
t
20 ⊕ St

12S
t
21 ⊕ St

14S
t
19

⊕ St
17S

t
21 ⊕ St

20S
t
22 ⊕ St

4S
t
12S

t
22 ⊕ St

4S
t
19S

t
22

⊕ St
7S

t
20S

t
21 ⊕ St

8S
t
18S

t
22 ⊕ St

8S
t
20S

t
22 ⊕ St

12S
t
19S

t
22

⊕ St
20S

t
21S

t
22 ⊕ St

4S
t
7S

t
12S

t
21 ⊕ St

4S
t
7S

t
19S

t
21

⊕ St
4S

t
12S

t
21S

t
22 ⊕ St

4S
t
19S

t
21S

t
22 ⊕ St

7S
t
8S

t
18S21

⊕ St
7S

t
8S

t
20S

t
21 ⊕ St

7S
t
12S

t
19S

t
21 ⊕ St

8S
t
18S

t
21S

t
22

⊕ St
8S

t
20S

t
21S

t
22 ⊕ St

12S
t
19S

t
21S

t
22. (7)

The second register NFSR2 is of 90 bit and the update rule of this NFSR is

Bt+1
89 = St

0 ⊕ Bt
0 ⊕ Bt

24 ⊕ Bt
49 ⊕ Bt

79 ⊕ Bt
84 ⊕ Bt

3B
t
59

⊕ Bt
10B

t
12 ⊕ Bt

15B
t
16 ⊕ Bt

25B
t
53 ⊕ Bt

35B
t
42

⊕ Bt
55B

t
58 ⊕ Bt

60B
t
74 ⊕ Bt

20B
t
22B

t
23

⊕ Bt
62B

t
68B

t
72 ⊕ Bt

77B
t
80B

t
81B83. (8)



Differential Fault Attack on Grain v1, ACORN v3 and Lizard 261

Output bit zt is a function from {0, 1}53 to {0, 1}. At time t,

zt = Lt ⊕ Qt ⊕ Tt ⊕ T t, (9)

where

– Lt = Bt
7 ⊕ Bt

11 ⊕ Bt
30 ⊕ Bt

40 ⊕ Bt
45 ⊕ Bt

54 ⊕ Bt
71

– Qt = Bt
4B

t
21 ⊕ Bt

9B
t
52 ⊕ Bt

18B
t
37 ⊕ Bt

44B
t
76

– Tt = Bt
5 ⊕ Bt

8B
t
82 ⊕ Bt

34B
t
67B

t
73 ⊕ Bt

2B
t
28B

t
41B

t
65 ⊕ Bt

13B
t
29B

t
50B

t
64B

t
75⊕

Bt
6B

t
14B

t
26B

t
32B

t
47B

t
61 ⊕ Bt

1B
t
19B

t
27B

t
43B

t
57B

t
66B

t
78

– T t = St
23 ⊕ St

3S
t
16 ⊕ St

9S
t
13B

t
48 ⊕ St

1S
t
24B

t
38B

t
63

The state initialization process is divided into 4 phases.

Phase 1: Key and IV Loading. Let K = (K0, . . . , K119) be the 120-bit key
and IV = (IV0, . . . , IV63) the 64-bit public IV. The state is initialized as follows:

B0
j =

{
Kj ⊕ IVj , for 0 ≤ j ≤ 63
Kj , for 64 ≤ j ≤ 89

S0
j =

⎧
⎨

⎩

Kj+90, for 0 ≤ j ≤ 28
K119+1, for j = 29
1, for j = 30

Phase 2: Grain-like Mixing. In this phase the output bit zt is fed back into
both NFSRs for 0 ≤ t ≤ 127. This type of approach is used in Grain family.

Phase 3: Second Key Addition. In this phase, the 120-bit key is XORed to
both NFSRs as follows:

B129
j = B128

j ⊕ Kj , for 0 ≤ j ≤ 89

S129
j =

{
S128

j ⊕ Kj+90, for 0 ≤ j ≤ 29
1, for j = 30

Phase 4: Final Diffusion. This phase is exactly similar to phase 2 except zt

is not fed back into the NFSRs. In this phase, one has to run both NFSRs 128
rounds. So after this phase, registers are (S257

0 , . . . , S257
30 ) and (B257

0 , . . . , B257
89 ).

Now Lizard is ready to produce output key stream bits. The first keystream bit
that is used for encryption is z257. For t ≥ 257, the states (St+1

0 , . . . , St+1
30 ) and

(Bt+1
0 , . . . , Bt+1

89 ) and the output bit zt are computed using Eqs. (7), (8) and (9)
respectively.



262 A. Siddhanti et al.

References

1. Babbage, S., Dodd, M.: The stream cipher MICKEY 2.0. ECRYPT stream cipher
project report. http://ecrypt.eu.org/stream/p3ciphers/mickey/mickey p3.pdf

2. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain fam-
ily of stream ciphers. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 122–139. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33027-8 8

3. Banik, S., Maitra, S.: A differential fault attack on MICKEY 2.0. In: Bertoni, G.,
Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 215–232. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40349-1 13

4. Banik, S., Maitra, S., Sarkar, S.: Improved differential fault attack on MICKEY 2.0.
J. Cryptogr. Eng. 5(1), 13–29 (2015). https://doi.org/10.1007/s13389-014-0083-9

5. Banik, S., Isobe, T.: Some cryptanalytic results on Lizard. http://eprint.iacr.org/
2017/346.pdf

6. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault Injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012). https://doi.org/10.1109/JPROC.2012.2188769

7. De Cannire, C., Preneel, B.: TRIVIUM specifications. eSTREAM, ECRYPT
Stream Cipher Project, Report

8. Dey, P., Rohit, R.S., Adhikari, A.: Full key recovery of ACORN with a single fault.
J. Inf. Secur. Appl. 29(C), 57–64 (2016). https://doi.org/10.1016/j.jisa.2016.03.
003. Elsevier Science Inc. New York, NY, USA

9. Hamann, M., Krause, M., Meier, W.: LIZARD - a lightweight stream cipher
for power-constrained devices. IACR Trans. Symmetric Cryptol. 2017(1), 45–79
(2017). http://tosc.iacr.org/index.php/ToSC/article/view/584

10. Hell, M., Johansson, T., Meier, W.: Grain - a stream cipher for constrained envi-
ronments. ECRYPT stream cipher project report 2005/001 (2005). http://www.
ecrypt.eu.org/stream

11. Hojśık, M., Rudolf, B.: Differential fault analysis of Trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71039-4 10

12. Hojśık, M., Rudolf, B.: Floating fault analysis of Trivium. In: Chowdhury, D.R.,
Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 239–250.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5 19

13. Hu, Y., Gao, J., Liu, Q., Zhang, Y.: Fault analysis of Trivium. Des. Codes Cryp-
tograph. 62(3), 289–311 (2012)

14. Maitra, S., Siddhanti, A., Sarkar, S.: A dierential fault attack on plantlet.
IEEE Trans. Comput. 66(10), 1804–1808 (2017). https://doi.org/10.1109/TC.
2017.2700469. An earlier version is available at Cryptology ePrint Archive: Report
2017/088, 4 February 2017. http://eprint.iacr.org/2017/088

15. Maitra, S., Sarkar, S., Baksi, A., Dey, P.: Key recovery from state information
of sprout: application to cryptanalysis and fault attack (2015). http://eprint.iacr.
org/2015/236

16. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the
non-volatile key. In: FSE 2017. TOSC, vol. 2016, no. 2, pp. 52–79 (2016). http://
tosc.iacr.org/index.php/ToSC/article/view/565/507

17. Sugawara, T., Suzuki, D., Fujii, R., Tawa, S., Hori, R., Shiozaki, M., Fujino, T.:
Reversing stealthy dopant-level circuits. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 112–126. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44709-3 7

http://ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
https://doi.org/10.1007/978-3-642-33027-8_8
https://doi.org/10.1007/978-3-642-33027-8_8
https://doi.org/10.1007/978-3-642-40349-1_13
https://doi.org/10.1007/s13389-014-0083-9
http://eprint.iacr.org/2017/346.pdf
http://eprint.iacr.org/2017/346.pdf
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1016/j.jisa.2016.03.003
https://doi.org/10.1016/j.jisa.2016.03.003
http://tosc.iacr.org/index.php/ToSC/article/view/584
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
https://doi.org/10.1007/978-3-540-71039-4_10
https://doi.org/10.1007/978-3-540-71039-4_10
https://doi.org/10.1007/978-3-540-89754-5_19
https://doi.org/10.1109/TC.2017.2700469
https://doi.org/10.1109/TC.2017.2700469
http://eprint.iacr.org/2017/088
http://eprint.iacr.org/2015/236
http://eprint.iacr.org/2015/236
http://tosc.iacr.org/index.php/ToSC/article/view/565/507
http://tosc.iacr.org/index.php/ToSC/article/view/565/507
https://doi.org/10.1007/978-3-662-44709-3_7
https://doi.org/10.1007/978-3-662-44709-3_7


Differential Fault Attack on Grain v1, ACORN v3 and Lizard 263

18. Sarkar, S., Banik, S., Maitra, S.: Dierential fault attack against grain family with
very few faults and minimal assumptions. IEEE Trans. Comput. 64(6), 1647–1657
(2015)

19. Stein, W.: Sage Mathematics Software. Free Software Foundation, Inc., (2009).
http://www.sagemath.org. (Open source project initiated by W. Stein and con-
tributed by many)

20. The ECRYPT stream cipher project. eSTREAM portfolio of stream ciphers.
http://www.ecrypt.eu.org/stream/

21. The project CAESAR on authenticated ciphers. http://competitions.cr.yp.to/
caesar.html

22. Wu, H.: ACORN: a lightweight authenticated cipher (v3) (2016). https://
competitions.cr.yp.to/round3/acornv3.pdf

http://www.sagemath.org
http://www.ecrypt.eu.org/stream/
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf


Certain Observations on ACORN v3
and the Implications to TMDTO Attacks

Akhilesh Anilkumar Siddhanti1(B), Subhamoy Maitra2, and Nishant Sinha3

1 BITS Pilani, Goa Campus, Goa, India
akhileshsiddhanti@gmail.com

2 Applied Statistics Unit, Indian Statistical Institute,
203, B. T. Road, Kolkata 700108, India

subho@isical.ac.in
3 Department of Computer Science and Engineering,

Indian Institute of Technology Roorkee, Roorkee 247667, India
nishantsinha.iitr@gmail.com

Abstract. ACORN is a lightweight authenticated cipher which is one
of the selected designs among the fifteen third round candidates. This
is based on the underlying model of a stream cipher with 6 LFSRs of
different lengths and three additional bits. In this paper we consider the
scenario that certain amount of key stream bits and some portion of
the state is known. Then we try to discover the rest of the state bits.
For example, we show that the LFSR of length 47 can be recovered
from 47 key stream bits and guessing the rest of the state bits. We
also present the implication of such results towards mounting TMDTO
attack on ACORN v3. We show that a TMDTO attack can be mounted
with preprocessing complexity 2171 and 2180 (without and with the help
of a SAT solver) and the maximum of online time, memory and data
complexity 2122 and 2120 respectively. While our results do not refute
any claim of the designer, these observations might be useful for further
understanding of the cipher.

Keywords: ACORN v3 · Authenticated encryption · CAESAR ·
Cryptanalysis · Stream cipher

1 Introduction

A new competition CAESAR (Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness) [4] has been initiated recently with the first
submission deadline in March 2014. The selected candidates of the third round
are now available and ACORN v3 is one among those [10]. This is a light-
weight authenticated stream cipher composed of 6 Linear Feedback Shift Regis-
ters (LFSRs) and four additional bits, making a state size of 293 bits. It promises
a 128-bit security using a 128-bit secret key and IV.

Given that the present ciphers are designed with well informed efforts, refut-
ing the designer’s claim are quite challenging and sometimes even elusive. How-
ever, there are important observations discovered by the cryptanalysts that help
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 264–280, 2017.
https://doi.org/10.1007/978-3-319-71501-8_15



Certain Observations on ACORN v3 265

in providing more robust ciphers. This is the reason ACORN has been revised
twice and the current version is ACORN v3. In this paper we concentrate on
this cipher and try to see how well one can obtain certain portion of the state
bits of ACORN v3 given some key stream bits and the rest of the bits of the
state. This is related to sampling resistance as noted in [2,3]. In particular, we
observe that the LFSR of length 47 (S107, . . . , S153) can be recovered from 47
key stream bits and knowing the rest 293 − 47 = 246 state bits of ACORN v3.
This is achieved by writing a set of several equations and feeding them to a SAT
solver such as SAGE [8]. Similarly, the 60 bits (S0, . . . , S59) of the LFSR having
length 61 (S0, . . . , S60) could be recovered from 72 key stream bits and the rest
233 state bits of the cipher. This is presented in Sect. 2. This kind of observation
helps in mounting Time-Memory-Data-Trade-Off (TMDTO) attack on stream
ciphers with varied parameters.

In TMDTO attack, we have four parameters, the preprocessing time P , the
amount of Memory (table in secondary storage) required M , the amount of
Data D (which is the key stream in case of a stream cipher) and the time T
(the number of accesses to the table, i.e., the secondary storage). In case the key
is of k-bits and all the parameters P,M, T,D are less than 2k, then it can be
considered as a break. It has been pointed out in [10, Sect. 3.3.2] that as the state
size (n = 293) of ACORN v3 is more than twice the secret key size (k = 128),
such an attack is elusive. However, there is another implication of TMDTO
attack, where we allow the preprocessing time to be more than the exhaustive
key search and then try to minimize the maximum of the online parameters
M,T,D. In case the online parameters are less than 2k, that attracts some
interest in terms of cryptanalysis. In case of BG attack [1,5], the best situation
is achieved when P = T = M = D = 2

n
2 and M,D can be reduced at the cost

of increasing P = T . Thus, achieving max{T,M,D} < 2
n
2 is not possible even

when P > 2
n
2 . Rather, we follow the idea of [2,3], where it is possible to reduce

all three of the online parameters T,M,D less than 2
n
2 at the cost of increasing

the preprocessing time P over 2
n
2 . In this regard, we obtain parameters like

P = 2171,M = T = D = 2120, where all the online parameters are less than
the complexity of exhaustive key search 2128 in case of ACORN v3 [10]. This is
presented in Sect. 3. Before proceeding further, let us describe the cipher first.

1.1 Description of ACORN v3

We briefly state here the description of ACORN v3 relevant to our work. We
assume the plaintext message to be a stream of 0’s and we concentrate only on the
Pseudo Random Generation Algorithm (PRGA) that provides the key stream.
We omit the Key Loading Algorithm (KLA) and the Key Scheduling Algorithm
(KSA) of the cipher that are available at [10]. This is because the recovery
of secret state bits during the PRGA and further the TMDTO attack can be
studied irrespective of the initialization process. As stated before, ACORN v3
has 6 LFSRs and four additional bits concatenated to form the 293 bit state.
The block diagram of ACORN is represented in Fig. 1 where ft represents the
feedback bit and mt represents the message bit at tth step [10]. We denote the



266 A.A. Siddhanti et al.

state of the cipher by St and its respective bits as: St+0 . . . St+292. The cipher
has the following three functions.

Fig. 1. The internal state of ACORN cipher.

Output Function. The output bit zt for any state t is generated as:

zt =St+12 ⊕ St+154 ⊕ maj(St+235, St+61, St+193)
⊕ ch(St+230, St+111, St+66)

(1)

Feedback Function. The feedback bit ft for any state t is generated as:

ft =St+0 ⊕ (∼St+107) ⊕ maj(St+244, St+23, St+160)
⊕ (cat &St+196) ⊕ (cbt&zt)

(2)

State Update Function. Before performing the shift, the bits St+289, St+230,
St+193, St+154, St+107, St+61 are updated as follows:

S(t+289) = S(t+289) ⊕ S(t+235) ⊕ S(t+230) (3)
S(t+230) = S(t+230) ⊕ S(t+196) ⊕ S(t+193) (4)
S(t+193) = S(t+193) ⊕ S(t+160) ⊕ S(t+154) (5)
S(t+154) = S(t+154) ⊕ S(t+111) ⊕ S(t+107) (6)
S(t+107) = S(t+107) ⊕ S(t+66) ⊕ S(t+61) (7)
S(t+61) = S(t+61) ⊕ S(t+23) ⊕ S(t+0) (8)

And then the next bit is initialized with the feedback bit:

St+293 = ft (9)

2 Methods to Recover Certain Bits of the State

The underlying motivation of BSW sampling [2,3] is the fact that certain bits
of the state can be recovered by observing the key stream sequence zt and
guessing the remaining part of the state. This reduces the search space and offers
a wider range of parameters to choose from in TMDTO attack. We consider two
approaches here. The first one is using the SAT solver and the other one is by
discovering the equations by hand using trial and error.



Certain Observations on ACORN v3 267

2.1 Using SAT Solver

Towards this we first form a family of equations and then feeding them into a SAT
solver. While forming the equations, the degree of equations formed increases
rapidly, which makes it very difficult to find solutions. Hence, we have to adopt
a specific approach for formulating equations by introducing new variables. This
is in line of [9]. Consider some PRGA round t of ACORN v3. The equations for
the same round are:

1. 1 output bit equation,
2. 1 feedback bit equation, and
3. 6 state update equations.

At the beginning of PRGA, the adversary has 293 state variables S0, S1, . . . , S292.
The adversary has access to an �-length key stream z0, z1, . . . z�−1. We will now
explain how the output equation is introduced into the system of equations. The
output equation as mentioned in (1) is:

zt = St+12 ⊕ St+154 ⊕ maj(St+235, St+61, St+193)
⊕ ch(St+230, St+111, St+66) (10)

To add an equation to the SAT solver, the equations are represented in a way
such that it is zero in the ring of Boolean polynomials. That is, the output
equation is written as

zt ⊕ St+12 ⊕ St+154 ⊕ maj(St+235, St+61, St+193)
⊕ ch(St+230, St+111, St+66) ≡ 0, (11)

for t = 0, 1, 2, . . . , � − 1 and added to the system. Thus we have an array of
output equations as:

z0 ⊕ S12 ⊕ S154 ⊕ maj(S235, S61, S193) ⊕ ch(S230, S111, S66) ≡ 0
z1 ⊕ S13 ⊕ S155 ⊕ maj(S236, S62, S194) ⊕ ch(S231, S112, S67) ≡ 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z(�−1) ⊕ S(�−1+12) ⊕ S(�−1+154) ⊕ maj(S(�−1+235), S(�−1+61), S(�−1+193))
⊕ ch(S(�−1+230), S(�−1+111), S(�−1+66)) ≡ 0

Next we discuss the inclusion of feedback bit equation into the system of equa-
tions. The equation as mentioned in (2) for PRGA is:

ft = St+0 ⊕ (∼St+107) ⊕ maj(St+244, St+23, St+160) ⊕ St+196 (12)

However, the feedback bit generated is not known. Thus directly substituting
the state variable St+293 by feedback equations increases non-linearity. Instead,
the we introduce new variables f0, f1, . . . f�−1 and add these equations to the
SAT solver in the following manner:



268 A.A. Siddhanti et al.

f0 ⊕ S0 ⊕ (∼S107) ⊕ maj(S244, S23, S160) ⊕ S196 ≡ 0
f1 ⊕ S1 ⊕ (∼S108) ⊕ maj(S245, S24, S161) ⊕ S197 ≡ 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . .

... . . . . . . . . . . . . . . . . . . . . . . . . . . .

f(�−1) ⊕ S(�−1) ⊕ (∼S(�−1+107))
⊕ maj(S(�−1+244), S(�−1+23), S(�−1+160)) ⊕ S(�−1+196) ≡ 0

By now, 2� new equations and � new variables have been introduced into the
system. The variables St+289, St+230, St+193, St+154, St+107, St+61 are updated in
Step 3 as mentioned earlier. For this, we introduce 6� new variables a0

1, a0
2, a0

3,
a0
4, a0

5, a0
6, . . ., a�−1

1 , a�−1
2 , a�−1

3 , a�−1
4 , a�−1

5 , a�−1
6 and add the following equations

to the system (for t = 0, 1, . . . , � − 1):

at
1 ⊕ S(t+289) ⊕ S(t+235) ⊕ S(t+230) ≡ 0

at
2 ⊕ S(t+230) ⊕ S(t+196) ⊕ S(t+193) ≡ 0

at
3 ⊕ S(t+193) ⊕ S(t+160) ⊕ S(t+154) ≡ 0

at
4 ⊕ S(t+154) ⊕ S(t+111) ⊕ S(t+107) ≡ 0

at
5 ⊕ S(t+107) ⊕ S(t+66) ⊕ S(t+61) ≡ 0

at
6 ⊕ S(t+61) ⊕ S(t+23) ⊕ S(t+0) ≡ 0

Since new variables have been introduced, new equations need to be introduced
to maintain consistency of the system. That is, the following equations are added
to the system:

at
1 ⊕ S(t+288) ≡ 0

at
2 ⊕ S(t+229) ≡ 0

at
3 ⊕ S(t+192) ≡ 0

at
4 ⊕ S(t+153) ≡ 0

at
5 ⊕ S(t+106) ≡ 0

at
6 ⊕ S(t+60) ≡ 0

for t = 0, 1, . . . , � − 1. Finally, we substitute the feedback bit into the state
variable:

S293+t = ft ∀t ∈ [0, � − 1].

Therefore, the number of variables used are 293 + � + 6� = 293 + 7� and the
number of equations formulated are � + � + 6� = 8� equations. All the equations
are collected and fed to the SAT solver.



Certain Observations on ACORN v3 269

We set the SAT solver to find all possible solutions for the above system of
equations. In this way, we are guaranteed that if the SAT solver returns only one
solution, no other solution exists for the system of equations, and hence we are
able to solve for the state. However, in few cases of our experiments we could
not achieve that. For example, when we consider recovery of 60 bits with the
help of 70 key stream bits, we sometimes obtain two solutions. The reason for
the same is that the number of key stream bits is not enough and thus the SAT
solver provides more solutions instead of a unique solution.

We use the SAT solver Cryptominisat-2.9.6 available with Sage-7.6 [8]. The
experiments were performed on a laptop having hardware configuration Intel(R)
Core(TM) i5-4200M CPU @ 2.50 GHz and 8 GB RAM running with Ubuntu-
16.10. A few experimental data are provided where each row is based on 215

experiments.

Table 1. Experimental results for solving the equations. The time required to run the
PRGA for 293 clocks is 0.088 s on an average.

Key stream bits
used

State bits
recovered

Location of recovered bits Proportion of
multiple (two)
solutions

Average
time (sec)

47 47 S107 . . . S153 0 0.076

43 43 S12 . . . S54 0 0.067

72 60 S0 . . . S59 1/210 0.127

60 53 S107 . . . S150, S56, . . . S64 1/214 0.097

2.2 Formation of Equations by Observation, not Using SAT Solver

In this section, we build the system of equations used to recover 49 bits of internal
state by using first 49 bits of keystream. To perform this recovery, we need to
fix 10 bits of internal state with a particular pattern and guess remaining state
bits. The internal state bits to be recovered are represented by set R = R1∪R2,
where R1 = {S(t+107) : t = 0, . . . , 43} and R2 = {S(t+56) : t = 0, . . . , 4}. The
Eq. (1) for genrating keystream can be written as:

zt = S(t+12) ⊕ S(t+154) ⊕ S(t+235)S(t+61) ⊕ S(t+235)S(t+193) ⊕ S(t+193)S(t+61)

⊕ S(t+230)S(t+111) ⊕ S(t+230)S(t+66) ⊕ S(t+66).
(13)

Note that in the above equation, over-lined bits are feedback bits. The state bits
are updated according to the following equations before generating the output
bit:



270 A.A. Siddhanti et al.

S(t+289) = S(t+289) ⊕ S(t+235) ⊕ S(t+230)

S(t+230) = S(t+230) ⊕ S(t+196) ⊕ S(t+193)

S(t+193) = S(t+193) ⊕ S(t+160) ⊕ S(t+154)

S(t+154) = S(t+154) ⊕ S(t+111) ⊕ S(t+107)

S(t+107) = S(t+107) ⊕ S(t+66) ⊕ S(t+61)

S(t+61) = S(t+61) ⊕ S(t+23) ⊕ S(t+0)

(14)

Thus, the Eq. (13) can be written as

S(t+107) = zt ⊕ S(t+12)⊕ S(t+154) ⊕ S(t+111) ⊕ St+235(S(t+61) ⊕ S(t+23) ⊕ S(t+0))
⊕ S(t+235)(S(t+193) ⊕ S(t+160) ⊕ S(t+154))
⊕ (S(t+193) ⊕ S(t+160) ⊕ S(t+154))(S(t+61) ⊕ S(t+23) ⊕ S(t+0))
⊕ (S(t+230) ⊕ S(t+196) ⊕ S(t+193))S(t+111)

⊕ (S(t+230) ⊕ S(t+196) ⊕ S(t+193))S(t+66) ⊕ S(t+66),
(15)

which makes the recovery simpler, because all the bits on the RHS of the equa-
tion are state bits (and not feedback bits) for t = 0, . . . , 32. However when we
place t = 33, . . . , 48 in Eq. (15), feedback bits are also involved and need to be
calculated.

Now we use Eq. (15) to recover internal state bits of set R1. The recovery of
state bits is done in a certain order. For example, if we attempt to recover S107

by placing t = 0 in Eq. (15), then S111 appears on the RHS of the equation and
requires the knowledge of S111. Thus, S111 is recovered before performing the
recovery of S107.

We define four sets R3,R4,R5, R6, where

R3 = {S(t+107) : t = 40, 36, . . . , 0}
R4 = {S(t+107) : t = 41, 37, . . . , 1}
R5 = {S(t+107) : t = 42, 38, . . . , 2}
R6 = {S(t+107) : t = 43, 39, . . . , 3}

and each Ri ⊂ R1, for i = 3 . . . , 6. The order of recovery of state bits is
R3,R4,R5,R6 and R2, respectively, i.e. the state bits of R3 are recovered first
then R4 and so on. For each set Ri : i = 2 . . . , 6, the higher index elements are
recovered first. We need not fix any internal state bits for recovering R1. How-
ever, to recover R2, the internal state bits are fixed according to Table 2. Let
the set F represent the internal state bits which are fixed according to Table 2.

Now we describe recovery of R3. The internal state bit S147 is recovered by
substituting t = 40 in Eq. (15). From this we have

S147 = z40 ⊕ S52 ⊕ S194 ⊕ S151 ⊕ S275(S101 ⊕ S63 ⊕ S40)

⊕ S275(S233 ⊕ S200 ⊕ S194) ⊕ (S233 ⊕ S200 ⊕ S194)(S101 ⊕ S63 ⊕ S40)

⊕ (S270 ⊕ S236 ⊕ S233)S151 ⊕ (S270 ⊕ S236 ⊕ S233)S106 ⊕ S106.
(16)



Certain Observations on ACORN v3 271

Table 2. State bits fixed.

Row no. State bits and value

1 Si+268 = 0 : i = 0 . . . , 4

2 Si+187 = S[i + 226] ⊕ S[i + 193] ⊕ S[i + 160] ⊕ S[i + 154] : i = 0 . . . , 3

3 S191 = S[230] ⊕ S[196] ⊕ S[193] ⊕ S[197] ⊕ S[164] ⊕ S[158]

In Eq. (16), all the bits appearing on the RHS of the equation are guessed,
except the over-lined bits. The over-lined bits are feedback bits, and not internal
state bits due to Eq. (14). Thus, we need to guess more internal state bits to
calculate the value of S63, S194, S200, S233 and S236 using Eq. (14). In this way,
we recover S147.

Now the internal state bit of S143 is recovered by placing t = 36 in Eq. (15)
and we derive

S143 = z36 ⊕ S48 ⊕ S190 ⊕ S147 ⊕ S271(S97 ⊕ S59 ⊕ S36)

⊕ S271(S229 ⊕ S196 ⊕ S190) ⊕ (S229 ⊕ S196 ⊕ S190)(S97 ⊕ S59 ⊕ S36)

⊕ (S266 ⊕ S232 ⊕ S229)S147(⊕S266 ⊕ S232 ⊕ S229)S102 ⊕ S102.

(17)

Similarly, in Eq. (17), all the state bits appearing on the right side of equa-
tion need to be guessed, except S271, S190 and the over-lined bits. The internal
state bits S271 and S190 are fixed according to Table 2. The over-lined bits are
calculated using Eq. (14). Thus, we need to guess more internal state bits to
calculate the value of S196, S232 and recover S143.

The remaining state bits of R3 i.e. S139, S135, . . . , S107 are recovered by
substituting t = 32, 28, . . . , 0, respectively, in Eq. (15). While placing t =
32, 28, . . . , 0 in Eq. (15), the internal state bits appearing on the RHS of the
equation are guessed, except state bits belonging to R and F . Following the
same methodology, the internal state bits of set R4,R5 and R6 are recovered.

To recover the state bits of set R2, all things are same as done earlier, except
for Eq. (13) which is rewritten as

St+12 = zt ⊕ S(t+107) ⊕ S(t+154) ⊕ S(t+111) ⊕ St+235(S(t+61) ⊕ S(t+23) ⊕ S(t+0))
⊕ St+235(S(t+193) ⊕ S(t+160) ⊕ S(t+154))
⊕ (S(t+193) ⊕ S(t+160) ⊕ S(t+154))(S(t+61) ⊕ S(t+23) ⊕ S(t+0))
⊕ (S(t+230) ⊕ S(t+196) ⊕ S(t+193))St+111

⊕ (S(t+230) ⊕ S(t+196) ⊕ S(t+193))St+66 ⊕ St+66.
(18)

Thus, the internal state bits S56, . . . , S60 are recovered by using t = 44, . . . , 48 in
Eq. (18), respectively. Another difference between recovery of R1 and R2 is that
it is not necessary to recover the higher index elements first (as done before).

In this way, we recover 49 bits of R by fixing the 10 internal state bits
of set F and guessing the remaining 234 state bits. However, there are nine



272 A.A. Siddhanti et al.

internal state bits i.e. S284, . . . , S292 which are not appeared in the equations
used for recovery. However these bits are also considered as guessed bits during
application of TMDTO attack. In the Table 3, the details of equations are given
used for recovery of state bits of set R. The over-lined state bits and underlined
state bits in Table 3 are feedback bits and fixed state bits (according to Table 2),
respectively.

3 Complexity of TMDTO Attack

Now we will describe the TMDTO attack in complete detail. We have a state
size of n = 293 bits. Thus, the standard TMDTO formula [2,3] with a single
table will be as follows:

– TM2D2 = N2, where N = 2n,
– D2 ≤ T ,
– P = N

D .

During the preprocessing phase, we will prepare a table with m rows and t columns,
where mt2 = N for a successful attack. The number of tables is t

D and given a
single table we have t = D. Each row of the table contains a chain of t elements.
Consider that a specific state of n = 293 bits is ζ and f is the one way function.
Here by one way function f , we mean that the cipher with the state ζ will be run for
n times again to generate n many key stream bits. Those bits will be loaded as the
new state, which is called η. That is η = f(ζ). We will start with a random state
and then generate a row of t elements by this method. There will be m such rows.
Thus, the total table size is mt. However, the complete row will not be saved. Only
the starting and the final element will be saved. Thus, the storage requirement of
the table will be O(m), which is actually the memory parameter M .

3.1 Knowledge of 47 Bits of State from 47 Key Stream Bits

Now consider the case when we are able to recover ψ bits of the state from
ψ consecutive key stream bits and the rest of the state bits. In this case, we
consider a fixed pattern for the key stream bits and only when that pattern is
found in the key stream, we try to search the state in the table. Thus, in this
case, we consider a state size of n − ψ bits and the parameters are referred as
N ′ = 2n−ψ, P ′,M ′, T ′,D′. Let us now consider the exact parameters referring
to Table 1, where ψ = 47. Thus, T ′M ′D′2 = N ′2 = 22(293−47). Let us consider
D′2 = T . Thus, we have T ′M ′ = 2293−47 = 2246. Now, one can consider, T ′ =
M ′ = 2123 and D′ = 261.5. However, as we have discussed that during the online
phase, we can only mount the attack when a specific ψ-bit pattern comes, we
have D = 2ψD′. Thus, finally, we will have the parameters T = T ′ = 2123,
M = M ′ = 2123, D = 2ψD′ = 247 · 261.5 = 2108.5, P = P ′ = N ′

D′ = 2184.5.
This provides the maximum of online parameters as 2123, which is less than
the exhaustive secret key search of complexity 2128. However, as expected, the
pre-processing time is much larger than the exhaustive key search.



Certain Observations on ACORN v3 273

Table 3. Recovery of 49 bits of the internal state after fixing 10 bits

Steps Equations used for recovery Guessed bits

0

S147 = z40 ⊕ S52 ⊕ S194 ⊕ S151 ⊕ S275(S101 ⊕ S63 ⊕ S40)

⊕ S275(S233 ⊕ S200 ⊕ S194) ⊕ (S233 ⊕ S200 ⊕ S194)

(S101 ⊕ S63 ⊕ S40) ⊕ (S270 ⊕ S236 ⊕ S233)S151

⊕ (S270 ⊕ S236 ⊕ S233)S106 ⊕ S106

S52, S101, S63, S25, S2,

S40, S275, S233, S199,

S196, S200, S167, S161,

S194, S155, S236, S202,

S151, S106

1

S143 = z36 ⊕ S48 ⊕ S190 ⊕ S147 ⊕ S271(S97 ⊕ S59 ⊕ S36)

⊕ S271(S229 ⊕ S196 ⊕ S190) ⊕ (S229 ⊕ S196 ⊕ S190)

(S97 ⊕ S59 ⊕ S36) ⊕ (S266 ⊕ S232 ⊕ S229)S147

⊕ (S266 ⊕ S232 ⊕ S229)S102 ⊕ S102

S48, S97, S36, S229,

S163, S157, S266, S232,

S198, S195, S102

2

S139 = z32 ⊕ S44 ⊕ S186 ⊕ S143 ⊕ S267(S93 ⊕ S55 ⊕ S32)

⊕ S267(S225 ⊕ S192 ⊕ S186) ⊕ (S225 ⊕ S192 ⊕ S186)

(S93 ⊕ S55 ⊕ S32) ⊕ (S262 ⊕ S228 ⊕ S225)S143

⊕ (S262 ⊕ S228 ⊕ S225)S98 ⊕ S98

S44, S93, S55, S32,

S267, S225, S192, S186

S262, S228, S98

3

S135 = z28 ⊕ S40 ⊕ S182 ⊕ S139 ⊕ S263(S89 ⊕ S51 ⊕ S28)

⊕ S263(S221 ⊕ S188 ⊕ S182) ⊕ (S221 ⊕ S188 ⊕ S182)

(S89 ⊕ S51 ⊕ S28) ⊕ (S258 ⊕ S224 ⊕ S221)S139

⊕ (S258 ⊕ S224 ⊕ S221)S94 ⊕ S94

S89, S51, S28, S263,

S221, S182, S258, S224,

S94

4

S131 = z24 ⊕ S36 ⊕ S178 ⊕ S135 ⊕ S259(S85 ⊕ S47 ⊕ S24)

⊕ S259(S217 ⊕ S184 ⊕ S178) ⊕ (S217 ⊕ S184 ⊕ S178)

(S85 ⊕ S47 ⊕ S24) ⊕ (S254 ⊕ S220 ⊕ S217)S135

⊕ (S254 ⊕ S220 ⊕ S217)S90 ⊕ S90

S85, S47, S24, S259,

S217, S184, S178, S254,

S220, S90

5

S127 = z20 ⊕ S32 ⊕ S174 ⊕ S131 ⊕ S255(S81 ⊕ S43 ⊕ S20)

⊕ S255(S213 ⊕ S180 ⊕ S174) ⊕ (S213 ⊕ S180 ⊕ S174)

(S81 ⊕ S43 ⊕ S20) ⊕ (S250 ⊕ S216 ⊕ S213)S131

⊕ (S250 ⊕ S216 ⊕ S213)S86 ⊕ S86

S81, S43, S20, S255,

S213, S180, S174,

S250, S216, S86

6

S123 = z16 ⊕ S28 ⊕ S170 ⊕ S127 ⊕ S251(S77 ⊕ S39 ⊕ S16)

⊕ S251(S209 ⊕ S176 ⊕ S170) ⊕ (S209 ⊕ S176 ⊕ S170)

(S77 ⊕ S39 ⊕ S16) ⊕ (S246 ⊕ S212 ⊕ S209)S127

⊕ (S246 ⊕ S212 ⊕ S209)S82 ⊕ S82

S77, S39, S16, S251,

S209, S176, S170, S246,

S212, S82

7

S119 = z12 ⊕ S24 ⊕ S166 ⊕ S123 ⊕ S247(S73 ⊕ S35 ⊕ S12)

⊕ S247(S205 ⊕ S172 ⊕ S166) ⊕ (S205 ⊕ S172 ⊕ S166)

(S73 ⊕ S35 ⊕ S12) ⊕ (S242 ⊕ S208 ⊕ S205)S123

⊕ (S242 ⊕ S208 ⊕ S205)S78 ⊕ S78

S73, S35, S12, S247,

S205, S172, S166, S242,

S208, S78

8

S115 = z8 ⊕ S20 ⊕ S162 ⊕ S119 ⊕ S243(S69 ⊕ S31 ⊕ S8)

⊕ S243(S201 ⊕ S168 ⊕ S162) ⊕ (S201 ⊕ S168 ⊕ S162)

(S69 ⊕ S31 ⊕ S8) ⊕ (S238 ⊕ S204 ⊕ S201)S119

⊕ (S238 ⊕ S204 ⊕ S201)S74 ⊕ S74

S69, S31, S8, S243,

S201, S168, S162, S238,

S204, S74

9

S111 = z4 ⊕ S16 ⊕ S158 ⊕ S115 ⊕ S239(S65 ⊕ S27 ⊕ S4)

⊕ S239(S197 ⊕ S164 ⊕ S158) ⊕ (S197 ⊕ S164 ⊕ S158)

(S65 ⊕ S27 ⊕ S4) ⊕ (S234 ⊕ S200 ⊕ S197)S115

⊕ (S234 ⊕ S200 ⊕ S197)S70 ⊕ S70

S65, S27, S4, S239,

S197, S164, S158, S234,

S70

(continued)



274 A.A. Siddhanti et al.

Table 1. (continued)

Steps Equations used for recovery Guessed bits

10

S107 = z0 ⊕ S12 ⊕ S154 ⊕ S111 ⊕ S235(S61 ⊕ S23 ⊕ S0)

⊕ S235(S193 ⊕ S160 ⊕ S154) ⊕ (S193 ⊕ S160 ⊕ S154)

(S61 ⊕ S23 ⊕ S0) ⊕ (S230 ⊕ S196 ⊕ S193)S111

⊕ (S230 ⊕ S196 ⊕ S193)S66 ⊕ S66

S61, S23, S0, S235,

S193, S160, S154, S230,

S66

11

S148 = z41 ⊕ S53 ⊕ S195 ⊕ S152 ⊕ S276(S102 ⊕ S64 ⊕ S41)

⊕ S276(S234 ⊕ S201 ⊕ S195) ⊕ (S234 ⊕ S201 ⊕ S195)

(S102 ⊕ S64 ⊕ S41) ⊕ (S271 ⊕ S237 ⊕ S234)S152

⊕ (S271 ⊕ S237 ⊕ S234)S107 ⊕ S107

S53, S64, S26, S3,

S41, S276, S156, S237,

S203, S152

12

S144 = z37 ⊕ S49 ⊕ S191 ⊕ S148 ⊕ S272(S98 ⊕ S60 ⊕ S37)

⊕ S272(S230 ⊕ S197 ⊕ S191) ⊕ (S230 ⊕ S197 ⊕ S191)

(S98 ⊕ S60 ⊕ S37) ⊕ (S267 ⊕ S233 ⊕ S230)S148

⊕ (S267 ⊕ S233 ⊕ S230)S103 ⊕ S103

S49, S37, S103

13

S140 = z33 ⊕ S45 ⊕ S187 ⊕ S144 ⊕ S268(S94 ⊕ S56 ⊕ S33)

⊕ S268(S226 ⊕ S193 ⊕ S187) ⊕ (S226 ⊕ S193 ⊕ S187)

(S94 ⊕ S56 ⊕ S33) ⊕ (S263 ⊕ S229 ⊕ S226)S144

⊕ (S263 ⊕ S229 ⊕ S226)S99 ⊕ S99

S45, S94, S33,

S226, S99

14

S136 = z29 ⊕ S41 ⊕ S183 ⊕ S140 ⊕ S264(S90 ⊕ S52 ⊕ S29)

⊕ S264(S222 ⊕ S189 ⊕ S183) ⊕ (S222 ⊕ S189 ⊕ S183)

(S90 ⊕ S52 ⊕ S29) ⊕ (S259 ⊕ S225 ⊕ S222)S140

⊕ (S259 ⊕ S225 ⊕ S222)S95 ⊕ S95

S29, S264, S222,

S183, S95

15

S132 = z25 ⊕ S37 ⊕ S179 ⊕ S136 ⊕ S260(S86 ⊕ S48 ⊕ S25)

⊕ S260(S218 ⊕ S185 ⊕ S179) ⊕ (S218 ⊕ S185 ⊕ S179)

(S86 ⊕ S48 ⊕ S25) ⊕ (S255 ⊕ S221 ⊕ S218)S136

⊕ (S255 ⊕ S221 ⊕ S218)S91 ⊕ S91

S260, S218, S185,

S179, S91

16

S128 = z21 ⊕ S33 ⊕ S175 ⊕ S132 ⊕ S256(S82 ⊕ S44 ⊕ S21)

⊕ S256(S214 ⊕ S181 ⊕ S175) ⊕ (S214 ⊕ S181 ⊕ S175)

(S82 ⊕ S44 ⊕ S21) ⊕ (S251 ⊕ S217 ⊕ S214)S132

⊕ (S251 ⊕ S217 ⊕ S214)S87 ⊕ S87

S21, S256, S214,

S181, S175, S87

17

S124 = z17 ⊕ S29 ⊕ S171 ⊕ S128 ⊕ S252(S78 ⊕ S40 ⊕ S17)

⊕ S252(S210 ⊕ S177 ⊕ S171) ⊕ (S210 ⊕ S177 ⊕ S171)

(S78 ⊕ S40 ⊕ S17) ⊕ (S247 ⊕ S213 ⊕ S210)S128

⊕ (S247 ⊕ S213 ⊕ S210)S83 ⊕ S83

S17, S252, S210,

S177, S171, S83

18

S120 = z13 ⊕ S25 ⊕ S167 ⊕ S124 ⊕ S248(S74 ⊕ S36 ⊕ S13)

⊕ S248(S206 ⊕ S173 ⊕ S167) ⊕ (S206 ⊕ S173 ⊕ S167)

(S74 ⊕ S36 ⊕ S13) ⊕ (S243 ⊕ S209 ⊕ S206)S124

⊕ (S243 ⊕ S209 ⊕ S206)S79 ⊕ S79

S13, S248, S206,

S173, S79

19

S116 = z9 ⊕ S21 ⊕ S163 ⊕ S120 ⊕ S244(S70 ⊕ S32 ⊕ S9)

⊕ S244(S202 ⊕ S169 ⊕ S163) ⊕ (S202 ⊕ S169 ⊕ S163)

(S70 ⊕ S32 ⊕ S9) ⊕ (S239 ⊕ S205 ⊕ S202)S120

⊕ (S239 ⊕ S205 ⊕ S202)S75 ⊕ S75

S9, S244, S169, S75

(continued)



Certain Observations on ACORN v3 275

Table 1. (continued)

Steps Equations used for recovery Guessed bits

20

S112 = z5 ⊕ S17 ⊕ S159 ⊕ S116 ⊕ S240(S66 ⊕ S28 ⊕ S5)

⊕ S240(S198 ⊕ S165 ⊕ S159) ⊕ (S198 ⊕ S165 ⊕ S159)

(S66 ⊕ S28 ⊕ S5) ⊕ (S235 ⊕ S201 ⊕ S198)S116

⊕ (S235 ⊕ S201 ⊕ S198)S71 ⊕ S71

S5, S240, S165,

S159, S71

21

S108 = z1 ⊕ S13 ⊕ S155 ⊕ S112 ⊕ S236(S62 ⊕ S24 ⊕ S1)

⊕ S236(S194 ⊕ S161 ⊕ S155) ⊕ (S194 ⊕ S161 ⊕ S155)

(S62 ⊕ S24 ⊕ S1) ⊕ (S231 ⊕ S197 ⊕ S194)S112

⊕ (S231 ⊕ S197 ⊕ S194)S67 ⊕ S67

S62, S1, S231, S67

22

S149 = z42 ⊕ S54 ⊕ S196 ⊕ S153 ⊕ S277(S103 ⊕ S65 ⊕ S42)

⊕ S277(S235 ⊕ S202 ⊕ S196) ⊕ (S235 ⊕ S202 ⊕ S196)

(S103 ⊕ S65 ⊕ S42) ⊕ (S272 ⊕ S238 ⊕ S235)S153

⊕ (S272 ⊕ S238 ⊕ S235)S108 ⊕ S108

S54, S42, S277, S153

23

S145 = z38 ⊕ S50 ⊕ S192 ⊕ S149 ⊕ S273(S99 ⊕ S61 ⊕ S38)

⊕ S273(S231 ⊕ S198 ⊕ S192) ⊕ (S231 ⊕ S198 ⊕ S192)

(S99 ⊕ S61 ⊕ S38) ⊕ (S268 ⊕ S234 ⊕ S231)S149

⊕ (S268 ⊕ S234 ⊕ S231)S104 ⊕ S104

S50, S38, S273, S104

24

S141 = z34 ⊕ S46 ⊕ S188 ⊕ S145 ⊕ S269(S95 ⊕ S57 ⊕ S34)

⊕ S269(S227 ⊕ S194 ⊕ S188) ⊕ (S227 ⊕ S194 ⊕ S188)

(S95 ⊕ S57 ⊕ S34) ⊕ (S264 ⊕ S230 ⊕ S227)S145

⊕ (S264 ⊕ S230 ⊕ S227)S100 ⊕ S100

S46, S34, S227

S100

25

S137 = z30 ⊕ S42 ⊕ S184 ⊕ S141 ⊕ S265(S91 ⊕ S53 ⊕ S30)

⊕ S265(S223 ⊕ S190 ⊕ S184) ⊕ (S223 ⊕ S190 ⊕ S184)

(S91 ⊕ S53 ⊕ S30) ⊕ (S260 ⊕ S226 ⊕ S223)S141

⊕ (S260 ⊕ S226 ⊕ S223)S96 ⊕ S96

S30, S265, S223, S96

26

S133 = z26 ⊕ S38 ⊕ S180 ⊕ S137 ⊕ S261(S87 ⊕ S49 ⊕ S26)

⊕ S261(S219 ⊕ S186 ⊕ S180) ⊕ (S219 ⊕ S186 ⊕ S180)

(S87 ⊕ S49 ⊕ S26) ⊕ (S256 ⊕ S222 ⊕ S219)S137

⊕ (S256 ⊕ S222 ⊕ S219)S92 ⊕ S92

S261, S219, S92

27

S129 = z22 ⊕ S34 ⊕ S176 ⊕ S133 ⊕ S257(S83 ⊕ S45 ⊕ S22)

⊕ S257(S215 ⊕ S182 ⊕ S176) ⊕ (S215 ⊕ S182 ⊕ S176)

(S83 ⊕ S45 ⊕ S22) ⊕ (S252 ⊕ S218 ⊕ S215)S133

⊕ (S252 ⊕ S218 ⊕ S215)S88 ⊕ S88

S22, S257, S215, S88

28

S125 = z18 ⊕ S30 ⊕ S172 ⊕ S129 ⊕ S253(S79 ⊕ S41 ⊕ S18)

⊕ S253(S211 ⊕ S178 ⊕ S172) ⊕ (S211 ⊕ S178 ⊕ S172)

(S79 ⊕ S41 ⊕ S18) ⊕ (S248 ⊕ S214 ⊕ S211)S129

⊕ (S248 ⊕ S214 ⊕ S211)S84 ⊕ S84

S18, S253, S211, S84

29

S121 = z14 ⊕ S26 ⊕ S168 ⊕ S125 ⊕ S249(S75 ⊕ S37 ⊕ S14)

⊕ S249(S207 ⊕ S174 ⊕ S168) ⊕ (S207 ⊕ S174 ⊕ S168)

(S75 ⊕ S37 ⊕ S14) ⊕ (S244 ⊕ S210 ⊕ S207)S125

⊕ (S244 ⊕ S210 ⊕ S207)S80 ⊕ S80

S14, S249, S207, S80

(continued)



276 A.A. Siddhanti et al.

Table 1. (continued)

Steps Equations used for recovery Guessed bits

30

S117 = z10 ⊕ S22 ⊕ S164 ⊕ S121 ⊕ S245(S71 ⊕ S33 ⊕ S10)

⊕ S245(S203 ⊕ S170 ⊕ S164) ⊕ (S203 ⊕ S170 ⊕ S164)

(S71 ⊕ S33 ⊕ S10) ⊕ (S240 ⊕ S206 ⊕ S203)S121

⊕ (S240 ⊕ S206 ⊕ S203)S76 ⊕ S76

S10, S245, S76

31

S113 = z6 ⊕ S18 ⊕ S160 ⊕ S117 ⊕ S241(S67 ⊕ S29 ⊕ S6)

⊕ S241(S199 ⊕ S166 ⊕ S160) ⊕ (S199 ⊕ S166 ⊕ S160)

(S67 ⊕ S29 ⊕ S6) ⊕ (S236 ⊕ S202 ⊕ S199)S117

⊕ (S236 ⊕ S202 ⊕ S199)S72 ⊕ S72

S6, S241, S72

32

S109 = z2 ⊕ S14 ⊕ S156 ⊕ S113 ⊕ S237(S63 ⊕ S25 ⊕ S2)

⊕ S237(S195 ⊕ S162 ⊕ S156) ⊕ (S195 ⊕ S162 ⊕ S156)

(S63 ⊕ S25 ⊕ S2) ⊕ (S232 ⊕ S198 ⊕ S195)S113

⊕ (S232 ⊕ S198 ⊕ S195)S68 ⊕ S68

S68

33

S150 = z43 ⊕ S55 ⊕ S197 ⊕ S154 ⊕ S278(S104 ⊕ S66 ⊕ S43)

⊕ S278(S236 ⊕ S203 ⊕ S197) ⊕ (S236 ⊕ S203 ⊕ S197)

(S104 ⊕ S66 ⊕ S43) ⊕ (S273 ⊕ S239 ⊕ S236)S154

⊕ (S273 ⊕ S239 ⊕ S236)S109 ⊕ S109

S278

34

S146 = z39 ⊕ S51 ⊕ S193 ⊕ S150 ⊕ S274(S100 ⊕ S62 ⊕ S39)

⊕ S274(S232 ⊕ S199 ⊕ S193) ⊕ (S232 ⊕ S199 ⊕ S193)

(S100 ⊕ S62 ⊕ S39) ⊕ (S269 ⊕ S235 ⊕ S232)S150

⊕ (S269 ⊕ S235 ⊕ S232)S105 ⊕ S105

S274, S105

35

S142 = z35 ⊕ S47 ⊕ S189 ⊕ S146 ⊕ S270(S96 ⊕ S58 ⊕ S35)

⊕ S270(S228 ⊕ S195 ⊕ S189) ⊕ (S228 ⊕ S195 ⊕ S189)

(S96 ⊕ S58 ⊕ S35) ⊕ (S265 ⊕ S231 ⊕ S228)S146

⊕ (S265 ⊕ S231 ⊕ S228)S101 ⊕ S101

−

36

S138 = z31 ⊕ S43 ⊕ S185 ⊕ S142 ⊕ S266(S92 ⊕ S54 ⊕ S31)

⊕ S266(S224 ⊕ S191 ⊕ S185) ⊕ (S224 ⊕ S191 ⊕ S185)

(S92 ⊕ S54 ⊕ S31) ⊕ (S261 ⊕ S227 ⊕ S224)S142

⊕ (S261 ⊕ S227 ⊕ S224)S97 ⊕ S97

−

37

S134 = z27 ⊕ S39 ⊕ S181 ⊕ S138 ⊕ S262(S88 ⊕ S50 ⊕ S27)

⊕ S262(S220 ⊕ S187 ⊕ S181) ⊕ (S220 ⊕ S187 ⊕ S181)

(S88 ⊕ S50 ⊕ S27) ⊕ (S257 ⊕ S223 ⊕ S220)S138

⊕ (S257 ⊕ S223 ⊕ S220)S93 ⊕ S93

−

38

S130 = z23 ⊕ S35 ⊕ S177 ⊕ S134 ⊕ S258(S84 ⊕ S46 ⊕ S23)

⊕ S258(S216 ⊕ S183 ⊕ S177) ⊕ (S216 ⊕ S183 ⊕ S177)

(S84 ⊕ S46 ⊕ S23) ⊕ (S253 ⊕ S219 ⊕ S216)S134

⊕ (S253 ⊕ S219 ⊕ S216)S89 ⊕ S89

−

(continued)



Certain Observations on ACORN v3 277

Table 1. (continued)

Steps Equations used for recovery Guessed bits

39

S126 = z19 ⊕ S31 ⊕ S173 ⊕ S130 ⊕ S254(S80 ⊕ S42 ⊕ S19)

⊕ S254(S212 ⊕ S179 ⊕ S173) ⊕ (S212 ⊕ S179 ⊕ S173)

(S80 ⊕ S42 ⊕ S19) ⊕ (S249 ⊕ S215 ⊕ S212)S130

⊕ (S249 ⊕ S215 ⊕ S212)S85 ⊕ S85

S19

40

S122 = z15 ⊕ S27 ⊕ S169 ⊕ S126 ⊕ S250(S76 ⊕ S38 ⊕ S15)

⊕ S250(S208 ⊕ S175 ⊕ S169) ⊕ (S208 ⊕ S175 ⊕ S169)

(S76 ⊕ S38 ⊕ S15) ⊕ (S245 ⊕ S211 ⊕ S208)S126

⊕ (S245 ⊕ S211 ⊕ S208)S81 ⊕ S81

S15

41

S118 = z11 ⊕ S23 ⊕ S165 ⊕ S122 ⊕ S246(S72 ⊕ S34 ⊕ S11)

⊕ S246(S204 ⊕ S171 ⊕ S165) ⊕ (S204 ⊕ S171 ⊕ S165)

(S72 ⊕ S34 ⊕ S11) ⊕ (S241 ⊕ S207 ⊕ S204)S122

⊕ (S241 ⊕ S207 ⊕ S204)S77 ⊕ S77

S11

42

S114 = z7 ⊕ S19 ⊕ S161 ⊕ S118 ⊕ S242(S68 ⊕ S30 ⊕ S7)

⊕ S242(S200 ⊕ S167 ⊕ S161) ⊕ (S200 ⊕ S167 ⊕ S161)

(S68 ⊕ S30 ⊕ S7) ⊕ (S237 ⊕ S203 ⊕ S200)S118

⊕ (S237 ⊕ S203 ⊕ S200)S73 ⊕ S73

−

43

S110 = z3 ⊕ S15 ⊕ S157 ⊕ S114 ⊕ S238(S64 ⊕ S26 ⊕ S3)

⊕ S238(S196 ⊕ S163 ⊕ S157) ⊕ (S196 ⊕ S163 ⊕ S157)

(S64 ⊕ S26 ⊕ S3) ⊕ (S233 ⊕ S199 ⊕ S196)S114

⊕ (S233 ⊕ S199 ⊕ S196)S69 ⊕ S69

−

44

S56 = z44 ⊕ S151 ⊕ S198 ⊕ S155 ⊕ S279(S105 ⊕ S67 ⊕ S44)

⊕ S279(S237 ⊕ S204 ⊕ S198) ⊕ (S237 ⊕ S204 ⊕ S198)

(S105 ⊕ S67 ⊕ S44) ⊕ (S274 ⊕ S240 ⊕ S237)S155

⊕ (S274 ⊕ S240 ⊕ S237)S110 ⊕ S110

S279

45

S57 = z45 ⊕ S152 ⊕ S199 ⊕ S156 ⊕ S280(S106 ⊕ S68 ⊕ S45)

⊕ S280(S238 ⊕ S205 ⊕ S199) ⊕ (S238 ⊕ S205 ⊕ S199)

(S106 ⊕ S68 ⊕ S45) ⊕ (S275 ⊕ S241 ⊕ S238)S156

⊕ (S275 ⊕ S241 ⊕ S238)S111 ⊕ S111

S280

46

S58 = z46 ⊕ S153 ⊕ S200 ⊕ S157 ⊕ S281(S107 ⊕ S69 ⊕ S46)

⊕ S281(S239 ⊕ S206 ⊕ S200) ⊕ (S239 ⊕ S206 ⊕ S200)

(S107 ⊕ S69 ⊕ S46) ⊕ (S276 ⊕ S242 ⊕ S239)S157

⊕ (S276 ⊕ S242 ⊕ S239)S112 ⊕ S112

S281

47

S59 = z47 ⊕ S154 ⊕ S201 ⊕ S158 ⊕ S282(S108 ⊕ S70 ⊕ S47)

⊕ S282(S240 ⊕ S207 ⊕ S201) ⊕ (S240 ⊕ S207 ⊕ S201)

(S108 ⊕ S70 ⊕ S47) ⊕ (S277 ⊕ S243 ⊕ S240)S158

⊕ (S277 ⊕ S243 ⊕ S240)S113 ⊕ S113

S282

48

S60 = z48 ⊕ S155 ⊕ S202 ⊕ S159 ⊕ S283(S109 ⊕ S71 ⊕ S48)

⊕ S283(S241 ⊕ S208 ⊕ S202) ⊕ (S241 ⊕ S208 ⊕ S202)

(S109 ⊕ S71 ⊕ S48) ⊕ (S278 ⊕ S244 ⊕ S241)S159

⊕ (S278 ⊕ S244 ⊕ S241)S114 ⊕ S114

S283



278 A.A. Siddhanti et al.

At this point, we like to explain about certain ‘unit’ cost related to exact
complexity. Such unit cost may involve several computations related to the cipher
operations. In a most generic way, given a k-bit secret key, the exhaustive attack
asks for a complexity of 2k units, where each unit may require several CPU
clocks. While mounting the TMDTO attack the same situation is valid. Thus,
in our technique, we also consider all the operations as unit cost. However, we
will point out a few cases when our calculations are most costly and that should
be taken care of in the complexity analysis. For example, simply generating a
293-bit key stream (that will become the state η) of ACORN v3 from a state
ζ requires 0.088 s in our computing facility. However, to recover the 47 bits of
the state from 47 bits of key stream and the remaining state bits requires a
time of 0.076 s, which is almost as same as the time taken to generate ζ. Thus,
no additional complexity is required for solving. Hence for this scenario our
parameters are as follows. We can take T ′ = 2122,M ′ = 2124 and D′ = 261.
Then, T = T ′ · 20 = 2122, M = M ′ = 2124, D = 2ψ · D′ = 247 · 261 = 2108,
P = P ′ = N ′

D′ = 2185.

3.2 Knowledge of 53 Bits of State from 60 Key Stream Bits

We follow a similar procedure as mentioned in Sect. 3.1. However, when the SAT
solver is populated with equations and is set to find all possible solutions for 53
state bits using only 53 key stream bits, the SAT solver fails to find a unique
solution. Instead, we get multiple solutions, where each solution provides the
same 53-bit key stream pattern. To combat this problem, we involve a new idea.
Instead of searching for a 53-bit pattern (say 53 continuous 0’s), we search for
a 240-bit pattern where the first 53-bit sequence and the last 7-bit sequence
are fixed (say to 0’s). This is based on the fact that the key stream sequence
generated by all solutions are different. The SAT solver identifies the difference
between the sequence of last 7 bits and removes all additional solutions. However,
this gives us an additional Data complexity of 27. Considering this constraint
into the SAT solver in a similar fashion, (as explained in Sect. 2.1), we get the
data mentioned in Table 1. However, in very few cases, two solutions sets are
possible which generate the same keystream. Since the proportion is very small
and our success probability is 214−1

214 , the time complexity should be multiplied
by T ′ = T ′ × 214

214−1 ≈ T ′ × 1 = T ′. However, we still attempt to deal with this
edge case scenario of two solutions. The idea is to simply discard the second
solution during the offline phase and continue with the first solution set. The
matrix stopping rule ensures the entire search space is covered with negligible
collision. During the online phase, the adversary can access few more key stream
bits following the fixed pattern in the key stream and hence conclude with the
final solution. Our experiments show that 7 more key stream bits, i.e. 67 key
stream bits in total are enough to find a unique solution.

Similar to Sect. 3.1 the time taken for solving equations is of the same order
of generating ζ, hence T = T ′.

– T = T ′ = 2120 is the total time complexity of the attack,



Certain Observations on ACORN v3 279

– M = M ′ = 2120 is the amount of memory required,
– D = D′ × 260 = 2120 where D′ = 260, since the adversary must succeed in

finding a 60-bit pattern,
– P = N ′

D′ = 2180 is the preprocessing time for formulating tables.

3.3 Knowledge of 49 Bits of State from 49 Key Stream Bits
and Fixing 10 State Bits

Here we consider the third approach which is similar to what has been recently
considered in [7] for a TMDTO attack against Lizard [6]. We consider that ψ
state bits can be recovered from ψ many key stream bits and rest of the state
bits, but τ many state bits has to be fixed to a specific pattern. This follows the
idea mentioned in Sect. 2.2. In this case we go back to single preprocessing table.
We will consider ψ = 49 here, with τ = 10. That is from ψ bits of key stream and
the remaining (n−ψ) state bits (out of which τ are fixed to a specific pattern), we
will be able to solve for the ψ bits of the state. The initial table preparation goes
as follows. We start with a (n−ψ−τ) bit random pattern and then take a specific
pattern for ψ. Also the fixed pattern of φ is known. Now, using the equations
as described in Sect. 2.2, we solve for the rest ψ bits of the state. This gives the
complete state. Then we run the PRGA for n−τ times. The initial ψ bits will be
as fixed. The remaining (n−ψ − τ) pseudorandom bits will be considered as the
part of the next state bits. Thus, we have T ′M ′ = 2n−ψ−τ = 2293−49−10 = 2234.
Let us take T ′ = 2112 and M ′ = 2122, which also gives, D′ =

√
T ′ = 256. Thus,

we will now have the following parameters.

– D = D′ · 2ψ+τ = 256+49+10 = 2115, as the specific pattern ψ should come
towards consulting the table, and also for a good success rate to have the
specific τ bit pattern in the state we need to try 2τ many times,

– M = M ′ = 2122,
– T = T ′ ·2τ = 2112+10 = 2122, as we only consult the preprocessing table when

the specific ψ bit pattern appears in the key stream, but we need to try 2τ

times as we have that more data and here the solution time can be estimated
from the operations in the equations and that can subsumed in the PRGA
effort,

– P = P ′ = N ′
D′ = 2234−56 = 2178.

A similar online parameter in this respect can be obtained considering the equa-
tion 5ψ+2τ = n. Here, ψ = 49, by fixing τ = 10. However, we can easily increase
τ to 24 to satisfy the equation 5ψ+2τ = 5 ·49+2 ·24 = 293 = n. That is we will
fix 24 state bits to a specific pattern. In this case the online complexity becomes
T = M = D = 2

n−ψ
2 = 2

293−49
2 = 2122. However, the preprocessing becomes less,

which is P = 2
n+ψ

2 = 2
293+49

2 = 2171.

4 Conclusion

In this paper we have studied how certain portion of the state of ACORN v3 can
be obtained from key stream and guessing or fixing the remaining state bits. We



280 A.A. Siddhanti et al.

attempt that problem by generating a set of equations and feeding that to SAT
solver. At the same time, we try to consider the structure of the equations and
solve a set of equations without using the SAT solver. Several examples with
different parameters are presented. Based on those parameters, we note different
time-memory-data trade-off for attacking ACORN v3. Indeed it is possible to
mount the attack where the online complexity is less than the exhaustive key
search. The pre-processing effort is higher than exhaustive search but it can be
reduced further by increasing the amount of data or by recovering more internal
sate bits. While our observations do not refute any security claim of the cipher,
the study adds certain insight towards the cryptanalysis and may lead to further
research in this area.

Acknowledgements. The first author would like to thank Department of Science
and Technology DST-FIST Level-1 Program Grant No. SR/FST/MSI-092/2013 for
providing the computational facilities.

References

1. Babbage, S.: A space/time tradeoff in exhaustive search attacks on stream ciphers.
In: European Convention on Security and Detection. IEEE Conference Publication,
no. 408, May 1995

2. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a
PC. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000.
LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44706-7 1

3. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 1

4. CAESAR. http://competitions.cr.yp.to/caesar.html
5. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-

CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 17

6. Hamann, M., Krause, M., Meier, W.: LIZARD - a lightweight stream cipher for
power-constrained devices. In: FSE 2017. http://eprint.iacr.org/2016/926, http://
tosc.iacr.org/index.php/ToSC/article/view/584

7. Maitra, S., Sinha, N., Siddhanti, A., Anand, R., Gangopadhyay, S.: A TMDTO
attack against lizard (2017). http://eprint.iacr.org/2017/647

8. SAGE Mathematics Software. Free Software Foundation Inc. (2009). http://www.
sagemath.org. (Open source project initiated by W. Stein and contributed by
many)

9. Sarkar, S., Banik, S., Maitra, S.: Differential fault attack against grain family with
very few faults and minimal assumptions. IEEE Trans. Comput. 64(6), 1647–1657
(2015)

10. Wu, H.: ACORN: a lightweight authenticated cipher (v3). https://competitions.
cr.yp.to/round3/acornv3.pdf

https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1007/3-540-44448-3_1
http://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
http://eprint.iacr.org/2016/926
http://tosc.iacr.org/index.php/ToSC/article/view/584
http://tosc.iacr.org/index.php/ToSC/article/view/584
http://eprint.iacr.org/2017/647
http://www.sagemath.org
http://www.sagemath.org
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf


Efficient Implementation of Private License
Plate Matching Protocols

Harshul Vaishnav(B), Smriti Sharma, and Anish Mathuria

Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar 382007, Gujarat, India

va.hv.02@gmail.com

Abstract. License plate matching is an important facilitator for new-
age services like toll billing, calculation of road taxes and law enforcement
that demand both effectiveness and efficiency. The license plate itself
might not be of much importance but the information linked to it may
reveal a lot about the owner. Therefore, in order to maintain the privacy
of information and to ensure security of the ways in which the informa-
tion is used, the search/match operations are performed in the encrypted
domain. We practically analyze the performance of three existing pro-
tocols for private license plate matching based on Paillier’s additively
homomorphic technique. We explore various performance improvement
techniques for Paillier encryption and decryption to speedup the overall
matching process. In addition, we attempt to parallelise the entire pro-
cedure by separately running encryption-decryption in a multi-threaded
manner, thereby speeding up the process. Finally, we perform compar-
ative analysis of experimental results of the four implementation tech-
niques (along with parallelisation).

Keywords: Secure license plate matching · Paillier’s encryption ·
Performance analysis · Encryption-decryption · Parallelisation

1 Introduction

A license plate of a car can serve as an identity of its owner. Nowadays, such
plate-numbers are linked to all kinds of credential proofs that a person holds
including the sensitive bank account information. Carrying out plate-related
transactions openly might lead to loss of privacy. In such settings it is best to
keep the data encrypted and perform operations on the ciphertext in order to
ensure the privacy of the data.

For a real life example, consider a police agency (A) trying to track the
whereabouts of a suspected criminal vehicle, and an entity holding car park
information about the visitors to the parking. The latter entity could be a large
organization or a terminal for public transit like the Airport Authority (B). The
airport authority should have only enough information about the license plate in
order to perform the matching and the police agency just needs to know if there
is a match of the license plate number. In other words, the privacy requirements
are as follows:
c© Springer International Publishing AG 2017
S.S. Ali et al. (Eds.): SPACE 2017, LNCS 10662, pp. 281–294, 2017.
https://doi.org/10.1007/978-3-319-71501-8_16



282 H. Vaishnav et al.

– The airport authority should not come to know about the actual number on
the license plate.

– The police agency should not have any information about the database of
license plates owned by the airport authority.

Homomorphic encryption is a cryptographic tool that enables computations over
encrypted data, for example Paillier’s scheme [2]. It maintains the original form
of the input implying that (some of) the same operations that can be applied on
plain domain can also be applied on cipher domain. After performing operations
on the ciphertexts, the resulting value is identical to what is obtained when the
operation is performed on the plaintexts and the answer is encrypted.

Homomorphic encryption has applications in varied privacy enhancing
domains one of which is presented in Erkin et al. ([9]). This work describes
a technique for face-recognition via Eigenface recognition systems working on
encrypted images. A highly optimised cryptographic protocol is used for com-
parison of Paillier encrypted values.

In this paper we investigate secure protcols for private matching of license
plates proposed by Sunil et al. in [1]. They perform character recognition first and
then proceed with match functions on encrypted data. We focus on the integer
matching process and explore different performance improvement techniques of
Paillier. This means that we work on an integer that is a representation of an
already identified and integer-converted number plate value. We have a list of
integers which act as a database of number plates. The main aim of our work is
to be able to perform this matching in a secure and efficient manner (in terms
of run-times).

The rest of the paper is organised as follows. Section 2 reviews the previous
protocols that utilize homomorphic encryption for private license plate match-
ing. In Sect. 3 we propose a modification to strengthen the protocols against a
malicious insider attack. A detailed analysis of the original encryption scheme
and the optimised schemes are covered in Sect. 4. Section 5 explains the choice
of parameters used in the experiments. Section 6 explains how we parallelise
the implementation to make the matching process faster and compares the
results obtained for different encryption bit-lengths, encryption schemes and
multithreading. Section 7 concludes the paper.

2 Existing Protocols

Sunil et al. [1] proposed secure protocols for private matching of license plates
for three different scenarios using two different cryptographic tools, namely
additively homomorphic encryption and Gentry’s fully homomorphic encryp-
tion [5]. We focus on the additively homomorphic encryption as it suffices for
integer matching and is more efficient than fully homomorphic encryption. Gen-
try’s scheme supports multiple operations without errors but integer matching
doesn’t require fully homomorphic property. The additive homomorphic encryp-
tion employed by the protocols is Paillier’s scheme. This scheme is a probabilistic



Efficiency Improvements on License Plate Matching Protocol 283

public-key cryptosystem. The encryption scheme is randomised, that is, encryp-
tions of the same plaintext will result in different ciphertexts. The paper by
Paillier [2] describes three variants of Paillier’s cryptosystem and [1] employs
the first one of them.

In the plaintext domain, matching of license plate numbers can simply be
done by subtracting the integer representations of the test plate and the plates
in the database. This operation is done in the cipher domain using Paillier’s
additively homomorphic scheme. This scheme has the property that [[m1 +m2]]
is equal to c1c2 in the cipher domain where, c1 = [[m1]] and c2 = [[m2]]. So, in
order to compute c1 − c2, we multiply c1 with the inverse of c2. The matching
process can roughly be stated as follows:

– Generate public and private keys.
– Encrypt the test license plate (to be matched) as well as the plates in the

database using the public key.
– Perform the matching in encrypted domain by multiplying the encrypted test

value with the inverse of the encrypted database plate.
– Decrypt the difference values using the private key. If any decryption result

is equal to zero, then there is a match.

Table 1 lists the notations used throughout the paper.

Table 1. Notations

A Entity holding the test license plate

B Entity holding the database of license plates

T Trusted third party

pk Public key

sk Private key

[[var]] var encrypted using pk of a Paillier’s cryptosystem

yi Database entries in plaintext

di Database containing difference values

d̂i Database with randomised differences

Table 2 lists the salient features of the three scenarios.

Table 2. Salient features of the three scenarios

Holder of private key Matching performed at Database exchanges

Scenario 1 A B 1

Scenario 2 B A 2

Scenario 3 T B 1



284 H. Vaishnav et al.

Here, A is the requesting entity (police agency), B is the number plates’
database holder (airport authority) and T is a third party trusted by both A,
and B. We briefly review these scenarios below.

2.1 Scenario 1

In this scenario, A generates the keys pk and sk and the matching process is per-
formed at B. Table 3 gives step by step execution of this scenario. B encrypts its
database with the public key generated by A. A provides B with the encrypted
test plate. It then performs the matching by multiplying the encrypted test plate
with the inverse of encrypted database license plates. The resulting values are
then multiplied with a random number. Note that if there is a ‘zero’ within the
results, it remains zero after the multiplication. The sequence of values is sent
back to A. As A is the sole possessor of the private key, only A can decrypt the
results to find whether there is a match; B does not learn the outcome.

Table 3. Protocol 1.

2.2 Scenario 2

In this scenario, B generates both the keys and therefore has a pre-encrypted
database (Table 4). The public key, along with the encrypted database, is sent to
A. Then A performs the matching, randomises the order and sends the results
back to B. B decrypts the results and tells A whether there is a match. Thus,
both the entities come to know about the final result. As before, the data gen-
erated after subtraction is multiplied by a random number so that B does not
come to know about the test plate number that A possessed. As the database
is pre-encrypted, even if an attacker steals the database, he will not be able to
access the number plates stored at B. However, Protocol 2 is more expensive in
communication than Protocol 1 as it requires two database exchanges.



Efficiency Improvements on License Plate Matching Protocol 285

Table 4. Protocol 2.

2.3 Scenario 3

In this scenario, T generates the keys pk and sk and sends the pk to A and B
(Table 5). A encrypts its test plate and sends it to B which has its encrypted
database ready for the match. B performs the calculation and sends the result
database to T who checks whether there is a match (as only T can decrypt
using sk). The final result becomes known to both A and T. This technique
pre-encrypts the original database and requires communicating the big database
only once (from B to T). However, having a third party trusted by both A
and B is a very strong requirement, as it violates the assumption of distrustful
parties.

Table 5. Protocol 3.



286 H. Vaishnav et al.

3 Countering Malicious Adversaries

There are two different types of adversaries that could attack the privacy goals of
the protocol: passive (also called semi-honest) and malicious. A passive adversary
is one that does not deviate from the protocol. A malicious adversary is allowed
to deviate from the protocol. Protocols 1–3 assume a passive adversary. We
construct an attack to show how a malicious adversary can breach privacy and
suggest a simple modification that resists this attack.

In the previous protocols, a single random number is used to blind the differ-
ence database. We show that the use of a single random number makes protocol
1 unsafe against malicious adversaries. Table 6 shows how a malicious A can
breach the privacy of B’s database.

Table 6. Insider attack by A

Suppose A already knows two of the plate numbers y1 and y2 that it matched
with B’s database previously. Next A sends a new test plate y1 + y2, to B. This
would look like a regular test plate to B and it would perform the calculations,
sending back the difference database randomized by a single random number R.
A then decrypts the difference values. As y1 and y2 would each be subtracted
once during the computation, we would have both the instances y1R and y2R
in the difference database. From this, A can obtain R by dividing the database
once each with y1 and y2. Once R is found, the whole database at B’s side can
be calculated by A.



Efficiency Improvements on License Plate Matching Protocol 287

A fix for this attack is to use a distinct random number for blinding
every entry in the difference database. We make use of this technique in our
experiments.

For scenario 2, B cannot come to know about A’s license plate as B receives
the difference database only and all it would find is a decrypted zero on a match.
For scenario 3, a trusted third party handles the decryption procedure. Hence,
the security of both A and B is maintained as long as T remains honest.

4 Performance Improvements

This section reviews two schemes of Paillier and their optimised versions.

4.1 Scheme 1

Key Generation
Choose two large primes, p and q, and let n = pq. Then λ(pq) = lcm(p−1, q−1),
where λ denotes the Carmichael function.

Choose g ∈ Z∗
n2 such that n and L(gλ mod n2) are co-prime, where

L : Z∗
n2 → Zn (1)

L(u) �→ u − 1
n

(2)

Public key is (n, g) and Private key is (p, q).
Encryption
This procedure involves the following steps to come up with the ciphertext.

Choose a message m ∈ Zn.
Choose a random r ∈ Z∗

n.
Output ciphertext in Z2

n:

c = gmrn mod n2 (3)

Decryption
Decryption requires the ciphertext c and sk pair (p, q).

The message is retrieved by the following calculation:

m =
L(cλ mod n2)
L(gλ mod n2)

mod n (4)

Though this particular scheme is able to give results as fast as key generation
time of 0.4 s and encryption time of about 5μs (C++ implementation, stated in
[1]), better schemes exist. One allows us to reduce the decryption times thereby
reducing the overall execution time. Another helps in speeding up the encryption
process through pre-computation of some exponents for a parameter ([3]). We
have experimented with these schemes and compared their performance against
the original scheme used in [1].



288 H. Vaishnav et al.

4.2 Scheme 3

Scheme 3 of Paillier’s cryptosystem allows for a faster decryption by changing
the domain of work from Z∗

n2 to a subset generated by < g > of order αn, where
α is a factor of λ. This in turn facilitates in taking exponentiation to the power α
instead of λ, thereby decreasing the decryption time considerably. Equation (4)
now becomes:

m =
L(cα mod n2)
L(gα mod n2)

mod n (5)

Also, the ciphertext is modified to the form:

c = gm(gn)r mod n2 (6)

The original scheme of Paillier sets the condition of r < n but it suffices to have
an r < α. Two kinds of attacks are presented by Jost et al. ([3]) which give
insight into the way that α should be calculated.

In scheme 3, g must be of order αn. The problem of solving for α, given
(n, g) as public is similar to the discrete logarithm problem as (gn)α = 1 mod
n2. If α is small enough then baby-step giant-step can be used to obtain α, as
suggested by Paillier [2].

4.3 Optimised Scheme 3

Jost et al. [3] propose a method to optimise scheme 3. The factor gn is responsi-
ble for bringing randomisation to encryption. This involves taking an (bitlength
of r) exponent of the noise factor which provides a scope for optimisation. Since
the multiplication of two random numbers gives a new random number, it is
sufficient to pre-compute some random powers of gn. Instead of choosing an
explicit r, it is chosen implicitly when (gn)r is calculated on the fly by multi-
plying the previously computed powers of (gn). This reduces encryption time
as multiplication is less costlier than exponentiation. For pre-computing these
values, we require space for storing the random powers of (gn). This presents
us with a kind of trade off between the number of pre-computed values and the
number of multiplications required during actual computation of the ciphertext.

4.4 Optimised Scheme 1

We have extended the idea of optimisation of Scheme 3 to Scheme 1. The encryp-
tion operation of Scheme 1 involves multiplication with a random value for noise
generation. This also involves taking an (bitlength of n) exponent of the noise
factor (random number r). As in Scheme 3, it is sufficient to pre-compute some
random powers of r and generate new random powers from that when required.
So instead of choosing an explicit power n for r, it is chosen implicitly when rn is
calculated by multiplying the previously computed powers of r. Another optimi-
sation is to pre-compute the denominator of Eq. (4). Through our experiments,
we found that this greatly reduces decryption time as denominator calculation
takes as much as 45% of the decryption time.



Efficiency Improvements on License Plate Matching Protocol 289

5 Experiment Setup

We implement protocol as per scenario 2 (Sect. 2.2) using the Paillier schemes
and their optimisations (Sects. 4.1 through 4.4) in C++ and compare the time
performance based on factors like security level - identified by the bit-length of
n and database size. We choose this scenario as it is safer to keep the database
pre-encrypted.

5.1 Test Database

In our case, the numerals (0 through 9) are mapped to themselves and the
alphabets are mapped to the integers 10–35. Hence for a 10 character license
plate, we require integers of 60 bits to identify it (5.1.2 [4]). For other types of
plates, we could apply a similar scheme, with more or less number of integers
in the final representation. For a typical Indian license plate, one would require
an integer of 60 bits for representing the license plate apart from other country-
specific features.

A set of data files containing different number of 64-bit integers representing
hypothetical license plate numbers are constructed and the test plate is checked
against these databases for a match. There are various parameters to be deter-
mined, based on the type of scheme adopted. The choice of these parameters is
briefly discussed below.

5.2 Parameters

– n denotes the size of the plain- and cipher-domains. As the security of Paillier
cryptosystem is based on integer factoring, we consider three different bit-
lengths: 1024, 2048 and 4096.

– p and q are the prime factors of n, hence their bit-lengths are half of that of
n.

– λ is the least common multiple of the primes p and q, hence its bit-length is
the same as that of n.

– α is a factor of λ and speeds up decryption since we decrypt over α, a smaller
number, instead of λ, of bit-length same as that of n.

– A small value of g is recommended for performance reasons. We choose g = 2
for scheme 1. For scheme 3, g is computed such that the order of g is αn.

– r is the random number responsible for noise generation in the cipher. The
bit-length of r is 80 where we multiply 5 random values to get a new random
power.

6 Implementation and Results

Encryption of plaintexts and decryption of ciphertexts are independent of each
other, so to minimize the execution time we use parallelization for both encryp-
tion and decryption of the database. Parallelization is done in C++, using
threads by making use of OpenMP API. We consider the following options for
parallelization:



290 H. Vaishnav et al.

Single thread. All participants (A and B) have only one thread for their
respective process of encryption or decryption. This in fact means that there
is no parallelisation at all.

One side threaded. One participant runs two or more threads while other
participant runs only one thread.

Both side threaded. All participants have the number of threads specified for
each domain. All experiments are done by running multiple threads on both
sides as that gives the most optimal performance.

In the single thread case, both A and B have a single thread or flow of
execution that processes the database entries one after the other. For example,
a single thread on A’s side in Scenario 2 would simply take out entries one-by-
one from the encrypted database received from B. It would then perform the
matching in encrypted domain. Hence this is a sequential process.

In the multiple thread case, there are differences in code segments of the
threads corresponding to A and B. In thread of A, we make use of flags as
many in number as the number of threads. Each flag takes care of whether a
match is found within the entries of the difference database assigned to that
particular thread. The assignment of entries is static which means that each
thread knows what set of entries it has to work on, a priori. The workload is
almost the same for each thread: each one has to find the decryption of a fixed
size difference value that would probably take the same amount of time for every
entry. When all the threads are joined, their respective flags are checked for a
‘1’. If anyone of them returns 1, it is an indication of a match being found.

In thread of B, the parallelised part includes the overall database-encryption
and calculation of difference of the encrypted values. For this purpose, separate
difference lists are maintained per thread in which each one stores its own differ-
ence results. Before sending these off, the lists are combined into a consolidated
one containing all difference values.

6.1 Comparison of Run-Times

We have implemented Protocol 2 in C++ using GMP and OpenMP library.
The machine used is Intel i7-4750HQ with a clock speed of 2 GHz, having 4
cores and 8 GB RAM. Given below are a set of tables for encryptions per second
for the four schemes (Scheme 1 and Scheme 3 of Paillier, Optimised Scheme 1
and Optimised Scheme 3). These times are experimentally measured for three
separate bit-lengths of n for all the schemes and presented in Table 7.

We provide some details regarding implementation of the schemes. In schemes
optimised 1 and 3, we pre-compute rn and gnr for 216 distinct values of r and
store them in an array. During the noise generation part of encryption in these
respective schemes, 5 random powers are taken and multiplied together resulting
into a new noise factor for every encryption.

Table 8 shows the number of modular multiplications required to perform
one encryption and one decryption for the four Paillier schemes. r is a random



Efficiency Improvements on License Plate Matching Protocol 291

Table 7. Encryptions per second

Scheme Bitlength

1024 bits 2048 bits 4096 bits

Scheme 1 769 91 15

Scheme 1 Opt 11112 1923 787

Scheme 3 393 68 14

Scheme 3 Opt 6250 1920 714

Table 8. Comparison of arithmetic operations for one encryption and one decryption.

Scheme Operations

Encryption Decryption

Scheme 1 n + m + 1 2(λ + 2) + 1

Scheme 1 Opt 5 + m + 1 λ + 2 + 2

Scheme 3 nr + m + 1 2(α + 2) + 1

Scheme 3 Opt 5 + m + 1 α + 2 + 2

number of length 80 bits. The difference in encryption per second for schemes -
1 optimised and 3 optimised is because of the computational size, i.e. for the
former, we need to compute rn. Since r is a 80-bit number, the result is of order
22

7+nb , where nb is the number of bits of n. Similarly for the latter, we need to
compute grn and as g is nb − αb bit number, where αb is the number of bits of
α, the result of computation is of order 22

gb+nb+rb . So, the 5 multiplications in
this scheme are larger and takes more computation time than scheme 1 opt.

In scheme 1 optimised, g is equal to 2 while in scheme 3 optimised, g is of
higher value (λ/α).

From Table 7 we see that optimised schemes are able to achieve higher
throughput in terms of number of encryptions per second as compared to non-
optimised schemes. Also, optimised scheme 1 outperforms others because encryp-
tion procedure is made faster due to pre-computation.

The run time for a specific run includes the encryption time for the test plate,
the time for matching and the time for decryption of the result database.

The next set of tables (Tables 9, 10 and 11) contain the execution times for a
database of size 2500 and Scenario 2, thread-number wise to give a comparative
study across the schemes.

The optimised scheme 3 is the fastest in terms of execution times. For 4096
bits, it has an execution-time of 10.8 s vs. 231.6 s of the original scheme (4
threads). The factor with which it beats the original scheme 1 keeps on increas-
ing as we increase the bit-length. Another observation is comparable run times
of Scheme 3 and Optimised Scheme 3 for 1024 bits. This is because the database
containing plates, against which the test plate is matched, is already encrypted
and not included in the run-time. This way, the only difference in the two schemes



292 H. Vaishnav et al.

Table 9. Run times for a single thread

Scheme Bitlength

1024 bits 2048 bits 4096 bits

Scheme 1 15.15 s 95.01 s 543.28 s

Scheme 1 Opt 7.88 s 48.62 s 274.69 s

Scheme 3 3.05 s 13.47 s 43.16 s

Scheme 3 Opt 1.88 s 7.84 s 24.89 s

Table 10. Run times for 4 threads

Scheme Bitlength

1024 bits 2048 bits 4096 bits

Scheme 1 7.19 s 44.22 s 231.57 s

Scheme 1 Opt 4.48 s 22.77 s 117.53 s

Scheme 3 1.84 s 6.57 s 18.65 s

Scheme 3 Opt 1.05 s 3.81 s 10.78 s

Table 11. Run times for 6 threads

Scheme Bitlength

1024 bits 2048 bits 4096 bits

Scheme 1 7.51 s 40.14 s 232.61 s

Scheme 1 Opt 4.20 s 21.13 s 118.16 s

Scheme 3 1.74 s 6.09 s 18.83 s

Scheme 3 Opt 1.04 s 3.61 s 10.82 s

in scenario 2 is the time required for decryption and matching which shows con-
siderable difference only when the bit length increased from 1024 bits here.

We plot the graphs of run time vs. database sizes for the four schemes for a
single thread each for bit-length of 2048 and 4096 bits.

From the Figs. 1 and 2, a trend of increasing run time for increasing size of
databases is seen. This is explainable as run time is directly proportional to the
number of entries in the database.

There is a large variation in the run times for the 4 schemes in each case.
Sunil et al. ([1]) discussed results for n = 1024 but it is seen here that even for
bigger n - sizes, the schemes achieve considerable speedup. This shows us that the
optimised scheme 3 [3] in fact gives a huge improvement over the other schemes
and is a good candidate for employing in practical scenarios.

There is a tradeoff in optimised scheme 3 between the number of powers pre-
computed and run-time. This translates to the more common memory space vs.
time trade off that we generally face for huge computations. In short, the size
of the array storing random powers of gn should be large enough for catering to
the encryption needs of the entire plaintext domain.



Efficiency Improvements on License Plate Matching Protocol 293

Fig. 1. Run time comparison for n = 2048, single thread.

Fig. 2. Run time comparison for n = 4096, single thread.

7 Conclusions and Future Work

Based on the study and implementation of the additively homomorphic secure
license plate matching technique, we conclude that the optimised scheme 3 gives
a considerable speedup over the original technique and is the most optimal



294 H. Vaishnav et al.

for application in the practical scenario. By the introduction of threads, the
overall process, due to its inherent property of mutual independence within
each phase (encryption and decryption), the results get even better i.e. the run
times decrease even further. As an alternative to Paillier’s scheme, ElGamal’s
additively homomorphic encryption scheme [6,8] can also be used. Simultane-
ous multi-exponentiation algorithms like the 2k-ary and 2k-ary matrix methods
explained in [10] can be applied for optimising multi-exponentiation in commu-
tative groups.

We have not factored in the communication costs in our analysis. The method
for reducing the communication cost proposed in [1] can be used to do the same.
Based on additive homomorphism of Paillier’s scheme, a parallel homomorphic
encryption (PHE) scheme proposed by Min et al. [7] can be used for plaintexts
having larger bitlengths. In our implementation having 64 bits long license plate
numbers, we could not achieve a significant speedup through PHE because of a
more dominant parallelisation overhead.

References

1. Sunil, A.B., Erkiny, Z., Veugenyz, T.: Secure matching of Dutch car license plates.
In: 24th European Signal Processing Conference (EUSIPCO), pp. 2116–2120 (2016)

2. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

3. Jost, C., Lam, H., Maximov, A., Smeets, B.: Encryption performance improvements
of the Paillier cryptosystem. IACR Cryptol. ePrint Arch. 2015, 864 (2015)

4. Sunil, A.B.: Secure License Plate Matching using Homomorphic Encryption. Mas-
ters thesis, Vrije Universiteit Amsterdam (2015)

5. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

6. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

7. Min, Z., Yang, G., Shi, J.: A privacy-preserving parallel and homomorphic encryp-
tion scheme. Open Phys. 15, 135–142 (2017)

8. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. Eur. Trans. Telecommun. 8(5), 481–490 (1997)

9. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03168-7 14

10. Jakobsen, T.P., Makkes, M.X., Nielsen, J.D.: Efficient implementation of
the Orlandi protocol. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS,
vol. 6123, pp. 255–272. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13708-2 16

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-642-03168-7_14
https://doi.org/10.1007/978-3-642-03168-7_14
https://doi.org/10.1007/978-3-642-13708-2_16
https://doi.org/10.1007/978-3-642-13708-2_16


Author Index

Alam, Manaar 30
Alepis, Efthimios 53
Aranha, Diego F. 74, 170
Azarderakhsh, Reza 74

Bathe, Bhagwan N. 93
Bhasin, Shivam 1
Bhattacharjee, A.K. 93
Bhattacharya, Sarani 30

Chakraborti, Avik 111
Chang, Donghoon 133
Chattopadhyay, Anupam 247

Dara, Sashank 151
Datta, Nilanjan 111

Faz-Hernández, Armando 170
Fujii, Hayato 170

Ghosh, Mohona 133

Halpin, Harry 10
Hariramani, Bharti 93
Hiller, Matthias 190

Immler, Vincent 190

Jati, Arpan 133

Karabina, Koray 74
Kulgod, S.V. 93
Kumar, Abhishek 133

Lenz, Andreas 190
Liu, Qinzhi 190
Lomné, Victor 1
López, Julio 170

Macwan, Kamalkumar R. 210
Maitra, Subhamoy 247, 264
Mathuria, Anish 281
Mukhopadhyay, Debdeep 30
Muralidhara, V.N. 151

Nandi, Mridul 111

Patel, Sankita J. 210
Patsakis, Constantinos 53

Sahu, Rajeev Anand 226
Sanadhya, Somitra Kumar 133
Saraswat, Vishal 226
Sarkar, Santanu 247
Sharma, Smriti 281
Siddhanti, Akhilesh Anilkumar 264
Siddhanti, Akhilesh 247
Sinha, Nishant 264

Tobich, Karim 1

Vaishnav, Harshul 281

Wachter-Zeh, Antonia 190


	Preface
	Organization
	Invited Talks/Tutorials
	On the (in)Security of ChaCha20 Against Physical Attacks
	How to Digitally Construct and Validate TRNG and PUF Primitives Which Are Based on Physical Phenomenon? (Tutorial)
	Cache Attacks: From Cloud to Mobile
	May the Fourth Be With You: A Microarchitectural Side Channel Attack on Several Real-World Applications of Curve25519
	Parameter Choices for LWE
	IoT Insecurity – Innovation and Incentives in Industry
	Hardware Enabled Cryptography: Physically Unclonable Functions and Random Numbers as Roots of Trust
	Efficient Side Channel Testing of Cryptographic Devices Using TVLA (Tutorial)
	Contents
	An Industrial Outlook on Challenges of Hardware Security in Digital Economy---Extended Abstract---
	1 A Successful Evaluation of a Banking Transaction
	1.1 Three Parties' Process
	1.2 Banking Transaction Flow
	1.3 Banking Evaluation Process
	1.4 Concept of Successful Evaluation

	2 Common Criteria Certification of a Smartcard - Application to Biometric Passport
	3 Conclusion
	References

	The Crisis of Standardizing DRM: The Case of W3C Encrypted Media Extensions
	1 Introduction
	2 The World Wide Web Consortium
	3 W3C Patent Policy
	3.1 W3C Process
	3.2 HTML and EME at the W3C

	4 Encrypted Media Extensions
	5 Objections to W3C EME
	5.1 User Control and Fair Use
	5.2 Accessibility
	5.3 Privacy
	5.4 Security

	6 Quantitative Analysis
	7 Is Harm Reduction for DRM Possible?
	8 Conclusion
	References

	Tackling the Time-Defence: An Instruction Count Based Micro-architectural Side-Channel Attack on Block Ciphers
	1 Introduction
	2 Preliminaries
	2.1 AES Block Cipher
	2.2 Clefia Block Cipher
	2.3 Time Obfuscating Countermeasures
	2.4 Hardware Performance Counters
	2.5 Metrics of Evaluation

	3 Information Leakage Due the Event Instruction Count
	3.1 Correlation of Cache Events to Instruction Counts
	3.2 Profiling the Instruction Counts
	3.3 Analyzing Load/Store Instruction Counts

	4 Instruction Profiling Attack Description
	4.1 Instruction Count Analysis for AES
	4.2 Description of IPA

	5 Results and Discussion
	5.1 Performance Evaluation of IPA in Comparision to Classical Timing Attack
	5.2 Performance of Timing Attack in Presence of Time Obfuscation
	5.3 Performance of IPA in Presence of Timewarp
	5.4 Success Rate of the Proposed IPA

	6 Practicality of the Proposed Attack
	7 Conclusion
	References

	Hey Doc, Is This Normal?: Exploring Android Permissions in the Post Marshmallow Era
	1 Introduction
	2 Related Work
	3 The New Permission Model
	4 Drawbacks of the New Model
	4.1 Privilege Escalation via Intents
	4.2 Transparency and Lack of Control
	4.3 Access to External Resources
	4.4 API Version Security Issues
	4.5 User Profiling

	5 Remedies
	6 Conclusions
	References

	Efficient Software Implementation of Laddering Algorithms Over Binary Elliptic Curves
	1 Introduction
	2 Binary GLS Curves
	2.1 Formulae for Weierstraß Curves
	2.2 Formulae for Edwards Curves
	2.3 Formulae for Huff Curves

	3 Laddering Algorithms
	3.1 Montgomery Ladder
	3.2 Two-Dimensional DJB Ladder
	3.3 Two-Dimensional AK Ladder

	4 Experimental Results and Discussion 
	4.1 Laddering Steps
	4.2 Laddering Algorithms
	4.3 Discussion

	5 Conclusion
	References

	Analysis of Diagonal Constants in Salsa
	1 Introduction
	2 Specifications and Preliminaries
	2.1 Salsa
	2.2 ChaCha
	2.3 Differentials
	2.4 Hardware Setup

	3 Measure of Uniformity in Bias
	4 Experiments and Observations
	4.1 Experiments and Observations for ChaCha

	5 Conclusion
	References

	Practical Fault Attacks on Minalpher: How to Recover Key with Minimum Faults?
	1 Introduction
	1.1 Fault Attacks on AE Schemes
	1.2 Motivation of the Work
	1.3 Our Contribution
	1.4 Significance of the Work

	2 Preliminaries
	2.1 Minalpher Authenticated Encryption Mode
	2.2 Description of P
	2.3 Integrity Security Models
	2.4 Security Claims for Minalpher
	2.5 Symbols and Notations

	3 A Practical DFA with a Two Random Faults
	3.1 Make an Encryption Query and Two Fault Injected Encryption Queries
	3.2 Construct the Difference Propagation and the Difference Relations
	3.3 Form Three Sets of Equations to Filter Out Invalid I and K Candidates
	3.4 Forge a Valid Ciphertext-Tag Pair for Any Message and Associated Data Under the Same Nonce

	4 A Practical DFA with a Three Random Faults at a Single Nibble Position
	5 Conclusion
	A Appendix
	A.1 Backward Propagation of the Ciphertext Differences Along with the Keys
	A.2 Three Sets of Equations for the First Fault

	References

	eSPF: A Family of Format-Preserving Encryption Algorithms Using MDS Matrices
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 The Notations Used in the Paper
	2.2 Specification

	3 The eSPF Construction
	3.1 The Round Transformations
	3.2 Discarding Algorithm DA()

	4 eSPF for Digits
	4.1 The S-Box
	4.2 The ShiftRows
	4.3 The Permutation
	4.4 Key Addition
	4.5 Tweak Addition
	4.6 Key Schedule

	5 Security Analysis
	5.1 Differential and Linear Cryptanalysis
	5.2 Square Attack
	5.3 Impossible Differential Cryptanalysis
	5.4 Key Related Attacks
	5.5 Related Tweak Attack

	6 Performance
	6.1 Implementation
	6.2 Performance of eSPF1010 Compared to FFX with Radix 10

	7 Conclusion
	References

	Similarity Based Interactive Private Information Retrieval
	1 Introduction
	1.1 Key Contributions

	2 Prior Art
	3 Preliminaries
	3.1 Homomorphic Encryption (HE)
	3.2 Encryption Switching Protocols (ESP)
	3.3 Secret Sharing Schemes

	4 Private Differential Cosine Similarity
	4.1 Term Frequency (tf) and Inverse Document Frequency (idf)
	4.2 Similarity
	4.3 Private Differential Cosine Similarity

	5 Similarity Based Private Information Retrieval (SIMPIR)
	5.1 Definition
	5.2 Properties

	6 Computational Similarity PIR (C-SIMPIR)
	6.1 Basic Protocol
	6.2 Analysis
	6.3 Advanced Protocol
	6.4 Analysis

	7 Information Theoretic Similarity PIR (IT-SIMPIR)
	7.1 Basic Protocol
	7.2 Advanced Protocol

	8 Limitations and Future Work
	9 Conclusions
	A  Computational - SIMPIR
	B  Information Theoretic - SIMPIR
	References

	A Secure and Efficient Implementation of the Quotient Digital Signature Algorithm (qDSA)
	1 Introduction
	2 The Quotient Digital Signature Algorithm
	2.1 Arithmetic of Montgomery Curves
	2.2 Instantiating qDSA with Montgomery Curves
	2.3 Digital Signature Operations

	3 Accelerating Fixed-Point Multiplications
	3.1 A Fixed-Point Multiplication Algorithm with Non-secret Indexes
	3.2 Circumventing the Use of Low-Order Points

	4 A New qDSA Signature Verification Method
	4.1 Unequivocal Techniques for Signature Verification
	4.2 Trade-Off Analysis of Our Signature Verification Method

	5 Performance Results and Comparisons
	5.1 Performance of Prime Field Arithmetic
	5.2 Performance of Our Optimized Implementation of qDSA

	6 Closing Remarks
	References

	Variable-Length Bit Mapping and Error-Correcting Codes for Higher-Order Alphabet PUFs
	1 Introduction
	1.1 Contributions
	1.2 Organization
	1.3 Notation

	2 State of the Art
	2.1 Quantization Schemes and Bit Mappings
	2.2 Error-Correcting Codes for PUFs

	3 Preliminaries
	3.1 Insertion/Deletion Errors and Levenshtein Distance
	3.2 VT Codes for Insertion/Deletion Error Correction

	4 Variable-Length Bit Mapping and New VT-Like Code
	4.1 Variable-Length Bit Mapping for Equidistant Quantization
	4.2 Systematic VT-Like Code Construction for PUFs
	4.3 Helper Data
	4.4 Toy Size Example

	5 Evaluation
	5.1 Reliability
	5.2 Information Leakage Caused by ECC
	5.3 Comparison of Fuzzy Commitment and VT-Like Codes

	6 Conclusion
	References

	Mutual Friend Attack Prevention in Social Network Data Publishing
	1 Introduction
	1.1 Privacy Preserving Data Publishing
	1.2 Mutual Friend Attack
	1.3 Motivation

	2 Background and Related Work
	2.1 Preliminaries
	2.2 Literature Survey

	3 Proposed Work
	3.1 Mutual Friend Sequence Partition
	3.2 k-NMF Based Edge Anonymization

	4 Experimental Results
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Experimental Evaluation
	4.4 Comparison with Existing Approach

	5 Conclusion
	References

	Short Integrated PKE+PEKS in Standard Model
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Outline of the Paper

	2 Preliminaries
	2.1 Notations
	2.2 Bilinear Maps
	2.3 Symmetric eXternal Diffie-Hellman (SXDH) Assumption

	3 Integrated PKE and PEKS Scheme (PKE+PEKS)
	3.1 Formal Definition of PKE+PEKS
	3.2 Security Model for PKE+PEKS

	4 Proposed Scheme
	4.1 Correctness of the Proposed Scheme

	5 Security Proof
	6 Efficiency Analysis
	7 Conclusion
	References

	Differential Fault Attack on Grain v1, ACORN v3 and Lizard
	1 Introduction
	1.1 Our Contribution
	1.2 Paper Organisation

	2 Proposed Outline of DFA
	3 Identifying Fault Locations
	3.1 Estimated Complexity to Find the Correct Set of Faults

	4 Deducing the State Variables and Secret Key
	4.1 Optimizing SAT Solver for Grain v1
	4.2 Optimizing SAT Solver for ACORN v3
	4.3 Optimizing SAT Solver for Lizard
	4.4 Summary of Comparison

	5 Conclusion
	References

	Certain Observations on ACORN v3 and the Implications to TMDTO Attacks
	1 Introduction
	1.1 Description of ACORN v3

	2 Methods to Recover Certain Bits of the State
	2.1 Using SAT Solver
	2.2 Formation of Equations by Observation, not Using SAT Solver

	3 Complexity of TMDTO Attack
	3.1 Knowledge of 47 Bits of State from 47 Key Stream Bits
	3.2 Knowledge of 53 Bits of State from 60 Key Stream Bits
	3.3 Knowledge of 49 Bits of State from 49 Key Stream Bits and Fixing 10 State Bits

	4 Conclusion
	References

	Efficient Implementation of Private License Plate Matching Protocols
	1 Introduction
	2 Existing Protocols
	2.1 Scenario 1
	2.2 Scenario 2
	2.3 Scenario 3

	3 Countering Malicious Adversaries
	4 Performance Improvements
	4.1 Scheme 1
	4.2 Scheme 3
	4.3 Optimised Scheme 3
	4.4 Optimised Scheme 1

	5 Experiment Setup
	5.1 Test Database
	5.2 Parameters

	6 Implementation and Results
	6.1 Comparison of Run-Times

	7 Conclusions and Future Work
	References

	Author Index



