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Abstract The performance of indoor positioning systems is usually measured by

their accuracy in meters. This facilitates the comparison of different systems, but

does not necessarily give information about how well they perform in real-life sce-

narios, e. g. during indoor navigation of walking persons. In this paper, we present

a task-oriented evaluation that adapts the idea of landmark navigation: Instead of

specifying the error metrically, system performance is measured by the ability to

determine the correct segment of an indoor route, which in turn enables the navi-

gation system to give correct instructions. We introduce the area match metric in

order to identify areas where positioning proves problematic. In order to evaluate the

described metric, we use a pedestrian dead reckoning approach to compute indoor

positions. Without any external correction, the correct segment of the test route is

identified in 88.4% of all trials. Based on these results, we explore options how to

identify and predict erroneous situations during the navigation process as well as

beforehand.

1 Introduction and Motivation

Indoor positioning for pedestrian navigation is still an open problem as no position-

ing system that delivers absolute—such as GPS—coordinates is available. Many

solutions providing precise (sub meter) localization require additional technical

devices (Guo et al. 2015; Pham and Suh 2016; Romanovas et al. 2013). However,

they are not at disposal in everyday life situations at which pedestrian navigation

systems target.
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Technically simpler solutions use sensors that come with every smartphone, such

as accelerometers, gyroscopes, and step counters (Basso et al. 2015; Verma et al.

2016). Such approaches provide relative positioning data, and often suffer from cold

start problems (Harle 2013). Solutions based on GSM, LTE, and WiFi receivers can

compute absolute coordinates of an area in which a user is located, but fail in tracking

a user’s movement precisely (Waqar et al. 2016).

Independently from the used sensor technology, the approaches described above

have in common that they do not take spatial knowledge into account which we

understand to describe the ways persons can take in an indoor area: information about

the user’s current position limits the options for a position update. While — as Waqar

et al. (2016) point out—such technology can advantageously be used to implement

the described solutions quickly at any location (that eventually provides GSM, LTE

or WiFi infrastructure), its major drawback is that these positioning algorithms do

not provide effective means for error cancellation in terms of the navigation task a

person is currently solving.

We address exactly this issue. We describe an approach that models spatial knowl-

edge with an indoor navigation graph (see Fig. 1 as an example) that contains

all routing decisions and path segments between any two arbitrary locations in an

indoor/outdoor environment requesting a decision from the user how to execute a

system’s routing instruction. We apply our indoor navigation graphs to cancel the

positioning error of relative positioning algorithms (e.g. step counters) that accumu-

lates while a person is navigated. A similar approach is taken by Link et al. (2013).

In contrast to our approach the authors rely on OpenStreetMap data that are much

more complex to handle and therefore less flexible for adapting a system to a new

environment where there doesn’t already exist a corresponding model. Further, the

authors use the OpenStreetMap data for a metric evaluation of the approach, while

we relate success to navigation instructions: we consider positioning to be success-

ful if it allows a navigation system to give the correct next instruction relative to the

users position on the route, or, more generally, if it allows a location based service

relying on it to function properly.

For rendering this definition operational, we introduce the area match score as a

new metric for indoor positioning. We analyze the performance of an algorithm we

implemented on the basis of this definition. From results of the analysis we derive

effective criteria for an automatic decision when the computed position estimate data

is no longer reliable. In such cases, dead reckoning approaches cannot recover the

error. We conclude that effective positioning algorithms for pedestrian navigation

must be able to apply different techniques for sensing the user’s environment in order

to provide optimal position estimates.

In this paper, we first report the relevant state of the art, then we explain how

we relate landmark-based navigation and indoor positioning and develop our mathe-

matical model for the posed problem. Next, we present an empirical evaluation for a

navigation task that required test persons to continuously walk on an indoor route on

one of the floors of a complex and therefore cognitively demanding building on the
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Fig. 1 Indoor navigation graph in the test area. Main edges used for localization are shown as thick

lines. Notice the mesh-like topology in larger open areas

campus of our university. Finally, we discuss the obtained results in the light of our

task-based performance metric. We analyze limitations of the approach and derive

relevant issues of future work from the insights obtained from the evaluation.

2 State of the Art in Indoor Positioning

As already stated in the introduction, many localization techniques based on different

types of sensors have been proposed for pedestrian indoor navigation systems and

indoor positioning in a broader sense. Despite all these research efforts, there is still

no technology established as a widely accepted state of the art similarly to GPS for

outdoor areas.
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(a) Result of a previous WiFi study
in an indoor area using Fraunhofer’s
awiloc. While standing still at the po-
sitions indicated in red, the reported
locations (colored dots) are scattered
around the area with a root mean square
error between 2.1 and 5.0 m.

(b) Result of a previous WiFi study in
an indoor area using Fraunhofer’s aw-
iloc. The position reported by awiloc
(yellow) follows the ground truth (red,
from bottom to top) very loosely, if at
all. Only by fusing step detection data
with a Kalman filter (green) the actual
trajectory can be approximated.

Fig. 2 Performance of WiFi signals in indoor positioning tasks

As our work is focused on positioning algorithms that do not need sensors beyond

those available in a smartphone anyway, the following review of the state of the art

leaves aside more exotic approaches that require special sensors or hardware.

WiFi-based indoor localization can be widely deployed in modern buildings

where a sufficient WiFi infrastructure is usually available, but suffers from multi-

ple problems, as Davidson and Piché (2016) point out: Creation and maintenance of

radio maps is time consuming and therefore expensive. A low scan rate on current

smartphones leads to disjointed position estimates. Furthermore, device heterogene-

ity, the smartphones orientation, and the attenuation of signals by humans are iden-

tified as disadvantages. Due to these issues, WiFi-based systems generally achieve

an accuracy of at most a few meters and are suited to determine the approximate

position, but not for continuous tracking.

Our own findings confirm these claims: Fig. 2a shows some of the results from

an earlier study, where the location reported by Fraunhofer’s WiFi-based awiloc

system
1

wanders around in an indoor area even if the test person is not moving.

1
https://www.iis.fraunhofer.de/en/ff/lv/lok/tech/feldstaerke/rssi/tl.html.

https://www.iis.fraunhofer.de/en/ff/lv/lok/tech/feldstaerke/rssi/tl.html
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Nevertheless, the RMSE of the position reaches up to 5 m. Even more problems

arise when the test person is moving (an example can be seen in Fig. 2b), where

the location updates usually are lagging behind and do not match the path that was

actually taken.

On the other hand, Bluetooth Low Energy (BLE) beacons as another wireless

localization technique are designed to be more accurate, but are far less widespread

and therefore more expensive to deploy. In particular, as they are mounted at fixed

positions and send signals over a small distance only, persons could be tracked con-

tinuously only if beacons were mounted along all paths persons can walk on.

A recent development for getting an rough estimate of the user’s position bases

on sending a sound signal via the smartphone’s loudspeaker and recording it imme-

diately with the microphone. Rooms have particular acoustic characteristics that can

be recognized to identify in which room out of a set of trained rooms the smartphone

is currently located (Rossi et al. 2013).

In summary, several approaches exist that provide a rough estimate of the user’s

current position, but not of the user’s movement, and therefore can be applied in

a hybrid approach to reinitialize a dead reckoning algorithm after it has failed to

determine a reliable position estimate.

For tracking movements, pedestrian dead reckoning (PDR) is widely used. Sev-

eral solutions do not need any external infrastructure, but rely solely on inertial sen-

sors available in smartphones.

True inertial navigation by the double integration of acceleration values is not

feasible since the sensor measurements are much too noisy. Instead, PDR is mostly

accomplished by a variant of so called Step and Heading Systems (SHS), that detect

the user’s steps and try to estimate their length and direction (Harle 2013). Step

detection on smartphones is historically achieved through the accelerometer using

various techniques (see Muro-de-la Herran et al. 2014; Sprager and Juric 2015; Susi

et al. 2013). Lately, dedicated step detector sensors are available in more and more

devices. The heading can be inferred from a combination of magnetic compass and

gyroscope, while step length can be either assumed as fixed or dynamic, e.g. based

on the frequency (Harle 2013).

The main disadvantage of any dead reckoning solution is the need for an initial

position from which the relative positioning can start as SHS by their nature can-

not compute absolute positions. Furthermore, the positioning error increases over

time due to noisy sensor data. Given both of these problems either error correction

through external sensors or an algorithm that matches the sensor data to a final posi-

tion estimate are necessary to employ dead reckoning for more complex tasks such

a navigating a user or other location based services.

As in our work external sensors should be avoided, matching algorithms are the

only option for solving the indoor positioning problem. Maps are often represented as

discrete graphs (see e.g. Thrun et al. 2005) and have been used successfully to locate

robots in complex environments. For pedestrian indoor localization, graph models

of the environment were first introduced by Liao et al. (2003). They introduced the

particle filtering method on a Voronoi graph in order to make the position estimation

more robust and efficient. Since then, other researchers have adapted and improved
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this approach (e.g. by adding multiple sensor modalities): The system recently pre-

sented by Hilsenbeck et al. (2014) is operating on a graph generated from a 3D

model of the environment. Herrera et al. (2014) use existing material from Open-

StreetMap and enrich it with information about the indoor areas of a building. Ebner

et al. (2015) generate a densely connected graph from the floor plan of a building.

All these approaches have in common that creating a map is either time consuming

or expensive (due to the need for special hardware) or relies on existing data. Fur-

thermore, normally the resulting graphs do not contain any information besides the

geometry of the building, making them unsuitable to use as data source for the path

planner of a navigation system.

As far as the evaluation of indoor positioning is concerned, the state of the art

can be surveyed best by looking at recent competitions that aim to compare the per-

formance of indoor positioning systems. Held regularly, the provide an opportunity

to gain insights into established evaluation methods. Potortì et al. (2015) report the

results of the EvAAL-ETRI competition held in conjunction with the IPIN 2015

conference. To assess the error of the participating systems, they add a penalty for

wrongly detected floors or buildings to the actual positioning error. The final ranking

is determined by the 75% quantile of the resulting errors. In their evaluation of the

2015 EvAAL-ETRI WiFi fingerprinting competition, Torres-Sospedra et al. (2017)

use the mean error as the metric to rank the competitors: The mean error of the tested

system is not lower than 6 m. Lymberopoulos et al. (2015) again use the mean posi-

tioning error to rank the systems participating in the 2014 Microsoft Indoor Local-

ization Challenge. Interestingly however, they remark that the mean error or other

commonly used metrics do not represent the performance of a system in its entirety.

We follow this assessment and argue for a task-oriented view on the performance of

a positioning approach that we introduce below.

3 Data Model for Landmark-Based Navigation

While the mean positioning error is definitely of interest for building autonomous

systems that can navigate in indoor environments (e.g. robots for ambient assisted

living), for the implementation of many location based services it is an inappropri-

ate performance metric. In our view, this is due to the fact that users of location

based services experience the environment from a cognitive perspective that assigns

meaning to perceivable objects. E.g. a pedestrian can walk to a distant object with-

out continuous technical assistance while a robot cannot. Therefore, in applications

involving humans it may often be sufficient to know that the user is close to a seman-

tically meaningful object (e.g. a door at the end of a corridor or a certain cloth shop

in a shopping mall). The main consequence of this hypothesis is that the precision

of indoor positioning has to be measured in terms of the user’s relative position to

objects relevant for his current task instead of meters in a coordinate system that the

user cannot even perceive.
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For an implementation of this idea, we rely on graphs to formally represent a map

of the environment and define and locate relevant objects. With such a representation

of the environment, also the task of navigating a user can be based on relevant objects

which are commonly known as landmarks in the GIS literature (see e.g. Ohm et al.

2015).

At this point, we can state the major contribution of the present paper. We propose

an approach to combine a graph-like representation of an environment with the min-

imally necessary metric information to correctly align the data computed by a SHS

in the graph in order to assign the user’s position to more easily perceivable objects

in the environment which we call areas or landmarks depending whether we refer

to a part of a path the user should walk on or a relevant object the user can perceive

in the environment. It has to be noted that we do not assume a particular sensor tech-

nology or SHS algorithm. We only assume to receive vectors that quantify the step

length and direction of a pedestrian’s movement.

This approach for an indoor navigation system shares similarities with other work

(in particular Link et al. 2013). As a new contribution, we introduce the concepts of

areas and the area match score that link indoor positioning based on SHS with

landmark based navigation (Sect. 4). By doing this, we relax performance require-

ments for positioning algorithms as we no longer need to optimize the metric errors

at any time of the navigation process. Instead, it is sufficient to identify the correct

area a user is currently walking on: given the current area, the system can generate a

navigation instruction that incorporates a landmark easily perceivable from the esti-

mated position of the user. Under normal conditions, users are able to walk towards

the indicated landmark without further assistance. Then, in order to continue the nav-

igation process the positioning algorithm has to determine whether the user is close
to the landmark and can switch to the next instruction. Mostly, this task is much

easier than continuously determining the exact position.

To introduce our approach, we describe the concepts we build our knowledge

graphs on, and the algorithm we rely on to compute routes that we then split into

path segments.

Our data model is based on the graph representation described in Ohm et al.

(2015). We adapted their concept for environment models in order to generate indoor

navigation graphs such as the one in Fig. 1. The graphs are created manually in a web

tool by drawing on top of floor plans of a building. Edges represent paths users can

walk on. Edges can connect multiple floors or buildings, allowing for the modeling

of arbitrary building geometries. Nodes connected by edges are used to formalize

decision points where users eventually have to change their direction. Landmarks

can be integrated seamlessly in the graph structure in the form of special nodes that

can optionally be enriched with images.

In summary, the system relies on a single data structure for routing and localiza-

tion, minimizing the effort needed for map creation and maintenance.



32 R. Jackermeier and B. Ludwig

Fig. 3 User interface of the

data collection app. The

current area is highlighted in

light red

In order to transform such a graph into an indoor navigation graph, adjacent edges

are combined into areas if the part of the environment captured by an area is perceiv-

able as a unique object with salient landmarks (e.g. a corridor, a foyer, a staircase).

An example can be seen in Fig. 3, which shows part of a corridor as an area consisting

of a several adjacent edges. In Fig. 4 a typical landmark is displayed: the billboard

shown on the map is also referred to in the navigation instruction.

For landmark based navigation, it is crucial to give navigation instructions at the

right time in order not to confuse users and to guarantee good usability as well as

reaching the destination. A navigation instruction is given at the right time if it does

not refer to any landmark that is not yet visible from the user’s current position or

that the user has already passed before.
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Fig. 4 Example of a

landmark-based navigation

instruction

4 Graph-Based Localization

Consequently, in order to give the right instructions at the right time, the user’s rel-

ative position towards landmarks referred to in navigation instructions needs to be

known. Our indoor positioning algorithm computes this position by mapping sensor

data to areas in the indoor navigation graph.

For this mapping, we implemented a recursive stochastic filter that after each

measurement assigns a probability to each area proportional to the likelihood of the

user to currently walk on a certain area.

The filter is implemented as a particle filter (see Thrun et al. 2005). This family

of algorithms represents a probability distribution by means of a representative sam-

ple, a set of so called particles. Around the expected position the number of particles

is high while elsewhere it is low according to the small probability mass. Using a

sampling and resampling strategy the set of particles is updated after each measure-

ment in order incorporate the new information (see Thrun et al. 2005 for details): Far

away from the expected position the particles diminish while new ones are generated

for positions with high probability mass. Our implementation can also incorporate
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input from multiple sensors such as detected steps or WiFi signals in order to imple-

ment the advocated hybrid approach for indoor positioning. Furthermore, informa-

tion contained in the indoor navigation graph stabilizes and corrects the position

estimates as many constraints for the user’s current location can be derived from

the graph structure (in particular invalid positions receive probability zero while in

standard SHS approaches the same locations are possible positions).

In order to investigate the influence of the precision of the SHS on our approach,

we compared two different state of the art algorithms:

∙ motionDNA by Navisens

The motionDNA SDK by Navisens is a well-known commercial state-of-the-art

motion tracking solution. According to the company’s website,
2

it relies on inertial

sensors only and does not need any external infrastructure to operate. The sensor

readings are updated with a rate of 24 Hz on our test device and include a variety of

information such as the user’s activity and the device orientation and position. For

this study, only the position information (relative to the initial position, measured

in meters in X and Y direction) is used.

∙ Android’s built-in sensors

On recent devices, the Android framework gives access to many sensors that can

be used for motion tracking. In our case, the step detection sensor tells us whenever

a step occurs, whereas the average orientation during the step as provided by the

rotation vector sensor is used as step direction. We assume that the user orients

the smartphone in his walking direction and use a fixed step length.

In Fig. 5 the data computed by each of both algorithms for a single walk on the

test route is plotted into the map of the building. Many position estimates are far

off the route. This observation illustrates that information about the environment is

indispensable for the position estimates to be used in an indoor navigation system.

In order to map SHS estimates to the indoor navigation graph, we apply the

described particle filter. Initially the probability is distributed uniformly over all

edges.

Whenever a step is detected, a Gaussian naive Bayesian classifier updates the

probability distribution for the edges starting in the current node. The update takes

the motion model for the user (i.e. the distance and direction of the detected step)

and the orientation of the considered edges into account. The probability of the user

to walk on an edge increases if this edge is parallel to the direction detected by the

SHS. The increment for an edge not parallel to the detected direction decreases pro-

portionally to the angle between the direction and the orientation of the edge.

Unlike other approaches, the algorithm does not immediately select the edge with

the highest probability as the current position estimate. Instead, it updates the set

of particles each of which represents a different hypothesis for the user’s current

position. A similar approach has been successfully applied to localization in robotics

(see Thrun et al. 2005) and allows to

2
http://navisens.com.

http://navisens.com
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Fig. 5 The trajectories of both motionDNA (blue) and raw step data (green) of a typical walk

along the test route. Ground truth (starting top left, then clockwise) and the boundaries of the areas

defined for the evaluation experiment are drawn in red

∙ account for noise in the SHS data, which may stem from the rotation vector sensor

(or rather the underlying magnetic compass) or the way the device is held in the

hand,

∙ account for differences in step length while a person is walking, and

∙ account for different step lengths of different users.

More formally, each particle’s state is defined by the vector {nt, dt, et}, where nt
denotes the starting node at time t, dt the distance walked since leaving the node,

and et a discrete probability distribution for the edges adjacent to the node. On every

step, the state is updated according to

{nt, dt, et} ∼ p(nt, dt, et|nt−1, dt−1, et−1, z𝜃,t, zl,t,G), (1)

where z
𝜃,t and zl,t are the measured step direction and length, and G is the graph of

the building. Applying the procedure detailed in Hilsenbeck et al. (2014), the update

rule can be decomposed to its independent parts. The noisy step length measurement

with the empirically determined variance 𝜎

2
l is modeled by
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lt ∼ p(lt|zl,t) ∼ N (zl,t, 𝜎2
l ), (2)

leading to the updated cumulative step distance of

dt ∼ dt−1 + lt. (3)

Similarly, the step direction is updated by

𝜃t ∼ p(𝜃t|z𝜃,t) ∼ N (z
𝜃,t, 𝜎

2
𝜃

) (4)

and subsequently used to determine the new edge distribution:

eit ∼ p(eit|e
i
t−1, 𝜃t,G) ∼

{
N (𝛥𝜃it , 𝜎

2
e ) ∗ eit−1 if |𝛥𝜃it| ≤ 100

0 otherwise
(5)

Here, eit denotes the probability of the user to currently walk on the i-th edge adjacent

to the current node and 𝛥𝜃

i
t the angle difference between the step and the i-th edge.

Finally, the decision whether the user has completed an edge and moved to the next

is formalized as:

nt ∼

{
no if dt ≤ length(e) ∧ e = argmaxi(et)
yes if dt > length(e) ∧ e = argmaxi(et),

(6)

i. e. whenever dt exceeds the length of the currently most probable edge e. In this

case the starting node has to be updated: nt is set to the sink node of the previous

edge and dt is reset to zero. Since the walked distance usually does not align exactly

with the edge length, the difference is added to the position estimate and the step

bias is reinitialized to N (zl,t, 𝜎2
l ) as the prior distribution for the new current edge

et.
After the update step, the particle importance weights are distributed according

to the non-normalized probability of the most probable of all adjacent edges:

𝜔t = 𝜔t−1 ∗ p(zl,t, z𝜃,t|nt) ∼ 𝜔t−1 ∗ max
i
(et) (7)

Finally, stochastic universal sampling is performed, which guarantees low vari-

ance and a representation of the samples in the new particle distribution that is pro-

portional to their importance weights (see Thrun et al. 2005 for further details).

In order to estimate the user’s position, the expected value of the particle distrib-

ution is calculated. From there, the closest point that is located on either an edge or a

node of the graph is computed as the final position estimate. This snap to the indoor

navigation graph ensures that the position estimate is a location that is accessible

to the user and—differently to the pure SHS algorithms—prevents the positioning

algorithm to assume impossible movements, e.g. through walls.
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5 Task-Oriented Evaluation

The purpose of this study is to test how well the correct area on a route can be

determined by the localization system, which—as noted above—is a requirement

for correct navigation instructions and for successful navigation in general. Based

on those findings, it is our goal to identify patterns that point to problematic areas

and to propose ways to mitigate the issue.

5.1 Experimental Setup

As detailed above, the indoor navigation graph is a simplified model of the environ-

ment. Perfectly accurate position tracking is feasible only if the user actually walks

on the edges of the graph. In reality however, the user’s movement is not constrained

to the graph structure, and edges and nodes do not necessarily have a perceptible

counterpart that can ease the user’s orientation. As an example we consider the foy-

ers at the end of the long corridors in Fig. 1. They are modeled as a dense sub graph

in order to approximately represent different paths a user may take through the foyer.

The user however perceives the foyer as a single object that can be traversed arbi-

trarily instead of a discrete graph.

In order to take the user’s moving and orienteering behavior into account, we

introduce the areamatch score as a performance metric that enables us to investigate

the problem in a task-oriented manner. Each area corresponds to a section of the

route, which in turn is comprised of multiple edges in the indoor navigation graph.

Strictly speaking, an area is matched if the position estimate is located in the same

area the user is currently walking on.

However, the introduction of artificial segments inevitably leads to matching

errors at the boundaries of two adjacent areas as the user’s position cannot estimated

without error. Therefore, areas may be mismatched.

In order to account for this problem, we relax the strict definition of a match by

adding the mean position error to the boundaries of each area. The final area match

score for the whole route is then defined as the percentage of position updates that

match the correct area according to the relaxed definition above.

To collect data for an evaluation of the implemented indoor positioning algorithm,

we conducted an empirical study in the ground floor in an university building. There,

we defined a test route spanning 182 m. The route leads through 4 corridors in a

rectangular shape. Three of the corners are modeled as small foyers (see Fig. 1). The

only obstacles on the route are several glass doors that had to be passed in order to

reach the destination of the route.

The route was segmented into areas. Their boundaries were set at positions where

semantically relevant objects—i.e. salient landmarks—are located. For determining

salient landmarks along the route, we followed the approach described in Kattenbeck

(2016): 19 persons rated 32 objects in the test area regarding different aspects of
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their salience. We selected the objects with the highest predicted overall salience

as landmarks for the navigation instructions in our experiment. These landmarks

included e. g. a glass cabinet, a wall painting, a bench and a sign for the department

of psychology. Additionally, architectural features such as the aforementioned glass

doors or the beginning and end of foyers were used to segment the route into areas.

For each area, we formulated a navigation instruction that should explain to the test

persons how to proceed the route. Finally, the route consisted of fourteen sections of

varying size (see Fig. 5). The main factor that influences the size of the sections is the

visibility of the landmark at their end: some can be referenced unambiguously from

further away, while for others one has to be closer, thus causing smaller sections.

Acquisition of Positioning Data

Starting from a defined position, 7 different persons who were familiar with the area

and the landmarks performed a total of 15 walks along the test route. Data collection

took place over the course of several days, with an LG Nexus 5X running Android

7.1.2 as the test device. Before each test run, the compass was calibrated and its

proper functionality was verified. During the experiment, the phone was held in the

hand in front of the body, pointing in the direction the person was heading toward.

For data collection, a custom Android application was developed. It is able to

capture data from various sensors of the device:

∙ Steps detected by the built-in Android step detection sensor.

∙ Orientation data from Android’s orientation vector sensor, which in turn fuses

magnetometer and gyroscope readings.

∙ Data from Navisens’ motionDNA SDK. First and foremost, this includes the rela-

tive position, but heading direction, orientation of the device, as well as detected

user activity are also logged.

∙ The signal strength of WiFi access points in the area (not used in this study).

∙ A video recording of the device’s back-facing camera, capturing the test person’s

feet and the area immediately in front of them.

The app’s user interface consists of a map of the test area and a single button

that allows the user to start the test run. After the localization on the starting node

and sensor systems were initialized, the first area to walk through was highlighted

on the map and the button text changed to the first instruction. When a test person

reached the landmark, he or she pressed the button in order to set the ground truth

for the transition between two adjacent areas, and the interface was updated with

information for the recently entered area.

Validation of the Collected Data

With this experimental setup, we collected sensor data for the test route and a ground

truth labeled by experts in a single run of the experiment. We avoided to make use

of other, technically very complex methods to label the logged sensor data with the

correct area.

In order to verify whether the collected samples were representative for average

persons walking straight ahead, several gait characteristics were calculated.
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∙ The mean gait speed during a walk can easily be determined by the quotient of

route length and the time needed to complete the route, measured by the differ-

ence of timestamps between last and first step. The result is a mean speed of 1.30

m/s (SD = 0.14 m/s), which is well within the margin reported by Bohannon and

Williams Andrews (2011).

∙ In order to calculate the step length, the steps are counted manually for each walk

by means of the recorded video, revealing that Android’s step detector misses

about 5.8% of steps on average.

∙ The mean step length amounts to 0.73 m (SD = 0.077 m), which is classified as

fast gait according to the study from Oberg et al. (1993). This can be explained by

the fact that the test persons knew the area and the route very well.

In summary, the collected data is representative for “average” persons who currently

perform a similar navigation task.

Analysis of the Collected Data

The analysis of the raw data shows—quite expectedly—that the error quickly accu-

mulates, leading to a high mean location error of 11.5 m (Android sensors) respec-

tively 12.0 m (motionDNA). Figure 5 shows the trajectories of a typical walk.

Navisens’ motionDNA often struggles with substantial drift towards the left early

on, but otherwise manages to track the overall shape quite well. The version relying

on the Android step counter usually shows drifts in different directions throughout

the walk due to the lack of correction. Additionally, the reported distances differ

between the tracking methods: motionDNA’s paths are usually shorter (M = 174.1

m, SD = 15.37 m), Android’s longer (M = 189.4 m, SD = 16.49 m) than the ground

truth of 182.0 m.

Before the motionDNA data could be used as input to the particle filter, some

preprocessing was inevitable: Since the update frequency of about 20 Hz was rather

high (about an order of magnitude higher than the step frequency), the data was split

in batches of ten measurements that were treated as a single step. In two of the 15

recorded walks, the relative location reported by motionDNA unexpectedly was set

back to the starting point of the route. Therefore, the area in which the reset occurred

was eliminated from the data set.

5.2 Localization Results

Since it was not feasible to run both Navisens’ and our indoor localization implemen-

tation at the same time on one device, we processed the collected data in an offline

simulation of our indoor positioning algorithm.

In order to extend the data set, from each actual walk a stochastic motion model

was learned and used to generate 20 additional walks proportional to the learned

model. 10 of them were generated using motionDNA for simulating steps of the

user and 10 others using the Android step counter.
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Fig. 6 Empirical

cumulative distribution

function showing the

accuracy with the two

different motion tracking

methods

The extended data set was used for the evaluation of the implemented algorithm.

In the remainder of this section, we present our evaluation results and discuss their

impact on the appropriateness of the proposed area match score for localizing users

during indoor navigation.

Accuracy Metrics for the Sensor Data

Figure 6 shows a comparison of the two motion tracking solutions regarding their

positioning accuracy, i.e. the distance from estimated position to ground truth, after

their raw data has been processed by the particle filter.

The mean and median error of motionDNA amount to 7.02 and 4.28 m respec-

tively, while the Android sensors lead to an accuracy of 4.39 (mean) and 2.60

(median) meters. This performance gap is likely caused by two factors:

∙ The drift at the beginning that motionDNA often suffers from is propagated

throughout the whole walk, causing a mismatch between step directions and the

graph edges.

∙ Open spaces at the ends of the corridors allow for some overshooting, which bene-

fits the approach using Android sensors and its slightly longer steps. The too short

distance reported by motionDNA however can often not be compensated by the

particle filter.

Analysis of the Area Match Score

On average, 60.6% (motionDNA) resp. 74.7% (Android sensors) of position updates

match their area. Figure 7 visualizes the area match score for each area on the route.

Obviously, the choice of the SHS influences the overall performance of our position-

ing algorithm. It cannot repair arbitrary errors of the SHS as positions too far away

from any edge and directions very different from the orientation of the edges nearby

the user’s current position decrease the probability of the particles for these edges

significantly (see Eq. 5).

As Fig. 8 illustrates, the area match score and the positioning error are inversely

correlated (r(58) = −0.87, p < 0.05). From these observations we conclude that in

order to support indoor navigation effectively any indoor positioning needs to be

able to reliably estimate a user’s relative movements. While in this study we only

analyzed walking, this observation in a more general setting equally applies to other

kinds of movement (e.g. climbing stairs, taking an elevator, etc.).
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Fig. 7 Area match scores for the two motion tracking methods

Fig. 8 The area match score

correlates inversely with the

median positioning error.

Each point represents the

mean of 10 simulated runs

for one actual walk

Influence of the Navigation Graph on the Area Match Score

While from the preceding analysis we learn the lesson that the area match score’s

precision depends on the quality of the step detection, in the following we identify

other sources for area match errors.

The first source is the indoor navigation graph. Its usage introduces artifacts for

the actual movement of a person as it always has to be snapped on one of the edges—

sometimes a very crude discretization of the actually available degrees of freedom

how to move.

While in corridors no problems may arise, Fig. 7 illustrates that in junctions and

foyers, the area match score tends to decrease. In such a situation, there is only a

single correct edge that can be hypothesized as the current position. However, the

particle resampling may fail when the SHS misses the user’s turn or at least recog-

nizes it too late. In this case only few or even no particles are generated for the

current edge while the majority of the particles hypothesizes the user to continue to
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Fig. 9 Closeup of the part

of the graph that was

changed. The edges drawn in

red were added to stabilize

the position estimation at

this junction

walk straight ahead. This phenomenon is particularly obvious for the junction on the

bottom left in Fig. 7.

Contrarily, the three other larger foyers are represented by a densely connected

net that enables the system to track almost arbitrary paths within these areas (see

Fig. 1). In these areas, the area match score remains high.

This circumstance teaches us that indoor navigation graphs should not only

model accessibility relations between locations in the modeled environment, but also

approximate the geometry of the locations.

We tested this hypothesis by connecting the nodes adjacent to junctions with addi-

tional slanted edges as depicted in Fig. 9, the benefits of which are twofold: Firstly,

it models more natural paths where the test person cuts the corner slightly; secondly,

it allows for the compensation of step length differences since now multiple paths

lead into the corridor that is branching off.

Using the new graph structure, we repeated the computation of the area match

score. The result was not only an improvement in the area after the junction, but

in all subsequent sections as well. In the small but critical area immediately after

the junction, the area match score was improved by 38% (from 0.21 to 0.29) for

motionDNA, and almost tripled (from 0.13 to 0.36) for the Android sensors (Fig. 10).

The improvement is even statistically significant for the remainder of the route after

the change: a Wilcoxon rank sum test indicates that the area match score is greater

for the graph model with additional edges (Mdn = 0.78) than for the original version

(Mdn = 0.73), W = 33942, n1 = n2 = 300, p < 0.05.

For reference, the median position error when calculated for the whole route also

decreased from 2.60 to 2.52 m for the Android sensors, and from 4.28 to 4.11 m for

the version running with motionDNA.

We conclude that by applying a systematic methodology to design an indoor

navigation graph, we can almost completely eliminate the negative influence of the

discretization of the physical environment that is inevitable to construct the repre-

sentation of the environment.
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Fig. 10 Area match scores for the two motion tracking methods (with additional edges in the lower

left corner)

In the remainder of this analysis, we only discuss results obtained by applying best

practices learned so far: we use the internal Android SHS on the indoor navigation

graph with additional edges for junctions (as shown in Fig. 9).

Influence of Area Transitions on the Area Match Score

Dividing a route into areas as explained above introduces another artifact at the

boundaries of adjacent areas. It may prove problematic that boundaries are strict

while SHS is noisy. Therefore, measurements taken around boundaries may be ran-

domly assigned to one of the areas and increase the area match error.

In particular, the smaller an area is, the higher the precision of the SHS has to

be for the measurement to be matched to the correct area. Therefore, in order to

eliminate the influence of this artifact on the area match score, it seems justified to

smooth the boundaries, allowing positions up to 2.5 m (i. e. the median position

error) away from the exact boundary still to count as a match.

By loosening the definition of an area match in this way, the score increases from

0.77 to 0.88 on average, almost cutting the remaining error in half. Considering only

the middle part of each area, defined as those positions that are further than 2.5 m

away from each of the area’s boundaries, the area match score amounts to 0.87 (strict)

respectively 0.91 (approximate). On the other hand, when looking at the boundaries

themselves (i.e. the interval of ±2.5 m around the boundary), the scores amount to

0.73 for the parts immediately after a segment change and 0.84 for the part at the

end of each segment.

In summary, we conclude that the SHS position estimate tends to lag behind more

often than it precedes the actual position.
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Automatic Prediction of Locations with Low Area Match Score

Manually identifying problematic areas with a controlled experiment and known

ground truth as discussed above is no solution of the productive use of indoor posi-

tioning in a complex navigation system.

Instead, the goal has to be to automatically predict these areas during positioning

a user. In this way, the navigation system can be empowered to avoid such situations

altogether or apply situation-specific positioning strategies (e.g. mounting beacons,

interacting with users, classifying raw sensors with other algorithms than SHS). In

our opinion, it is a challenge for research in indoor positioning to substitute sensing

the GPS signal with a hybrid approach to classify raw data into absolute or relative

coordinates. One step towards this research goal is to compute confidence scores for

positioning data in order to automatically predict the best approach for each area of

an (indoor) environment.

We investigated the particle set continuously computed by our algorithm and tried

to detect a predictor for a confidence score of the estimated current position: Dur-

ing navigation, divergence monitoring can be used to identify situations where the

particle distribution deviates too far from the true posterior.

The extreme case where the sum of the non-normalized particle importance

weights is close to zero is already handled by the system. This generally happens

when the step direction does not even approximately coincide with any adjacent

edge. If such a situation is detected the particle filter is re-initialized with a spread

out normal distribution around the last known location, in order to allow the position

tracking to pick up again.

Another promising way to predict erroneous situations is to find a correlation

between the spread of the particles and the accuracy of the positioning, the assump-

tion being that a more scattered set of particles leads to a wrong position more often.

To measure the spread of the particles, we use the root mean square error with respect

to the mean of the particles. It provides meaningful values even when one dimen-

sion of the coordinates is equal for all the particles. Nevertheless, interpreting the

spread of the particles proved difficult since there are multiple factors at play: At the

beginning, the particles are somewhat spread out due to the particle filter’s initial

normal distribution. Since they are forced to move along the graph structure, vari-

ance decreases whenever there is only one possible edge in the heading direction,

i. e. in corridors. Meanwhile, variance increases due to the different step lengths as

long as there is no turn in the route to filter out the wrong step length hypotheses.

As a result, the data can only be interpreted properly after a few turns in the route,

when the influence of the particle filter initialization has decreased.

And indeed, if the test route is considered as a whole, no correlation can be found

between positioning accuracy and particle dispersion. However, taking only the sec-

ond half of the route into account, area match and RMSE do correlate negatively,

r(10) = −0.83, p < 0.01. As can be seen from Fig. 11, there are matching local max-

ima and minima in areas 8 and 11, corresponding to areas immediately after a turn in

the test route. With this knowledge, problematic areas can be identified heuristically

based on the graph structure and the calculated route before the actual navigation

takes place.
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Fig. 11 Development of

median particle RMSE and

area match score over the

course of the test route

6 Conclusions

The main objective of our work was to introduce and validate the area match score

as an approximate indoor positioning metric tailored to the needs of generating land-

mark based navigation instructions for pedestrians. An empirical evaluation of the

score in a typical indoor environment displays promising results: The best value for

a single run is 0.918, with a median position error of very accurate 1.07 m. The aver-

age score for the best configuration amounts to 0.770 with a median position error

of 2.52 m (for a PDR system with map-matching). While these figures cannot be

compared directly to those reported for the EvAAL-ETRI competition (Potortì et al.

2015), e.g. due to a different indoor layout, they show that the approach certainly can

compete with the state of the art. Nevertheless, we identified room for improvements:

∙ Environment Model: In the present study, the turns in the route proved most

problematic, causing a sharp decrease of accuracy in the areas after junctions. In

our work, we developed a methodology how to overcome his issue. However, in

almost any building, there are also other layouts such as foyers or other large open

spaces. Therefore, one aspect for our future research is to generalize our findings

for junctions to areas with different geometric characteristics.

∙ Motion Model: We assumed the user to steadily walk ahead on the same floor in

order to be able to reliably analyze the SHS data. However, analogous models have

to be developed for other ways to move (in areas of other environmental type), such

as taking stairwells, elevators, or escalators. According to the most recent position

estimate an indoor positioning algorithm will have to decide at runtime which of

the models to be used for the analysis of raw sensor data.

The comparison of the two motion tracking solutions showed that the supposedly

more sophisticated one does not outperform the built-in step counter when embedded

in a more complex, non-metric approach to indoor positioning. Both suffer from

a cold start problem and produce wrong estimates when indoor positioning starts.

To Navisens’ credit, we only used a small portion of motionDNA’s capabilities and

designed the experiment in a way that the Android sensors would have a reasonable

chance at competing, e. g. by restricting the device location and only using a single

floor for the test route.
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As far as the practical purpose of implementing pedestrian navigation systems

is concerned that can reliably generate instructions during the navigation phase

our research and the high precision values achieved in the experiments point out

a promising way to integrate metric sensor data, graph-like environment models for

route calculation and landmarks and landmark based navigation strategies.

Even if only few test persons took part in our study, we argue that our experi-

ment provides reliable results: the gait parameters of our test persons are within the

margin reported by medical surveys. Furthermore, the sensor data from each walk

is processed by the localization algorithm multiple times in order to eliminate noise

stemming from the non-deterministic nature of the particle filter. All in all, there are

150 runs with tens of thousands of individual position updates for each configuration,

which is enough data for robust results.

In our future work, we will evaluate hybrid system architectures with additional

positioning data e.g. from WiFi or BLE in order to analyze their performance to

reinitialize PDR after a complete failure. Furthermore, we will evaluate our approach

to predict critical PDR errors in an online setting and investigate whether it allows

to reduce PDR failures.

Finally, our experiments indicate that by machine learning techniques areas can be

identified that lead to high errors in the area match score. Such an analysis enables

us to systematically expand the indoor navigation graph in these areas in order to

reduce the error rate. A second option is to prepare the environment in these critical

areas e.g. by mounting BLE beacons. We will investigate whether this is a practicable

strategy to further reduce the error rate or whether other hybrid strategies for indoor

positioning have to be applied.
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