
Solving Everyday Challenges
in a Computational Way of Thinking

Bernhard Standl(B)

Institute of Software Technology and Interactive Systems, TU Wien,
Vienna, Austria

bernhard.standl@ifs.tuwien.ac.at

Abstract. Over a decade, computational thinking (CT) has been in
the focus of educators and researchers in computer science. During this
period of time, the term has been developed in different ways, reaching
from a fundamental idea for finding a definition what problem-solving
in computer science is about to a very particular view that CT is a
required skill to code software applications. This paper presents results
of the Fulbright project coThink - Computational Thinking carried out at
the Missouri State University in Springfield, MO, USA which was based
on the research question: How can CT be utilized with computer science
algorithms for challenging real-life situations? As a result of a literature
review, a CT five-step problem-solving process aimed at improving stu-
dents’ awareness to handle everyday life situations was identified. It was
further integrated in classroom lessons, where it was applied at four stu-
dent groups and evaluated mixing qualitative (analysis of worksheets)
and quantitative methods (questionnaire) at a sample size of n = 75.
Results showed that students frequently discovered a good approxima-
tion to solve real-life challenges following computer science algorithms
but we also came to the conclusion to revise our problem-solving process.

Keywords: Computational-thinking · Problem-solving · Classroom
research

1 Introduction

Seymour Papert initially introduced the term computational thinking (CT ) in
programming computers with LOGO for K-12 in 1980 in his book Mindstorms
[11], but with problem-solving in mathematics in his mind. On the other hand
Papert’s problem-solving processes were influenced by Poyla’s work from the
1950 s in How to solve it [12] who described how mathematical problems can
be systematically approached and solved by students. The current movement in
CT was initiated when Wing introduced the term again in 2006 [17]. Despite
some similarities between Wing’s and Papert’s definition, Wing emphasized on
problem-solving and Papert focussed on using CT to forge ideas [11]. Still, both
didn’t necessarily involve a computer in the process [6,9]. Considering this, we
c© Springer International Publishing AG 2017
V. Dagiene and A. Hellas (Eds.): ISSEP 2017, LNCS 10696, pp. 180–191, 2017.
https://doi.org/10.1007/978-3-319-71483-7_15



Solving Everyday Challenges in a Computational Way of Thinking 181

identified in recent literature, CT is for the most part either understood as
umbrella term for learning coding concepts as e.g. loops, variables, recursions or
as a term describing a problem-solving approach as used in computer science.
Just as Nickerson et al. argued in [10]: Definitions of CT vary, there is, however,
only little consensus in a definition for CT and so far a common understanding
can only be identified in Wing’s view [19]: CT is the thought processes involved in
formulating problems and their solutions so that the solutions are represented in a
form that can be effectively carried out by an information-processing agent. Barr
and Stephenson argued in [2] referring to Wing [17], that CT includes seeking
algorithmic approaches. This underlines that algorithmic thinking is part of CT
and a term for composing different approaches, techniques, and systematics used
in computer science for solving problems. Considering Lee, who argued in [8] that
algorithmic thinking is a part of CT and further Barr, where CT is defined as
the seeking algorithmic approaches to problem domains [2] in this paper we are
focusing on the algorithmic part of CT. Even if the term CT is popular these
days, so broad and deep it has been developed in history over decades. However,
Tedre and Denning further described in [14] that some CT strategies can be
applied also in different contexts, but they also claim, that such transfer has
never been substantiated. Taking Yadav’s thought, that CT can be integrated for
everyday life challenges into account [21], this paper introduces an approach for
combining computer science algorithms with real-life applications (as e.g. finding
the shortest path to the school) within the theoretical framework of CT aimed
at increasing the students’ algorithmic problem-solving awareness by addressing
these questions: What is a suitable step-by-step computational-thinking problem-
solving process for finding algorithms in real-life applications? How can such
process put in practice classroom teaching at high-school? The paper is structured
as follows: First we are discussing related literature and propose a framework for
a CT problem-solving processes for real-life applications, then we are presenting
the integration of the process in classroom practice followed by an evaluation in
practice and close with a conclusion and an outlook for further work.

2 Background

2.1 Algorithms for Everyday Life Applications

Algorithms in computer science have been developed for computers but they also
can address human questions of everyday life. Our motivation for finding real-
life applications is based on Wing’s point of view, that techniques of computer
science can support solving problems in other areas of life [17] where students
identify learning as more authentic and has a strong relation to their own life.
A further reason for connecting algorithms to human living was also, that this
approach allows students to focus on the process of problem-solving beyond
coding in a programming language. Inspired by popular ideas by Christian and
Griffiths in Algorithms to Live By in [4] and scientifically confirmed in Algorithms
Unplugged by Vöcking et al. [15] we selected five algorithms for an application



182 B. Standl

in classroom practice: binary search, bin packing, minimal spanning tree, topo-
logical sort, and shortest path. Supposing, that the algorithms itself are known
to the reader of this paper, we are presenting here the algorithms with only
a brief description of the idea for an application with everyday life problems:
Binary Search: When searching a CD or a book among many in a shelf, stu-
dents develop a search strategy to find the item quickly. This leads to search
algorithms and to the binary search algorithm in particular. Bin Packing: By
asking how moving boxes can be filled up effectively with things from closets and
shelves, students should find out strategies to master this systematically. The
algorithms Next Fit and First Fit will describe the solution in computer science.
Minimal Spanning Tree: The challenge is to connect seven islands with each
other in building bridges. The distance between each bridge is known. Students
have to find out the shortest possible connection to each island connecting the
mainland. Solutions will lead to Prim’s and Kruskal’s algorithm. Topological
Sort: Students write down a to-do list for a day and try to bring this list into
order. By doing this, dependencies and preconditions will lead to the aimed
algorithm for topological sorting that is used at finding one possible topological
order. Shortest Path: Students work on a street map and try to identify the
shortest path from home to school. The idea of selecting these algorithms was,
to show in examples that solutions from complex problems in computer science
can be easily transferred to challenge real-life situations as well.

2.2 Our View on Computational Thinking

Beyond all differences in definitions for CT, we identified across almost all con-
tributions, that CT is about an approach for problem-solving in a way, that is
used in computer science identified as algorithm. Wing already has stated in her
refined definition of CT in [18], that CT is an approach for solving problems
that draws on concepts fundamental to computing. Further, Aho described in
[1] that the term CT includes algorithm-design and problem-solving techniques
that can be used to solve common problems arising in computing. This is similar
to Wolfram Math World’s definition of the term algorithm itself as a specific set
of instructions for carrying out a procedure or solving a problem. The question
arises, if there is an additional value in introducing CT or if CT is just a vague
and fashionable term paraphrasing procedures already included in the term algo-
rithm? In fact, narrowing the term CT to designing algorithms would be off its
underlying idea. Selby et al. explained for instance in [13] CT should include
the ability to think in abstractions, in terms of decomposition, algorithmically,
in terms of evaluation, and the ability to think in generalizations. Moreover, Xu
et al. described in [20] CT as a universal, not limited to computers, fundamen-
tal, not only for experts, provides mental tools for thinking processes, has rich
contents and is connected to any concept of computer science, and poses deep
scientific problems in providing a framework to ask meaningful scientific ques-
tions. As Yadav et. al. reminded in [21,22] that Wing’s initial paper [17] points
out that CT involves three key elements Algorithms, Abstraction, and Automa-
tion, the term CT has been grown since then to a variety of interpretations. For



Solving Everyday Challenges in a Computational Way of Thinking 183

Lee et al. [8] CT involves defining, understanding, and abstraction. Barr et al.
suggested in [2] CT involves the design of solutions, implementation of designs,
testing, running analysing, reflecting, abstraction, creativity, and group problem
solving. Grover and Pea [7] stated that CT should include among others abstrac-
tion, information processing, structured problem-solving decomposition as mod-
ularization, iterative recursive thinking, and efficiency. Again, for Lee et al. [8]
CT involves defining, understanding, and solving problems, reasoning at multiple
levels of abstraction, understanding and applying automation, and analysing the
appropriateness of the abstractions made. In reference to Voogt et al. [16] who
suggest, that ...we should not try to give an ultimate definition of CT, but rather
try to find similarities and relationships in the discussions about CT, outcomes of
our literature review resulted in a problem-solving approach which goes beyond
the skills computer literacy and understanding technology and underlines the
need for developing CT skills [5]. Beyond the actual problem-solving process,
Barr et al. suggested in [2] also a collection of dispositions a problem-solver
should hold, which will be included in our process bellow. Those are confidence,
persistence, handle ambiguity, deal with open-ended problems and communica-
tion skills in team-work. From teaching practice experiences, we know that the
teacher’s awareness of such dispositions at the students can be crucial for the
success of learning and added them as additional part of the process.

2.3 Problem-Solving Approach for Real-Life Challenges

The goal of our CT problem-solving process is, to improve the students’ aware-
ness to be able to take advantage of CT problem-solving techniques to solve real-
life problems. Therefore, we suggest an arranged step-by-step process for solving
a problem. The process includes besides elements as abstraction, decomposition,
and design of algorithm also understanding the problem at the beginning of the
process and testing the solution at the end of it. 1: Understand the problem
as whole and restate the problem to unveil new perspectives to support the solu-
tion process. Also, state clearly what should be achieved with the solution. This
part derives from Papert’s initial ideas on CT [11], referencing to Poyla’s first
problem-solving step First, you have to understand the problem in How to solve
it [12]. 2: Abstract a problem in a way that helps to solve it. If we had to
keep all the details in our heads, we could never get anything done. As we have
described above, abstraction is mentioned as a keystone of CT and Grover et
al. identified it as a core element, which differs CT from other types of thinking
[7]. 3: Decompose the problem to break a hard problem up into smaller, easier
ones. Decomposition involves finding structure in the problem and determining
how the various components will fit together in the final solution. Doing decom-
position well makes it easier to modify the solution later by changing individual
components, and also enables the reuse of components in solutions to other prob-
lems. This was already suggested by Wing in [17] as modularizing a problem to
make it tractable. We see the parts decomposing and abstraction are key steps
for preparing the actual problem-solving process. Abstraction is a step, where
parts found will be removed or reduced in its representation and decomposing is



184 B. Standl

a process, where the remaining parts will be separated and clustered. 4: Design
an algorithm to develop the step-by-step instructions for solving the problem.
Start from what already is known and work outward from there. Make a plan
how to approach to solve the problem. Selby et al. [13] relate to Wing [17] and
further describe this process as a heuristic reasoning to devise a solution. 5: Test
the algorithm whether a solution meets the criteria as testing and debugging as
used in software development and in the context of CT suggested by Brennan et
al. in [3] to smoothen not working parts of the solution. This process has been
planned by us so that it can be carried out in a linear fashion step by step for
solving the problem. As mentioned above, we enhanced this five-step problem-
solving approach, with these dispositions, as it was suggested by Barr et al. in
[2]: Confidence in dealing with complexity, Persistence in working with diffi-
cult problems, Tolerance for ambiguity, The ability to deal with open ended
problems, The ability to communicate and work with others to achieve a
common goal or solution. Taking this approach for a CT problem solving app-
roach into account, in the next section we will describe, how we integrated it
into classroom practice.

3 Method

In order to proof the concept, we carried out our interventions at two high-
schools with two classes each. The participants (n = 75) were students between
the ages of 15 and 17 from four different high-school classes at two differ-
ent schools (Greenwood Laboratory School and Willard High School located
in Springfield, MO, USA). As the access to high school classes was limited
to 2× 2 h, we designed our lessons with a strong emphasis on your five-step
problem-solving approach. Our goal was to find out, if everyday life problems
can be approached systematically using techniques from computational think-
ing. Therefore, we planned four lessons on two days with the overall intention
to let students find a solution to a problem heuristically followed by a reflec-
tion compared to the actual algorithm of computer-science. Students not only
practiced their problem-solving competencies but also learned how computer sci-
ence concepts can be useful and meaningful for their own life. We accompanied
the classroom activities with mixed methods using a pre-/post-questionnaire
and an analysis of the students’ work sheets. Even though, both schools offer
computer science classes with instruction on using a computer and standard
software, students of both schools received no prior computer science education
with a focus on computational algorithmic thinking on a regular basis. Hence,
we presumed that all participating students had similar pre-experiences with
algorithmic problem-solving processes. Due to this fact, we identified all stu-
dents across both schools as one entity for analysing the data. It should also be
mentioned that we did not include any control groups for organizational reasons
and because of the research design, which was primarily aimed at evaluating
our problem-solving concept. We carried out two separate lessons (2 h each) on
two different days with each of the four student groups at two schools, the first



Solving Everyday Challenges in a Computational Way of Thinking 185

lesson introduced CT and our problem-solving approach and in the second les-
son students worked on problems individually and in groups collaboratively. In
order to provide students a guideline through the problem-solving process, our
worksheets were distributed with a clear description of the problem and a path
through the process which was the same as stated above from understanding the
problem for generalizing the solution.

3.1 Instruments

We designed two research instruments for evaluating our problem-solving
process: in order to track the students’ problem-solving strategies, we designed
worksheets. The worksheets had five sections, divided into the five-step problem
solving process. In Fig. 1, the first two pages of a worksheet to bin-packing are
depicted. The front page describes the problem to the student and recalls the
five-step problem-solving process and the supportive attitudes in the column on
left hand side. On the right-hand side, an exemplary part of the work-sheets
shows, that students also had to sketch for each problem-solving step their ideas
as mentioned above: describe the problem, abstract the problem, decompose
the problem, Design the algorithm, test the solution. In order to identify differ-
ences in students attitudes towards problem-solving we distributed pre-/post-
questionnaire. The questionnaire included 20 items, where each of Barr’s dis-
positions [2] has been assigned to four questions using a Likert-Scale from 1
‘strongly disagree’ to 6 ‘strongly agree’.

Fig. 1. Worksheet for the task “Pack your moving boxes”



186 B. Standl

3.2 Analysis

The analysis of the worksheets was a process of interpretation, where we eval-
uated our linear approach of solving the problem in going through each of the
five problem-solving steps. We checked in which parts of the worksheets students
were accepted as useful during the problem-solving process by reading through
the worksheets and identified, which parts were not edited by the students where
it was difficult for students to use it for the problem-solving process. The analy-
sis of the questionnaire was carried out with descriptive statistics and statistical
significance tests.

3.3 Classroom Lessons

The lesson plan in Fig. 2 gives an overview on the classroom intervention of day
one and is based on findings of our literature research and includes all five steps
from understanding the problem to generalizing the solution.

Fig. 2. Lesson plan day 1 and 2

We started with an introductory lecture about problem-solving, CT and algo-
rithms. Next the teacher approached a solution together with the whole student
group for the shortest path problem by going through the five-step problem solv-
ing approach introduced above. Next, each student solved the example with the
minimal spanning tree and shared the solution at the end of the hour together
with others in group-work. It is important to note, that the students’ attitudes
required for a beneficial problem-solving process were mentioned explicitly by
the teacher, who facilitated also the group-work for promoting the students’
awareness for it. On the second day, the teacher first summarized insights from



Solving Everyday Challenges in a Computational Way of Thinking 187

the first lesson and gave a lecture on some approaches, how computer scientists
try to solve problems. This included basic sorting algorithms as well as general
strategies as divide-and-conquer. Students subsequently worked in groups on
more difficult problems as binary search, bin packing and the topological search
as described above. Finally, group-work was followed with group presentations
which included a discussion on connecting solutions with the real algorithms
from computer science.

Example of application: In order to underline how our CT problem-solving
process works for real-life challenges in detail, we give here an example based on
the worksheet as depicted above. To each problem-solving section, we describe a
possible student’s answer which is based on Vocking et al. [15]. Pack your mov-
ing boxes: How can I pack moving boxes effectively? Possible solution of a
student: By going through the problem-solving process, the students systemat-
ically approach the solution to the problem (very short version): Describe the
problem: The challenge is to place my items into moving boxes in the most
efficient way. Abstract the problem: To make it easier, I reduce the items
to a geometrical representation that each part is described as block. So, a ball
becomes for example a block with a edge length of its diameter. Decompose
the problem: I have moving boxes with a certain size and items with different
sizes and forms. Design the algorithm: First I tried different approaches in
practice and extracted a general solution: 1. Sort the items by size, 2. Take the
next available biggest item. 3. If the items fit into the box: Place the item into the
box. Else: Open the next box. 4. Go to step 2. Test the solution: I organized a
small shoe-box and some items and I evaluated my solution. It turned out, that
my solution is not perfect yet as I need to many moving boxes. This example
demonstrated, how the problem-solving process can be integrated for finding a
solution to a problem from a real-life context by using a CT problem-solving
approach leading to an algorithmic solution.

4 Results

4.1 Worksheet: Problem-Solving Process

Results showed, that students were successful in developing an approach to solu-
tions for the problems. But they also experienced sometimes difficulties in dealing
with the five-step process of solving a problem and were not always sure how
each of the steps relates to the problem-solving process. For example, students
were more engaged in describing the problem and designing the solution but
they had difficulties to fill the worksheets for abstracting the problem, decom-
posing it and evaluating the solution separately. We found out, that the process
of describing the problem already covered parts of the abstraction process. As in
Fig. 3 it is shown, students have used different ways to solve the problem, some
graphical, some using text. For instance, when students described the problem
using their own words, some kind of abstraction has already taken place by most
of the students. Next, the part of decomposing the problem in smaller parts apart



188 B. Standl

from problem-solving was experienced as difficult and was rarely edited. Most of
the time, decomposition was integrated into the design process or the evaluation
process. These outcomes suggested us to reorder and reduce our problem-solving
process at the worksheets in future to three steps: 1. Describe, decompose
and abstract the problem, 2. Design the algorithm, and 3. Test the
solution.

Fig. 3. Snippets of filled student worksheets

4.2 Questionnaire: Students’ Problem-Solving Attitudes

Even though, the structure of the worksheets was challenging for students, our
intervention still had some impact on students’ attitudes towards computational
problem solving as the pre-/post-questionnaires suggest. The results of the ques-
tionnaires showed some differences at certain items, where some of them even
differed statistically significant. The items of the diagram below can be clustered
in four sections, where each cluster represents a field of dispositions a problem-
solver should hold as defined above. These are 1–4: Confidence in dealing with
complexity, 5–8 Persistence in working with difficult problems, 9–12: Tolerance
for ambiguity, 13–16: The ability to deal with open ended problems, 17–20:
The ability to communicate and work with others to achieve a common goal or
solution. The questionnaire was identified as reliable as all two of the measures
evidenced a good reliability as Cronbach’s alpha ranged from 0.82 for the pre-
test and 0.85 for post-test. As the results in Table 1 show, confidence (items 1–4)
increased and item 1: “I feel anxious when I have to solve this kind of difficult
problems.” had also a significant difference in the pre-test scores (M = 3.55, SD
= 1.51) and post-test scores (M = 4.20, SD = 1.26); t(140) = −2.77, p = 0.006.
Furthermore we identified a significant difference in the pre-test scores (M =
3.55, SD = 1.42) and post-test scores (M = 4.20, SD = 1.12) at item 4: “I feel



Solving Everyday Challenges in a Computational Way of Thinking 189

Table 1. Aspects from students’ attitudes towards problem solving. Scales from 1
‘strongly disagree’ to 6 ‘strongly agree’ (n = 75)

Item ∅ pre ∅ post

1 I feel anxious when I have to solve this kind of difficult problems 2.78 2.00

2 I doubt that I could solve this complex problem 2.26 1.73

3 I like to solve challenging problems like this one 3.74 3.55

4 I feel confident in solving this kind of difficult problems 3.70 3.91

5 If I could not solve this problem quickly, I would give up 2.30 2.18

6 I feel impatient when I’m working on this kind of challenging problems 2.87 3.09

7 When a problem like this challenges me, I am keen to solve it 4.17 4.09

8 I would work on this problem until I have found a solution 4.39 3.73

9 I rather prefer to work on problems where the solution is already obvious 3.04 3.09

10 There is possibly only one way to solve this problem 2.70 1.91

11 There are many roads that lead to the solution 4.13 4.64

12 This problem may has more than one solution 4.61 4.73

13 There exists a solution to this problem 5.04 5.55

14 I would be confused, if I wouldn’t find a clear solution with this problem 3.78 3.82

15 There can be different approaches to solve this problem 4.78 5.00

16 The solution to this problem can look different from what I have expected 4.43 4.82

17 I don‘t think that someone could help me to solve this problem 2.13 2.27

18 If too many people are involved in solving this problem, it will not be done well 3.43 3.95

19 Teamwork is the key to solve this problem effectively 3.78 3.93

20 A solution to this problem could be better found together 4.26 3.27

confident in solving this kind of difficult problems.”, conditions; t(140) = −3.00,
p = 0.003. Items in the second cluster of persistence in the problem-solving
process (items 5–8) decreased. The third cluster tolerance for ambiguity (items
9–12) increased and there was a significant difference in the pre-test scores (M
= 4.06, SD = 1.14) and post-test scores (M = 4.74, SD = 0.89) at item 10:
“There is possibly only one way to solve this problem.”, conditions; t(140) =
−3.59, p = 0.001. The fourth cluster on the ability to deal with open ended
problems (items 13–16) increased and there was a significant difference in the
pre-test scores (M = 4.94, SD = 1.51) and post-test scores (M = 5.34, SD = 1.26)
at the variable “There exists a solution to this problem.”, conditions; t(140) =
−2.32, p = 0.022. The fifth cluster on teamwork (items 17–20) is inconsistent in
terms of that students think that the solution to a problem can be found better
together (item 20) but at the same time state that too many people involved in
problem solving will have a negative impact (item 17). In a nutshell, results of
the questionnaires suggest that students reduced their anxiety in solving diffi-
cult problems and increased their confidence. We further conclude, that students
developed their understanding for the possibility of multiple solutions.

5 Discussion

This paper presented results of the project coThink - Computational Thinking
which was aimed at identifying an approach for a step-by-step CT problem-
solving process for real-life applications. The underlying idea was to break



190 B. Standl

problem-solving techniques known from computer science down to support stu-
dents’ awareness for handling real-life challenges. Based on literature research
a five-step CT problem-solving approach emerged which was enhanced with
dispositions a problem-solver should hold as suggested by Barr et al. in [2].
We designed lessons and material which integrated our ideas and concepts and
applied it in practice at four student groups at two different schools. First expe-
riences showed, that students were keen to develop solutions for problems in a
real-life context and their approach mostly approximates an algorithmic descrip-
tion or even sometimes an existing algorithm of computer science. Results of the
questionnaires evaluating students’ attitudes for problem-solving showed, that
our intervention had some positive impact, even if it is likely that students didn’t
adopt their dispositions but rather had an increased awareness which disposi-
tions are required for CT problem-solving. Further work will also include the
refinement of new worksheets, the specification of further algorithmic real-life
examples and its application in classrooms. It turned out, that students had
problems filling all sections of the worksheets and finding a description for each
of the five problem-solving steps was perceived as confusing. In fact, only the
sections Understand the problem and Design the solution were accepted and
helpful in the process. Some of the students described their solution, which
was supposed to part of section Abstract the problem, as part of Describe the
problem. As a consequence, we further redesigned the worksheets and combined
fields which will lead to three sections of the worksheets, as described above (1.
Describe, abstract and decompose the problem - 2. Design the algorithm - 3.
Test the solution) In essence, we reduced the five-step problem-solving approach
to three steps in order to simplify the process for students to: understand - solve
- analyse. In the future, we will continue refining the teaching material and the
research setting for a more detailed analysis focusing more on the actual stu-
dents’ problem-solving process by adding for instance think-aloud interviews as
research instrument to gain more detailed insights how our approach has impact
on CT problem-solving process.

Acknowledgments. This research was supported by the Fulbright Visiting Scholar
Program Austria sponsored by the U.S. Department of State. I would like to thank the
Fulbright Office in Vienna, the Council for International Exchange of Scholars (CIES)
and the Institute of International Education (IIE). I thank my colleagues at Missouri
State University in Springfield, MO, USA who provided assistance in facilitating the
research project. I would also thank the school authorities and teachers at Greenwood
Laboratory School and Willard High School for support and assistance in organization
of classroom lessons and in submitting the IRB proposal.

References

1. Aho, A.V.: Computation and computational thinking. Comput. J. 55(7), 832–835
(2012)

2. Barr, V., Stephenson, C.: Bringing computational thinking to K-12. ACM Inroads
2(1), 48 (2011)



Solving Everyday Challenges in a Computational Way of Thinking 191

3. Brennan, K., Resnick, M.: New frameworks for studying and assessing the devel-
opment of computational thinking, pp. 1–25 (2012)

4. Christian, B., Griffiths, T.: Algorithms to Live by: The Computer Science of Human
Decisions. Henry Holt and Co., New York (2016)

5. Dagiene, V., Futschek, G.: Bebras, a contest to motivate students to study com-
puter science and develop computational thinking. In: Proceedings of WCCE, pp.
139–141 (2013)

6. Dagienė, V., Sentance, S.: It’s computational thinking! Bebras tasks in the cur-
riculum. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 28–39.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46747-4 3

7. Grover, S., Pea, R.: Computational thinking in K12 a review of the state of the
field. Educ. Researcher 42(1), 38–43 (2013)

8. Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith,
J., Werner, L.: Computational thinking for youth in practice. ACM Inroads 2(1),
32 (2011)

9. Mannila, L., Dagiene, V., Mirolo, C., Settle, A.: Computational thinking in K-9
education, pp. 1–29 (2014)

10. Nickerson, H., Brand, C., Repenning, A.: Grounding computational thinking skill
acquisition through contextualized instruction. In: Proceedings of ICER 2015, pp.
207–216 (2015)

11. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
Cambridge (1980)

12. Polya, G.: How to Solve It, 2nd edn. Penguin Books Ltd., London (1957)
13. Selby, C.C., Woollard, J.: Computational thinking: the developing definition, pp.

5–8 (2013)
14. Tedre, M., Denning, P.J.: The long quest for computational thinking. In: Koli

Calling Conference on Computing Education Research, pp. 120–129 (2016)
15. Vöcking, B., Alt, H., Dietzfelbinger, M., Reischuk, R., Scheideler, C., Vollmer, H.,

Wagner, D. (eds.): Algorithms Unplugged. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15328-0

16. Voogt, J., Fisser, P., Good, J., et al.: Computational thinking in compulsory edu-
cation: Towards an agenda for research and practice. Educ. Inform. Technol. 20,
715–728 (2015). https://doi.org/10.1007/s10639-015-9412-6

17. Wing, J.M.: Computational thinking. Comm. ACM 49(3), 33 (2006)
18. Wing, J.M.: Computational thinking and thinking about computing. Philos. Trans.

Ser. A Math. Phys. Eng. Sci. 366(1881), 3717–3725 (2008)
19. Wing, J.M.: Computational Thinking: What and Why? The Link - The Magazine

of the Carnegie Mellon University School of Computer Science (2011)
20. Xu, Z.W., Tu, D.D.: Three new concepts of future computer science. J. Comput.

Sci. Technol. 26(4), 616–624 (2011)
21. Yadav, A., Hong, H., Stephenson, C.: Computational thinking for all: pedagog-

ical approaches to embedding 21st century problem solving in K-12 classrooms.
TechTrends, 1–4 (2016)

22. Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., Korb, J.T.: Introducing compu-
tational thinking in education courses. In: Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, pp. 465–470. ACM (2011)

https://doi.org/10.1007/978-3-319-46747-4_3
https://doi.org/10.1007/978-3-642-15328-0
https://doi.org/10.1007/978-3-642-15328-0
https://doi.org/10.1007/s10639-015-9412-6

	Solving Everyday Challenges in a Computational Way of Thinking
	1 Introduction
	2 Background
	2.1 Algorithms for Everyday Life Applications
	2.2 Our View on Computational Thinking
	2.3 Problem-Solving Approach for Real-Life Challenges

	3 Method
	3.1 Instruments
	3.2 Analysis
	3.3 Classroom Lessons

	4 Results
	4.1 Worksheet: Problem-Solving Process
	4.2 Questionnaire: Students' Problem-Solving Attitudes

	5 Discussion
	References




