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Abstract Autonomous mobile robots show promising opportunities as concrete use

cases of location-based services. Such robots are able to perform various tasks in

buildings using a wide array of sensors to perceive their surroundings. A connected

area of research which forms the basis for a deeper understanding of these percep-

tions is the numerical representation of visual perception of space. Different struc-

tures in buildings like rooms, hallways and doorways form different, corresponding

patterns in these representations. Thanks to recent advances in the field of deep learn-

ing with neural networks, it now seems possible to explore the idea of automatically

learning these recurring structures using machine learning techniques. Combining

these topics will enable the creation of new and better location-based services which

have a deep awareness of their surroundings. This paper presents a framework to cre-

ate a data set containing 2D isovist measures calculated along geospatial trajectories

that traverse a 3D simulation environment. Furthermore, we show that these iso-

vist measures do reflect the recurring structures found in buildings and the recurring

patterns are encoded in a way that unsupervised machine learning is able to iden-

tify meaningful structures like rooms, hallways and doorways. These labeled data

sets can further be used for neural network based supervised learning. The mod-

els generated this way do generalize and are able to identify structures in different

environments.

1 Introduction

Location-based services form a very interdisciplinary field of research ranging from

Electrical Engineering over Computer Science to Social Science. Technological

progress, especially the increase in computational power and the miniaturization of

electronic devices and sensors, enabled the ideas of Ubiquitous Computing

A. Sedlmeier ⋅ S. Feld (✉)

Mobile and Distributed Systems Group, LMU Munich, Munich, Germany

e-mail: sebastian.feld@ifi.lmu.de

A. Sedlmeier

e-mail: andreas.sedlmeier@ifi.lmu.de

© Springer International Publishing AG 2018

P. Kiefer et al. (eds.), Progress in Location Based Services 2018, Lecture Notes

in Geoinformation and Cartography, https://doi.org/10.1007/978-3-319-71470-7_8

151



152 A. Sedlmeier and S. Feld

(Weiser et al. 1991) and Context Awareness (Dey and Abowd 1999; Chen and Kotz

2000), both of which lead to the integration of location-based services into the daily

life of many people. Built on this, mobile devices like smartphones or wearables con-

tain several sensors for measuring movement (accelerometer), brightness (camera),

volume (microphone), air pressure (barometer), position (GPS), and others. Thus,

location-based services are basically context-aware services that incorporate spatial

information (Küpper 2005).

Mobile robots can also be regarded to represent location-based services. Equipped

with sensors like laser scanners, optical cameras, or tactile sensors they perceive

and process their environment, resulting in the execution of simple tasks like the

transportation of packets in storehouses. Further examples of research are mobile

robots that lead tourist groups through an airport (Triebel et al. 2016) or serving as

an assistance in housekeeping and everyday tasks (Rashidi and Mihailidis 2013).

Due to recent advances in the fields of big data and machine learning, mobile robots

get increasingly autonomous. Recent research focuses on cooperation, competition,

and communication in order to solve more complicated tasks (Lowe et al. 2017;

Mordatch and Abbeel 2017).

A related field of study deals with the visual perception of space. Since the end of

the 1960s there are numerous empirical and experimental studies on the perception

of architectural space. An early example is the work of Hayward and Franklin, who

analyzed the influence of bordering elements like walls or trees on the perception of

openness (Hayward and Franklin 1974). Today, there are different theories and tools

to analyze spatial arrangements (Smith et al. 2007). The most basic term in this con-

text is Space Syntax, summarizing mostly the acquisition of topological structures

of an environment without geometric measurements (Hillier and Hanson 1984). A

further concept in this area called Isovist has been introduced in (Tandy 1967) and

describes the set of points in space that are visible from a specific vantage point.

Based on this idea there have been presented a formal definition of isovists together

with some analytical measures enabling a quantitative description of a spatial envi-

ronment (Benedikt 1979).

Even if every building is different, one can still observe structures that recur con-

stantly. Examples for such structural recurrences together with some semantics are

rooms (small enclosed areas, often rectangular), corridors (long areas connecting

rooms), or doorways (gaps in walls connecting rooms and corridors). Further exem-

plary structures are halls, staircases, or patios. The interesting part of such structures

is that every room, corridor, and the like looks different, but they contain similari-

ties that enable a (not necessarily distinct) recognition. Interestingly, this is a problem

area in which huge progress was made in the last few years thanks to the advances

in the field of deep learning with neural networks. Deep neural networks excel at the

recognition of recurring structures in large data sets and the inference of underlying

functions generating these structures.

The main idea of this paper is to investigate, whether the recurring structures

inside buildings also have recurring isovist measures and whether such numerical

features can be used to learn a model of such structures. Specifically this means

that we incorporate unsupervised machine learning techniques of visual perception
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features to label a dataset consisting of geospatial trajectories through floor plans.

This labeled dataset is utilized by supervised machine learning techniques to pre-

dict labels, thus structures, in unknown environments. The general use case of this

idea is to create advanced spatial context for location-based services. A more con-

crete use case would be the problem of Simultaneous Localization and Mapping
(SLAM), where a mobile robot has to build a map of its environment and estimate its

pose simultaneously (Leonard and Durrant-Whyte 1991). Using the idea presented

in this paper, a mobile robot would be able to independently learn a model of recur-

ring structures inside buildings like, for example, rooms, hallways, and doorways.

This model can then be reused in unknown buildings to recognize learned structures

straight away. Alternative use cases are the off-line analysis or annotation of floor

plans or the incorporation in computer games, such that non-player characters gain

an additional understanding of altering surroundings.

The contributions of this paper are twofold. First, we present a framework that is

able to automatically generate input data for learning a model of recurring structures

inside buildings based on floor plans. The framework builds on the game engine

Unity developed by Unity Technologies (Unity 2017) and uses the included naviga-

tion and route finding procedures to create a set of geospatial trajectories. Further-

more, our framework contains a custom isovist implementation in C# that is able to

calculate isovist measurements for each time step of the trajectories of the data set.

Second, we present a framework of machine learning techniques that can be used to

train a model of recurring structures inside floor plans and to recognize such struc-

tures in unknown floor plans. We built upon existing scientific computing libraries

written in the Python programming language (Pedregosa et al. 2011; Jones et al.

2001) as well as the open source neural network library Keras (Chollet 2015), which

in turn uses TensorFlow (Abadi et al. 2015), a low level machine learning library

developed by Google.

The remainder of this article is structured as follows: Sect. 2 describes the tech-

nical background for the further understanding of this paper together with related

work. Section 3 incorporates the methodology for generating isovist measures along

geospatial trajectories as well as the discovery, learning, and prediction of recurring

structures in floor plans. In Sect. 4 we present our experimental results and present

a detailed discussion. Section 5 concludes this paper.

2 Background and Related Work

This section contains the technical background for the further understanding of this

paper together with related work. First, techniques for the analysis of visual per-

ception as well as machine learning techniques are described. These are the main

ingredients for the automatic generation of a model of recurring structures inside

buildings. Furthermore, related work with respect to semantic annotation of floor

plans are illustrated.
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2.1 Analysis of Visual Perception

As already mentioned in Sect. 1, we utilize techniques that analyze the visual percep-

tion of space. There are numerous studies in the sector of cognitive psychology that

address the behavior of people in typical buildings like hospitals (Haq and Zimring

2003), malls (Dogu and Erkip 2000), or airports (Raubal 2002).

Isovist Analysis is a concrete technique of Space Syntax that is used in many cases.

As originally introduced in Tandy (1967) and more formally defined in Benedikt

(1979), an isovist is the set of points in space that is visible from a specific vantage

point.

The six isovist measures as defined in Benedikt (1979) are as follows:

1. Ax: the area describes the surface area of the isovist. The higher the value, the

more space is visible from the vantage point. At the same time, this means that

the vantage point can be observed from a large space.

2. Px: the real-surface perimeter describes the length of the isovist’s circumference

that lies on visible obstacle surfaces, for example walls.

3. Qx: the occlusivity describes the length of the isovist’s circumference that lies in

free space. With other words, these are the concealed radial borderlines that can

be imagined as rays passing an obstacle and traversing through free space.

4. M2,x: since the set of points in space that is visible from a specific vantage point

can be calculated using rays sent out radially from the vantage point (Benedikt

1979), the variance is the second central moment of the rays’ length.

5. M3,x: the skewness is the third central moment of the rays’ length.

6. Nx: the circularity is an isoperimetric quotient and evaluates the area against the

perimeter. Basically, this is a numerical value that describes how similar a figure

is in comparison to a circle. Circularity is calculated using Nx = |𝜕Vx|
2∕4𝜋Ax,

with |𝜕Vx| indicating the isovist’s perimeter.

Isovist fields are likewise described in Benedikt (1979) as the set of isovists along a

trajectory, or more complete, the set of isovists at all places of an investigated envi-

ronment. Since a human is moving through an environment in a continuous manner,

the isovist measures are also changing continuously. Thus, one can observe gradual

changes in the isovist measures. This is the underlying idea of our approach: we cal-

culate geospatial trajectories through floor plans, calculate isovist measures at every

time step and analyze both, the absolute as well as the delta values to previous steps.

Although the framework proposed in this paper uses a 3D environment, the agent

navigating through the building only walks on a 2D plane and thus creates 2D trajec-

tories and corresponding 2D isovist measures. Nevertheless, there is literature that

analyzes isovists in 3D space (Emo 2015).

The calculation of an isovist or rather the calculation of the isovist measures, as

described above, is constrained by the environment’s geometry and can potentially

get complicated, since all corner points of visible walls and objects have to be deter-

mined and connected. Feld et al. (2016) showed that at least area, variance, skew-
ness, and circularity can easily be approximated using a simple ray-scan algorithm.
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The authors’ motivation was to receive a preferably simple equivalent of isovist mea-

sures that can be applied on floor plans represented as occupancy grids via bitmaps.

White pixels stood for walkable free space, black pixels represented obstacles like

walls or other objects. Their experiments showed that there is a systematic error

regarding the approximated and exact isovist measures, however, they show a strong

correlation.

The ideas and solutions presented in this paper are using a similar ray-based

approach.

2.2 Machine Learning

Machine learning can basically be regarded as a generic term for the generation of

knowledge from experience. During a training phase a systems learns from examples

and is able to make generalizations afterwards. Exactly this behavior will be utilized

by the approach presented in this paper: we want to learn recurring structures inside

floor plans of buildings that are as generic as possible in order to reuse the gener-

ated model on new and unknown floor plans. As our approach uses isovist measures

for training, a necessary precondition is the assumption that recurring structures in

buildings also have recurring structures in their isovist measures.

Generally, machine learning can be divided into several categories. Unsuper-
vised learning methods use a set of unlabeled input data in order to infer a function

that describes the data’s inherent structure. In our case the input data consists of

a large set of isovist measures forming time series that have been calculated along

geospatial trajectories. As the input data is unlabeled, the algorithm has no explicit

target values to learn and instead tries to determine a function that reflects patterns

in the data.

A popular example of unsupervised learning is clustering, that is the automatic

segmentation of data into groups of “similar” observations. Partitioning clustering

techniques subdivide data into a predetermined number of k clusters. The assign-

ment of observations to clusters will be modified until a certain error function is

minimized. k-means is a widely used partitioning clustering technique (Lloyd 1982).

Density-based clustering techniques arrange objects into groups which are close to

each other, separated by areas with lower density. An example for such a technique is

DBSCAN (Ester et al. 1996). The algorithm has got two parameters: 𝜖 representing

the distance up to which two observations are reachable and minPts representing the

minimal number of reachable observations that make an observation a cluster point.

A supervised learning algorithm, by contrast, tries to infer a function based on

given pairs of input and corresponding known output labels. The idea is to train the

system in order to create associations. In our case the input data again consists of

a large set of time series of isovist measures calculated along geospatial trajecto-

ries. However, for each data point, there is a corresponding known ground truth, for

example: “at this point the agent resides inside a room” or “at this point the agent tra-

verses a doorway”. A popular use case of supervised learning, where a lot of progress
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has been made in the last years, is the automatic classification of images using deep

learning techniques with neural networks (Deng and yu et al. 2014). Given enough

input data and the right structure, neural networks are able to learn arbitrary func-

tions from labeled data sets. Using images of known classes, a model is trained that

infers a function determining class boundaries. Afterwards, one can use this model

to predict the classes of unknown images, or in other words: Observations that have

not been used during the training phase. In our case a model is trained on floor plans

where rooms, hallways, and doorways are known. Afterwards, this model can be

used on unlabeled floor plans where no such information is available.

2.3 Semantic Annotation of Floor Plans

Map representations of spatial environments are an essential foundation for most

location-based services. Even if the positioning of an object works without a map

representation, further benefit can only be created using a map. Examples are road

maps, touristic maps or floor plans of buildings.

Such map representations can include logical subdivisions. Road maps involve

country roads, highways, crossroads, turns and more. Buildings, for example, can

be subdivided into rooms, zones, units, and levels (Weber et al. 2010). Besides that,

there are semantic subdivisions like rooms, hallways, and doors. This is the focus of

the paper at hand.

There is extensive related work regarding semantic annotation of architectural

floor plans. Samet and Soffer (1994) perform automatic interpretation of floor plans

using statistical pattern recognition. Their work is distinct from ours as we do not

detect concrete objects like tables or bathtubs explicitly marked in architectural

plans. Ah-Soon and Tombre (1997) analyze architectural drawings using geometric

analysis, symbol recognition, and spatial analysis. Again, our approach is not geo-

metrical, but instead uses the numerical representation of visual perception. Dosch

et al. (2000) aim to reconstruct the building in 3D based on architectural drawings.

Using graphic recognition for image processing and feature extraction, the authors

are able to recognize graphic layers, text layers, thick and thin lines as well as marked

doorways, stair cases and more. Summarized, they try to identify marked semantics

and transform this into 3D. In contrast, we try to identify semantics that are not

explicitly marked. Lu et al. (2007) is a further work that tries to recognize typical

structural objects and architectural symbols. Our approach works on floor plans that

can be used by robots and not on architectural drawings. Weber et al. (2010) presents

a system where a user can draw schematic abstractions of floor plans. Afterwards,

the system searches for plans that are structurally similar. This is quite related to our

approach, since they also seek for semantic relations. However, our focus is not on

searching in databases, but on learning a model.

Further related work originates in the research field of mobile robots. What this

work has in common, is that the ideas can be used for the problem of Simultane-
ous Localization and Mapping (SLAM) (Leonard and Durrant-Whyte 1991). This
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means, an autonomous robot has to examine an unknown area and tries to create

a corresponding floor plan. Concurrently, the robot has to position itself. Thus, it

makes sense to enrich the map just created with semantic information. The basic

assumption is that the robot’s perception, in most cases laser range scans, con-

tains enough information about the environment. Basically, we indirectly follow this

approach as well, since we use isovist measures based on rays. Buschka and Saf-

fiotti (2002) describe a virtual sensor that can be used to detect rooms and to recog-

nize already visited rooms in order to create a topological map of the environment.

Our focus is wider than just detecting rooms, although we do not address topology.

Anguelov et al. (2004) present a probabilistic framework for detecting and mod-

eling doors. They use 2D laser range finders, but also panoramic cameras. Mozos

and Burgard (2006) and Mozos (2010) extract the topology of buildings from geo-

metric maps created by mobile robots using range data. The authors use supervised

learning techniques in order to subdivide all points of the map into semantic classes.

For this, they use the labels room, corridor, and hallway as the ground truth. This

approach is very similar to the one presented in this paper, but the authors work

only with supervised learning techniques and with different yet similar features.

Goerke and Braun (2009) is also a similar related work that semantically anno-

tates maps using laser range measurements of mobile robots. The authors follow

two basic approaches. First, they use supervised learning techniques with the labels

doorway, corridor, freespace, room, and unknown. Second, they use unsupervised

learning techniques, but state that this approach did not produce satisfying results.

Furthermore, the authors only work on a single floor plan, while our paper in par-

ticular addresses the aspect of generalization, which is why multiple maps are used.

Chen et al. (2014) use deep learning techniques to identify doors, so that autonomous

mobile robots are able to approach targets more accurately. Their focus in only on

detecting doors visually, using cameras.

There is further related work on analyzing architectural space using isovist analy-

sis. Bhatia et al. (2012) use 3D isovists in order to estimate salient regions in architec-

tural and urban environments. Thus, the authors are able to detect regions that posses

strong visual characteristics. Our approach focuses on recurring and not on salient

structures. Feld et al. (2016) approximate four out of six isovist measures using a

simple ray-casting approach while showing that the resulting error is systematically

yet small, and the exact and approximated values show a strong correlation. Fur-

thermore, they show with a few examples on a single map that trajectories of isovist

measures potentially provide clues to identifying doors. The paper at hand goes much

further and creates a model to recognize such structures. Feld et al. (2017) calculate

isovist measures on 2D floor plans, cluster the values using archetypal analysis and

interpret the results afterwards. They show that the identified clusters correspond to

regions like streets, rooms, hallways, and the like. However, their approach is unsu-

pervised learning with interpretation of relations, thus, they do not learn a specific

model using which predictions can be made.
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3 Methodology

This section is split in two parts: (1) It describes our framework for generating iso-

vist measures along geospatial trajectories in a map-based simulation environment.

These measures provide the input for the following step, (2) the discovery, learning,

and prediction of recurring structures in floor plans. Unsupervised learning tech-

niques are employed in the discovery phase, while supervised machine learning is

performed for the modeling and prediction tasks. Details regarding the exact imple-

mentation of these aspects can be found in Sect. 4.

3.1 Input Generation

Basic input for the framework is supplied as bitmap files representing building floor

plans. Walkable space is represented as white pixels, while black pixels depict obsta-

cles like walls or furniture. Note that doors are excluded. In a first step, these bitmaps

are vectorized using a common vector graphics editor. The vector files are then

imported into Blender (blender.org 2017), an open-source 3D computer graphics

software, where a 3D-Extrusion is performed in order to generate a 3D map of the

building. These 3D maps serve as the basic asset for Unity (2017), a 3D game engine

and development environment. For each map, a navigation mesh (Snook 2000) is

generated in Unity to enable automatic navigation and pathfinding. Custom built

C# scripts then enable a player object (non-player character, NPC) to automatically

select a random point on the navigable area inside the map and move towards it

using Unity’s built-in navigation algorithm. For each step of the NPC, another cus-

tom C# script was developed, which performs isovist measure calculations and logs

the results to disk. In order to generate the isovist, a configurable amount of rays

are cast, originating from the current position of the NPC, as can be seen in Fig. 1.

Fig. 1 3D view of a utilized floor plan, showing the non-player character casting 360 rays (red

lines) from it’s current vantage point
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Points in space, where the rays intersect with the map’s mesh colliders (hitpoints)

are detected and used to calculate the different isovist measures.

The isovist measures calculated are based on Benedikt (1979), as previously

described in Sect. 2.1. As a discrete, ray-based isovist calculation is used, the calcu-

lated measures are only an approximation of the true isovist measures. The accuracy

of the calculation can be adjusted, as the amount of rays cast is configurable.

One of the more challenging aspects to calculate is the differentiation between

real-surface and occlusivity of the isovist. Benedikt states in Benedikt (1979) that

the occlusivity of an isovist “measures the length of the occluding radial boundary

Rx of the isovist Vx and indicates [. . . ] the depth to which environmental surfaces are

partially covering each other as seen from the vantage point”.

In order to be able to differentiate occlusion from real-surface in our simulation’s

engine, we developed an algorithm which performs calculations based on the trian-

gles that form the mesh of the environment. For every ray cast in a clockwise manner,

a comparison with the previous ray’s hitpoint on the environment’s surface is per-

formed. If the previous ray hit a triangle which shares none of it’s edge coordinates

with the currently hit triangle, we define the current ray to have hit an un-connected
triangle (in respect to the previous triangle). The length of the line connecting the

previous and current ray hitpoint in space is then counted towards the occlusion

value of the isovist. If a connected triangle was hit, the length of the connecting

line is counted towards the real-surface perimeter of the isovist. Figure 2 shows the

Fig. 2 In-engine view of the custom built algorithm’s results for real-surface and occlusion isovist

measure calculation. Red lines are the rays cast from the current vantage point, green lines visual-

ize the meshes’ triangles hit by the rays, blue lines denote real-surface while yellow lines denote

occlusion
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resulting lines calculated by our algorithm inside the Unity engine. Red lines are the

rays cast from the current vantage point, green lines visualize the hit triangles of the

meshes, blue lines denote real-surface, while yellow lines denote occlusion.

3.2 Unsupervised Learning of Unknown Floor Plan
Structures

The first part of the learning framework is responsible for discovering hidden struc-

tures contained in the isovist measures. Goal of this step is to group input data into

meaningful clusters, each representing a human-relatable concept, for example “iso-

vists recorded in rooms” versus “isovists recorded in corridors”. This can be achieved

using unsupervised machine learning techniques.

In a first step of preprocessing, the logged isovist measures calculated during sim-

ulation time are vectorized in order to retrieve a suitable data set for unsupervised

learning. This means that X and Y coordinates are removed so that a 6-dimensional

vector remains, whereas each dimension represents one of the measured isovist fea-

tures. We employ k-means (Lloyd 1982), a centroid-based clustering algorithm, as

well as DBSCAN (Ester et al. 1996), a density-based clustering algorithm, both of

which are implemented in the scikit learn python library (Pedregosa et al. 2011).

The algorithm determines a configurable amount of cluster centers and assigns the

data points to the nearest cluster center, by minimizing the squared distances from

the clusters.

It is important to keep in mind that the input data given to the clustering algorithm

as described above is static in nature. That is to say, each data point contains only the

isovist measures of a single position along the trajectory trough the map. As there is

no temporal component involved, the concept of movement and the dynamic change

of isovists while moving along a path was not reflected in the analysis. The overar-

ching idea of the next step, the inclusion of time, is to not only reflect the perception

of “space” but the “changing of space perception” as caused by movement.

In order to tackle this idea, an additional data processing step was developed

which reflects the temporal dimension of the data. For every feature of each data

point, the delta of the current data point’s feature xc and the simple moving aver-

age (SMA) (Balsamo et al. 2013)—a method commonly employed in the statistical

analysis of time series—of n previous data points’ features, is calculated:

xc −
1
n

n∑

i=1
xc−i

This way, the amount of features available to the machine learning algorithms is

doubled from 6 to 12.
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3.3 Supervised Learning of Known Floor Plan Structures

Using the method described in the previous section, labeled input data can be gen-

erated, which forms the basis for a following supervised machine learning step. The

goal of this step is to learn a model representing the structures discovered in the data,

by inferring a function which maps new unlabeled input data points to the respec-

tive cluster categories. This model can then be used, for example, in robots as a

lightweight component enabling the robot to deduce the type of room it currently

resides in, or whether it has just passed a doorway, by feeding it’s current and pre-

vious isovist measures into the model. For our framework, we chose to implement a

multi-layer feedforward neural network using the open source neural network library

Keras (Chollet 2015), which in turn uses Tensorflow (Abadi et al. 2015), a low level

machine learning library developed by Google, to execute it’s calculations. Training

data is provided by the labeled input data, as output from the unsupervised learning

step. In order to verify the validity of the model generated using supervised learn-

ing methods, it is important to separate validation from training data. For this, we

split the data into a left half and a right half, based on the data points’ coordinates.

Training was performed on the right half of the data, while validation was performed

on the left half. As part of our evaluation of different neural network architectures,

we found a rather small network of 5 fully-connected layers to be sufficient for our

purposes. The input layer contains 12 neurons (one for each feature), connected to

3 hidden layers, each containing 64 neurons, followed by an output layer containing

4 neurons. Softmax activation is used on the 4-neuron output layer in order to build

a classifier representing the 4 cluster labels, while rectified linear unit (ReLU) acti-

vation (LeCun et al. 2015) is used on all other layers. Categorical cross entropy is

employed as the loss function while Adam (Kingma and Ba 2014) is used as the sto-

chastic gradient descent algorithm. All in all, the network contains 9,412 trainable

parameters. After the training step, the best model is selected based on the model

accuracy score. In order to test the generalization capacity of the trained model even

further, the model is then used to predict values from data captured on a different

floor plan. The question to be answered by this is whether the model learned general

abstractions (e.g. a concept of “doors”) that capture underlying basic principles of

the data which are independent of the specific floor plan layout.

4 Results and Discussion

For the evaluation, two distinct floor plans were chosen. The first one is a section

of a university building of the Ludwig-Maximilians-Universität München (LMU). It

features repeating structures of corridors and similar rooms. The second floor plan

features the main hall and connected rooms of the Technische Universität München

(TUM). By comparison, it contains a more irregular structure formed by large lecture

halls and connecting hallways. Because of it’s distinct and repeating structures, the



162 A. Sedlmeier and S. Feld

Fig. 3 Results of a k-means based clustering with k = 3 of static isovist measures on the LMU

floor plan

LMU floor plan was chosen for training. We recorded more than 370,000 isovists

along random trajectories on the LMU map and more than 220,000 isovists on the

TUM map.

We compared two different unsupervised learning methods: k-means, a centroid-

based clustering algorithm, and DBSCAN, a density-based clustering algorithm. As

it is possible to define the amount of clusters to be found when using k-means, the

results of using different values were compared. From all the values tested, we found

a value of k = 3 to produce the most meaningful results on the LMU floor plan.

As can be seen in Fig. 3, three different structures of the floor plan are separated

into different clusters. A clear separation between the large horizontal corridor, the

smaller vertical corridors, and rooms became apparent. It is important to keep in

mind, that human concepts are not necessarily reflected by the clusters, which is

why the meaning of a cluster is always subject to interpretation.

Besides the centroid-based clustering algorithm k-means, we also evaluated the

density-based clustering algorithm DBSCAN. As the amount of clusters to be found

is not to be specified in DBSCAN and can only be indirectly influenced by config-

uring two density parameters 𝜖 and minPts, it is a lot harder to produce a sensible

amount of human interpretable clusters. For our data set, an 𝜖 value of 3 and minPts
values between 1000 and 2500 produced meaningful results.

Compared to the clusters produced by the k-means algorithm, the resulting struc-

tures were less interpretable. This is why we decided to continue our analysis using

the k-means based clustering.

After clustering the static data features and finding clusters that could be inter-

preted as rooms and floors, the delta of the current data point and the SMA of the iso-

vist measures was calculated, in order to capture the temporal dimension of the data.
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Fig. 4 Results of k-means based clustering of dynamic, SMA based isovist measures (k = 3, c = 5)

Using these “delta-features” as input to the k-means clustering, a completely differ-

ent picture became visible: As can be seen in Fig. 4, a cluster now formed around

passage ways, especially doorways.

This intuitively makes sense, as doorways are components in a building, often

connecting structures of different shape, which is why movement through them leads

to changes in the perception of space, in turn reflected in high changes of isovist

measures.

By combining these static-data and dynamic-data clusters, we generated a merged

set of data-labels containing four different clusters as shown in Fig. 5.

We interpret the clusters as follows:

Cluster-0 (blue): rooms

Cluster-1 (green): horizontal corridors

Cluster-2 (red): small vertical corridors and large rooms

Cluster-3 (purple): passage ways (e.g. doors)

Figure 5 also shows the training/validation split that was performed on the data.

Training was performed on the right half of the data, while validation was performed

on the left half. Good results could be achieved when training a 5-layer fully con-

nected feedforward neural network using the 12-dimensional feature vector (static

and SMA deltas) as input and the 4 cluster labels described above as targets. The

best model showed an accuracy value of 0.9856 and validation accuracy value of

0.9188.

As can be seen in Fig. 6, the predictions produced by this model on the validation

data match our interpretations of the clusters in the training data. This means, that

the model was able to learn a function representing the structures bundled in the
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Fig. 5 Results of training/validation data split after merging static and dynamic cluster features.

Only training data is visualized in this figure

Fig. 6 Predictions of the 5-layer feedforward neural network on the validation data set

respective clusters. As it was able to predict meaningful results on previously unseen

parts of the floor plan, it became obvious that the model generalizes to new data.

Figure 6 also shows that our previous interpretation of cluster-2 to be mainly com-

prised of small vertical corridors no longer holds. The small red colored corridor

formed by the doors of interconnected rooms in the lower right part of the floor plan

is clearly horizontal in nature. Apart from that, our previous interpretations of the

clusters still hold.
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Fig. 7 Predicted cluster memberships of all data points along random trajectories trough the TUM

floor plan using the model trained on the LMU floor plan cluster membership dataset with 12 fea-

tures (static and dynamic)

In order to test the generalization performance of our model even further, we

used it to predict the cluster memberships on a completely different floor plan. As

the room and corridor structures in the TUM plan are completely different from the

LMU plan, on which the model was trained, it is a much more difficult task for the

model to perform. Figure 7 shows the predicted cluster-memberships of all recorded

points along the random trajectories.

Even though the maps have completely different layouts, a visual comparison with

our previous cluster definitions provided a good match. Points on the trajectories in

smaller rooms are almost completely predicted to belong to cluster-0 (blue), as they

did on the LMU floor plan. Large rooms and corridors predicted to be cluster-2 (red)

also match our expectations. As there is no directly corresponding structure to the
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Fig. 8 Predicted membership of cluster-3 (passage ways and doors) using a confidence threshold of

99.99% on the TUM floor plan using the model trained on the LMU floor plan cluster membership

dataset with 12 features (static and dynamic)

single large corridor (cluster-1: LMU) on the TUM floor plan, it is no surprise that

labelings of cluster-1 (green) do not lend themselves to intuitive interpretations.

Most interestingly, structures labeled as cluster-3 (purple) match our definition of

passage ways and doors almost perfectly. This becomes even more apparent when

combined with a prediction confidence threshold. This is possible, because the out-

put layer of the neural network does not produce binary label decisions but instead

numeric values denoting the confidence that the current data point belongs to the

respective label.

After increasing the threshold to 99.99%, doors and passage ways are marked

largely correct, as can be seen in Fig. 8. What becomes apparent is that our definition

of cluster-3 to contain only passage ways and doors might need to be expanded when
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Fig. 9 Predicted cluster membership with confidence threshold of 99.95% on the TUM floor plan

by a model trained using only the 6 dynamic SMA features on the LMU floor plan

applied to this floor plan. A more accurate description could be: Points where a

different structural part of the building is entered. This structural part can, but need

not, be explicitly separated by a door.

As a last step, we evaluated whether the model performance for this specific pre-

diction of passage ways and doors could be further improved by excluding possi-

bly irrelevant features for this task from the training data. A separate model having

a smaller, 6-neuron input layer to take in only the 6 dynamic SMA features was

trained on the LMU floor plan. The resulting predictions of now only two clusters

are shown in Fig. 9. We think that these predictions fit our expectations even better,

as the placement of labels is now more accurately inside the doors.
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5 Conclusion

This paper is based on the idea that recurring structures inside buildings also show

recurring structures in the numerical representation of the visual perception when

traversing them. We presented a framework that contains three main functionalities.

First, a 3D environment can be used to create a data set containing geospatial tra-

jectories that traverse the floor plan together with 2D isovist measures calculated

at each time step along the trajectories. Second, unsupervised learning techniques

can be used to group the data set containing geospatial trajectories into meaningful

clusters, based on visual perception features. Third, the now labeled data set can be

utilized by supervised learning techniques to automatically create a model of recur-

ring structures in the floor plan. This model can then be used to identify structure in

unlabeled floor plans.

Our results show that isovist measures recorded along trajectories through the

building do reflect the recurring structures found in buildings. These recurring pat-

terns are encoded in the isovist measures in a way that unsupervised machine learn-

ing is able to identify meaningful clusters. Further, we were able to show that these

clustered data sets can also be used for neural network based supervised learning in

order to create a re-usable model which is able to identify structures in previously

unknown environments. Good model accuracy results show, that the neural network

is able to learn a function which represents the underlying structure of the training

data. The validation score in turn shows that the network does not simply remember

a 1:1 mapping from input to output, but abstracts general structures from the isovist

measures that also fit the validation data. This becomes obvious in the validation step,

where labeling was performed on the map of a completed different environment, as

the network was able to correctly label previously unseen inputs.

As future work we envision a deeper analysis of the generalization capacity of

the models to new floor plans with different characteristics, containing e.g. curved

walls. We also plan to replace the ray-based isovist measures by exact isovist mea-

sures following the definition given in Benedikt (1979) in order to increase our data

accuracy. Furthermore, we would like to analyze 3D floor plans of buildings using

3D isovist measures. Finally, extensive feature engineering can be conducted and

different neural network architectures explored in order to improve model accuracy

and generalization performance.
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