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Abstract A large number of online rating and review platforms allow users to

exchange their experiences with products and locations. These platforms need to

implement appropriate mechanisms to counter malicious content, such as contri-

butions which aim at either wrongly accrediting or discrediting some product or

location. For ratings and reviews of locations, the aim of such a mechanism is to

ensure that a user actually was at said location, and did not simply post a review from

another, arbitrary location. Existing solutions usually require a costly infrastructure,

need proof witnesses to be co-located with users, or suggest schemes such as users

taking pictures of themselves at the location of interest. This paper introduces a

method for location proofs based on visual features and image recognition, which

is cheap to implement yet provides a high degree of security and tamper-resistance

without placing a large burden on the user.

1 Introduction

In recent years the impact of online ratings and reviews on the decisions people make

has steadily risen, and has thus also moved into the focus of research. Among others,

the empirical analysis by Ye et al. (2011) showed that a 10% increase in the online

rating of hotels led to a boost of online bookings by more than 5%, while Anderson

et al. (2012) found that an extra half star rating causes restaurant sales to go up by

19%. As a consequence, the number of corresponding platforms has risen and ratings

and reviews have become an important factor for business owners.
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Generally, online ratings and reviews (in the following only referred to as reviews)

can be separated into those that refer to a product and those that refer to a point of

interest (POI), such as a hotel or a restaurant. This work focuses on the latter. While

some platforms are specialized on certain domains, such as restaurants or hotels (as

in the case of TripAdvisor
1
), general purpose platforms such as Yelp

2
or Google

Maps
3

also exist. Using these platforms, it is possible to review any POI from a train

station to a national park.

As online reviews directly influence the revenue of businesses, the incentive to

create fake reviews is high. Not surprisingly, Hu et al. (2011) were able to detect

manipulations in online reviews on both Amazon
4

and Barnes & Nobles.
5

Currently

the major platforms do not implement any sophisticated measures to prevent the cre-

ation of fake reviews, other than that reviews need to be written by humans. This

makes it easy to create malicious reviews, such as fake positive reviews for the own

business or fake negative reviews for the competitors. Thanks to crowdsourcing plat-

forms such as Mechanical Turk,
6

companies that offer the creation of fake reviews

have access to a large human workforce. As a consequence, the state of the art sys-

tems are not able to efficiently prevent the creation of fake reviews.

Hence, in order to prevent fake reviews, it is not only necessary to check if a user

is human, but also to verify that she visited the location she wishes to review. Such

a “proof of location” or “location proof” can for example be achieved by letting the

user solve a location based challenge. To do so, the location based challenge needs

to fulfill the following properties:

∙ The challenge should only be solvable if the user is present at the correct location.

∙ It should not be possible to use a solved challenge a second time.

∙ A solution to the challenge should only work for one particular location.

∙ Business owners or other entities with positive or negative intentions with regard

to the location of the challenge should not have any influence on the challenge.

∙ In order to ensure scalability there should be no need to locally install additional

hardware or to require other users or entities to be present at the same time.

The first three properties are obviously required in order to ensure that a user is at

a specific location. For example, if the challenge would simply consist of a secret

code that is attached to the wall of a restaurant, this key could easily be distributed

to other users. Furthermore, the business owner can choose whom he wants to show

the key, thus avoiding potential bad reviews.

In this work, we propose a location based challenge using photographs. A user

must take a picture of a location with her smartphone camera in order to prove that

1
https://www.tripadvisor.com.

2
https://www.yelp.com.

3
https://www.maps.google.com.

4
https://www.amazon.com.

5
https://www.barnesandnoble.com.

6
https://www.mturk.com/mturk/welcome.

https://www.tripadvisor.com
https://www.yelp.com
https://www.maps.google.com
https://www.amazon.com
https://www.barnesandnoble.com
https://www.mturk.com/mturk/welcome
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she actually is at that location. Specifically, the user has to take a picture that over-

laps by 50% with the right part of an existing picture. The verification is achieved

by matching the photo to the previous photos. As nowadays nearly everybody has a

smartphone with a decent camera, no additional infrastructure is required. Match-

ing of photos is a well-studied problem. State-of-the art algorithm can automatically

match multiple images to create panoramic images (Brown and Lowe 2007). These

algorithms work by first extracting and matching scale-invariant feature transform

(SIFT) features (Lowe 2004) from the different images. Thus, these algorithms inher-

ently must decide if two images can be matched or not. Even when having a large

database of existing photos, it is unlikely that an existing photo, not yet known to the

system, matches a previously taken photo.

This paper is structured as follows. The next section discusses the relevant litera-

ture. We then present our method followed by an analysis of the adversarial model,

as well as a simulation thereof. Finally, we discuss the location proof and draw our

conclusions.

2 Related Work

A large body of work treats location proofs and secure location claims, as prov-

ing that a device or person is at a claimed position is an important step in many

tasks. Location-based access control and authentication (Sastry et al. 2003; Fran-

cillon et al. 2011), interaction with online location-based services (Zhu and Cao

2011; Javali et al. 2015; Khan et al. 2014), or people-centric sensing (with smart-

phones) (Talasila et al. 2013) are examples where adversarial users might want to

fake their locations in order to gain access, get additional benefits from services, or

simply disturb the system. Our motivating examples are online reviews, where users

can post their experiences with a service or at a location to a central system, making

it available for other people which might be thinking about using the same service,

or visiting the same location. In such settings, it is not uncommon for the different

entities to cheat by posting fake reviews about their own service or a competitors’

one (Mayzlin et al. 2014). Mayzlin et al. (2014) propose a methodology for detect-

ing review manipulations, and find examples of both positive as well as negative

manipulation on different review platforms, in particular when a competing service

is located closely to the one being reviewed. Optimally, users would have to prove

that they a) actually were or currently are at the location they are reviewing, and b)

that they are not owning the business, nor being otherwise closely affiliated with it.

In general, such proofs require an active component, i.e., a device that has both

computational and communicative powers, and a specialized communication proto-

col between the device and a user’s smartphone. For example, Sastry et al. (2003)

present the Echo protocol, which allows a set of verifiers V to verify that a prover p
is in a certain region of interest R. Echo requires the verifier and prover to be able

to communicate both using radio frequency as well as sound – in its simplest form

the prover echos a request by the verifier using ultrasound, and the time required for
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this action bounds the maximal distance the prover is from the verifier. Ultimately,

such time-of-flight or time-difference-of-arrival based approaches are very common

for location proofs (Brands and Chaum 1994; Waters and Felten 2003), but require

specialized devices at each location, which makes them an unfavorable choice for

review platforms. In addition, to bound the round trip time (from verifier to prover

and back), the prover has to be able to compute a response within a short time frame,

requiring a device capable of doing so. This also implies that the active device is in

control or possession of the reviewee, which is usually not given for online reviews,

where the central platform has no direct connection to the individual services and

locations. In the past, different communication technologies, such as Wi-Fi (Waters

and Felten 2003; Luo and Hengartner 2010; Saroiu and Wolman 2009; Sastry et al.

2003; Javali et al. 2016), Bluetooth, (Mengjun et al. 2016; Wang et al. 2016; Zhu and

Cao 2011) or RFID (Gao et al. 2012) were used for time-of-flight location proofs.

Another line of research concerns location verification utilizing third-party wit-

nesses. Khan et al. (2014) require a spatio-temporally co-located entity to be present

when the verifier tries to verify the provers location claim. Witnesses register with

a location authority, and are used to generate location proofs (which are sent to the

prover), which in the end can be presented to another party requiring location ver-

ification. Their protocol is resistant to malicious verifiers, provers, and witnesses,

but requires the presence of even more active devices. Similar methods requiring

witnesses are described in literature (Mengjun et al. 2016; Wang et al. 2016). While

finding a witness might be possible for online reviews, it again is difficult for the

review system to control location authorities at every location.

In our work, we propose a weaker form of location verification, inspired by so-

called Captchas (Von Ahn et al. 2003). In essence, “a Captcha is a cryptographic

protocol whose underlying hardness assumption is based on an [artificial intelligence

(AI)] problem” (Von Ahn et al. 2003, p. 296). Commonly, Captchas are known from

registration websites, where they appear as distorted images, in which a user has to

recognize letters or numbers in order to verify his or her human nature. Saroiu and

Wolman (2009) present an approach inspired by Captchas, which has the intention

of proving that a person (i.e., not a device) is at a certain location. For this, they

require that a picture of the person at the location is being sent to the verifier. The

proof is made stronger by making the person hold up a paper, on which a certain

requested message by the verifier is written. This prevents a malicious user from

simply reusing the same picture over and over again. Our approach differs from the

approach in Saroiu and Wolman (2009) in that we do not require the person to be

present in the picture (i.e., we verify the location of the device), and that the repeated

use of the same picture is prevented by requesting a picture at a random (but well-

defined) location. It also differs from conventional Captchas, because its underlying

hardness assumption is based on location properties, i.e., only someone present at

the location is able to easily solve the problem.
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3 Method

This section introduces the “Captcha your Location Proof” (CLP) method. The CLP

method works with little to no infrastructural overhead, and has a similar mechanism

to that known from Captchas. In particular, CLP uses the smartphones’ capability of

taking pictures for proving a client’s location. The section starts with presenting the

stakeholders, i.e., the natural persons or organizations involved in the execution of the

proof. Then, the actual procedure describing both the underlying data structure and

the communication between a client and a location based service provider employing

the location proof method is explained in detail.

3.1 Stakeholders

The CLP approach involves three different stakeholders, the location based service

provider, the location owner and the client.

Location Based Service Provider. The location based service provider (called:

provider) is an organization or a group which wants to use CLP to ensure that clients

of its (crowd sourced) services receive authentic information about locations. In par-

ticular, the provider acts as a trusted entity throughout this process. The provider

typically hosts CLP within a web application, such as an online review site.

Location Owner. The location owner is an organization or a group which man-

ages a particular location of interest, such as a restaurant or a park. The location

owner does not have to set up any infrastructure for CLP to work.

Client. The client (or also user) is both the consumer and producer of information

regarding the locations made available through the provider.

3.2 Procedure

The Data Structure. For the CLP approach we focus on the client as a producer of

information, i.e., someone who wants to add some kind of information (e.g., a rating,

a description, etc.) to a particular location she previously visited (e.g., a restaurant, a

park, etc.). The provider (technically represented by an appropriate IT infrastructure)

requires an image of the location from the client as a proof of presence. We define the

combination of these three data items (i.e., information, location and image) together

with the client as a contribution (cf. Fig. 1).

The images of contributions of different users are required to overlap partially,

i.e., new images need to partly depict scenes of already existing images. In our data

structure, this means that each image contains a reference to its successor, forming

a directed tree It. A successor of an image il is an image ik that overlaps with 50%
of the right half of il (cf. Fig. 4). Images taken by different clients from the same
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Fig. 1 The simplified class

diagram for the data

structure underlying the CLP

approach
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- Iden fier
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successors

- Iden fier
- NumRejects

Fig. 2 An UML sequence

diagram depicting the “The

Contribution” step of the

CLP procedure ProviderClient

contribute (clientId, informa on, loca on)

perspective constitute the level l in the image tree It. In particular, all images

il,1,… , il,n at level l of the image tree have all images ik,1,… , ik,m of level k in the

image tree as successors. Consequently, connecting the images of a path through the

image tree would result in a big panoramic image representation of a location. We

also store the number of times an image was rejected or accepted as a valid repre-

sentation of a location.

Every now and then we ask clients to start a new image tree It for a particular

location. Therefore, a location refers to one or more image trees [I0,… ,In] repre-

sented by their respective root image, and t indicates the tth tree in that list of trees.

The Contribution. The CLP approach starts with a contribute message sent from

the client to the provider. The message contains the client’s ID, the information she

wants to contribute and the location the contribution is for (see also Fig. 2). For

example, Alice wants to create a contribution for a restaurant she visited in Tokyo

(see Fig. 3). She therefore sends the following (simplified) message to her provider:

“(id: alice2018, location: (Tasty Edamame, Tokyo, Japan), information: (‘5 stars’,

‘amazing sushi place’))”.

The Challenge. After receiving the client’s contribution request, the provider cre-

ates a temporary “Contribution” instance and returns its ID (for an appropriate com-

munication tracking) together with a challenge (see also Fig. 5). That is, the provider

challenges the user to prove she actually is at a location by taking a picture of it.

More precisely, this is done by choosing from one of the following challenges, i.e.,

either to:

∙ append a picture to a known image tree of the location, i.e., taking a new picture

that partially overlaps with an existing one in that tree, or to
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Fig. 3 The location the

“Alice” wants to create a

contribution for

∙ prove an existing picture, i.e., taking a new picture that completely overlaps with

a known picture in a known image tree, or to take a completely

∙ new picture, which is not compared to any other picture and constitutes the root

for a new image tree.

Each of these challenges is chosen with a different probability. Formally speaking,

the provider chooses the challenge c ∈ {append, prove, new}, where pappend ∈
[0, 1], pprove ∈ [0, 1] and pnew ∈ [0, 1], with pappend + pprove + pnew = 1.

To reduce the complexity, we assume that images can only be appended to the

right of an existing image, i.e., there is at most one image per tree a user can append

to, namely the rightmost one. We denote the list of all images for a location, i.e., the

concatenation of all images of all image trees It as I = [I0,… ,In]. We further

define an image i ∈ I by I[idx], where idx = (idxt, idxl, idxi) references a single

tree by idxt, a particular level by idxl, and an image on this level by idxi.

The image for an append challenge is defined as ic = I[idx], with idxl = |It|−1
for a randomly chosen image tree It (idxt = t; idxi is randomly chosen from all

the available images in the tree at that level). For the prove challenge the image is

defined as ic = I[idx], where idxl < |It| − 1 for a chosen tree, i.e., the image is not

the rightmost image in this image tree. Finally, to create a new image tree In+1 the

provider asks the client for an image and accepts whatever the client responds.

Note that, even though the provider actually chooses out of three different chal-

lenges, from the client’s perspective there is no actual difference between append and

prove, since the provider always sends some image ic and marks 50% to the right of

it for matching or asks her to take a completely new picture. If we assume that each

user can only make one contribution for any location, the request is rejected if such

a contribution has already been made.

In our example from Alice’s perspective the provider responds to her depending

on whether she is the first or nth contributor for the location ‘(Tasty Sushi, Tokyo,

Japan)’:
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(a) (b)
Challenge Response

Fig. 4 a The picture Alice could take given the new challenge. b After receiving the append
challenge with the picture to the left ic, Alice could take the picture to the right ir to match the right

hand side (red boundary) of it

challenge (contribu onId, challenge, image)

createContribu on(client, informa on, loca on): contribu onId

chooseRandomImageLe OfRightmostImage(imageTree): image

chooseRandomChallenge(loca on): challenge

chooseRightmostImage(imageTree): image

alt

[challenge=new]

[challenge=append]

[challenge=prove]

chooseEmptyImage(): (image=null)

chooseRandomImageTree(loca on): imageTree

Fig. 5 An UML sequence diagram depicting the “The Challenge” step of the CLP procedure

∙ In case of the first contribution Alice receives the response (contributionId: 42,

challenge: ‘new’, image: null) and is thus asked to take a picture of the “Tasty

Sushi” (see Fig. 4a).

∙ In case of the nth contribution Alice either receives the response (contributionId:

42, challenge: ‘new’, image: null) and is again asked to take a picture of the “Tasty

Sushi” (see Fig. 4a), or she receives the response (contributionId: 42, challenge:

‘append’, image: ic) and is asked to append to the right of an existing picture

(see Fig. 4b).

The Response. After receiving the challenge, the client responds with either one

of the following (see also Fig. 6):

∙ img, i.e., taking the picture, or

∙ reject, i.e., not taking the picture (except if we had a new challenge)

Rejecting to send an image could be either because the client cannot or does not want

to respond to the challenge.

In case of Alice this means that she could either:

∙ Take a picture and respond with (contributionId: 42, image: ir) (see also Fig. 4b),

or
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Fig. 6 An UML sequence

diagram depicting the “The

Response” step of the CLP

procedure

response (contribu onId, image)

alt

[response=reject]

[response=img]
takePicture(): image

refuseToTakePicture(): (image=null)

∙ Reject ic and respond with (contributionId: 42, image: null)

The Reaction. The provider’s reaction to the the client’s response depends on the

previously chosen challenge (see also Fig. 7):

∙ if the provider chooses an append challenge with the image ic
– and the client responded with img and the image ir: the provider checks whether

there is a 50% overlap between ic and ir. If not, the client’s response is rejected

and she is asked to submit a new image ir,new. Otherwise, ir is added to It at

level |It| and is defined as successor to all images at level |It|−1. The provider

then responds with an “OK” message to the client.

– and the client responded with reject: the provider increments the “NumRejects”

counter of ic and goes back to the The Challenge step and reruns the process

from there on.

∙ if the provider chose a prove challenge with the image ic
– and the client responded with img and the image ir: the provider checks for a

50% overlap between ic and ir, as well as for a 100% overlap with all images

stored at the same level as ic. If there was already no 50% overlap, the client’s

response is rejected and she is asked to submit a new image ir,new. If however

the 100% comparison fails, the provider accepts the contribution anyway, but

increases the “NumRejects” counter for the images that do not match ir. ir is

then added to It at the level of ic + 1 and is defined as successor to all images

at the level of ic. The provider responds with an “OK” message to the client.

– and the client responded with reject: the provider increments the “NumRejects”

counter of ic and all images at the same level in It that match it, and goes back

to the The Challenge step and reruns the process from there on.

∙ if the provider chose a new challenge

– and the client responded with img and the image ir: the provider creates a new

image tree In+1 with ir as the root image and n being the number of image trees

for the location. The provider responds with an “OK” message to the client.

At any point in time, the client can cancel the procedure; this is not treated separately

here.

In case of Alice this means that she could either:
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check50%overlap()

alt

[challenge=new]

[challenge=append]

[challenge=prove]

alt

[response=reject]

[response=img]

alt

[valida on=nok]

[valida on=ok]

goto Client:"takePicture()"

updateLoca on()

OK

goto Provider:"chooseRandomChallenge(loca on)"

check50%overlap()

alt

[response=reject]

[response=img]

alt

[valida on=nok]

[valida on=ok]

goto Client:"takePicture()"

updateLoca on()

check100%overlap()

OK

incrementNumRejects()

goto Provider:"chooseRandomChallenge(loca on)"

incrementNumRejects()

alt

[response=img] updateLoca on()

OK

updateLoca on()

Fig. 7 An UML sequence diagram depicting the “The Reaction” step of the CLP procedure

∙ Take a picture and respond with (contributionId: 42, image: ir), or

∙ Reject ic and respond with (contributionId: 42, image: null)

3.3 Adversarial Models

3.3.1 Assumptions

We assume that the service provider has a crowd sourced location based service.

In particular, the service provider wishes to ensure that its clients’ contributions are
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authentic, i.e., that the client actually was at the location she made the contribution

for. The communication between the clients and the server is secure, and the server

(and thus also the service provider) is a trusted entity. We assume that the location

owner wants the information which is made available to the clients by the service

provider to be of a positive nature.

Furthermore, the clients, to prove the authenticity of their contribution, use a

mobile phone to take a picture at the locations they wish to contribute information

about. The picture along with their current (GPS) position, as well as a set of any

other information (e.g., a rating) is then sent to the service provider. Moreover, the

clients trust the service provider to ensure that the location based information they

receive from other clients is authentic. The image processing is assumed to be able

to detect if two images are similar or completely distinct. In addition, we assume the

challenge images to be watermarked, i.e., it is not possible for an adversary to simply

reuse these images at a later point in time.

Finally, we we will assume scenarios, where adversarial contributions appear in

“bursts”, i.e., ignoring a location’s actual quality, adversarial contributions will either

occur at the beginning or the end of a contribution “history”. This is based on the

observations from Hu et al. (2011), i.e., an adversary might either create novel con-

tributions for a location that has none, or try to negate whatever contributions already

exists. In either case the contributions aim at either discrediting a location or boost-

ing its reputation. To realize this, they have to occur within a certain clustered time-

frame. This holds true even if adversaries would try to make the contributions with

temporary displacements to avoid attracting attention.

3.3.2 Threats

Threats can originate from both clients and location owners. Reasons to manipulate

contributions could be that the client is a competitor of the location owner and wishes

to discredit the location, or that she is employed by the location owner to add positive

information regarding the location. The location owner could also act as a client

herself.

Generally, an adversary (either a client or location owner) can easily spoof her

GPS location. That step would by itself however not necessarily break the CLP

approach. In particular, we identified the following additional actions that are nec-

essary to pose a threat:

∙ Malicious first contribution. An adversary (client or location owner) can con-

tribute with an initial image which is not of the location L she claims to be at.

For example, she can take a picture of any other location L’ and have that image

uploaded. Afterwards the adversary can add further images and information from

the fake initial location L’.

∙ Similar looking locations. An adversary might try to make a contribution from

a location L’ for the location L by trying to find an image that she believes might

be accepted by the system. That is, after receiving the challenge for a segment of
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an image of L, she searches an image database and finds one that she believes has

similar enough features.

∙ Catalog of real images. An adversary could take many pictures of the actual loca-

tion L and store those in a data storage. Afterwards the adversary could create

contributions and use the image database for looking up an appropriate proof that

complies with the CLP approach.

∙ Systematically boosting fake contributions. Adversaries could systematically

reject all images they know are real and try to find images fitting to fake images.

∙ Creating a fake image tree. Adversaries could systematically reject all images

until they receive the new challenge and afterwards continue rejecting any image

that is not within that image tree and only append to that tree.

∙ Accepting only new challenges. Adversaries could systematically reject all chal-

lenges until they receive the new challenge and create only new image trees with

fake images.

∙ Man-in-the-middle. A known attack against the Captcha system was an appli-

cation that relayed Captchas to third users, which were incentivized by various

rewards to return the solved problem to the original user. With our system, such

man-in-the middle attacks are much harder as somebody needs to be present at the

actual location.

The next section will evaluate these threats using a simulation approach, and discuss

countermeasures for the threats which CLP cannot prevent.

4 Technical Evaluation

In this section, we will discuss the advantages and disadvantages, as well as the pres-

ence of adversaries in the CLP approach in more depth. Recall that upon receiving

an image, a user has two options to respond: {img, reject}, where the first response

means sending an image i (either appended to the challenge image ic with an over-

lap of 50%, or a completely new one), and the second means to reject the challenge

image, thus discrediting it, and receiving a new challenge (this second response is

not available for the new challenge).

4.1 Honest and Adversarial User Responses

For each challenge, we have to evaluate the possible answers of a user uh (honest),

and a user ua (adversarial). Note that we do not make any statements on the honesty

of the contribution of a user, but only on its location—someone who is present at

a certain location can still send reviews discrediting a competitor. The user has to

be at the location, though, and cannot simply outsource the task to some company

operating from another location.
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The new challenge. If a user receives a new challenge, there is only one possible

response, namely to send a new image i, which will be stored in the CLP system as

part of a user’s contribution. As we do not know if u is honest or adversarial, the

system simply stores the image without any further processing.

The append challenge. When appending to an image ic, honest and adversarial

users react differently. In the following, we assume that uh always is correctly fol-

lowing protocol, while ua chooses either the potentially best outcome for herself, or

the worst impact on the system (to destabilize it). As such, user uh will perform one

of the following two actions:

∙ The user finds the scene depicted by the challenge image ic at the location, and is

able to append as requested. She will send the appended image i, which will be

stored as part of a contribution associated with the given location.

∙ The user is not able to find the scene depicted by ic, and thus has to reject the chal-

lenge. The challenge image ic is now discredited, i.e., the CLP system increases

the rejection count of image ic. This will later be important, when we assess which

users to trust, and which users to flag as adversarial.

A dishonest user ua will react completely different upon receiving an append chal-

lenge. Let us first assume the challenge image ic is honest, i.e., the scene depicted by

it can be found at the location. In this case, the adversarial user has two options:

∙ She can reject the honest image ic, thus discrediting it, and receive a new challenge.

The CLP provider will store that ua discredited the image, and continue as usual.

∙ Append a dishonest image by taking the overlapping half of ic, generating some

arbitrary image for the other half, and sending it back to the CLP provider. Again,

the CLP system does not know this is an adversarial image yet, so it will store the

the image as part of the user’s contribution.

Choosing the first option, ua builds up distrust towards honest users, which can

be an advantage, as long as her adversarial identity is not revealed. With the second

option, ua builds up trust, as long as the contribution is not discredited by honest

users. In case the challenge image ic itself is dishonest, ua would have the same

choices again. However, rejecting a dishonest image would discredit the adversarial

owner of that image, and result in uncovering the owner’s mischievous doings. As

such, it would always benefit honest users, and the trustworthiness of the system. We

can thus assume that in order to get the maximal benefit for herself, a malicious user

always appends to a dishonest image.

We introduce the probabilities pr (reject) and pa = 1 − pr (append) with which

the response of an adversarial user is chosen. As discussed above, pa = 1 for a

dishonest challenge image, as the adversary will always append. We will evaluate

different values of pr and pa for a honest challenge image below, but for example, if

the probability to reject is pr = 1, this means the adversarial user will reject until she

either has to append to a dishonest image or gets a challenge for a new image (the

prove challenge will also always be rejected, as from a user perspective, append and

prove look equal).
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Fig. 8 Schematic representation of the images in the CLP system. Each image can stem from a

honest or from an adversarial user, and has a certain number of agreements (successfully appended)

and rejections associated with it (number of times the image was rejected during an append or

prove challenge). Whenever a new challenge is responded with a new image, another such a “list of

images” is started

The prove challenge. From a user’s perspective, the prove challenge cannot be

distinguished from the append challenge. As such, the responses are the same, but

since the CLP system has additional knowledge this results in a different procedure

on the system.

Namely, the system will check for any appended image, if it corresponds to any of

the other images taken at this position. This results in a number of agreeing images,

and a number of disagreeing ones. In the worst case, all adversaries work together,

i.e., they send images that agree with each other, but not with the images of the honest

users. On the other hand, all images of honest users always agree with each other, per

our definition of honesty. Figure 8 shows the images associated with a given tree of

images, displayed as a list of stacks of proved images. Such a list is started whenever

an image is entering the system as response to a new challenge. The images in this

list can stem from honest and adversarial users, and thus create a number of trust
votes for each other. For example, in a stack with 5 honest images, and 3 adversarial

ones, each of the honest images has 4 votes of trust, and 3 votes of distrust, while

each of the adversarial images has 5 votes of distrust, and 2 votes of trust. The votes

are simply computed by applying image processing techniques to all images, and

measuring how many of the features of two images agree with each other. Note that

these images would all overlap each other, for clarity they were drawn separated in

Fig. 8.

In addition to these trust votes, each image can be appended to or be rejected

in response to append and prove challenges, which is counted for each image in

variables na (number of agreements) and nr (number of rejections).

4.2 Assessing Adversarial Users

We are ultimately interested in determining which users are adversaries, and which

users can be trusted. As a system, our initial trust towards each user is the same, but



Captcha Your Location Proof—A Novel Method . . . 283

given user votes, we can determine which users we can trust more, and as a result,

which users’ reviews we have to remove from the system again. We can do this using

the knowledge gained from rejected images, as well as from proved images that do

not match.

In the following analysis, we restrict ourselves to saying that every user can at

most prove her location once (i.e., each user is unique and does not appear for mul-

tiple images nor multiple locations). We reason that security improves if users are

allowed to prove their location several times and at multiple locations, as honest users

can build up trust, which can be weighted more when wanting to detect adversaries.

Insofar, the situation considered here is a worst-case scenario which should improve

in real-world systems.

As described above, we have two sets of votes for each image, one from rejec-

tions, and one from comparison to other proved images. The rejection votes make

statements about users thinking that a particular image is adversarial (i.e., it will con-

tain an arbitrary number of votes, depending on the number of times the image was

chosen to be part of a challenge). The prove votes make a similar statement implic-

itly, and thus always contains a number of votes corresponding to all other proved

images at the same location.

We can now count the positive votes in a set of prove images Ip (which should

depict the same location) for any given image i (and thus the user who posted it) as:

vi,p = na + agree(i, Ip)

where na is the number of users who successfully appended to this image and

agree(i, Ip) is the number of images of the same location that agree (i.e., have enough

matching features for the image processing to recognize them as the same location)

with this image. The number of negative votes is computed as:

vi,n = nr + (|Ip| − agree(i, Ip))

where nr is the number of users who rejected to append to this image and |Ip| −
agree(i, Ip) is the number of images at the same place which do not agree with this

image. We now trust an image (and thus the user who posted it) if vi,p > vi,n. This

also means that we trust the location of the user to be genuine. Note that with this

scheme, we can discover adversarial users at any later point in time, and eventually

remove their mischievous reviews. We thus have to recompute trust whenever a new

user contribution enters the system, and assess which users we trust, and whom we

have to classify as adversarial.

4.3 Simulating CLP Challenges and User Responses

To evaluate the influence of different probabilities and parameters on the number of

adversaries CLP is able to identify, we now present a simulation of the approach.

The simulation model exactly follows the above described method, i.e., honest and
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adversarial users want to add a contribution to a system, and are challenged to either

provide a new image, append to an existing one, or prove an image. While the append
and prove challenges look equal from a user’s point of view, the system handles their

responses differently. Within the simulation, we model a restricted view of the world

for the CLP system, as well as for the clients themselves. As the simulator knows

everything (in particular, which users are honest, and which ones are adversarial),

we can easily compute how many users were correctly classified as adversarial by

the system, and how many honest users are wrongly accused of being dishonest. In

an optimal system, no honest user would be treated as an dishonest, and no adversary

would be treated as honest.

The simulation routine is shown in Algorithm 1. The functions generateUser (L1)

and generateChallenge (L4) simply generate either honest or adversarial users, and

new, append or prove challenges, according to the rules defined above. insertImage
(L10) increases the agreement count, and inserts the image at the correct position

in the right image tree. The core function simulateStep first generates a random user

and a random challenge (L13–15), and then applies the logic described above to

the image collection, depending on the type of challenge. If a user rejects a cer-

tain challenge image, the goto (L22/26) statements cause the simulator to generate a

new challenge, and restart the procedure. Finally, we count the number of distrusted

honest users hdistr. as the percentage of all honest users, for whom the majority vote

yielded that they should not be trusted, and atrust. as the percentage of all adversaries,

for whom the vote yielded that they should be considered honest.

We ran the simulation for a range of values for the parameters pnew, pprov, pr and

padv, in order to determine the best values for pnew and pprov (papp can be calculated

from them), given different adversary strategies. Table 1 shows the best values (when

minimizing atrust) for pnew and pprov for given probabilities of adversaries, and dif-

ferent adversarial strategies. beg. and end are two adversary strategies, where there

either is a burst of adversaries in the beginning (padv = 0.7 for the first 25 contri-

butions, and 0.1 for the rest) or in the end (padv = 0.7 for the last 25 contributions,

otherwise 0.1). For each parameter combination, we ran the simulations five times

for 100 contributions each, and measured the average of the final percentages for

distrusted honest users and trusted adversaries.

Figure 9 gives exemplary outputs for three simulations. On the left, a scenario

with padv = 0.2 is shown, while in the middle the adversaries are clustered in the

Fig. 9 Output of three simulation runs, where honest and adversarial persons use CLP to upload

contributions to a review site
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Algorithm 1: The simulator function, which is executed iteratively. Each itera-

tion adds another user contribution, either from an honest or from an adversar-

ial user. 𝐈 = {I0,… , In} corresponds to the image trees associated with a cer-

tain location, and is initially empty. The function random() generates a random

number r ∈ [0, 1], the function randomImage(⋅) selects a random image from

all images in the trees passed to it, and the probabilities padv, pnew, papp, and

pr describe the percentage of adversarial users, new challenges, append chal-

lenges, and the reject strategy of adversarial users. We assume insertImage(⋅)
knows how to append a new image ir to the image tree, given a predecessor

ic. A and R are accept and reject counters for all images, and are initially 0 for

every image. Finally, filter(⋅, f ) only returns the images which fulfill the predi-

cate function f .

1 Function generateUser ()
2 if random() < padv then return AdversarialUser
3 else return HonestUser
4 Function generateChallenge (𝐈)
5 if |𝐈| = 0 then return NewChallenge
6 r ← random()

7 if r < pnew then return NewChallenge
8 else if r < pnew + pprov then return ProveChallenge(randomImage(𝐈))
9 else return AppendChallenge(randomImage(𝐈))

10 Function insertImage (ic, ir)
11 A[ic] ← A[ic] + 1
12 append(𝐈, ic, ir)
13 Function simulateStep ()
14 u ← generateUser()

15 c ← generateChallenge(𝐈)
16 switch c do
17 case NewChallenge do
18 𝐈 ← 𝐈 ∪ {I(ir)} ⊳ Where I(ir) starts a new image tree.
19 case AppendChallenge(ic) or ProveChallenge(ic) do
20 if typeof u = HonestUser then
21 if typeofowner ic = HonestUser then insertImage(ic, ir)
22 else R[ic] ← R[ic] + 1; go to 15

23 else
24 if typeofowner ic = DishonestUser then insertImage(ic, ir)
25 else
26 if random() < pr then R[ic] ← R[ic] + 1; go to 15

27 else insertImage(ic, ir)

28 hdistrusted ← |filter(𝐈, i ↦typeofowner i = HonestUser and vi,n > vi,p)|

29 atrusted ← |filter(𝐈, i ↦typeofowner i = DishonestUser and vi,n < vi,p)|
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Table 1 Different scenarios, and the percentage of identified adversaries. hdistr. is the percentage

of honest users that are distrusted, atrust. is the percentage of adversaries that are wrongly trusted

padv pr pnew pprov hdistr. [%] atrust. [%]

0.1 0.2 0.05 0.35 0.0 1.7

0.5 0.05 0.70 0.1 8.1

0.8 0.05 0.05 3.3 9.5

0.2 0.1 0.05 0.25 0.0 4.8

0.5 0.05 0.50 0.1 7.8

0.8 0.05 0.25 1.1 16.0

0.4 0.1 0.05 0.50 6.7 27.4

0.5 0.05 0.80 2.4 27.8

0.8 0.05 0.80 7.6 42.4

0.8 0.1 0.10 0.35 15.3 87.5

0.5 0.05 0.50 11.3 87.6

0.8 0.05 0.30 14.1 89.4

beg. 0.1 0.05 0.20 0.4 14.2

0.5 0.05 0.20 0.1 26.5

0.8 0.05 0.75 0.4 33.1

end 0.1 0.05 0.85 0.4 13.6

0.5 0.05 0.75 0.8 16.2

0.8 0.05 0.40 0.7 24.4

beginning, and on the right in the end (as described in the previous paragraph).

pnew = 0.1, pprov = 0.3 and pr = 0.2 were constant.

It can be seen from both Table 1 and Fig. 9 that CLP usually is able to identify a

large number of adversaries. The best strategies for adversaries are to either simply

suppress the honest users (large padv), or to choose a large pr, i.e., simply reject

everything until the are allowed to send a new image. However, we argue that such

users could be identified (for example, by always sending a append images with

many trust votes), and thus it is not a good choice for adversaries to choose pr very

large. In reality, we would hopefully also always see a substantial number of honest

users (otherwise, the place would not be of interest), i.e., padv cannot get too large.

Finally, it is interesting to see that pnew should be low. This is because new challenges

are the primary means for adversaries to hide their malicious intent. In reality, we

cannot chose pnew too small, as honest users must have a chance to eventually submit

a genuine new picture (otherwise, they would always have to reject).
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4.4 Countermeasures

As the previous section argued, CLP is inherently able to detect a substantial share of

adversarial users. Attacks generally become more difficult with a growing number

of images, because the number of possible segments that we could challenge the

user with is equal to the number of images for the location. Thus, even when an

attacker finds a similar location, assuming a high enough number of images exist,

finding a match becomes more difficult. In particular, since we have the 100% check

it is possible that the system chooses the same image multiple times countering the

possibility of a similar looking image.

Another easy way to handle malicious contributions is to allow clients to request a

reset of the contributions, i.e., removing all contributions for a location. Graduations

of such a solution are possible too, e.g., removing only the last n contributions. In

practice, this could be implemented by adding a trust or gamification (cf. Weiser et al.

2015) layer on top of CLP, which would allow “power users” to manually assess all

images at a location in return for points or other game elements.

Additionally, it is possible to adapt the size and position of image segments. For

example instead of choosing 50% to the right of an image, we could extract two

snippets, one of size 200 × 200 pixels and one with 400 × 400 pixels at an randomly

chosen position of the “stitched up” image and ask a client to take a picture containing

the smaller segment. Afterwards we could extract a segment of 400 × 400 pixels from

the response image and match that against the challenge image of same size.

Allowing users to make contributions for multiple locations would allow them

to build up trust, which can be used to spot malicious users. This could be further

enhanced by using time geography (Miller 2005) to assess whether a person could

have traveled between two locations within a given time frame.

5 Discussion

In this work, we presented a method for posing a location based challenge that allows

a location based service provider to verify if a user was as at a particular location.

Such a location proof is particularly important in crowd-sourced scenarios where a

service provider wishes to ensure a certain degree of authenticity of the collected

information.

The underlying idea is simple: We ask a user to take a picture of the location she

wants to make a contribution for. That picture needs to partially match an existing

picture contributed by some other user. Should the image match, we store it in the

system and compare it to an ever-increasing set of images depicting the same scene,

which allows assessing whom we can trust, and whom we should classify as adver-

sarial. The advantage of such a principle is that it can be applied in large scale, as

nowadays nearly everybody has a smartphone with a decent camera and fast image

processing algorithms exist. We thus avoid any additional infrastructure or contexts
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that are difficult to achieve, which current state of the art methods for location veri-

fication usually require (additional local infrastructure or co-located witnesses).

We thoroughly analyzed our method for possible attack scenarios and found that

while we cannot ensure the authenticity of the location of every user, in many real-

istic scenarios CLP can detect the majority of attackers. That is, our method is not

“bullet-proof” (like a cryptographic method) but makes malicious contributions in

a real world scenario considerably more expensive (similar to Captchas, where the

challenges are more difficult for automated systems, CLP challenges are more diffi-

cult for people absent from a certain location). Moreover, we were able to quantify

how many attackers we can identify under which circumstances (in particular for

which given probabilities). While our analysis is based on a simulation, the same

technology could be used in a real (prototypical) system if supplied with data from

a computer vision subsystem and integrated into a web application. As part of our

work on location based need matching systems (Bucher et al. 2017), we are working

on different location proof system implementations.

Nonetheless, the proposed method has certain limitations. The location challenge

requires an honest user to be present at the location. This is a drawback regarding the

convenience for the user. From a practical point of view the location of the photo of

a location challenge needs to be identifiable by the user. This requires that this loca-

tion is within the line-of-sight of the user. For normal locations such as restaurants

this will not be a problem. However, POIs vary greatly in sizes, e.g., for a national

park spanning multiple square kilometers finding the right location will not be fea-

sible. This can be circumvented by also considering the GPS location of the user

and only using images that are close to that GPS location. An additional challenge is

changing POIs, for example when a restaurant is renovated or a fair moves to another

location. However, one can argue that for these POIs the accuracy of an old review

also potentially decreases very fast. Additionally, the countermeasure of resetting the

contributions could be exploited here as well.

For practical deployment, gradual introductions of CLP are possible (as the hard

requirement to take a matching picture could discourage people from contributing to

a crowd-sourced service). For example, when using an “add pictures to your review”

functionality, users could be asked to try to append to existing images. This could be

transformed into a “trust score”, which still allows anyone to contribute, but gives

a higher weight to honest users. The CLP system can also be used to remove fake

reviews long after they have been posted. For example, somebody could have created

a large corpus of photos in advance and used them to create fake reviews. If one

review was identified as a fake review, due to the graph structure of the matching

photos, all connecting reviews can be found and removed from the system. Generally,

even though our approach poses a comparably weak authentication proof, extending

it with the many countermeasures we introduced and even combining it with other

verification mechanisms can make it completely infeasible for adversaries to attack.
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6 Conclusion and Future Work

This paper introduced the novel “Captcha your Location Proof” (CLP) approach,

which in contrast to earlier research in the field of Location Proofs does neither rely

on any additional infrastructure, nor on the client being in the picture. CLP rather

relies on the principle that as long as there are more honest than dishonest clients,

most of the adversarial ones can be detected and removed. Moreso, providers of

location based services employing CLP can be sure that they are providing their

clients with authentic contributions or reviews for locations or POIs. Furthermore,

from an honest client’s perspective the CLP method consists only of declaring the

wish to create a review for a POI and taking a picture thereof. Together with the high

availability of cameras in smartphones or even regular mobile phones, the simplicity

of CLP makes it especially attractive for location based service providers such as

review platforms.

Like all location proof approaches, CLP both strengths and weaknesses. We ana-

lyzed them in detail in our description of the adversarial model. In particular, we

worked out a clear differentiation between honest and dishonest clients, as well as

the possible threats they could pose. We then conducted a simulation of a possi-

ble real world application with predefined probability measures to demonstrate the

behavior and practicability of CLP in practice. Finally, we presented a set of counter-

measures that help increase the reliability of CLP and efficiently counter the threats.

For future research it might be interesting to realize CLP with a real infrastructure

and conduct user studies to both test the stability, practicability, as well as the user

acceptance of the system in a real world environment.

Nonetheless, our simulation showed that the CLP approach as it was presented in

this paper poses a scalable, easy to implement, easy to use, user friendly solution for

location proofs in an adverserial environment.
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