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Preface

Over the last twenty years, location based services (LBS) have become increasingly
popular and have expanded into many areas of our daily lives. The success of LBS
has been facilitated, driven, and accompanied by research activities of an active and
growing community. Research on LBS still continues to improve and shape the
future of LBS, driven by activities on topics including indoor and outdoor posi-
tioning, mapping, privacy, novel user interfaces, big data, smart environments, and
citizen participation—just to name a few.

The LBS conference has become one of the main international research venues
focusing on LBS. The 2018 edition of this conference is the first to be hosted at the
Swiss Federal Institute of Technology (ETH Zurich, Switzerland), after 13 suc-
cessful predecessor events in Vienna (2002, 2004, 2005), Hong Kong (2007),
Salzburg (2008), Nottingham (2009), Guangzhou (2010), Vienna (2011), Munich
(2012), Shanghai (2013), Vienna (2014), Augsburg (2015), and Vienna (2016).

This book contains sixteen full papers which have been accepted for LBS 2018
after a rigorous peer-reviewing process with a 42% acceptance rate. It is structured
into four equal parts, covering a variety of ongoing and timely research topics in the
fields: positioning, mapping, landmarks and mobility, location based social media,
and citizen participation.

We would like to thank all authors for their excellent work and all reviewers for
their critical and constructive comments. We hope you will find these papers
interesting and relevant for your own work and look forward to your participation in
one of the future LBS conferences.

Zürich, Switzerland Peter Kiefer
Zürich, Switzerland Haosheng Huang
Ghent, Belgium Nico Van de Weghe
Zürich, Switzerland Martin Raubal
November 2017
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Locations Selection for Periodic Radio Map
Update in WiFi Fingerprinting

Germán M. Mendoza-Silva, Joaquín Torres-Sospedra and Joaquín Huerta

Abstract The construction and update of a radio map are usually referred as the

main drawbacks of WiFi fingerprinting, a very popular method in indoor localiza-

tion research. For radio map update, some studies suggest taking new measurements

at some random locations, usually from the ones used in the radio map construc-

tion. In this paper, we argue that the locations should not be random, and propose

how to determine them. Given the set locations where the measurements used for the

initial radio map construction were taken, a subset of locations for the update mea-

surements is chosen through optimization so that the remaining locations found in

the initial measurements are best approximated through regression. The regression

method is Support Vector Regression (SVR) and the optimization is achieved using

a genetic algorithm approach. We tested our approach using a database of WiFi mea-

surements collected at a relatively dense set of locations during ten months in a uni-

versity library setting. The experiments results show that, if no dramatic event occurs

(e.g., relevant WiFi networks are changed), our approach outperforms other strate-

gies for determining the collection locations for periodic updates. We also present a

clear guide on how to conduct the radio map updates.

Keywords Wifi fingerprinting ⋅ Radio map update ⋅ Regression ⋅ Optimization

Genetic algorithm

G. M. Mendoza-Silva (✉) ⋅ J. Torres-Sospedra ⋅ J. Huerta

Institute of New Imaging Technologies, Universitat Jaume I, Avda. Vicente Sos Baynat S/N,

Castellón, Spain

e-mail: gmendoza@uji.es

J. Torres-Sospedra

e-mail: jtorres@uji.es

J. Huerta

e-mail: huerta@uji.es

© Springer International Publishing AG 2018

P. Kiefer et al. (eds.), Progress in Location Based Services 2018, Lecture Notes

in Geoinformation and Cartography, https://doi.org/10.1007/978-3-319-71470-7_1

3



4 G. M. Mendoza-Silva et al.

1 Introduction

As location-based services have grown in importance during recent years, the indoor

positioning has increasingly drawn attention from the research community. The WiFi

fingerprinting has been a very popular indoor positioning method for this commu-

nity. Reasons for its popularity include a large number of WiFi access points (AP)

already deployed in many environments, the generalized usage of WiFi-enabled

smartphones, and a positioning accuracy that is acceptable for many applications

(He and Chan 2016; Yiu et al. 2017). This method, however, has two known draw-

backs: the WiFi measurements radio map construction and update.

The radio map construction and update for WiFi fingerprinting usually involve

a person, or dedicated receiver, that collects WiFi measurements at some known

locations. Thus, the collection process has a cost, either in the time that a paid person

employs, or in the cost of deploying and maintaining receivers. The reduction of

that cost is referred as mapping, calibration or radio map construction/update effort

reduction.

It is acknowledged that, at least to some extent, the larger the number of measure-

ment locations in the target area, the better the accuracy of the WiFi fingerprinting is

Kanaris et al. (2016), Wang et al. (2016), Hernández et al. (2017), Yiu et al. (2017),

but also the more costly the collection process is. To address this issue, methods that

require only a few collection locations have been proposed (Alonazi et al. 2015).

Such methods involve regression (interpolation/extrapolation) approaches or turn-

ing to collaborative or crowd-sourced approaches. If the collected data reliability is

a hard concern, the one option is collecting measurements at all relevant locations.

If data reliability is soft concern, another option is to collect measurements only at

some location and then estimate measurement values for the remaining locations

using a regression approach.

The studies proposing regression approaches generally show that the estimations

made by their methods can be used instead of some of the actual measurements with-

out significantly harming the localization accuracy provided by an Indoor Position-

ing System (IPS). These studies usually specify elimination procedures to drop some

of the original locations in order to test their methods. However, those elimination

procedures are not to be understood as suggested strategies for determining collec-

tion locations. The random locations distribution is a common approach (Ali et al.

2017), despite the locations distribution is very important (Li et al. 2014) for radio

map construction. It is also acknowledged that the radio map needs periodic updates

so that the positioning method can be robust to changes in the target environment

and in the relevant APs (Wang et al. 2016; Hossain and Soh 2015).

The importance of the collection locations is intuitive and has been formally

acknowledged in other subjects for other phenomena. Specifically, several papers

have addressed the optimal (or quasi-optimal) placement of sensors that best mea-

sure a given phenomenon (Rowaihy et al. 2007; Joshi and Boyd 2009). A set of WiFi

measurements collected at known locations by a person can be viewed as measure-

ments of a set of sensors. Therefore, choosing the best locations for an individual to



Locations Selection for Periodic Radio Map . . . 5

collect the WiFi measurements can be thought as optimizing the placement of a set

of sensors.

This paper presents a novel approach for determining the collection locations for

periodic WiFi radio map updates. The approach requires initial measurements, taken

at a relatively dense set of known locations. The initial measurements are used to

determine a set of locations that establishes a compromise between a small set’s size

and its goodness for estimating the Received Signal Strength (RSS) values at the

remaining locations through a regression method. This paper suggests to find such

set using a genetic algorithm optimization approach with a specific fitness function.

The found set of locations, called the solution set, is proposed to be used as collection

locations for the radio map periodic updates.

The proposed approach was tested using SVR as a regression method and a WiFi

RSS database collected during ten months at one floor of a university library. The

database contains measurements for training and test purposes. The training mea-

surements for the first month were used to determine the solution set. The goodness

of the solution set for selecting the measurement collection locations for the periodic

radio map updates was explored across the following nine month in terms of: (1) RSS

difference between the measurements and the RSS estimations provided by a regres-

sion fitted for the solution set, and (2) the effects of using the above RSS estimations

for radio map update on the accuracy of a fingerprinting-based IPS, considering the

test sets collected at each month. The experiments’ results have shown the suitability

of using our approach for determining the locations for periodic radio map updates

in the tested environment.

In summary, in this paper we propose an alternative to common strategies for

locations selection for WiFi radio map update and we experimentally show its ben-

efits. While following those goals, we:

1. Present some drawbacks of the previous common strategies.

2. Describe how to determine a set of locations (solution set) where measurements

should be taken in order to obtain fine RSS estimations for the remaining locations

through regression.

3. Briefly describe how the proposal can be used to find challenging sets of locations

to test regression approaches for WiFi fingerprinting.

4. Experimentally show how to use the estimations obtained from the solution set

to update a WiFi radio map.

The remainder of the paper is organized as follows: Sect. 2 provides an overview

of fingerprinting calibration efforts reduction, focusing mainly in regression-based

approaches. Section 3 presents our proposal for measurement locations determina-

tion for WiFi radio map update. Section 4 provides the experimental testing of our

proposals. Finally, Sect. 5 summarizes the ideas presented in this paper and proposes

its continuation lines.
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2 WiFi Radio Map Construction and Update

WiFi fingerprinting is performed in two phases: the offline training phase and the

online (operational or query) localization phase (He and Chan 2016; Yiu et al. 2017).

In the training phase, WiFi fingerprints are collected in the target area. A WiFi fin-

gerprint is a vector of RSS values of the detected APs measured at a given time. Each

training fingerprint is usually labeled with the location at which it was collected. The

fingerprints are stored in a training database, which is also called radio map. In the

localization phase, an IPS uses the training database to estimate location labels for

new, unlabeled fingerprints.

Radio maps with measurements collected at relatively dense sets of locations pro-

vide higher positioning accuracies than those with measurement collected at sparse

locations (Kanaris et al. 2016; Wang et al. 2016; Hernández et al. 2017; Yiu et al.

2017). Additionally, periodic radio map updates are needed because WiFi signals are

prone to changes, due to either changes in the environment or in relevant APs (includ-

ing reallocation, replacement and transmission power reconfiguration) (Hossain and

Soh 2015; Wang et al. 2016). The effort reduction on radio map construction and the

methods robustness to environment’s changes has been targeted by WiFi fingerprint-

ing researchers for over 10 years, with many of the attempts included in reviews like

Hossain and Soh (2015), Pei et al. (2016), Wang et al. (2016). Some examples of the

attempts are found in Yang et al. (2013), Alonazi et al. (2015), Majeed et al. (2016),

Gu et al. (2016a). The study of Yang et al. (2013), instead of directly using the RSS

values, used order relations between AP’s RSS values. The authors in Alonazi et al.

(2015) collected WiFi measurements at a few reference points (RPs) located at the

ends of corridors and later enriched the radio maps with user-supplied new RSS

values. In Majeed et al. (2016), the authors combined a small calibration set, the

coordinates of all target locations and several simultaneous operational RSS mea-

surements using semi-supervised alignment of manifolds to estimate the operational

measurements’ locations. Gu et al. (2016a) used the AP intensity order as similarity

score to deal with the changes in relevant APs and mobile device diversity, and tested

its approach with a database collected during 6 months.

The above solutions for effort reduction differentiates on whether the measure-

ments are collected by (1) collaborative/crowd-sourced means or by (2) a dedicated

collector. Each approach have its own benefits and drawbacks (Pei et al. 2016). In

the first approach, the cost is almost negligible, but quality and completeness are

concerns. In the second approach, the cost is reduced by making collection at only a

few locations and then estimating (mainly performing a regression) the RSS values

at the remaining locations.

The collaborative/crowd-sourced approaches include explicit or implicit user col-

laboration (He and Chan 2016; Wang et al. 2016; Hossain and Soh 2015). In the

explicit case, the user is required to label all fingerprints, or at least a subset of them,

with the location where they are taken. When there are unlabeled fingerprints, their

labels are estimated using techniques that consider additional information, such as

readings from other sensors (e.g., using pedestrian dead reckoning (PDR) Xiao et al.
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2015) or environment knowledge. The environment knowledge may, for example,

indicate the likely corresponding path segments or the intrinsic relations between

neighboring fingerprints using models like Markov-chain (Lin et al. 2016). Also,

floor plans and APs locations knowledge can be used to generate each AP radio

map using propagation models (Ali et al. 2017). In the implicit case, location hints

are opportunistically used to label WiFi measurements with the location without the

user interaction. The location hints may come from other sensors, like a GPS sen-

sor, or through estimations such as those used for unlabeled fingerprints in the case

of the explicit user collaboration. The collaborative/crowd-sourced approaches are

also used for radio map update. These approaches have a well known challenge: the

labels quality (Wang et al. 2016).

The approaches that do not rely on collaborative/crowd-sourced contributions try

to reduce the amount of locations required for constructing the initial radio map.

Fingerprints are collected at a small amount of locations and the RSS values at the

remaining target locations are estimated using regression (interpolation and extrap-

olation). The following subsection deepens on this subject.

2.1 Collection Effort Reduction for Fingerprinting Using
Regression Approaches

Regression for RSS radio map enrichment is applied as follows. An initial, small

set of locations with known coordinates Ln×2 is chosen for the target area. Then, if

s measurements are made for each location and m wireless networks are detected

in the whole campaign, the initial database is the set Dn×m×s = {rijk}, where rijk is

the RSS value measured at the ith location, for the jth AP, and in the kth location

sample. For each wireless network a, the regression method fit a function fa(L) = Ra,

with Ra = {riak}. Each function fa is then used to predict RSS values for locations

̂L. If the points in ̂L lie inside the convex hull of L, the estimation is usually called

interpolation, and if they lie outside, it is called extrapolation. Extrapolation methods

(extrapolation functions) are known to be less accurate, and thus more challenging

and less used than the interpolation ones (Talvitie et al. 2015).

The regression methods has been used for reducing the calibration effort in fin-

gerprinting for more than 10 years (Krumm and Platt 2003; Li et al. 2005). Among

the methods found in literature are: linear interpolators (Talvitie et al. 2015), radial

basis interpolators (Krumm and Platt 2003; Ezpeleta et al. 2015), Gaussian Process

regression (Yiu et al. 2017), and Support Vector Regression (SVR) (Hernández et al.

2017). Some studies particularly focused on the spatial relations of measurements

and the spatial characteristics of the environment for regression. They included meth-

ods widely used in spatial analysis like Inverse Distance Weighting (IDW) and Krig-

ing (Li et al. 2005; Liu et al. 2015; Jan et al. 2015), Voronoi Tessellation (Lee and

Han 2012), Sparsity Rank Singular Value Decomposition (SRSVD) (Gu et al. 2016b)
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and other particular heuristics (Bong and Kim 2012). Studies like Zhu et al. (2014)

have also taken into account the time dimension for regression.

In the cited studies, the authors first collect a relatively dense dataset of RSS mea-

surements, and, through elimination strategies, produce new datasets. Their regres-

sion methods are then applied to the new datasets in order to obtain estimated RSS

measurements for the removed collection locations. The regression goodness is usu-

ally evaluated as (1) the difference in RSS values between measurements and estima-

tions and (2) the difference in localization error of some IPS, between using dataset

with a high percentage of removed points and the original dataset for training. The

elimination strategy is an important factor in the results obtained in such evaluations

(Talvitie et al. 2015). The regression performance found in literature varies signifi-

cantly, from discrete but reasonably results of 50% location reduction (Ezpeleta et al.

2015) to astonishing results of 5% locations reduction (Gu et al. 2016b) with very

little RSS or localization error difference.

Most of studies found in literature indicate the percentage of collection locations

(with respect to all target locations) required for their regression methods to provide

proper localization accuracies. However, they do not mention a methodology for

determining the number of collection locations for a given environment (though it

has been shown to be very important (Li et al. 2014)), or how to determine where

those locations should be. An intuitive approach is to choose the amount of collection

points as a function of the target area size and randomly determine their positions in

that area. Some studies have used similar approaches.

In Kanaris et al. (2016), the authors proposed an algorithm that suggested a col-

lection’s sample size given a small preliminary set of measurements. They suggested

the definition of a grid of locations in a target area and randomly choosing locations

in the amount determined by the sample size calculation. Specifically, for the case

of database update, collecting measurements at random locations in a target area is

a common approach (Ali et al. 2017). Indeed, depending on the update frequency,

the collaborative, crowd-sourced or opportunistic approaches can be also considered

strategies of collecting update measurements at random locations.

The elimination strategies used for evaluating the goodness of regression meth-

ods found in the research literature have hinted on possible strategies for determining

the locations for training set collection. The work of Krumm and Platt (2003) pro-

posed an elimination strategy consisting in running a k-means clustering algorithm,

and selecting only the k locations nearest the k cluster centroids. Other studies have

resembled in their proposed elimination strategies the types of collection absences

that may happen in regular collection processes, like random isolated absent points,

zones with higher or lower percentage of elimination (Ezpeleta et al. 2015) or ran-

dom blocks of absent points (Talvitie et al. 2015).

The following section presents the approach we propose to determine the set of

locations where fingerprints for WiFi radio map update are to be taken.
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3 Locations Set Determination for Radio Map Update

As seen in Sect. 2, studies found in literature have hinted possible approaches for

choosing the collection locations. These approaches, however, have some drawbacks

that are experimentally shown in Sect. 4. It is almost intuitive that neither the num-

ber of locations, nor their actual distribution, should be chosen randomly without any

restriction. In addition, a uniformly spaced locations distribution may not take into

account obstacles influencing the WiFi signals propagation. Therefore, a person with

experience in WiFi-based indoor localization generally chooses the amount and dis-

tribution of the collection locations. Regardless of this person expertise, the previous

task is not a trivial one.

This study harnesses the similitudes between (1) choosing a subset of measure-

ment locations for estimating the values at remaining locations through regression

and (2) choosing the placement of sensors for field estimation. The problem of sen-

sor placement, related to sensor selection (activation), is a well-known problem that

has long been addressed for wireless sensor networks. The sensor selection problem

can be stated as choosing a set of k measurements from a set of m possible sensor

measurements, which minimizes the error in some parameters estimation (Joshi and

Boyd 2009). We suggest that the approaches for solving the previous problem can

also be applied to finding the set of k locations from m possible ones, where the WiFi

measurements will be collected so that the WiFi signal intensities for the remaining

locations can be obtained through regression with a small error. What is more, we do

not consider a fixed number of locations, but instead, obtain a compromise between

the location set’s size and the goodness of the regression.

The approaches to deal with the sensor placement/selection problem vary depend-

ing on the usage of the sensor measurements (Rowaihy et al. 2007). Specifically,

some studies have proposed approaches for the case of using the sensor measure-

ments for estimating a field of values (Joshi and Boyd 2009; Ranieri et al. 2014; Roy

et al. 2016). The combinatorial nature of the problem (Joshi and Boyd 2009) makes

it unfeasible to explore the whole solution space. If the total number of locations is

very small, e.g., six, it is feasible to manually determine fine sets of locations where

the measurements are to be taken. However, if a target environment has a (still small)

set of 24 locations, and measurements are to be taken at 12 of those locations, the

number of different possible sets of locations is
(24
12

)
= 2, 704, 156. If the number of

measurement locations is not already decided, the number of possible combinations

rises to 224 = 16, 777, 216.

This paper determines the set of locations in a way simpler than those presented

in Joshi and Boyd (2009), Ranieri et al. (2014), Roy et al. (2016) for sensor place-

ment. Those studies have harnessed some property of the target problem or forced

some form for the solution. We have used an optimization strategy based on genetic

algorithms. Sensor placement optimization has already been addressed using genetic

algorithms (Yao et al. 1993; Macho-Pedroso et al. 2016), even for indoor acoustic

localization (Macho-Pedroso et al. 2016).
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3.1 Genetic Programming for Locations Set Determination

The approach proposed in this study uses a genetic optimization algorithm to find a

set of locations that includes only a small number of locations and the goodness of

the regression obtained using these locations should be similar to the one obtained

using the whole set of possible locations. The explanation presented here for genetic

algorithms, as well as the library used in the experiments, are based on Mitchell

(1998).

The genetic algorithms try to efficiently find solutions to problems that have huge

spaces of candidate solutions. Each candidate solution for a problem is called an indi-

vidual. Commonly, an individual is encoded as a bit string, where each bit represents

the presence (‘1’) or absence (‘0’) of a trait. These algorithms start by considering a

population of random individuals, and iteratively evolves it. The population of each

iteration is called a generation. The following generation is the result of applying

genetic operators on the current generation. The selection operator selects pairs of

individuals whose traits are combined using a crossover operator to produce off-

spring. A fitness value is computed for every individual in a generation and those

with higher fitness values are more likely to be chosen by the selection operator. A

mutation operator is applied to the offspring to produce subtle changes in the result-

ing traits. Some of the new individuals can be randomly discarded, but the population

size is maintained.

In this paper’s proposal, the set of all locations L = {l1,… , ln} from the initial,

dense collection represents the possible traits that each individual may have. The

location set L have associated WiFi RSS measurements D = {rijk}. Assume a func-

tion fmap(A,B) → C so that A is a set of RSS values, B is a set of locations and C is

the set of RSS values in A associated to locations in B. Then, Dlp = fmap(D, {lp}) =

{rpjk} are the RSS measurements associated to location lp. An individual represents

a subset LI of L. The size of the population, as well as the number of generations con-

sidered for population evolution are parameters of the algorithm that are presented in

Sect. 4. We have designed the fitness value calculation of an individual so that larger

subsets and differences between measured and estimated RSS values are penalized.

Specifically, the fitness computation steps are:

1. Fit regressions fa, for every detected access point a, using LI and their associated

measurements fmap(D,LI).
2. Use regressions fa to estimate RSS values E = {r̄ia} for locations of ̂LI = L − LI .
3. Compute the AP-wise and location-wise RSS absolute differences between E and

fmap(D, ̂LI). Let MRD be the maximum value of those differences.

4. The individual’s fitness is (MRD + 2MRDab
tb
)−1, where ab and tb are the number

of ‘1’ bits and the total number of bits, respectively. If for some reason the tar-

get number of locations is already predefined, say k, the individual’s fitness can

become (MRD + 2MRD|ab − k|)−1.

After a given number of generations, the individual with higher fitness value,

called the elite individual, could be chosen as the set of locations where WiFi
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Fig. 1 Locations (bits) frequency. Blue dots represent how often a location has been included in

individuals of generation 200. The blue line represents the frequency threshold

measurements are to be collected. The elite individual represents the set that has

so far achieved the best compromise between a small number of locations and little

degradation of the regression goodness. The genetic algorithm does not guarantee

that the elite individual would be the optimal solution for a given problem, but is a

fair alternative to an exhaustive search given the combinatorial nature of the problem.

This paper’s main goal is not selecting the best locations for making a one-time

regression. The main goal is determining the suitable locations for conducting peri-

odic WiFi radio map updates so that the new RSS measurements help in estimating

RSS values for remaining, target locations. The elite individual may represent a solu-

tion that is over-fitted for the initial measurements. Therefore, we propose to look at

the occurrence frequency of each location in the final population and select only

those with high frequency. We call this set of highest frequency locations the solu-
tion set. Figure 1 shows an example of the location’s frequency for a population of

(200) evaluated sets of locations after 200 iterations. The number of traits, i.e., the

number of locations in the initial, dense collection is 24. The bit frequency repre-

sents how often a location is found in sets of locations. If we chose a high frequency

threshold of 0.9, the solution set would be {1, 2, 3, 18, 19, 21, 22, 23}.

In summary, the steps needed for selecting the locations where the periodic update

measurements are to be collected are:

1. Collect a relatively dense WiFi RSS training database.

2. Use a genetic algorithm, such as the one described in pages eight and nine of

Mitchell (1998), using the fitness function described above in this section, to

determine the locations’ frequency in the population of sets of locations.
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3. Choose as the solution set the locations with frequencies above a certain thresh-

old.

Section 4 also provide a guide on how to use new measurements collected at the

solution set for updating the radio map. We advise applying our approach indepen-

dently for clearly unrelated zones, i.e., zones that belong to different buildings or

different floors.

Besides suggesting a very good placement for the measurement locations, the

proposed approach can be also used for testing the performance of regression meth-

ods. By computing an individual’s fitness as MRD + 2MRDab
tb

, the genetic algorithm

would determine a compromise between a large number of locations and a high RSS

absolute difference. The set resulting from choosing the n highest fitness sets of loca-

tions can be used as a challenging test for evaluating the performance of regression

methods.

4 Experiments

The approach proposed in Sect. 3 was tested using a WiFi RSS database collected in

a university library during ten months (30 days of separation time, approximately).

The database contains training and test sets for each month. Figures 2 and 3 show

the collection locations for the training and test sets, respectively, using colored cir-

cles. The location label for each fingerprint is expressed in local coordinates in a 2D

Fig. 2 Collection locations for the training sets. The colored rectangles represent the bookshelves



Locations Selection for Periodic Radio Map . . . 13

Fig. 3 Collection locations for the test sets. A circle’s color identifies to group to which it belongs:

red are groups 1 and 5; blue is group 2; green is group 3; and violet is group 4

Euclidean space. The collection locations are among bookshelves in the third floor of

the library building. The database is part of a larger effort to gather data for studying

short and long term RSS variations and for developing positioning method robust

to those changes. Twelve fingerprints were collected at each location. The tests sets

were divided into five groups for their collection. Each group had a particular loca-

tion distribution and collection directions. Most of the experiments presented in this

section used only the training sets. The test sets were only used for the evaluation

using the kNN fingerprinting presented at the end of this section.

For the training sets and the groups 1, 2 and 3 of the test sets, the collector (a

trained person) faced the “up” direction when collecting the first six fingerprints of

each point, and the “down” direction when collecting the other six fingerprints. For

groups 4 and 5 of the test sets, the faced directions were “right” and “left” instead of

“up” and “down”, respectively. For data dimensionality reduction, the APs detected

in less than 5% of the fingerprints were removed. The device used for collection was

a Samsung Galaxy S3 smartphone.

Section 3 defines the set determination without establishing any explicit restric-

tion for the regression to use. However, an implicit restriction exists: The regres-

sion method should enable both interpolation and extrapolation, because there may

be target measurement locations lying outside the convex hull of the locations in

the solution set. This implicit restriction is also important because the extrapolation

usage is mandatory for environments that, at collection time, contain areas where

measurements cannot be taken (e.g., because of a meeting in an office).
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As providing recommendations on regression methods for WiFi fingerprinting

was not among the goals of our study, we tested only a few regression methods:

IDW (interpolation and extrapolation), radial basis function interpolators like those

in Ezpeleta et al. (2015), combinations of interpolation (linear, nearest, and natural)

and extrapolation (linear, nearest) as provided by MathWorks® (2017a), and SVR as

provided by MathWorks® (2017b). We chose SVR, using a Radial Basis Function

(RBF) kernel and performing predictor data standardization, as regression method

as it provided the best results regarding RSS absolute differences between RSS mea-

surements and estimations and because it has been successfully used in previous

studies (Hernández et al. 2017). We suggest to perform the regression method eval-

uation for a given environment before making a choice. Guides regarding interpola-

tion and extrapolation can be found in Talvitie et al. (2015).

For evaluating the goodness of each set of locations, we have used a metric defined

as the maximum value of the AP-wise RSS absolute differences between the original

RSS measurements and the estimated ones. We have preferred the maximum differ-

ence over other measures (e.g., the mean) that may mask high RSS differences that

are significant for distance-based techniques like kNN-based fingerprinting.

4.1 Evaluation for the Initial Month

Section 2 hinted on approaches for determining where to collect the RSS measure-

ments to be used for fitting a regression. This subsection shows the evaluation results

of three strategies for determining the collection locations. The strategies, which

were applied to the training set corresponding to first month of our WiFi RSS data-

base, are:

1. Random Sets of Points,

2. Manually-defined Sets of Points,

3. Optimized Set of Points.

The first approach considers differently sized sets of random locations. The sec-

ond approach uses sets manually defined by an expert. The third approach finds a set

of locations that establishes a compromise between the set’s size and the regression

goodness. The following subsections provide more details about each approach and

its evaluation.

4.1.1 Random Sets of Points

This is an intuitive approach for the selection of the collection locations. The algo-

rithm proposed in Kanaris et al. (2016) may allow determining the number of mea-

surement locations. We instead decided to explore several numbers of locations,

ranging from 6 to 18 points, which accounts for 25–75% of the 24 total locations

in the target area, and they represent reasonable effort reductions. Table 1 presents
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Table 1 Minimum and

maximum values of RSS

error metric for sets of

randomly chosen locations

Set Size Metric Min (dBm) Metric Max (dBm)

6 19.13 44.74

8 15.71 43.01

10 12.12 41.35

12 11.18 42.10

14 11.99 35.58

16 10.52 35.22

18 9.56 28.59

the maximum and minimum of the RSS error metric previously defined. The exper-

iment for each amount of points was repeated 200 times.

Table 1 shows two main facts. First, the more points are used for fitting the regres-

sion, the better the estimations are. Second, and more important, the RSS estima-

tion quality heavily depends on the distribution of the randomly chosen locations,

as absolute differences between the maximum and minimum metric values are up to

30.92 dBm.

4.1.2 Manually-Defined Sets of Points

As previously seen, selecting random points creates much uncertainty in the quality

of the RSS estimations. A logical alternative is to manually define the set of loca-

tions. Better choices are done when the extent of the collection locations and the

influence of the building layout and the furniture are taken into account. This sub-

section presents six alternative sets we considered that are likely choices and could

provide fine RSS estimations through regression. The process of determining the

tentative sets of locations is time-consuming, and it is especially cumbersome due

to the large number of alternatives for each set’s size. Table 2 presents the value of

the RSS error metric for each alternative set. The ID of each set indicates its amount

of locations. Figure 4 shows the location distribution of each set.

Table 2 Values for RSS

error metric for manually

defined sets of locations

Set ID Metric (dBm)

6A 21.39

8A 23.45

8B 19.63

12A 23.13

12B 11.90

14A 12.20
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(a) 6A (b) 8A

(c) 8B (d) 12A

(e) 12B (f) 14A

Fig. 4 Manually chosen sets of locations

The results presented in Table 2 reinforce the importance of the distribution of

the collection locations. The estimation quality does not strictly decrease with the

increase of the number of locations used for regression fit, as seen when comparing

the set 6A with set 8A, set 8B with set 12A, and set 12B with set 14A. The locations

distribution of each set, as shown in Fig. 4, sheds some light on the previous fact.

The convex hulls of sets 6A and 8B include more of the target area than those of

sets 8A and 12A, respectively. Nevertheless, the convex hulls of sets 12B and 14A

are the same, and the set 12B provide better estimations than set 14A despite having
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a smaller number of locations. The above facts lead to conclude that even a well-

designed set of locations may not be the best choice. Additionally, a set of locations

that is optimal for a given environment, may not be optimal for another environment,

a fact that we leave unproven because is beyond the focus of this paper.

4.1.3 Optimized Set of Points

As described in Sect. 3, with an optimization strategy based on a genetic algorithm

it is possible to search for fine locations for fitting the regression. Specifically, the

genetic algorithm implementation provided in Burjorjee (2009), which is in turn

based on Mitchell (1998) was used for the experiments. We defined a population

size of 200 individuals, used the fitness function proposed in Sect. 3, and run the

algorithm for 100 generations. After testing several values, the numbers of 200 and

100 for population size and algorithm generations were the ones that provided higher

stability (reproducibility) in the outputted solution. The obtained elite individual

(best set of locations found for fitting a regression) and the solution set (described in

Sect. 3) using a higher frequency threshold of 0.9, are depicted in Fig. 5. The value

of the RSS error metric for the elite set (11 locations) was 8.8453 dBm, which is

lower than any of the values obtained using the previous two strategies. The metric

value for the solution set (eight locations) is 11.18 dBm, which is still lower than

most of the values obtained using the previous two strategies.

Figure 5 shows two important facts. First, all target locations are contained in the

convex hull of both optimized sets, which avoids the usage of extrapolation. Second,

and more important, the location distributions of the optimized sets do not resemble

those of the strategies explored in the Sect. 4.1.2, nor they are intuitive. Therefore,

the locations chosen for fitting a regression should not be random, and determin-

ing a small set of locations that provides good estimations when used for fitting a

regression, is not a trivial problem.

(a) Locations represented by the elite in-
dividual

(b) Solution set (locations with higher
frequency)

Fig. 5 Set of locations obtained through optimization using a genetic algorithm
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The following subsection explores the usage of the solution set for WiFi radio

map update, following the procedure presented in Sect. 3.

4.2 Usage of the Solution Set for RSS Radio Map Update

The Sect. 4.1.3 presented the locations that our approach suggested for conducting

the periodic updates to the WiFi radio map. This section presents the results of exper-

iments that explored the goodness of those updates along 9 months (month 2–10) in

terms of RSS difference between estimations and real measurements, and in terms

of the accuracy of a fingerprinting-based IPS.

Regarding RSS differences between estimations and real measurements, the

experiments tried three sets of locations and three RSS difference metrics. Table 3

shows the results of these experiments. Each table header indicates the usage of a

particular set of locations and a specific RSS difference metric.

To explore the suitability of a set of locations for each month, a regression was fit

using their associated measurements of the month training set. Besides the solution

set (GA), sets 8A and 8B were also used for regression fitting. The sets 8A and 8B,

previously introduced in Sect. 4.1.2, are now used for baseline comparisons. As RSS

difference metrics, the experiments used:

1. MRD: The MRD value introduced in Sect. 3.1 for the fitness function definition.

2. Mean: Its value is computed in a way similar to MRD, but the mean value is used

instead of the maximum. This metric is included because it is frequently used in

the literature for evaluation of WiFi RSS regression methods.

3. MeanP: It is calculated as: Compute the AP-wise RSS absolute differences

between RSS measurements and estimations. Compute per each location the

mean of those differences. Take the maximum of those mean values. This metric

is included because indicates how much the RSS difference may affect a RSS

distance-based method like kNN.

Table 3 Values for RSS differences (dBm) according to metrics MRD, Mean and MeanP for sets

8A, 8B and GA

Month MRD8A MRD8B MRDGA Mean8A Mean8B MeanGA MeanP8A MeanP8B MeanPGA

02 21.1 21.2 19.4 1.8 1.5 1.7 5.2 3.7 3.8

03 19.9 20.8 16.9 1.6 1.4 1.5 5.3 3.7 3.0

04 20.5 21.0 18.7 1.7 1.5 1.5 4.6 3.8 3.0

05 19.7 23.8 17.2 1.5 1.3 1.3 4.9 4.6 2.9

06 23.9 21.8 21.9 1.6 1.4 1.5 4.7 3.6 3.7

07 21.5 24.9 26.6 1.5 1.4 1.5 4.8 4.2 3.3

08 26.5 30.0 18.9 1.6 1.4 1.4 5.0 4.3 3.5

09 22.9 25.4 20.2 1.5 1.3 1.2 4.5 3.4 3.3

10 23.7 22.0 18.0 1.8 1.6 1.6 5.3 4.3 4.1



Locations Selection for Periodic Radio Map . . . 19

The results presented in Table 3 indicate that the solution set is a better choice than

the other two sets as a set of collection locations for periodical updates. Regarding the

MRD metric, the solution set provides the best result for most months. It is noticeable

that for month number seven, the value for the solution set is 5.1 dBm worse than

the one for the set 8A. Some insights on that behavior will be later provided when

analyzing the set effects on fingerprinting-based IPS accuracy. Regarding the Mean

metric, the solution set is consistently better than the set 8A, and slightly worse than

the set 8B for some months. As for the MeanP metric, the solution set is much better

than the 8A set. In comparison with the set 8B, the solution set is notably better for

five of the months, and only slightly worse for two of them.

The experiments also explored how the localization accuracy of an IPS is affected

by the usage of the proposed update approach, i.e., by taking the training RSS mea-

surements of each month only at the solution set and using regression to estimate

the RSS values for the remaining locations. As IPS, we tested a kNN fingerprinting

approach. Given a training set of fingerprints with known location labels, a query

fingerprint, and two parameters specified by the value of k and a distance metric on

the fingerprint space, the kNN method finds the k fingerprints in the training set that

are closest to the query fingerprint. The location label is estimated as the centroid of

the location labels of the selected k closest fingerprints.

To measure the accuracy of an IPS, a test set of query fingerprints is usually used.

The location labels are also known for the test set fingerprints, so that, for each fin-

gerprint, the location estimation provided by the IPS and its original location label

are used to compute a positioning error distance. In this paper, the positioning dis-

tance has been calculated using the Euclidean distance and the localization accuracy

has been explored using the 75 percentile of the computed distances for test set.

The tested kNN used the RSS Euclidean distance as fingerprint distance metric.

The k parameter value was experimentally determined using the training and test sets

of the first month of the WiFi RSS database. Figure 6 shows the resulting localization

accuracies. The value of k that provides the best metric value is nine, and it is the

one used for kNN in the remaining experiments. This value may appear large, but it

is a reasonable value given that 12 fingerprints were taken at each location and no

aggregation operation was performed for fingerprints with the same location label.

For comparisons, the experiments included an evaluation of the radio map update

at each month using all the training measurements collected at that month. Two

updates strategies were tested: Replacement and addition. With the replacement

strategy, all training fingerprints collected at one month replaced all fingerprints from

the previous month in the WiFi radio map. With the addition strategy, the fingerprints

of each month were added without any replacement or deletion from the previous

months’ fingerprints. The kNN method was used to estimate, for each month, the

locations associated to the fingerprints of the test set of that month. Figure 7 shows

the behavior of each update strategy along the time.

The strategy of addition provides values for the localization error metric that are

smaller and smoother than those provided by the replacement strategy. The metric

values for the strategy of addition ranges from 3.25 to 2.84 m. For the replacement

strategy, however, the localization error metric ranges from 4.10 to 3.14 m. The
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Fig. 6 75 percentile of positioning error using kNN for the first month

Fig. 7 Comparison of the strategies of replacement (red) and addition (blue). Measurements for

all locations are available

months 6 and 7 have the highest metric values, which may indicate that the train-

ing values for those months were not as good (representative) as they were for other

months.

The evaluation of using the solution set for radio map update was conducted as

follows. For each month, the solution set was used to fit a regression, and the RSS

values were estimated for the rest of locations. However, the estimation provides one

fingerprint per location, while the training and test sets in the database contain 12

fingerprints per location. Additionally, the k value determined above for the kNN fin-

gerprinting is the best under the assumption that there are 12 fingerprints per point.

Therefore, we decided to create 12 fingerprints per location using the one finger-

print per location obtained through regression estimation and adding a random value.
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Fig. 8 Comparison of the strategies of replacement (red) and addition (blue). Measurements are

available only for the solution set

In the training set from first month, the AP-wise standard deviations values were less

than 6 dBm in 80% of cases. The added random value is then uniformly chosen in

the interval [−6;6]. The random value addition is specific to the evaluation presented

in this study and will not be needed for an IPS radio map update, for which it may be

desirable to collect only one fingerprint per point. The fingerprints newly estimated

for each month were considered for radio map update following the strategies of

replacement and addition described above. Figure 8 presents the localization accu-

racy metric values for both strategies.

The results obtained using the strategy of addition and the RSS estimations from

the solution set are very similar to those using that strategy and the measurements

available for all locations. The localization error metric for the strategy of addition

ranges from 3.25 to 2.81 m, which is the same interval obtained when using the RSS

measurements for all locations. The strategy of replacement showed larger metric

values, with higher variations, than the addition strategy. When compared to using

the same strategy and the measurements from all locations, the usage of the estima-

tions from the solution set caused larger variability, with the metric values ranging

from 4.45 to 3.06 m, having a steeper variation for month 6.

The above results suggest that the usage of the solution set as collection locations

for WiFi radio map update is a reasonable choice for the tested environment. The

approach of determining the solution set is automatic, so that the specialized and

cumbersome task of manually determining a proper set of collections locations is

avoided. The MeanP value, i.e., the maximum of the location-wise mean RSS differ-

ences between estimations and measurements, was lower than the detected AP-wise

standard deviation for all months. Additionally, the accuracy of the tested kNN fin-

gerprinting had a similar behavior when using measurements from all location and

estimations to when using the estimations obtained from the measurements of loca-

tions in the solution set.
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The previous results have been obtained for an initial radio map collection month

and across nine months of radio map updates. During the ten months period, no dras-

tic changes in the presence or power configuration of the APs were observed, apart

from wireless networks with very low presence in the data. Therefore, we advise the

usage of our proposal for environments that allow an initial relatively dense collec-

tion and as long as no drastic change happens to the detected APs. Such changes

could be detected, for example, by reviewing the appearance or disappearance of

AP with strong RSS values in a significant number of fingerprints. We acknowledge

that the required initial collection is costly, but if the cost is assumed, the knowl-

edge of the locations for performing periodic updates could translate into a better

IPS performance.

5 Conclusions

This paper has presented an approach for determining a subset of the target locations

in a goal area where RSS measurements are suggested to be collected for periodic

radio map updates. The measurements at the remaining locations are proposed to be

obtained through regression. The subset, called the solution set, is determined from

initial measurements taken at all target locations through an optimization approach

based on a genetic algorithm. The proposed approach was tested using a database

collected over ten months in a university library. The regression method tested in the

experiments was SVR regression. The experiments’ results support the suitability

of using the estimation determined using the measurements of the solution set for

periodic WiFi radio map updates. The suitability has been shown in terms of the

RSS estimation accuracy and in terms of its effects on the localization accuracy of a

fingerprint-based IPS.

We consider that the proposed approach may be of particular interest for future

efforts devoted to automate the fingerprint collection process using dedicated devices

or robotic agents. Future continuation lines of this study include (1) testing our

approach in a larger and less densely collected environment, (2) explore the effects of

drastic changes in the environment APs, and (3) explore the variant to our approach

proposed in Sect. 2 for finding challenging sets for testing regression approaches used

in WiFi fingerprinting.
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Task-Oriented Evaluation of Indoor
Positioning Systems

Robert Jackermeier and Bernd Ludwig

Abstract The performance of indoor positioning systems is usually measured by

their accuracy in meters. This facilitates the comparison of different systems, but

does not necessarily give information about how well they perform in real-life sce-

narios, e. g. during indoor navigation of walking persons. In this paper, we present

a task-oriented evaluation that adapts the idea of landmark navigation: Instead of

specifying the error metrically, system performance is measured by the ability to

determine the correct segment of an indoor route, which in turn enables the navi-

gation system to give correct instructions. We introduce the area match metric in

order to identify areas where positioning proves problematic. In order to evaluate the

described metric, we use a pedestrian dead reckoning approach to compute indoor

positions. Without any external correction, the correct segment of the test route is

identified in 88.4% of all trials. Based on these results, we explore options how to

identify and predict erroneous situations during the navigation process as well as

beforehand.

1 Introduction and Motivation

Indoor positioning for pedestrian navigation is still an open problem as no position-

ing system that delivers absolute—such as GPS—coordinates is available. Many

solutions providing precise (sub meter) localization require additional technical

devices (Guo et al. 2015; Pham and Suh 2016; Romanovas et al. 2013). However,

they are not at disposal in everyday life situations at which pedestrian navigation

systems target.
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Technically simpler solutions use sensors that come with every smartphone, such

as accelerometers, gyroscopes, and step counters (Basso et al. 2015; Verma et al.

2016). Such approaches provide relative positioning data, and often suffer from cold

start problems (Harle 2013). Solutions based on GSM, LTE, and WiFi receivers can

compute absolute coordinates of an area in which a user is located, but fail in tracking

a user’s movement precisely (Waqar et al. 2016).

Independently from the used sensor technology, the approaches described above

have in common that they do not take spatial knowledge into account which we

understand to describe the ways persons can take in an indoor area: information about

the user’s current position limits the options for a position update. While — as Waqar

et al. (2016) point out—such technology can advantageously be used to implement

the described solutions quickly at any location (that eventually provides GSM, LTE

or WiFi infrastructure), its major drawback is that these positioning algorithms do

not provide effective means for error cancellation in terms of the navigation task a

person is currently solving.

We address exactly this issue. We describe an approach that models spatial knowl-

edge with an indoor navigation graph (see Fig. 1 as an example) that contains

all routing decisions and path segments between any two arbitrary locations in an

indoor/outdoor environment requesting a decision from the user how to execute a

system’s routing instruction. We apply our indoor navigation graphs to cancel the

positioning error of relative positioning algorithms (e.g. step counters) that accumu-

lates while a person is navigated. A similar approach is taken by Link et al. (2013).

In contrast to our approach the authors rely on OpenStreetMap data that are much

more complex to handle and therefore less flexible for adapting a system to a new

environment where there doesn’t already exist a corresponding model. Further, the

authors use the OpenStreetMap data for a metric evaluation of the approach, while

we relate success to navigation instructions: we consider positioning to be success-

ful if it allows a navigation system to give the correct next instruction relative to the

users position on the route, or, more generally, if it allows a location based service

relying on it to function properly.

For rendering this definition operational, we introduce the area match score as a

new metric for indoor positioning. We analyze the performance of an algorithm we

implemented on the basis of this definition. From results of the analysis we derive

effective criteria for an automatic decision when the computed position estimate data

is no longer reliable. In such cases, dead reckoning approaches cannot recover the

error. We conclude that effective positioning algorithms for pedestrian navigation

must be able to apply different techniques for sensing the user’s environment in order

to provide optimal position estimates.

In this paper, we first report the relevant state of the art, then we explain how

we relate landmark-based navigation and indoor positioning and develop our mathe-

matical model for the posed problem. Next, we present an empirical evaluation for a

navigation task that required test persons to continuously walk on an indoor route on

one of the floors of a complex and therefore cognitively demanding building on the



Task-Oriented Evaluation of Indoor Positioning Systems 27

Fig. 1 Indoor navigation graph in the test area. Main edges used for localization are shown as thick

lines. Notice the mesh-like topology in larger open areas

campus of our university. Finally, we discuss the obtained results in the light of our

task-based performance metric. We analyze limitations of the approach and derive

relevant issues of future work from the insights obtained from the evaluation.

2 State of the Art in Indoor Positioning

As already stated in the introduction, many localization techniques based on different

types of sensors have been proposed for pedestrian indoor navigation systems and

indoor positioning in a broader sense. Despite all these research efforts, there is still

no technology established as a widely accepted state of the art similarly to GPS for

outdoor areas.
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(a) Result of a previous WiFi study
in an indoor area using Fraunhofer’s
awiloc. While standing still at the po-
sitions indicated in red, the reported
locations (colored dots) are scattered
around the area with a root mean square
error between 2.1 and 5.0 m.

(b) Result of a previous WiFi study in
an indoor area using Fraunhofer’s aw-
iloc. The position reported by awiloc
(yellow) follows the ground truth (red,
from bottom to top) very loosely, if at
all. Only by fusing step detection data
with a Kalman filter (green) the actual
trajectory can be approximated.

Fig. 2 Performance of WiFi signals in indoor positioning tasks

As our work is focused on positioning algorithms that do not need sensors beyond

those available in a smartphone anyway, the following review of the state of the art

leaves aside more exotic approaches that require special sensors or hardware.

WiFi-based indoor localization can be widely deployed in modern buildings

where a sufficient WiFi infrastructure is usually available, but suffers from multi-

ple problems, as Davidson and Piché (2016) point out: Creation and maintenance of

radio maps is time consuming and therefore expensive. A low scan rate on current

smartphones leads to disjointed position estimates. Furthermore, device heterogene-

ity, the smartphones orientation, and the attenuation of signals by humans are iden-

tified as disadvantages. Due to these issues, WiFi-based systems generally achieve

an accuracy of at most a few meters and are suited to determine the approximate

position, but not for continuous tracking.

Our own findings confirm these claims: Fig. 2a shows some of the results from

an earlier study, where the location reported by Fraunhofer’s WiFi-based awiloc

system
1

wanders around in an indoor area even if the test person is not moving.

1
https://www.iis.fraunhofer.de/en/ff/lv/lok/tech/feldstaerke/rssi/tl.html.

https://www.iis.fraunhofer.de/en/ff/lv/lok/tech/feldstaerke/rssi/tl.html
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Nevertheless, the RMSE of the position reaches up to 5 m. Even more problems

arise when the test person is moving (an example can be seen in Fig. 2b), where

the location updates usually are lagging behind and do not match the path that was

actually taken.

On the other hand, Bluetooth Low Energy (BLE) beacons as another wireless

localization technique are designed to be more accurate, but are far less widespread

and therefore more expensive to deploy. In particular, as they are mounted at fixed

positions and send signals over a small distance only, persons could be tracked con-

tinuously only if beacons were mounted along all paths persons can walk on.

A recent development for getting an rough estimate of the user’s position bases

on sending a sound signal via the smartphone’s loudspeaker and recording it imme-

diately with the microphone. Rooms have particular acoustic characteristics that can

be recognized to identify in which room out of a set of trained rooms the smartphone

is currently located (Rossi et al. 2013).

In summary, several approaches exist that provide a rough estimate of the user’s

current position, but not of the user’s movement, and therefore can be applied in

a hybrid approach to reinitialize a dead reckoning algorithm after it has failed to

determine a reliable position estimate.

For tracking movements, pedestrian dead reckoning (PDR) is widely used. Sev-

eral solutions do not need any external infrastructure, but rely solely on inertial sen-

sors available in smartphones.

True inertial navigation by the double integration of acceleration values is not

feasible since the sensor measurements are much too noisy. Instead, PDR is mostly

accomplished by a variant of so called Step and Heading Systems (SHS), that detect

the user’s steps and try to estimate their length and direction (Harle 2013). Step

detection on smartphones is historically achieved through the accelerometer using

various techniques (see Muro-de-la Herran et al. 2014; Sprager and Juric 2015; Susi

et al. 2013). Lately, dedicated step detector sensors are available in more and more

devices. The heading can be inferred from a combination of magnetic compass and

gyroscope, while step length can be either assumed as fixed or dynamic, e.g. based

on the frequency (Harle 2013).

The main disadvantage of any dead reckoning solution is the need for an initial

position from which the relative positioning can start as SHS by their nature can-

not compute absolute positions. Furthermore, the positioning error increases over

time due to noisy sensor data. Given both of these problems either error correction

through external sensors or an algorithm that matches the sensor data to a final posi-

tion estimate are necessary to employ dead reckoning for more complex tasks such

a navigating a user or other location based services.

As in our work external sensors should be avoided, matching algorithms are the

only option for solving the indoor positioning problem. Maps are often represented as

discrete graphs (see e.g. Thrun et al. 2005) and have been used successfully to locate

robots in complex environments. For pedestrian indoor localization, graph models

of the environment were first introduced by Liao et al. (2003). They introduced the

particle filtering method on a Voronoi graph in order to make the position estimation

more robust and efficient. Since then, other researchers have adapted and improved
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this approach (e.g. by adding multiple sensor modalities): The system recently pre-

sented by Hilsenbeck et al. (2014) is operating on a graph generated from a 3D

model of the environment. Herrera et al. (2014) use existing material from Open-

StreetMap and enrich it with information about the indoor areas of a building. Ebner

et al. (2015) generate a densely connected graph from the floor plan of a building.

All these approaches have in common that creating a map is either time consuming

or expensive (due to the need for special hardware) or relies on existing data. Fur-

thermore, normally the resulting graphs do not contain any information besides the

geometry of the building, making them unsuitable to use as data source for the path

planner of a navigation system.

As far as the evaluation of indoor positioning is concerned, the state of the art

can be surveyed best by looking at recent competitions that aim to compare the per-

formance of indoor positioning systems. Held regularly, the provide an opportunity

to gain insights into established evaluation methods. Potortì et al. (2015) report the

results of the EvAAL-ETRI competition held in conjunction with the IPIN 2015

conference. To assess the error of the participating systems, they add a penalty for

wrongly detected floors or buildings to the actual positioning error. The final ranking

is determined by the 75% quantile of the resulting errors. In their evaluation of the

2015 EvAAL-ETRI WiFi fingerprinting competition, Torres-Sospedra et al. (2017)

use the mean error as the metric to rank the competitors: The mean error of the tested

system is not lower than 6 m. Lymberopoulos et al. (2015) again use the mean posi-

tioning error to rank the systems participating in the 2014 Microsoft Indoor Local-

ization Challenge. Interestingly however, they remark that the mean error or other

commonly used metrics do not represent the performance of a system in its entirety.

We follow this assessment and argue for a task-oriented view on the performance of

a positioning approach that we introduce below.

3 Data Model for Landmark-Based Navigation

While the mean positioning error is definitely of interest for building autonomous

systems that can navigate in indoor environments (e.g. robots for ambient assisted

living), for the implementation of many location based services it is an inappropri-

ate performance metric. In our view, this is due to the fact that users of location

based services experience the environment from a cognitive perspective that assigns

meaning to perceivable objects. E.g. a pedestrian can walk to a distant object with-

out continuous technical assistance while a robot cannot. Therefore, in applications

involving humans it may often be sufficient to know that the user is close to a seman-

tically meaningful object (e.g. a door at the end of a corridor or a certain cloth shop

in a shopping mall). The main consequence of this hypothesis is that the precision

of indoor positioning has to be measured in terms of the user’s relative position to

objects relevant for his current task instead of meters in a coordinate system that the

user cannot even perceive.
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For an implementation of this idea, we rely on graphs to formally represent a map

of the environment and define and locate relevant objects. With such a representation

of the environment, also the task of navigating a user can be based on relevant objects

which are commonly known as landmarks in the GIS literature (see e.g. Ohm et al.

2015).

At this point, we can state the major contribution of the present paper. We propose

an approach to combine a graph-like representation of an environment with the min-

imally necessary metric information to correctly align the data computed by a SHS

in the graph in order to assign the user’s position to more easily perceivable objects

in the environment which we call areas or landmarks depending whether we refer

to a part of a path the user should walk on or a relevant object the user can perceive

in the environment. It has to be noted that we do not assume a particular sensor tech-

nology or SHS algorithm. We only assume to receive vectors that quantify the step

length and direction of a pedestrian’s movement.

This approach for an indoor navigation system shares similarities with other work

(in particular Link et al. 2013). As a new contribution, we introduce the concepts of

areas and the area match score that link indoor positioning based on SHS with

landmark based navigation (Sect. 4). By doing this, we relax performance require-

ments for positioning algorithms as we no longer need to optimize the metric errors

at any time of the navigation process. Instead, it is sufficient to identify the correct

area a user is currently walking on: given the current area, the system can generate a

navigation instruction that incorporates a landmark easily perceivable from the esti-

mated position of the user. Under normal conditions, users are able to walk towards

the indicated landmark without further assistance. Then, in order to continue the nav-

igation process the positioning algorithm has to determine whether the user is close
to the landmark and can switch to the next instruction. Mostly, this task is much

easier than continuously determining the exact position.

To introduce our approach, we describe the concepts we build our knowledge

graphs on, and the algorithm we rely on to compute routes that we then split into

path segments.

Our data model is based on the graph representation described in Ohm et al.

(2015). We adapted their concept for environment models in order to generate indoor

navigation graphs such as the one in Fig. 1. The graphs are created manually in a web

tool by drawing on top of floor plans of a building. Edges represent paths users can

walk on. Edges can connect multiple floors or buildings, allowing for the modeling

of arbitrary building geometries. Nodes connected by edges are used to formalize

decision points where users eventually have to change their direction. Landmarks

can be integrated seamlessly in the graph structure in the form of special nodes that

can optionally be enriched with images.

In summary, the system relies on a single data structure for routing and localiza-

tion, minimizing the effort needed for map creation and maintenance.
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Fig. 3 User interface of the

data collection app. The

current area is highlighted in

light red

In order to transform such a graph into an indoor navigation graph, adjacent edges

are combined into areas if the part of the environment captured by an area is perceiv-

able as a unique object with salient landmarks (e.g. a corridor, a foyer, a staircase).

An example can be seen in Fig. 3, which shows part of a corridor as an area consisting

of a several adjacent edges. In Fig. 4 a typical landmark is displayed: the billboard

shown on the map is also referred to in the navigation instruction.

For landmark based navigation, it is crucial to give navigation instructions at the

right time in order not to confuse users and to guarantee good usability as well as

reaching the destination. A navigation instruction is given at the right time if it does

not refer to any landmark that is not yet visible from the user’s current position or

that the user has already passed before.
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Fig. 4 Example of a

landmark-based navigation

instruction

4 Graph-Based Localization

Consequently, in order to give the right instructions at the right time, the user’s rel-

ative position towards landmarks referred to in navigation instructions needs to be

known. Our indoor positioning algorithm computes this position by mapping sensor

data to areas in the indoor navigation graph.

For this mapping, we implemented a recursive stochastic filter that after each

measurement assigns a probability to each area proportional to the likelihood of the

user to currently walk on a certain area.

The filter is implemented as a particle filter (see Thrun et al. 2005). This family

of algorithms represents a probability distribution by means of a representative sam-

ple, a set of so called particles. Around the expected position the number of particles

is high while elsewhere it is low according to the small probability mass. Using a

sampling and resampling strategy the set of particles is updated after each measure-

ment in order incorporate the new information (see Thrun et al. 2005 for details): Far

away from the expected position the particles diminish while new ones are generated

for positions with high probability mass. Our implementation can also incorporate
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input from multiple sensors such as detected steps or WiFi signals in order to imple-

ment the advocated hybrid approach for indoor positioning. Furthermore, informa-

tion contained in the indoor navigation graph stabilizes and corrects the position

estimates as many constraints for the user’s current location can be derived from

the graph structure (in particular invalid positions receive probability zero while in

standard SHS approaches the same locations are possible positions).

In order to investigate the influence of the precision of the SHS on our approach,

we compared two different state of the art algorithms:

∙ motionDNA by Navisens

The motionDNA SDK by Navisens is a well-known commercial state-of-the-art

motion tracking solution. According to the company’s website,
2

it relies on inertial

sensors only and does not need any external infrastructure to operate. The sensor

readings are updated with a rate of 24 Hz on our test device and include a variety of

information such as the user’s activity and the device orientation and position. For

this study, only the position information (relative to the initial position, measured

in meters in X and Y direction) is used.

∙ Android’s built-in sensors

On recent devices, the Android framework gives access to many sensors that can

be used for motion tracking. In our case, the step detection sensor tells us whenever

a step occurs, whereas the average orientation during the step as provided by the

rotation vector sensor is used as step direction. We assume that the user orients

the smartphone in his walking direction and use a fixed step length.

In Fig. 5 the data computed by each of both algorithms for a single walk on the

test route is plotted into the map of the building. Many position estimates are far

off the route. This observation illustrates that information about the environment is

indispensable for the position estimates to be used in an indoor navigation system.

In order to map SHS estimates to the indoor navigation graph, we apply the

described particle filter. Initially the probability is distributed uniformly over all

edges.

Whenever a step is detected, a Gaussian naive Bayesian classifier updates the

probability distribution for the edges starting in the current node. The update takes

the motion model for the user (i.e. the distance and direction of the detected step)

and the orientation of the considered edges into account. The probability of the user

to walk on an edge increases if this edge is parallel to the direction detected by the

SHS. The increment for an edge not parallel to the detected direction decreases pro-

portionally to the angle between the direction and the orientation of the edge.

Unlike other approaches, the algorithm does not immediately select the edge with

the highest probability as the current position estimate. Instead, it updates the set

of particles each of which represents a different hypothesis for the user’s current

position. A similar approach has been successfully applied to localization in robotics

(see Thrun et al. 2005) and allows to

2
http://navisens.com.

http://navisens.com
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Fig. 5 The trajectories of both motionDNA (blue) and raw step data (green) of a typical walk

along the test route. Ground truth (starting top left, then clockwise) and the boundaries of the areas

defined for the evaluation experiment are drawn in red

∙ account for noise in the SHS data, which may stem from the rotation vector sensor

(or rather the underlying magnetic compass) or the way the device is held in the

hand,

∙ account for differences in step length while a person is walking, and

∙ account for different step lengths of different users.

More formally, each particle’s state is defined by the vector {nt, dt, et}, where nt
denotes the starting node at time t, dt the distance walked since leaving the node,

and et a discrete probability distribution for the edges adjacent to the node. On every

step, the state is updated according to

{nt, dt, et} ∼ p(nt, dt, et|nt−1, dt−1, et−1, z𝜃,t, zl,t,G), (1)

where z
𝜃,t and zl,t are the measured step direction and length, and G is the graph of

the building. Applying the procedure detailed in Hilsenbeck et al. (2014), the update

rule can be decomposed to its independent parts. The noisy step length measurement

with the empirically determined variance 𝜎

2
l is modeled by
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lt ∼ p(lt|zl,t) ∼ N (zl,t, 𝜎2
l ), (2)

leading to the updated cumulative step distance of

dt ∼ dt−1 + lt. (3)

Similarly, the step direction is updated by

𝜃t ∼ p(𝜃t|z𝜃,t) ∼ N (z
𝜃,t, 𝜎

2
𝜃

) (4)

and subsequently used to determine the new edge distribution:

eit ∼ p(eit|e
i
t−1, 𝜃t,G) ∼

{
N (𝛥𝜃it , 𝜎

2
e ) ∗ eit−1 if |𝛥𝜃it| ≤ 100

0 otherwise
(5)

Here, eit denotes the probability of the user to currently walk on the i-th edge adjacent

to the current node and 𝛥𝜃

i
t the angle difference between the step and the i-th edge.

Finally, the decision whether the user has completed an edge and moved to the next

is formalized as:

nt ∼

{
no if dt ≤ length(e) ∧ e = argmaxi(et)
yes if dt > length(e) ∧ e = argmaxi(et),

(6)

i. e. whenever dt exceeds the length of the currently most probable edge e. In this

case the starting node has to be updated: nt is set to the sink node of the previous

edge and dt is reset to zero. Since the walked distance usually does not align exactly

with the edge length, the difference is added to the position estimate and the step

bias is reinitialized to N (zl,t, 𝜎2
l ) as the prior distribution for the new current edge

et.
After the update step, the particle importance weights are distributed according

to the non-normalized probability of the most probable of all adjacent edges:

𝜔t = 𝜔t−1 ∗ p(zl,t, z𝜃,t|nt) ∼ 𝜔t−1 ∗ max
i
(et) (7)

Finally, stochastic universal sampling is performed, which guarantees low vari-

ance and a representation of the samples in the new particle distribution that is pro-

portional to their importance weights (see Thrun et al. 2005 for further details).

In order to estimate the user’s position, the expected value of the particle distrib-

ution is calculated. From there, the closest point that is located on either an edge or a

node of the graph is computed as the final position estimate. This snap to the indoor

navigation graph ensures that the position estimate is a location that is accessible

to the user and—differently to the pure SHS algorithms—prevents the positioning

algorithm to assume impossible movements, e.g. through walls.
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5 Task-Oriented Evaluation

The purpose of this study is to test how well the correct area on a route can be

determined by the localization system, which—as noted above—is a requirement

for correct navigation instructions and for successful navigation in general. Based

on those findings, it is our goal to identify patterns that point to problematic areas

and to propose ways to mitigate the issue.

5.1 Experimental Setup

As detailed above, the indoor navigation graph is a simplified model of the environ-

ment. Perfectly accurate position tracking is feasible only if the user actually walks

on the edges of the graph. In reality however, the user’s movement is not constrained

to the graph structure, and edges and nodes do not necessarily have a perceptible

counterpart that can ease the user’s orientation. As an example we consider the foy-

ers at the end of the long corridors in Fig. 1. They are modeled as a dense sub graph

in order to approximately represent different paths a user may take through the foyer.

The user however perceives the foyer as a single object that can be traversed arbi-

trarily instead of a discrete graph.

In order to take the user’s moving and orienteering behavior into account, we

introduce the areamatch score as a performance metric that enables us to investigate

the problem in a task-oriented manner. Each area corresponds to a section of the

route, which in turn is comprised of multiple edges in the indoor navigation graph.

Strictly speaking, an area is matched if the position estimate is located in the same

area the user is currently walking on.

However, the introduction of artificial segments inevitably leads to matching

errors at the boundaries of two adjacent areas as the user’s position cannot estimated

without error. Therefore, areas may be mismatched.

In order to account for this problem, we relax the strict definition of a match by

adding the mean position error to the boundaries of each area. The final area match

score for the whole route is then defined as the percentage of position updates that

match the correct area according to the relaxed definition above.

To collect data for an evaluation of the implemented indoor positioning algorithm,

we conducted an empirical study in the ground floor in an university building. There,

we defined a test route spanning 182 m. The route leads through 4 corridors in a

rectangular shape. Three of the corners are modeled as small foyers (see Fig. 1). The

only obstacles on the route are several glass doors that had to be passed in order to

reach the destination of the route.

The route was segmented into areas. Their boundaries were set at positions where

semantically relevant objects—i.e. salient landmarks—are located. For determining

salient landmarks along the route, we followed the approach described in Kattenbeck

(2016): 19 persons rated 32 objects in the test area regarding different aspects of
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their salience. We selected the objects with the highest predicted overall salience

as landmarks for the navigation instructions in our experiment. These landmarks

included e. g. a glass cabinet, a wall painting, a bench and a sign for the department

of psychology. Additionally, architectural features such as the aforementioned glass

doors or the beginning and end of foyers were used to segment the route into areas.

For each area, we formulated a navigation instruction that should explain to the test

persons how to proceed the route. Finally, the route consisted of fourteen sections of

varying size (see Fig. 5). The main factor that influences the size of the sections is the

visibility of the landmark at their end: some can be referenced unambiguously from

further away, while for others one has to be closer, thus causing smaller sections.

Acquisition of Positioning Data

Starting from a defined position, 7 different persons who were familiar with the area

and the landmarks performed a total of 15 walks along the test route. Data collection

took place over the course of several days, with an LG Nexus 5X running Android

7.1.2 as the test device. Before each test run, the compass was calibrated and its

proper functionality was verified. During the experiment, the phone was held in the

hand in front of the body, pointing in the direction the person was heading toward.

For data collection, a custom Android application was developed. It is able to

capture data from various sensors of the device:

∙ Steps detected by the built-in Android step detection sensor.

∙ Orientation data from Android’s orientation vector sensor, which in turn fuses

magnetometer and gyroscope readings.

∙ Data from Navisens’ motionDNA SDK. First and foremost, this includes the rela-

tive position, but heading direction, orientation of the device, as well as detected

user activity are also logged.

∙ The signal strength of WiFi access points in the area (not used in this study).

∙ A video recording of the device’s back-facing camera, capturing the test person’s

feet and the area immediately in front of them.

The app’s user interface consists of a map of the test area and a single button

that allows the user to start the test run. After the localization on the starting node

and sensor systems were initialized, the first area to walk through was highlighted

on the map and the button text changed to the first instruction. When a test person

reached the landmark, he or she pressed the button in order to set the ground truth

for the transition between two adjacent areas, and the interface was updated with

information for the recently entered area.

Validation of the Collected Data

With this experimental setup, we collected sensor data for the test route and a ground

truth labeled by experts in a single run of the experiment. We avoided to make use

of other, technically very complex methods to label the logged sensor data with the

correct area.

In order to verify whether the collected samples were representative for average

persons walking straight ahead, several gait characteristics were calculated.
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∙ The mean gait speed during a walk can easily be determined by the quotient of

route length and the time needed to complete the route, measured by the differ-

ence of timestamps between last and first step. The result is a mean speed of 1.30

m/s (SD = 0.14 m/s), which is well within the margin reported by Bohannon and

Williams Andrews (2011).

∙ In order to calculate the step length, the steps are counted manually for each walk

by means of the recorded video, revealing that Android’s step detector misses

about 5.8% of steps on average.

∙ The mean step length amounts to 0.73 m (SD = 0.077 m), which is classified as

fast gait according to the study from Oberg et al. (1993). This can be explained by

the fact that the test persons knew the area and the route very well.

In summary, the collected data is representative for “average” persons who currently

perform a similar navigation task.

Analysis of the Collected Data

The analysis of the raw data shows—quite expectedly—that the error quickly accu-

mulates, leading to a high mean location error of 11.5 m (Android sensors) respec-

tively 12.0 m (motionDNA). Figure 5 shows the trajectories of a typical walk.

Navisens’ motionDNA often struggles with substantial drift towards the left early

on, but otherwise manages to track the overall shape quite well. The version relying

on the Android step counter usually shows drifts in different directions throughout

the walk due to the lack of correction. Additionally, the reported distances differ

between the tracking methods: motionDNA’s paths are usually shorter (M = 174.1

m, SD = 15.37 m), Android’s longer (M = 189.4 m, SD = 16.49 m) than the ground

truth of 182.0 m.

Before the motionDNA data could be used as input to the particle filter, some

preprocessing was inevitable: Since the update frequency of about 20 Hz was rather

high (about an order of magnitude higher than the step frequency), the data was split

in batches of ten measurements that were treated as a single step. In two of the 15

recorded walks, the relative location reported by motionDNA unexpectedly was set

back to the starting point of the route. Therefore, the area in which the reset occurred

was eliminated from the data set.

5.2 Localization Results

Since it was not feasible to run both Navisens’ and our indoor localization implemen-

tation at the same time on one device, we processed the collected data in an offline

simulation of our indoor positioning algorithm.

In order to extend the data set, from each actual walk a stochastic motion model

was learned and used to generate 20 additional walks proportional to the learned

model. 10 of them were generated using motionDNA for simulating steps of the

user and 10 others using the Android step counter.
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Fig. 6 Empirical

cumulative distribution

function showing the

accuracy with the two

different motion tracking

methods

The extended data set was used for the evaluation of the implemented algorithm.

In the remainder of this section, we present our evaluation results and discuss their

impact on the appropriateness of the proposed area match score for localizing users

during indoor navigation.

Accuracy Metrics for the Sensor Data

Figure 6 shows a comparison of the two motion tracking solutions regarding their

positioning accuracy, i.e. the distance from estimated position to ground truth, after

their raw data has been processed by the particle filter.

The mean and median error of motionDNA amount to 7.02 and 4.28 m respec-

tively, while the Android sensors lead to an accuracy of 4.39 (mean) and 2.60

(median) meters. This performance gap is likely caused by two factors:

∙ The drift at the beginning that motionDNA often suffers from is propagated

throughout the whole walk, causing a mismatch between step directions and the

graph edges.

∙ Open spaces at the ends of the corridors allow for some overshooting, which bene-

fits the approach using Android sensors and its slightly longer steps. The too short

distance reported by motionDNA however can often not be compensated by the

particle filter.

Analysis of the Area Match Score

On average, 60.6% (motionDNA) resp. 74.7% (Android sensors) of position updates

match their area. Figure 7 visualizes the area match score for each area on the route.

Obviously, the choice of the SHS influences the overall performance of our position-

ing algorithm. It cannot repair arbitrary errors of the SHS as positions too far away

from any edge and directions very different from the orientation of the edges nearby

the user’s current position decrease the probability of the particles for these edges

significantly (see Eq. 5).

As Fig. 8 illustrates, the area match score and the positioning error are inversely

correlated (r(58) = −0.87, p < 0.05). From these observations we conclude that in

order to support indoor navigation effectively any indoor positioning needs to be

able to reliably estimate a user’s relative movements. While in this study we only

analyzed walking, this observation in a more general setting equally applies to other

kinds of movement (e.g. climbing stairs, taking an elevator, etc.).
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Fig. 7 Area match scores for the two motion tracking methods

Fig. 8 The area match score

correlates inversely with the

median positioning error.

Each point represents the

mean of 10 simulated runs

for one actual walk

Influence of the Navigation Graph on the Area Match Score

While from the preceding analysis we learn the lesson that the area match score’s

precision depends on the quality of the step detection, in the following we identify

other sources for area match errors.

The first source is the indoor navigation graph. Its usage introduces artifacts for

the actual movement of a person as it always has to be snapped on one of the edges—

sometimes a very crude discretization of the actually available degrees of freedom

how to move.

While in corridors no problems may arise, Fig. 7 illustrates that in junctions and

foyers, the area match score tends to decrease. In such a situation, there is only a

single correct edge that can be hypothesized as the current position. However, the

particle resampling may fail when the SHS misses the user’s turn or at least recog-

nizes it too late. In this case only few or even no particles are generated for the

current edge while the majority of the particles hypothesizes the user to continue to
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Fig. 9 Closeup of the part

of the graph that was

changed. The edges drawn in

red were added to stabilize

the position estimation at

this junction

walk straight ahead. This phenomenon is particularly obvious for the junction on the

bottom left in Fig. 7.

Contrarily, the three other larger foyers are represented by a densely connected

net that enables the system to track almost arbitrary paths within these areas (see

Fig. 1). In these areas, the area match score remains high.

This circumstance teaches us that indoor navigation graphs should not only

model accessibility relations between locations in the modeled environment, but also

approximate the geometry of the locations.

We tested this hypothesis by connecting the nodes adjacent to junctions with addi-

tional slanted edges as depicted in Fig. 9, the benefits of which are twofold: Firstly,

it models more natural paths where the test person cuts the corner slightly; secondly,

it allows for the compensation of step length differences since now multiple paths

lead into the corridor that is branching off.

Using the new graph structure, we repeated the computation of the area match

score. The result was not only an improvement in the area after the junction, but

in all subsequent sections as well. In the small but critical area immediately after

the junction, the area match score was improved by 38% (from 0.21 to 0.29) for

motionDNA, and almost tripled (from 0.13 to 0.36) for the Android sensors (Fig. 10).

The improvement is even statistically significant for the remainder of the route after

the change: a Wilcoxon rank sum test indicates that the area match score is greater

for the graph model with additional edges (Mdn = 0.78) than for the original version

(Mdn = 0.73), W = 33942, n1 = n2 = 300, p < 0.05.

For reference, the median position error when calculated for the whole route also

decreased from 2.60 to 2.52 m for the Android sensors, and from 4.28 to 4.11 m for

the version running with motionDNA.

We conclude that by applying a systematic methodology to design an indoor

navigation graph, we can almost completely eliminate the negative influence of the

discretization of the physical environment that is inevitable to construct the repre-

sentation of the environment.
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Fig. 10 Area match scores for the two motion tracking methods (with additional edges in the lower

left corner)

In the remainder of this analysis, we only discuss results obtained by applying best

practices learned so far: we use the internal Android SHS on the indoor navigation

graph with additional edges for junctions (as shown in Fig. 9).

Influence of Area Transitions on the Area Match Score

Dividing a route into areas as explained above introduces another artifact at the

boundaries of adjacent areas. It may prove problematic that boundaries are strict

while SHS is noisy. Therefore, measurements taken around boundaries may be ran-

domly assigned to one of the areas and increase the area match error.

In particular, the smaller an area is, the higher the precision of the SHS has to

be for the measurement to be matched to the correct area. Therefore, in order to

eliminate the influence of this artifact on the area match score, it seems justified to

smooth the boundaries, allowing positions up to 2.5 m (i. e. the median position

error) away from the exact boundary still to count as a match.

By loosening the definition of an area match in this way, the score increases from

0.77 to 0.88 on average, almost cutting the remaining error in half. Considering only

the middle part of each area, defined as those positions that are further than 2.5 m

away from each of the area’s boundaries, the area match score amounts to 0.87 (strict)

respectively 0.91 (approximate). On the other hand, when looking at the boundaries

themselves (i.e. the interval of ±2.5 m around the boundary), the scores amount to

0.73 for the parts immediately after a segment change and 0.84 for the part at the

end of each segment.

In summary, we conclude that the SHS position estimate tends to lag behind more

often than it precedes the actual position.
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Automatic Prediction of Locations with Low Area Match Score

Manually identifying problematic areas with a controlled experiment and known

ground truth as discussed above is no solution of the productive use of indoor posi-

tioning in a complex navigation system.

Instead, the goal has to be to automatically predict these areas during positioning

a user. In this way, the navigation system can be empowered to avoid such situations

altogether or apply situation-specific positioning strategies (e.g. mounting beacons,

interacting with users, classifying raw sensors with other algorithms than SHS). In

our opinion, it is a challenge for research in indoor positioning to substitute sensing

the GPS signal with a hybrid approach to classify raw data into absolute or relative

coordinates. One step towards this research goal is to compute confidence scores for

positioning data in order to automatically predict the best approach for each area of

an (indoor) environment.

We investigated the particle set continuously computed by our algorithm and tried

to detect a predictor for a confidence score of the estimated current position: Dur-

ing navigation, divergence monitoring can be used to identify situations where the

particle distribution deviates too far from the true posterior.

The extreme case where the sum of the non-normalized particle importance

weights is close to zero is already handled by the system. This generally happens

when the step direction does not even approximately coincide with any adjacent

edge. If such a situation is detected the particle filter is re-initialized with a spread

out normal distribution around the last known location, in order to allow the position

tracking to pick up again.

Another promising way to predict erroneous situations is to find a correlation

between the spread of the particles and the accuracy of the positioning, the assump-

tion being that a more scattered set of particles leads to a wrong position more often.

To measure the spread of the particles, we use the root mean square error with respect

to the mean of the particles. It provides meaningful values even when one dimen-

sion of the coordinates is equal for all the particles. Nevertheless, interpreting the

spread of the particles proved difficult since there are multiple factors at play: At the

beginning, the particles are somewhat spread out due to the particle filter’s initial

normal distribution. Since they are forced to move along the graph structure, vari-

ance decreases whenever there is only one possible edge in the heading direction,

i. e. in corridors. Meanwhile, variance increases due to the different step lengths as

long as there is no turn in the route to filter out the wrong step length hypotheses.

As a result, the data can only be interpreted properly after a few turns in the route,

when the influence of the particle filter initialization has decreased.

And indeed, if the test route is considered as a whole, no correlation can be found

between positioning accuracy and particle dispersion. However, taking only the sec-

ond half of the route into account, area match and RMSE do correlate negatively,

r(10) = −0.83, p < 0.01. As can be seen from Fig. 11, there are matching local max-

ima and minima in areas 8 and 11, corresponding to areas immediately after a turn in

the test route. With this knowledge, problematic areas can be identified heuristically

based on the graph structure and the calculated route before the actual navigation

takes place.
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Fig. 11 Development of

median particle RMSE and

area match score over the

course of the test route

6 Conclusions

The main objective of our work was to introduce and validate the area match score

as an approximate indoor positioning metric tailored to the needs of generating land-

mark based navigation instructions for pedestrians. An empirical evaluation of the

score in a typical indoor environment displays promising results: The best value for

a single run is 0.918, with a median position error of very accurate 1.07 m. The aver-

age score for the best configuration amounts to 0.770 with a median position error

of 2.52 m (for a PDR system with map-matching). While these figures cannot be

compared directly to those reported for the EvAAL-ETRI competition (Potortì et al.

2015), e.g. due to a different indoor layout, they show that the approach certainly can

compete with the state of the art. Nevertheless, we identified room for improvements:

∙ Environment Model: In the present study, the turns in the route proved most

problematic, causing a sharp decrease of accuracy in the areas after junctions. In

our work, we developed a methodology how to overcome his issue. However, in

almost any building, there are also other layouts such as foyers or other large open

spaces. Therefore, one aspect for our future research is to generalize our findings

for junctions to areas with different geometric characteristics.

∙ Motion Model: We assumed the user to steadily walk ahead on the same floor in

order to be able to reliably analyze the SHS data. However, analogous models have

to be developed for other ways to move (in areas of other environmental type), such

as taking stairwells, elevators, or escalators. According to the most recent position

estimate an indoor positioning algorithm will have to decide at runtime which of

the models to be used for the analysis of raw sensor data.

The comparison of the two motion tracking solutions showed that the supposedly

more sophisticated one does not outperform the built-in step counter when embedded

in a more complex, non-metric approach to indoor positioning. Both suffer from

a cold start problem and produce wrong estimates when indoor positioning starts.

To Navisens’ credit, we only used a small portion of motionDNA’s capabilities and

designed the experiment in a way that the Android sensors would have a reasonable

chance at competing, e. g. by restricting the device location and only using a single

floor for the test route.
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As far as the practical purpose of implementing pedestrian navigation systems

is concerned that can reliably generate instructions during the navigation phase

our research and the high precision values achieved in the experiments point out

a promising way to integrate metric sensor data, graph-like environment models for

route calculation and landmarks and landmark based navigation strategies.

Even if only few test persons took part in our study, we argue that our experi-

ment provides reliable results: the gait parameters of our test persons are within the

margin reported by medical surveys. Furthermore, the sensor data from each walk

is processed by the localization algorithm multiple times in order to eliminate noise

stemming from the non-deterministic nature of the particle filter. All in all, there are

150 runs with tens of thousands of individual position updates for each configuration,

which is enough data for robust results.

In our future work, we will evaluate hybrid system architectures with additional

positioning data e.g. from WiFi or BLE in order to analyze their performance to

reinitialize PDR after a complete failure. Furthermore, we will evaluate our approach

to predict critical PDR errors in an online setting and investigate whether it allows

to reduce PDR failures.

Finally, our experiments indicate that by machine learning techniques areas can be

identified that lead to high errors in the area match score. Such an analysis enables

us to systematically expand the indoor navigation graph in these areas in order to

reduce the error rate. A second option is to prepare the environment in these critical

areas e.g. by mounting BLE beacons. We will investigate whether this is a practicable

strategy to further reduce the error rate or whether other hybrid strategies for indoor

positioning have to be applied.
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An Original Approach to Positioning with
Cellular Fingerprints Based on Decision Tree
Ensembles

Andrea Viel, Andrea Brunello, Angelo Montanari and Federico Pittino

Abstract In addition to being a fundamental infrastructure for communication, cel-

lular networks are employed for positioning through signal fingerprinting. In this

respect, the choice of the specific strategy used to obtain a position estimation from

fingerprints plays a major role in determining the overall accuracy. In this paper, a

new machine learning approach, based on decision tree ensembles, is outlined and

evaluated against a set of well-known, state-of-the-art fingerprint comparison func-

tions from the literature. Tests are carried out with different tracking devices and

environmental settings. It turns out that the proposed approach provides consistently

better estimations than the other considered functions.

Keywords Positioning ⋅ Fingerprinting ⋅ Cellular ⋅ Machine learning

Random forest

1 Introduction

Due to the large variety of its application fields, which range from location-based

services to asset tracking and fleet management, location estimation is a quite active

research area.

At the present days, the Global Positioning System (GPS) is the standard de facto

Global Navigation Satellite System (GNSS) for positioning. However, despite of its

widespread usage, GPS has some shortcomings: (i) its availability and performance
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are reduced in certain environments, such as indoor areas and urban canyons,

(ii) sometimes, a long time is required to obtain a position fix, and (iii) it has a high

energy consumption, which can be a problem for battery-powered devices (Li et al.

2014; Paek et al. 2011; Zhuang et al. 2010).

To overcome these weaknesses, GPS is often paired with localization methods

that exploit cellular networks. Given the ubiquitous use of cellular modules as a

means of communication, this combination turns out to be a cost-effective solution.

In particular, an approach which can be thought of as complementary or alternative to

GPS is provided by signal fingerprinting, that is, the localization of a device by means

of the fingerprint of the received signals. Signal fingerprinting makes it possible to

estimate the current position of a device by correlating the radio signals it detects

(its fingerprint) with the set of past observations, each one tagged with the respective

GPS position and stored in a database (Chen et al. 2006). Fingerprinting gives a quick

response and has limited power consumption; its precision depends on the size of the

cells and on the spatial distribution of the stored observations.

Machine learning techniques have already been successfully applied for the pur-

pose of numeric prediction, such as scoring, in a variety of domains, ranging from

education (Romero and Ventura 2010) to health-care (Tomar and Agarwal 2013)

and economy (Ngai et al. 2011). Among such techniques, decision trees are a pop-

ular method for many predictive tasks. In the following, we show that they can be

profitably employed also in fingerprint positioning systems, with the goal of evalu-

ating the distance between fingerprints. One of the crucial features of a fingerprint

positioning system is the method it uses to obtain a position estimation by comparing

and matching the fingerprint submitted by a device with those stored in the database.

In this paper, we demonstrate that decision trees can be a valid alternative to existing

solutions for such a task.

We start with a short account of the most commonly used fingerprint compari-

son functions among those proposed in the literature, which takes into consideration

a wide range of different applicative environments. Then, a novel approach based

on machine learning is outlined, which is shown to produce position estimations

with higher accuracy than previous methods. Unlike the other comparison functions

analysed in this work, such a solution also provides a measure of the uncertainty of

the position estimation. As a matter of fact, some machine learning approaches to

position estimation have already been proposed in the literature. The one described

in this paper differs from them in various respects; in particular, it is not limited by

the number of received signals.

The rest of the paper is organized as follows. In Sect. 2, we provide some back-

ground knowledge on fingerprint positioning systems, with a special attention to the

metric they adopt to measure the distance between fingerprints. Next, in Sect. 3, we

introduce some basic notions about decision tree ensembles. In Sect. 4, we describe

the datasets used in this work as well as the new fingerprint comparison method.

Then, in Sect. 5, we report the outcomes of an extensive experimental evaluation of

the described techniques on various, heterogeneous datasets. Finally, in Sect. 6, we

briefly analyse related work. Section 7 summarizes the achieved results and outlines

possible directions for future work.
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2 Fingerprint Positioning Systems

In this section, we introduce the basic features of fingerprint positioning systems and

the main metrics that they exploit. Fingerprint positioning systems, also known as

database correlation methods (DCM), are a class of positioning systems that make

use of the variance of signals received by a device in different positions. While they

can be applied in various contexts and with several wireless technologies, in this

paper we focus on cellular network signals obtained in an outdoor setting.

One of the main advantages of fingerprint position systems is that, unlike other

cellular-based positioning systems, they do not require any assistance from the net-

work operator and can be implemented using only parameters available on client

side. The latter is an advantage also from a privacy point of view, as the process of

location estimation can be entirely done on the device itself.

In cellular systems, fingerprints commonly include the received signal strength

of the cells observed by the device, and they allow one to distinguish between the

serving cell, which is the one the device is currently connected to, and the other

cells, which are referred to as neighbours. Serving cells in GSM and LTE networks

have an additional parameter, called Timing Advance (TA), which can be exploited

to enrich the fingerprint with a discrete measure of the distance between the base

station of the cell and the device. Structurally, a fingerprint can be viewed an array

of arrays, where the outer one represents the list of observed cells (the serving cell

and its neighbours), and each inner array provides detailed information about a cell

like the network operator, the Cell-ID, and the signal strength.

Fingerprint positioning methods typically consist of two distinct phases, com-

monly referred to as the off-line (or training) and the on-line (or positioning) phases.

In the off-line phase, fingerprints are collected at various locations by surveys (or are

generated by simulation models) to form a fingerprint map (aka radio map), stored in

a database. This is one of the common parts of every fingerprint positioning system.

During the on-line phase, when a device asks for an estimation, its current signal fin-

gerprint is compared to the fingerprints stored in the database to find the best match.

In the Nearest Neighbour (NN) method, the estimated position corresponds to the

one in which the most similar fingerprint was collected (according to a suitable dis-

tance function), while, in the k-Nearest Neighbours (k-NN) method, the k-closest

neighbours are averaged, possibly employing distance-based weighting (Weighted

k-Nearest Neighbours).

In the literature, several functions for assessing the similarity between fingerprints

have been defined. In this work, we make an evaluation of the performance of the

metrics proposed in the literature on both Wi-Fi and cellular fingerprinting, namely,

Euclidean distance, Spearman correlation, hyperbolic fingerprinting, and relative

RSS-based fingerprinting.

Euclidean Distance. Euclidean Distance is the earliest defined and most commonly

used metric in fingerprint positioning systems (Bahl and Padmanabhan 2000). For-

mally, it measures the Euclidean distance between the fingerprints in a n-dimensional

space, where n is the number of different beacons, such as cells or access points.
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The coordinates of the points correspond to the signal strengths. Conceptually, the

computed value evaluates how similar signal measurements are to each other: the

smaller the Euclidean distance between two measurements is, the more similar they

are. The formula is shown in Eq. 1, where ssk,i is the signal strength of the k-th beacon

in the i-th fingerprint fi:

deu(f1, f2) =

√
√
√
√

n
∑

i=1
(ssi,1 − ssi,2)2 (1)

The formula can be applied straightforwardly on the cells appearing in both fin-

gerprints, while for the others a penalty term is usually added. In this work, cells

which are not in common between the two fingerprints are considered to have signal

strength equal to zero, as if their signals were too weak to be received.

Spearman Correlation. Spearman Correlation (Zekavat and Buehrer 2011) mea-

sures the similarity between two ordered sets of values by looking at their rank, rather

than their absolute values (as it happens with the more common Pearson correla-

tion). Such an approach can be understood as follows. Consider two devices placed

at the same position. For some reason, such as, for instance, the different gain of

their antennas, they might record slightly different signal measurements originating

from the same beacons. Still, such beacons should be similarly ranked by the two

devices. The formula is shown in Eq. 2, where rgfi are the signal strengths of the i-th
fingerprint converted to their rank:

𝜌(f1, f2) =
cov(rgf1 , rgf2 )
𝜎rgf1

𝜎rgf2

(2)

Hyperbolic Fingerprinting. Hyperbolic Fingerprinting measures the differences in

signal strength ratios between pairs of beacons. Such a measure can be interpreted

as follows: even if the signal itself tends to fluctuate, and different devices typically

have different receiving capabilities, the ratios between the received signals should

be stable. The method was proposed in Kjrgaard and Munk (2008) for Wi-Fi fin-

gerprinting, where the problem is exacerbated by the lack of a standard metric for

reporting the strength of the signal. After computing all the ratios in each fingerprint,

the difference between them is evaluated as in the Euclidean distance formula (Eqs. 3

and 4):

r(x, y) = log(x
y
) (3)

dhyp(f1, f2) =

√
√
√
√

n
∑

i=1

n
∑

j=i+1
(r(ssi,1, ssj,1) − r(ssi,2, ssj,2))2 (4)
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Relative RSS-based Fingeprinting. Relative RSS-based Fingeprinting (Meniem

et al. 2013) can be viewed as a simplified version of Hyperbolic fingerprinting:

instead of looking at signal strengths ratios, only the relative order (greater, less,

equal) between the signal strength pairs is checked. Then, the similarity between

two fingerprints is given by the ratio of the number of matching pairs over the total

number of pairs. It is obvious that, since the number of observable cells at a given

time instant is limited (usually up to seven cells), in practice there is just a fixed

number of possible ratios.

The above metrics were chosen since all of them, with the exception of the first

one, try to cope with two basic problems: (i) the natural fluctuation of the signal

strengths and (ii) the different receiving capabilities of the devices. As for the for-

mer, it is well known that, even if placed at the same position, a device may receive

different signals over time, as they are affected by various environmental factors.

The latter refers to the fact that the types of mobile devices that are used for creating

radio maps in the training phase may be different from the ones that are used in the

positioning phase.

3 Decision Tree Ensembles

In this section, we introduce the machine learning tool we are going to use in the

following, namely, decision tree ensembles.

Data mining can be defined as the process of analysing huge quantities of data in

order to extract meaningful patterns, which were previously unknown, or only merely

presumed. Such regularities can then be used to increase one’s knowledge about the

specific domain, or may be exploited to derive rules, for the purpose of automatic

classification or prediction (Witten et al. 2011). Patterns are typically captured by

models, which are inferred from the data by means of a suitable machine learning
algorithm.

In this paper, we focus on the problem of regression, which is a form of supervised
learning. The algorithm is given a set of training examples, each one characterized

by a set of predictor attributes and a numerical label. The resulting model encodes

a mapping between the predictors and the label, and can be used to assign a value to

instances for which the value of the label is unknown.

Decision trees are a popular method for many supervised machine learning tasks,

owing their success mainly to their efficiency, during both the learning and the pre-

diction phases, as well as to their intuitive interpretability. However, a drawback of

decision trees is that they are usually less accurate in their predictions than other

methodologies, and have a tendency to overfit training data, that is, they have low

bias, but very high variance (Hastie et al. 2009). A possible way to improve their

accuracy, at the expense of a loss in the interpretability of the model and of a higher

complexity in the training and prediction phases, is to build a set of different trees

(ensemble), and then combine the single predictions in order to output the final
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result. Various methodologies can be used to build such an ensemble; one of the

most famous is bootstrap aggregating, or bagging.

Consider a labelled dataset D, made by n instances, and a decision tree learning

algorithm L. As noted before, decision tree learning algorithms have the character-

istic of being unstable, meaning that little changes in the input may produce very

different trees as output. In order to train an ensemble of k tree models, bagging

exploits such an instability in the following way: for i = 1,… , k, a dataset Di
is gen-

erated by randomly drawing |D| instances from D with replacement (that is, the same

instance may occur multiple times in Di
). Then, algorithm L is applied on each of

the datasets, with the result of obtaining k different trees. In the prediction phase, the

single tree outcomes are simply combined by voting (in a classification setting) or

averaging (in case of regression).

Let k be the number of trees to generate in the ensemble. In the learning phase, the

RF algorithm operates as follows: as in bagging, the dataset is repeatedly sampled

with replacement for k times, obtaining k different datasets having the same cardi-

nality as the original one. Then, a so-called random tree is built from each dataset,

by selecting as the split criterion at each node the best attribute (according to a pre-

defined measure) from a randomly determined set of predictors. The reason for con-

sidering only a subset of all attributes at each split is the correlation of the trees in

an ordinary bagging approach: if one or a few attributes are very strong predictors

for the response variable, these features will be selected in many of the trees in the

ensemble, thus preventing one from achieving a high degree of variability among the

models. Empirically, the RF algorithm has proven to be capable of obtaining very

good performances in terms of prediction accuracy in many application domains

(Hall et al. 2009).

4 Experimental Setup

In this section, we introduce the framework within which the various metrics for

fingerprint positioning systems have been experimented and compared. In particular,

we describe the employed dataset and tools.

4.1 Datasets

The performances of the various methods for comparing fingerprints are evaluated

using four real-world datasets of GSM cellular fingerprints paired with a GPS posi-

tion. Each dataset was obtained in a different setting, and it is identified by a letter

from A to D.

Datasets A, B and C are provided by an external party and contain fingerprints

coming from several devices with different characteristics. In particular, fingerprints

in these datasets have been sparsely collected over large areas of different locations.
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Fig. 1 Dataset D observations over the historical centre of Udine, Italy. Map Data © Open-

StreetMap contributors, CC BY-SA

Table 1 Characteristics of the datasets used in the experiment

Dataset A B C D

Location South Africa Poland Taiwan Udine (Italy)

Kind of

environment

Mixed Mixed Mixed Urban

Number of

fingerprints

4,330,382 265,276 324,755 4,802

The dataset D was collected by one of the authors by wardriving on foot and by

bike over several days in the historical centre of the city of Udine, Italy. The main

characteristics of the datasets are summarized in Table 1.

A graphical representation of the observations contained in Dataset D, plotted

over the test area, is shown in Fig. 1. They were collected by a Sony Xperia Z3

Compact phone using an Android application developed for the purpose. Note that,

because of API limitations, the observations in dataset D, differently from the others,

do not contain the TA attribute.

The density of the collected fingerprints varies across the different datasets, and

measuring its exact value is not trivial since it can considerably change also moving

from one area to another one of the same dataset. As for the process of position

estimation, instead of directly measuring such a density by the number of fingerprints
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Fig. 2 Cumulative plot of the average distance between a fingerprint and its similar neighbours

in a certain area, it turns out to be more significant to consider the distribution of

similar fingerprints.

A fingerprint is considered similar enough to the reference fingerprint if it has at

most p different cells with respect to it (we use p = 2). This rough filtering reduces

the number of candidate fingerprints for every position estimation, and it has been

applied also in the rest of the paper. Figure 2 shows the cumulative plot of the average

distance from a fingerprint and the surrounding ones which are similar enough to

be used for the position estimation. It represents a measure of the density of the

fingerprints from the point of view of their usefulness for position estimation. A

high value means that similar fingerprints are close to each other, and this makes it

easier to discriminate between different locations and thus to obtain good position

estimations. Figure 3 reports information about the standard deviation, showing the

regularity of the previous value across the entire dataset.

Putting together information about the density of the fingerprints, as emerging

from Fig. 2, and information about their consistency, as represented in Fig. 3, it is

possible to characterize the four datasets in the following way: datasets A and B have

a low density of fingerprints, typically spread over a large area, while datasets C and

D have a considerably higher concentration of observations, and this is especially

true for dataset D, which was collected in a small urban area.

Since the training phase of the Random Forest model is memory intensive, two

random subsets are extracted from each dataset by varying the initial seed. The first

one has been used for training, while the latter has been kept aside for the evaluation

process. In both subsets, each fingerprint is paired with others as explained in next

section. The same test subset is also used for the evaluation of positioning methods
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Fig. 3 Cumulative plot of the standard deviation of the distance between a fingerprint and its

similar neighbours

Table 2 Size of training and evaluation subsets

Dataset A B C D

Training (%) 0.05 4 4 30

Evaluation (%) 0.05 4 4 30

Training pairs 146,308 257,500 313,279 96,302

Evaluation pairs 2,101,762 553,567 1,449,187 222,402

that do not require training, like the Euclidean one. The percentage of data assigned

to each dataset is shown in Table 2. Since for the dataset D we use a large percentage

of the whole dataset, we make sure that the same pair of fingerprints does not appear

in both the training and the evaluation subset.

In the following, we illustrate the distinctive features of the fingerprint compar-

ison method based on decision tree ensembles that we propose. In next section, we

describe the process of model training; then, in the subsequent section, we present

the process of position estimation.

4.2 A Novel Fingerprint Comparison Method: Model
Training

A Random Forest model needs to be trained before its actual use. In previous con-

tributions (Bozkurt et al. 2015; Jedari et al. 2015; Sánchez et al. 2012), machine
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learning models have been trained using the signal strength of each beacon as pre-

dictors, while the output of the model is the estimated position, usually one of the

training points. Such an approach may be appropriate for indoor environments, where

the number of beacons (usually Wi-Fi access points) is low and mostly fixed, but it

does not scale in an outdoor setting, where there can be thousands of cells.

Here we follow a different approach. Models are trained on a set of instances, each

obtained from pairs of fingerprints. The features describe the similarity between the

two considered fingerprints, such as the number of common cells and their average

signal strength difference. The output of the model is the estimated distance between

the locations in which the two fingerprints were collected. It is worth pointing out

that having a numeric distance, instead of a position, as output has the advantage of

providing also a measure of the accuracy of position estimation.

For each dataset, the training instances are selected by taking a subset of the fin-

gerprints, and then pairing them with all the other fingerprints (also outside the gen-

erated subset) having at most two different cells. Such a process is similar to the

process of the position estimation, in which an input fingerprint is compared to all

the similar fingerprints stored in the database to find the best match. In order to limit

the size of the training set, and thus the computational burden of the learning phase,

each starting fingerprint is matched only with the first hundred ones which are the

closest geographically.

Such an approach was satisfactory for all datasets but dataset C. In dataset C,

indeed, fingerprints are very dense, and the proposed approach was not sufficient as

it left out fingerprints taken at larger distances. Thus, for this dataset, the training

instances were chosen in such a way that they included also a certain number of

farther observations. The rationale is that, although the classifier should be trained

to discriminate especially between closely collected fingerprints (as this is the most

difficult situation), the training set must include also fingerprints which are barely

related in order to learn how to discern them.

Compared to the classical distance metrics, the machine learning model allows

one to consider features which are not necessarily derived from the signal strength,

like, for instance, the Timing Advance, or that describe the characteristics of the

device. This is particularly convenient, because fingerprints collected from the same

device model, or even from the same device, are more correlated to each other.

For each pair of fingerprints in the training set, a number of predictor attributes

are generated to describe their differences:

∙ same device, indicating whether the devices that collected the two fingerprints are

exactly the same or not;

∙ same device model, indicating whether the devices that collected the two finger-

prints belong to the same model or not;

∙ same serving cell, indicating whether the devices that collected the two finger-

prints had the same serving cell or not;

∙ serving cell signal strength difference, which takes a proper value if the devices

had the same serving cell;
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∙ Timing Advance difference, which takes a proper value only for the GSM case,

and only if the devices had the same serving cell;

∙ number of common cells between the two fingerprints, expressed as an absolute

value;

∙ number of common cells between the two fingerprints, expressed as a fraction of

the total number of cells;

∙ number of cells that are not in common between the two fingerprints, expressed

as an absolute value;

∙ number of cells that are not in common between the two fingerprints, expressed

as a fraction of the total number of cells;

∙ average difference in signal strength over the common cells;

∙ average difference in signal strength over the cells that are not in common;

∙ average signal strength of the serving cells, if they are not the same but are still

observed in the other fingerprint among the neighbour cells;

∙ average signal strength of the serving cells, if they are not the same and each one

is not observed in the other fingerprint;

∙ Euclidean Distance value, as calculated between the two fingerprints;

∙ Spearman Correlation value, as calculated between the two fingerprints;

∙ Hyperbolic Fingerprinting value, as calculated between the two fingerprints;

∙ Relative RSS-based Fingerprinting value, as calculated between the two finger-

prints.

The numerical label for the regression model is given by the actual distance

between the points where the two fingerprints were collected.

Once the training set generation had been completed, a wrapper-based Attribute
Selection has been carried out by making use of the methods available in Hall et al.

(2009), and exploiting RF as the base classifier. As a matter of fact, after the appli-

cation of the selection phase on data taken from the different datasets, it turned out

that no predictors have been eliminated via this process, meaning that, potentially,

all of them might influence the final prediction. Indeed, even the removal of a single

attribute reduced the prediction performance of the ensemble.

4.3 A Novel Fingerprint Comparison Method: Position
Estimation

The evaluation was carried out by randomly selecting a subset of fingerprints from

each dataset, and by comparing them to the remaining ones by means of the different

metrics. This is the same process as the one used in a fingerprint positioning system

to estimate the position of a device given an input fingerprint.

The position estimation was done by the (single) Nearest Neighbour method, as

we empirically observed that taking more than one candidate did not improve the

positioning performance. In the presence of multiple fingerprints with the same
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scoring, their estimation was averaged. The most likely reason is that in sparse

datasets the neighbours could be far from each other.

As far as Euclidean and Hyperbolic distances are concerned, the best fingerprint

is the one with the smallest score, while for Spearman and Relative scoring the best

fingerprint is the one with the highest value. Machine learning models have been

trained to return a numeric distance, and thus the best fingerprint corresponds to the

one with the smallest predicted value.

The Weka toolset provided the implementations of the machine learning algo-

rithms used in this work. For the case of Random Forest, most of the parameters

were left at their default settings, except for numIterations, which was set to 60, and

breakTiesRandomly, which was set to True.

The non-machine learning methods, described in Sect. 2, were implemented in

PL/pgSQL and executed on the PostgreSQL (PostgreSQL Global Development

Group 2008) database where the fingerprint datasets reside.

5 Results

This section presents the results of the comparison of the different methods for com-

puting position estimations across several datasets.

5.1 Positioning Performance

We evaluated the positioning accuracy of the different methods across the different

datasets. Table 3 reports the average and median error for each of them. It is worth

noticing that the average is always much higher than the median, meaning that there

is a certain number of observations with a high positioning error. In addition, the

error has a high variance between the different datasets. Such a phenomenon is prob-

ably due to the different characteristics of the datasets, especially for what concerns

the fingerprint density. Nevertheless, independently from the considered dataset, the

Table 3 Average (and median) positioning error

Dataset A B C D

Euclidean 523m (53m) 256m (39m) 147m (31m) 33m (15m)

Spearman 637m (96m) 288m (49m) 153m (34m) 45m (23m)

Relative 772m (173m) 365m (95m) 145m (37m) 126m (92m)

Hyperbolic 627m (69m) 341m (54m) 165m (35m) 47m (17m)

Random forest 312m (22m) 219m (31m) 136m (30m) 22m (13m)
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RF-based method provided a better position estimation than the one given by the

classical approaches.

An interesting outcome of the experimentation is that in most datasets the Euclid-

ean distance method performed better than the other methods discussed in Sect. 2.

This comes as a surprise since the latter ones were designed to surpass it, especially

in situations where the collection of the fingerprints was done by different devices,

as in most of the considered datasets.

Relative scoring performed poorly in almost all datasets, most probably because,

as pointed out in Sect. 2, the number of possible values is limited, and thus it does

not provide a good way to discriminate between fingerprints.

In Fig. 4, Fig. 5, and Fig. 7 we show the cumulative plot of the positioning error

across the dataset A, B, and D, respectively. It is easy to observe that there

is a noticeable difference among the various methods and Random Forest is sig-

nificantly better than all the others. Euclidean distance evaluation strategy tends to

follow as the second best, as it performs the best among the classical ones.

As for dataset C, the improvement given by the Random Forest is less evident.

As shown in Fig. 6, the differences among the various methods is modest and it

becomes more difficult to discriminate the lines in the plot. Since the dataset C is the

only one exhibiting this behaviour, the most probable reason for such an outcome

is in the environment, e.g., differences in the deployment of the cellular network.

The high density of the fingerprints can be thought of a further explanation of the

phenomenon; however, it must be observed that dataset D has an even higher density,

but it behaves in a quite different way.
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Fig. 4 Cumulative plot of the positioning error on Dataset A
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Fig. 5 Cumulative plot of the positioning error on Dataset B
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Fig. 6 Cumulative plot of the positioning error on Dataset C
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Fig. 7 Cumulative plot of the positioning error on Dataset D

Dataset D is the one with the lowest positioning error. This is due to the fact that

such dataset consists of highly dense observations, collected in a single city centre.

Moreover, all the fingerprints were collected by the same device. As a result, there

is a strong correlation between the signals and the positions.

Unlike the other test cases, the observations in this dataset do not include the TA

attribute, which, in principle, could have further improved the estimation. However,

in this dataset the Random Forest model is already approaching the error of a GPS

receiver, and thus it is difficult to expect any large improvement.

In the cumulative plot shown in Fig. 7, it can be easily noticed that the curves

raise sharply around the values of 10 and 20 m. The reason is that the program that

collected the fingerprints on the phone while war-driving was set to record them at

approximately 10 m of distance each other.

5.2 Uncertainty Measure

As we already observed, the Random Forest models trained in this work are not used

to directly obtain a position estimation, but to provide a measure of the distance

from the estimation itself. Such a distance gives a direct measure of the predicted

uncertainty around the position estimation. Ideally, this value should be as close to

the actual one as possible. However, in order for this measure to be useful in practice,

it is sufficient for it to be able to provide an upper bound on the error in the position

estimation.
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Fig. 8 Cumulative plot of the ratio between predicted and actual positioning errors

Figure 8 shows the plot of the ratio between the predicted error from the model

and the actual error obtained from the distance between the position estimation and

the GPS fix. The vertical line intersecting the horizontal axis at 1 divides the plot in

two sides: on the left there are the estimations in which the error was underestimated,

and on the right those in which the error was overestimated. In all of the four datasets,

it is possible to observe that the models, most of the time, provide an overestimation

of the error, since the curves are skewed on the right. The best case corresponds to

dataset D, in which the trained model gives a correct estimation about 80% of the

time, while the worst is given by dataset A, in which the corresponding model reports

a correct error estimation just over 50% of the time.

Though the ratio gives us an intuition about the behaviour of the models, it is

also interesting to assess the extent of the actual error. Figure 9 and Fig. 10 show the

distribution of the difference between the predicted and actual error, respectively,

when the latter is underestimated and overestimated.

Looking at Fig. 9, we may observe that datasets A, B, and C exhibit a similar

behaviour, that is, roughly 20% of the time the error in the uncertainty is over 100 m.

The model trained on dataset D performs better, with the error in the uncertainty

rarely surpassing 10 m. This is somehow expected, since the overall positioning

errors in dataset D are lower than in the other datasets, as we have already shown.

Even though an overestimated uncertainty is less serious than an underestimated

one, Fig. 10 shows that the value rarely differs significantly from the actual position-

ing error and this is especially true for datasets A and D.
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Fig. 9 Cumulative plot of the difference between predicted and actual positioning errors (when

the error is underestimated)
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Fig. 10 Cumulative plot of the difference between predicted and actual positioning errors (when

the error is overestimated)
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Overall, more than half of the accuracy measures were correct, and even in the

other cases the error was often limited, showing that the accuracy measure is reliable

in most cases.

Moreover, the machine learning methods can generally be tuned to privilege a

certain kind of error over the others. As already explained, in a regression setting,

like the one in this work, an overestimation of the error is to be preferred, and we

plan to systematically explore such a possibility in future work.

This is a clear advantage of the machine learning approach with respect to the

classical methods, that cannot easily provide a similar measure.

5.3 Cross-Dataset Model

In the previous results, a different model has been trained on each dataset, in order

to take into account the fact that the different sets of observations were obtained in

heterogeneous environments. It would be interesting, however, to understand if it is

possible to apply the same model to different datasets, possibly with a small loss in

accuracy.

The models trained on datasets B, C, and D were applied on dataset A to test

how the positioning error would change compared with the model trained on that

dataset. The results are shown in Table 4. It can be noticed that the model trained on

dataset B behaves on dataset A in a very similar way as the “native” model, producing

similar average and median positioning errors. Also, the plot lines in Fig. 11 are

nearly identical.

The model originated from dataset D provides worse results, even if they are still

better than those provided by the Euclidean distance. The most likely reason for the

lower performance is that the dataset D has a subset of the attributes of dataset A,

and thus it cannot take benefit from all of them.

Finally, the model trained on dataset C showed the overall worst performance.

This is not entirely surprising since it was able to provide only a small improvement

even on its own dataset. In any case, this strengthens our hypothesis that dataset C

has some intrinsic characteristics that make it different from the other datasets.

Together with the results reported in the previous section, it is now possible to

identify a fundamental pattern.

In datasets A, B, and D there was a clear benefit in using Random Forest models

against classical methods, while in dataset C the improvement was modest.

Table 4 Average (and median) cross-dataset positioning error

Dataset for

training

A B C D

Positioning error 321m (22m) 280m (23m) 584m (71m) 522m (41m)
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Fig. 11 Cumulative plot of positioning error when applying the different trained models on

Dataset A

Moreover, the model trained on dataset B can work almost equally well on dataset

A, and this is true up to a certain point also for the model trained on dataset D.

These findings suggest that there are characteristics in the datasets A and B that

make them similar to each other, while dataset C is significantly different, thus most

probably requiring a different approach to obtain similar results.

In any case, the exact way to recognize behaviourally similar datasets is a matter

for future study.

6 Related Work

Various localization methods exploiting cellular networks have been proposed in

the literature (Deblauwe 2008). Some of them make use of the observation of net-

work signals, like Cell-ID or signal fingerprinting, others execute specific measure-

ments of network parameters. Among the latter ones, we mention those based on

Time of Arrival (Caffery and Stuber 1998) and those using Time Difference of

Arrival (Spirito and Mattioli 1998), which make accurate time measurements in

order to determine the distance from the device to the base station. To work prop-

erly, both these methods need to know the positions of the base stations with a high

precision. Another solution is offered by a technique based on the Angle of Arrival,

which requires antenna arrays at the base stations to determine the direction of the

signal (Caffery and Stuber 1998; Deligiannis et al. 2007; Qi et al. 2006).
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Some of the above methods require network operator assistance or impose non-

trivial modifications to the network infrastructure. This is not the case with signal

fingerprinting, which correlates the Received Signal Strength (RSS) from multiple

beacons with the position of the device. An advantage of the fingerprinting method

over the above-mentioned ones is that it is more tolerant to signal fluctuations and

multi-path effects, which is a particularly helpful feature in urban environments

where also GPS is mostly at a disadvantage. Such a method has been used in a vari-

ety of contexts, including Wi-Fi and cellular networks as well as indoor and outdoor

environments.

Early work in this area includes the RADAR system (Bahl and Padmanabhan

2000), which demonstrates that accurate indoor location estimations can be achieved

by using Wi-Fi access points. GSM fingerprinting in an outdoor context is analysed

in Chen et al. (2006), where the authors show that the outcomes are significantly

affected by the quality and the quantity of the fingerprints available for position esti-

mation. In Retscher and Joksch (2016), the authors discussed several measures for

comparing distances between vectors in the context of indoor Wi-Fi fingerprinting.

They found that all measures do not provide significant improvements against the

commonly employed Euclidean distance.

Data mining techniques, such as decision trees and Random Forest, have been

already used in positioning-related applications in the past. In Jedari et al. (2015)

and Sánchez et al. (2012), Random Tree and Random Forest classifiers were used for

positioning using Wi-Fi fingerprinting in indoor contexts. In Bozkurt et al. (2015),

several machine learning approaches for indoor fingerprinting localization were

compared, and the authors concluded that decision trees were among the best avail-

able methods.

In all these contributions, however, the input of the machine learning models was

made by the received signal strength of the Wi-Fi access points. This is one of the

main differences with our work, where we use attributes that describe the differences

between fingerprints instead of the raw signal strengths. This approach is scalable

and independent from the number of beacons.

An approach more similar to the one proposed in this paper, which makes use

of features based on difference between fingerprints, was proposed in Sohn et al.

(2006). However, there are significant differences in the kind of data used, since

they consider GSM traces and, in the scope of the work, logistic regression models

were used for mobility detection and not for positioning.

7 Conclusions and Future Work

In this paper, we proposed a machine learning method, based on Random Forest,

to significantly enhance the performance of fingerprint positioning systems in out-

door contexts using cellular signals. A novel approach for generating the attributes

used by the machine learning algorithm was also devised. The developed solution is

scalable, unlike those commonly used in Wi-Fi environments that assume a limited
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and/or fixed amount of beacons. The novel approach has been compared to vari-

ous other methods already present in the literature, focusing on the ones that should

have improved the position estimation, especially in certain problematic settings. The

comparison was done using several datasets collected in different environments, both

rural and urban, by devices with different characteristics.

As for future work, we are thinking of evaluating other machine learning models

for positioning, like Support Vector Machines or Neural Networks, using the newly

proposed approach for the generation of the attributes. In addition to its basic fea-

tures, the presented strategy provides a measure of the uncertainty of the position

estimation. This comes as an advantage over classic methods for position estima-

tion, which are not able to provide a measure of their accuracy. A final subject for

future investigation concerns the composition of the dataset to use for the training

of the machine learning models. While the adoption of a specific model for each

dataset provided the best accuracy, the results showed that it is possible to use a

model trained on a different dataset than the one in which the model is then going to

be applied. If the datasets are similar enough, this cross-dataset model application

can be done without losing much of the accuracy. The exact way to distinguish, and

possibly classify, the datasets for detecting a priori which of them might work well

with the same models is, however, a matter for further investigation.
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Jaccard Analysis and LASSO-Based Feature
Selection for Location Fingerprinting
with Limited Computational Complexity

Caifa Zhou and Andreas Wieser

Abstract We propose an approach to reduce both computational complexity and

data storage requirements for the online positioning stage of a fingerprinting-based

indoor positioning system (FIPS) by introducing segmentation of the region of inter-

est (RoI) into sub-regions, sub-region selection using a modified Jaccard index, and

feature selection based on randomized least absolute shrinkage and selection oper-

ator (LASSO). We implement these steps into a Bayesian framework of position

estimation using the maximum a posteriori (MAP) principle. An additional bene-

fit of these steps is that the time for estimating the position, and the required data

storage are virtually independent of the size of the RoI and of the total number of

available features within the RoI. Thus the proposed steps facilitate application of

FIPS to large areas. Results of an experimental analysis using real data collected in

an office building using a Nexus 6P smart phone as user device and a total station for

providing position ground truth corroborate the expected performance of the pro-

posed approach. The positioning accuracy obtained by only processing 10 automati-

cally identified features instead of all available ones and limiting position estimation

to 10 automatically identified sub-regions instead of the entire RoI is equivalent to

processing all available data. In the chosen example, 50% of the errors are less than

1.8 m and 90% are less than 5 m. However, the computation time using the automat-

ically identified subset of data is only about 1% of that required for processing the

entire data set.
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1 Introduction

Fingerprinting-based indoor positioning systems (FIPs) are attractive for providing

location of users or mobile assets because they can exploit signals of opportunity

and infrastructure already existing for other purposes. They require no or little extra

hardware, (He and Chan 2016), and differ in that respect from many other approaches

to indoor positioning e.g., the ones using infrared beacons (Lee et al. 2004), ultra-

sonic signals (Hazas and Hopper 2006), radio frequency identification (RFID) tags

(Bekkali et al. 2007), ultra wideband (UWB) signals (Ingram et al. 2004), or foot-

mounted inertial measurement units (IMUs) (Gu et al. 2017). FIPS benefit from the

spatial variability of a wide variety of observable features or signals like received

sigal strength (RSS) from wireless local area network (WLAN) access point (APs),

magnetic field strengths, or ambient noise levels. FIPS are therefore also called

feature-based indoor positioning systems (Kasprzak et al. 2013). The attainable qual-

ity of the position estimation using FIPS mainly depends on the spatial gradient of

the features and on their stability or predictability over time (Niedermayr et al. 2014).

Key challenges of FIPS are discussed e.g., in Kushki et al. (2007) and more

recently in He and Chan (2016). The former publication focuses on four challenges

of FIPS utilizing vectors of RSS from WLAN AP as fingerprints. In particular, the

paper addresses (i) the generation of a fingerprint database to provide a reference fin-

gerprint map(RFM) for positioning, (ii) pre-processing of fingerprints for reducing

computational complexity and enhancing accuracy, (iii) selection of APs for posi-

tioning, and (iv) estimation of the distance between a fingerprint measured by the

user and the fingerprints represented within in the reference database. Extensions to

large indoor regions and handling of variations of observable features caused by the

changes of indoor environments or signal sources of the features (e.g., replacement

of broken APs) are addressed in He and Chan (2016).

Two widely used fingerprinting-based location methods, which we also employ

herein are, k-nearest neighbors (kNN) (Padmanabhan and Bahl 2000) and maximum

a posteriori (MAP) (Youssef and Agrawala 2008). The time and storage computa-

tional complexity of both methods is proportional to the number of reference loca-

tions in the RFM (i.e. the area of the RoI) and the number of observable features.

This means that these approaches become computationally expensive in large RoIs

with many APs.

The goal of this paper is to propose three steps in order to facilitate accurate and

flexible indoor positioning in a large region of interest (RoI) with potentially very

high numbers of available features and feature availability varying across the RoI.

For flexibility e.g., with respect to including different types of features, performing

quality prediction of estimated locations, and performing quality control of measured

and modeled feature values, we choose a Bayesian approach to position estimation

using the maximum a posteriori (MAP) principle. The three steps proposed herein
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are intended to reduce the computational complexity in terms of processing time and

storage requirements, in particular during the position estimation stage which may

either have to be carried out for a single user on the mobile device or for a potentially

large number of users concurrently on a server. Furthermore, the steps help to make

the computational effort for position estimation almost independent of the size of

the RoI and of the total number of observable features within the RoI, which are

important aspects for application of FIPS in large areas.

The first step is the segmentation of the entire RoI into non-overlapping sub-

regions. The next step is the identification of approximations of the user location with

a granularity corresponding to the size of the sub-regions such that the actual position

estimation can be restricted to a search or optimization within a few candidate sub-

regions. We apply a modified Jaccard index, (Park et al. 2010; Jani et al. 2015), within

this step, see Sect. 3.2. The final step is the identification of relevant features within

each sub-region and the subsequent selection of a small number of relevant features

available both in the measured fingerprint and in the RFM for the actual position

estimation. We base this feature selection on a randomized least absolute shrinkage

and selection operator (LASSO) approach, (Tibshirani 1996), see Sect. 3.3.

2 Related Work

2.1 Sub-region Selection

There are mainly two types of approaches for sub-region selection
1
: approaches

based on clustering and approaches based on similarity metrics. Feng et al. (2012)

and Chen et al. (2006) applied affinity propagation and a k-means algorithm, respec-

tively, to divide the RoI into a given number of sub-regions according to the features

collected within the RoI. Both papers present clustering-based sub-region selection

and require prior definition of the desired number of sub-regions and knowledge of

all features observable within the entire RoI. These clustering-based approaches take

the fingerprint measured by the user into account during the clustering process which

may thus have to be repeated with each new user fingerprint obtained.

Similarity metric-based sub-region selection instead identifies the sub-region

whose fingerprints contained in the RFM are most similar to the fingerprint observed

by the user. They differ depending on the chosen similarity metric. E.g., Kushki et al.

(2007) use the Hamming distance for this purpose, measuring only the difference in

terms of observability of the features, not their actual values. Still, these approaches

typically need prior information on all observable features within the entire RoI when

associating a user observed fingerprint with a sub-region. This may be a severe limi-

tation in case of a large RoI or changes of availability of the features.Modified Jaccard

1
In other publications, sub-region selection is called spatial filtering (Kushki et al. 2007), location-

clustering (Youssef et al. 2003), or coarse localization (Feng et al. 2012).
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index-based sub-region selection as used in this paper belongs to the latter category.

However, the approach proposed herein requires only the prior knowledge of the

features observable within each sub-region when computing the similarity metric

between the observations in the RFM and in the observed user fingerprint.

2.2 Selection of Relevant Features

Approaches to selection of features actually used for positioning differ with respect

to several perspectives. We focus on three: (i) whether they take the relationship

between positioning accuracy and selected features into account, (ii) whether they

help to reduce the computational complexity of position estimation, and (iii) whether

they are applicable to a variety of features or only features of a certain type. The cho-

sen features for positioning should be the ones allowing to achieve the best position-

ing accuracy using the specific fingerprinting-based positioning method or achieving

a useful compromise between accuracy and reduced computational burden.

Previous publications focused on feature selection for FIPS using RSS from

WLAN APs and consequently addressed the specific problem of AP selection rather

than the more general feature selection. Chen et al. (2006) and Feng et al. (2012)

proposed using the subsets of APs whose RSS readings are the strongest assuming

that the strongest signals provide the highest probability of coverage over time and

the highest accuracy. Kushki et al. (2007) and Chen et al. (2006) applied a divergence

metric (Bhattacharyya distance and information gain, respectively) to minimize the

redundancy and maximize the information gained from the selected APs. The lim-

itations of these approaches are: (i) they are only applicable to the FIPS based on

RSS from WLAN APs, and (ii) they only take the values of the features into account

as selection criteria instead of the actual positioning accuracy. Kushki et al. (2010)

proposed an AP selection strategy able to choose APs ensuring a certain position-

ing accuracy using a nonparametric information filter. However, this approach uses

continuously measured fingerprints to select the subset of APs maximizing the dis-

criminative ability with respect to localization. This method therefore needs several

online observations for estimating one current position.

In this paper, we propose an approach based on randomized LASSO to choose the

most relevant features for fingerprinting-based positioning. This method differs from

previous ones in three ways: (i) it takes the positioning error into account, (ii) the

feature selection can be pre-computed and thus allows reducing the computational

complexity of position estimation, and (iii) it is a general feature selection method

applicable also to fingerprints containing different types of features simultaneously.
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3 The Proposed Approach

In this section, we briefly summarize the fundamentals of fingerprinting-based posi-

tioning and present the main contributions of this paper, contributing to reduced

computational complexity independent of the size of the RoI. In particular we present

(i) candidate sub-region selection using a modified Jaccard index, (ii) selection of

relevant features using randomized LASSO, and (iii) MAP-based positioning ben-

efiting from the previous two steps. Finally we briefly discuss the computational

complexity of the proposed method.

3.1 Problem Formulation

Generally, an FIPS is realized using two stages: offline and online stage (Fig. 1). The

result of the former is the reference fingerprint map (RFM), i.e., a model representing

the relation between the observable features and location. At the online stage, the

user’s location is estimated by matching the currently measured fingerprint to the

RFM using a fingerprinting-based positioning method (e.g., maximum a posteriori

(MAP)-based positioning).

We chose a representation herein where the RFM is a discrete set of fingerprints

associated with chosen reference positions throughout the region of interest (RoI).

Each fingerprint is an associative array consisting of a collection of (key, value) pairs.

Continuous 
representation
(interpolation)

Robust fingerprint selection 
(randomized LASSO)

Sub-region selection (compute 
the available features)

Conditional distribution of 
features (kernel density 

estimation)

Original RFM 

Gridded RFM 
(interpolated)

Offline stage

Measured 
fingerprint

Find the candidate sub-
regions (modified 

Jaccard index)

Find the most relevant 
features

Compute the position 
(maximum a posteriori)

Estimated 
position

Online stage

Pre-computed 
data

Fig. 1 The proposed framework. In order to make the number of reference points within all sub-

regions equal we interpolate the reference data in the original reference fingerprint map (RFM) to

provide a denser regular grid of reference points. This interpolated RFM is used to calculate the

pre-computed data for online positioning
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The key is a unique identifier of the respective feature, e.g., in case of WiFi-based fin-

gerprinting an integer obtained by hashing the media access control (MAC) address

of an AP. In case of a measured fingerprint the value is the measurement of the cor-

responding feature. In case of a fingerprint within the RFM the value is the expected

value of the feature at the corresponding reference position.

Herein we assume that the measurements for establishing the RFM have been

made at arbitrary locations across the RoI and the RFM is obtained by spatial inter-

polation using nearest-neighbor (Watson and Philip 1984) to obtain the fingerprints

at a regular gird of reference points. Further details are given in Sect. 4.

For reducing the computational effort during the online stage, we propose to

divide the RoI into N non-overlapping grid cells (sub-regions) gi such that

RoI = {g1, g2,⋯ , gN}. In the 2D case each sub-region can simply be a rectangle or

square in the coordinate space.
2

Let there be Mi
fingerprints 𝐎ij ∈ ℝLij×2

within the

ith grid cell of the RFM where j ∈ {1, 2, … , Mi} and Lij is the number of features

observed or observable at the corresponding location. Each of these fingerprints is

associated with a position 𝐥ij ∈ ℝD
where D is the dimension of the coordinate space.

Later on, we use the symbols 𝐨ijkeys and 𝐨ijvalues to represent the vectors of keys and val-

ues separately such that 𝐎ij = (𝐨ijkeys, 𝐨
ij
values). For arguments where the sequence of

the elements is irrelevant we will later use the same symbols to also indicate the sets

of keys and values with |𝐨ijkeys| = |𝐨ijvalues| = Lij, where | ⋅ | denotes the cardinality of

a set.

At the online stage a newly measured fingerprint 𝐎u ∈ ℝLu×2
becomes available

at the unknown user location 𝐥u where Lu denotes the number of observed fea-

tures at this location. This fingerprint is also represented by keys and values, i.e.

𝐎u = (𝐨ukeys, 𝐨
u
values). The positioning process consists in inferring the estimated user

location ̂𝐥u = f (𝐎u) as a function of the fingerprint and the RFM where f is a suit-

able mapping from fingerprint to location, i.e. f ∶ 𝐎 ↦ 𝐥. We subsequently focus on

the following proposed solutions to mitigate the computational load associated with

offline and online stage:

∙ selecting the sub-region as a coarse approximation of the actual user location based

on a modified Jaccard index;

∙ identifying the most relevant features within each grid cell using the randomized

least absolute shrinkage and selection operator (LASSO) algorithm such that the

actual location calculation can later be carried out using only those instead of using

all features;

∙ combining the above two steps with a maximum a posteriori (MAP)-based posi-

tioning approach and implementing it in a way to keep the computational com-

plexity of the online stage almost independent of the size of the RoI and of the

total number of observable features within the RoI.

2
An analysis of strategies for optimum definition of the sub-regions in terms of size and shape is

left for future work.
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3.2 Sub-region Selection Using Modified Jaccard Index

By analyzing the similarity between the keys of the measured fingerprints and the

keys associated with the individual sub-regions in the RFM we can identify candi-

dates of sub-regions most likely containing the actual user location. The subsequent

estimation of the user location can then be limited to the selected candidate regions

thus reducing the computational load assuming that the index calculation is com-

putationally less expensive than the position estimation. We use a modified Jaccard

index c(gi,𝐎u) ∈ [0, 1], (Jani et al. 2015), as the similarity metric. It is calculated for

the observed fingerprint 𝐎u
and each sub-region by:

c(gi,𝐎u) = 1
2

(|𝐨ikeys ∩ 𝐨ukeys|

|𝐨ikeys ∪ 𝐨ukeys|
+

|𝐨ikeys ∩ 𝐨ukeys|
|𝐨ukeys|

)

(1)

Here, 𝐨ikeys ∈ ℝLi
is the set of unique keys representing the observable features within

the ith grid cell, i.e., the union of the keys (𝐨ijkeys now considered as sets) of all fin-

gerprints within this cell:

𝐨ikeys = ∪
j
𝐨ijkeys, j = 1, 2,⋯ ,Mi

. (2)

The first term in (1) is the Jaccard index (Park et al. 2010), which indicates the

fraction of features common to the currently measured fingerprint and to the sub-

region. The maximum value of 1 is obtained for this term (and the entire expression)

if the features in the fingerprint are exactly all the features available within the sub-

region. A lower value indicates that there are features which are missing either in

the current fingerprint or in the RFM of the sub-region. The second term in (1) is

a modifier causing the index to favor sub-regions containing all or most features

observed by the user over sub-regions lacking some of these features. The underlying

assumption is that the user may not be able to observe all actually available features

while the RFM is nearly complete and it is therefore unlikely to observe features

missing in the RFM.

The k sub-regions with the highest values of the modified Jaccard index are

selected as candidate sub-regions for the subsequent positioning. Their cell indices

are collected in the vector 𝐬uk ∈ ℕk
for further processing. If the sub-regions are non-

overlapping, as introduced above, k needs to be large enough to accommodate situa-

tions where the actual user location is close to the border between certain sub-regions

and small enough to reduce the computational burden of the subsequent user location

estimation. We will further discuss this in Sect. 4.
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3.3 Feature Selection Using Randomized LASSO

In a real-world environment there may be a large number of features available for

positioning, e.g., hundreds of APs may be visible to the mobile user device in certain

locations. Not all of them will be necessary to estimate the user location. In fact

using only a well selected subset of the available signals instead of all may provide

a more accurate estimate and will reduce the computational burden. Furthermore

the number of observable features typically varies across the RoI e.g., due to Wifi

AP antenna gain patterns, structure and furniture within a building. However, it is

preferable to use the same number of features throughout the candidate sub-regions

for assessing the similarity between the measured fingerprint and the ones extracted

from the RFM during the online phase.

We therefore recommend selecting a fixed number h of features per candidate sub-

region for the final position estimation. To facilitate this selection during the online

phase, the relevant features within each sub-region are already identified beforehand

once the RFM is available. We use an approach based on randomized LASSO, an

L1-regularized linear regression model (Tibshirani 1996), for this step. Each feature

within the sub-region is associated with an estimated coefficient by this approach. If

the coefficient is sufficiently different from zero the corresponding feature is identi-

fied as relevant. During the online phase h features (possibly different for each sub-

region) are selected among the identified ones such that they are available both within

the RFM and the user fingerprint.

The total number of observable features within the ith subregion is |𝐨ikeys| = Li.
To represent all fingerprints of this sub-region in the RFM by vectors of the same

dimension we replace each 𝐨ijkeys by 𝐨ikeys, see (2), and the corresponding vector of

values 𝐨ijvalues by a vector 𝐟 ij ∈ ℝLi
which contains just the corresponding element

from 𝐨ijvalues for each feature whose key is in 𝐨ijkeys ∩ 𝐨ikeys. For all other features it

contains a value indicating that the feature is missing (e.g., a value lower than the

minimum observable value of the corresponding feature).

Feature selection using LASSO is based on estimating the coefficients 𝐏i ∈ ℝLi×D

of a linear regression of position onto features according to:

̂𝐏i = argmin
𝐏i

1
Mi

Mi
∑

j=1
‖𝐏iT𝐟 ij − 𝐥ij‖22 + 𝜆‖𝐏i‖1 (3)

where 𝜆 is a hyperparameter which needs to be set appropriately, and the L1-norm

term on the right hand side is used for regularization. Any zero element within 𝐏i

indicates that the corresponding features does not contribute to the position estima-

tion. Therefore, we identify the rows of ̂𝐏i whose absolute values exceed a given

threshold (e.g., 10−4) and consider the corresponding features relevant. Their keys

are collected in the vector 𝐪i.
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Table 1 Pseudocode of randomized LASSO

Algorithm: randomized LASSO

Input: 𝐃𝐚𝐭𝐚 = {𝐟 ij, 𝐥ij} j = 1, 2,⋯ ,Mi
; sampling ratio 𝜖 ∈ (0, 1);

1: number of randomizations T ∈ ℕ; threshold h ∈ ℕ
2: Output: relevant features �̄�i of ith grid

3: for t = 1, 2,⋯ ,T:

4: ̃𝐃𝐚𝐭𝐚 = sampling with replacement from 𝐃𝐚𝐭𝐚 with ratio 𝜖

5: 𝐪it = LASSO-based fingerprint selection using ̃𝐃𝐚𝐭𝐚
6: end for

7: computing the frequency of selection of each feature according to 𝐪it, t = 1, 2,⋯ ,T
8: return �̄�i: set of features selected most frequently

However, the results are affected by the choice of 𝜆 and the optimum choice

depends on the data. So, feature selection based on LASSO with any fixed priorly

chosen value 𝜆 is unstable (Fastrich et al. 2015). In order to get an appropriate fixed

value of 𝜆, we use cross validation. However, the stability of LASSO-based fea-

ture selection can be improved by repeating the above process several times (e.g.,

200 times) using a randomly sampled subset of fingerprints from the respective sub-

region each time and finally taking the features most frequently contained in 𝐪i as

the actually most relevant ones. This approach is called randomized LASSO (Mein-

shausen and Bühlmann 2010; Wang et al. 2011). Although the computational cost

of this process increases with increasing of size of the dataset (number of RPs and

features, thus size of the RoI), it needs to be carried out only once at the offline

stage. If need be, it can be implemented on a powerful computer and using parallel

programming.
3

Table 1 displays its realization for the present application in terms of

pseudocode, where �̄�i represents the finally chosen vector of relevant keys of the ith
sub-region.

3.4 MAP-based Positioning

Given an RFM, i.e. a database of fingerprints and associated reference positions, the

aim of positioning is to infer the most probable location ̂𝐥u of the user according to

the fingerprint 𝐎u
observed at the actual but unknown location 𝐥u. We use a variety

of discrete candidate locations 𝐥 and apply Bayes’ rule to compute for each of them

the degree of belief in the assumption that the current location of the user is 𝐥 given

the available RFM and the currently observed fingerprint. This is an MAP-based

positioning method as proposed, e.g., by Park et al. (2010); Madigan et al. (2005).

3
For the dataset used in Sect. 4, it took about 64 mins for one randomization on a Windows 10 PC

with 6 cores Intel Xeon CPU, 32G RAM.
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The posterior probability Prob(𝐥|𝐎u) of being at location 𝐥 is computed by:

Prob(𝐥|𝐎u) = Prob(𝐎u|𝐥)Prob(𝐥)
Prob(𝐎u)

(4)

where Prob(𝐎u|𝐥) is the conditional probability of the fingerprint given the assumed

location 𝐥, and Prob(𝐥) and Prob(𝐎u) are the prior probabilities of location and fin-

gerprint respectively. Since the prior probability of the fingerprint is independent of

the candidate location the MAP estimate can be obtained from:

̂𝐥u = argmax
𝐥

[
Prob(𝐎u|𝐥)Prob(𝐥)

]
(5)

Assuming that the observable features are conditionally independent of each other

(5) can be represented by the naïve Bayes model:

̂𝐥u = argmax
𝐥

[ Lu∏

j=1
Prob(𝐎u

j |𝐥)Prob(𝐥)
]

(6)

where 𝐎u
j denotes the jth observed feature at the current location. In this paper,

we introduce sub-region and relevant feature selection into MAP-based positioning.

Therefore, we only take candidate locations in the chosen sub-regions and calculate

the posterior using only the previously selected most relevant features.

Thus, (6) is modified to be:

̂𝐥u = argmax
𝐥∈gi

⎡
⎢
⎢
⎣

|�̄�i|∏

j=1
Prob(𝐎u

j |𝐥)Prob(𝐥)
⎤
⎥
⎥
⎦

, ∀i ∈ 𝐬uk (7)

where 𝐬uk is the vector denoting the indices of the candidate sub-regions (see Sect. 3.2)

and �̄�i is the set of selected relevant features of the ith sub-region (see Sect. 3.3). The

conditional probability Prob(𝐎u
j |𝐥), which models the density of the jth feature for a

given location 𝐥, is estimated using kernel density estimation with a Gaussian kernel

from the observations stored in the RFM, see details e.g., in Scott (2015); Kushki

et al. (2007).

Prior knowledge of the user location, e.g. derived from previous estimates of user

locations and a motion model, could be used to represent the prior probability Prob(𝐥)
of the locations. However, as in Sect. 3.2, we assume also now that no such prior

information is available and can hence use equal probability of 𝐥 across all candidate

sub-regions such that also Prob(𝐥) can be dropped from (7).
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3.5 Computational Complexity of Online Positioning

In this part, we analyze the computational complexity of the proposed approach and

compare it to MAP-based positioning without sub-region and feature selection. For

the latter, the computational complexity of estimating one position is (𝛼N(|𝐨RoIkeys|

+ 1)), where 𝛼 is the number of candidate locations in each of the N sub-regions,

and |𝐨RoIkeys| denotes the total number of observable features in the entire RoI:

𝐨RoIkeys = ∪
i
𝐨ikeys, i = 1, 2,⋯ ,N. (8)

The computational complexity of the proposed method is (𝛼k(max
i∈𝐬uk

{|�̄�i|} + 1)),

where k is the number of selected sub-regions and |�̄�i| is the number of selected

features. So, clearly the computational complexity of the proposed approach is

significantly less than for the MAP-based approach without sub-region and feature

selection. Furthermore, it is independent of the size of the RoI and of the total number

of available features within the RoI. The proposed approach is to constrain and limit

the search to a set of candidate reference locations and selected features for the online

positioning. Though we only give the analytical formula of the computational com-

plexity of MAP, other fingerprinting-based location methods will also benefit from

the proposed approach, because the computational complexity of fingerprinting-

based positioning is proportional to the size of the search space.

The computational complexity of the proposed approach can also be kept low

by an appropriate implementation strategy. Besides the RFM further data required

during the online positioning stage can be precomputed already during the offline

stage (Fig. 1). This holds in particular for:

∙ the set 𝐨ikeys of available feature keys of each sub-region required for calculating

the modified Jaccard index at the online stage,

∙ the set �̄�i of relevant features of each sub-region calculated using randomized

LASSO,

∙ and the conditional distribution (Prob(𝐎j|𝐥)) of the selected relevant features

within each sub-region obtained from kernel density estimation.

At the online stage these pre-computed data are cached to the user device to

achieve location estimation while realizing mobile positioning. The proposed pre-

processing steps also reduce the required storage space for saving the cached pre-

computed data because these data only need to cover the selected relevant features

instead of all the features observable within the RoI.
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(a) (b)

Fig. 2 Analysis of modified Jaccard index. a: Spatial distribution of the modified Jaccard index.

b: Euclidean distance between centroids of each pair of sub-regions

4 Experimental Results and Discussion

In this section we analyze data obtained from real measurements collected using a

Nexus 6P smart phone (for WLAN RSS) and a Leica MS50 total station (for posi-

tion ground truth) within an L-shaped RoI of about 150 m2
in an office building for

fingerprinting-based WLAN indoor positioning, in which there are 399 observable

access points. The shape of the actual floorplan corresponds to the shape given in

Fig. 1.

We use a kinematically mapped RFM from about 2000 reference fingerprints

obtained by recording data approximately every 1.5 seconds while a user walked

through the RoI. The total station tracked a prism attached to the Nexus smart phone

with an accuracy of about 5 mm. This approach is a compromise between the high

accuracy attainable by stop and go measurements at carefully selected and previ-

ously marked reference positions and the low extra effort of crowd-sourced RFM

data collection as outlined e.g., in Radu and Marina (2013). In order to evaluate the

performance of the proposed approach independently an additional test data set was

collected comprising fingerprints at approximately 500 test positions (TPs) located

throughout the RoI.

The coordinates of the TPs as measured by the total station were later used as

ground truth for calculating the positioning error in terms of mean squared error

(MSE) of the Euclidean distance between estimated and true coordinates. Data

processing according to the proposed algorithms, as outlined in Fig. 1, was imple-

mented in Python using the scikit-learn package (Pedregosa et al. 2011).

We divided the RoI into 34 square grid cells (sub-regions) of approximately

2 × 2m2
and densified the original RFM to a regular grid of about 100 reference

points per m2
(i.e. spacing about 0.2 × 0.2m2

) by interpolation. The resulting grid-

ded RFM was used for all further processing steps.
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Fig. 3 Empirical

cumulative positioning

accuracy for different

choices of parameters. The

positioning error herein is

the Euclidean distance

between the estimated and

true coordinates of the TPs

Figure 2a shows the modified Jaccard index for all pairs of sub-regions indicating

that the index is related to the Euclidean distance (Fig. 2b). This corresponds to the

expectation that the APs available in nearby sub-regions are similar while different

APs are observed in sub-regions far from each other.

We have then investigated the number of relevant features to be used for position-

ing. The keys �̄�i of the relevant features per sub-region are the result of a randomized

process and are thus random themselves. We have therefore carried out the feature

selection and subsequent position estimation of the TPs three times independently.

For each of these simulation runs the MSE of the estimated coordinates of the TPs is

plotted in Fig. 4 as a function of the number h of selected features actually used for

positioning. The difference of MSE of each run is caused by the randomization of

LASSO-based feature selection. This figure only shows 3 out of the 200 randomized

runs and the MSE path after majority voting from which, according to Table 1, the

final feature selection is chosen. The figure shows that the accuracy of the estimated

positions generally increases as the number of features used is increased from 1 to

40. However, the gain in accuracy is negligible if the number of features is increased

above 6–10, in particular if the variability due to the randomized feature selection

process is taken into account (different curves in Fig. 4).

Fig. 3 illustrates the positioning accuracy and processing time for different choices

of parameters within the proposed approach. The accuracy is plotted in terms of

cumulative positioning accuracy (CPA) i.e., cumulative density function of the posi-

tioning errors. When introducing the sub-region selection with 10 sub-regions into

MAP-based positioning (but using all available features), the CPA is comparable

to that of MAP-based positioning without sub-region or feature selection but the

average processing time
4

for estimating the coordinates of one TP is 0.35 s (see

Table 2),which is only about 1/4 of that of MAP-based positioning without sub-

4
We used Python to implement the proposed method and evaluate the processing time using the

time package (https://docs.python.org/3/library/time.html#module-time).

https://docs.python.org/3/library/time.html#module-time
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Table 2 The processing times

Methods Time consumption (in s) for positioning one TP

Mean Min Max Std

MAP (34 sub-regions, 399 features) 1.223 1.222 1.247 0.003

MAP (3 sub-regions, 399 features) 0.106 0.104 0.137 0.002

MAP (10 sub-regions, 399 features) 0.353 0.347 0.388 0.003

MAP (10 sub-regions, 6 features) 0.008 0.007 0.009 0.0002

MAP (10 sub-regions, 10 features) 0.012 0.011 0.013 0.0002

Fig. 4 Empirically

determined accuracy (MSE)

of TP coordinates estimated

using the proposed approach

with different number of

selected relevant features

region or feature selection. Using only 3 sub-regions of course reduces the processing

time further but leads to a considerable loss in accuracy.

By introducing both sub-region and feature selection the computational complex-

ity and the data storage requirements can be reduced. Using 10 sub-regions and 10

features the average time of computing the coordinates of one TP is only 1% of that

of MAP-based positioning with neither sub-region nor feature selection while the

attained accuracy is virtually equal to the one obtained using all data. In agreement

with the results depicted in Fig. 4 there is no significant loss in accuracy when using

6 features instead of 10, while the processing time decreases roughly by a factor of 2.

5 Conclusion

We proposed herein an approach to fingerprinting-based indoor positioning using the

maximum a posteriori (MAP) principle for coordinate estimation. The main contri-

butions are proposals to reduce data storage requirements and computational com-

plexity in terms of processing times by segmentation of the entire RoI into sub-

regions, identification of a few candidate sub-regions during the online position-

ingstage, and use of a selected subset of features instead of all available features for
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position estimation. Sub-region selection is based on a modified Jaccard index mea-

suring the similarity between the features obtained by the user and those available

within the reference fingerprint map (RFM). Feature selection is based on the ran-

domized least absolute shrinkage and selection operator (LASSO) yielding a pre-

computed set of relevant features for each sub-region. The reduction of computa-

tional complexity is obtained both from the reduction of the number of candidate

locations needed to analyze during online positioning and from the reduction of the

number of features to be compared.

The experimental results corroborated the claim of reduced complexity while

indicating that the positioning accuracy is hardly reduced by processing only 10

candidate subregions instead of the entire RoI and by selecting only 6–10 features

instead of using all available ones. Given a fixed number of candidate sub-regions

and a fixed, low number of features the computational burden of the entire algorithm

is almost independent of the size of the entire RoI and of the number of available fea-

tures across the RoI.

Further work will concentrate on increasing the stability of the feature selection

via adaptive forward-backward greedy feature selection (Zhang 2011), on ranking

features with respect to quality and impact, on taking into account user motion during

sub-region selection and on handling temporal changes of the RFM. Furthermore,

we are currently applying the proposed approach to larger and more complex datasets

(Montoliu et al. 2017) and migrating to a mobile phone.
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Abstract In the recent years a number of novel, automatic map-inference techniques

have been proposed, which derive road-network from a cohort of GPS traces col-

lected by a fleet of vehicles. In spite of considerable attention, these maps are imper-

fect in many ways: they create an abundance of spurious connections, have poor

coverage, and are visually confusing. Hence, commercial and crowd-sourced map-

ping services heavily use human annotation to minimize the mapping errors. Conse-

quently, their response to changes in the road network is inevitably slow. In this paper

we describe MapFuse, a system which fuses a human-annotated map (e.g., Open-

StreetMap) with any automatically inferred map, thus effectively enabling quick map

updates. In addition to new road creation, we study in depth road closure, which have

not been examined in the past. By leveraging solid, human-annotated maps with

minor corrections, we derive maps which minimize the trajectory matching errors

due to both road network change and imperfect map inference of fully-automatic

approaches.
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1 Introduction

Map Fusion Problem: Generating accurate maps from geospatial data is an active

area of research. A number of these works (Biagioni and Eriksson 2012; Cao and

Krumm 2009; Chen et al. 2016; Edelkamp and Schrödl 2003) utilize crowd-sourced

GPS data, e.g., from smartphones. An alternate strain of work tries to use other

sources such as satellite images (Mnih and Hinton 2010). Despite considerable inter-

est and effort by the research community, the existing automatic map inference

solutions have a number of shortcomings, including: limited coverage, visually con-

fusing layout, spurious roads, and imperfect turn restrictions. Hence, commercial

maps such as Google Maps, Nokia HERE, and Apple Maps often use multiple

sources of data information to generate initial maps, and then rely heavily on humans

(both annotators and volunteers) to detect and correct the possible imperfections.

However, the involvement of humans results in a very slow response in updating

maps when a change in the road network occurs. In many cities in Asia and Africa,

which are under heavy construction, this process results in substantial latency. One

potential way to solve this issue is to automatically update the map using GPS traces

given an existing map. However, most of those approaches are simple adaptations of

classical map inference algorithms and suffer from the same disadvantages. In this

work, we advocate for a new approach—Map Fusion—which automatically fuses

two maps. One of the maps is a high-quality slowly updated map such as Open-

StreetMap (OSM) (2017) or Google Maps (2017), while the other one is an auto-

matically inferred map with incomplete coverage and imperfect topological struc-

ture. Our proposed system, MapFuse, synthesizes a new map that overcomes the

deficiencies of the two maps discussed above. In the rest of the section, we enunciate

this overall approach.

1.1 Challenges in Fully Automatic Map Inference

As mentioned above, there has been extensive work (see surveys (Biagioni and Eriks-

son 2012; Ahmed et al. 2015; Liu 2012)) on automatic map creation from GPS

traces. However, these algorithms—both academic and commercial— face a number

of important challenges. We now highlight three of the major ones.

– Poor coverage. The popularity of roads segments in the road network (measured,

say, in number of trajectories which pass by the segment) is very skewed. While

a few road segments (e.g., those lying on a highway) carry a massive number of

trajectories, a large fraction of roads serves only a handful of cars. Hence, a vehi-

cle fleet which opportunistically collects the GPS data needs to collect a massive

amount of spatial samples in order to have a decent coverage of the road network.

In the case of the fleet whose data we analyzed in this work, if we denote by L
the total length of all the roads in Doha (L is in the order of 10 s of thousands

of kilometers) our data, which corresponds to the trajectories with overall length
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Fig. 1 Automatically inferred maps of 6 existing methods

of 175 ⋅ L, covers only about 48% of the road segments (see Fig. 3). In order to

cover close to 100% of the road network with such opportunistic GPS probes, one

would need to collect from one to two orders of magnitude more data, which in

case of Doha would translate to 10 or 100 s of millions of kilometers of driving.

Thus, independent of the map-inference method one utilizes, one needs to have an

extremely high-volume of opportunistically collected GPS data in order to cover

large portions of the road network.

– Visually confusing outlook. Most of the existing approaches do not control for the

visual appearance of their maps, and hence the resulting maps have rather confus-

ing look and are not visually appealing. In Fig. 1 we depict maps of a prominent

“TV roundabout” in Doha derived by several well-known map-inference algo-

rithms (Biagioni and Eriksson 2012; Cao and Krumm 2009; Chen et al. 2016;

Edelkamp and Schrödl 2003; Stanojevic et al. 2017). Due to different nature of

their inference process, they all have some unique features, yet they all have spuri-

ous or missing road segments, which can confuse the end-user and the navigation

system which may utilize such maps.

– Low topological accuracy. Possibly the most serious concern regarding the exist-

ing map-inference methods is their low topological accuracy. Namely, due to the

GPS noise as well as the inability to efficiently handle such noise, all existing

methods often miss the connections between road segments or infer non-existing

connections between road segments. Such topological inaccuracies are absolutely
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non-tolerable, yet existing solutions have topological Biagioni F1-score
1

(Bia-

gioni and Eriksson 2012) in the range of 0.6–0.8 (Biagioni and Eriksson 2012;

Stanojevic et al. 2017). We believe that a commercially acceptable map would

likely need to have Biagioni F1-scores in the nearest proximity of 1.

1.2 Challenges for Automatic Map Updates

TomTom reports that 15% of roads change each year in some way (Wang et al. 2013).

The road changes are particularly common in many developing countries in Asia and

Africa due to rapid construction of new roads. For example, thousands of kilometers

of new expressways have been constructed each year in China and India for the past

few years (Wang et al. 2017). Automating the map update in a way that minimizes

the disruption to the original map is of paramount importance. There has been exten-

sive work on automatically updating an existing map using newly acquired GPS data

(see Sect. 2 for details). However, many of these algorithms are often simple adap-

tations of existing batch map-inference algorithms, and suffer from the same issues

mentioned above. In addition, they often start with an automatically generated map

which also suffers from the issues mentioned above. Hence the resulting map is often

of substandard quality.

1.3 Challenges for Hybrid Map Updates

According to the discussion so far, we believe that a hybrid method involving auto-

matic algorithms along with humans is the way forward. The substandard quality

of maps from purely automated means is often unacceptable for commercial map

systems such as Google Maps, Apple Maps, Bing Maps, Nokia HERE, and Tom

Tom. The creation of these maps is in many ways automated, however it requires

human attention to examine possible places of interest. For example, Google Maps

has a large team of so called operators who ensure the validity and consistency of the

Google maps (Lookingbill and Weiss-Malik 2013) and hence any possible change in

the road network needs to be approved by one of the operators. Similarly, the largest

global crowd-sourced mapping effort OpenStreetMap (OSM) updates around 1M

nodes per day. These maps have reasonably high accuracy in most cities with static

road infrastructure.

However, even this approach has some fundamental limitations. Due to the human

in the loop, they suffer from slow update response when changes happen (see Fig. 2).

In many cities such as Doha, there are constant and large changes in road net-

works, that are not reflected in the maps in a timely manner. Conversely, automated

1
Biagioni F1-score is a well known metric for measuring the topological accuracy of a map and

lies in the range [0, 1] with 0 being absolutely wrong map, and 1 being a perfect map.
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Fig. 2 Google maps route suggestion between two locations in Doha are almost twice longer (in

length and duration) than the optimal route
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algorithms often ignore the fact that most urban areas globally already have a fairly

accurate map infrastructure. Not utilizing such great resource to construct the map

(as most automatic map inference solutions do) is unfortunate and hurts the overall

map inference process. Let us illustrate this effect with a real-world example.

In the city like Doha, with a very dynamic road network,
2

the quality of exist-

ing maps is rather poor. For example, when one queries Google Maps for a route

suggestion between two points in west Doha (see Fig. 2), the suggested routes are

almost twice as long (in both time and length) than the optimal one. Even though the

optimal route has existed for over a year, the Google Maps has not yet updated the

relevant portion of the map to reflect the current layout.

1.4 Proposed Approach

In this paper we propose MapFuse, a system for map fusion which automatically

merges two maps. Specifically, we seek to fuse (1) a high-quality slowly-updated map

such as OSM (2017) or Google Maps (2017) and (2) an automatically-inferred one,

with incomplete coverage and imperfect topological structure. MapFuse produces

a map which overcomes the deficiencies of the two maps discussed above.

In contrast with the existing approaches on map updating, which update the exist-

ing map (say OSM) by using a set of GPS trajectories via a specific map-inference

tool, MapFuse is oblivious to the map inference approach one wishes to use to cap-

ture the road network segments and the interconnections between them. Hence we

can fuse any map to the existing underlying map. This is important because existing

map inference solutions suffer from a number of issues, and future solutions will

most certainly rectify many of those. Fusing such better-inferred maps will most

certainly lead to higher quality maps.

Finally, a very relevant aspect of map updating are road closures (both temporary

and permanent) which are overlooked by the previous work on map updating, as it

focuses only on new road additions (Shan et al. 2015; Wang et al. 2013). We use the

GPS trajectory data to understand the road dynamics and infer road closures as soon

as they happen.

Summary of Contributions:
– We introduce the problem of map fusion, which seeks to update a base map with

another inferred map, as a geometric graph matching problem and show it can be

treated as a minimal vertex cover problem on an appropriately-defined bipartite

graph.

– Due to the size of the graphs representing the two maps (which can have hun-

dreds of thousands of nodes) the polynomial solution to the bipartite vertex cover

problem is not practical and we propose an efficient heuristic that fuses two maps.

2
Influenced by a rapid construction of the city metro and a number of ongoing infrastructure

projects.
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– We suggest a new methodology for inferring closed road segments which utilizes

dynamic statistics of the roads as well as a node centrality measure. As an unex-

pected advantage of our closure detection we identify the errors in the OSM maps

(e.g., we can automatically pinpoint several roundabouts which are represented in

the OSM as two-way roads, while they are obviously one-way only) which can be

harmful to the navigation systems.

– Using a set of GPS trajectories from a fleet of vehicles in Doha we demonstrate

that the fused map is more accurate than either of the two maps, and reduces the

average/median/99th-percentile trajectory matching error by 30%.

2 Related Work

Map Inference: Constructing maps from crowdsourced GPS traces has been exten-

sively studied (see surveys (Biagioni and Eriksson 2012; Ahmed et al. 2015; Liu

2012). K-Means based algorithms cluster the GPS points and link the resulting clus-

ters into a routable map. Representative works include (Edelkamp and Schrödl 2003;

Agamennoni et. 2011; Schroedl et al. 2004). Kernel density estimation (KDE) based

algorithms such as (Chen and Cheng 2008; Davies et al. 2006; Shi et al. 2009) trans-

form the GPS points into a density discretized image that are processed by image

processing techniques to obtain maps. Trace merging based approaches start with an

empty map and carefully add traces into it. Representative works include (Cao and

Krumm 2009; Ahmed and Wenk 2012).

Maintaining Maps: Maintaining maps is closely related to map inference and often

the algorithms for map maintenance are adaptations of those for map inference. Nev-

ertheless, there are some subtle differences. While one can indeed obtain an updated

map by re-running the entire inference pipeline, it is often efficient—in terms of both

time and data—to treat it as a separate problem.

Recall that almost 15% of roads change every year in the US (Wang et al. 2013).

This number is even higher in many developing countries in Asia and Africa due

to rapid construction of new roads. For example, thousands of kilometers of new

expressways are being constructed each year in China and India for the past few

years (Wang et al. 2017). This necessitates research into work that maintain and

update maps as and when new GPS data points arrive. Some representative work

include (Ahmed and Wenk 2012; Schroedl et al. 2004; van den Berg 2015; Bruntrup

et al. 2005; Wang et al. 2013; Zhang et al. 2010; Shan et al. 2015; Wu et al. 2015;

Wang et al. 2017). However, most of these approaches do not have good practical

performance and are very sensitive to differential sampling rates, disparity in data

points, GPS errors etc. Often, these algorithms seek to directly extend one of the

three approaches and suffer from bottlenecks arising from algorithmic step that is

fundamental to it (such as clustering, density estimation, clarification, map match-

ing) etc.
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Additionally, while most of the prior work handle the simple case of new road

additions, road closures are rarely addressed. CrowdAtlas (Wang et al. 2013) is

exception that uses a simple heuristic in which each road segment is assigned an

appropriate timeout proportional (3x) to the maximum time observed between the

traversal of two successive vehicles in a training window. To cope with the cold start

problem, no timeout is set for a segment until it has accumulated at least a week of

data and at least five traces. Thus, most residential roads have no timeout established.

Graph Matching: Given two graphs, identifying if one graph is a subgraph of

another is known to be NP-Complete (Garey and Johnson 2002). In fact, even iden-

tifying the minimal set of ‘edits’ to transform one graph to another is also NP-

Complete (Zeng et al. 2009). However, it is possible to apply a number of heuristics

for the case of road networks to solve this problem effectively. Matching of two road

networks has been extensively studied due to its practical importance. The process of

integrating different geospatial data to get new cartographic products is called map

conflation. See (Ruiz et al. 2011) for a review of techniques used. Often, a wide vari-

ety of information including spatial features (such as distances, angles, shapes of the

map) and topographical information (such as neighborhood) are used. For example,

(Yang et al. 2013) proposed a heuristic probabilistic relaxation procedure to inte-

grate multi-source geospatial data by using similarities between shapes. Recently,

(Du et al. 2015) studied the problem of integrating authoritative geo-spatial data

(such as OpenStreetMap) with crowdsourced GPS information. However, they use

auxiliary information such as names and types of POIs that may not always be avail-

able.

3 Problem Formulation

A common representation of a map in the map-inference literature is a directed graph

as following. A map is a geometric graph G(V ,E,L), where V is the set of vertices,

E ⊆ V × V is the set of edges connecting pairs of vertices, and L ∶ V → ℝ2
is a

location function which assigns coordinates (latitude and longitude) to each vertex.

Given two instances of such graphs (maps), G1 and G2, our goal is to create a new

fused graph Gf = f (G1,G2) which preserves some properties of the source graphs.

In particular, we wish for the connectivity of the fused graph to subsume the con-

nectivity of the source graphs. However, we also wish to do so with the minimum

number of edges, in order to avoid unnecessary and spurious ones.

In order to express the connectivity property, we consider the set of shortest paths

𝜋i within each graph Gi. The fused graph Gf should be so that

∀p ∈ 𝜋i, ∃p̂ ∈ 𝜋f s.t. d(p, p̂) ≤ 𝜃, i ∈ {1, 2}, (1)

where d(⋅, ⋅) is a suitable distance function between paths which takes into account

their geometry, and 𝜃 is a user-specified tolerance parameter. In our paper we use the
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following distance function

d(p0, p1) = min
i=0,1

max
u∈pi

v(u, p1−i)

where v(u, p) is the minimum distance between a point u and path p measured in

meters. Thus a small d(p0, p1) indicates that one of the two paths can be matched

onto the other.

In addition, we wish to find the “minimum” such graph, i.e., the one that mini-

mizes the sum of the lengths of its shortest paths:

argmin
Gf

∑

p∈𝜋f

𝓁(p).

This problem formulation can be reconducted to a minimum vertex cover problem

on a suitably-defined bipartite graph H(𝜋1, 𝜋2,F). The two sets of vertices in H are

all the possible shortest paths in G1 and in G2 (𝜋1 and 𝜋2, respectively). There is an

edge (u, v) between two elements u and v if their distance is below the threshold, i.e.

(u, v) ∈ F ⟺ d(u, v) ≤ 𝜃, u ∈ 𝜋1, v ∈ 𝜋2.

Finding a minimum vertex cover M on H is equivalent to finding a minimum set

of shortest paths such that their union maintains the connectivity property of the two

source graphs. Therefore,Gf can be build from the union of these pathsM ⊆ 𝜋1 ∪ 𝜋2.

Note that due to König’s theorem, the minimum vertex cover problem on a bipar-

tite graph is actually tractable in polynomial time (and not NP-hard as in the general

case). However, the size of the problem is (n2), and that to materialize H naïvely

we need to compute (n4) distances between pairs of shortest paths.

Graphs representing the OSM and inferred maps in a large city such as Doha have

more than n = (100 K) nodes. Hence the polynomial solution we hinted above is

impractical. Therefore in the following section we propose a simple and efficient

heuristic for tackling map fusion problem.

4 New Roads Detection

A common approach used in the literature (Shan et al. 2015; Wang et al. 2013) to

identify or detect new roads is the following. First, run a map matching algorithm

between an existing map and a collection of GPS trajectories to identify the subset

of trajectories that remain unmatched. Second, run some road creation algorithm on

the collection of unmatched trajectories to identify the new roads. Finally, link the

newly created road segments to the existing map. That is, at the heart of the process,

an algorithm is required to create roads from GPS points, which is exactly what all

map inference algorithms do. Thus, it is hard to understand the real added value
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of map updating algorithms compared to what map inference algorithms do. For

instance, if we assume that the initial map is very sparse, then it becomes clear that

map update algorithms will be creating most of the road network, just like map infer-

ence algorithms do. Another way to look at the issue is to consider an initial empty

map: in this case the map update and map inference become equivalent problems.

In our work, we take a slightly different approach. We assume that two maps are

given to us. One that represents the base map (e.g., OSM) and another one that is

generated using GPS traces via one of the many map inference algorithms available.

The problem is then redefined as merging these two maps.

The function FindOutliers takes as input two maps M1 (original) and

M2 (inferred), and generates a set of outliers. Outliers are set of nodes in the map

M2 which are at distance at least 𝜃 (here we use 𝜃 = 20m). Mappings link nodes

in M2 to M1, whereas outliers are those nodes in M2 that have no correspondents in

M1. These nodes are considered as candidates to be part of new road segments not

covered in M1. Our road addition procedure (see Algorithm 1) works as follows.

Algorithm 1 MapFuse
1: Input: Base road map M1, inferred map M2
2: Parameters: collision radius (r, in meters)

3: outliers = FindOutliers(M1,M2)
4: DRS = Subgraph(M2, outliers)
5: for each o ∈ outliers do
6: compute distance(o,M1)
7: end for
8: outliers = Sort(outliers) in decreasing order of distance to M1
9: for each o ∈ outliers do

10: sg = BFS(o,DRS)
11: for each node n ∈ sg do
12: if distance(n,M1) ≤ r then
13: merge(n, argmin(n,M1))
14: end if
15: outliers = outliers − {n}
16: end for
17: end for
18: return M1

In line 4, the sub-graph of newly detected roads (DRS) inM2 is generated from the

outliers. In lines 5–8, the outliers are sorted in a decreasing order of their geometric

distance to M1. The intuition here is that the farther a node is from M1, the more

likely that node lays on a new road segment not covered by M1. Outlier nodes are

then processed in their order as follows. For each node o, we run a breadth first search

(BFS) inM2 starting from o until it reaches a leaf node or a node that is within a radius

r (e.g., 2 m) from M1. Leaf nodes are assumed to be dead ends of newly detected road

segments whereas nodes within a radius distance r from M1 are assumed to belong

to M1. Nodes in the latter case are then merged with their closest nodes in M1 as per

line 13.
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It is not difficult to see that the outputMf of above algorithm satisfies the condition

from the Eq. (1). All paths from M1 are indeed in Mf and are obviously matched by

paths of Mf , the nodes from M2 which are more than 𝜃 away from M1 eventually get

merged into the Mf and clearly satisfy the matching requirement (1).

5 Closed Roads Detection

Recall that the input to our process is the original map M1, GPS-level trajectory

data and the automatically inferred map M2. An important characteristic of the road

network are road closures, which are sometimes permanent, but often temporary.

Unfortunately, road closures have been overlooked by previous map-inference/map-

update literature and in this section we propose two novel techniques for inferring

road closures. The first one is ‘static’, in that it infers the road closures on a fixed

input of trajectory data on the roads which have been closed prior to the start of the

data collection. The second technique is more dynamic, as it observes the time series

of the trajectories passing by a given road segment and by looking for anomalies is

such time-series it effectively detects the road closures on the segments which have

previously carried some trajectories in the data.

5.1 Cold-Start Road Closure Detection

As we hinted above, trajectory data collection inevitably has a starting point which

is determined by either the functionality of the probe and the back-end system which

stores the data, or by privacy regulations which may require sensitive trajectory data

to be deleted after a period of time elapses.

What makes detection of closed road segments (from map M1) difficult is the

fact that there is a very high skew in the frequency of trajectories on different road

segments: some segments (e.g., highways) carry a large number of trajectories while

others in the capillary roads may not carry even a single trajectory. In Fig. 3 we show

how many new segments are ‘discovered’ as more driving data is collected. If we

denote by L the total length of the road network, after trajectories with total length

of L, only about 10% of the unique road segments are touched by those trajectories.

After the total trajectory length gets to 10L they touch around 22% unique road

segments. With all trajectories in our dataset with total length of 175L, we get to

detect only about 48% of the road network.

Thus, therein lies a dilemma: is a segment from map M1 which has not carried

any trajectory a closed road segment or it simply did not see a trajectory due to its

peripheral nature? To answer this dilemma we initially aimed to exploit the OSM

meta-data of OSM road segments such as road type, speed limit, number of lanes or

one-way tag. However, the OSM meta-data appears to be rather sparse and is unlikely
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Fig. 3 Fraction of OSM nodes which are covered by at least one trajectory as a function of relative

trajectory length defined as the ratio between the total length of all trajectories up to a point in time

and total length of the road infrastructure. For close to 100% coverage one would need to have very,

very, large trajectory dataset

to give us the relevant road importance score which would help answering the above

dilemma.

We address the aforementioned question by evaluating the node betweenness cen-

trality (BC)
3

in map M1. The BC of a node acts as an indicator of the importance of

the node in the graph M1, and not-surprisingly we see a strong dependence between

the centrality of a given road segment and the number of trajectories in our data that

pass through it. As seen in Fig. 4, the trend is that the more trajectories a node has

the higher BC and vice versa. In Fig. 5 we depict the empiric CDF of node BC for

two classes of nodes: those who lie on at least one trajectory and those who do not.

We observe that BC mean/median among the nodes which lie on at least one trajec-

tory is an order of magnitude larger than among the nodes which are not carry any

trajectory.

Based on these observations, we declare the road segment closed if it has no

trajectories passing by it and its BC is greater than the threshold 𝛾 . We choose 𝛾 =
0.01 to shave off the tail of the BC distribution among the nodes with no trajectories.

Such 𝛾 identifies a handful of roads which are closed which we confirm by inspecting

each one of them. In addition to those closed roads which are a sequence of closed

nodes (with BC > 𝛾) there are several nodes which are candidates for closure but are

isolated from the other candidates. In order to declare the road closed we require that

3
We believe using another node-centrality measure would likely give similar results, though we

do not evaluate the impact of the choice of centrality measure in this work. However, the use of

betweenness is consistent with the problem definition in Sect. 3.
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Fig. 4 Scatter plot OSM node betweenness centrality versus number of trajectories passing

through each node (logarithmic scale)

Fig. 5 Empiric CDF of node centrality for two classes of nodes: those who lie on at least one

trajectory and those who do not. Node betweenness centrality is generally much smaller among

nodes with no trajectories
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at least 100 m segment (approximately 5–6 nodes) with corresponding nodes to be

candidates for closure.

We would also like to point out that the proposed methodology allows us to infer

inconsistencies between the OSM data and the traffic reality as captured by the GPS

data. Namely, several roundabouts (formed by nodes with BC > 𝛾) are represented

in OSM as two way streets, however the clock-wise direction in those roundabouts is

not matched by any trajectory and hence it is correctly identified as closed road (in

that direction) which is an unexpected benefit of using the method described above.

5.2 Road Closure as Anomaly Detection

The method described in the previous section detects the road closures which have

happened before the data collection started and it is applicable only to major roads -

those with high betweenness centrality. However, for roads which get closed during

the data collection we develop an anomaly detection module which monitors the

traffic on each road segment and identifies “abnormal" gaps in the traffic stream.

For each node in the map M1 we track the list of timestamps each time a trajectory

is matched to that node. Note that sometimes a trajectory may have multiple records

which are mapped to the same node (e.g., if the node is near a traffic light and the

vehicle is static it will generate multiple data records which map to the same node in

the map) and hence we only record the first match of the trajectory at the node and

ignore the others.

As described previously, the road popularity (measured by number of trajectories

which pass by it) distribution is rather skewed. In Fig. 6 we plot the number of tra-

jectories that are mapped to every OSM node in our dataset and observe that a large

fraction of nodes have only a handful of trajectories which pass by it. Consequently,

detecting anomalies on such low-frequency roads is rather challenging.

To detect the road closure during the data collection, each node v in the OSM

graph maintainsmeanv(t): the average inter-arrival time among all trajectories which

have passed that node until time t. In addition to that it also maintains the time

elapsed since the last trajectory: ev(t). Note that for optimization reasons, the time

elapsed is also computed when needed such as a case where a route query is trig-

gered.

We declare the node closed at time t if:

ev(t) > 𝛼 ⋅ meanv(t)

where 𝛼 is a parameter which determines how conservative we are when deciding

to declare the road closed. Small values of 𝛼 may declare roads closed prematurely,

while with large 𝛼 it may take a long time before a closed road is declared as such.

To understand what is the right choice of 𝛼 in Fig. 7 we depict the histogram of

the ratio between the maximum and the average trajectory inter-arrival time for all

nodes which receive at least 2 trajectories per day, in average. We observe that the
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Fig. 6 Empiric CDF of the number of trajectories per node for all nodes in the OSM map. In our

dataset only 18% of nodes have more than one trajectory per day in average

Fig. 7 The distribution of the ratio between maximum and average inter-arrival times for all nodes

with at least 2 trajectory per day (in average). Most of the distribution falls in the range 1–40 with

outliers corresponding to the nodes depicted in Fig. 8
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Fig. 8 Detected closed OSM road segments (red). OSM road network (yellow). GPS points after

the road closure (black)

distribution of the max-to-average ratio is rather wide, and there is not clear cut-off

point. However, most of the distribution is in the range between 1 and 40 with only

a few nodes with the ratio greater than 40. Hence we choose 𝛼 = 40. Such choice

results in only one closed road-section depicted in Fig. 8 during our 2-month long

observation. It involves a closed roundabout and respective access roads.

Finally, note that choosing a smaller 𝛼 is likely to identify temporary road clo-

sures. However, since we could not confirm whether or not such nodes correspond

to actual road closure or they simply fall in the tail of the distribution we leave the

detailed discussion of temporary closures to future work.

6 Evaluation

In this section we will exploit the GPS trajectory data to evaluate the quality of the

fused map.
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6.1 Data

As we discussed earlier, our map inference process uses data generated by a fleet

of vehicles with GPS-enabled devices. In this paper we utilize the datasets from

Doha (Qatar) with around 400 vehicles, 11 Million GPS points (sampled every 10

s). The dataset includes all GPS data points which fall into a rectangle (in lat, lon
coordinates) of 6 × 8 km in an urban region in the city of Doha with a mixture of

highways, high and medium volume roads, capillary streets, and roundabouts. Every

data record contains: timestamp, latitude, longitude, speed, and heading of the mov-

ing direction of the vehicle. Heading is measured in angles against the North axis in

degrees reporting values from 0 to 360◦.

We preprocessed the data to eliminate those data points with speed ≤5 kmph

which are known to have non-trivial noise when reporting location.

6.2 Using Trajectory Data to Evaluate Maps

In this section we analyze how well can we match trajectories to the maps. For a map

 and a trajectory 𝜏 = (p1,… , pk) we denote by 𝛿(𝜏,) the maximum distance

between the points on the trajectory 𝜏 and :

𝛿(𝜏,) = max
pi∈𝜏

min
(u,v)∈

v(pi, (u, v))

where v(pi, (u, v)) is simple distance to line segment in geo-distance, measured in

meters.

In our data we split all the trajectories in two subsets: training and test. We use the

training set for constructing map 2 and the test set of trajectories for evaluating the

matching distance. Since many trajectories from the same driver coincide, we make

sure that trajectories from the same driver do not fall into both training and testing

data. To that end, we split the set of drivers into training/test drivers (75%/25% split)

and assign all the trajectories from the training/test driver into training/test trajectory

dataset, respectively.

For automatic map inference we use Kharita (2017), but note that using any

other automatically inferred map (Biagioni and Eriksson 2012; Cao and Krumm

2009; Chen et al. 2016; Edelkamp and Schrödl 2003) could be used with relatively

small (small, since only a handful of roads are being added to the map) impact on

the final fused map.

For each trajectory in the test data we evaluate 𝛿(𝜏,1), 𝛿(𝜏,2), and 𝛿(𝜏,1⨁
2), where 1 is the underlying (OSM) map, 2 is the automatically inferred

map using the training trajectory data and 1
⨁

2 is the merged map.

In Table 1 we report the mean, median and 99th-percentile trajectory matching

distance for the three maps. All three metrics (mean, median and 99th-percentile) are

minimized for the merged map and are around one third smaller than for automatic
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Table 1 Trajectory matching distance

𝛿(⋅, ⋅) mean (m) median (m) 99th-% (mm)

OSM 40.3 9.3 333

automatic 12.3 9.1 70.4

merged 8.1 6.0 53.4

map. The improvements in trajectory matching come for two reasons. On one hand,

trajectories which follow the new roads non-existing in the OSM map, but discovered

by the automatic map, enjoy better matching in the merged map. On the other, the

parts of the trajectories which correspond to the roads which are not covered in the

training data, are likely to be covered in the OSM map and hence in the merged map.

7 Conclusion

In this paper, we proposed a new map update paradigm: map fusion. Instead using a

customized map-inference algorithm when updating a map, we allow any map to be

fused to the underlying (say OSM) map. Such fusion allows for quick map updates,

with minimal changes to the high-quality underlying map. In addition to the map

fusion, we also study in detail the road closure detection and propose two methods

which efficiently detect road closure by comparing the statistical expectation of the

traffic on a road segment against the actual traffic.
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Semantic Web Technologies Automate
Geospatial Data Conflation: Conflating
Points of Interest Data for Emergency
Response Services

Feiyan Yu, David A. McMeekin, Lesley Arnold and Geoff West

Abstract Conflating multiple geospatial data sets into a single dataset is chal-
lenging. It requires resolving spatial and aspatial attribute conflicts between source
data sets so the best value can be retained and duplicate features removed. Domain
experts are able to conflate data using manual comparison techniques, but the task it
is labour intensive when dealing with large data sets. This paper demonstrates how
semantic technologies can be used to automate the geospatial data conflation pro-
cess by showcasing how three Points of Interest (POI) data sets can be conflated
into a single data set. First, an ontology is generated based on a multipurpose POI
data model. Then the disparate source formats are transformed into the RDF format
and linked to the designed POI Ontology during the conversion. When doing
format transformations, SWRL rules take advantage of the relationships specified in
the ontology to convert attribute data from different schemas to the same attribute
granularity level. Finally, a chain of SWRL rules are used to replicate human logic
and reasoning in the filtering process to find matched POIs and in the reasoning
process to automatically make decisions where there is a conflict between attribute
values. A conflated POI dataset reduces duplicates and improves the accuracy and
confidence of POIs thus increasing the ability of emergency services agencies to
respond quickly and correctly to emergency callouts where times are critical.
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1 Introduction

Open Linked Data and Semantic Web technologies have been accepted widely by
the geospatial industry in the recent decade (Parekh et al. 2004; Patrick and Sven
2009; Janowicz et al. 2010; Zhang et al. 2013; Wiemann and Bernard 2016). The
Australian government has been working closely with W3C and OGC1 to stan-
dardize information and technologies and promote best practice in the management
and use of spatial data on the web.2 Australia has established its own government
linked data working group (AGLDWG)3 to develop government standards and set
up Linked Data implementation techniques in response to its citizens and agencies’
needs. More recently, the Australian and New Zealand Cooperative Research
Centre for Spatial Information (CRCSI) published a white paper (Duckham et al.
2017) to propose moving traditional Spatial Data Infrastructures to a Next Gener-
ation Spatial Knowledge Infrastructure (SKI) which can automatically create, share,
curate, deliver and use data or information, as well as knowledge creation to support
decision making. Semantic Web technologies were identified as an essential ele-
ment to support the SKI in connecting, integrating and analyzing data.

To be able to appreciate the benefit of data versatility as highlighted in the SKI
and embrace the advantages of Linked Data for knowledge acquisition, data con-
flation is an essential process for creating a single point of truth data set from
interrelated data sources, so that knowledge can be more easily derived.

Currently, duplicate geospatial data collection and maintenance exists across
Australian government agencies, leading to data management and processing
inefficiencies. Existing conflation processes are primarily manual and more auto-
mated conflation techniques are required (Yu et al. 2016).

The uniqueness of this research is the use of a SWRL Rule-based Data Con-
flation Framework to automatically match and link corresponding entities between
similar data sets and conflate these entities into a single dataset by selecting the
most accurate features while also removing duplicates without the need for human
intervention. The framework consists of four stages. Stage 1 is the creation of an
ontology based on a multipurpose data model. The multipurpose data model is one
that can be used by government agencies for various business purposes. Stage 2,
refers to the conversion of disparate source data sets into the RDF (Resource
Description Framework) format so they can link to the ontology during the con-
version; and the development of SWRL rules to align attributes from the various

1http://www.opengeospatial.org/.
2https://www.w3.org/2015/spatial/wiki/Main_Page.
3http://linked.data.gov.au/index.html.
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sources so they can be more readily compared and assessed in the latter stages of
the conflation process. Stage 3 uses location proxy and other similarity measure-
ments based on semantic descriptions to find matching candidates across data sets.
Stage 4 uses a reasoning process to model how domain experts make decisions on
which feature attribute values are the best or most accurate when they are con-
sidering various data sources.

In addition to the data sets to be conflated, SWRL rules reference other infor-
mation and knowledge, such as building footprints data. The process is ordered
sequentially according to the decision logic used by domain experts. This is an
important step in the conflation methodology. Domain experts often refer to other
data set(s) to compare attributes in candidate data sets, or look for information in the
associated metadata to understand the level of accuracy of each source data set. In
many cases, decisions are based on personal knowledge of an area and experience
accumulated over time.

This paper explains the Data Conflation Framework and processes, and is
organized as follows: Sect. 2 introduces the research background and related works.
Section 3 presents the motivating example of conflating three government agencies’
Points of Interest4 (POI) data into a single authoritative for use in the emergency
services response domain. Sections 4 and 5 demonstrate the implementation and
evaluation of this research, respectively. The paper concludes with a summary of
the research and describes a plan for future work.

2 Related Work and Background

It is well recognized in the spatial data domain that Lynch and Saalfeld (1985) were
the first to make ‘map conflation’ a reality in 1985. Their approach to map con-
flation was to build a prototype using mathematical algorithms to perform geo-
metric alignment between two vector datasets (e.g., census block boundary and
road centerline map) (Saalfeld 1988; Kang 2001). This method is typically used to
overlay and integrate map layers. The key is to correctly identify matched feature
pairs from both base maps. They use the Delaunay triangulation algorithm to
partition spaces based on data matches and a rubber-sheeting method to align
datasets in each triangle. The process is repeated until all possible corresponding
pairs are identified (Saalfeld 1988). Subsequent researchers have improved the
efficiency of this method (Chen et al. 2004, 2006, 2008; Dongcai 2013).

However, as technology advances, ways to capture, store and present geospatial
data have become more diverse. Geospatial data is recorded in more formats than
traditional maps and the data required to support decision-making is often now
distributed across the web. Over the past decades, researchers have made significant

4A wide-ranging definition of a Point of Interest (POI) is any feature or service that people wish to
visit or know the location of, and is of value to the community (WALIS).
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attempts to bring multiple interrelated geospatial data sets into the same data set to
simplify analysis and create a unified view for better data visualization (Uitermark
et al. 1999; Fonseca et al. 2002; Lutz et al. 2009; Zhang et al. 2013). The process is
normally referred to as spatial data integration (Flowerdew 1991).

One barrier that has impeded spatial data integration is the heterogeneous nature
of data. Data heterogeneity is classified into three categories: (1) syntactic hetero-
geneity, (2) schematic heterogeneity and (3) semantic heterogeneity (Bishr 1998).
Syntactic heterogeneity is due to the use of different database systems (relational,
object oriented etc.) and geometric representations (e.g., raster or vector represen-
tations). Schematic heterogeneity occurs when different data models are used to
represent the same real world objects. Semantic heterogeneity arises when different
disciplines or user groups have different interpretations for the same real world
object. Naming heterogeneity is another form of semantic heterogeneity, such as the
same real world object having multiple different names or the same name but
referring to different real world objects. The heterogeneous nature of geospatial data
makes it difficult to share and leads to data duplication problems.

A study by Lutz et al. (2009) shows that semantic heterogeneity can occur at the
metadata level, schema level and data content level; each level blocks the dis-
covery, retrieval, interpretation and integration of geographic information, respec-
tively. They suggest ontologies as an appropriate mechanism to overcome these
problems. Parekh et al. (2004) added semantics into metadata based on ontologies
to improve geospatial interoperability efficiency and data discovery according to
data content. Uitermark et al. (1999) developed a conceptual framework for
ontology-based geographic data integration. Their work included generating
domain ontology for certain disciplines, and application ontology for each geo-
graphic dataset. They also created abstraction rules to define the relationship
between the concepts of domain ontology and application ontologies.

Based on the idea that concepts from different application ontologies are
semantically similar if they refer to the same concepts or related concepts in the
domain ontology, then corresponding object instances can be defined as semanti-
cally matched. Fonseca et al. (2002) proposed an ontology-driven geographic
information system (ODGIS) in which ontologies are presented hierarchically with
the Top-level Ontology at the highest level, Domain Ontology and Task Ontology
at the middle level and Application Ontology at the bottom level. Their basic
principle was to integrate what was possible and accept that some kinds of infor-
mation will never be completely integrated due to their fundamentally different
nature. They proposed that integration should always be done as the first point of
intersection at the lowest level and then propagated upwards in the ontology tree.

As Semantic Web and Linked Data concepts become increasingly popular, more
techniques have been studied in the geospatial integration process. There now exist
ontologies designed to add semantics into the metadata through the Web Ontology
Language (OWL) so computers can understand the meaning of the information and
automatically operate actions on it (Parekh et al. 2004). Using the data integration
system KARMA (Szekely et al. 2011; Zhang et al. 2013), geospatial data sets can be
linked with design ontologies to transform various source formats into the RDF
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format so data being integrated can be published and reused with rich semantic
descriptions on the Web. Zhang et al. (2013) also model integration steps using an
ontology, so these processes can read RDF triples as input and also return results as
RDF triples. As a result, the system is able to offer some meaningful match and link
suggestions across data sets. A tool named FAGI-gis further explores semantic web
technologies in the geospatial data domain (Giannopoulos et al. 2015). The input to
the tool is two separate geospatial data sets converted to the RDF format and stored
in PostGIS databases. SPARQL endpoints are used to pull linkages between entities
from both data sets and their associated attributes. The tool uses Virtuoso as its RDF
triple repository to store output and it supports GeoSPARQL5 vocabularies so
geospatial features are presented as GeoSPARQLWKT serialization and Basic Geo.

However, literature about spatial data integration has either focused on part of
the integration processes, such as data discovery (Parekh et al. 2004), data retrieval
(Walter and Fritsch 1999), data matching and linking separately (Sehgal et al. 2006;
Wiegand and García 2007). Even when the processes have been studied as a whole,
results only link the matched entities together and display all attribute values from
each source (Zhang et al. 2013). The value conflicts between different sources for a
same attribute haven’t been resolved so the duplicate datasets still exist in silos.

There is more geospatial data conflation research required to combine overlap-
ping geospatial data sources into a single source with richer attributes by recon-
ciling conflicts and minimizing redundancy amongst source data sets while still
retaining the best attributes from each source. Unlike traditional map conflation,
once base maps for conflation are identified, much of the essential information
required during the process is also known, such as, coordinate system, map scale,
date created etc. So the conventional map conflation processes usually set the base
map with higher geometry accuracy as the target map, then align each other map
with the target map and transform attributes to the target map.

Contemporary spatial data conflation processes not only need to deal with all the
difficulties associated with data integration, but furthermore to merge or fuse
multiple data sets into a single data set. This involves decision making, such as
“which data is most accurate?” and “which data is more up-to-date?” etc. However,
the relevant information to support these kinds of decisions is usually vague.

Fusion can be further categorized. For example Szekely et al. (2011) merged
point data with the latitude/longitude representing buildings or structures with
address information from Yellow or White Pages. The connection between these
datasets is the vector data attributed with street information. It uses latitude/
longitude information for each vertex so it can calculate distance to point data.
Having street names means it can compare with addresses extracted from Yellow or
White Pages. Because each data set contains only one aspect of the real world
object, the main challenge is finding matches. Once the nearest distance is identified
and the name strings matched, the data sets can be fused. This method showcases

5The OGC GeoSPARQL standard supports representing and querying geospatial data on the
Semantic Web. http://www.opengeospatial.org/standards/geosparql.
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the ‘attribute enrichment’ aspect of data conflation, which involves combining the
complementary properties.

The other part of the data conflation mission which is to resolve conflicts and
reduce duplicates has not been well addressed. The work of Zhang et al. (2013)
reduced data redundancy wherever attribute values from both data sets were exactly
matched such as, exact name for a country/state or coordinates for a building.
However, when the attribute value is different, the conflicts are not resolved. Instead
they ‘union’ the attributes into a single list. Hence, there are multiple values for the
same attribute in the resulting integrated list, such as two coordinate pairs repre-
senting the same building. The problem here is that two locations create confusion
for a user when navigating to the building.

While matching and linking processes have been done semi-automatically or
automatically using computer algorithms, the fusion process is difficult to automate
with algorithms because it requires decision making not only to look at the data
themselves but also requires reference to other information or knowledge. It is hard
for the computer to do this because it needs domain expert’s knowledge and
intervention.

The fusion process requires holistic information, human logic and the sequencing
of logic into a set of reasoning steps. Data sources that enable holistic reasoning
include but not limited to, reference data, business rules, metadata, provenance,
topological relationships or even domain expert’s experience and knowledge
stemming from years of work. The motivating example used in this research
endeavors to replicate and sequence human logic through a series of automated
reasoning steps and reference data sets to achieve a more holistic approach.

3 Motivating Example

The problem of duplication in the collection and management of spatial datasets is
twofold. Firstly, duplication is costly for governments as it creates an unnecessary
overhead in human and computing resources. Secondly, there is inconsistency
between datasets meaning that the source of truth is not clearly understood and
end-users may make decisions using incorrect or outdated information.

This is particularly a problem for emergency services. Incidents are often
attended by more than one emergency service organization—ambulance, State and
Federal police, fire and rescue, defense organisations and emergency volunteer
associations. If each agency is using their own datasets there is a risk that infor-
mation may be different leading to poor communication and coordination between
first responders. For example, each organisation typically collects location data
(points of interest), such as education institutions, pubs and clubs, pharmacies and
civic places, to enable dispatch operations and incident management. However,
these location features are often collected using different means, from distinct
sources and at different times. The characteristics of these features are also recorded
differently. Sometimes this is for unique and specific business purposes e.g., police
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record locations where licensed firearms are held, where restraining orders exist,
and where violent behavior has occurred previously; whereas the fire department
records the age and maintenance cycle of fire hydrants, location of arson and
building floor plans. However, the more common reason why information is
recorded differently is simply because there was no agreed standard for capturing
and modeling information when these systems were first built.

Agencies are now coming to realise that collaborative data collection and shared
resources is a more attractive alternative and one that makes incident management
more effective. However, bringing multiple agency datasets together is problematic.

The data conflation case study used in this research is based on a project named
LOC8WA, which was managed by Landgate (Western Australian Land Information
Authority) in collaboration with WAPOL (Western Australian Police) and DFES
(Department of Fire and Emergency Services). LOC8WA sought to conflate the
POI data sets managed by each department into a single authoritative data set. The
objective of LOC8WA was to improve the accuracy and confidence of emergency
location information to increase the ability of emergency services to respond
quickly and correctly to emergency callouts.

Identifying matched POIs across three datasets and conflating them into a single
POI is a complex process. A scenario where all three POIs datasets related to a same
region are combined is shown in Fig. 1. A point representing a shopping centre is
highlighted inside a red circle. This point is from the Landgate data set and is
represented by a small dot inside a building footprint. Whereas, the shopping centre
is recorded in the DFES dataset as two red diamond shape points (within blue
circles) located in a road intersection.

Fig. 1 POIs distributed around a shopping centre area
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Noticeably, there are points inside the shopping centre with different categories
such as supermarkets, bank branches and the post office. Around the shopping
centre, there are other feature class points, bus stations, taxi ranks and fast-food
outlets. The complexity or “confusion” in this situation is that some points are the
same POI but their location is different. This is because they were sourced from
different departments; or many POIs have the exact location but cannot be treated as
the same POI as they have different names and attributes.

The LOC8WA project did not generate a conflated data set. Nonetheless, the
importance of having an accurate POI data set for emergency services still remains and
this has given rise to the importance of this research and the use of LOC8WA to case
study automated conflation techniques using advanced semantic web technologies.

The amount of human effort required to complete the task was considered too
great to correctly identify matches and make correct conflation decisions on a
case-by-case basis. There are tens of thousands of POIs in total from these three
agencies. Without the same ID to represent the same POI across agencies’ data sets,
the same POI’s location varies from data set to data set, and there is no consistent
naming convention. The research question is “How can it be known that the three
points from the different data sets actually correspond to the same POI, which POI
attributes (of each point) are the most correct and which points and attributes should
be removed?”.

4 Implementation

4.1 Stage 1: Ontology Development

Before ontology generation can be started, a fit for purpose output model should be
defined which is able to satisfy multiple objectives and users. The data model
represents the different models, each of which meets the business needs of each of
the participating agencies. The choice of output model can affect the reasoning
procedure design. For example, different models can define which data is ruled out
and the final decision will consequently differ accordingly.

However, this research is not to define a completely new model from scratch;
instead, the research will use existing models whenever possible (Yu et al. 2016).
The LOC8WA project uses the Landgate’s Points of Interest Data Model and
participating agencies agreed that this model suited their business purposes. It was
therefore adopted as the multipurpose mode for this study. The POI Ontology
developed in this research is based on the Landgate data model and associated data
dictionary. The POI ontology has potential to be adopted as a standard for all WA
government agencies.

The essential knowledge in the data model was extracted and is shown in Fig. 2.
It shows the classification system for the POIs which complies with a three-level
hierarchy where red, blue and grey rectangles represent feature classes, feature
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subtype and feature domains, respectively. A two-digit number following each
hierarchy level value is the class code, subtype code and domain code, which
together form a six digit classification code number for each POI.

The POI Ontology, designed according to the above structure, formally captures
the scope of knowledge for Points of Interest using the Web Ontology Language
(OWL), so it is machine-readable and reasoning can be done on the ontology.
A part of the ontology corresponds to the same part of the data model demonstrated
in Fig. 2 is shown in Fig. 3. There are three classes POIClass, POISubtype and
POIDomain in the ontology and each represents a concept in the classification
system, i.e., feature class, feature subtype and feature domain. On the right hand
side of each class are their individuals or instances, an example is highlighted in red
color at the bottom of the figure. The individuals showcased in POIDomain cor-
respond to the “Domain Table” values in Fig. 2. They are all feature domains
relating to RetailOutlet feature subtype; hence all POIDomain individuals are
pointing to the RetailOutlet individual which is a subclass of CommercialPOI as

Fig. 2 A portion of Landgate POI data model

Fig. 3 OntoGraf (https://protegewiki.stanford.edu/wiki/OntoGraf) representation for classes and
instances based on POI data model
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indicated by a yellow pointer. All other individuals enumerated in POISubtype class
are subclasses of CommercialPOI as well. Individual features also have a data
property to specify its two digit code (see yellow box Fig. 3) and information about
whether it has a relationship with another feature using an object property (see
yellow pointer Fig. 3). The ontology in Fig. 3 clearly demonstrates the information
for individuals in each hierarchy level and their relationship with others; more
importantly, these relationships are machine-readable so inferences can be drawn
automatically.

The classification code, which can be acquired by string concatenation of class
code, subtype code and domain code, is an attribute of each feature domain. It has
not been specified individually in the ontology as it is considered common
knowledge for all the feature domains and can be inferred using a SWRL rule, as
shown in Fig. 4. Consider the ShoppingCentre feature domain as an example. Its
inferred classification code is inside the red rectangle. The rule together with all
classes, instances for each class, object property and data properties presented are
considered as the top-level ontology for Points of Interest (Fig. 4). The Top-level
ontology includes the minimum information required to express the essential
knowledge in this POI study area.

Fig. 4 POI top level ontology
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4.2 Stage 2: Data Conversion and Alignment

When dealing with a specific project or application, the top-level ontology can be
expanded to accommodate specific business needs. For example, the data property
and object property lists are expanded so they can be used to transform the source
data into RDF triples and used in reasoning processes (Fig. 5).

The three source datasets have quite different schemas including different levels
of granularity. For example, even though the classification system for the POI was
adopted by each source they represent it diversely. The WAPOL data set has three
columns recording the POIs’ feature class, feature subtype and feature domain
values while DFES only contains the feature domain. The Landgate data set has six
digital numbers to present the classification code. In order to automatically compare
whether two POIs are in a same category, they need to all have a same attribute,
either the feature domain value or classification code.

SWRL rules are used to read in the different kinds of classification attributes
from each source and infer the missing information contained in the POI classifi-
cation system so they can have the same attribute granularity. In the top-level
ontology (Fig. 4), the 6-digit classification code has already been inferred for each
feature domain. Hence, if a POI has a feature domain as “ShoppingCentre”, its
classification code can be retrieved from the ontology via a SWRL rule as well.
This is because data is linked to the ontology during the RDF conversion process
and therefore the data has the same semantic description as the ontology. Con-
versely, if a POI classification code is known, the relevant classification information
can also be retrieved by a rule. The rules are shown in Fig. 6. Properties shown in
yellow are inferred by the rules while the other data properties are drawn directly
from RDF conversion. After alignment, the three example POIs shown below have
the same attribute granularity.

Fig. 5 Developed application ontology based on top level ontology
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4.3 Stage 3 and Stage 4: Finding POI Matches
and Attribute Conflation

The logic of finding matches and conflation is as follows:

1. Search points in buffer zone: The spatial (geographic location) characteristic is
used as the first step in finding matches. For a selected POI, a buffer size is given
by the user and used to calculate the distance between the POI and its sur-
rounding POIs. Only points that fall inside the buffer zone of the selected point
will be considered for conflation. This is because points that are close are more
likely to be the same point than those further away. This is a mathematic
calculation, so a rule is not used.

2. Compare classification code (Rule 1): the second step takes advantage of the
POI classification system. As shown in Fig. 1, shopping centre, supermarket,
fast food, bus station and taxi rank etc., they could all cluster within a buffer
zone. However, each of them belongs to a different feature domain in the POI
classification system so their classification code is different. Only points with the
same classification code as the selected POI are considered as potential matches
to be used in the next comparison step.

3. Compare by name string (Rule 2): For example, even though all POIs may
belong to the FastFood feature domain, a POI named McDonalds

®

and another
one named KFC

®

must not be conflated into a single POI because they represent
different fast food stores. Following the classification code comparison, the
matching list is further narrowed down by doing a name string measure. A POI
named “KFC Cannington” and “Kentucky Fried Chicken Cannington” will be
the matched points and a POI named “McDonald’s Cannington” will not be in
the matched list.
Up to this point the matching and linking process is finished and a list of
candidate POIs is ready to be conflated. The list normally contains two or three
points, so the next step is to decide which point to keep.

4. Interrelated Relationships (Rule 3 and Rule 4): During the conflation stage,
human intervention is normally required as human logic is currently more

Fig. 6 Using SWRL rules to align disparate attributes
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efficient than comparison algorithm logic. Domain experts usually use contex-
tual validation to decide which point to keep for each POI. For example, points
representing a building are typically overlaid on top of aerial imagery to man-
ually inspect which point is closest to the actual location of the building. In
order for the system to perform this task automatically, this contextual validation
process is replaced by intersecting POIs with two polygon data sets, i.e.,
cadastral boundary data and building footprints. The reason is because of the
topological relationship they have with POI data. A building footprint must fall
into a cadastral boundary, and if a point represents that building, theoretically it
must fall into the footprint too. The point is less accurate if it is outside of the
footprint but inside the cadastral boundary. It is even less accurate if it is outside
the cadastral boundary. Using this logic, if only one point is within the building
footprint, then it is considered the most accurate point. This is the point kept and
the other physical points will be removed and their attributes conflated into this
point. The next choice is the single point within the cadastral boundary.

5. User purposes (Rule 5): In the situation where there are still multiple points
within the building footprint or none inside the footprint but more than one
inside the cadastral boundary, experts usually decide which point to keep based
on different purposes and these purposes can be formulated into rules. There are
three rules generated in this study:

(1) Provenance and Metadata Rule: The order of reliability is determined by
the combined information of metadata and interviews across agencies’
experts. In the case study, the order is Landgate, WAPOL, and then DFES.
The reason for selecting this option is the user wants to decide based on
agencies authority.

(2) Statistical Rule: The centroid (mean location) of all the points in the can-
didate list determines the conflated point. The reason for selecting this
option is when all data from the various sources is to be treated equally.

(3) Random Rule: Randomly select a point within the candidates list. The
reason for selecting this option is when the location does not need a high
level of accuracy, for example, for general navigation purposes.

According to the above logic, rules generated and are running in a sequential
order, i.e., the result of previous rule will be used as a condition in the following
rule, showcased in Fig. 7. It demonstrates a chain of rules to deal with the situation
where multiple POIs are within a building footprint, the user makes a final decision
based on Provenance and Metadata rule (Rule 5) and the result is output to a new
class named ConflatedPoint.
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5 Evaluation

5.1 Preliminary Testing

The methodology presented was tested with an example scenario shown in Fig. 8
and the process was run in Protégé.6 A POI from the WAPOL dataset was selected
(the blue point inside the basket icon) and a 250 m buffer around the point was
calculated. Five points from Landgate, five points from WAPOL and one point
from DFES (shown in yellow, blue and purple, respectively), all fall within the
buffer zone.

The next stage compares the classification code of all points falling within the
buffer zone. The selected WAPOL POI has the same code as one from DFES
located in a roundabout and one from Landgate, which is located within the
building footprint (represented by the green polygon). According to the conflation
logic in Sect. 4.3, these three POIs will be conflated into a single point by taking the
POI location from the Landgate dataset, shown using the star marker in Fig. 8.

All points in the example scenario and their relevant attributes were used in the
reasoning processes listed in Fig. 9. These POIs were added to the same file as the
designed POI ontology and SWRL rules so they could be run together with the
Protégé reasoner. However, buffer distances are calculated using mathematical
functions outside of Protégé. In addition, the comparison of POIs with the digital
cadastre and building footprints is also pre-determined using methods, such as a
layer intersection outside protégé. Here, the intersection results (listed in Fig. 9)
show whether a POI is “within” a cadastral boundary or a building footprint (blue
columns). The yellow columns represent data properties and the blue columns show
the object properties.

Fig. 7 Rule Chain for finding the best location based on provenance and metadata

6Protégé is a free, open-source platform that provides a suite of tools to construct domain models
and knowledge-based applications with ontologies.
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Fig. 8 Example scenario

Fig. 9 Attribute list of example scenario POIs
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The Protégé built-in reasoner Pellet7 is run to check whether it can properly
return inferred results for different POIs using each rule. As shown in Fig. 8,
DFES_569, LG_2936 and WAPOL_30164 are supposed to be conflated into one,
i.e., LG_2936. The inference results of the three POIs are showed in Fig. 10.

(1) Rule 1 returns results for the three POIs (see red rectangle). It correctly iden-
tifies one POI has the same classification code as the other two because they are
all “070602” (see dark blue rectangle).

(2) Rule 2 also correctly returns inferred results for each POI. (See light blue
rectangle). Each POI has the same name as the other two because the name
values are “SAMSON”, “Samson Shopping Centre” and “SAMSON SHOP-
PING CENTRE”, so they are either an exact match when ignore case (e.g.,
“Samson Shopping Centre” and “SAMSON SHOPPING CENTRE”) or one is
contained within the other (e.g., “SAMSON” and “SAMSON SHOPPING
CENTRE”).

(3) Rule 3 and Rule 4 does not return any result for DFES_569 because it is not
within any cadastral boundary or building footprint. Both rules return a result
for the other two POIs because they all within “cad1” and “fp1”, so they have
sameCadastreAs and sameFootprintAs with each other.

(4) Rule 5 returns the final result as LG_2936, which is an inferred member of
ConflatedPoint class (see black rectangle in the lower left corner). This is the
expected result for the test scenario based on the Provenance and Metadata
Rule, i.e., Landgate data is more accurate than WAPOL data when two POIs
from these two sources are both within a building footprint.

The inferred results for other points included in the test scenario are shown in
Fig. 11. Because their classification codes are different than the selected POI, no

Fig. 10 Properties for POIs after running reasoner

7Pellet is an open-source Java based OWL 2 reasoner https://www.w3.org/2001/sw/wiki/Pellet.
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results are generated in Rule 1. Hence they are not carried any further in the
reasoning process. This fulfills the expectation of the rules as only those candidates
that meet the previous rules are carried into the next rule.

5.2 Proof of Concept Web Portal and Further Evaluation
Data

The preliminary testing results demonstrate that the SWRL Rule-based Data
Conflation methodology can model domain experts’ decision making logic, thus
enabling geospatial data to be conflated automatically. However, as Protégé is
essentially an ontology and SWRL rule editor, there are many functions that cannot
be performed, such as, calculate points within buffer zone, and intersect points with
reference layers. Also, the example only demonstrates one scenario, which is two
points within the same footprint and the final decision is based on Provenance and
Metadata Rule. However, it is acknowledge that there could be other scenarios and
different rules will come into play, such as a decision made by statistic rules or
random rules, or if only one point is in a footprint, the point can be chosen
automatically etc.

A Proof of Concept (PoC) web portal has been developed to integrate the
aforementioned functions and automatically trigger different rules depending on the
different situations.8 The Data Conflation application server provides a visualisation
layer so that the user can view the dataset points before and after conflation. The
visualisation layer is developed using React JS. The user is able to access it through
a common web browser such as Chrome and Firefox etc. The web application

Fig. 11 Reasoning results for all other points

8https://crcsi.amristar.com/automatedconflation; username: crcsi; password: l@ndg@te.
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server also hosts the Apache Jena Semantic Web business rules engine that the web
application interfaces to execute the conflation processes.

As the PoC web portal is capable of dealing with larger datasets and more
complicated scenarios, a further evaluation was able to be performed. The evalu-
ation is based on conflating ShoppingCentre feature domain points from the three
sources including 351 POIs from Landgate, 255 POIs from WAPOL and 381 POIs
from DFES. These POIs are well distributed across Perth metropolitan area. The
reason for using this particular feature domain is that these points exist in all three
datasets in the study area. The WA Police dataset and Landgate dataset cover most
of the feature domains, whereas the DFES dataset only records FastFood, Super-
market and ShoppingCentre feature domains. However, the Landgate dataset does
not contain enough samples in the FastFood and Supermarket feature domains with
only 8 and 28 points in each feature domain, respectively. Furthermore, the points
in these two Landgate feature domains occur outside the Perth Metro area where no
building footprint data is available to compare. Therefore, the ShoppingCentre
feature domain data in this case is the best test data to evaluate whether conflation
decisions can be correctly made between the three sources.

The buffer size is set as 250 m is based on trial and error. A manual check on a
few of the larger shopping centres in the metropolitan region showed that 250 m is
sufficient to return relevant points and it is not too larger an area to decrease system
performance. Nonetheless, in the PoC web portal, a user is able to select an area of
interest rather than the whole dataset search area.

The building footprints and cadastral boundaries reference datasets are provided
by Landgate, which is the recognised authoritative source.

5.3 Evaluation Criteria and Results

The evaluation focuses on two aspects; (a) whether the system can effectively
reduce duplicate data; and (b) the accuracy of conflated results.

In terms of duplication, the number of conflated POIs is 493, whereas the
number of POIs from the combined datasets is 987 (Fig. 12). This means that over
half of the points are duplicated, and hence have been removed. At the same time,
each source dataset has an increased number of POIs and thus coverage is
improved. This is shown in Fig. 12 where Landgate has increased the number of
valid POIs by 40%, WAPOL by 93% and DFES by 29%.

In order to examine how accurate the results are, manual validation was per-
formed. Among the 493 conflated POIs, 283 points were generated from multiple
points, i.e., either from more than one source or more than one point from the same
source. Each of these 283 points were loaded into ArcMap and overlaid with the
three source datasets and the two reference datasets to check whether or not the
SWRL rule system effectively selected the best location for each scenario.
The statistical results are displayed in Table 1.
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The test revealed that 88 points were conflated automatically because there was
only one data source with the point inside the building footprint. There are 6 cases
where no points were within a building footprint and only one point inside a
cadastral boundary. The remaining 189 conflated points were decided by the
Provenance and Metadata Rule as multiple source points existed in a same foot-
print or cadastral boundary. As the Provenance and Metadata Rule defines the
Landgate dataset as the most accurate the result showing 156 points from Landgate
source as the highest number of valid points was expected over the WAPOL (24
points) and DFES (9 points datasets. Changing the Provenance and Metadata Rule
would achieve difference results.

Among the 283 conflated points, only 5 points were identified as incorrect and
therefore, the conflation accuracy for ShoppingCentre POI is 98%.

There are 210 points in the conflated dataset, which were derived from a single
source. However, 64 of these points should have match other points but were
excluded due to the current name string method being too simple. The current string
match method uses SWRL Built-Ins for String, which can only perform simple

Fig. 12 Number of points before and after conflation for each source

Table 1 Evaluation result for conflate three datasets

Source # Conflated POI Total
#Multi-sources # Single source
Auto-select Decided by rule
In footprint In cadastre

Landgate 58 2 156 60 276
WAPOL 15 4 24 63 106
DFES 15 0 9 87 111
Total 88 6 189 210

Total: 493
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matches, such as match points with exactly the same name or where one name is
contained within another name string. However, some name patterns such as full
name (e.g., Kentucky Fried Chicken) and acronym name (e.g., KFC) will not return
a result as matched. A better match method is required to deal with various name
patterns across the datasets.

In future work, a more sophisticate string match algorithm will be used to
generate custom Built-Ins for SWRL to improve the accuracy of the name string
match in order to reduce the number of duplicate points further.

6 Conclusion and Future Work

Incidents are often attended by more than one emergency service organization. If
each agency is using their own datasets there is a risk that information may be
different leading to poor communication and coordination between first responders.
A conflated single authoritative dataset is therefore desirable between agencies.
This paper presents a new approach to data conflation where an ontology and RDF
data conversion serve as the basis for the solution and SWRL rules are the core to
automate the entire geospatial data conflation processes. By using a set of rules in a
sequential order, human experts’ logic can be used to find the most accurate or
fit-for-purpose location and conflate the remaining attributes into the single location
and removing duplicate features. In this way, the conflation processes can be run
automatically without human intervention.

In the Proof of Concept web application, some other datasets are also used in the
system, such as OpenStreetMap and BingImage. At this stage these are only used as
based maps for visual reference and not included in the conflation process.
Although the conflation with OpenStreetMap is not in the scope of this paper,
including OpenStreetMap into the conflation reasoning process either as a reference
dataset to facilitate decision making or used as a fourth source dataset to conflate
into a single dataset is planned in the future work.
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Topology Extraction from Occupancy Grids

Martin Werner

Abstract A fundamental problem in indoor location-based services is to compute

the meaning of location with respect to an indoor location model. One specific chal-

lenge in this area is represented by the central tradeoff between two philosophies:

a decent amount of the community tries to provide high-quality, high-fidelity mod-

els investing specialized knowledge and a lot of time in building such models for

each building thereby increasing simplicity and quality of location-based services

such as navigation or guidance. In contrast to that, other people argue that crowd

sourcing and very simple representations of environmental information are the only

way of generating indoor environmental information at scale. However, applications

then have to tolerate errors and deal with oversimplified models. With this paper, we

show for a specific widely accepted simple environmental model in which building

floorplans are represented as black-and-white bitmaps, how we can provide algo-

rithms for extracting higher order topological concepts from these trivial maps. We

further illustrate how these can be applied to the hard problem of indoor shortest

path calculation, indoor alternative path calculation, indoor spatial statistics, and

path segmentation.

1 Introduction

Today, numerous location-based services enable new digital services and digital

support for day-to-day life. Based on the wide availability of enabling technologies

including GNSS positioning, satellite imagery, LiDAR scans, digital terrain models,

and maps, many services have been developed especially for the outdoor space. The

situation of Indoor Location-based services is, however, different (Werner 2014).

First, it is not easy to derive a meaningful location from measurements of existing

signals in the indoor area. Without investing much effort and money into a dedicated

indoor location system, one is basically left with inertial sensory and signals that
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have not been deployed with positioning in mind. This renders the indoor position-

ing problem highly ambiguous and challenging. Second, the acquisition of indoor

location models is considerably harder as compared to the outdoor area. While for

outdoors, a simple graph model in which edges represent ways and vertices repre-

sent corners is sufficient for navigation, indoor environments are more complex and

cannot be represented by such a simple abstraction as a single graph. Instead, the

full freedom of movement of humans should be taken into account. Based on this, a

multitude of indoor location models has been defined ranging from a simple graph

modelling movement over set-based and hybrid models to complex models based

on occupancy grids or even 3D point clouds (Becker and Dürr 2005). The drawback

of this wide range of modeling methodologies is that there is no good compromise

to be reached: some of these models are extremely expressive and can be applied

in any environment (e.g., 3D point clouds), but are difficult to exploit computation-

ally. Other models are extremely efficient for computations (e.g., set-based models,

graphs), however, are unable to express the full complexity of indoor navigation in

a natural way. Additionally, the modeling effort varies greatly. Drawing new map

information enhanced by a navigation graph consumes a lot of time. However, some

sort of map information is often available: floorplans and building blueprints.

In my opinion, one must rely on techniques that are simple enough such that a

majority of users understands these techniques and is able to model the environ-

ment themselves. One such model, though radical, is given by occupancy grids. An

occupancy grid is a map representation scheme in which indoor spaces are first split

into individual floors each of which is represented by a black-and-white floorplan

bitmap. In this bitmap, black pixels are partially or fully obstructed and white pixel

are walkable space. This model is simple enough such that even novice users are

able to create, understand and modify models based on such information as this only

needs basic image editing tools.

However, these representations have not been applied widely for complex queries

about the environment. Instead, they are mainly used to find connectivity by calculat-

ing shortest paths in free space ignoring that they will scrape along walls and to filter

erroneous sensor measurements in spatial particle filters. I believe that these simple

models are more powerful and show that it is possible to automatically extract a lot

of information from such occupancy grids, only.

The main contribution of this paper is the following: a method to extract higher

order topological information from these maps in which spaces such as rooms and

their interconnection (such as doors, hallways) are made explicitly available without

user intervention. Additionally, it is shown how to use reduced topological maps for

calculating shortest paths that do not scrape along geometry and, therefore, allow for

better postprocessing when, e.g., identifying visible landmarks for route description.

Third, the paper gives a scalable methods for extracting sets of sufficiently different

short routes between two points, which applications can use in order to optimize

complex additional criteria, e.g., find a sufficiently short path through the airport

such that I am able to change money along the way.

Note that algorithms for selecting alternative routes in street networks are not

applicable in this setting as there is a high number of similar paths sharing not
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a single edge, which would be seen as “perfect” alternatives given the criteria used

for selecting alternative routes in street networks.

The remainder of the paper is structured as follows: Sect. 2 shortly reviews related

work with respect to building modelling and information extraction. Section 3 intro-

duces the contraction pyramid and explains its relation to the Reeb graph of the

contraction process. Section 4 introduces illustratory applications including shortest

path, alternative routes, Wi-Fi positioning as a classification problem, spatial statis-

tics, and turn-by-turn guidance in buildings. Finally, Sect. 5 concludes the paper.

2 Related Work

Extracting environmental information is a fundamental prerequisite to many location-

based services. When providing services based on the location of an entity, the

meaning of this location to the application needs to be understood. Therefore, most

location-based services are designed by setting the location of a mobile device into

the context of an environment and only very simple, just about trivial, services can

be provided without environmental information.

A very early work towards the representation of indoor spaces for location-based

services has been presented by Becker and Dürr (2005). They distinguish a set-based

model in which the subset relation, for example, models rooms being on a specific

floor, graph-based models, in which graph edges model neighborhood relations and

graph connectivity models space connectivity in a navigational sense, and present

combinations of both. Another approach to indoor modeling is explicitly based on

the two concepts of locations (e.g., rooms) and exits (e.g., doors) (Hu and Lee 2004).

In the last decades, several new approaches for scalable extraction of environ-

mental information have been proposed. One direction is the automatic extraction of

higher order topological information like rooms or doors from building blueprints

(Werner and Kessel 2012), another direction of research is towards building a com-

munity of people explicitly modelling topological information in open data platforms

such as OpenStreetMap (Openstreetmap wiki—indoor mapping 2016).

However, both approaches have not seen wide adoption yet: the complexities

of extracting meaningful information from drawings for humans is not sufficiently

solved and the communities have not agreed on a single, sufficient way to represent

indoor spaces.

Another track of research originates in the robotics domain. Here, the environ-

mental models are limited not by the limitations of algorithms, but rather by the

limited ability of mobile robots to acquire and analyze data. In this area, two-

dimensional occupancy grids are often created in which white pixels model free

space and black pixels model occupied space. This concept of modelling spaces by

what devices actually measure, is quite successful. However, much information about

indoor spaces is lost. Recent representatives of this approach are given by high-end

SLAM systems such as NavVis (NavVis corporation 2016), which generate very

large amounts of three-dimensional point clouds.
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This paper proposes a method to extract meaningful topological information from

occupancy grid maps which can be created by mobile robots or modern measure-

ment devices. The most similar work in literature with respect to our work is given

by Fabrizi et al., who extract information topological relevant objects such as rooms

and corridors as a computer vision task on fuzzy occupancy grids (Fabrizi and Saf-

fiotti 2000). Due to the nature of their approach, this does not easily generalize to

complex environments as it is based on morphology operations using structuring

elements, which have a chosen size and shape. This size and shape determines a lot

of properties of the output.

The approach provides a set of features implicitly describing the building topol-

ogy, which can be used to extract a topological map of rooms similar to the approach

of Fabrizi. Most importantly, it is not needed to set parameters related to the expected

size of topological features as doors or hallways. Additionally, it is shown that the

given features can be used for other tasks with respect to the environment such as cal-

culating realistically shaped short paths and reasonable families of alternative paths

through space.

3 The Contraction Pyramid

Indoor maps usually come in two different flavors depending on how they have been

constructed. Either they are vector drawings or they are bitmaps and occupancy grids

(Werner 2014).

Geographic Information Systems (GIS) drawings are usually created by archi-

tects and technicians to build, enhance, understand, or improve the building while

user-generated or machine-generated maps are often in the form of occupancy grids

either by creating such representations using sensory or by using bitmap manipula-

tion software in order to create an occupancy grid map of a building from floorplans.

When GIS drawings of the building are available and of usable quality or if maps

for indoor navigation are created using GIS software, the indoor maps are most often

collections of two-dimensional drawings of primitives including lines, circles, and

arcs. A specific set of symbols is being used to draw special objects such as doors,

escalators, elevators, windows, and other buildings objects. However, these drawings

are often unclear about some details of these building objects which have to be mod-

elled manually (Werner and Kessel 2010). For topology detection in the sense of this

paper, such GIS drawings have to be preprocessed in order to model walkable space

as empty space—that is, given a starting point inside the building, a recursive eight

corner graph traversal can walk the complete walkable space. This can be done either

manually by deleting organizational lines and doors. However, it can be automated

to a high degree (Werner and Kessel 2012). In fact, this preprocessing results in a

GIS drawing, essentially a set of lines, such that the walkable space can be extracted

as an occupancy grid. These occupancy grids are transformed into an eight corner

navigation graph by creating a vertex per walkable pixel and eight edges connecting

neighboring white pixels. Note that this map could have more than one connected
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component, especially, when some rooms can only be accessed via building objects

such as elevators or staircases. For floorplans given as a bitmap, it is usually quite

easy to modify the image to contain white pixels for free walkable space and black

pixel for the building and the surroundings. Note that the three-dimensional connec-

tions are not to be considered in the context of topology extraction, as they connect

different topological parts of the building. Thereby, it suffices to perform topology

extraction and detection in 2D and handle three-dimensional connections as con-

necting different parts from different topological objects.

The concept proposed with this paper is based on the idea of using the vertex

degree as an indicator of the border of free space components. The degree of a ver-

tex in an undirected graph is defined to be the number of adjacent edges. Given an

eight-corner-system navigation graph spanning walkable space, two different types

of vertices exist: full degree vertices, which are called inner vertices and vertices

with lower degrees, which are called border vertices. Border vertices are generated

near obstructive geometry, which hinders the generation of some edges. The degree

of a vertex is used as a color in Fig. 1a.

You can clearly see inner vertices of full degree depicted in red, border vertices

in green or yellow depending on their number of neighbors.

The proposed approach proceeds in iterations. In an initialization step, the con-

nected components of the given navigation graph are calculated and all vertices are

labelled with a number representing their connected component.

After initializing the data structures, the approach removes all border vertices

from the graph and then again calculate connected components. This gives a set of

connected components each of which is fully contained in a connected component

of the previous iteration. However, a connected component from the previous layer

can split into more than one component in the current iteration.

(a) Degree of a navigation graph based
on eight directions

1

2

3

(b) Contraction Pyramid

Fig. 1 A degree map and the contraction pyramid of a simple example
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Considering the iteration number as a vertical coordinate, one can create a stack

of shrinking and eventually splitting connected components similar to what we know

from Morse theory or Reeb graphs. This leads to a geometric objects as depicted in

Fig. 1b in which the lowest layer 0 is the full graph, layer 1 is given by removing all

border vertices of layer 0, layer 2 is given by removing all border vertices from the

graph at layer 1, and so on.

Connected regions will soon break into several disconnected regions when enough

border vertices are removed, e.g., the graph shrinks and connected components start

splitting. Considering the step from layer 1 to layer 2 in Fig. 1b, you see the red

marked room splits into a small kernel down and a slightly larger patch up.

When a given connected component splits in parts, all vertices that have been

removed in this step and are adjacent to the created connected components are called

topological borders. The process ends when connected components are only rep-

resented by a set of border vertices, which would disappear in the next iteration.

These vertices are called kernel of a room or hallway or otherwise relevant topolog-

ical object. Now, these kernels are expanded into all directions until they meet with

topological border vertices. These connected regions are called a topological room.

Figure 2 depicts the process for a larger map as well as a three-dimensional visu-

alization of the different steps stacked one upon each other.

Again, the three-dimensional representation of the topology is based on stacking

the same graph iteratively reduced by removing border vertices vertically on top of

the previous graph. This transforms the two-dimensional occupancy grid graph into

a three-dimensional object of finite height.

Fig. 2 The process of iterative shrinking and the pyramid as a stack of layers
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From this object, one can vertically connect all vertices which are above each

other and thereby form a full three-dimensional object. This motivates the following

formal definitions:

Definition 1 The height of a vertex v representing a white pixel in an occupancy

grid map is defined to be the number of layers of the pyramid in which this vertex

exists.

In math, Morse theory as well as Reeb graph theory are conceptually similar.

They use a concept of sweeping along the height of objects realizing their topologi-

cal structure. The Reeb graph is very similar to our construction, however, with one

more level of abstraction. The Reeb graph of a manifold is constructed by sweep-

ing along one axis (let it be the vertical one) and adding a vertex if and only if a

connected component appears, disappears, or splits. These three operations are rep-

resented by vertices in the Reeb graph. An edge in the Reeb graph means that some

object (e.g., a smaller connected component) appeared from another component dur-

ing a split. This Reeb graph is combinatorially equivalent to the information in our

pyramid, however, purely combinatorial. Hence, there is no access to the vertices and

height after creating the Reeb graph. With our pyramid, we are using a slightly larger

graph as compared to the Reeb graph. But in a loose sense, the Reeb graph of the

contraction pyramid taken as a threedimensional surface is similar to the following

definitions extracting topological objects from the pyramid.

From the pyramid, one can as well derive some other objects describing a less

local topological feature around a vertex.

Definition 2 The threshold-connected component of an occupancy grid vertex v and

an integer threshold 𝜏 is defined to be the connected component of the layer of the

pyramid at height 𝜏.

An example of such a threshold-connected component is given by Fig. 1b. The

red vertices on the second layer build, for example, three connected components.

The sets of vertices of these components are the threshold-connected components at

height 𝜏. Similarly, in Fig. 2, the black connected region in the top left is for height

𝜏 = 1, as you can see from the non-black border vertices. To the right, one finds a

different set of components by reducing all these components.

Unfortunately, for a fixed height, not all interesting components are realized.

Small components die out earlier than large components. So in higher heights, the

small components are not visible anymore.

This motivates the following construction of maximal or complete components,

which first needs the term of a kernel to be defined more clearly:

Definition 3 The kernel component of a vertex is the highest connected component

from the pyramid. That is the highest set of vertices such that all of these vertices

(including the vertex itself) would be removed in the next iteration.
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This leads us to the definition of maximal component:

Definition 4 The set of complete or maximal components is extracted from a kernel

by taking the largest (e.g., lowest) component in the pyramid that fully contains the

kernel and does not split in the process.

In other words, a maximal component is the largest connected region that will not

split by iterating the described algorithm. In the following sections, the usefulness

of the pyramid, threshold-connected components, and maximal components is high-

lighted in various application scenarios from the domain of indoor location-based

services. Note that we do not claim that any of those applications taken for them-

selves are new or extraordinarily innovative. The aim of the section is to show that the

innovation of extracting a topological environmental model without a single value

𝜖 related to the expected size of topological features is expressive enough for these

problems. More clearly, that there is a single and simple data structure represented

by the contraction pyramid in which these operations can be done.

4 Applications

Understanding the building topology is a quite general and important task for indoor

positioning systems. Consequently, there are very many application areas for auto-

matically extracted topological information. The following applications may serve as

a examples for the vast applicability of topology as extracted using this framework.

4.1 Topology-Aware Shortest Paths

The extrusion of the map space into a pyramid as explained before is a powerful con-

cept. As a first tool, the height of a vertex can be used to support better shortest paths

for visualization and computation along paths without severe additional overhead.

One can compute the heights hi of each vertex and scale each edge weight 𝜔i,j in the

navigation graph by a factor:

�̃�i,j =
1

hi + hj
𝜔i,j

This makes edges between higher heights shorter and therefore leads to paths

favoring a location for visualization and calculation inside free space as opposed to

along walls and corners. Figure 3 depicts an example of a shortest path using the

modified weights �̃�i,j.

As you can clearly see, the shortest path avoids scraping along walls and is a rea-

sonable tradeoff between preferring high vertex edges and short paths. Furthermore,

the height map can be used to classify the topology along the path directly. Figure 4a
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Fig. 3 A shortest path in the adapted weightmap keeping away from disturbing geometry
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(b) Binary Classification

Fig. 4 Height of vertices as observed along the shortest path

depicts the height as observed when following the shortest path depicted in Fig. 3

and the binary classification of this height.

In the first figure, we follow the depicted path from the left to the right. You

can see that we are somehow inside a room, then leave the room through a bottle-

neck at vertices around eight. Then follow a path of varying height (e.g., a hallway)

before we enter a larger space from vertex 35–48 followed by a bottleneck and enter-

ing another room. The binary classification on the right shows only the bottlenecks.

These two figures can be used to create hints of interest for route description engines

creating sentences like: “Start at the given location, then leave the room, follow a

medium-sized hallway. When the hallway opens up widely, turn right and go through

the door.” Essentially, each arbitrary threshold 𝜃 on the height returns in a binary



142 M. Werner

classification as depicted in Fig. 4b, which marks significant spatial events along the

path with respect to the surroundings.

Additionally, note that computations along the path are more sensible as the path

is more similar to the path a human would actually follow. If one wants to describe the

shortest path in a navigation application, one likely wants to identify landmarks that

are visible from the path. The visible space is, however, larger for the path preferring

to stay away from obstacles and walls as much as sensible.

4.2 Topology-Aware Alternative Routes

In the same situation as before, we might be interested in calculating alternative

routes between two locations. Alternative routes are different routes between two

locations that are reasonably short. It is quite complex to define and evaluate a good

notion of different routes; the interested reader is referred to a definition of alternative

routes in buildings (Werner and Feld 2014) and to general work regarding alternative

routes (Dees et al. 2010; Bader et al. 2011).

Using the proposed pyramid, we can summarize routes between two locations by

the set of labels of connected components the route visits. This is especially powerful,

when a specific maximal height threshold is given. If we ignore all vertices whose

height exceeds this given threshold, the connected components of this map can be

labelled and two routes can be considered equivalent when they stride through the

same sequence of connected components in this thresholded map. Figure 5 depicts

such connected components for two example maps.

One can clearly see the rooms (and larger open spaces for the map taken from

Starcraft) as red areas connected by blue corridors. The red areas are—for a con-

stant threshold—the same as the connected components of the respective layer in

the pyramid.

When it comes to the calculation of alternative routes, three important approaches

can be identified. The most basic version of alternative route calculation is given by

finding the top k shortest paths in a graph. This is relatively easy by first building a

shortest path tree from the beginning and end of the intended route and then patching

together a shortest path from the beginning, an edge (or a short sequence) that is not

part of either shortest path tree, and the shortest path to the goal. Unfortunately, this

approach requires calculation of two sufficiently complete shortest path trees which

renders most optimizations of shortest path calculation useless and generates a huge

amount of route candidates. Additionally, the patching nature of these routes makes

many of those look quite unnatural.

There are two widely-used algorithms to reduce the amount of computation as

well as the amount of candidates a bit. These two widely used algorithms can be

enhanced by the extracted topology. One simple way to calculate alternative routes is

given by the penalty method (Chen et al. 2007). This method is based on repeatedly

calculating the shortest path between two points and increasing the weights of all

edges on this shortest path by a certain amount. In this way, the shortest path gets
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(a) University Building

(b) Computer Game Map

Fig. 5 Threshold connected components
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longer and alternative routes become shortest routes in the updated weighting. This

creates a large candidate set of alternative routes of increasing length from which a

reasonable set of alternatives has to be selected. The sets of routes generated in this

way are by an order of magnitude smaller than the sets generated with the previously

described sidestepping method. The reason is that partial overlap between routes is

disfavored as all edges along a path get a penalty. Thereby, the candidates quickly

start ranging forth and back over space. One problem of the penalty method is the

fact that the candidates keep quite similar for a number of iterations and “good”

alternatives are first found after many iterations.

To this end, one can use the topology to not only increase the weights of the

shortest paths, but possibly all weights of edges inside the threshold connected com-

ponents. In this way, it becomes more likely that the algorithm will avoid such a

component in few iterations leading to quick identification of alternative routes cross-

ing different threshold connected components. Essentially, this behaves like a graph

compression in which threshold-connected components behave like a single edge

with respect to the penalty algorithm.

The second widely used algorithm for detecting alternative routes is given by

the plateau algorithm (CVIT Ltd. 2016). It is based on building shortest path trees

from start and end vertex simultaneously with optimizations and identifying path

segments in which both shortest path trees overlap. For each such overlap, the can-

didate alternative route is extracted by routing from the start to the overlapping region

and towards the end. Once overlap is detected, this is possible in constant time. As

compared to the penalty algorithm, the plateau algorithm is able to quickly detect

alternatives from a larger spatial area due to the uniform growing of shortest path

trees. However, this is also the most important downside of this approach: the short-

est path trees should be optimized to avoid explosion and quickly generate a solution

but still have to cover a decent amount of space in order to find these overlapping

regions. Usually, both shortest path trees are pruned at a fixed multiple of the dis-

tance between the start and end vertex by exploiting the triangle inequality. Note that

this method is similar to the sidestepping method with a heuristic on which sidesteps

to use first.

This algorithm can also be augmented by extracted topological information: the

shortest path trees might not overlap too much as most search algorithms tend to

keep left or right during expansion in free space. Therefore, quite unnatural overlap-

ping regions will be generated and candidates for alternative paths will be counter-

intuitively irregular. By using a height-scaled weightmap, however, the forward and

backward search are pulled towards the areas of high height vertices leading to col-

lisions of both search trees and reasonable overlapping regions at high heights and

high quality candidates. Again, this can be seen as a graph compression in which

the connectivity of the graph is summarized by the high height vertices that are

locally maximal. That is, as shortest paths in forward and backward search are pulled

towards the same local maxima of height, they will collide there and each such local

maximum (or plateau of such locally maximal vertices) represents the “kernel” of a

threshold-connected component.
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4.3 Selection of Alternative Routes

As already mentioned in the previous section, the most puzzling question for select-

ing alternative routes is a measure of alternativity of candidates.

It is quite easy to calculate very large sets of different routes between two points.

As an easy approach, one calculates two shortest path trees, one from the start and

one from the end vertex in the reverse graph. Then, each edge not in the shortest path

trees creates an “alternative” by first going a shortset path from the start to this edge,

then along this edge, and finally to the goal on a shortest path. However, these large

sets of routes are not very useful for applications.

With the extracted topology, one can create a family of “alternative” routes, pos-

sibly even generated by mobile devices. Then, one can use the set of height compo-

nents, these routes traverse, to select one and only one, e.g., the shortest, for each

of these sets. Figure 6 depicts a result of selecting only one alternative route from

a search based on the penalty algorithm in which two “alternatives” are consid-

ered equivalent, if they cross the same set of labels using a fixed height threshold.

One clearly sees that only a limited set of routes is generated without much over-

lap. Hence, a “good” set of alternative routes: it is small subset of alternative route

candidates, but covers many sensible examples. It is much more restrictive to use

maximal connected components. Figure 7 depicts the filtering result in which maxi-

mal components have been used to define equivalence. This generates another, less

complete, but smaller set of truly alternative routes between the two points.

It depends on the application, how much filtering of candidates is reasonable.

Note that it is even possible to not only use set equality in filtering (reject candidates

that are equal) but also to use set similarity provided for example by the Jaccard

index for a fine-grained adjustment of the result set size and variety.

4.4 Indoor Spatial Statistics

When collecting large amounts of spatial data, several analytic approaches have been

very successful. One elementary analysis for spatial and spatiotemporal datasets is

given by the Getis-Ord G∗
i statistics. Basically, this statistic is based on comparing

feature values of spatial cells (e.g., the number of events in a specific region) with

those feature values of their neighbors identifying hotspots, i.e., locations, where this

feature value is significantly larger than expected. Therefore, this statistics compares

sums of features of regions and neighbors with the globally expected value for these

sums.

The regions of Getis-Ord are often calculated by first aggregating feature values

on a grid and then using the neighborhood relation on grid cells in order to find

hotspots. However, when thinking about meaningful hotspots in buildings, this will

be misleading.
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Fig. 6 Alternative routes selected using height components

Fig. 7 Alternative routes selected using maximal height components

Assume, we are able to count the number of people in every room of the building

with some sensors. A hotspot in this context should be a room in which many more

people reside than one should expect from the average number of persons in a room.

The grid-based approach, however, would detect people density as hotspots, that is

rooms in which many people are near each other—a completely different question.

In this context, I propose to use the topological subdivision as provided by

complete or threshold-connected components based on height in order to analyze

hotspots in a topologically correct way. Consider Fig. 5a for an example of the
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spatial splitting using complete height components. Again, the most useful fact is

here that the topology does not need to be generated by hand, but is extracted auto-

matically from connectivity and does not depend on choosing a suitable threshold as

in related work.

This approach can easily be extended to other spatial statistics methods in which

spatial divisions have to be chosen including Moran’s I and Geary’s C for spatial

autocorrelation.

4.5 Turn-by-Turn Guidance in Buildings

One of the hardest unsolved problems in indoor pervasive computing might be the

computational generation of descriptions of movements and paths, that is a suitable

analog of turn-by-turn guidance (Chewar and McCrickard 2002; Raubal and Winter

2002). In this area, two aspects interfere making a solution to the problem extremely

hard:

The first aspect is about the availability of suitable map information needed to

describe ways. This includes information about landmarks as well as topological

information similar to what is extracted in this paper.

The second aspect is the unavailability of continuous user interfaces as well as

the inability of humans to measure or estimate distances and to remember large sets

of instructions. It has been discussed that the optimal number of instructions for

describing a route through an airport would be roughly five (Ruppel et al. 2009).

If users are given more than that, they tend to forget or—even worse—to confuse

instructions.

In this context, the challenge is to generate descriptions with few instructions, the

number of instructions independent from the length and complexity of the route, and

still comprehensible for humans.

With respect to this problem, we envision a system that calculates and readily

explains shortest paths in buildings in order to make an audio guide through buildings

feasible and increase memorability of navigation instructions.

The hierarchical structure of the topology represented by the pyramid can be used

to split any shortest path into flexible numbers of subpaths by increasing the height in

the pyramid. While the path crosses one component on the base layer, this component

splits several times and we expect these splittings to induce useful information for

textual instruction generation. This can be seen as a Morse theory perspective on the

navigation space: by increasing height, one can increase the number of components

step by step and select a height in which the number of components is suitable for

generating few instructions.

Additionally, as depicted in Fig. 4a, the height along the shortest path is full of

information about the direct surroundings such as when the path is crossing small

space such as doors or large spaces such as halls.

Furthermore, there is evidence that self-localization in large environments is bet-

ter performed on schematic maps, while detailed information is better to be extracted
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from detailed floorplans (Meilinger et al. 2006). Such schematic maps can be con-

structed from our framework, for example, using the complete height components

and highlighting all components crossed by the shortest path to be visually described

allowing the mobile user to ignore irrelevant parts of the floorplan.

By fusing this information with information from other sources, I conclude that a

lot of information for the optimization of textual instruction generation and shortest

path visualization is made available. However, a deep investigation of this approach

including a usability analysis is beyond the scope of this paper.

5 Conclusion

This paper has shown how to use an occupancy grid map in order to understand how

the building topology is split into smaller pieces such as rooms and hallways. Addi-

tionally, it has shown the impact of observing the height in the contraction pyramid

as a simple and powerful topological feature in order to annotate ways, calculate

alternatives, and visualize shortest paths in buildings.

Additionally, a splitting of the topology into neighboring objects with sensible

spatial extent allows for the application of spatial statistics such as the Getis-Ord

hotspot statistics and similar spatio-temporal tools in indoor situations. This has not

been the case without manually creating sensible neighborhoods which is a tedious,

time-consuming and error-prone task.

Furthermore, we motivate another direction of applications in the area of com-

pressed descriptions of complex paths through buildings. This is an area of ongoing

research and we plan to explore this direction in future work.
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Discovering and Learning Recurring
Structures in Building Floor Plans

Andreas Sedlmeier and Sebastian Feld

Abstract Autonomous mobile robots show promising opportunities as concrete use

cases of location-based services. Such robots are able to perform various tasks in

buildings using a wide array of sensors to perceive their surroundings. A connected

area of research which forms the basis for a deeper understanding of these percep-

tions is the numerical representation of visual perception of space. Different struc-

tures in buildings like rooms, hallways and doorways form different, corresponding

patterns in these representations. Thanks to recent advances in the field of deep learn-

ing with neural networks, it now seems possible to explore the idea of automatically

learning these recurring structures using machine learning techniques. Combining

these topics will enable the creation of new and better location-based services which

have a deep awareness of their surroundings. This paper presents a framework to cre-

ate a data set containing 2D isovist measures calculated along geospatial trajectories

that traverse a 3D simulation environment. Furthermore, we show that these iso-

vist measures do reflect the recurring structures found in buildings and the recurring

patterns are encoded in a way that unsupervised machine learning is able to iden-

tify meaningful structures like rooms, hallways and doorways. These labeled data

sets can further be used for neural network based supervised learning. The mod-

els generated this way do generalize and are able to identify structures in different

environments.

1 Introduction

Location-based services form a very interdisciplinary field of research ranging from

Electrical Engineering over Computer Science to Social Science. Technological

progress, especially the increase in computational power and the miniaturization of

electronic devices and sensors, enabled the ideas of Ubiquitous Computing
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(Weiser et al. 1991) and Context Awareness (Dey and Abowd 1999; Chen and Kotz

2000), both of which lead to the integration of location-based services into the daily

life of many people. Built on this, mobile devices like smartphones or wearables con-

tain several sensors for measuring movement (accelerometer), brightness (camera),

volume (microphone), air pressure (barometer), position (GPS), and others. Thus,

location-based services are basically context-aware services that incorporate spatial

information (Küpper 2005).

Mobile robots can also be regarded to represent location-based services. Equipped

with sensors like laser scanners, optical cameras, or tactile sensors they perceive

and process their environment, resulting in the execution of simple tasks like the

transportation of packets in storehouses. Further examples of research are mobile

robots that lead tourist groups through an airport (Triebel et al. 2016) or serving as

an assistance in housekeeping and everyday tasks (Rashidi and Mihailidis 2013).

Due to recent advances in the fields of big data and machine learning, mobile robots

get increasingly autonomous. Recent research focuses on cooperation, competition,

and communication in order to solve more complicated tasks (Lowe et al. 2017;

Mordatch and Abbeel 2017).

A related field of study deals with the visual perception of space. Since the end of

the 1960s there are numerous empirical and experimental studies on the perception

of architectural space. An early example is the work of Hayward and Franklin, who

analyzed the influence of bordering elements like walls or trees on the perception of

openness (Hayward and Franklin 1974). Today, there are different theories and tools

to analyze spatial arrangements (Smith et al. 2007). The most basic term in this con-

text is Space Syntax, summarizing mostly the acquisition of topological structures

of an environment without geometric measurements (Hillier and Hanson 1984). A

further concept in this area called Isovist has been introduced in (Tandy 1967) and

describes the set of points in space that are visible from a specific vantage point.

Based on this idea there have been presented a formal definition of isovists together

with some analytical measures enabling a quantitative description of a spatial envi-

ronment (Benedikt 1979).

Even if every building is different, one can still observe structures that recur con-

stantly. Examples for such structural recurrences together with some semantics are

rooms (small enclosed areas, often rectangular), corridors (long areas connecting

rooms), or doorways (gaps in walls connecting rooms and corridors). Further exem-

plary structures are halls, staircases, or patios. The interesting part of such structures

is that every room, corridor, and the like looks different, but they contain similari-

ties that enable a (not necessarily distinct) recognition. Interestingly, this is a problem

area in which huge progress was made in the last few years thanks to the advances

in the field of deep learning with neural networks. Deep neural networks excel at the

recognition of recurring structures in large data sets and the inference of underlying

functions generating these structures.

The main idea of this paper is to investigate, whether the recurring structures

inside buildings also have recurring isovist measures and whether such numerical

features can be used to learn a model of such structures. Specifically this means

that we incorporate unsupervised machine learning techniques of visual perception
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features to label a dataset consisting of geospatial trajectories through floor plans.

This labeled dataset is utilized by supervised machine learning techniques to pre-

dict labels, thus structures, in unknown environments. The general use case of this

idea is to create advanced spatial context for location-based services. A more con-

crete use case would be the problem of Simultaneous Localization and Mapping
(SLAM), where a mobile robot has to build a map of its environment and estimate its

pose simultaneously (Leonard and Durrant-Whyte 1991). Using the idea presented

in this paper, a mobile robot would be able to independently learn a model of recur-

ring structures inside buildings like, for example, rooms, hallways, and doorways.

This model can then be reused in unknown buildings to recognize learned structures

straight away. Alternative use cases are the off-line analysis or annotation of floor

plans or the incorporation in computer games, such that non-player characters gain

an additional understanding of altering surroundings.

The contributions of this paper are twofold. First, we present a framework that is

able to automatically generate input data for learning a model of recurring structures

inside buildings based on floor plans. The framework builds on the game engine

Unity developed by Unity Technologies (Unity 2017) and uses the included naviga-

tion and route finding procedures to create a set of geospatial trajectories. Further-

more, our framework contains a custom isovist implementation in C# that is able to

calculate isovist measurements for each time step of the trajectories of the data set.

Second, we present a framework of machine learning techniques that can be used to

train a model of recurring structures inside floor plans and to recognize such struc-

tures in unknown floor plans. We built upon existing scientific computing libraries

written in the Python programming language (Pedregosa et al. 2011; Jones et al.

2001) as well as the open source neural network library Keras (Chollet 2015), which

in turn uses TensorFlow (Abadi et al. 2015), a low level machine learning library

developed by Google.

The remainder of this article is structured as follows: Sect. 2 describes the tech-

nical background for the further understanding of this paper together with related

work. Section 3 incorporates the methodology for generating isovist measures along

geospatial trajectories as well as the discovery, learning, and prediction of recurring

structures in floor plans. In Sect. 4 we present our experimental results and present

a detailed discussion. Section 5 concludes this paper.

2 Background and Related Work

This section contains the technical background for the further understanding of this

paper together with related work. First, techniques for the analysis of visual per-

ception as well as machine learning techniques are described. These are the main

ingredients for the automatic generation of a model of recurring structures inside

buildings. Furthermore, related work with respect to semantic annotation of floor

plans are illustrated.
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2.1 Analysis of Visual Perception

As already mentioned in Sect. 1, we utilize techniques that analyze the visual percep-

tion of space. There are numerous studies in the sector of cognitive psychology that

address the behavior of people in typical buildings like hospitals (Haq and Zimring

2003), malls (Dogu and Erkip 2000), or airports (Raubal 2002).

Isovist Analysis is a concrete technique of Space Syntax that is used in many cases.

As originally introduced in Tandy (1967) and more formally defined in Benedikt

(1979), an isovist is the set of points in space that is visible from a specific vantage

point.

The six isovist measures as defined in Benedikt (1979) are as follows:

1. Ax: the area describes the surface area of the isovist. The higher the value, the

more space is visible from the vantage point. At the same time, this means that

the vantage point can be observed from a large space.

2. Px: the real-surface perimeter describes the length of the isovist’s circumference

that lies on visible obstacle surfaces, for example walls.

3. Qx: the occlusivity describes the length of the isovist’s circumference that lies in

free space. With other words, these are the concealed radial borderlines that can

be imagined as rays passing an obstacle and traversing through free space.

4. M2,x: since the set of points in space that is visible from a specific vantage point

can be calculated using rays sent out radially from the vantage point (Benedikt

1979), the variance is the second central moment of the rays’ length.

5. M3,x: the skewness is the third central moment of the rays’ length.

6. Nx: the circularity is an isoperimetric quotient and evaluates the area against the

perimeter. Basically, this is a numerical value that describes how similar a figure

is in comparison to a circle. Circularity is calculated using Nx = |𝜕Vx|
2∕4𝜋Ax,

with |𝜕Vx| indicating the isovist’s perimeter.

Isovist fields are likewise described in Benedikt (1979) as the set of isovists along a

trajectory, or more complete, the set of isovists at all places of an investigated envi-

ronment. Since a human is moving through an environment in a continuous manner,

the isovist measures are also changing continuously. Thus, one can observe gradual

changes in the isovist measures. This is the underlying idea of our approach: we cal-

culate geospatial trajectories through floor plans, calculate isovist measures at every

time step and analyze both, the absolute as well as the delta values to previous steps.

Although the framework proposed in this paper uses a 3D environment, the agent

navigating through the building only walks on a 2D plane and thus creates 2D trajec-

tories and corresponding 2D isovist measures. Nevertheless, there is literature that

analyzes isovists in 3D space (Emo 2015).

The calculation of an isovist or rather the calculation of the isovist measures, as

described above, is constrained by the environment’s geometry and can potentially

get complicated, since all corner points of visible walls and objects have to be deter-

mined and connected. Feld et al. (2016) showed that at least area, variance, skew-
ness, and circularity can easily be approximated using a simple ray-scan algorithm.
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The authors’ motivation was to receive a preferably simple equivalent of isovist mea-

sures that can be applied on floor plans represented as occupancy grids via bitmaps.

White pixels stood for walkable free space, black pixels represented obstacles like

walls or other objects. Their experiments showed that there is a systematic error

regarding the approximated and exact isovist measures, however, they show a strong

correlation.

The ideas and solutions presented in this paper are using a similar ray-based

approach.

2.2 Machine Learning

Machine learning can basically be regarded as a generic term for the generation of

knowledge from experience. During a training phase a systems learns from examples

and is able to make generalizations afterwards. Exactly this behavior will be utilized

by the approach presented in this paper: we want to learn recurring structures inside

floor plans of buildings that are as generic as possible in order to reuse the gener-

ated model on new and unknown floor plans. As our approach uses isovist measures

for training, a necessary precondition is the assumption that recurring structures in

buildings also have recurring structures in their isovist measures.

Generally, machine learning can be divided into several categories. Unsuper-
vised learning methods use a set of unlabeled input data in order to infer a function

that describes the data’s inherent structure. In our case the input data consists of

a large set of isovist measures forming time series that have been calculated along

geospatial trajectories. As the input data is unlabeled, the algorithm has no explicit

target values to learn and instead tries to determine a function that reflects patterns

in the data.

A popular example of unsupervised learning is clustering, that is the automatic

segmentation of data into groups of “similar” observations. Partitioning clustering

techniques subdivide data into a predetermined number of k clusters. The assign-

ment of observations to clusters will be modified until a certain error function is

minimized. k-means is a widely used partitioning clustering technique (Lloyd 1982).

Density-based clustering techniques arrange objects into groups which are close to

each other, separated by areas with lower density. An example for such a technique is

DBSCAN (Ester et al. 1996). The algorithm has got two parameters: 𝜖 representing

the distance up to which two observations are reachable and minPts representing the

minimal number of reachable observations that make an observation a cluster point.

A supervised learning algorithm, by contrast, tries to infer a function based on

given pairs of input and corresponding known output labels. The idea is to train the

system in order to create associations. In our case the input data again consists of

a large set of time series of isovist measures calculated along geospatial trajecto-

ries. However, for each data point, there is a corresponding known ground truth, for

example: “at this point the agent resides inside a room” or “at this point the agent tra-

verses a doorway”. A popular use case of supervised learning, where a lot of progress
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has been made in the last years, is the automatic classification of images using deep

learning techniques with neural networks (Deng and yu et al. 2014). Given enough

input data and the right structure, neural networks are able to learn arbitrary func-

tions from labeled data sets. Using images of known classes, a model is trained that

infers a function determining class boundaries. Afterwards, one can use this model

to predict the classes of unknown images, or in other words: Observations that have

not been used during the training phase. In our case a model is trained on floor plans

where rooms, hallways, and doorways are known. Afterwards, this model can be

used on unlabeled floor plans where no such information is available.

2.3 Semantic Annotation of Floor Plans

Map representations of spatial environments are an essential foundation for most

location-based services. Even if the positioning of an object works without a map

representation, further benefit can only be created using a map. Examples are road

maps, touristic maps or floor plans of buildings.

Such map representations can include logical subdivisions. Road maps involve

country roads, highways, crossroads, turns and more. Buildings, for example, can

be subdivided into rooms, zones, units, and levels (Weber et al. 2010). Besides that,

there are semantic subdivisions like rooms, hallways, and doors. This is the focus of

the paper at hand.

There is extensive related work regarding semantic annotation of architectural

floor plans. Samet and Soffer (1994) perform automatic interpretation of floor plans

using statistical pattern recognition. Their work is distinct from ours as we do not

detect concrete objects like tables or bathtubs explicitly marked in architectural

plans. Ah-Soon and Tombre (1997) analyze architectural drawings using geometric

analysis, symbol recognition, and spatial analysis. Again, our approach is not geo-

metrical, but instead uses the numerical representation of visual perception. Dosch

et al. (2000) aim to reconstruct the building in 3D based on architectural drawings.

Using graphic recognition for image processing and feature extraction, the authors

are able to recognize graphic layers, text layers, thick and thin lines as well as marked

doorways, stair cases and more. Summarized, they try to identify marked semantics

and transform this into 3D. In contrast, we try to identify semantics that are not

explicitly marked. Lu et al. (2007) is a further work that tries to recognize typical

structural objects and architectural symbols. Our approach works on floor plans that

can be used by robots and not on architectural drawings. Weber et al. (2010) presents

a system where a user can draw schematic abstractions of floor plans. Afterwards,

the system searches for plans that are structurally similar. This is quite related to our

approach, since they also seek for semantic relations. However, our focus is not on

searching in databases, but on learning a model.

Further related work originates in the research field of mobile robots. What this

work has in common, is that the ideas can be used for the problem of Simultane-
ous Localization and Mapping (SLAM) (Leonard and Durrant-Whyte 1991). This
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means, an autonomous robot has to examine an unknown area and tries to create

a corresponding floor plan. Concurrently, the robot has to position itself. Thus, it

makes sense to enrich the map just created with semantic information. The basic

assumption is that the robot’s perception, in most cases laser range scans, con-

tains enough information about the environment. Basically, we indirectly follow this

approach as well, since we use isovist measures based on rays. Buschka and Saf-

fiotti (2002) describe a virtual sensor that can be used to detect rooms and to recog-

nize already visited rooms in order to create a topological map of the environment.

Our focus is wider than just detecting rooms, although we do not address topology.

Anguelov et al. (2004) present a probabilistic framework for detecting and mod-

eling doors. They use 2D laser range finders, but also panoramic cameras. Mozos

and Burgard (2006) and Mozos (2010) extract the topology of buildings from geo-

metric maps created by mobile robots using range data. The authors use supervised

learning techniques in order to subdivide all points of the map into semantic classes.

For this, they use the labels room, corridor, and hallway as the ground truth. This

approach is very similar to the one presented in this paper, but the authors work

only with supervised learning techniques and with different yet similar features.

Goerke and Braun (2009) is also a similar related work that semantically anno-

tates maps using laser range measurements of mobile robots. The authors follow

two basic approaches. First, they use supervised learning techniques with the labels

doorway, corridor, freespace, room, and unknown. Second, they use unsupervised

learning techniques, but state that this approach did not produce satisfying results.

Furthermore, the authors only work on a single floor plan, while our paper in par-

ticular addresses the aspect of generalization, which is why multiple maps are used.

Chen et al. (2014) use deep learning techniques to identify doors, so that autonomous

mobile robots are able to approach targets more accurately. Their focus in only on

detecting doors visually, using cameras.

There is further related work on analyzing architectural space using isovist analy-

sis. Bhatia et al. (2012) use 3D isovists in order to estimate salient regions in architec-

tural and urban environments. Thus, the authors are able to detect regions that posses

strong visual characteristics. Our approach focuses on recurring and not on salient

structures. Feld et al. (2016) approximate four out of six isovist measures using a

simple ray-casting approach while showing that the resulting error is systematically

yet small, and the exact and approximated values show a strong correlation. Fur-

thermore, they show with a few examples on a single map that trajectories of isovist

measures potentially provide clues to identifying doors. The paper at hand goes much

further and creates a model to recognize such structures. Feld et al. (2017) calculate

isovist measures on 2D floor plans, cluster the values using archetypal analysis and

interpret the results afterwards. They show that the identified clusters correspond to

regions like streets, rooms, hallways, and the like. However, their approach is unsu-

pervised learning with interpretation of relations, thus, they do not learn a specific

model using which predictions can be made.
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3 Methodology

This section is split in two parts: (1) It describes our framework for generating iso-

vist measures along geospatial trajectories in a map-based simulation environment.

These measures provide the input for the following step, (2) the discovery, learning,

and prediction of recurring structures in floor plans. Unsupervised learning tech-

niques are employed in the discovery phase, while supervised machine learning is

performed for the modeling and prediction tasks. Details regarding the exact imple-

mentation of these aspects can be found in Sect. 4.

3.1 Input Generation

Basic input for the framework is supplied as bitmap files representing building floor

plans. Walkable space is represented as white pixels, while black pixels depict obsta-

cles like walls or furniture. Note that doors are excluded. In a first step, these bitmaps

are vectorized using a common vector graphics editor. The vector files are then

imported into Blender (blender.org 2017), an open-source 3D computer graphics

software, where a 3D-Extrusion is performed in order to generate a 3D map of the

building. These 3D maps serve as the basic asset for Unity (2017), a 3D game engine

and development environment. For each map, a navigation mesh (Snook 2000) is

generated in Unity to enable automatic navigation and pathfinding. Custom built

C# scripts then enable a player object (non-player character, NPC) to automatically

select a random point on the navigable area inside the map and move towards it

using Unity’s built-in navigation algorithm. For each step of the NPC, another cus-

tom C# script was developed, which performs isovist measure calculations and logs

the results to disk. In order to generate the isovist, a configurable amount of rays

are cast, originating from the current position of the NPC, as can be seen in Fig. 1.

Fig. 1 3D view of a utilized floor plan, showing the non-player character casting 360 rays (red

lines) from it’s current vantage point
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Points in space, where the rays intersect with the map’s mesh colliders (hitpoints)

are detected and used to calculate the different isovist measures.

The isovist measures calculated are based on Benedikt (1979), as previously

described in Sect. 2.1. As a discrete, ray-based isovist calculation is used, the calcu-

lated measures are only an approximation of the true isovist measures. The accuracy

of the calculation can be adjusted, as the amount of rays cast is configurable.

One of the more challenging aspects to calculate is the differentiation between

real-surface and occlusivity of the isovist. Benedikt states in Benedikt (1979) that

the occlusivity of an isovist “measures the length of the occluding radial boundary

Rx of the isovist Vx and indicates [. . . ] the depth to which environmental surfaces are

partially covering each other as seen from the vantage point”.

In order to be able to differentiate occlusion from real-surface in our simulation’s

engine, we developed an algorithm which performs calculations based on the trian-

gles that form the mesh of the environment. For every ray cast in a clockwise manner,

a comparison with the previous ray’s hitpoint on the environment’s surface is per-

formed. If the previous ray hit a triangle which shares none of it’s edge coordinates

with the currently hit triangle, we define the current ray to have hit an un-connected
triangle (in respect to the previous triangle). The length of the line connecting the

previous and current ray hitpoint in space is then counted towards the occlusion

value of the isovist. If a connected triangle was hit, the length of the connecting

line is counted towards the real-surface perimeter of the isovist. Figure 2 shows the

Fig. 2 In-engine view of the custom built algorithm’s results for real-surface and occlusion isovist

measure calculation. Red lines are the rays cast from the current vantage point, green lines visual-

ize the meshes’ triangles hit by the rays, blue lines denote real-surface while yellow lines denote

occlusion
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resulting lines calculated by our algorithm inside the Unity engine. Red lines are the

rays cast from the current vantage point, green lines visualize the hit triangles of the

meshes, blue lines denote real-surface, while yellow lines denote occlusion.

3.2 Unsupervised Learning of Unknown Floor Plan
Structures

The first part of the learning framework is responsible for discovering hidden struc-

tures contained in the isovist measures. Goal of this step is to group input data into

meaningful clusters, each representing a human-relatable concept, for example “iso-

vists recorded in rooms” versus “isovists recorded in corridors”. This can be achieved

using unsupervised machine learning techniques.

In a first step of preprocessing, the logged isovist measures calculated during sim-

ulation time are vectorized in order to retrieve a suitable data set for unsupervised

learning. This means that X and Y coordinates are removed so that a 6-dimensional

vector remains, whereas each dimension represents one of the measured isovist fea-

tures. We employ k-means (Lloyd 1982), a centroid-based clustering algorithm, as

well as DBSCAN (Ester et al. 1996), a density-based clustering algorithm, both of

which are implemented in the scikit learn python library (Pedregosa et al. 2011).

The algorithm determines a configurable amount of cluster centers and assigns the

data points to the nearest cluster center, by minimizing the squared distances from

the clusters.

It is important to keep in mind that the input data given to the clustering algorithm

as described above is static in nature. That is to say, each data point contains only the

isovist measures of a single position along the trajectory trough the map. As there is

no temporal component involved, the concept of movement and the dynamic change

of isovists while moving along a path was not reflected in the analysis. The overar-

ching idea of the next step, the inclusion of time, is to not only reflect the perception

of “space” but the “changing of space perception” as caused by movement.

In order to tackle this idea, an additional data processing step was developed

which reflects the temporal dimension of the data. For every feature of each data

point, the delta of the current data point’s feature xc and the simple moving aver-

age (SMA) (Balsamo et al. 2013)—a method commonly employed in the statistical

analysis of time series—of n previous data points’ features, is calculated:

xc −
1
n

n∑

i=1
xc−i

This way, the amount of features available to the machine learning algorithms is

doubled from 6 to 12.
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3.3 Supervised Learning of Known Floor Plan Structures

Using the method described in the previous section, labeled input data can be gen-

erated, which forms the basis for a following supervised machine learning step. The

goal of this step is to learn a model representing the structures discovered in the data,

by inferring a function which maps new unlabeled input data points to the respec-

tive cluster categories. This model can then be used, for example, in robots as a

lightweight component enabling the robot to deduce the type of room it currently

resides in, or whether it has just passed a doorway, by feeding it’s current and pre-

vious isovist measures into the model. For our framework, we chose to implement a

multi-layer feedforward neural network using the open source neural network library

Keras (Chollet 2015), which in turn uses Tensorflow (Abadi et al. 2015), a low level

machine learning library developed by Google, to execute it’s calculations. Training

data is provided by the labeled input data, as output from the unsupervised learning

step. In order to verify the validity of the model generated using supervised learn-

ing methods, it is important to separate validation from training data. For this, we

split the data into a left half and a right half, based on the data points’ coordinates.

Training was performed on the right half of the data, while validation was performed

on the left half. As part of our evaluation of different neural network architectures,

we found a rather small network of 5 fully-connected layers to be sufficient for our

purposes. The input layer contains 12 neurons (one for each feature), connected to

3 hidden layers, each containing 64 neurons, followed by an output layer containing

4 neurons. Softmax activation is used on the 4-neuron output layer in order to build

a classifier representing the 4 cluster labels, while rectified linear unit (ReLU) acti-

vation (LeCun et al. 2015) is used on all other layers. Categorical cross entropy is

employed as the loss function while Adam (Kingma and Ba 2014) is used as the sto-

chastic gradient descent algorithm. All in all, the network contains 9,412 trainable

parameters. After the training step, the best model is selected based on the model

accuracy score. In order to test the generalization capacity of the trained model even

further, the model is then used to predict values from data captured on a different

floor plan. The question to be answered by this is whether the model learned general

abstractions (e.g. a concept of “doors”) that capture underlying basic principles of

the data which are independent of the specific floor plan layout.

4 Results and Discussion

For the evaluation, two distinct floor plans were chosen. The first one is a section

of a university building of the Ludwig-Maximilians-Universität München (LMU). It

features repeating structures of corridors and similar rooms. The second floor plan

features the main hall and connected rooms of the Technische Universität München

(TUM). By comparison, it contains a more irregular structure formed by large lecture

halls and connecting hallways. Because of it’s distinct and repeating structures, the
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Fig. 3 Results of a k-means based clustering with k = 3 of static isovist measures on the LMU

floor plan

LMU floor plan was chosen for training. We recorded more than 370,000 isovists

along random trajectories on the LMU map and more than 220,000 isovists on the

TUM map.

We compared two different unsupervised learning methods: k-means, a centroid-

based clustering algorithm, and DBSCAN, a density-based clustering algorithm. As

it is possible to define the amount of clusters to be found when using k-means, the

results of using different values were compared. From all the values tested, we found

a value of k = 3 to produce the most meaningful results on the LMU floor plan.

As can be seen in Fig. 3, three different structures of the floor plan are separated

into different clusters. A clear separation between the large horizontal corridor, the

smaller vertical corridors, and rooms became apparent. It is important to keep in

mind, that human concepts are not necessarily reflected by the clusters, which is

why the meaning of a cluster is always subject to interpretation.

Besides the centroid-based clustering algorithm k-means, we also evaluated the

density-based clustering algorithm DBSCAN. As the amount of clusters to be found

is not to be specified in DBSCAN and can only be indirectly influenced by config-

uring two density parameters 𝜖 and minPts, it is a lot harder to produce a sensible

amount of human interpretable clusters. For our data set, an 𝜖 value of 3 and minPts
values between 1000 and 2500 produced meaningful results.

Compared to the clusters produced by the k-means algorithm, the resulting struc-

tures were less interpretable. This is why we decided to continue our analysis using

the k-means based clustering.

After clustering the static data features and finding clusters that could be inter-

preted as rooms and floors, the delta of the current data point and the SMA of the iso-

vist measures was calculated, in order to capture the temporal dimension of the data.
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Fig. 4 Results of k-means based clustering of dynamic, SMA based isovist measures (k = 3, c = 5)

Using these “delta-features” as input to the k-means clustering, a completely differ-

ent picture became visible: As can be seen in Fig. 4, a cluster now formed around

passage ways, especially doorways.

This intuitively makes sense, as doorways are components in a building, often

connecting structures of different shape, which is why movement through them leads

to changes in the perception of space, in turn reflected in high changes of isovist

measures.

By combining these static-data and dynamic-data clusters, we generated a merged

set of data-labels containing four different clusters as shown in Fig. 5.

We interpret the clusters as follows:

Cluster-0 (blue): rooms

Cluster-1 (green): horizontal corridors

Cluster-2 (red): small vertical corridors and large rooms

Cluster-3 (purple): passage ways (e.g. doors)

Figure 5 also shows the training/validation split that was performed on the data.

Training was performed on the right half of the data, while validation was performed

on the left half. Good results could be achieved when training a 5-layer fully con-

nected feedforward neural network using the 12-dimensional feature vector (static

and SMA deltas) as input and the 4 cluster labels described above as targets. The

best model showed an accuracy value of 0.9856 and validation accuracy value of

0.9188.

As can be seen in Fig. 6, the predictions produced by this model on the validation

data match our interpretations of the clusters in the training data. This means, that

the model was able to learn a function representing the structures bundled in the
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Fig. 5 Results of training/validation data split after merging static and dynamic cluster features.

Only training data is visualized in this figure

Fig. 6 Predictions of the 5-layer feedforward neural network on the validation data set

respective clusters. As it was able to predict meaningful results on previously unseen

parts of the floor plan, it became obvious that the model generalizes to new data.

Figure 6 also shows that our previous interpretation of cluster-2 to be mainly com-

prised of small vertical corridors no longer holds. The small red colored corridor

formed by the doors of interconnected rooms in the lower right part of the floor plan

is clearly horizontal in nature. Apart from that, our previous interpretations of the

clusters still hold.
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Fig. 7 Predicted cluster memberships of all data points along random trajectories trough the TUM

floor plan using the model trained on the LMU floor plan cluster membership dataset with 12 fea-

tures (static and dynamic)

In order to test the generalization performance of our model even further, we

used it to predict the cluster memberships on a completely different floor plan. As

the room and corridor structures in the TUM plan are completely different from the

LMU plan, on which the model was trained, it is a much more difficult task for the

model to perform. Figure 7 shows the predicted cluster-memberships of all recorded

points along the random trajectories.

Even though the maps have completely different layouts, a visual comparison with

our previous cluster definitions provided a good match. Points on the trajectories in

smaller rooms are almost completely predicted to belong to cluster-0 (blue), as they

did on the LMU floor plan. Large rooms and corridors predicted to be cluster-2 (red)

also match our expectations. As there is no directly corresponding structure to the
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Fig. 8 Predicted membership of cluster-3 (passage ways and doors) using a confidence threshold of

99.99% on the TUM floor plan using the model trained on the LMU floor plan cluster membership

dataset with 12 features (static and dynamic)

single large corridor (cluster-1: LMU) on the TUM floor plan, it is no surprise that

labelings of cluster-1 (green) do not lend themselves to intuitive interpretations.

Most interestingly, structures labeled as cluster-3 (purple) match our definition of

passage ways and doors almost perfectly. This becomes even more apparent when

combined with a prediction confidence threshold. This is possible, because the out-

put layer of the neural network does not produce binary label decisions but instead

numeric values denoting the confidence that the current data point belongs to the

respective label.

After increasing the threshold to 99.99%, doors and passage ways are marked

largely correct, as can be seen in Fig. 8. What becomes apparent is that our definition

of cluster-3 to contain only passage ways and doors might need to be expanded when
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Fig. 9 Predicted cluster membership with confidence threshold of 99.95% on the TUM floor plan

by a model trained using only the 6 dynamic SMA features on the LMU floor plan

applied to this floor plan. A more accurate description could be: Points where a

different structural part of the building is entered. This structural part can, but need

not, be explicitly separated by a door.

As a last step, we evaluated whether the model performance for this specific pre-

diction of passage ways and doors could be further improved by excluding possi-

bly irrelevant features for this task from the training data. A separate model having

a smaller, 6-neuron input layer to take in only the 6 dynamic SMA features was

trained on the LMU floor plan. The resulting predictions of now only two clusters

are shown in Fig. 9. We think that these predictions fit our expectations even better,

as the placement of labels is now more accurately inside the doors.
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5 Conclusion

This paper is based on the idea that recurring structures inside buildings also show

recurring structures in the numerical representation of the visual perception when

traversing them. We presented a framework that contains three main functionalities.

First, a 3D environment can be used to create a data set containing geospatial tra-

jectories that traverse the floor plan together with 2D isovist measures calculated

at each time step along the trajectories. Second, unsupervised learning techniques

can be used to group the data set containing geospatial trajectories into meaningful

clusters, based on visual perception features. Third, the now labeled data set can be

utilized by supervised learning techniques to automatically create a model of recur-

ring structures in the floor plan. This model can then be used to identify structure in

unlabeled floor plans.

Our results show that isovist measures recorded along trajectories through the

building do reflect the recurring structures found in buildings. These recurring pat-

terns are encoded in the isovist measures in a way that unsupervised machine learn-

ing is able to identify meaningful clusters. Further, we were able to show that these

clustered data sets can also be used for neural network based supervised learning in

order to create a re-usable model which is able to identify structures in previously

unknown environments. Good model accuracy results show, that the neural network

is able to learn a function which represents the underlying structure of the training

data. The validation score in turn shows that the network does not simply remember

a 1:1 mapping from input to output, but abstracts general structures from the isovist

measures that also fit the validation data. This becomes obvious in the validation step,

where labeling was performed on the map of a completed different environment, as

the network was able to correctly label previously unseen inputs.

As future work we envision a deeper analysis of the generalization capacity of

the models to new floor plans with different characteristics, containing e.g. curved

walls. We also plan to replace the ray-based isovist measures by exact isovist mea-

sures following the definition given in Benedikt (1979) in order to increase our data

accuracy. Furthermore, we would like to analyze 3D floor plans of buildings using

3D isovist measures. Finally, extensive feature engineering can be conducted and

different neural network architectures explored in order to improve model accuracy

and generalization performance.
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Extracting Rankings for Spatial Keyword
Queries from GPS Data

Ilkcan Keles, Christian S. Jensen and Simonas Saltenis

Abstract Studies suggest that many search engine queries have local intent. We

consider the evaluation of ranking functions important for such queries. The key

challenge is to be able to determine the “best” ranking for a query, as this enables

evaluation of the results of ranking functions. We propose a model that synthesizes

a ranking of points of interest (PoI) for a given query using historical trips extracted

from GPS data. To extract trips, we propose a novel PoI assignment method that

makes use of distances and temporal information. We also propose a PageRank-

based smoothing method to be able to answer queries for regions that are not covered

well by trips. We report experimental results on a large GPS dataset that show that the

proposed model is capable of capturing the visits of users to PoIs and of synthesizing

rankings.

1 Introduction

A very large number of searches are performed by search engines like Google or

Bing each day. One source (Google 2016) reports that Google processes more than 7
billion queries per day. A recent study (Google 2014) of users’ local search behavior

indicates that 4 in 5 users aim to find geographically related information. It also

shows that 50% of the users who conducted mobile search and 34% of the users

who used a computer or tablet visit a point of interest (PoI) on the same day. These

statistics indicate the importance of location-based web querying.

To support queries with local intent, the research community has proposed many

different spatial keyword functionalities to find relevant nearby PoIs (Cao et al.

2012). A prototypical spatial keyword query takes a set of keywords and a location
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as arguments and returns a list of PoIs ranked with respect to a range of signals.

Example signals include PoI ratings, properties of the neighborhoods of the PoIs,

the distances of the PoIs to the query location, the textual relevances of the PoIs to

the query keywords, and the relative expensiveness of the PoIs. These signals can

be combined in multiple ways to obtain a ranking function. Most studies focus on

indexing and efficient retrieval and thus evaluate the computational efficiency of pro-

posed techniques. In contrast, the evaluation of the quality of the ranking functions

is not covered well. We think that evaluation of the ranking functions is crucial since

it is an important step towards increasing user satisfaction with location-based ser-

vices; however, it is difficult to assess the quality of a ranking function when there

is no yardstick ranking to compare against. The goal of this study is to propose a

framework for constructing such baseline rankings that reflect the preferences of the

users. Future studies will then be able to use the constructed rankings to evaluate the

quality of different ranking functions.

A few studies (Yi et al. 2013; Chen et al. 2013; Stoyanovich et al. 2015; Keles

et al. 2015) consider the use of crowdsourcing to synthesize rankings for objects

and they can be used for spatial keyword queries. However, crowdsourcing-based

approaches are expensive since workers need to be paid for each crowdsourcing task.

They are also time consuming since there is a need to wait for the workers to complete

the tasks. Further, it may be difficult to recruit workers who know about the spatial

region of the query. Therefore, as a supplement to crowdsourcing, we focus on the

use of GPS data to synthesize rankings.

We propose a method to build rankings for spatial keyword queries based on his-

torical trips extracted from GPS data. We define a trip as a pair of consecutive stops

extracted from a GPS trajectory. The stops represent the source and the destination

of a trip, and we are interested in trips where the destination is a PoI. While the

GPS data does not include spatial keyword queries, we can reasonably assume that a

recorded trip to a PoI corresponds to issuing a spatial keyword query at the starting

location of the trip with a keyword that is part of the textual description associated

with the PoI. For instance, if a user visited a restaurant r starting from a location l,
we assume that the user issued a spatial keyword query at l with the keyword “restau-

rant” and that r is the preferred restaurant. Further, a PoI is considered to be relevant

to the users in a region if many trips starting in that region visit the PoI. To the best

of our knowledge, this is the first study of using GPS data to synthesize rankings for

spatial keyword queries.

To synthesize rankings, we first extract stops of users from available GPS data.

Then, we assign the stops to the PoIs that were visited. Furletti et al. (2013) propose

a PoI assignment method based on the distance between a stop and a PoI. We extend

their method by taking into account temporal patterns of the users’ visits to PoIs.

Next, we extract all trips to PoIs.

Using the trips, we build a grid structure, where each cell records two values

for each PoI, namely the number of trips from the cell to the PoI and the number of

distinct users involved. To address the issue that some cells may have few or no trips,

we adopt a personalized PageRank (Page et al. 1999) based algorithm to smooth the

values. The intuition behind using PageRank is that nearby grid cells should have
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similar values just like web pages linking to each other should have similar values.

The resulting grid structure is used to form a ranking for a given spatial keyword

query. First, the grid cell that contains the query location is found. Then the PoIs are

filtered with respect to the query keywords. Finally, the PoIs are ranked according to

the number of trips and the number of distinct users. The resulting ranking reflects the

preferences of the users for PoIs, and a ranking function that produces a ranking more

similar to the synthesized ranking is more preferable. Although a given collection of

GPS data is limited in its geographical coverage and its coverage of users, we are still

able to produce rankings in the particular settings where the GPS data offers good

coverage.

To summarize, the main contributions are: (i) A method for synthesizing rankings

of PoIs from GPS data that is able to produce results for regions without GPS data

and that employs the number of trips and distinct users to rank PoIs, (ii) A stop

assignment algorithm that employs users’ temporal patterns when assigning stops

to PoIs, (iii) PageRank-based algorithm to smooth the values for grid cells, (iv) An

evaluation using a dataset of some 0.4 billion GPS records obtained from 354 users

over a period of 9 months.

The remainder of the paper is organized as follows. Section 2 covers preliminar-

ies, related work, and the problem definition. The proposed model is covered in

Sect. 3. Section 4 covers the evaluation, and Sect. 5 concludes and offers research

directions.

2 Preliminaries

2.1 Data Model

The proposed method uses GPS records collected at one hertz from GPS devices

installed in vehicles.

A GPS record G is a four-tuple ⟨u, t, loc, im⟩, where u is the ID of a user, t is a

timestamp, loc is a pair of Euclidean coordinates representing the location, and im
is the vehicle ignition mode. Even though im is not part of a GPS measurement, it is

included in our dataset as a useful automotive censor measurement. An example GPS

record is ⟨5, 2014-03-01 13:44:54, (554025, 6324317),OFF⟩, where the coordinates

of the location are given in the UTM coordinate system. Next, a trajectory TR of a

user is the sequence of GPS records from this user ordered by timestamp t, TR =
G1 → ⋯ → Gi → ⋯ → Gn. We denote the set of all trajectories by STR.

We are interested in the locations where a user stopped for a longer time than a

predefined threshold. We extract all such stops from STR. Specifically, a stop S is a

three-tuple ⟨G, at, dt⟩, where G is a GPS record, at is the arrival time at G.loc, and

dt is the departure time from G.loc. When we say the location of a stop, we refer to

the location of G. Next, a point of interest (PoI) P is a three-tuple ⟨id, loc, d⟩, where
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id is an identifier, loc is a location, and d is a document that contains the textual

description of the PoI.

We assume that a significant portion of users’ stops are visits to PoIs, so when

a user makes a stop, it is probable that the user did so to visit a PoI. We define an

assignment A as a pair ⟨S,P⟩ of a stop S and a PoI P, indicating that a user stopped

at the location of S to visit P. We are unable to assign all stops to PoIs, so only some

stops have a corresponding PoI.

Having extracted all the stops of a user, we obtain the user’s location history. In

particular, the location historyH of a user is defined as the sequenceH = S1 → ⋯ →
Si → ⋯ → Sm of the user’s stops ordered by at. A user’s location history captures

the user’s trips. Specifically, a trip T is a pair ⟨Si, Sj⟩ of a source and a destination

stop. Given a trip T = ⟨Si, Sj⟩ and an assignment A = ⟨Sj,P⟩, we say that T is a trip

to PoI P.

Our goal is to use the trips extracted from GPS records to synthesize ranking of

PoIs for spatial keyword queries.

Definition 1 (Top-k Spatial Keyword Query) Let SP be a set of PoIs. A top-k spatial

keyword query q = ⟨l, 𝜙, k⟩ on SP is a three-tuple, where l is a query location, 𝜙 is a

set of query keywords, and k indicates the number of results. The query q returns k
PoIs from SP that rank the highest according to a given ranking function. A frequently

used ranking function is a weighted combination of the proximity of the PoI location

to q.l and the textual relevance of the PoI to q.𝜙 (Cao et al. 2012).

Problem Statement. We assume a set SG of GPS records obtained from vehicles

and a set SP of PoIs. Given a top-k spatial keyword query, we solve the problem of

constructing a top-k ranking of PoIs included in SP using SG.

2.2 Related Work

Some studies propose crowdsourcing to obtain rankings of items (Yi et al. 2013;

Chen et al. 2013; Stoyanovich et al. 2015; Keles et al. 2015). Yi et al. (2013) propose

a method based on pairwise comparisons and matrix completion. Chen et al. (2013)

also use pairwise comparisons and propose an active learning method that takes

worker reliability into account to synthesize rankings. Stoyanovich et al. (2015) use

list-wise comparisons and build preference graphs for workers and combine these

to obtain a global ranking. Keles et al. (2015) propose a method based on pairwise

comparisons in order to rank PoIs for a given query without assuming a total rank-

ing on the PoIs. Crowdsourcing-based approaches are hard to apply in large-scale

evaluations since they are expensive and time-consuming. In the context of spatial

keyword queries, it is a challenge to recruit workers familiar with the relevant region

and PoIs.

Some studies use GPS data to identify stops, visited PoIs, and interesting places

(Alvares et al. 2007; Palma et al. 2008; Ashbrook and Starner 2003; Kang et al. 2004;
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Zhou et al. 2004; Zheng et al. 2009; Cao et al. 2010; Montoliu et al. 2013; Furletti

et al. 2013; Spinsanti et al. 2010; Bhattacharya et al. 2012, 2015). An important

place is one where users stop for a while. In these studies, a stop is generally defined

either as a single GPS record corresponding to the loss of satellite signal when a user

enters a building or a set of GPS records where a user remains in a small geographical

region for a time period.

Alvares et al. (2007) enrich GPS trajectories with moves and stops. They require

a predefined set of possible stop places that is then used for annotating trajectories.

Palma et al. (2008) enable the detection of stops when no candidate stops are avail-

able. They use a variation of DBSCAN (Ester et al. 1996) that considers trajectories

and speed information. The main idea is that if the speed at a place is lower than the

usual speed, the place is important. We use GPS data collected from vehicles, and

we have a specific signal telling whether the engine is on or off. This simplifies the

detection of stops.

Many clustering-based methods have been proposed to identify significant loca-

tions from GPS data. Ashbrook and Starner (2003) use a variation of k-means cluster-

ing to identify locations. Kang et al. (2004) propose a time-clustering method. Zhou

et al. (2004) propose a density based clustering algorithm to discover personally

meaningful locations. Zheng et al. (2009) propose a hierarchical clustering method

to mine interesting locations. They employ a HITS (Kleinberg 1999) based inference

model on top of the location histories of the users to define the interestingness of the

locations by considering users as hubs and locations as authorities. Cao et al. (2010)

employ a clustering method to identify semantic locations. They enhance the clus-

tering using semantic information provided by yellow pages. They propose a rank-

ing model that utilizes both location-location relations and user-location relations as

found in trajectories. They also consider the stay durations and the distances traveled.

Montoliu et al. (2013) propose time-based and grid-based clustering to obtain places

of interest. We are not using clustering because we are not interested in regions;

instead, we want to identify the specific PoIs that are visited by users.

Some studies use different strategies to extract significant places from GPS data.

Bhattacharya et al. (2012) propose a method based on bearing change, speed, and

acceleration for walking GPS data. In a recent study (Bhattacharya et al. 2015), they

make use of density estimation and line intersection methods to extract places. Their

work requires walking GPS data and polygon information for each PoI. Their method

is not applicable in our setting.

Finally, methods have been proposed that identify visits to PoIs from GPS data.

Given a stop, the goal is to identify a PoI. Spinsanti et al. (2010) annotate stops with

a list of PoIs based on the distance between the stop and the PoIs and the average

durations people spend at the PoIs. Their method requires average stay durations

for each PoI, which are provided by experts. This information is not available in our

setting. Furletti et al. (2013) propose a method that also forms a set of possibly visited

PoIs by taking walking distance and opening hours into account. We extend their stop

assignment strategy. Shaw et al. (2013) consider the use of learning-to-rank methods

to provide a list of possible PoIs when a user checks in. They use historical check-ins

to form a spatial model of the PoIs. They also make use of PoI popularity information
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and user-specific information like a user’s check-in history and information about a

user’s friends that have already checked in at the PoI. Kumar et al. (2015) and Gu

et al. (2017) model the geographic choice of a user taking into account the distance

between the stop and a PoI as well as the number of possible PoIs and their popularity

when multiple PoIs are possible. They use labeled data (direction queries and check-

ins) to train their model. Since we have no personal information or check-in data, we

are unable to use their method when assigning stops to PoIs.

3 Proposed Method

3.1 Overview

The method consists of two phases: model-building and ranking-building.

The model-building phase takes a set of GPS records and a set of PoIs as the

input and outputs a regular grid that partitions the underlying geographical space.

Each grid cell records two values for each PoI: the number of trips from the cell to

the PoI and the number of distinct users making trips.

Using the GPS records, we first extract stops. Then we determine the home and

work locations of the users and assign non-home/work stops to PoIs. In the next

step, we extract the set of all trips to the PoIs and we compute the number of trips

and distinct users for each cell and PoI. Finally, we smooth the values of the grid

cells using an algorithm based on personalized PageRank (Page et al. 1999).

The ranking-building phase uses the grid structure constructed to synthesize rank-

ings for top-k spatial keyword queries. Given a query, we first locate the cell that

contains the query location. Then the PoIs that have values in this cell are filtered

according to the query keywords. The remaining PoIs are sorted according to the

scores produced by a scoring function that is a weighted combination of the number

of trips and the number of distinct users of a PoI in the cell of a query. The first k
PoIs constitute the output.

3.2 Stop Extraction

To extract stops, we use the ignition mode attribute. Similar to Cao et al. (2010), we

employ a duration threshold parameter Δth to check whether an OFF record repre-

sents a stop. If the duration between consecutive OFF and ON records exceeds Δth,

a stop is formed from the first GPS record. Arrival-time attribute at and departure-

time attribute 𝑑
𝑡

of the stop correspond to the timestamp attributes of the OFF and

ON records, respectively.

Since GPS readings might be inaccurate or missing, we augment the procedure

with a distance threshold 𝑑
𝑡ℎ

. Only if the distance between the location of the ON
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record and the location of the OFF record is below 𝑑
𝑡ℎ

and the time difference exceeds

Δth, the arrival record is classified as a stop.

To exclude stops at traffic lights but include short stops, e.g., to pick up kids at a

kindergarten, Δth should be set to a value between 5 and 30 min. Parameter dth can

be set to a value in the range 100–500 m.

If the GPS dataset does not contain an ignition mode attribute, the stops can be

extracted by the methods mentioned in Sect. 2.2. In other words, all the subsequent

steps of the proposed method are applicable to GPS trajectories in general.

3.3 Determining Home/Work Locations

Home and work locations are not of interest to our study, so a first step is to eliminate

stops that relate to such locations.

To determine home/work locations, we employ an algorithm based on DBSCAN

(Ester et al. 1996), which is a density-based clustering algorithm with two para-

meters, 𝑒𝑝𝑠 and 𝑚𝑖𝑛𝑃 𝑡𝑠. If a point p has more than 𝑚𝑖𝑛𝑃 𝑡𝑠 points in its 𝑒𝑝𝑠-

neighborhood, that is in the circular region centered at p with a radius of 𝑒𝑝𝑠, it

is a core point. The points in the 𝑒𝑝𝑠-neighborhood of a core point p are said to be

directly reachable from p. A point q is reachable from p if there is a sequence of

points ⟨p1, . . . , pn⟩ with p1 = p and pn = q, where each pi+1 is directly reachable

from pi. The objects reachable from a core point forms a cluster.

Figure 1 shows an example cluster with 𝑚𝑖𝑛𝑃 𝑡𝑠 set to 4. Here, A is a core point

since there are 5 points within its 𝑒𝑝𝑠-neighborhood. Points B and C are directly

reachable from A, and E is reachable from A since there is a sequence ⟨A,C,D,E⟩,
where all of the preceding points of E are core points and each point in the sequence

is directly reachable from the preceding point. All points reachable from A form the

cluster.

The parameters are set to different values for each user since the total number of

stops differs among users. For a given user, we set 𝑚𝑖𝑛𝑃 𝑡𝑠 to a value that is propor-

Fig. 1 An example

DBSCAN cluster

A

B C D

eps

E
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tional to the number of distinct days this user has stops, and we introduce a parameter

𝑝
ℎ𝑤

as the constant of proportionality. For instance, a 𝑝
ℎ𝑤

value of 4/7 means that

the user should have at least four stops a week to consider clustering them into a

home/work cluster.

To determine the 𝑒𝑝𝑠 parameter, we first compute the distances between the loca-

tions of each stop belonging to the user and its nth nearest neighbor stop with

𝑛 = 𝑚𝑖𝑛𝑃 𝑡𝑠. Then we sort these distance values and eliminate those that exceed

the globally defined distance threshold parameter (dnth). Finally, for each distance

value vi, we compute the percentage of increase of the next distance value vi+1:

(vi+1 − vi)∕vi. The distance value with the maximum percentage of increase becomes

the 𝑒𝑝𝑠 parameter.

Having found the DBSCAN parameters of a user, we cluster his/her stops with

respect to the location and compute the average stay duration for each cluster. If

the duration exceeds a threshold Δhw, we conclude that the cluster represents a

home/work location, and we mark the stops in the cluster as home/work stops. The

intuition behind using a duration threshold to determine home/work locations is that

people typically spend a long duration at home and work.

3.4 Stop Assignment to PoIs

The next step is to assign the remaining stops to PoIs. The goal is to assign as many

stops to PoIs as possible while being conservative, thus getting assignments that are

true with high certainty. To achieve this, we propose two methods: distance based
assignment and temporal pattern enhanced assignment.

Distance Based Assignment (DBA). Furletti et al. propose a stop annotation

method (Furletti et al. 2013) that uses a maximum walking distance parameter and

creates a list of PoIs that are within the maximum walking distance from the location

of the stop and that have opening hours matching the time of the stop. Similarly, our

DBA method searches for candidate PoIs in a circular region centered at the location

of a stop with radius 𝑎𝑑
𝑡ℎ

, a distance threshold that captures the maximum walking

distance from the location of a stop to a PoI. In addition, the DBA method employs a

parameter 𝑙𝑖𝑚 that sets an upper limit on the number of PoIs in the considered region.

This avoids assigning a stop to a PoI when there are too many nearby PoIs. In such

situations, it is not clear which nearby PoI was visited. Our goal is to make those

assignments that we can make with relatively high certainty, so that the preferences

of the users are captured while trying to avoid errors.

To assign a stop S to a PoI, we find the set of PoIs within the region defined by

the location of S and parameter 𝑎𝑑
𝑡ℎ

. Then we check whether the opening hours of

the PoIs, if available, match with the arrival and departure time attributes of S. If the

cardinality of the result set is below 𝑙𝑖𝑚, we assign S to the closest PoI. Otherwise,

we do not assign S to any PoI.
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Temporal Pattern Enhanced Assignment (TPEA). The output of DBA might

contain unassigned stops. These occur when there are either too many or no PoIs

around the stops. We utilize temporal visit patterns to assign the unassigned stops.

For each user, we cluster non-home/work stops with respect to their locations

using DBSCAN with 𝑚𝑖𝑛𝑃 𝑡𝑠 equal to the lim and 𝑒𝑝𝑠 equal to 𝑎𝑑
𝑡ℎ

from DBA. If a

cluster contains stops that are assigned to PoIs, we construct a so-called visit-pattern
matrix for the cluster.

In this 2D matrix, the first dimension represents different days, and the second

represents different times of a day. The value in a cell is the number of PoIs that the

user visited during the corresponding time period. We use three levels of groupings

of weekdays: top, weekdays/weekends, day. At the top level, we do not use the day

information and the matrix has only one row and groups PoI visits by periods of a

day. At the weekdays/weekends level, the matrix contains one row for weekdays and

one for weekends. At the day level, we build seven rows, one for each day of the

week. An example matrix for the weekdays/weekends level is shown in Table 1.

Next, for each unassigned stop in the cluster, we check the number of PoIs for the

corresponding cell starting from the top level of day grouping. If there is only one

PoI, we assign the stop to this PoI. If there is more than one PoI, we proceed to the

weekdays/weekends level and, finally, the day level. Otherwise, we conclude that we

cannot assign the stop.

Example. Fig. 2a represents one of the clusters of a single user after the assign-

ment with DBA. Yellow rectangles and red circles represent the assigned and unas-

signed stops, respectively. The corresponding PoIs are denoted by p1, p2, and p3. We

want to assign the stop in the ellipse, and we break a day into four 6-h periods.

We first check the matrix at the top level. We only have visits to PoIs in the time

period between 12:00 and 18:00, and 3 distinct PoIs are visited. The top level matrix

is shown in Fig. 2b. Since the relevant cell value (3) exceeds 1, we consider the week-

Table 1 Example

visit-pattern matrix
00:00

06:00

06:00

12:00

12:00

18:00

18:00

00:00

Weekdays 0 0 2 0

Weekends 0 0 1 0

(a)

(b)

Fig. 2 Cluster of stops and visit-pattern matrix-top level
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Table 2 Visit-pattern

matrix-day level
00:00

06:00

06:00

12:00

12:00

18:00

18:00

00:00

. . .

Wednesday 0 0 1 0

. . .

days/weekends level. We have 3 stops on weekdays with 2 different corresponding

PoIs, and we have 1 stop on weekends. The matrix is shown in Table 1. The value of

the relevant cell is 2, so we move to the day level, which is shown in Table 2.

Now the value of the relevant cell (Wednesday, 12:00–18:00) is 1, so the user

visited only p2 on a Wednesday during the time period containing 16:15. Therefore,

we assign the stop to p2.

3.5 Computing Values of Grid Cells

We use Danske Kvadratnet,
1

which is the official geographical grid of Denmark, as

the underlying grid structure. The grid consists of equal-sized square cells of size 1
km

2
and it contains 111, 000 cells.

Initializing Values of Grid Cells. Next, for each PoI pi, we form the set Tpi of

trips to pi. Using these sets, we initialize a grid structure for each PoI. For each cell,

the number of trips from the cell to the PoI and the number of distinct users making

these trips are computed and recorded.

Smoothing the Values. After the initialization, many PoIs have sparse grids,

where many cells have no trips to the PoIs. Table 3 shows the number of cells with

non-zero values for top-5 PoIs. Only 3 PoIs have more than 100 cells with non-zero

values after initialization. Sparse grids are a problem since this reduces the number

of spatial keyword queries that we can construct rankings for. If neighboring cells

of an empty cell have non-zero values, it is reasonable to assume that trips starting

in the these cells are also relevant for the empty cell. So, the neighboring cell values

Table 3 Number of cells out

of 111,000 cells with

non-zero values for top-5 PoIs

PoI ID Before smoothing After smoothing

1 148 2, 021
2 142 1,521

3 115 2,123

4 98 2,148

5 98 1,652

1
http://www.dst.dk/da/TilSalg/produkter/geodata/kvadratnet.

http://www.dst.dk/da/TilSalg/produkter/geodata/kvadratnet
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can be used for smoothing to address the sparsity problem. The smoothing also helps

reduce noise in cell values.

As the smoothed grids of multiple PoIs will be used in the ranking building phase,

a smoothing method should have two properties. First, for a PoI, a smoothing algo-

rithm should not change the sum of all the values in the grid for that PoI. Inflating or

deflating the sum of values would unfairly promote or demote the PoI in relation to

other PoIs in a constructed ranking. Second, the ordering of the values for all PoIs

in a specific cell before and after smoothing should be similar in order to reduce

distortion of the original spatial popularity data for the PoIs.

The literature contains some smoothing and interpolation methods for spatial grid

based data. The inverse distance weighting (IDW) method (Shepard 1968) is pro-

posed to interpolate missing values using distance-based weighting. This method

builds on the intuition that the effect of a cell’s value on the value of an originally

empty cell should depend on how close the cell is to the empty cell. However, IDW

does not contain a smoothing method, and it changes the sum of values in the grid.

Therefore, we do not utilize IDW in our work. Kernel-based methods (Hastie et al.

2009) have also been proposed for smoothing. For these, it is possible to preserve the

sum of the values since they produce a probability distribution as output. The sum

of the values can then be distributed according to this distribution. However, they

might introduce changes to the ordering of grid cells since kernel-based methods

yield continuous functions that might not reflect the original properties of the data.

We use a smoothing algorithm based on personalized Pagerank (Brin and Page

1998) to interpolate values for cells with no trips. The PageRank algorithm was

proposed for web graphs, where web pages are the vertices and hyperlinks are the

edges. The algorithm assigns a page rank value to each website to indicate the rel-

ative importance of it within the set. A web page is considered important if other

important web pages link to it. The algorithm can be described as a random walk

over a directed graph G = ⟨V ,E⟩. A random walker starts from a randomly chosen

vertex. Then, with probability 1 − 𝛼, it follows an outgoing edge, and with proba-

bility 𝛼, it teleports to another randomly chosen vertex y ∈ V , where 𝛼 has the same

value for each web page and 0 < 𝛼 < 1. The PageRank of a vertex is the probability

that a random walker will end up at the vertex.

Personalized PageRank (Page et al. 1999) was proposed in order to incorporate

personalized preferences. This is achieved by changing the uniform probability dis-

tribution of teleportation to a random web page to a personalization parameter that

is basically a distribution based on user preferences. We use this parameter to utilize

the initial values of the grid cells while smoothing the values.

The PageRank algorithm is a good candidate for smoothing, since, if a cell is

close to another cell, they should have similar values just like the page rank values

for the web pages linking to each other. The main idea is that if a PoI is of interest to

drivers leaving from a cell, it might also be of interest to drivers leaving from nearby

cells.

We first convert the underlying grid into a directed graph. For each cell, we intro-

duce a vertex. Then, we add edges from a “cell” to the neighboring “cells” with

weight w = 1∕d2, where d denotes the distance between the centers of the cells.
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The edge weights define how the page rank value of a vertex should be distributed

to the adjacent vertices. In the initial version of PageRank, it is equally distributed.

In our case, we use weights based on distance to make sure that the page rank value

is distributed inversely proportional with the distance between the grid cells corre-

sponding to the vertices. Then we apply PageRank to this graph for both number of

trips and number of users values. We use the initial cell values obtained after the

initialization to determine the personalization parameters. The probability of tele-

portation to a vertex is set proportional to the actual value of the corresponding grid

cell.

The procedure yields a probability distribution that indicates the likelihood that

a random walker will end up at a particular vertex. We distribute the total number

of trips and the total number of distinct users to the cells proportional to the output

probability distribution. For instance, assume that we are smoothing the numbers

of trips and that the total number of trips to the PoI is 100. A cell with probability

0.23 then gets the value 23. Note that this smoothing procedure is done for each PoI.

Table 3 shows that smoothing provides a significant increase in the number of cells

with non-zero values.

Example. Let G be a grid with cells c1, c2, c3, c4, c5, c6. The grid structure is

shown in Fig. 3a. The first value represents the number of trips from each cell to

a PoI before smoothing.

The graph representing the grid is given in Fig. 3b. Each vertex has an edge to each

vertex that represents a neighboring cell. Each edge is assigned a weight as explained

above. For instance, the distance between c1 and c2 is 1 unit, and the distance between

c1 and c5 is

√
2 units, so the weight of edge (c1, c5) is 1∕d2 = 0.5.

Then, we apply personalized PageRank using the initial values as the personaliza-

tion input. The second value of each cell in Fig. 3a represents the resulting probability

of the cell.

Finally, we distribute the sum of the values according to the pagerank values. The

third value of each cell in Fig. 3a represents the smoothed value. Here, c5 has the

second largest value because it is closer to the cell with the largest value (c2) than

c4 and c6, and it has more edges than c3 and c1 since it is in the middle column. The

c1 - 0,
0.126,
1.890

c2 - 10,
0.277,
4.155

c3 - 2,
0.141,
2.115

c4 - 2,
0.135,
2.025

c5 - 1,
0.201,
3.015

c6 - 0,
0.120,
1.800

c1 c2 c3

c4 c5 c6

1 1

1 1

1 110.5 0.5

(a) (b)

Fig. 3 Grid structure and corresponding graph
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effect of the number of edges is not an issue when smoothing is applied on a large

grid since the grid cells, except the cells on the boundary of the grid structure, have

the same number of edges.

3.6 Extracting Rankings for Queries Using the Model

To form a ranking for a given top-k spatial keyword query, we use the grid model.

Algorithm 1 The Algorithm for Ranking-building Phase

Input: 𝑞—top-k spatial keyword query, 𝑚𝑜𝑑𝑒𝑙—the grid model

Output: 𝑟
𝑘

—a ranked list of PoIs

1: c ← the corresponding grid cell for q.l in model
2: p ← the set of PoIs that have values in c
3: pf ← the PoIs in p which are filtered using the the query keywords q.𝜙
4: Rank the PoIs in pf with respect to their values in c and assign it to rall
5: if rall has more than k elements then
6: rk ← the first q.k elements of rall
7: return 𝑟

𝑘

8: else
9: return 𝑟

𝑎𝑙𝑙

10: end if

The algorithm, given in Algorithm 1, first finds the cell that contains the query

location l. Then it filters the PoIs with values in the cell with respect to the query

keywords to exclude the PoIs that do not contain query keywords. Here, we assume

that all PoIs with descriptions that do not contain any of the query keywords will not

be among the popular ones for this query. The ranking is computed using the ranking

function given in Eq. 1, where n denotes the number of trips, d denotes the number

of distinct users, and 𝛽 is the weighting parameter.

s = 𝛽 × n + (1 − 𝛽) × d where 0 ≤ 𝛽 ≤ 1 (1)

If there are more than k relevant elements in the ranking then the top k elements

form the output of the algorithm, as shown in Lines 5–7. Otherwise, the ranking is

the output, as shown in Line 9. It is important to note that the output ranking might

contain fewer than k elements. Although the algorithm does not produce a complete

ground-truth ranking, the partial ranking is still useful for evaluation purposes as it

provides valuable information about the expected result.
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4 Experimental Evaluation

In Sect. 4.1, we report on studies aimed at understanding effects of parameter set-

tings. In Sect. 4.2, we compare the stop assignment methods with a baseline method.

Finally, we study the effect of smoothing and weighting parameters on the output

rankings in Sect. 4.3. We do not present a complexity analysis since we think that it

is not a real concern due to the fact that model-building is performed only once.

In the experiments, we use 0.4 billion GPS records collected from 354 cars trav-

eling in Nordjylland, Denmark during March–December 2014. The PoI dataset used

in the experiments contains around 10,000 PoIs of 88 categories. All of the PoIs are

located in or around Aalborg.

4.1 Exploring the Parameters

To explore the effects of changing the parameters on the outputs of the different

steps, we vary one parameter at a time while fixing other parameters to their default

values. The parameters are described in Table 4.

4.1.1 Stop Extraction

Here, we study the effect on stop extraction of varying Δth and 𝑑
𝑡ℎ

.

Table 4 Parameters

Notation Step Explanation Default value

Δth Stop extraction Minimum duration between two

GPS records to consider the first

one as a stop

10 min

𝑑
𝑡ℎ

Maximum distance between two

GPS records to consider that their

locations match

250 m

Δhw Determining home and

work locations

Minimum average stay duration in

home/work locations

240 min

𝑝
ℎ𝑤

Minimum fraction of days in a

week a person is expected to visit

home/work

Three days a

week (3/7)

𝑎𝑑
𝑡ℎ

Stop assignment to PoIs Maximum distance between a PoI

and the location of a stop

100 m

𝑙𝑖𝑚 Maximum number of PoIs within

the region bounded by the location

of a stop and the 𝑎𝑑
𝑡ℎ

parameter

5 PoIs
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(a) (b)

Fig. 4 Effects of parameters Δth and 𝑑
𝑡ℎ

As shown in Fig. 4a, the number of stops decreases as Δth increases, as expected.

The decrease is smooth. In order to capture meaningful stops from GPS data, para-

meter Δth should be set to a value in the range of 5–30 min since this setting would

exclude quite short stops which might not be a visit to a PoI and as we see from the

figure, there are a lot of quite short stops.

As can be seen in Fig. 4b, the number of stops increase when 𝑑
𝑡ℎ

increases, which

is as expected. Although this parameter has some effect on the number of stops

extracted, the increase in the number of stops is negligible. This parameter is intro-

duced to eliminate inaccurate GPS readings, and the results suggest that there are

only few inaccurate readings in our dataset.

4.1.2 Determining Home/Work Locations

Here, we analyze the effect of 𝑝
ℎ𝑤

and Δhw on determining home/work locations.

As shown in Fig. 5a, both the number of home/work locations and the number of

stops assigned to home/work locations decrease when 𝑝
ℎ𝑤

increases, because of the

fact that more weekly stops are required to form a cluster. The decrease in the former

is sharper than the decrease in the latter which is a consequence of that parameter

(a) (b)

Fig. 5 Effect of parameters 𝑝
ℎ𝑤

and Δhw
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𝑝
ℎ𝑤

is used to limit the number of stops in a cluster to be considered as a home/work

location. The clusters that are left out when 𝑝
ℎ𝑤

increases are the clusters with a

small number of stops. This is why the decrease in the number of stops assigned to

home/work locations are not as sharp as the decrease in the number of home/work

locations.

Figure 5b shows that the numbers of home/work locations and stops decrease as

Δhw increases, as expected. Unlike when increasing 𝑝
ℎ𝑤

, the patterns of decrease are

quite similar for both when increasing Δhw. This suggests that the average durations

that users spend inside clusters are not correlated with the number of stops in the

clusters.

4.1.3 Stop Assignment to PoIs

Here, we analyze the effect of parameters 𝑎𝑑
𝑡ℎ

and 𝑙𝑖𝑚 on the assignment of stops to

PoIs. In addition, we assess the effect of 𝑎𝑑
𝑡ℎ

on the distance between stop location

and the assigned PoI for TPEA. Figure 6 shows the effect of varying 𝑎𝑑
𝑡ℎ

on the

number of stops that can be assigned to PoIs and the number of PoIs that receive

assignments of stops when 𝑙𝑖𝑚 is set to 5 or 10.

Figure 6a shows that for both lim values, the number of assigned stops increases

up to a point and then decreases when 𝑎𝑑
𝑡ℎ

increases. When 𝑎𝑑
𝑡ℎ

is small, it is impos-

sible to assign some stops since there are no PoIs in the region defined by the loca-

tion of the stop and the parameter. However, when 𝑎𝑑
𝑡ℎ

increases, the number of

PoIs within the bounded region increases as well. At some point, the number of PoIs

starts to exceed the value of lim, and we are unable to assign the stop to a PoI. When

this occurs, the number of stops starts to decrease.

Figure 6b shows that the number of PoIs with stops assigned to them follows a

very similar pattern. The decrease after an increase is also the result of having too

many PoIs (>𝑙𝑖𝑚) inside the region bounded by parameter 𝑎𝑑
𝑡ℎ

.

Figure 7 shows the effect of varying 𝑎𝑑
𝑡ℎ

on the distribution of the distance

between the stop location and the assigned PoI for TPEA when 𝑙𝑖𝑚 is set to 5. The

(a) (b)

Fig. 6 Effect of parameter 𝑎𝑑
𝑡ℎ
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Fig. 7 Effect of parameter 𝑎𝑑
𝑡ℎ

on distance distribution for TPEA

(a) (b)

Fig. 8 Effect of parameter lim

red lines show the medians, and the green lines show the means of the distance val-

ues. For this experiment, we only consider the stop locations assigned by TPEA. The

figure shows that the distance between the stop and the assigned PoI increases when

𝑎𝑑
𝑡ℎ

increases, as expected since parameter 𝑒𝑝𝑠 is set to 𝑎𝑑
𝑡ℎ

parameter in the density

based clustering. This figure also shows that although no specific distance threshold

parameter is employed by TPEA, the distance between the stop and the assigned PoI

does not exceed a few multiples of 𝑎𝑑
𝑡ℎ

since it employs density-based clustering

to form the visit pattern matrices. In other words, the assigned PoIs when TPEA is

employed are still within reasonable distance from the stops.

Figure 8 shows the effect of varying parameter 𝑙𝑖𝑚 on the number of assigned

stops and the number of PoIs in assignments when 𝑎𝑑
𝑡ℎ

is set to 100 or 250 m.

As expected, both the number of stops and the number of PoIs increase when 𝑙𝑖𝑚

increases because the algorithm is able to assign stops that it could not assign for

smaller values of 𝑙𝑖𝑚.
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Figures 6 and 8 also show that TPEA is able to assign additional stops using the

temporal patterns of the users found in the initial assignment with the DBA method.

For instance, the number of stops assigned using TPEA is around 110,000 while it

is 90,000 using DBA in Fig. 6a for 𝑎𝑑
𝑡ℎ

= 100 and lim = 5.

4.2 Evaluation of Stop Assignment

To evaluate the accuracy of stop assignment methods, we use the home/work loca-

tions extracted from GPS data using the method explained in Sect. 3.3 since we do not

have access to a proper ground-truth data. To extract home/work locations, we use

the default values given in Table 4 for parameters Δhw and 𝑝
ℎ𝑤

. Then, the extracted

home/work locations are inserted to the PoI database. The assignments of home/work

stops to the newly inserted home/work PoIs forms the ground-truth dataset for this

experiment. In other words, no stops are assigned to any regular PoI in this ground

truth. However, we use the set of all PoIs (regular PoIs and home/work PoIs) in

this experiment. We assign the complete set of home/work stops using the proposed

methods and compare our methods with the closest assignment method (CA) that

assigns the stop to the closest PoI regardless of the number of PoIs around it.

In particular, we report the precision and recall (Baeza-Yates and Ribeiro-Neto

1999) for the stop assignment methods. The true positives are the stops marked

as home/work stops that are assigned to the correct home/work PoI, and the false

positives are the non-home/work stops that are assigned to a home/work PoI. The

false negatives are the home/work stops that are assigned to a PoI different from the

ground-truth PoI or are not assigned at all.

Figure 9a shows that precision values of DBA and TPEA are higher than that of

CA. The precision of DBA is slightly higher than that of TPEA since utilization of

the temporal visit patterns of the user can introduce false positives. The precision,

at 0.93, indicates that DBA and TPEA are able to assign home/work stops and the

remaining stops almost correctly.

(a) (b)

Fig. 9 Precision and recall
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Figure 9b shows that CA has better recall than DBA and TPEA that cannot assign

all the home/work stops due to the constraints set by parameters 𝑎𝑑
𝑡ℎ

and 𝑙𝑖𝑚. Since

the unassigned home/work stops are false negatives, DBA and TPEA have lower

recall than CA. For 𝑎𝑑
𝑡ℎ

= 50 and 𝑎𝑑
𝑡ℎ

= 100, DBA and TPEA achieve a recall above

0.8. TPEA achieves a slightly higher recall because of an increase in the true positives

and a decrease in the false negatives compared to DBA.

4.3 Exploring the Effect on Output Rankings

We proceed to study the effect of the grid smoothing method and the weighting

parameter of the ranking function (𝛽) on the output top-k rankings.

Smoothing, described in Sect. 3.5, changes the original values of the grid as well

as introduces non-zero values in cells that lack data. This, in effect, extrapolates the

available data to wider geographical areas, but it may also distort the original data.

To observe the effect of the smoothing, we compute the top-10 PoIs for the grid cells

that have initial values for at least 10 different PoIs, before and after smoothing, and

we report the distribution of the Kendall tau distance (Fagin et al. 2004) between

them. The top-10 lists are formed according to the ranking function in Eq. 1.

To explore the effect of the weighting parameter (𝛽) in Eq. 1, we present the aver-

age Kendall tau distance between the rankings constructed for top-k spatial keyword

queries using different 𝛽 values. The set of queries used in this experiment consists

of top-k queries with k = 10 and k = 15. The set of keywords used in top-k queries

is {“restaurant”, “supermarket”, “store”}, and the set of locations include the centers

of grid cells that contain values for at least k PoIs.

Kendall Tau Distance. The distance is defined in Eq. 2 (Fagin et al. 2004), where

R1 and R2 denote the rankings that are compared and P is the set of pairs of the PoIs.

K(R1,R2) =

∑

(p,q)∈P
̄Kp,q(R1,R2)

𝒿P𝒿
(2)

Function ̄Kp,q is given in Eq. 3. If R1 and R2 agree on the ranking of PoIs p and q,

the function evaluates to 0; otherwise, it evaluates to 1.

̄Kp,q(R1,R2) =
{

0 if R1and R2agree on p, q
1 if R1and R2 do not agree on p, q (3)

4.3.1 Effect of Smoothing

We report the Kendall tau distance distributions between top-k rankings obtained

before and after smoothing for different 𝛽 values.
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Fig. 10 Kendall Tau distance distribution

The results are shown in Fig. 10, where the red lines show the medians and the

green lines show the means of the distance values. The points denoted by a plus

sign shows outlier distance values. On average, we achieve a Kendall tau distance

around 0.15, which means that we can capture 85% of the relations between pairs

after smoothing. We can also see that for all 𝛽 values, the resulting distribution is

right-skewed. We achieve a Kendall tau distance less than 0.1 for half of the grid

cells and a Kendall tau distance around 0.3 for 75% of the grid cells. Further, for 𝛽

values 0, 0.25, and 0.5, the smoothing does not introduce any changes in top-k PoIs

for at least 25% of the grid cells.

4.3.2 Effect of Weighting Parameter

Figure 11 reports the average Kendall tau distance between the top-k rankings pro-

duced using different 𝛽 values for top-10 and top-15 queries. For instance, in Fig. 11a,

the green bar on the group 𝛽 = 0 indicates that the average Kendall tau distance

between the rankings produced with 𝛽 = 0 and 𝛽 = 0.25 is around 0.12. The dis-

tances between rankings produced with different 𝛽 values are less than 0.2. This

suggests that the proposed model to extract output rankings is not overly sensitive to

the weighting parameter.
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Fig. 11 Avg. Kendall Tau distance for top-k queries

5 Conclusion and Future Work

The paper proposes a model with two phases, model-building and rank-building,

to synthesize rankings for top-k spatial keyword queries based on historical trips

extracted from GPS data. We propose a novel stop assignment method that makes

use of the distances between the locations of the stops and the PoIs as well as tem-

poral information of the stops to obtain the trips. We also propose a Pagerank-based

smoothing method in order to extend the geographical coverage of the model. Exper-

iments show that the model is able to produce rankings with respect to the visits of

the users, and that the output rankings produced by the model are relatively insensi-

tive to variations in the parameters.

In future work, it is of interest to use the methods proposed here for evaluation

of the ranking functions for spatial keyword queries, as this is the motivation behind

this work. Another future direction is to explore probabilistic stop assignment in

order to contend better with dense regions since the proposed methods use a con-

servative distance based approach when assigning stops to PoIs. In other words, we

assign a stop to a PoI if it is highly probable that the visit occurred. As a result, it

is not possible to assign stops in regions with many PoIs. It is also of interest to try

to employ more advanced home/work identification methods to be able to determine

home/work locations more accurately. It is also of interest to combine data sources

like geo-coded tweets and check-ins with GPS data to form rankings for spatial key-

word queries.
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Towards a Dynamic Isochrone Map:
Adding Spatiotemporal Traffic
and Population Data

Joris van den Berg, Barend Köbben, Sander van der Drift
and Luc Wismans

Abstract This research combines spatiotemporal traffic and population distribution
data in a dynamic isochrone map. To analyze the number of people who have
access to a given area or location within a given time, two spatiotemporal variations
should ideally be taken into account: (1) variation in travel time, which tend to
differ throughout the day as a result of changing traffic conditions, and (2) variation
in the location of people, as a result of travel. Typically, accessibility research
includes neither one or only variation in travel time. Until recently, we lacked
insight in where people were located throughout the day. However, as a result of
new data sources like GSM data, the opportunity arises to investigate how variation
in traffic conditions and variation in people’s location influences accessibility
through space and time. The novelty of this research lies in the combination of
spatiotemporal traffic data and spatiotemporal population distribution data pre-
sented in a dynamic isochrone web map. A case study is used for the development
of this isochrone map. Users can dynamically analyze the areas and people who can
reach various home interior stores in the Netherlands within a given time, taking
into account traffic conditions and the location of people throughout the day.
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1 Introduction

Accessibility is an interdisciplinary concept that has been used increasingly in a
variety of disciplines and studies (Li et al. 2011; Cascetta et al. 2016). In this
research, accessibility refers to passive accessibility which is described as ‘the ease
with which an activity can be reached by potential users in the study area’ (Cas-
cetta et al. 2016 p. 45). Accessibility is a spatiotemporal phenomenon, meaning that
it changes through space over time (Andrienko et al. 2013). On the one hand, travel
times increase and, as a result, the area that can effectively be reached within a
given time changes throughout the day. And on the other hand, in order to deter-
mine the number of potential users in a study area, you need to know the location of
these people through time.

One way of analyzing accessibility is through isochrone maps. Such a map
displays isochrones which are the points, lines or areas that can be reached from a
given location, within a given time (Bauer et al. 2008; Efentakis et al. 2013;
Marciuska and Gamper 2010). Besides visualizing points, lines or areas that are
within reach from a given location within a given time, the number of people within
an area can be determined by combining the isochrone area with population dis-
tribution data. This determines the number of people that could theoretically reach
or be reached from a given place within a given time.

A common problem with contemporary isochrone maps is that static travel
speeds are assumed when calculating isochrones. As we argued before, traffic
conditions, and therefore accessibility, changes significantly over space and time
(Li et al. 2011). Using static travel times in accessibility studies and isochrone maps
mean that significant variations in accessibility through time and space would be
ignored. Moreover, earlier research determining the number of people in isochrone
areas (Efentakis et al. 2013; Innerebner et al. 2013) fall short on one crucial point:
Spatiotemporal variation in population distribution and movement of people is
completely absent.

Currently, mobile data, being GPS tracking, mobile phones and locational media
worldwide, provide new opportunities for research into the movement of individ-
uals, the dynamics of traffic and population distribution (Zook et al. 2015). By
combining isochrone maps with mobile data, a whole new range of interesting
questions can be answered and a more accurate insight into accessibility can be
achieved. These mobile data can be used to determine travel times and population
distribution data for determining the number of people within areas at a given time.
Also, combining spatiotemporal traffic and population distribution data allows
knowing where and at what times many people are at the same location, which
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allows businesses to adjust their opening hours, schedule of events and optimal
location (Steenbruggen et al. 2015). The rise of alternative ways to track the
movement of people, and the spatiotemporal distribution of populations is partic-
ularly interesting in accessibility studies, and until recently has not been used (Järv
et al. 2016). The relative newness of these data sources means that no best-practices
have been developed yet (Zook et al. 2015).

To dynamically visualize isochrone maps incorporated with spatiotemporal data
means a more efficient visualization of spatiotemporal change in accessibility
(Innerebner et al. 2013). Besides, it provides a possibility to display interactive
statistics allowing easier interpretation of the presented results. As Ullah and Kraak
(2015) mention, there is a need for interactive geovisual analytical representation of
the produced spatiotemporal data in order to produce useful insights and to make
sense out of the data.

Despite these benefits spatiotemporal data might have when implemented in
isochrone maps, this implementation can cause new problems. Problems both
technically, how to calculate isochrones using vast amounts of spatiotemporal data,
as well as how to visualize dynamics in isochrone maps. More data does not
necessarily mean more accurate or better results. Ironically, more (spatiotemporal)
data means more complications and more effort to conduct useful research (Zook
et al. 2015). Although a lot of effort has been put in developing visualization
methods that meet the needs to analyze and understand spatiotemporal data (Zeng
et al. 2014), options that effectively deal with temporal data in cartography still have
not been developed sufficiently (Andrienko et al. 2010; Li and Kraak 2008).

This research aims to tackle the problems mentioned, by combining spa-
tiotemporal traffic and population distribution data in a dynamic isochrone
map. The main question in this research is: How can spatiotemporal traffic and
population distribution data be incorporated in a dynamic isochrone map? First, we
will briefly discuss related work in Sect. 2 before continuing with the methodology
in Sect. 3, where we discuss how we combined the data and visualized it in a
dynamic isochrone map. In Sect. 4 we discuss the results and end with a discussion
and conclusion in Sect. 5.

2 Related Work

The strength of isochrone maps is to visualize accessibility (Doling 1979; O’Sul-
livan et al. 2000). Still isochrone maps have been used infrequently in the literature
and are often absent from well-known studies on accessibility (O’Sullivan et al.
2000). First applications use static (i.e. fixed) spatiotemporal information on travel
times and location of people (mostly based on census data). Assuming static travel
speeds and static population distribution has various consequences: users of iso-
chrone maps can make (investment) decisions or interpretations based on overly
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simplified or erroneous images of the realities of accessibility (Tenkanen et al.
2016). Isochrone map users, like urban planners, would carry a risk of over—or
underestimating accessibility or the number of people within reach in peak hours.
Social equity is another related field where problems could occur when using static
traffic data (Li et al. 2011; Shaw 2006). People who live relatively close to facilities
but suffer from traffic congestion have more difficulties accessing certain facilities
than others who are not experiencing traffic congestion. This is especially true in
urban areas (Melhorado et al. 2016). Errors could also occur in non-residential areas
which are crowded, like airports or business areas. Because officially no one is
registered to live in these areas, using static population distribution data in acces-
sibility studies would assume that no one is present in those areas, whereas in the
real world significant numbers of people travel to these places. Using spatiotem-
poral traffic data already proved to be successful in several accessibility studies
(Jariyasunant et al. 2010; Jihua et al. 2013; Innerebner et al. 2013; Li et al. 2011;
Marciuska and Gamper 2010).

Problems associated with using static travel speeds when calculating isochrones
are identified in different studies (Miller et al. 2009; Shaw 2006). These studies
conclude that using static travel time in accessibility studies and isochrone maps
mean that significant variations in accessibility through time and space would be
ignored. Traditional work focused particularly on space (locational) constraints
whereas time constraints have been mostly disregarded (Li et al. 2011). A proposed
solution is to use spatiotemporal traffic data to calculate isochrones as done by Lee
et al. (2009). While research on spatiotemporal traffic data has gained attention in
route computation research, spatiotemporal traffic data for calculating isochrones
have not received the same consideration (Baum et al. 2015). Efentakis et al. (2013)
presented one of the few studies that used static and dynamic traffic data to research
differences between the two. They concluded that spatiotemporal traffic data have a
‘huge’ impact on informed business intelligence decisions and showed that the
number of potential customers varied between the twenty and forty percent
depending on traffic, these variations are quite significant and could be even more
significant when taking into account spatiotemporal population distribution. Jihua
et al. (2013) created accessibility profiles to display variations in accessibility
throughout the day. By plotting the isochrone area in square kilometers versus
different hours a day, a better insight in the accessibility of a location was realized.
Although the dynamics in travel time also results in variation of people who can
reach a location within a certain travel time threshold, there is little to no research in
which the dynamics in people’s location is taken into consideration as well.

3 Methodology

Figure 1 shows the methodology developed in this research to construct a dynamic
isochrone map. First, a network dataset needs to be prepared (1). Secondly, we
calculate the isochrone network using a database network extension (2). Using the
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isochrone network calculated in the previous step we can calculate isochrone areas
using a specific buffer (3), this is discussed in Sect. 3.3. The next step is to prepare
the population distribution dataset (4). We then combine the isochrone areas with
the population distribution data to determine the number of people within the
isochrone areas (5). This results in a series of images that display areas, and esti-
mated numbers of people within these isochrone areas (6). The remaining steps
consist of visualizing the data processed and calculated in previous steps (7). After
adding interactive elements (8), the isochrone map is tested (9) and the visualization
process is repeated if necessary.

3.1 HERE Network

This research uses HERE Traffic Patterns data (HERE 2017). HERE Traffic Patterns
offers extensive average traffic speed data for 83 different countries, including the
Netherlands. These patterns are constructed based on billions of Floating Car
observations. The HERE traffic patterns data used in this research contains average
driving speeds for every 15 min for every road in the Dutch road network. These
speed patterns do not exceed the maximum allowed speed on that specific road.
This is because HERE traffic patterns are mostly used for navigation systems and
trip planners, and these should not encourage users to exceed the maximum allowed
speed. These data are stored and processed in a PostgreSQL database.

Fig. 1 Workflow construction isochrone map
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3.2 Driving Distance

To calculate an isochrone network, the pgRouting function pgr_drivingdistance is
used. This function calculates, starting from a given point, all nodes and edges in
the network that have costs less than or equal to a given cost. In our case, costs are
given in time. A starting point is entered and the function calculates in all possible
directions how far the network can be traversed within a given cost. We used a case
study to test our methodology. First, we determined the points from which to
calculate isochrones, being the coordinates of different home furniture stores. For
illustrational purposes, we used the location of IKEA stores within the Netherlands.
These stores served as starting points for the driving distance calculation. Since the
driving distance function requires a node on the network as input, the IKEA store
locations (retrieved from Google Maps 2016) are snapped to the closest network
node.

The driving distance function requires a field that represents the cost and reverse
cost per road segment. Since the average speeds are stored in the HERE network
data and the road length can be calculated, we created a function that calculates the
time it takes to traverse a road segment. In our case, the costs required by the
PGrouting function are given as time in minutes. The time it takes to traverse a road
can be calculated by combining average driven speeds and the road length. Nor-
mally, the driving distance function calculates what parts of the network can be
reached from a given point. However, in this research, we are interested in how
many people can potentially drive to a store. So instead of stores being a start point,
we rather want them to be an end point. This is achieved by switching the cost and
reverse cost values. This ensures that the calculation uses the costs for roads
towards the IKEA store only.

After the driving distance calculation is completed, a table is created. This table
is joined with the output table of the original road network table. The result is a
table of all roads on which one can reach an IKEA store, containing a geometry
field which can be visualized accordingly.

Despite the fact that pgRouting is fit for handling complex routing computations
on extensive network datasets, there are two limitations. When calculating driving
distances, pgRouting uses data from one input column for costs. Since one column
represents one time step, inaccuracies can occur. If for example average speeds
from 9 o’clock with a maximum cost of one hour are used in a driving distance
calculation, the 9 o’clock data is used during the entire calculation. Ideally, the
calculation would have a Time Dependent Dynamic Shortest Path algorithm
(TDDSP) meaning the cost field used in the calculation changes according to the
time already driven.

Another limitation is that the pgr_drivingdistance function by default returns
nodes and edges which do not exceed the maximum input cost. Some road seg-
ments are relatively long. If for example they have a node at each end of which one
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exceeds the maximum cost and one does not, only the latter is returned whereas in
reality part of the road segment could still have been traveled before exceeding the
maximum cost. Obe and Hsu (2017) have identified this problem as well and
describe a possible solution called ‘node injection’. Both of these problems cannot
be solved with the current default pgRouting functions.

3.3 Variable Distance Buffer

Since the isochrone area is used to calculate the number of people in reach, it is
important to draw an isochrone area around the isochrone network which is as
accurate as possible. Marciuska and Gamper (2010) discuss a variety of methods,
each with different accuracies. We tested a variety of methods as well. The concave
hull, convex hull, alpha shape, link—and surface based approach (Marciuska and
Gamper 2010) and different buffers.

However, each of these methods in—or excluded areas that were actually in or
out of reach. This means that when intersecting the calculated isochrone areas with
the number of people, large under—or overestimations could occur. We developed
a method which in our case is most accurate: the variable distance buffer. Here, a
buffer is drawn according to the aggregated costs of the isochrone network. In other
words: time already spent can be taken into account when drawing a buffer. The
further driving time increases, the smaller the buffer size. Figure 2 illustrates this
solution. The pgr_driving distance calculation explained earlier, stores the aggre-
gated time for each road segment. The variable distance buffer is calculated using a
simple IF-THEN statement. If the amount of driven time exceeds a certain value,
the buffer size is adjusted.

Fig. 2 Variable distance buffer versus concave hull approach
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3.4 GSM Data

This research uses GSM data as a way to measure population distribution. This
passive mobile positioning data is aggregated and provided by Mezuro. It originates
from Call Detail Records (CDR) collected by a single network provider which
facilitates between 30–40% of the Dutch mobile phone usage. This means that by
accessing these data we can derive travel information of about one-third of the total
Dutch population. No other data source is known that gives travel information on a
national scale at a level this high. This data is preprocessed using a validated
rule-based algorithm to approximate and classify the number of people within areas
based on phone activity for every hour of the day. Because of the known issues
regarding the spatial accuracy of determining the location using CDR data (e.g.
described in Bonnel et al. 2015), the location data is aggregated at the level of
villages. As a result, the Netherlands is split into 1.261 areas for which the number
of people is made available, where each city or village is a separate zone. This area
definition is the result of earlier analysis by Mezuro of the dataset (CDR and cell
tower plan properties) provided. The largest cities in the Netherlands are split into
city districts. Mezuro uses a complex algorithm to translate the sample into total
estimated number of people, classified in different groups, within these areas. This
algorithm takes into account different factors such as the number of people within a
GSM area subscribed to the network provider, the number of active phones of
subscribers per area and the number of inhabitants per area.

GSM data is privacy sensitive. In theory, it is possible to track someone’s
movements. To secure the privacy of mobile phone owners, the CDR’s are anon-
ymized. This means that data of individual phones remain with the network
operator. Also, it is not possible to track or filter individual phones out of the
provided data. At least 16 phones have to be in the same area before they are
registered in the final dataset (Meppelink et al. 2015). As a result of the area
definition and by means of aggregating data over multiple days (i.e. all days within
a certain month), the impact of this “rule of 16” is minimized (i.e. analysis shows
that the impact of this rule is less than 1%). Although the algorithms are tuned for
the accuracy of location determination and bias of the available sample, there
possibly still remains a bias in the determined number of people in areas.

The aggregated GSM data, from here on simply referred to as GSM data,
consists of two tables. The first table contains the administrative areas used. This
table does not contain any information on the number of people in that area yet. It
merely serves as a spatial reference to the GSM areas. The second table holds the
estimated numbers, including further classified population groups in areas for a
given month. These two tables are linked through matching area ID’s.

The population groups within the GSM data are classified using observations
from the given month. Assumed inhabitants for example, are people that have been
observed in the same area during most of the nights in the given month. Regular
visitors are observed in a specific area at least 10 times a month. There is a possibility
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that these people visit these areas because of their job or school. Frequent visitors are
people which are observed 3–9 times in a GSM area per month. It is hard to
determine the goal with which frequent visitors travel to certain areas. It could, for
example, be visiting friends or families once a week. The same goes for incidental
visitors; People which are observed one or two times a month in a GSM area.

For this specific research, we are interested in the number of people which are
located in an isochrone area at a specific time during the day. A differentiation is
made only between inhabitants and visitors within the isochrone areas. To deter-
mine the number of inhabitants and visitors within isochrone areas at a specific time
of day, different calculations were used for inhabitants and visitors. This is because
we can further increase spatial accuracy for inhabitants using PC6 points. PC6
points are the centroids of all postal code areas in the Netherlands containing the
(static) number of residents in that postal code zone. These points can be used to
more accurately determine the distribution of inhabitants within GSM areas. Since
PC6 points only contain static information on inhabitants, the method cannot be
applied for visitors.

The method for inhabitants intersects the PC6 points with the GSM areas to
determine the static total number of inhabitants within a GSM area (pt). By dividing
the number of static inhabitants for each individual PC6 point (pp) by the total static
number of inhabitants in the GSM area the fraction of the total number of inhab-
itants per PC6 point is determined. Using these fractions the estimated inhabitants
located in the GSM areas are distributed more accurately. Assuming that this dis-
tribution remains the same through time, we can multiply the fraction of each PC6
point which is located in the isochrone area with the associated GSM area dynamic
number of measure inhabitants (Igsm) which results in the dynamic number of
inhabitants present per PC6 point. The sum of the dynamic inhabitants for these
PC6 points (i.e. located within the isochrones area) is the total dynamic number of
inhabitants in the isochrone area (IDT ).

IDT = ∑
pp
pt

� �
× Igsm

� �

IDT Total number of dynamic inhabitants in isochrone area.
pp Population PC6 Point.
pt Total PC6 population GSM area.
Igsm Dynamic number of inhabitants in isochrone per GSM area.

The method used for calculating inhabitants using PC6 points cannot be applied
to visitors since their exact location within the GSM areas is unknown. An alter-
native approach is to use the isochrone and GSM areas’ surface area. First, iso-
chrone areas are intersected with the GSM areas. The share of the isochrone area
(Aisa) within the GSM area (Agsm) can be used to calculate the relative number of
visitors in that particular area (Vgsm). The major assumption in this method is that
the visitors are distributed evenly throughout the GSM area. For example, when
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50% of the isochrone area intersects with the GSM area, we assume 50% of the total
visitors in the GSM area are in the isochrone area. By summing up the visitors
within each share of the isochrone area, the total number of visitors in the isochrone
area is determined (VT ).

VT = ∑
Aiso

Agsm

� �
× ðVgsmÞ

� �

VT Total number of dynamic Visitors.
Aiso Area isochrone within GSM area
Agsm Total area GSM area
Vgsm Dynamic visitors GSM area

3.5 Visualization

The two major components which are visualized in the web map are the isochrones
and the population distribution data. Using the QGIS TimeManager (QGIS
TimeManager 2017) isochrone areas were visualized based on the time attribute in
our data. The TimeManager filters out, visualizes and exports specific times in the
data as images. Using this function, 96 static maps for every 15 min of the selected
day are exported. Using JavaScript, we created a web page with an interactive
interface, to control the playback of the animation.

We have chosen to visualize the population distribution data as an animated line
graph, to allow the user to see trends throughout the day. The number of inhabi-
tants, visitors and a total number of people were visualized as a line graph using
Microsoft Excel, animated using Microsoft PowerPoint and then added as a video
to the web page, synchronized to the map animation using JavaScript code.

We deliberately chose to visualize the population distribution data and the iso-
chrone areas separately to maintain the simplicity of an isochrone map. An alter-
native would, for example, be to visualize the number of people in a third dimension.
We argue that this would overcomplicate the map thereby making it less useful.

4 Results

The resulting Ikea isochrone web map (Fig. 3) can be seen online at http://
kartoweb.itc.nl/students/isochroneswebmap/nederland.html.1 It displays an anima-
tion of accessibility throughout the day. Users can ‘slide’ through time using the

1If the website animation does not run smoothly, we advise using the step-by-step button.

204 J. van den Berg et al.

http://kartoweb.itc.nl/students/isochroneswebmap/nederland.html
http://kartoweb.itc.nl/students/isochroneswebmap/nederland.html


provided time slider and can see the change in area size during different hours of the
day. They can zoom into a specific IKEA store to also include the dynamic number
of people within the area throughout the day.

As we can see in Fig. 3, the difference in the number of people that can reach
IKEA Utrecht changes quite noticeably throughout the day. The number of
inhabitants (orange line) decrease in the early morning while the number of visitors
(green line) increase. This can potentially be explained by the fact that people start
commuting. This pattern happens during the end of the afternoon in reverse.
Around 16:00, commuters start heading back home. We observe significant drops
in the total number of people (black line) around the typical rush hours (06:00–
09:00 and 16:00–19:00). The variation of the number of people who can reach this
location (black line) shows that differences are possible of over 1 million people,
roughly resulting in a variation of 30%. Such large differences are certainly relevant
for determination of service areas, e.g. choosing the best location for opening a new
store.

Another interesting result is that the number of people that can reach an IKEA
store located in regions not as much affected by congestion stays relatively stable.
Although not visible in Fig. 4, but well visible once animated, you can see that the
isochrone areas around IKEA Groningen change less in size compared to the iso-
chrones areas around busier IKEA stores such as Utrecht and Amsterdam.
For IKEA Groningen we see a relatively stable black line representing the total
number of people (Fig. 4) which is mainly the results of number of inhabitants and
visitors compensating each other resulting in a relatively stable number of people
within the isochrone areas. This could mean that the influence of traffic (i.e. travel
time variation) has a larger impact on the total number of people that can reach an
IKEA store than the movement of people through time.

All in all, the differences in the area size and the number of people which can
reach an IKEA store within given times justifies the use and need for spatiotemporal

Fig. 3 Isochrones webmap IKEA Utrecht
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traffic and population distribution data in accessibility studies. With differences of
up to 1 million people, it would be a mistake to use static traffic and population
distribution data.

5 Conclusion and Discussion

We have proven that spatiotemporal traffic and population distribution data can be
combined in a dynamic isochrone map to research accessibility. The method used in
this research can be used for similar cases without the need to redevelop the
methodology. The combination of spatiotemporal traffic and population distribution
data is particularly interesting for calculating dynamic service areas which can be
used in different fields. A specifically interesting potential use would be the opti-
mization of potential locations for new stores or facilities. One point of attention:
some of the calculations were rather time-consuming. Calculating all isochrone
areas during a day for the Netherlands lasted approximately 2 days. This should be
taken into account when planning to calculate even bigger isochrone areas.

The results of this research are promising although some points can be improved
in future research. First of all, pgRouting by default is more focused on the use of
static input data for network calculations. Time Dependent Dynamic Shortest Path
Algorithms (TDDSP) and a method to increase the accuracy of the nodes returned
by pgRouting, for example, would increase the overall accuracy of the isochrone
calculations and thus the calculated number of people within these areas. These

Fig. 4 Isochrones webmap IKEA Groningen
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functionalities can be added by editing the default pgRouting functions. Also, the
interactivity currently offered in the isochrones web map could be extended. It
would be nice if users could search for their own address and pan and/or zoom the
map.

Besides these methodological points, new, more accurate spatiotemporal data
sets might become available in the near future. It would be interesting to calculate
isochrone areas using actual traffic speeds of one single day instead of the Traffic
Patterns used in this research. Also, more research into GSM data should be con-
ducted to draw better conclusions on the accuracy and usability of these data.

Moreover, the dynamic isochrone map should be tested with actual end-users in
future research to evaluate the usability and other potential benefits or shortcomings
compared to traditional static isochrone maps. In this research, we claim that adding
spatiotemporal dynamics to isochrone maps lead to a better and more accurate
insight in accessibility but the potential need and use for such an application are not
researched. Another interesting application would be to analyze day-to-day
dynamics. This research only focused on a single day but there are significant
differences in accessibility between different days as well.

Although there is always room for improvement, especially regarding the
visualization of the results, we hope our work encourages further research into
dynamic isochrone maps using spatiotemporal traffic and population distribution
data. Besides potentially improving the methodology presented in this research, we
hope to see relevant new case-studies in which the benefits of a dynamic isochrone
map, as presented in this research, are shown.
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Continuous Trajectory Pattern Mining
for Mobility Behaviour Change Detection

David Jonietz and Dominik Bucher

Abstract With the emergence of ubiquitous movement tracking technologies, devel-

oping systems which continuously monitor or even influence the mobility behav-

iour of individuals in order to increase its sustainability is now possible. Currently,

however, most approaches do not move beyond merely describing the status quo of

the observed mobility behaviour, and require an expert to assess possible behaviour

changes of individual persons. Especially today, automated methods for this assess-

ment are needed, which is why we propose a framework for detecting behavioural

anomalies of individual users by continuously mining their movement trajectory data

streams. For this, a workflow is presented which integrates data preprocessing, com-

pleteness assessment, feature extraction and pattern mining, and anomaly detection.

In order to demonstrate its functionality and practical value, we apply our system to

a real-world, large-scale trajectory dataset collected from 139 users over 3 months.

Keywords Mobility ⋅ Trajectory mining ⋅ Anomaly detection

Sustainability ⋅ Behavior change

1 Introduction

Human mobility is ubiquitous in modern societies and represents an integral part

of our daily behavioural routines. At the same time, however, there are numerous

undesirable effects, such as traffic jams or increased fossil fuel consumption (Taaffe

1996). With regards to Switzerland, for instance, roughly a half of the total CO2
emissions are contributed by the transportation sector (including international avia-

tion), with motorized individual mobility being responsible for around two thirds of

these emissions (Bundesamt fuer Umwelt 2014). If no major changes occur in the
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transport system, these numbers are widely expected to rise in the coming decades

(Boulouchos et al. 2017).

Recently, the significance of emerging technologies which enable ubiquitous

monitoring as well as real-time regulation and management of human mobility has

been emphasized as potential game changing aspect for increasing the sustainability

of travel behaviour (Boulouchos et al. 2017). Indeed, current developments in the

field of location-acquisition technologies such as Global Navigation Satellite Sys-

tems (GNSS), Wireless Local Area Networks (WLAN), or Global System for Mobile

Communications (GSM) allow to monitor and record human movement at an excep-

tional level of detail and at relatively low cost and effort (Feng and Zhu 2016). Due

to the widespread use of modern smart phones, as well as a general trend towards

digitalization in the transportation and mobility sector, Big Mobility Data are now

widely available and ready to be utilized for gaining unprecedented insights into the

fundamental mechanisms that guide human mobility (Brunauer and Rehrl 2016).

In fact, since the late 1990s, human movement trajectories, i.e. series of chrono-

logically ordered x, y-coordinate pairs with time stamps (Andrienko et al. 2016),

have increasingly been used for travel surveys (Shen and Stopher 2017). Apart from

notable exceptions (e.g. Schlich and Axhausen 2003; Stopher et al. 2013), however,

these studies have mainly applied a snapshot approach (e.g. Schüssler 2008; Kohla

and Meschik 2013), with the center of interest being put on inter-personal variabil-

ity (differences in the behaviour of different persons) rather than intra-personal vari-

ability (different behaviour of one person from day to day) (Schlich and Axhausen

2003). What has often been neglected, therefore, is analysing the dynamic dimension

of mobility behaviour, i.e. behaviour changes such as trying out new travel alterna-

tives, or forming new mobility habits.

Especially today, however, it would be worthwhile to be able to automatically

detect and analyse such changes in mobility behaviour. On the one hand, in con-

trast to merely surveying mobility behaviour, there are now systems which move

further by aiming to directly influence people’s mobility behaviour towards more

sustainable transport alternatives (cf. Banister 2008), e.g. by using mobile applica-

tions which continuously record the movements of users, stream the data to a server,

and utilize them to provide their users with feedback or even suggest more sustain-

able travel options (Froehlich et al. 2009; Montini et al. 2015). To the best of our

knowledge, currently none of these systems apply strategies for automatically detect-

ing behaviour change, but instead require manual checking of the data for evaluating

the effectiveness of the conducted persuasive measures. A fully automated system

which continuously monitors movement behaviour based on a stream of trajectory

data, and detects behavioural changes, however, could take over this tedious task

and even trigger dynamic reactions to users based on their behavioural changes, e.g.

encourage sustainable mobility behaviour adaptations and discourage in the opposite

case. On the other hand, apart from application scenarios where behaviour change

is actively induced, the development of methods for detecting such variations in

movement data would also be useful for general transportation research and planning

purposes. Thus, for instance, insights are still needed in terms of evaluating and pre-

dicting peoples reactions to today’s novel mobility options, such as shared mobility,
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mobility as a service, electric mobility and autonomous vehicles. Being confronted

with these, one can expect numerous people to adapt their mobility behaviour, e.g.

by testing novel alternatives and even forming new travel habits (Boulouchos et al.

2017). In order to accurately understand these behavioural changes, travel surveys

are needed which involve tracking numerous participants over a long period of time.

In addition, a set of suitable methods are necessary to analyse the collected data and

be able to accurately understand these behavioural changes.

For developing such methods, however, a practical problem is posed by insuffi-

cient data quality. It is especially data incompleteness which represents a critical

challenge for GNSS-based travel surveys, since it comprises missing records for

parts of trips, one or more full trips, or even one or more full days of the record-

ing period (Hecker et al. 2010). These gaps can have various causes, e.g. the cold

start problem at the start of movement, bad signal reception, participants leaving

the device switched off, or other technological problems (Shen and Stopher 2017).

While shorter gaps can often be handled by means of map matching techniques

(see Sect. 2.1), longer ones can heavily distort or bias the results of the following

analyses. In the context of automated behaviour change detection, for instance, the

occurrence of missing movement data could lead to misleading calculations, e.g.

drastically lower values for CO2 emissions produced during the respective week of

recording. In this case, a system might erroneously interpret this drop in numbers as

a behaviour change, whereas it is in fact merely the result of missing data. To avoid

such misdetection of behaviour changes, methods need to be sensitive to recording

gaps, i.e. distinguish them from cases where observed changes are actually due to

changed mobility patterns.

Before this background, this study proposes a method for identifying and evalu-

ating changes in human mobility behaviour by first detecting and quantifying spatio-

temporal recording gaps in a stream of movement trajectory data, and then contin-

uously mining it for anomalies with regards to various mobility features, i.e. a sub-

set of variables which can be extracted from movement data, and describe selected

aspects of mobility behaviour (e.g. average speed, travelled distances). Focussing on

sustainable mobility as the application scenario, we simulate a real-time data stream

using a real trajectory dataset collected from 139 users over 3 months in Switzerland.

This paper is structured as follows: First, in Sect. 2 background information is pro-

vided starting with a brief review of available methods for surveying human mobility

behaviour on the basis of movement trajectory datasets. Then, the focus is shifted

to the potential of similar techniques for inducing and analysing changes in mobil-

ity behaviour. In the following Sect. 3, our concept is presented and discussed with

regards to data preprocessing, completeness assessment, feature extraction and pat-

tern mining, and finally anomaly detection. In Sect. 4, the framework is applied to a

test dataset, before the results are discussed and the paper is concluded in Sect. 5.
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2 Related Work

In the context of this study, relevant prior work applies one of two distinct perspec-

tives on mobility behaviour and movement data analysis, and is briefly reviewed in

this section:

1. Assessing the present state of mobility behaviour, i.e. where, when and how
a person travels. This is normally achieved by means of GNSS-assisted travel

surveys.

2. Aiming to change existing mobility behaviour in order to increase its sustain-

ability, e.g. by means of mobile applications which provide both tracking and user

feedback functionalities.

2.1 Movement Trajectories for Surveying Human Mobility
Behaviour

Before the rise of position tracking technologies, the traditional ways of gaining

insights about the mobility behaviour of people were face-to-face interviews, mail-

out/mail-back or telephone surveys. Since the late 1990s, however, GNSS-assisted

travel surveys emerged as a novel method, and gradually replaced these approaches

due to numerous advantages, such as a relatively high accuracy in recording time and

position, low cost (especially with modern smartphones), and less problems with

regards to trip-misreporting by respondents (Shen and Stopher 2017). Nowadays,

exemplary approaches are manifold, and have spread from pilot studies undertaken

in the USA (Wagner 1997) to a range of other countries, including Switzerland (Shen

and Stopher 2017).

After recording the movements of test persons, the data require extensive process-

ing in order to extract relevant mobility features, in particular places that have been

visited for a certain purpose and the travelled routes between these places. With

regards to the former category, stay points are typically detected based on various

clustering techniques (e.g. Palma et al. 2008), or the movement speed (e.g. Li et al.

2008). With regards to the travelled routes, via map matching, the exact path taken

through a road network can be inferred from the tracking points, e.g. by simple point-

to-curve snapping (e.g. White et al. 2000) or advanced techniques such as evolution-

ary algorithms (Quddus and Washington 2015). Apart from the routes, numerous

studies have proposed approaches to infer the used traffic mode, for instance based on

identifying walking transitions between mode changes (Zheng et al. 2010), analysing

a range of movement descriptors (Sester et al. 2012), or the underlying transportation

network (Stenneth et al. 2011).

In order to describe a person’s mobility behaviour based on trajectory data, these

(and other) mobility features need to be further analysed to extract patterns, i.e.

observable regularities in movement behaviour such as habits or long-lasting pref-

erences and restrictions. Thus, one can calculate general statistics over certain time
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intervals, such as the average duration and length of trips, the modal split, or the

usual times of travel (Axhausen and Frick 2005), but also more use-case specific

aspects such as frequently visited places other than home or the work location (Siła-

Nowicka et al. 2015) or the location of regularly performed activities like eating,

shopping or physical exercise (e.g. Zheng et al. 2010; Furletti et al. 2013). When

being properly interpreted, mobility features and their regular patterns can serve as

indicators for higher-level attributes, such as the sustainability of mobility behaviour.

In this context, for instance, (Nicolas et al. 2003) formulated a set of potential sus-

tainability indicators which can be extracted from travel survey data. Among others

which refer to the aggregate city level, those which could be extracted from trajec-

tory data include the daily number of trips, the structure of trip purposes (e.g. com-

muting versus leisure), the daily average time budget spent for travelling, the modal

split (especially the share of slow mobility, i.e. walking and cycling), the average

distance travelled daily, and the average movement speed. Other relevant indicators

which have been formulated in the literature include the amount of CO2 emissions

and the degree to which trips are intermodally integrated, i.e. use different traffic

modes in combination (World Business Council 2015).

Naturally, the validity of the results computed for mobility features depend to a

large degree on the quality of the input trajectory data, in particular the completeness

of the recorded movement. Missing trips or even full day gaps will lead to erroneous,

in some cases even heavily biased, results (Hecker et al. 2010), however, are a regu-

larly occurring issue in travel surveys (Shen and Stopher 2017). Although this issue is

frequently discussed in the literature (e.g. Shen and Stopher 2017; Wolf et al. 2003),

only few studies propose solutions, such as evaluating the intrinsic trajectory data

quality based on the spatial and temporal resolution (Prelipcean et al. 2015), a statisti-

cal approach to detect dependencies between mobility behaviour, socio-demography

and missing data (Hecker et al. 2010), or imputation, the process of inferring the

missing trips based on observed data using statistical relationships (Polak and Han

1997). Another popular option to improve and ensure the completeness and correct-

ness of the movement data in travel surveys are prompted recall (PR) methods, in

which during the tracking phase, respondents are regularly asked to manually val-

idate and complete their recorded movements, for instance at the end of each day

(e.g. Bucher et al. 2016).

In traditional travel surveys, the focus is usually put on analysing the status quo

of mobility behaviour, since, as (Schlich and Axhausen 2003) argue, there is a gen-

eral assumption that travel behaviour mainly consists of highly habitual routines,

and remains relatively static over time. Thus, in most cases, mobility features are

calculated once on the basis of the entire available data in order to assess the present

state of transportation system usage (e.g. Schüssler 2008; Kohla and Meschik 2013)

rather than analysing its temporal dynamics. Additionally, this snapshot approach is

often caused by practical limitations with regards to the available movement data,

with durations of the tracking period rarely exceeding two weeks (Shen and Sto-

pher 2017). There are, however, also examples of longitudinal analyses of travel

behaviour (e.g. Hanson and Huff 1988; Schlich and Axhausen 2003; Stopher et al.

2013; Gonzalez et al. 2008; Song et al. 2010). These studies were mostly concerned



216 D. Jonietz and D. Bucher

with detecting day-to-day variations, stability measures, and statistical properties of

mobility behaviour from movement data of various kinds, such as those obtained

with GSM or GPS, or traditional travel survey methods. While GSM data typically

covers long durations and large numbers of users, transport surveys and GPS record-

ings stem from much less persons over the course of merely a few weeks. Gonza-

lez et al. (2008), for instance, developed an aggregated model of human mobility

based on extensive mobile phone data, and found strong inter-personal regularities,

but did not distinguish between individual users or temporal changes. Schlich and

Axhausen (2003) report on different mobility indicators, and how they can be used

to compute similarity measures between mobility behaviour on two different days.

2.2 Inducing Change in Human Mobility Behaviour

Apart from merely monitoring and analysing the status quo of mobility behaviour,

other studies have built on similar analytical methods to actively influence users

in order to make them travel in a more environmentally sustainable way. For this,

mobile applications and a feedback loop were used, with examples including Ubi-
Green (Froehlich et al. 2009), PEACOX (Montini et al. 2015), or GoEco! (Bucher

et al. 2016). In some cases, apart from merely summarizing the recorded mobil-

ity behaviour, the provided feedback also included the proposal of more sustainable

travel alternatives. At present, however, most approaches suffer from either short

study periods (Hamari et al. 2014), or from basing their feedback and suggestions for

more sustainable mobility on a single snapshot, for example data which was recorded

during a pre-study or a baseline-tracking phase. This shortcoming hinders the devel-

opment of long-running applications that continuously monitor mobility behaviour

and are thus able to provide feedback based on detected changes of current in com-

parison to past behavioural patterns.

Thus, a system would be worthwile with the ability to automatically detect

changes in behaviour, which could then, based on established models of behav-

ioural change processes, select actions to be taken to support (in case of increased

sustainability) or prevent (in the opposite case) the observed behaviour change. A

commonly used psychological conceptualization is the Transtheoretical Model (Pro-

chaska and Velicer, 1997) which separates behaviour change into precontempla-
tion, contemplation, preparation, action and maintenance phases. Upon detecting

a change in mobility, one could for instance infer that a user started contemplating

new behavior, and support a transition towards this behavior by supplying her with

information (e.g. Tulusan et al. 2012; Taniguchi et al. 2003), rewarding further good

choices (e.g. Ben-Elia and Ettema 2011), dissuading unsustainable behavior (e.g.

Schade and Schlag 2003), or otherwise engage and motivate her to move to the

preparation or action stage (Weiser et al., 2015). Alternatively, for users without

changes in mobility (one could argue they are in a precontemplation or maintenance
phase), a system might foster self-experience of travel alternatives (e.g. Abou-Zeid
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et al. 2012; Bamberg et al. 2003; Bamberg 2006) in order to make them try out new

and more sustainable transport options.

Automatically exposing behaviour change is closely related to anomaly detec-

tion, the identification of deviations from a certain norm (Chandola et al. 2009). In

contrast to filtering out noise, in this case the focus of interest is usually placed on

the nature of the abnormalities themselves. In the transportation domain, researchers

have been interested in detecting anomalies in large collective mobility datasets (cf.

Souto and Liebig 2016; Yang and Liu 2011) for urban traffic applications and emer-

gency management. Another line of research considers (geometrical) pattern match-

ing on trajectory data (e.g. Florescu et al. 2012; Du Mouza et al. 2005), for example

by building a higher-order Markov model of a user’s transitions from one mobile

phone cell to another (Sun et al. 2004). The authors encode the individual patterns

in a mobility trie, which they in turn use to search for anomalies by computing dis-

tances between previous and new, potentially anomalous patterns. They explicitly

note on the importance of dynamically updating “normal behaviour”, and weight-

ing recent patterns higher than ones which occurred longer ago. However, all these

approaches are based on a relatively crude assessment of mobility, which either only

considers transitions from one region to another, or aggregate data from many users

to get a complete view of the current traffic situation. For detecting individual behav-

iour change over time, however, a method is needed which works with a continuous

stream of non-aggregated movement data on an individual level, and tests multiple

dimensions of mobility behaviour for anomalies, by comparing them to the user’s

past behaviour.

3 Method

In this section, we present a system for detecting mobility behaviour change based

on a continuous stream of movement data from individual users. The proposed work-

flow is illustrated in Fig. 1. We assume that a user’s raw movement trajectories,

recorded via a smartphone application or a similar device, are constantly streamed

to a server, and logged in a database. After a certain time period has passed (we

propose one week), the data recorded in this interval are fed into a data processing

engine, where they pass through four processing steps: first, the trajectories are pre-

processed, i.e. filtered, segmented, annotated with the traffic mode, and matched to

the road network. Then, the available data for this time period are tested for com-

pleteness in order to evaluate their sufficiency for the following analytical processes.

If found insufficiently complete, the data are discarded, if rated appropriate, how-

ever, they are fed to the next module, which extracts a range of mobility features and

mines for patterns. The results are stored in a database, and provide the input for

an anomaly detection sub-process, which identifies behaviour change and triggers

an appropriate reaction. As can be seen on the far right of Fig. 1, this may involve

sending out notifications to the users or analysts, triggering a response (e.g. encour-

aging or discouraging the observed behaviour change), logging the occurrence of
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Fig. 1 Workflow

the anomaly, or providing information to an expert for decision support. The exact

nature of these system reactions, however, is beyond the scope of this paper. Instead,

since our focus is put on the data processing engine, its four sub-modules will be

further described in this section.

3.1 Data Preprocessing

As it has been described, movement data are continuously streamed to a server, and

logged in a database. In order to evaluate behavioural changes, however, it is neces-

sary to define discrete time intervals (in the following: one week), which will serve

as atomic units for later temporal analysis. Thus, after all available data for a full

week have been stored in the database, they are fed into the data processing engine

(cf. Fig. 1), and further analysed. In a first step, the data need to be preprocessed,

which involves the sub-processes noise filtering, stay point detection, segmentation,

mode detection, and map matching (Zheng 2015). Please note that whereas exem-

plary methods for these preprocessing steps are proposed in the following, they could

also be replaced by other solutions which are better suited to the respective study

aims or data characteristics.

In the beginning, the data are cleaned by removing noisy trackpoints based on

a set of filter functions such as a spatial query with a certain study area, or plausi-

bility checks with regards to speed constraints (Zheng 2015). Then, the stay points

are detected in the remaining trackpoints, e.g. by means of a clustering technique

(Palma et al. 2008). The next preprocessing step detects the traffic mode(s) used,

e.g. by computing and analysing various movement descriptors such as the speed or

acceleration (Sester et al. 2012). Finally, map matching needs to be performed for all
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Fig. 2 The different layers

of movement data

aggregation used in this

study. Note that in contrast to

“home” and “work”, the

transition points between

train, bus and tram are not

considered activities.

Basemap© Mapbox.com

points using one of the available techniques, e.g. evolutionary algorithms (Quddus

and Washington 2015).

After basic preprocessing, it is necessary to structure the movement data into

meaningful units. Inspired by prior approaches (Axhausen and Frick 2005), we pro-

pose to distinguish between the following elements: At the most fundamental level,

trajectories (the complete trace of a users movement over a given time frame) are

made up of trackpoints. In a first layer of aggregation, trackpoints are grouped into

trip legs based on the used transport mode. Finally, a trip consists of one or more

legs, and describes the journey from one ‘activity’ to another. A stay point simply

denotes a location where someone spent longer than a certain time span, and can

qualify as an activity if it represents an actual destination of travel (e.g. work, home

or a shop), and not merely a location where a user spent time waiting for a bus or

stuck in a traffic jam. Figure 2 shows an exemplary trip with its constituting elements.

3.2 Data Completeness Assessment

After preprocessing, the available data for the current week are tested for their com-

pleteness. As has been discussed in Sect. 2.1, missing trips or other gaps in recording

can have negative effects on downstream analysis processes (e.g. Shen and Stopher

2017; Wolf et al. 2003). In our case, for instance, missing data, if not identified and

filtered previously, might result in misdetections of behaviour changes due to drasti-

cally altered values for mobility features. Please note that in this step, we assume the

norm to be continuous tracking over the whole study period, as it is often the case

in related surveys (e.g. Montini et al. 2015; Bucher et al. 2016).

As a first step, we distinguish between different types of recording gaps:

∙ Temporal gaps: the duration with no recorded data between the last recorded time

stamp of a trip leg or stay point and the first recorded time stamp of the sub-sequent

trip leg or stay point. The spatial deviance between the position of the last track
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point of the former, and the first track point of the latter tripleg or stay point is

smaller than an expected GPS error (e.g. 250 m).

∙ Spatio-temporal gaps: gaps for which the spatial distance between the last track

point of the former, and the first track point of the latter trip leg or stay point is

larger than an expected GPS error.

This distinction is motivated by the fact that in the first case, chances are high that

no mobility behaviour has been missed since the user might simply have remained

stationary during the recording gap, whereas in the second case, the user’s change

in position proves that movement has certainly taken place but was not recorded.

Both types of gaps can be easily extracted from the database by calculating the

time differences as well as spatial distances between the start and end points of sub-

sequent pairs of trip legs and stay points. The data completeness for the current time

interval can then be evaluated based on two index values:

gduri =
∑

𝛥gi
𝛥ti

gdisti =
∑

dist(gi)
∑

dist(triplegsi)

where gduri is the ratio of the summed durations 𝛥gi of all temporal and spatio-

temporal gaps gi and the total duration 𝛥ti of week i. In the second index, gdisti
is the ratio of the summed distances dist(gi) of all spatio-temporal gaps gi and the

summed distances dist(triplegsi) of all trip legs triplegsi recorded within week i. In

combination, these index values express the temporal extent of recording gaps, as

well as the relative magnitude of missed mobility behaviour. For instance, in a week

in which a user has travelled relatively less compared to others, recording gaps of

similar temporal length can be rated as less critical, since less travelled distance, i.e.

mobility behaviour, might be missing in the data.

3.3 Mobility Feature Extraction and Pattern Mining

After the available data has been confirmed to be of sufficient completeness, selected

mobility features can be extracted. Of course, these will depend to a large degree on

the study aims. As our focus is on sustainability, we compute durations, distances,

speed, and produced CO2 emissions for each trip leg to serve as basis for comput-

ing the indicators listed in Sect. 2.1. Next, in addition to segmenting the movement

trajectories based on their semantics (e.g. trip legs by traffic mode, trips between

activities), as described in Sect. 3.1, we also induce a temporal structure by group-

ing all movement on a daily basis. Of course, the pre-defined discrete time interval at

which the data is processed (here: one week) provides a further temporal analytical

unit.
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Table 1 Units of analysis for deriving mobility features and patterns

Analysis unit Delimiting factor Description

Trip leg Transport mode/vehicle Mono-modal trip segment between

two points without changing mode

or vehicle

Trip Purpose Trip between two locations for a

certain purpose; consists of one or

more trip legs

Day Time All trips within 24 h; contains one

or more complete or incomplete

travels (incomplete: beyond

temporal delimitation)

Week Time All trips within 7 consecutive days

Table 2 Mobility features

Descriptor Day Week

Total number of trips x

Average number of triplegs per trip x

Total distance travelled x

Total distance travelled (per trip purpose) x

Total distance travelled (per traffic mode) x

Average distance travelled x x

Total duration spent travelling x

Total duration spent travelling (per trip purpose) x

Total duration spent travelling (per traffic mode) x

Average duration spent travelling x x

Total CO2 emissions x

Average travel speed x

Average travel speed (per traffic mode) x

Frequently visited places x

The resulting analytical units for computing mobility features are summarized in

Table 1.

For assessing the sustainability of the user’s mobility behaviour within the week,

we compute a set of indicators (Nicolas et al. 2003; World Business Council 2015)

as listed in Table 2.

Whereas the first three indicators can be easily extracted from the preprocessed

data, several others require a classification of the stay points and their related trips

according to their purpose. Purpose and activity detection can either be achieved by

computational methods, e.g. based on visited POI (e.g. Furletti et al. 2013), or by

simply asking the users to annotate the data manually in the course of an accompa-

nying PR survey. The total CO2 emissions produced by travelling depend primarily
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on the modal split, and can for instance be calculated based on the Mobitool con-

sumption and emission factors (Tuchschmid and Halder 2010), which provide the

consumption and emissions of the full life-cycle of a mode of transport per single

kilometre travelled in Switzerland.

Finally, although not being directly related to sustainability, the frequently vis-

ited places are nevertheless included in the list of mobility features. This is due to

the fact that this attribute allows for drastic changes in the personal circumstances

to be detected (e.g. moving to a different city). Thus, if other indicators such as the

CO2 emissions change, but the visited places remain unaltered, this could indicate

that a user is testing new travel options (e.g. taking the bicycle to work) while her

circumstances remain the same. For mining the frequently visited places in a way

which allows them to be compared to the results obtained for previous weeks, we

choose a clustering approach. Using the DBSCAN algorithm (Sander et al. 1998),

we cluster all activities found during the week. Due to the fact that although a user

might have visited the same place as in the week before, the recorded activities and

their associated point geometries will not correspond spatially, we choose an alter-

native approach and compute a minimum bounding geometry of the points based on

their cluster membership. In order to avoid creating multiple instances of the “same”

place in the database, the resulting polygon is tested for overlaps with already exist-

ing places in the database. If an overlap is found, no new place instance is created,

but rather the id of the overlapping place in the database is extracted and stored in

a list of frequently visited places for the current week. If no overlap with already

existing places is detected, a new place instance is created in the database, and a new

id is assigned. Figure 3 shows an example of activities and the overlapping cluster

geometries from different weeks for one user. Since they all overlap, only the first

occurrence would be created as an instance and assigned an id. For all the other

clusters, only the information that the place has been visited frequently enough to

be detected as a cluster would be stored together with its id. After computation, the

results for all indicators are stored in a database (see Fig. 1).

Fig. 3 The activities are shown on top of the overlapping minimum bounding polygons, as derived

from the point clusters at different weeks
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3.4 Anomaly Detection

At the present stage of the workflow, mobility features and patterns have been

detected and stored for the current week. Now, it is possible to load similar data

computed for the previous weeks from the database, and assess potential anomalies

in mobility behaviour (see Fig. 1). Numerous algorithms available for anomaly detec-

tion simply classify individual data points (in our case, aggregations of all mobility

features for the current week) as anomalous or normal, without allowing further

insight into which feature exactly caused the data point to be classified as anom-

alous (cf. Chandola et al. 2009). This knowledge, however, is critical for our pur-

poses since merely knowing that an anomaly occurred is not sufficient, but rather the

results should allow deeper interpretation of the detected behaviour change. Thus, to

decide which system action should be triggered as a reaction, it is critical to explicitly

identify the mobility features which have changed, i.e. were detected as anomalous.

For instance, an increase in bicycling distance could trigger encouraging feedback,

whereas an increase in CO2 production could lead to a discouraging response. There

is work on explaining anomalies in more detail after their detection (e.g. Pevnỳ and

Kopp 2014), which could therefore be used in combination with any anomaly detec-

tion algorithm. For our purpose, we found this unnecessary and rather detect anom-

alies for each feature individually.

For each mobility feature fi (except the frequently visited places, which will be

explained separately) we compute the mean 𝜇i and standard deviation 𝜎i of the n
weeks preceding the week currently under investigation, where n is a tunable win-

dow size (set to 5 weeks in our tests). Comparing the values computed for the current

week, it is now possible to assess if an existing deviation should be considered a nor-

mal fluctuation or an anomaly. This is controlled by another parameter 𝜆, i.e. a feature

fi is considered anomalous if |fi − 𝜇i| > 𝜆 ⋅ 𝜎i. Accordingly, if the feature re-centred

around zero has a deviation larger than what can be expected given previous feature

values, it is treated as anomalous. We found a value of 𝜆 = 3 to yield reasonable

results.

To compute if a set of frequently visited places within a week should be consid-

ered anomalous, a similar approach is applied. We encode the presence of a certain

place in a given week with a 1, and its absence with a 0. For every place, this results

in a list of binary digits, e.g. the sequence (0, 0, 1, 0, 1) encodes a place being visited

in weeks 3 and 5, but not in any other week. Using this numerical representation, we

can compute if the appearance of an individual place in any week should be consid-

ered anomalous or not by using a similar technique as above. However, as this results

in every place being an additional mobility feature (which results in frequent cases

with large number of anomalous features), we sum the number of anomalous places

in every week, and perform another anomaly detection process on the resulting val-

ues. For example, a person frequently travelling for work purposes will constantly

yield high numbers of anomalous places (i.e. first time visits at new places), a fact

which is not particularly useful in terms of behaviour change detection. If, however,

this number drops suddenly, and the visited places show a more regular pattern,
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it signals a behavioural change (which could be due to holidays, a job change, etc.).

Summarizing anomalies in the frequently visited places as described allows us to

handle them as a single mobility feature, and to report their anomalies for further

interpretation by an automated system or an expert.

4 Case Study

We implemented the described method as a Python application (using a PostgreSQL

database with the PostGIS extension for all spatial operations), and evaluated it on

a large dataset collected over a period of three months, from approximately middle

of December 2016–March 2017. 139 people used a smartphone tracking app, which

passively recorded all their journeys, inferred a transport mode, and allowed them to

change it in case the proposed one was wrong. The dataset consists of 52’370’797

trackpoints, which are divided into 125’759 trip legs and 71’099 trips.

Using these data, we simulated a continuous data stream by feeding data for

each week subsequently into the data processing engine. Below, the results for our

mobility behaviour change detection process are provided for two exemplary users.

Figures 4 and 5 show the detected anomalies for these users per week. The blue dots

indicate the number of anomalies for each week, while the yellow dots show the

number of anomalies with regards to frequently visited places. Please note that this

does not correspond to the total number of places visited by a user, but only to those

that were unexpectedly visited or skipped in the respective week. Not surprisingly,

the place-related anomalies are relatively more frequent in the first weeks, which is

due to the cold start problem, i.e., sparse data making it difficult to assess whether

a frequently visited place should represent an anomaly. Weeks which are missing

values were filtered out previously, due to insufficient data completeness. For this,

Fig. 4 All (blue) and only place-related (yellow) anomalies for user A of our test sample. In weeks

2016-50, 2016-52, and 2017-02, the data completeness was found insufficient to reliably assess

mobility behaviour patterns
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Fig. 5 All (blue) and only place-related (yellow) anomalies for user B of our test sample. In week

2017-07, the data completeness was found insufficient to reliably assess mobility behaviour patterns

we defined threshold values so that data for weeks were only further analysed if their

gduri ≤ 0.25 and gdisti ≤ 0.25.

The mobility behaviour of user A, whose anomalies are shown in Fig. 4, remains

rather constant up until calender week 2017-06, where several anomalies are detected.

Whereas in that week, only the average walking speed is noticeably higher compared

to preceding weeks, in the following week 2017-07 we detect an increase in the dis-

tance (𝜇d = 7.0 km → fd = 33.2 km) and duration (𝜇t = 19 min → ft = 1 h 41 min)

of travels made by bus. In week 2017-08, one can observe an additional increase in

distance and duration of both walking (18.6 km→ 58.4 km; 2 h 38 min→ 9 h 43 min)

and bicycling (1.9 km → 31.2 km; 5 min → 1 h 37 min). Due to the fact that in con-

trast to these anomalies, the frequently visited places still remain largely unchanged

compared to the weeks before, we can conclude that this user indeed changed her

mobility behaviour by increasingly using slow mobility (walking and bicycling) and

public transport. An automated feedback system as described previously could now

trigger reinforcing measures for this behaviour, e.g., by providing incentives, and

thus assisting the user to transition to a phase where this new mobility behaviour is

internalized and does not require further motivation.

The results for user B are shown in Fig. 5. Here, changes in mobility behaviour

can be observed between weeks 2017-05 and 2017-08, which in this case, however,

originate from increases in the totally travelled distance (e.g., 690 km → 1’836 km),

the average speed (41.4 km/h → 97.1 km/h) the distance covered by car (307 km →
1’091 km), bike (1.1 km→ 14.5 km) and walking (12.3 km→ 34.1 km), as well as the

related durations (plus the duration spent travelling by tram in week 2017-06). Based

on the observation of such a general increase in mobility activities (not just one spe-

cific mode of transport), and set in combination with the occurrence of several place-

related anomalies in weeks 2017-06 and 2017-08, one can interpret this pattern as

an exceptional change of behaviour likely caused by altered personal circumstances,

e.g., a holiday or business trip, rather than a gradual change of new habit formation.

Indeed, when analysing the movement data for this user in more detail, we found
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several long distance car journeys with destinations outside of Switzerland during

the respective weeks. Furthermore, in the user’s home Kanton, the weeks 2017-07

and 2017-08 are usually winter holidays. This would also explain the observed data

incompleteness in week 2017-07, since the smartphone tracking method deployed in

this study relies on a mobile data connection, which is often unavailable when travel-

ling abroad. In this case, an automated system reaction could be to rate the detected

changes as likely temporary, and ignore them for the time being.

5 Discussion and Conclusion

In this study, we proposed a framework for continuously mining streams of move-

ment trajectory data of users for detecting mobility behaviour changes. As it has

been discussed, after data preprocessing, the completeness of the available move-

ment recordings needs to be assessed in order to avoid misdetections of behavioural

anomalies in the later steps of the analysis process. For this purpose, we presented a

solution for quantifying recording gaps, hereby distinguishing between purely tem-

poral and spatio-temporal gaps. Furthermore, we calculated a list of mobility features

to serve as sustainability indicators, and proposed a method to compute and evalu-

ate frequently visited places. Finally, the anomaly detection process was described

which yields detailed results with regards to the exact mobility feature causing the

anomaly occurrence. By applying the framework to a simulated stream based on

a pre-recorded large-scale trajectory dataset, and evaluating the plausibility of the

results obtained for two exemplary users, we could demonstrate its functionality and

practical value.

In our view, this work provides a first step towards the development of person-

alized, automated mobility support systems which provide adaptive intervention

strategies for gradually changing people’s mobility behaviour towards a higher sus-

tainability. The proposed framework, however, is not restricted to this application

domain, but could be applied for other purposes as well, e.g. for general monitoring

of mobility behaviour and computing descriptive statistics, or for detecting anom-

alies in the movements of animals or even automated vehicles or drones. A practical

advantage of our approach worth mentioning is the fact that whereas the derived

mobility feature values are stored for every week (feature and pattern log in Fig. 1),

the actual movement data (movement data log in Fig. 1) can be deleted immediately

after processing. This not only reduces the resources necessary for data storage, but

also addresses privacy concerns, since the most sensitive data are deleted regularly.

There are, however, still some limitations to our approach. Thus, although the

most sensitive movement data can be deleted after analysis, there still remain con-

cerns with regards to location privacy. With mobile devices constantly gaining in

computation and storage capabilities, however, a potential solution could be to shift

critical parts of the analytical process to the client, and simply transmit the computed

index values to the server for anomaly detection. Moreover, the list of used sustain-

ability indicators is not exhaustive, and more complex values, e.g. incorporating car
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occupancy, would increase the realism with which sustainability is quantified in our

study. These restrictions, however, largely depend on the quality and level of detail of

the available data. Furthermore, in the exemplary application of our system, we could

clearly observe problems for the first iterations due to the cold start problem, which

is a usual challenge for user profiling and sequence mining applications. The useful-

ness of our system would therefore be reduced to a certain degree in the first phase of

application. In addition, it would certainly be worthwhile to include more detailed

mobility features, e.g. the usual times of travel, distinguish between the weekend

and working days, or incorporate contextual information (e.g. the weather) for bet-

ter results. However, special care needs to be taken for correlating features (e.g.,

distance and duration), as they would be flagged as anomalous in the same weeks,

thus leading to a wrong assessment of behaviour change. At the same time, it can be

expected that an increase in the number of features could complicate their semantic

interpretation. Decision support, e.g. in the form of automated feature classification

could therefore be worthwhile. Finally, due to the fact that at the current stage of this

study, we have no access to ground truth data with regards to the behavioural anom-

alies (e.g. in the form of user interviews), a systematic evaluation of the proposed

method must be regarded as future work.

Apart from testing and evaluating the model with a subset of users who can pro-

vide additional information with regards to their mobility behaviour, it is planned to

refine the list of mobility features and develop a prototype of an expert system capa-

ble of interpreting the detected behavioural changes. It would also be interesting to

apply a semantic perspective to the interpretation of place-related anomalies, e.g. by

incorporating POI from additional data sources to assess the type of places visited.
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An Overall Framework for Personalised
Landmark Selection

Eva Nuhn and Sabine Timpf

Abstract This paper proposes a multidimensional model for the selection of per-

sonalized landmarks. The model is based on an existing landmark salience model,

which was designed to be open to adaptations regarding individual user preferences.

The conventional model is based solely on landmark dimensions (i.e. visual, seman-

tic and structural dimension). We add an additional personal dimension to account

for different familiarities and interests. Further, we add an environmental dimension

to accommodate different routing situations and a descriptive dimension to consider

the brevity of a landmark description. In this paper we identify the attributes of the

dimensions of the multidimensional model and investigate methods for calculating

the salience of the attributes. The applicability and usefulness of the (still evolving)

model is shown with three different case studies.

1 Introduction

Awareness has been increasing that people with different backgrounds and prefer-

ences prefer different landmarks (Hamburger and Röser 2014; Quesnot and Roche

2015). The latter study showed that people familiar with an environment clearly pre-

ferred local semantic landmarks, while people unfamiliar with an environment pre-

ferred landmarks with salient visual and structural characteristics. It is also known

that the level of interest can enhance memory for some information (McGillivray

et al. 2015). Obviously, it is a challenging task to find the best landmark based on

spatial knowledge and individual interests of a traveler.

The term landmark exhibits many different meanings. The most fundamental one

is that of an object or structure that serves as external point of reference (Lynch

1960). Thus, a landmark has an outstanding visual characteristic, a unique importance
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or meaning or is in a central location (Sorrows and Hirtle 1999). Landmark salience

is additionally affected by the perspective of the observer, the surrounding environ-

ment and the objects contained therein (Caduff and Timpf 2008). For the purpose

of this study, we are defining the term landmark as “any outstanding urban struc-

ture”. We do not restrict our work to buildings and treat also other urban structures

(e.g. water wheels, information panels or dust bins). We focus on three-dimensional

local landmarks for pedestrians at decision points.

There is a large number of possible landmarks, which can be included in route

instructions in different situations and for different travelers. Different travelers

would find different landmarks to be most useful in a given situation (Götze and

Boye 2016). Humans choose landmarks based on several criteria, such as the mode of

travel, the desired route characteristics (Lovelace et al. 1999) but also using personal

dimensions. Several studies have proposed landmark salience models. These models

are either typically landmark identification or landmark integration models (Richter

and Winter 2014). Landmark identification models are based on landmark dimen-

sions and identify landmarks’ salience based on the well-established visual, semantic

and structural dimensions by Sorrows and Hirtle (1999). The degree to which each

of these dimensions influences the total measure of landmark salience is determined

using weights for each dimension. How these weights should be chosen to adapt to

the mode of travel or individual user preferences has not yet been studied extensively.

Landmark integration models by contrast are based on environmental dimensions.

They detect route-dependent landmarks according to attributes such as uniqueness in

a given environment, position along a route or visibility from the route. None of the

models investigated so far include personal preferences or knowledge that influence

the process of landmark integration.

The contribution of this paper is a multidimensional model that helps to select

personalized landmarks. The goal is to extend an existing landmark salience model

by including a so called personal dimension of landmarks. Specifically, we take the

existing landmark salience model by Raubal and Winter (2002) and add personal

attributes. Furthermore, we add an environmental dimension to account for different

routing situations and a descriptive dimension to consider the brevity of a landmark

description. The result of the model is a measure of the personal landmark salience

of a landmark candidate for a specific person. The measure can then be integrated in

the generation of a route (Nuhn and Timpf 2016). This paper tackles the challenges

of designing such a multidimensional model, while the integration of the results in

routing algorithms is treated elsewhere.

Section 2 gives an overview of related work, focusing on existing landmark

salience models based on landmark, descriptive, environmental as well as personal

dimensions. Section 3 introduces the multidimensional model for personalized land-

marks. In Sect. 4 we present example case studies to demonstrate the proposed

model. The final section concludes and identifies future work.
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2 Related Work

In this section existing work regarding landmark salience models based on landmark,

descriptive, environmental and personal dimensions is reviewed.

Landmark Dimensions
In landmark research landmark identification is done considering several dimen-

sions of landmarks. A classification was presented by Sorrows and Hirtle (1999)

and modified by Raubal and Winter (2002). The framework defines three landmark

dimensions: the visual, the semantic and the structural dimension. There are many

approaches based on these landmark dimensions to assess the salience of objects

for route instructions. One very fundamental approach was proposed by Raubal and

Winter (2002). They suggested measures to formally specify the salience of build-

ings (see Sect. 3.3.1). Nothegger et al. (2004) further extended and implemented

the approach on façades and showed that the model is applicable to assessing land-

mark salience. Elias (2003) was the first to propose data mining methods: She used

existing spatial databases instead of manual collection methods and thus focused on

buildings as landmark candidates.

There are other studies addressing the lack of available data sources. Newer

approaches are based on VGI (Volunteered Geographic Information) and crowd-

sourcing initiatives. For example Kattenbeck (2016) proposed an empirically val-

idated model and approach for a survey-based assessment of object salience. The

model incorporates the results of prior studies on features that are important for

salience. After testing the model with a large-scale in-situ experiment it turned out

that route related features as well as visual aspects are the most important influences

for the prediction of the overall salience of a feature. Another approach used Open

Street Map (OSM) data as source and implemented tagging OSM objects as potential

landmarks (Wolfensberger and Richter 2015). They implemented a mobile applica-

tion, which enables user-generated collection of landmarks. Other approaches used

OSM data to automatically identify landmarks. Nuhn et al. (2012) proposed a land-

mark index based on attributes of the landmark dimension to automatically extract

landmarks from OSM. These approaches can be used to provide methods for real-

world crowd sourcing scenarios, which are important for mobile pedestrian navi-

gation systems. However, all approaches have in common that they only consider

attributes contributing to the landmark dimension.

Descriptive Dimensions
The brevity of a landmark description relates to the number of words or terms needed

to refer to it in route instructions (Burnett et al. 2001). The description of a landmark

should be as precise as possible. According to Burnett et al. (2001) a good landmark

requires a minimum of additional information to be usable in route instructions. A

detailed description of an object can prevent confusion with other objects but the

complexity of the description should be minimized to reduce the cognitive load

(Elias 2003). Too much information has an adverse effect on efficient wayfinding

(Schneider and Taylor 1999). Objects with lengthy descriptions require the wayfinder

to process several different information elements (Burnett et al. 2001). The length
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of the landmark description can vary depending on the perspective and the famil-

iarity of the traveler with the environment. A description can be coarse such as “the

church”, but it can also be refined in various ways (e.g. “the church with the red

façade and the two steeples”) (Tenbrink and Winter 2009).

Environmental Dimensions
Approaches that focus on environmental dimensions are known as landmark inte-
gration approaches (Richter and Winter 2014). Here the focus is on environmental

attributes (e.g. distance to the decision point, visibility from the route or uniqueness

in the neighborhood of the route). The advance visibility of an object informs if the

object can be clearly seen from the route in all conditions (Burnett et al. 2001). Win-

ter (2003) introduced advance visibility into the basic model of Raubal and Winter

(2002). He investigated the identifiability of an object along the route, taking into

account that a geographic feature that is visible early on along a route is more suit-

able as a landmark than a feature that is spotted at the very last moment. Klippel and

Winter (2005) also integrated landmarks in route instructions with regard to a spe-

cific route. Besides advance visibility they considered the configuration of the street

network as well as the route along the network. An approach to integrate landmark

information directly into the routing algorithm was proposed by Elias and Sester

(2006) using a modified Dijkstra algorithm to calculate an optimal route based on

landmark quality. Weights were adapted according to the permanence, visibility, use-

fulness of location, uniqueness and brevity of the landmark description. In a similar

fashion the Landmark-Spider-Algorithm from Caduff and Timpf (2005) calculates

the clearest route in terms of spatial references and uses selected landmarks to give

route instructions. The model selects landmarks based on distance and orientation

of the traveler with respect to the landmark and salience of the objects. Another

approach which uses types of landmarks tackles the incorporation of landmarks in

computer-generated route instructions (Duckham et al. 2010). Here a weighting sys-

tem is proposed that is based on expected average properties of the types of land-

marks (e.g. ubiquity, length of description, permanence...). Those objects are deter-

mined that are best suited to describe how to follow a given route.

Personal Dimensions
The landmark salience of an object is not only dependent on landmark or environ-

mental attributes but also on personal dimensions. Different travelers would find

different landmarks to be the most useful ones in a given situation (Götze and Boye

2016). The landmarkness of an object is dependent on mobility, gender, age, educa-

tion or hometown of the traveler (Winter et al. 2012). There is only little work that

deals with the idea that salience is not the same for every person. Burnett et al. (2001)

were the first who showed that travelers familiar with an environment choose other

landmarks than people unfamiliar with an environment. More recent studies con-

firmed their findings and showed that familiar buildings are more easily recognized

than unfamiliar ones (Hamburger and Röser 2014). Based on these results Quesnot

and Roche (2015) assumed that travelers who know the area by heart prefer differ-

ent landmarks than travelers unfamiliar with an environment. They confirmed this



An Overall Framework for Personalised Landmark Selection 235

assumption and showed that persons that are familiar with a specific environment

prefer landmarks with personal significance.

Balaban et al. (2014) showed that emotions may have an influence on landmark

selection as well. They showed that negatively laden landmarks are remembered bet-

ter than positively laden or neutral ones. In addition, Palmiero and Piccardi (2017)

showed that both positive and negative emotional landmarks equally enhance the

ability to learn a path, and thus influence the acquisition of spatial knowledge. Fur-

thermore, they found that positive emotional landmarks improved the reproduction

of a path on the map as compared to negative or neutral emotional landmarks. The

investigation of emotions and landmarks is also a personalization, which however

neglects other personal dimensions. Götze and Boye (2016) model every landmark

that a person refers to in route instructions as a vector of features. Then an individual

mathematical model of salience is derived for every person. Currently this approach

is restricted to landmark dimensions, since the feature vectors only include spatial

attributes (distance and angle to a landmark as well as name and type extracted from

OSM data).

An approach to adapt the model by Raubal and Winter (2002) to different contexts

was proposed by Winter et al. (2005) by modeling the weights of the salience mea-

sures. In addition they investigated the proposed method in a thorough human sub-

ject test and found evidence that the variation of the context changes the selection of

the landmarks. However, their work focused on weights based on different contexts

(here, the time of the day). Apart from gender differences in weighting landmarks

by day and by night no other attributes of the personal dimension were investigated.

Although the familiarity with the environment was collected from test persons on a

simple binary scale, this attribute was not further evaluated. In our work we focus

on additional fundamental attributes of the personal dimension to provide help for

the automatic selection of personalized landmarks.

3 The Multidimensional Model for Personalized
Landmarks

In this section we introduce our multidimensional model for personalized landmarks.

In a first step the dimensions of the multidimensional model are discussed. Then the

saliences of all attributes are calculated. In a final step the overall salience of a land-

mark is calculated using the model from Raubal and Winter (2002) and compared to

our extended multidimensional model.

3.1 Dimensions of the Multidimensional Model

In this section we identify, investigate and discuss the attributes of the dimensions

of the multidimensional model.
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3.1.1 Landmark Dimensions

We follow the preceding definitions of Sorrows and Hirtle (1999) and Raubal and

Winter (2002) for the landmark dimensions.

Visual Dimension
Our multidimensional model includes four attributes for the visual dimension. One

of them is the surface structure. Buildings are visually salient if they have e.g., bay

windows or balconies. Other objects are salient if they are not shaped uniformly (e.g.

a water wheel with its blades is salient). An object with a differently shaped roof

than all the others within an environment (e.g. a street light with a peaked “roof”)

has a salient surface area, which is another visual attribute. An object can also be

outstanding because of the visual attribute height (e.g. a city gate is higher than all

the other objects around it). Another attribute of the visual dimension is color. For

example, multicolored recycling bins in a street with houses with no outstanding

coloring can attract the traveler’s attention.

Semantic Dimension
We calculate semantic salience by taking into account the cultural and historical
importance. Culturally important objects are for example museums, sports centers

or cinemas. Objects with historical importance are city walls or historic buildings.

In addition we investigate if explicit marks are available, because objects showing

explicit marks specify their semantics to the traveler (Raubal and Winter 2002) and

are therefore easy to identify.

Structural Dimension
Following Raubal and Winter (2002) we focus on local landmarks for wayfinding,

thus we include only local structural elements. The number of adjacent routes gives

information if the object is located at a street intersection. Such objects are more

important for route instructions than objects not connected to a street intersection.

The number of adjacent objects shows if the object is freestanding or not. Freestand-

ing objects (e.g. a city light) are more salient than objects that are part of an assembly

(e.g. terraced houses).

3.1.2 Descriptive Dimension

The descriptive dimension has not been considered in the work of Raubal and Win-

ter (2002). We propose to use explicit marks and number of words as attributes. An

object with an explicit mark can be explicitly named within route instructions. Fur-

ther, the traveler can easily identify the intended object. Thus, an explicit mark is very

valuable and can be directly used in route instructions. Furthermore, the number of
words is an important attribute for the descriptive dimension. It can be assumed that

the reference to a “long elongated blue building” needs more working memory than

the simple reference to the “casino” (Schneider and Taylor 1999).
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3.1.3 Environmental Dimension

There are several studies (see Sect. 2) proposing several environmental attributes.

Based on that our multidimensional model includes advance visibility, orientation,

distance and uniqueness.Advance visibility for a person approaching a decision point

is a cognitively relevant factor for the determination of landmarks (Winter 2003). To

consider the orientation of an object to the traveler the geographical space is divided

into sections (i.e. in front, beside and behind). The sections are dependent on the

traveler’s heading which corresponds to the orientation of the route segment lead-

ing to the decision point. Objects close to a decision point are useful for navigation

purposes (Waller et al. 2000). Thus, we consider the distance to the decision point

as attribute of the environmental dimension. Landmarks which are not unique can

be mistaken with other objects within the environment. Therefore we investigate the

neighboring street intersections if there are similar misleading objects.

3.1.4 Personal Dimensions

In a former work we identified personal dimensions to consider in determining per-

sonalized landmarks (Nuhn and Timpf 2017). Based on that we include the personal

dimensions prior spatial knowledge, personal interests and personal background in

our multidimensional model.

Prior Spatial Knowledge
The prior spatial knowledge of a traveler seems to be the most important dimension

to consider. It is commonly divided into three distinct types: landmark knowledge,

route knowledge and survey knowledge (Siegel and White 1975). In Nuhn and Timpf

(2017) we introduced four attributes to consider the prior spatial knowledge of a trav-

eler: no knowledge, landmark knowledge, route knowledge and survey knowledge.

While traveling through the environment people notice various objects and encode

images in a database. Thus, people are able to recall the objects they have seen and

to remember the names of certain buildings and locations (Thorndyke 1980). These

landmark knowledge landmarks can be used within route instructions in order to

link already known elements with new ones along the route (Nuhn and Timpf 2017).

Route knowledge is gained when a traveler is exposed to a route. This also includes

the knowledge of objects along the route. These objects can be divided in two groups:

objects that were part of previous route instructions and objects that were not yet used

for navigating. Route instructions, for a route segment part of route knowledge, can

be coarser, i.e., merely enriched with additional landmarks (Tenbrink and Winter

2009). Survey knowledge is defined as the result of the mental integration of two or

more routes (Herrmann et al. 1998). This is in contrast to route knowledge, which

is related to a single route. If the traveler has never been to the environment and has

never seen a map or photos then he has no prior spatial knowledge at all.
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Personal Interests
Travelers must look around in order to perceive things. But looking by itself is not

enough (Rensink et al. 1997). A traveler whose mind wanders during route follow-

ing may often miss important objects, even if these are highly salient. The key fac-

tor for perceiving things is attention, which is dependent on the degree of interest

(Rensink et al. 1997). Banerjee et al. (2015) confirmed that the voluntary focus of

attention on environmental inputs is influenced by an observer’s level of interest in

an object. There are two types of interests: individual and situational interest (Hidi

and Renninger 2006). Individual interests refer to an ongoing relation of a person to

a particular content (Hidi and Renninger 2006). Situational interest describes inter-

est that is caused by certain conditions and/or concrete features in the environment

(Renniger and Su 2012). In this work we consider individual interests. It represents

personality-specific orientation and provide important categories for action goals in

a situation where a person is free to do as one pleases (Krapp et al. 2017). There

are many different possible interests for a pedestrian in an urban environment. For

example, a traveler, who is passionate about soccer but bored by historical monu-

ments, will obviously be more attentive to soccer related things than urban features

such as city walls or statues.

Personal Background
The personal background is a common name for attributes describing the traveler’s

experience outside of a specific domain (Brusilovsky and Millán 2007), in our case

navigation and wayfinding. It gives information about the personal characteristics

of a traveler and includes geographic data as well as data describing the traveler’s

characteristics (Kobsa et al. 2001). The country of residence is considered, because

travelers not living in the country of the environment they need to navigate may be

used to environments or objects shaped differently (Kattenbeck 2016). For example,

if a Dutchman refers to recycling bins he maybe thinks of a tube-like object set into

the ground (see Fig. 1, left) whereas a Frenchmen would search for a completely dif-

ferent object (see Fig. 1, upper right). The second geographically related attribute is

the cultural background of the traveler. Travelers, who grew up in another country

may be used to completely different environments and objects. For example, some-

one who grew up in a small village in Africa, where the next bigger city is several

kilometers away, has a different background compared to somebody who grew up in

the middle of a modern central European city. There are also attributes important for

the multidimensional model concerning the traveler’s characteristics. This includes

the education of the traveler. It was revealed that users’ knowledge in a domain varies

considerably according to their background and job (Berry and de Rosis 1991). Con-

cerning navigation and wayfinding, the education of a traveler can influence the way

visual and structural dimensions are perceived (Kattenbeck 2016). Further attributes

concerning travelers’ characteristics are gender and age of the traveler. The incorpo-

ration of these attributes into this first proposal of a multidimensional model would

require deeper analysis of their influence on the overall salience of a landmark, which

is beyond the current scope of this paper. Nevertheless, we mentioned these attributes

for the sake of completeness.
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Fig. 1 Recycling bins in the

Netherlands (left), France

(upper right) and Germany

(bottom right)

3.2 Calculating Salience

In this section the salience of the landmark attributes defined above is calculated.

Methods for the calculation of salience for the attributes of all dimensions are inves-

tigated.

3.2.1 Salience of the Attributes of the Landmark Dimensions

In this section the salience for the attributes of each landmark dimension is calcu-

lated. We assign salience values to each attribute. If for a landmark candidate all

attributes of a landmark dimension are salient it gets a 100% salience. For example,

if an object meets all requirements of the structural dimension, it gets 100% for struc-

tural salience. The conditions that must be fulfilled in order to assign a percentage

of a salience value to the attributes is shown in Table 1 and explained below.

Surface area and color are considered salient if their value is different from all

others in a local environment. For the definition of this local environment a buffer

of 100 m is chosen in this work. The surface structure is salient if the object has an

outstanding surface (see Sect. 3.1.1). The assessment if the attribute value of height
of an object is significantly different from mean characteristics within the buffer is

done by hypothesis testing (see Raubal and Winter (2002) for details). As soon as the

model is complete, a sensitivity analysis to identify the importance of the individual

attributes of the visual dimension will be carried out. This will enable us to give

different weights to different attributes. However, for the current study, we assume

that each of the attributes of the visual dimension has the same effect on the overall

salience of an object. Therefore, we assign a salience value of 25% if the attribute is

salient. Zero percent means the attribute is not salient.

The attributes of the semantic dimension are salient if their attribute values are

“True”. Because the availability of explicit marks is of a higher value than cultural or

historical importance it gets a salience of 50%. The other two attributes get a salience

of 25%.
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Table 1 Rules for the computation of landmark, descriptive and environmental saliences

Dimension Attribute Salient Salience

(Attribute)

Salience

(Dimension)

Visual Surface Structure

𝜆

If 𝜆 = True s
𝜆
∈ {0, 25%} svis[%] = s

𝜆
+ s

𝜙

+ s
𝜇
+ s

𝛾

Height 𝜙 See text below s
𝜙
∈ {0, 25%}

Surface Area 𝜇 s
𝜇
∈ {0, 25%}

Colour 𝛾 s
𝛾
∈ {0, 25%}

Semantic Cultural

importance 𝜖

If True s
𝜖
∈ {0, 25%} ssem[%] = s

𝜖
+ s

𝜄

+ s
𝜉

Historical

importance 𝜄

s
𝜄
∈ {0, 25%}

Explicit marks 𝜉 s
𝜉
∈ {0, 50%}

Structural Number of

adjacent routes 𝜂

If 𝜂 > 1 s
𝜂
∈ {0, 50%} sstr [%] = s

𝜂
+ s

𝜃

Number of

adjacent objects

𝜃

If 𝜃 = 0 s
𝜃
∈ {0, 50%}

Descriptive Explicit marks

De

If True sDe ∈ {0, 100%} sdesc[%] =

max(sDe, sDn)

Number of words

Dn

dependent on the

number

sDn ∈ {0, 50%,
75%, 100%}

Environmental Advance

visibility Ev

If visible sEv ∈ {0, 25%} senv[%] = sEv + sEo
+ sEd + sEu

Orientation Eo If “in front” OR

“beside”

sEo ∈ {0, 25%}

Distance Ed If Ed= min(De1,

. . .Dei)
sEd ∈ {0, 25%}

Uniqueness Eu If True sEu ∈ {0, 25%}

Concerning the structural attributes, the number of adjacent routes is salient if

there is more than one route next to the object. Freestanding objects, where the

number of adjacent objects is zero, are also significant. Similar to the case of visual

attributes we assume that each of the attributes has the same effect on the overall

salience and therefore assign a salience value of 25%.

3.2.2 Salience of the Attributes of the Descriptive Dimension

A landmark that can be described with an explicit mark is a valuable navigation

aid and can be directly used in route instructions. Therefore such a landmark gets a

salience for the explicit mark of 100% (see Table 1). If there is no explicit mark avail-

able the number of words is investigated. A landmark, which can be described with

a single word is easy to remember for the traveler and therefore gets a salience for
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number of words of 100%. Descriptions with two terms are still easy to memorize but

are more complicated than a one-word description. Therefore, such a landmark only

gets a salience of 75% for number of words. Landmarks with descriptions includ-

ing three words get a 50% salience. Landmarks with descriptions of more than three

words get no salience for the attribute number of words, because they get too long.

3.2.3 Salience of the Attributes of the Environmental Dimension

One attribute of the environmental dimension is advance visibility of a landmark

(see Table 1). The implementation of Winter (2003) approach for visibility analy-

sis would require deeper analysis of our data, which is beyond the scope of this

paper. Therefore we use as a first step a simple line of sight analysis (see Fig. 2). It is

investigated if the line of sight from the street intersection before the decision point

intersects another object. If that is not the case then the attribute advance visibility
is salient for this object.

Landmarks which are located next to or in front of the route get a salience of 25%.

Landmarks at the back of the traveler are not as good as landmarks at the front or next

to the route. Therefore, such a landmark gets no salience for orientation. Landmarks

are useful navigation aids if they are close to the next decision point. Therefore, the

object with the smallest distance to the decision point is assigned a salience of 25%.

The other objects do not get any salience for this attribute.

The landmark is unique if there is no other misleading object within the environ-

ment of the route. Thus, neighboring street intersections are investigated. If there are

no similar objects in one of these environments, a salience of 25% is assigned. For

the environmental attributes the same applies as for the attributes of the visual and

the structural dimension. We assume the same effect of the environmental attributes

on the overall salience and apply a salience of 25% if it is salient. If it is not salient,

the salience is zero.

Fig. 2 Example advance

visibility
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3.2.4 Salience of the Attributes of the Personal Dimensions

Landmarks should be selected according to the interests, background and prior spa-

tial knowledge of the traveler. Each landmark belongs to a number of areas of inter-

ests. For example a city gate could belong to the areas of interests historical mon-
uments and architecture. If an interest of the traveler matches one of the areas of

interests that the landmark belongs to, then a significance value of 100% is assigned

to the landmark (see Table 2).

For the attributes of the background dimension country of residence, cultural
background and education are considered. The first two attributes are salient if the

traveler has grown up or rather lives in the environment that she has to navigate.

Country of residence and cultural background are attributes that are connected to

each other. This means: if one attribute holds true the possibility is high that the

other attribute also holds true. In order to avoid a higher weighting of these attributes

compared to education only a salience value of 25% is assigned.

For education the same approach applies as for the interests. Hence, each land-

mark belongs to one or more educations. For example, measuring points are salient

objects for surveyors. If the education of the traveler matches one education to which

the landmark belongs, a significance value of 50% is assigned to the landmark. Which

is as high as the salience values for Country of residence and for cultural background
together.

The prior spatial knowledge is a dimension that influences most of the other

dimensions and their attributes. For that reason the prior spatial knowledge

is considered using weights within the multidimensional model. How the weight-

ing is done is investigated in Sect. 3.3.2.

3.3 Overall Salience

In this section the overall salience of a landmark is determined. First, we calculate

the overall salience using the conventional model by Raubal and Winter (2002).

Secondly, we discuss our approach of the multidimensional model.

Table 2 Rules for the computation of personal saliences

Dimension Attribute Salient Salience

(Attribute)

Salience

(Dimension)

Interest Interest I If I = ILM si ∈ {0, 100%} sI[%] = si
Background Country of

residence C

If C = True sC ∈ {0, 25%} sPB[%] = sC + sB
+ sE

Cultural

background B

If B = True sB ∈ {0, 25%}

Education E If E = ELM sE ∈ {0, 50%}
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3.3.1 Conventional Model by Raubal and Winter (2002)

The approach from Raubal and Winter (2002) is also based on the well-established

visual, semantic and structural dimensions. They include different attributes, which

differ slightly from ours. However, we use our attributes (see Sect. 3.1.1), to make

the models comparable.

Raubal and Winter (2002) determine in a first step values for each attribute. Then,

it is investigated whether an attribute value is significantly different from the others.

This is done using hypothesis testing. The significance value is set to 1 if there is a

significant difference, i.e. the attribute is salient. Otherwise, the significance value is

zero. We consider the attribute values as salient if they fulfill the conditions defined

in Table 1 (column salient). For the salience values for the attributes we use also 1

and zero for the conventional model. Note, that this is a difference to our multidimen-

sional model (see Sect. 3.3.2), where we use the salience values defined in Table 1

(column Salience (Attribute)).

Next, the significance values are grouped for visual, semantic and structural

dimensions (see Eqs. 1–3). The total measure of landmark salience for each building

is determined by adding up the grouped significance values (see Eq. 4). Raubal and

Winter (2002) mentioned that the weights in this total measure can be used for an

adaptation to the context or individual user preferences, but did not discuss this any

further.

svis = (s
𝜆
+ s

𝜙
+ s

𝜇
+ s

𝛾
)∕4 (1)

ssem = (s
𝜖
+ s

𝜄
+ s

𝜉
)∕3 (2)

sstr = (s
𝜂
+ s

𝜃
)∕2 (3)

sconvM = wvis ∗ svis + wsem ∗ ssem + wstr ∗ sstr (4)

3.3.2 Multidimensional Model

In this section we add the additional dimensions which we defined above to the con-

ventional model of Raubal and Winter (2002) (see Sect. 3.3.1). Analog to their model

the values for each attribute for each dimension are determined. Then, it is investi-

gated whether an attribute value is salient. This is done according to the rules for the

computation of saliences in Tables 1 and 2 (column salient). The attribute saliences

are assigned according to Tables 1 and 2 (column Salience (Attribute)).

Then the significance values are grouped for visual, semantic and structural

dimensions (see Table 1, column Salience (Dimension)). The same is executed for

the environmental dimension (see Table 1, column Salience (Dimension)) and the

background dimension of the personal dimensions (see Table 2, column Salience

(Dimension)). To determine the overall salience value for the descriptive dimension

the higher salience value of the attributes number of words and explicit marks is cho-

sen. The interest dimension of the personal dimensions consists of only one attribute,

therefore no further processing is needed.
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Next, the overall salience value of an object is determined according to Eq. 5. The

values for the weights are shown in Table 3. The weights represent the consideration

of the prior spatial knowledge of the traveler within the multidimensional model.

Travelers not familiar with an environment use landmarks which are highly visual

salient (Quesnot and Roche 2015), therefore visual salience is weighted with a factor

of 3. The semantic salience is zero because it is more appropriate for people famil-

iar with an environment (Quesnot and Roche 2015). Structural salient landmarks

should be used if there are no visual outstanding landmarks (Quesnot and Roche

2015), therefore structural salience is not as important as visual salience. For people

not familiar with the environment explicit marks are not important, because it tells

them nothing. Therefore, only the number of words is considered within the model.

Because the environmental dimension, the interest and the background dimensions

are important dimensions for selecting personalized route dependent landmarks they

are weighted twice for all types of prior spatial knowledge (see Table 3).

smultidimM = (wvis ∗ svis + wsem ∗ ssem + wstr ∗ sstr
+ wdesc ∗ sdesc + wDe ∗ sDe + wDn ∗ sDn
+ wenv ∗ senv
+ wI ∗ sI + wPB ∗ sPB)∕100 (5)

A traveler with route knowledge is familiar with the route and therefore prefers

landmarks that have a special meaning to him. Therefore, the semantic salience is

weighted with a factor of 3. In this case the landmarks should also be describable by

an explicit mark, therefore explicit marks are considered within the multidimensional

model for route knowledge. Similarly to the other cases, the environmental and the

personal dimensions are weighted with a factor of 2.

A traveler with survey knowledge should be familiar with the area. Nevertheless,

it can be assumed that not all of the available landmarks are familiar because of their

semantic salience but also because of their visual salience. Therefore, the visual as

well as the semantic salience are weighted with a factor of 3. Structural salience

Table 3 Weights
Weights No Route Survey

wvis 3 0 3

wsem 0 3 3

wstr 1 0 1

wdesc 0 0 1

wDe 0 1 0

wDn 1 0 0

wenv 2 2 2

wI 2 2 2

wPB 2 2 2
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is also considered. In this case it is important if the object has a high descriptive

salience no matter if this is because of a low number of words or an explicit mark.

4 Case Studies

4.1 Provenance of Data

The modeling of the landmarks in the multidimensional model requires a number

of data sources. According to the defined attributes, visual, semantic, structural and

descriptive data are required. In our case studies we used OSM data. The data not

available from OSM (e.g. color or description) were collected through a field sur-

vey. The height of the buildings was extracted from a official 3D city model (block

model). The height of the other objects was estimated manually for this preliminary

study. For this paper we assume that the attribute values for the personal dimen-

sions are available. In Sect. 4.3 possible methods to acquire the attribute values of

the personal dimensions are discussed.

4.2 Personalized Landmarks—Examples

This section demonstrates the applicability and usefulness of the multidimensional

model using three different case studies. In Fig. 3 an example decision point with 8

potential landmark candidates is shown. There are five buildings and three other

objects. Within Table 4 the saliences for all the dimensions except the personal

dimensions of the landmark candidates are listed.

In Table 5 the overall saliences based on Eq. 4, for the conventional model are

presented. The results identify the recycling bins at the decision point as the most

suitable landmark. Although the semantic salience of this landmark candidate is low,

it has a high visual and structural salience (see Table 4). The next salient landmarks

according to the conventional model are the streetlight and the casino. The streetlight

is salient because it is freestanding. Whereas, the casino gets a high overall salience

because of its semantics.

In the following sections we demonstrate the overall saliences based on Eq. 5 for

different case studies for a traveler with no knowledge, survey and route knowledge.

Note that, if there are landmarks part of landmark knowledge or part of previous

route instructions available, theses landmarks should be used for route instructions.

Then, no further investigations are needed. Therefore, in these example case stud-

ies we assume that neither landmark nor route knowledge (used in previous route

instructions) landmarks are available.
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Fig. 3 Example decision point with landmark candidates

Table 4 Examples of object saliences (in percent)

Object Visual Semantic Structural Descrip. Number

of words

Explicit

marks

Environm.

Olivenöl...

und mehr

0 50 50 100 50 100 25

Residential

building

0 0 50 75 75 0 25

Streetlight 25 0 100 75 75 0 50

Recycling

bins

75 0 100 75 75 0 50

Casino 25 75 50 100 100 100 75

City gate 50 25 50 75 75 0 50

City wall 50 25 50 75 75 0 50

Water wheel 75 25 50 75 75 0 25
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Table 5 Object saliences for a traveler with unknown interest and education

Object No Route Survey Conventional

model

Oliven... und

mehr

2.5 4 4.5 1.67

Residential

building

2.75 1.5 2.75 1

Streetlight 4.5 2 4.5 2.25

Recycling bins 6 2 6 2.75
Casino 4.75 5.75 7 2.25

City gate 4.75 2.75 5.5 1.83

City wall 4.75 2.75 5.5 1.83

Water wheel 5 2.25 5.75 2.08

4.2.1 Traveler with Unknown Interest and Education

In Table 5 the overall saliences based on Eq. 5 are presented for a traveler with no,

survey and route knowledge. These values are based on the attribute values of a

traveler with unknown interest and education (Table 6). It is assumed that the traveler

lives and has grown up within the country of the environment to navigate.

If we assume a traveler with no knowledge, the recycling bins would be the most

suitable landmark (see Table 5), which is in line with the conventional model. This

landmark shows a 75% visual salience, which is weighted with a factor of 3 (see

Table 3). The water wheel also carries a visual salience of 75% but the environmental

salience, which is weighted twice, is lower. The water wheel is located at the back

of the traveler and has no advance visibility at all. Whereas the recycling bins are

located in front of the traveler and are visible in advance. Also the structural salience

Table 6 Interest and background saliences for a traveler with unknown interest and education

Object Interest Country of

residence

Cultural

background

Education Background

Olivenöl...

und mehr

0 25 25 0 50

Residential

building

0 25 25 0 50

Street light 0 25 25 0 50

Recycling bins 0 25 25 0 50

Casino 0 25 25 0 50

City gate 0 25 25 0 50

City wall 0 25 25 0 50

Water wheel 0 25 25 0 50
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of the recycling bins is high, because they are freestanding objects. With regard to

the number of words, which are considered to determine landmarks salience (see

Table 3), only the casino is describable with a single word. The others need at least

two words. Nevertheless, the recycling bins are the most salient landmark at the

decision point, because the saliences of the other dimensions are high.

For someone with route knowledge the casino is a suitable landmark. The seman-

tic salience is weighted with a factor of 3, while the visual and structural charac-

teristics of a landmark candidate are not considered (see Table 3). For the deter-

mination of the salience of the landmark candidates in route knowledge areas it is

considered if an object shows explicit marks. The casino is one of two landmarks

(beside “Olivenöl... und mehr”) which shows explicit marks (see Table 4). Further-

more, the environmental salience is high, because the casino is visible early on while

approaching the decision point, its orientation is “in front” and it is unique within

the environment.

The best landmark for someone with survey knowledge would be the casino as

well (see Table 5). To determine the landmarks in survey knowledge areas the visual

and the semantic salience are weighted with a factor of 3 (see Table 3). Because the

casino shows explicit marks it has a high semantic and a high descriptive salience as

well.

4.2.2 Traveler with Interest in Historical Monuments

In this case study we assume a traveler who is a professor of cultural history and very

interested in historical monuments. He also lives and has grown up in the country of

the environment to navigate. In Table 7 the interest and background saliences for this

case are shown. The city gate and the city wall get a salience for the interest and the

background of 100%. The saliences of the landmark candidates dependent on these

attribute values are shown in Table 8.

In this case, the most salient landmark for a traveler independent of his prior

spatial knowledge are the city wall and the city gate. Because of the additional factor

for the interest and the background their saliences are exceeding the saliences of the

recycling bins (for no knowledge) and the casino (for survey and route knowledge).

For a traveler with route knowledge the casino stays a good choice because it is highly

semantic.

4.2.3 Traveler with Different Cultural Background

In this last case study we assume a traveler who has not grown up and does not live

within the environment to navigate. This could be for example a tourist who is just

for a few days within the city. In Table 9 the interest and background saliences for

this case are shown. Recycling bins are often shaped differently in different countries

(see Fig. 1). They can differ in form, size and color, therefore they get a value of 0 for

country of residence and cultural background. Because the other buildings/objects
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Table 7 Interest and background saliences for a traveler with interest in historical monuments

Object Interest Country of

residence

Cultural

background

Education Background

Olivenöl...

und mehr

0 25 25 0 50

Residential

building

0 25 25 0 50

Streetlight 0 25 25 0 50

Recycling bins 0 25 25 0 50

Casino 0 25 25 0 50

City gate 100 25 25 50 100

City wall 100 25 25 50 100

Water wheel 0 25 25 0 50

Table 8 Object saliences for a traveler with interest in historical monuments

Object No Route Survey Conventional

model

Oliven... und

mehr

2.5 4 4.5 1.67

Residential

building

2.75 1.5 2.75 1

Streetlight 4.5 2 4.5 2.25

Recycling bins 6 2 6 2.75
Casino 4.75 5.75 7 2.25

City gate 7.75 5.75 8.5 1.83

City wall 7.75 5.75 8.5 1.83

Water wheel 5 2.25 5.75 2.08

are the same in their appearance in different countries they get a salience of 25% for

country of residence and for cultural background. The best landmarks for someone

with no knowledge are the recycling bins or the water wheel (see Table 10). The

water wheel has a low environmental salience, because the only attribute, which is

salient of the environmental dimension, is the uniqueness. However, it has a high

visual salience. In addition, it is an object that is shaped more or less the same in

different countries. That makes the water wheel a good choice for someone with no

knowledge for this case study.

The recycling bin is still a valuable landmark for someone with no prior spatial

knowledge, although it has no salience for the personal background. But as already

mentioned in Sect. 4.2.1, its visual, structural and environmental salience is high.

For future work it is necessary to consider if landmarks with no country of residence
or no cultural background salience should be excluded from the potential landmarks

for the traveler.
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Table 9 Interest and background saliences for a traveler with different cultural background

Object Interest Country of

residence

Cultural

background

Education Background

Olivenöl...

und mehr

0 25 25 0 50

Residential

building

0 25 25 0 50

Street light 0 25 25 0 50

Recycling bins 0 0 0 0 0

Casino 0 25 25 0 50

City gate 0 25 25 0 50

City wall 0 25 25 0 50

Water wheel 0 25 25 0 50

Table 10 Object saliences for a traveler with a different cultural background

Object No Survey Route Conventional

model

Oliven... und

mehr

2.5 4.5 4 1.67

Residential

building

2.75 2.75 1.5 1

Street light 4.5 4.5 2 2.25

Recycling bins 5 5 1 2.75
Casino 4.75 7 5.75 2.25

City gate 4.75 5.5 2.75 1.83

City wall 4.75 5.5 2.75 1.83

Water wheel 5 5.75 2.25 2.08

For someone with survey knowledge or route knowledge the casino is still (as in

the two other case studies) a suitable landmark. The casino can be recognized by its

explicit marks and is located in a normal building which has the same appearance in

different countries.

4.3 Discussing Data Collection Methods for the Personal
Dimension

In Nuhn and Timpf (2017) we discussed first methods to acquire the attribute values

of the personal dimensions. A possible method to capture the prior spatial knowledge

of the traveler is to store already navigated routes. Also, landmarks that were already
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used for navigation could be stored as landmarks part of landmark knowledge. The

attribute values for the personal background must be provided explicitly because it is

nearly impossible to deduce them by sensors or by simply watching the traveler. The

personal interests of a traveler can be learned with the help of a learning system (see

also Richter 2017) because entering all the values explicitly would be too exhausting

and time consuming for a traveler.

There are still attributes of the personal dimensions missing (for example, gen-

der and age of the traveler) which we have to include in our model. As soon as the

model is complete a sensitivity analysis to check the models logic and robustness

will be carried out. The identification of the importance of the individual attributes

enables to estimate the effort which must be invested in data acquisition for differ-

ent attributes. If the sensitivity analysis indicates that the model includes a number

of attributes to which the model is insensitive, then we can maybe exclude these

attributes from our multidimensional model to minimize the acquisition effort.

5 Conclusion and Future Work

This paper proposes a multidimensional model for landmarks that incorporates land-

mark, descriptive, environmental and personal dimensions. The dimensions of the

model and their attributes were defined and debated. Further, methods for the cal-

culation of salience for the attributes of all dimensions were investigated. Finally,

the dimensions were integrated in a multidimensional model to calculate the over-

all salience. We showed that varying attribute values for the attributes for the per-

sonal dimension changed the most salient landmark in our case studies. In this paper,

weights were chosen based on consideration. This provides a good framework for an

empirical study in a real usage context to fine-tune the current approach.

In this paper, first ideas on how to consider the traveler’s interests were proposed.

In this work we considered the interest of a person to a particular content. In future

work we will also consider interest that is caused by certain conditions such as the

goal of wayfinding. Further attributes concerning travelers’ background are gender

and age of the traveler. In this paper we neglected these attributes because their

incorporation in the multidimensional model would require deeper analysis. In future

work we will investigate their influence on the overall salience of an object.

In this paper we provided an example how to consider a traveler with different

cultural background. But there are also people with multi-cultural background. For

example someone who grew up in a small village in Africa and then moved to a

central European city is used to differently shaped objects with the same meaning.

So we have to investigate the question after which period of time such a person is

familiar enough with the city that he is also able to use country-specific objects for

navigation.
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“Thanks for Your Input. We Will Get Back
to You Shortly.” How to Design Automated
Feedback in Location-Based Citizen
Participation Systems

Andreas Sackl, Sarah-Kristin Thiel, Peter Fröhlich and Manfred Tscheligi

Abstract Location-based citizen participation systems have so far mostly been char-

acterized by mediated human-to-human communication between citizens, authori-

ties and other stakeholders. However, in the near future we will see more autom-

atized feedback elements, which inform citizens about the expectable financial or

legal implications of their requests. We conducted an experiment to provide research-

driven guidance for interaction design in this application context. Thirty partici-

pants submitted tree planting proposals with an experimental prototype that varied

along the dimensions immediacy, implicitness, and precision. They rated the differ-

ent forms of provided automatic feedback with regard to satisfaction, and they ranked

them in a subsequent card sorting trial. The results show that users have consider-

ably high expectations towards the immediacy and precision of automated feedback,

regardless of the inherently higher responsiveness compared to human-operated par-

ticipation systems. With regard to interaction design, results indicate that the auto-

matically processed information should be made available as early and as possible

to users.

1 Introduction

The research field “smart cities” investigates various aspects of modern urban sys-

tems to provide profound solutions for actual and upcoming issues and challenges

like sustainable energy generation and consumption, mobility concepts. The integra-

tion of citizen in urban development processes is one of the key challenges in this
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research context. For this type of active citizen participation, location-based services

(LBS) need to be designed and implemented in a way that the resulting user expe-

rience is high enough to encourage citizens to actively use the system. So, in this

paper we want to address user-centric design issues and how these aspects should be

implemented in LBS-based citizen participation systems.

Citizen participation has become a central aspect of modern societies, and there

is an increasing amount of interactive computing systems that help innovate the way

people discuss, contribute and influence public decisions (Conroy and Evans-Cowley

2006). However, as the recent history on eParticipation shows, the roll out of spe-

cialized platforms rarely scales and typically does not reach a large amount of users

(Prieto-Martín et al. 2012). Studies have shown that citizens’ satisfaction with partic-

ipation technologies is, amongst other factors (e.g., user-friendliness of the applica-

tion, trust in politics), determined by authorities’ responsiveness to citizens (Kweit

and Kweit 2004; Parasuraman et al. 2005; Webler and Tuler 2000; Harding et al.

2015). Also, receiving meaningful feedback from authorities helps increase citizens’

internal political efficacy (i.e., their subjective belief that they understand community

issues) (Kim and Lee 2012). These requirements of timely and meaningful feedback

are clearly not sufficiently met in current digital participation services.

Although the paradigm of such services is slowly changing from one-way to more

interactive participation forms (Conroy and Evans-Cowley 2006; Lukensmeyer and

Torres 2008), there still seem to be significant barriers for responsiveness (Thiel

et al. 2016). A central problem often mentioned by administrative staff who have

to deal with citizens’ initially posted contributions is that these are often perceived

as “naive” in terms of their administrative, legal or economic implications. In that

respect officials wish for “better qualified" complaints and proposals (Bohøj et al.

2011). For example, suggestions for the location of a new bus stop may not take into

account certain traffic regulations or road construction constraints. In such cases,

much effort is needed to provide feedback to citizens on “basic issues”, without actu-

ally gaining significant benefits for their urban planning work.

In order to provide solutions to this problem space, automatic feedback technol-

ogy has been proposed that may enable citizens to probe and refine their ideas, which

in turn should provide urban planners and city authorities with validated, ‘useful’

input (Poplin 2012; Vogt and Fröhlich 2016). In order to provide meaningful feed-

back that allows for a higher level of participation (i.e. from consolidation to cooper-

ation; see Tambouris et al. 2007), communication with authorities should go beyond

currently available solutions of “bots” that compile databases to help with autom-

atizing customer services, tax return process (Karsten and West 2016), or voting

procedures (Phoneia 2016). Rather, it should offer answers and ideally also com-

ment to citizens’ requests. For instance, when proposing the development of a new

park at a certain location, the feedback should give an indication of whether that is

in principle possible.
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2 Related Work

In recent years e-participation platforms have been ported to mobile devices. With

their manifold features and sensors (e.g. gyroscope, GPS), devices such as smart-

phones allow to augment citizens’ input with valuable information making them

even more meaningful for representatives (Fröhlich et al. 2011). Considering the

wide penetration of mobile devices [cite stats], making use of this technology is

anticipated to broaden the scope of involved citizens and potentially also encour-

age those previously eager to participate. With mobile technology facilitating in-situ

location-based participation (i.e., collecting input directly from citizens on-site, Korn

2013), this participation method further mitigates traditional participation barriers

(i.e., spatial and temporal).

Albeit existing mobile participation services including affordances such as

location-awareness (Schröder 2015), taking pictures and even augmented reality

(Allen et al. 2011), it has been stated that available applications do not exploit the

potential of pervasive technology such as mobile devices by far (Desouza and Bhag-

watwar 2012). Previous research in the field of e-participation mostly focused on

exploring novel interaction techniques (Valkanova et al. 2014; Steinberger et al.

2014) as well as the integration of open data. While employing novel technology

arguably attracts curiosity, we see relevance in addressing prevailing challenges of

participation first. The one addressed with the study presented in this paper is asso-

ciated with unmet expectations of e-participation. By capitalizing on open data, it is

aimed to make content produced in participation platforms more relevant for both

citizens and city officials as well as improving the responsiveness by providing auto-

matic feedback. With the latter it is further envisioned to relieve city officials.

3 Goals and Hypotheses

The location-based technology that could enable such levels of an informed dialog

between the city and their inhabitants is still at a research stage (West 2004). Apart

from questions related to the feasibility of semantic processing of open data, the

interaction design space has so far not been explored. The main goal of the user study

presented in this paper is to evaluate how automated feedback has to be implemented

in a location-based, participatory application to match the needs of the users. Our

main focus of interest is on the user experience in terms of satisfaction. The following

section discusses the related hypotheses.
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3.1 Immediacy (H1)

A critical success factor associated with personalized feedback is the time-lag

between the complaint/request and the governmental answer (Kearns et al. 2002;

West 2004). While automatic feedback is in itself significantly faster than the response

by a human administrator, studies on system response time (SRT) in interactive sys-

tems (e.g. Kohlisch and Kuhmann 1997; Szameitat et al. 2009; Rhodes and Wolf

1999) indicate that users may even be sensitive to small delays of one or more sec-

onds. Hence, we assume that fast feedback (=low delay between sending proposal

and receiving feedback) is crucial in our context (Hypothesis H1.1).

We also hypothesize that in correspondence to classical studies on system

response time (Kohlisch and Kuhmann 1997), users in this application context are

also more tolerant regarding higher response delays, if additional information (e.g.

“data is transmitted to the server”) is provided while the data is processed at the

server (Hypothesis H1.2).

3.2 Precision (H2)

A crucial aspect with regard to the feasibility of location-based, automatic feedback

is the level of detail and accuracy that must be provided by the system. We posit that

learning about costs of various proposals such as the planting of a tree will render

citizens more sensible about the complexity of its implementation and value. We

assume that precise information about costs are preferred compared to providing a

range of costs or price probabilities (Hypothesis H2). However, we also expect that,

in case of unavailability of precise data, the provision of less definite information are

viable, such as a price range or probabilities.

3.3 Implicitness (H3)

Apart from the above discussed issues, guidance is also needed on how and at what

point in the participation process to display information in the interface. Usability

research and practice have shown that providing implicit feedback, such as using

mouse-over effects (cf. Dix 2009; Mace et al. 1998), should be implemented, i.e.,

available information can be displayed without changing the screen state. Hence,

instead of the classical way of subsequently providing the feedback after the user’s

suggestion, users may even want information on possible options before posting their

suggestion. In this sense, our hypothesis is that citizens wish for a highlighting of
constraints related to their proposals, e.g. when placing objects on a map (Hypothesis

H3).
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3.4 Social Awareness (H4)

Citizen participation is a process of social exchange, and it has been demonstrated

that knowledge about what the community is thinking is an important feature in

such platforms. For example, it has been suggested that particularly for siting prob-

lems combining individually developed “idea maps” can support the identification of

physically and socially robust solutions (Carver and Openshaw 1996). Simão adds,

that the indication of other users’ contributions provides a strong sense of the pub-

lic’s feelings (Simão et al. 2009). Moreover, social awareness is a condition of collec-

tive reflection, which enables citizens to broaden their knowledge and understanding

of processes and specific roles in urban government (Gordon and Baldwin-Philippi

2014). Thus, also when developing automated feedback functions it is important to

consider ways to embed social awareness in the interaction. Based on the above men-

tioned findings from standard participation platforms, we assume that information

about existing proposals should be communicated before the user submits a new pro-

posal instead of providing this information after the submission (Hypothesis H4).

4 Method

To test the above stated hypotheses, we conducted an experimental user study with

30 participants (16 males, 14 females) in an enriched laboratory setting. For the test

participant selection, that was done by a specialized market research company, vol-

unteer sampling was employed while taking care to achieve a balanced sample. Test

persons were compensated for their participation. The mean age was 36.9 years, 10

(33%) participants were between 18 and 30 years old, 11 (36%) participants were

between 31 and 45 years old and 9 (31%) participants were older than 45 years. Two

of the participants (6.7%) had completed only the compulsory school. Seven per-

sons (23.3%) owned a degree from a professional school or a apprenticeship. Five

participants (16.7%) had a grammar school qualification. Six participants (20%) had

either a vocational school or college degree; 33.3% of the study sample (ten persons)

owned a university degree. All study participants were experienced with smartphone

usage, and one third had used a digital participation platform before. Only one third

of this user group received some kind of a feedback while interacting with this sys-

tem. In terms of age and education level, our sample matches typical users of mobile

e-participation platforms (Åström and Karlsson 2016).

We focused on the concrete user task of proposing tree planting positions by

means of a map-based mobile participation app, as this had been identified by city

officials to be both relevant and representative for the exploration of the idea of auto-

matic feedback in citizen participation. Participants used a clickable HTML5/JS-

prototype on a smartphone to place a tree symbol on a 2D map to create a proposal

about a new tree, which should be planted at the selected position. Then, the submit-

ted proposal was processed on a server and feedback was transmitted to the smart-
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Fig. 1 Test user receives feedback on the clickable prototype & Google Street view is displayed

in the background as context simulation to enhance involvement

phone and displayed, see Fig. 1 for an example. Figure 1 also shows that the user was

standing in front of a large projection of Google Street View. This context simula-

tion was meant to enhance the immersivity of the laboratory setup (please see Busch

et al. 2014 for a detailed discussion about immersivity in laboratory settings).

In the experimental part of the study, there were four test blocks, which were cor-

responding to the four investigated issues (see Fig. 2, left side). These blocks and

the respective study alternatives within the block were presented to the participants

in random order. Each condition was complemented by a short question about satis-

faction (“How satisfied were you with the feedback related to the specific aspect?”)

with answering options ranging from “not satisfied” (=1) to “very satisfied” (=5).

Furthermore, after each condition, participants were interviewed about the currently

evaluated aspect to get further qualitative feedback.

In the sub-test related to immediacy, the conditions to test H1.1 were realized by

presenting a default feedback page with different delays (5, 10, 30, and 60 s). To

validate H1.2 there were two further alternatives which provided additional feed-

back during the loading phase (e.g. “Request is sent to the server”, “Data is being

analyzed”). For the precision sub-test (H2), information was given either as the pre-

cise costs (“6000e”), a range of costs (“between 4000e and 8000e”) or a prob-

ability (“6000e (80% accuracy)”). In the implicitness sub-test (H3), one alterna-

tive included feedback after a submission and two further alternatives presented the

respective information before the submission: always visible or only visible when

hovering over the respective area. For the social awareness sub-test (H4), informa-

tion about others’ opinions were either provided before or after submission of the

proposal.

After this experimental part, participants were asked to complete an adapted card

sorting exercise, to gain a direct comparative view on user preference of the provided

alternatives. The participants were asked to define their “perfect” interface for imme-
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Fig. 2 Overview of Results. The middle column provides mean satisfaction ratings and 95% con-

fidence intervals from the experimental part; 1 stands for “not satisfied” and 5 for “very satisfied”.

In the right column “Card Sorting”, the means of the inverted ranks from the card sorting part are

displayed; “1” represents the least preferred option and “5” stands for the most preferred option

diate feedback in the context of location-based citizen participation. All alternatives

were printed out on cards and the users laid them in the order of their preference.

Also the card-sort task was complemented with a short interview to better interpret

and weight participants’ responses.

5 Results

In Fig. 2, bar charts and descriptive statistics, the satisfaction ratings from the exper-

iment and the preference ranks from the card sorting activity are shown, grouped by

the four sub-tests, their related hypotheses and experimental alternatives. For each

of the above mentioned experimental alternatives, we calculated Kendall rank corre-

lations between the mean satisfaction ratings and card sorting rank values that were

derived from the experimental and the card sorting part, respectively. These correla-

tions were significant (p < 0.05), except for the alternatives of H4. Thus, participants

mostly provided consistent feedback about the satisfaction of the aspects (evaluated

via the clickable prototype in the experimental part) and the individually selected

interfaces (via card sorting). In order to derive evidence on the pairwise statistical

differences between the experimental alternatives, we decided to calculate Wilcoxon
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signed-ranks tests, as normal distribution of our data could not be assumed. The sig-

nificance threshold was p < 0.5, which was Bonferroni-adjusted in each test block to

avoid alpha-error inflation.

Immediacy: The immediacy sub-test (see the related results grouped under H1.1

and H1.2 in Fig. 2) resulted in significant differences for all comparisons. Satisfaction

already diminished at short delays (H1.1) and continuously decreased with longer

delays. Correspondingly, many participants said that waiting times of up to 10 sec-

onds would be acceptable for them, based on their experiences with other mobile

apps. In their responses, only few participants appeared to consider performance

feasibility aspects of automated feedback systems, such as the processing of open

data, and thus conceded 30 s to be still tolerable. The results for H1.2 also show

that additional information about data processing compensated for longer waiting

times to some extent: users were more satisfied even if they had to wait longer for

the feedback. A participant explained this willingness to wait by arguing “[...] when

I see that something is happening and that there is an effort to get the necessary data

then it’s okay to wait longer”. Another participant added that promptness surpasses

additional information.

Precision: In the precision sub-test (H2 in Fig. 2), displaying precise pricing infor-

mation was rated significantly better than providing a range or probability. Compar-

ing the preference for range and cost, no statistically significant difference was found.

Some participants however stated that displaying a range of estimated costs, rather

than the precise amount, would be more realistic and honest. Also it was stated that

if inaccuracies cannot be avoided, the term “ca.” could be used instead of displaying

a range or probabilities, because among others “you need to calculate the value to

understand what the probability means”. Participants further stressed the importance

of communicating that the provided value might not be exact and might vary to some

degree.

Implicitness: With regard to implicitness of feedback (confer H3 in Fig. 2), test

participants significantly preferred getting information about alternatives (i.e. where

it is generally possible or not to plant a tree) before an actual proposal was made, as

opposed to receiving this feedback afterwards. Participants highlighted that they do

not want to “waste time by hazarding guesses” of where a tree might be plantable.

In addition, many participants mentioned that an important feature would be to get

information about the reasons why a certain tree cannot be planted in a certain

area before submission is sent. There was no significant difference between the two

approaches for offering feedback before the submission is transmitted, i.e., displayed

when hovering vs. always displayed. Participants preferring the hovering approach

highlighted its dynamic and playful interaction and better map visibility, while those

favoring the persistent visibility liked to see all information without further need to

act. The downside of the map becoming too cluttered was also uttered several times.

Social awareness: As regards social awareness (confer H4 in Fig. 2), results on

when community opinion should be disclosed to users was not consistent among par-

ticipants. Some stated they would like to make their own decision and thus would

not want to see the other users, while others participants saw the aspect of getting

influenced as a positive feature. One of this positive aspects of being able to see other
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users’ proposals beforehand was based on the assumption that “other users propose

the planting of trees in regions they are familiar with”, hence increasing the meaning-

fulness of the suggestion. Related to that argument is the statement of another user

who stated that s/he would not mind seeing the suggestions after submission in case

s/he is familiar with the area; otherwise s/he would prefer to see them beforehand.

The statistical analysis of the satisfaction scores revealed no significant differences,

but the comparison preference ranks from the card sorting resulted in a significantly

higher preference for displaying the community opinion before, rather than after
proposal submission.

Relevance of feedback: In order to verify the assumed necessity of providing

(automatic) feedback in context of public participation, we further asked participants

to indicate how they perceive the impact of feedback. This was done after the exper-

imental part of the study in the form of a short questionnaire using 5-point Likert

scales. More than half of all participants fully agreed to the statement that it is essen-

tial for participation services to provide feedback (M = 4.43, SD = 0.82). Only one

participant indicated to not entirely agree. Aiming to explore the potential impact of

feedback, we further assessed its influence on motivation and trust. Regarding moti-

vation, 67% agreed to the statement that being provided feedback would increase

their motivation to actively engage in participatory processes. Hence, feedback can

be considered as a highly contributing factor to promote public participation. Partici-

pants however were more skeptic about feedback’s impact on their trust in institutions

such as city administration (M = 3.70, SD = 1.40).

6 Conclusions

Referring back to our hypotheses, we can say that H1.1 was confirmed: user satis-

faction is decreased if longer waiting times are experienced. Our observation, that

already 10 s are regarded as a minimum quality threshold by the majority of users,

points to an important requirement that designers should seriously consider in the

conception of future location-based automated feedback features. The benefit of time

savings compared to standard participation setups, where people often wait for days

or weeks to receive feedback, obviously are overriden by expectations evoked by

“fast” mobile apps and Web services. Our finding that longer waiting times can be

compensated by displaying additional information about the feedback process con-

firms research hypothesis H1.2. We assume, that by using more advanced forms of

progress feedback than we had in this experiment, expectations could be managed

even to a better extent.

Also hypothesis H2 was verified, that is, precise information about costs of the

submitted proposal should be communicated as often as possible. This implies even

more demanding requirements on automated feedback technology for digital par-

ticipation. However, our qualitative data also suggests that there remains a certain

tolerance, i.e., some participants appreciated that authorities and companies are not

always in the position to provide definite figures (e.g. due to liability concerns, insuf-
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ficient data availability, etc.). Two of such alternatives to enhance “fuzziness” of

information have been tested, but no clear preference between the price range and

the probabilities could be found. We also discussed further suggestions with the test

participants, such as using disclaimers like “ca.”. Follow-up studies should seek to

get more conclusive insight into the optimal trade-off between information precision

and real-world feasibility in various contexts.

With regard to implicitness, we could also confirm hypothesis H3, as the presen-

tation of available options before proposal submission led to higher user satisfaction

than afterwards. Enabling social awareness is, not surprisingly, also highly important

for the design of automated feedback in location-based participation systems. With

regard to the question of when to present community opinions, parts of our data (the

ranking results from the card sorting) support hypothesis H4: the community opin-

ion should be provided before the proposal submission, rather than after the proposal

submission.

7 Implications for Location-Based Participation Services

If we consider the study results as how to reflect on a conceptual level how “a dialog

with the city” should be realized, by means of location-based automated feedback

interfaces, two general statements could be made: First, in order to comply with the

identified severe performance and precision requirements with the current techno-

logical state, tasks should probably not be much more complex than the tree planting

application tested within this study. These should encompass well prepared use cases

with detailed and purpose-structured data in the background, in order to deliver fast

and precise results. Second, as a reaction to our findings regarding implicitness and

social awareness (H3 and H4), realizing a dialog with the city shall not be literally or

idealistically envisioned as an interactive conversation, in the sense that users submit

proposals, which are then iterated by citizens, systems and authorities. Rather, infor-

mation should best possibly reduce interaction steps while still providing all relevant

information. As we have found in our study, this is especially a challenge for mobile

applications, where limited screen real estate may not allow for also providing all

necessary rationale for decisions or constraints on the screen.

Regarding implications for location-based participation on a more general level,

our study confirmed the importance of providing feedback as it might promote

engagement and lead to more trust in the population. Yet, in order to achieve this,

the feedback needs to be designed in a way that citizens perceive it as meaning-

ful. Having investigated the design of specific aspects, this work lies a foundation

for the development of more effective and efficient location-based participation ser-

vices. Further studies are recommended to explore related design options for other

contexts in the field of digital participation. In that respect, studies should also be

conducted in real-life settings over a longer period of time in order to evaluate the

presumed benefit for city administrations as well as dynamics arising from a large

number of users interacting with the service.



“Thanks for Your Input. We Will Get Back to You Shortly.” . . . 267

References

Allen M, Regenbrecht H, Abbott M (2011) Smart-phone augmented reality for public participation

in urban planning. In: Proceedings of the 23rd Australian computer-human interaction confer-

ence. ACM, pp 11–20

Åström J, Karlsson M (2016) Will e-participation bring critical citizens back in? In: International

conference on electronic participation. Springer, pp 83–93

Bohøj M, Borchorst NG, Bødker S, Korn M, Zander PO (2011) Public deliberation in municipal

planning: supporting action and reflection with mobile technology. In: Proceedings of the 5th

International conference on communities and technologies. ACM, pp 88–97

Busch M, Lorenz M, Tscheligi M, Hochleitner C, Schulz T (2014) Being there for real: presence

in real and virtual environments and its relation to usability. In: Proceedings of the 8th Nordic

conference on human-computer interaction: fun, fast, foundational (NordiCHI ’14). ACM, New

York, NY, USA, pp 117–126

Carver S, Openshaw S (1996) Using GIS to explore the technical and social aspects of site selec-

tion for radioactive waste disposal facilities. Accessed 14 September 2016 from http://eprints.

whiterose.ac.uk/5043/1/96-18.pdf

Conroy MM, Evans-Cowley J (2006) E-participation in planning: an analysis of cities adopting

on-line citizen participation tools. Environ Plann C Govern Policy 24(3):371–384

Desouza KC, Bhagwatwar A (2012) Citizen apps to solve complex urban problems. J Urban Technol

19(3):107–136

Dix A (2009) Human-computer interaction. Springer

Fröhlich P, Oulasvirta A, Baldauf M, Nurminen A (2011) On the move, wirelessly connected to the

world. Commun ACM 54(1):132–138

Gordon E, Baldwin-Philippi J (2014) Civic learning through civic gaming: community planit and

the development of trust and reflective participation. Int J Commun 8(2014):759–786

Harding M, Knowles B, Davies N, Rouncefield M (2015) HCI, civic engagement & trust. In: Pro-

ceedings of the 33rd annual ACM conference on human factors in computing systems. ACM,

pp 2833–2842

Karsten J, West DM (2016) Streamlining government services with bots (07 June 2016). Accessed

12 Sept 2016 from https://www.brookings.edu/blog/techtank/2016/06/07/streamlining-

government-services-with-bots/

Kearns I, Bend J, Stern B (2002) E-participation in local government. Institute for Public Policy

Research

Kim S, Lee J (2012) E-participation, transparency, and trust in local government. Public Adm Rev

72(6):819–828

Kohlisch O, Kuhmann W (1997) System response time and readiness for task execution the opti-

mum duration of inter-task delays. Ergonomics 40(3):265–280

Korn M (2013) Situating engagement: ubiquitous infrastructures for in-situ civic engagement. PhD

Dissertation. Aarhus University, Science and Technology, Institute for DatalogiDepartment of

Computer Science

Kweit MG, Kweit RW (2004) Citizen participation and citizen evaluation in disaster recovery. Am

Rev Public Adm 34(4):354–373

Lukensmeyer CJ, Torres LH (2008) Citizensourcing: citizen participation in a networked nation.

Civic Engagem Netw Soc 2008:207–233

Mace RL, Story MF, Mueller JL (1998) The universal design file: designing for people of all ages

and abilities. NC State University

Parasuraman A, Zeithaml VA, Malhotra A (2005) ES-QUAL a multiple-item scale for assessing

electronic service quality. J Servi Res 7(3):213–233

Phoneia Technology & Entertainment (2016) Politibot, the first bot Telegram to follow the elec-

tions 26J (10 July 2016). Accessed 12 Sept 2016 from http://phoneia.com/politibot-the-first-

bot-telegram-to-follow-the-elections-26j/

http://eprints.whiterose.ac.uk/5043/1/96-18.pdf
http://eprints.whiterose.ac.uk/5043/1/96-18.pdf
https://www.brookings.edu/blog/techtank/2016/06/07/streamlining-government-services-with-bots/
https://www.brookings.edu/blog/techtank/2016/06/07/streamlining-government-services-with-bots/
http://phoneia.com/politibot-the-first-bot-telegram-to-follow-the-elections-26j/
http://phoneia.com/politibot-the-first-bot-telegram-to-follow-the-elections-26j/


268 A. Sackl et al.

Poplin A (2012) Playful public participation in urban planning: a case study for online serious

games. Comput Environ Urban Syst 36(3):195–206

Prieto-Martín P, de Marcos L, Martínez JJ (2012) A critical analysis of EU-funded eParticipation.

In: Empowering open and collaborative governance. Springer, pp 241–262

Rhodes DL, Wolf W (1999) Overhead effects in real-time preemptive schedules. In: Proceedings

of the international workshop on HW/SW codesign, pp 193–197

Schröder C (2015) Through space and time: using mobile apps for urban participation. In: Confer-

ence for e-democracy and open governement, p 133

Simão A, Densham PJ, Haklay MM (2009) Web-based GIS for collaborative planning and public

participation: an application to the strategic planning of wind farm sites. J Environ Manage

90(6):2027–2040

Steinberger F, Foth F, Alt F (2014) Vote with your feet: local community polling on urban screens.

In: Proceedings of the international symposium on pervasive displays. ACM, p 44

Szameitat AJ, Rummel J, Szameitat DP (2009) Behavioral and emotional consequences of brief

delays in human-computer interaction. Int J Hum Comput Stud 67(7):561–570

Tambouris E, Liotas N, Tarabanis K (2007) A framework for assessing eParticipation projects and

tools. In: 40th annual Hawaii international conference on system sciences HICSS 2007. IEEE,

p 90

Thiel S-K, Fröhlich P, Sackl A (2016) Experiences from a living lab trialling a mobile participa-

tion platform. In: Real Corp’16: 21st international conference on urban planning and regional

development in the information society geomultimedia, pp 263–272

Valkanova N, Walter R, Moere AV, Müller J (2014) MyPosition: sparking civic discourse by a

public interactive poll visualization. In: Proceedings of the 17th ACM conference on computer

supported cooperative work & social computing. ACM, pp 1323–1332

Vogt M, Fröhlich P (2016) Understanding cities and citizens: developing novel participatory devel-

opment methods and public service concepts. In: Proceedings of 21st international conference

on urban planning, regional development and information society. RealCORP, pp 991–995

Webler T, Tuler S (2000) Fairness and competence in citizen participation theoretical reflections

from a case study. Adm Soc 32(5):566–595

West MD (2004) E-government and the transformation of service delivery and citizen attitudes.

Public Adm Rev 64(1):15–27



Captcha Your Location Proof—A Novel
Method for Passive Location Proofs
in Adversarial Environments

Dominik Bucher, David Rudi and René Buffat

Abstract A large number of online rating and review platforms allow users to

exchange their experiences with products and locations. These platforms need to

implement appropriate mechanisms to counter malicious content, such as contri-

butions which aim at either wrongly accrediting or discrediting some product or

location. For ratings and reviews of locations, the aim of such a mechanism is to

ensure that a user actually was at said location, and did not simply post a review from

another, arbitrary location. Existing solutions usually require a costly infrastructure,

need proof witnesses to be co-located with users, or suggest schemes such as users

taking pictures of themselves at the location of interest. This paper introduces a

method for location proofs based on visual features and image recognition, which

is cheap to implement yet provides a high degree of security and tamper-resistance

without placing a large burden on the user.

1 Introduction

In recent years the impact of online ratings and reviews on the decisions people make

has steadily risen, and has thus also moved into the focus of research. Among others,

the empirical analysis by Ye et al. (2011) showed that a 10% increase in the online

rating of hotels led to a boost of online bookings by more than 5%, while Anderson

et al. (2012) found that an extra half star rating causes restaurant sales to go up by

19%. As a consequence, the number of corresponding platforms has risen and ratings

and reviews have become an important factor for business owners.
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Generally, online ratings and reviews (in the following only referred to as reviews)

can be separated into those that refer to a product and those that refer to a point of

interest (POI), such as a hotel or a restaurant. This work focuses on the latter. While

some platforms are specialized on certain domains, such as restaurants or hotels (as

in the case of TripAdvisor
1
), general purpose platforms such as Yelp

2
or Google

Maps
3

also exist. Using these platforms, it is possible to review any POI from a train

station to a national park.

As online reviews directly influence the revenue of businesses, the incentive to

create fake reviews is high. Not surprisingly, Hu et al. (2011) were able to detect

manipulations in online reviews on both Amazon
4

and Barnes & Nobles.
5

Currently

the major platforms do not implement any sophisticated measures to prevent the cre-

ation of fake reviews, other than that reviews need to be written by humans. This

makes it easy to create malicious reviews, such as fake positive reviews for the own

business or fake negative reviews for the competitors. Thanks to crowdsourcing plat-

forms such as Mechanical Turk,
6

companies that offer the creation of fake reviews

have access to a large human workforce. As a consequence, the state of the art sys-

tems are not able to efficiently prevent the creation of fake reviews.

Hence, in order to prevent fake reviews, it is not only necessary to check if a user

is human, but also to verify that she visited the location she wishes to review. Such

a “proof of location” or “location proof” can for example be achieved by letting the

user solve a location based challenge. To do so, the location based challenge needs

to fulfill the following properties:

∙ The challenge should only be solvable if the user is present at the correct location.

∙ It should not be possible to use a solved challenge a second time.

∙ A solution to the challenge should only work for one particular location.

∙ Business owners or other entities with positive or negative intentions with regard

to the location of the challenge should not have any influence on the challenge.

∙ In order to ensure scalability there should be no need to locally install additional

hardware or to require other users or entities to be present at the same time.

The first three properties are obviously required in order to ensure that a user is at

a specific location. For example, if the challenge would simply consist of a secret

code that is attached to the wall of a restaurant, this key could easily be distributed

to other users. Furthermore, the business owner can choose whom he wants to show

the key, thus avoiding potential bad reviews.

In this work, we propose a location based challenge using photographs. A user

must take a picture of a location with her smartphone camera in order to prove that

1
https://www.tripadvisor.com.

2
https://www.yelp.com.

3
https://www.maps.google.com.

4
https://www.amazon.com.

5
https://www.barnesandnoble.com.

6
https://www.mturk.com/mturk/welcome.

https://www.tripadvisor.com
https://www.yelp.com
https://www.maps.google.com
https://www.amazon.com
https://www.barnesandnoble.com
https://www.mturk.com/mturk/welcome
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she actually is at that location. Specifically, the user has to take a picture that over-

laps by 50% with the right part of an existing picture. The verification is achieved

by matching the photo to the previous photos. As nowadays nearly everybody has a

smartphone with a decent camera, no additional infrastructure is required. Match-

ing of photos is a well-studied problem. State-of-the art algorithm can automatically

match multiple images to create panoramic images (Brown and Lowe 2007). These

algorithms work by first extracting and matching scale-invariant feature transform

(SIFT) features (Lowe 2004) from the different images. Thus, these algorithms inher-

ently must decide if two images can be matched or not. Even when having a large

database of existing photos, it is unlikely that an existing photo, not yet known to the

system, matches a previously taken photo.

This paper is structured as follows. The next section discusses the relevant litera-

ture. We then present our method followed by an analysis of the adversarial model,

as well as a simulation thereof. Finally, we discuss the location proof and draw our

conclusions.

2 Related Work

A large body of work treats location proofs and secure location claims, as prov-

ing that a device or person is at a claimed position is an important step in many

tasks. Location-based access control and authentication (Sastry et al. 2003; Fran-

cillon et al. 2011), interaction with online location-based services (Zhu and Cao

2011; Javali et al. 2015; Khan et al. 2014), or people-centric sensing (with smart-

phones) (Talasila et al. 2013) are examples where adversarial users might want to

fake their locations in order to gain access, get additional benefits from services, or

simply disturb the system. Our motivating examples are online reviews, where users

can post their experiences with a service or at a location to a central system, making

it available for other people which might be thinking about using the same service,

or visiting the same location. In such settings, it is not uncommon for the different

entities to cheat by posting fake reviews about their own service or a competitors’

one (Mayzlin et al. 2014). Mayzlin et al. (2014) propose a methodology for detect-

ing review manipulations, and find examples of both positive as well as negative

manipulation on different review platforms, in particular when a competing service

is located closely to the one being reviewed. Optimally, users would have to prove

that they a) actually were or currently are at the location they are reviewing, and b)

that they are not owning the business, nor being otherwise closely affiliated with it.

In general, such proofs require an active component, i.e., a device that has both

computational and communicative powers, and a specialized communication proto-

col between the device and a user’s smartphone. For example, Sastry et al. (2003)

present the Echo protocol, which allows a set of verifiers V to verify that a prover p
is in a certain region of interest R. Echo requires the verifier and prover to be able

to communicate both using radio frequency as well as sound – in its simplest form

the prover echos a request by the verifier using ultrasound, and the time required for
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this action bounds the maximal distance the prover is from the verifier. Ultimately,

such time-of-flight or time-difference-of-arrival based approaches are very common

for location proofs (Brands and Chaum 1994; Waters and Felten 2003), but require

specialized devices at each location, which makes them an unfavorable choice for

review platforms. In addition, to bound the round trip time (from verifier to prover

and back), the prover has to be able to compute a response within a short time frame,

requiring a device capable of doing so. This also implies that the active device is in

control or possession of the reviewee, which is usually not given for online reviews,

where the central platform has no direct connection to the individual services and

locations. In the past, different communication technologies, such as Wi-Fi (Waters

and Felten 2003; Luo and Hengartner 2010; Saroiu and Wolman 2009; Sastry et al.

2003; Javali et al. 2016), Bluetooth, (Mengjun et al. 2016; Wang et al. 2016; Zhu and

Cao 2011) or RFID (Gao et al. 2012) were used for time-of-flight location proofs.

Another line of research concerns location verification utilizing third-party wit-

nesses. Khan et al. (2014) require a spatio-temporally co-located entity to be present

when the verifier tries to verify the provers location claim. Witnesses register with

a location authority, and are used to generate location proofs (which are sent to the

prover), which in the end can be presented to another party requiring location ver-

ification. Their protocol is resistant to malicious verifiers, provers, and witnesses,

but requires the presence of even more active devices. Similar methods requiring

witnesses are described in literature (Mengjun et al. 2016; Wang et al. 2016). While

finding a witness might be possible for online reviews, it again is difficult for the

review system to control location authorities at every location.

In our work, we propose a weaker form of location verification, inspired by so-

called Captchas (Von Ahn et al. 2003). In essence, “a Captcha is a cryptographic

protocol whose underlying hardness assumption is based on an [artificial intelligence

(AI)] problem” (Von Ahn et al. 2003, p. 296). Commonly, Captchas are known from

registration websites, where they appear as distorted images, in which a user has to

recognize letters or numbers in order to verify his or her human nature. Saroiu and

Wolman (2009) present an approach inspired by Captchas, which has the intention

of proving that a person (i.e., not a device) is at a certain location. For this, they

require that a picture of the person at the location is being sent to the verifier. The

proof is made stronger by making the person hold up a paper, on which a certain

requested message by the verifier is written. This prevents a malicious user from

simply reusing the same picture over and over again. Our approach differs from the

approach in Saroiu and Wolman (2009) in that we do not require the person to be

present in the picture (i.e., we verify the location of the device), and that the repeated

use of the same picture is prevented by requesting a picture at a random (but well-

defined) location. It also differs from conventional Captchas, because its underlying

hardness assumption is based on location properties, i.e., only someone present at

the location is able to easily solve the problem.
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3 Method

This section introduces the “Captcha your Location Proof” (CLP) method. The CLP

method works with little to no infrastructural overhead, and has a similar mechanism

to that known from Captchas. In particular, CLP uses the smartphones’ capability of

taking pictures for proving a client’s location. The section starts with presenting the

stakeholders, i.e., the natural persons or organizations involved in the execution of the

proof. Then, the actual procedure describing both the underlying data structure and

the communication between a client and a location based service provider employing

the location proof method is explained in detail.

3.1 Stakeholders

The CLP approach involves three different stakeholders, the location based service

provider, the location owner and the client.

Location Based Service Provider. The location based service provider (called:

provider) is an organization or a group which wants to use CLP to ensure that clients

of its (crowd sourced) services receive authentic information about locations. In par-

ticular, the provider acts as a trusted entity throughout this process. The provider

typically hosts CLP within a web application, such as an online review site.

Location Owner. The location owner is an organization or a group which man-

ages a particular location of interest, such as a restaurant or a park. The location

owner does not have to set up any infrastructure for CLP to work.

Client. The client (or also user) is both the consumer and producer of information

regarding the locations made available through the provider.

3.2 Procedure

The Data Structure. For the CLP approach we focus on the client as a producer of

information, i.e., someone who wants to add some kind of information (e.g., a rating,

a description, etc.) to a particular location she previously visited (e.g., a restaurant, a

park, etc.). The provider (technically represented by an appropriate IT infrastructure)

requires an image of the location from the client as a proof of presence. We define the

combination of these three data items (i.e., information, location and image) together

with the client as a contribution (cf. Fig. 1).

The images of contributions of different users are required to overlap partially,

i.e., new images need to partly depict scenes of already existing images. In our data

structure, this means that each image contains a reference to its successor, forming

a directed tree It. A successor of an image il is an image ik that overlaps with 50%
of the right half of il (cf. Fig. 4). Images taken by different clients from the same
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Fig. 1 The simplified class

diagram for the data

structure underlying the CLP

approach
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- NumRejects

Fig. 2 An UML sequence

diagram depicting the “The

Contribution” step of the

CLP procedure ProviderClient

contribute (clientId, informa on, loca on)

perspective constitute the level l in the image tree It. In particular, all images

il,1,… , il,n at level l of the image tree have all images ik,1,… , ik,m of level k in the

image tree as successors. Consequently, connecting the images of a path through the

image tree would result in a big panoramic image representation of a location. We

also store the number of times an image was rejected or accepted as a valid repre-

sentation of a location.

Every now and then we ask clients to start a new image tree It for a particular

location. Therefore, a location refers to one or more image trees [I0,… ,In] repre-

sented by their respective root image, and t indicates the tth tree in that list of trees.

The Contribution. The CLP approach starts with a contribute message sent from

the client to the provider. The message contains the client’s ID, the information she

wants to contribute and the location the contribution is for (see also Fig. 2). For

example, Alice wants to create a contribution for a restaurant she visited in Tokyo

(see Fig. 3). She therefore sends the following (simplified) message to her provider:

“(id: alice2018, location: (Tasty Edamame, Tokyo, Japan), information: (‘5 stars’,

‘amazing sushi place’))”.

The Challenge. After receiving the client’s contribution request, the provider cre-

ates a temporary “Contribution” instance and returns its ID (for an appropriate com-

munication tracking) together with a challenge (see also Fig. 5). That is, the provider

challenges the user to prove she actually is at a location by taking a picture of it.

More precisely, this is done by choosing from one of the following challenges, i.e.,

either to:

∙ append a picture to a known image tree of the location, i.e., taking a new picture

that partially overlaps with an existing one in that tree, or to
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Fig. 3 The location the

“Alice” wants to create a

contribution for

∙ prove an existing picture, i.e., taking a new picture that completely overlaps with

a known picture in a known image tree, or to take a completely

∙ new picture, which is not compared to any other picture and constitutes the root

for a new image tree.

Each of these challenges is chosen with a different probability. Formally speaking,

the provider chooses the challenge c ∈ {append, prove, new}, where pappend ∈
[0, 1], pprove ∈ [0, 1] and pnew ∈ [0, 1], with pappend + pprove + pnew = 1.

To reduce the complexity, we assume that images can only be appended to the

right of an existing image, i.e., there is at most one image per tree a user can append

to, namely the rightmost one. We denote the list of all images for a location, i.e., the

concatenation of all images of all image trees It as I = [I0,… ,In]. We further

define an image i ∈ I by I[idx], where idx = (idxt, idxl, idxi) references a single

tree by idxt, a particular level by idxl, and an image on this level by idxi.

The image for an append challenge is defined as ic = I[idx], with idxl = |It|−1
for a randomly chosen image tree It (idxt = t; idxi is randomly chosen from all

the available images in the tree at that level). For the prove challenge the image is

defined as ic = I[idx], where idxl < |It| − 1 for a chosen tree, i.e., the image is not

the rightmost image in this image tree. Finally, to create a new image tree In+1 the

provider asks the client for an image and accepts whatever the client responds.

Note that, even though the provider actually chooses out of three different chal-

lenges, from the client’s perspective there is no actual difference between append and

prove, since the provider always sends some image ic and marks 50% to the right of

it for matching or asks her to take a completely new picture. If we assume that each

user can only make one contribution for any location, the request is rejected if such

a contribution has already been made.

In our example from Alice’s perspective the provider responds to her depending

on whether she is the first or nth contributor for the location ‘(Tasty Sushi, Tokyo,

Japan)’:
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(a) (b)
Challenge Response

Fig. 4 a The picture Alice could take given the new challenge. b After receiving the append
challenge with the picture to the left ic, Alice could take the picture to the right ir to match the right

hand side (red boundary) of it

challenge (contribu onId, challenge, image)

createContribu on(client, informa on, loca on): contribu onId

chooseRandomImageLe OfRightmostImage(imageTree): image

chooseRandomChallenge(loca on): challenge

chooseRightmostImage(imageTree): image

alt

[challenge=new]

[challenge=append]

[challenge=prove]

chooseEmptyImage(): (image=null)

chooseRandomImageTree(loca on): imageTree

Fig. 5 An UML sequence diagram depicting the “The Challenge” step of the CLP procedure

∙ In case of the first contribution Alice receives the response (contributionId: 42,

challenge: ‘new’, image: null) and is thus asked to take a picture of the “Tasty

Sushi” (see Fig. 4a).

∙ In case of the nth contribution Alice either receives the response (contributionId:

42, challenge: ‘new’, image: null) and is again asked to take a picture of the “Tasty

Sushi” (see Fig. 4a), or she receives the response (contributionId: 42, challenge:

‘append’, image: ic) and is asked to append to the right of an existing picture

(see Fig. 4b).

The Response. After receiving the challenge, the client responds with either one

of the following (see also Fig. 6):

∙ img, i.e., taking the picture, or

∙ reject, i.e., not taking the picture (except if we had a new challenge)

Rejecting to send an image could be either because the client cannot or does not want

to respond to the challenge.

In case of Alice this means that she could either:

∙ Take a picture and respond with (contributionId: 42, image: ir) (see also Fig. 4b),

or
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Fig. 6 An UML sequence

diagram depicting the “The

Response” step of the CLP

procedure

response (contribu onId, image)

alt

[response=reject]

[response=img]
takePicture(): image

refuseToTakePicture(): (image=null)

∙ Reject ic and respond with (contributionId: 42, image: null)

The Reaction. The provider’s reaction to the the client’s response depends on the

previously chosen challenge (see also Fig. 7):

∙ if the provider chooses an append challenge with the image ic
– and the client responded with img and the image ir: the provider checks whether

there is a 50% overlap between ic and ir. If not, the client’s response is rejected

and she is asked to submit a new image ir,new. Otherwise, ir is added to It at

level |It| and is defined as successor to all images at level |It|−1. The provider

then responds with an “OK” message to the client.

– and the client responded with reject: the provider increments the “NumRejects”

counter of ic and goes back to the The Challenge step and reruns the process

from there on.

∙ if the provider chose a prove challenge with the image ic
– and the client responded with img and the image ir: the provider checks for a

50% overlap between ic and ir, as well as for a 100% overlap with all images

stored at the same level as ic. If there was already no 50% overlap, the client’s

response is rejected and she is asked to submit a new image ir,new. If however

the 100% comparison fails, the provider accepts the contribution anyway, but

increases the “NumRejects” counter for the images that do not match ir. ir is

then added to It at the level of ic + 1 and is defined as successor to all images

at the level of ic. The provider responds with an “OK” message to the client.

– and the client responded with reject: the provider increments the “NumRejects”

counter of ic and all images at the same level in It that match it, and goes back

to the The Challenge step and reruns the process from there on.

∙ if the provider chose a new challenge

– and the client responded with img and the image ir: the provider creates a new

image tree In+1 with ir as the root image and n being the number of image trees

for the location. The provider responds with an “OK” message to the client.

At any point in time, the client can cancel the procedure; this is not treated separately

here.

In case of Alice this means that she could either:
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check50%overlap()

alt

[challenge=new]

[challenge=append]

[challenge=prove]

alt

[response=reject]

[response=img]

alt

[valida on=nok]

[valida on=ok]

goto Client:"takePicture()"

updateLoca on()

OK

goto Provider:"chooseRandomChallenge(loca on)"

check50%overlap()

alt

[response=reject]

[response=img]

alt

[valida on=nok]

[valida on=ok]

goto Client:"takePicture()"

updateLoca on()

check100%overlap()

OK

incrementNumRejects()

goto Provider:"chooseRandomChallenge(loca on)"

incrementNumRejects()

alt

[response=img] updateLoca on()

OK

updateLoca on()

Fig. 7 An UML sequence diagram depicting the “The Reaction” step of the CLP procedure

∙ Take a picture and respond with (contributionId: 42, image: ir), or

∙ Reject ic and respond with (contributionId: 42, image: null)

3.3 Adversarial Models

3.3.1 Assumptions

We assume that the service provider has a crowd sourced location based service.

In particular, the service provider wishes to ensure that its clients’ contributions are
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authentic, i.e., that the client actually was at the location she made the contribution

for. The communication between the clients and the server is secure, and the server

(and thus also the service provider) is a trusted entity. We assume that the location

owner wants the information which is made available to the clients by the service

provider to be of a positive nature.

Furthermore, the clients, to prove the authenticity of their contribution, use a

mobile phone to take a picture at the locations they wish to contribute information

about. The picture along with their current (GPS) position, as well as a set of any

other information (e.g., a rating) is then sent to the service provider. Moreover, the

clients trust the service provider to ensure that the location based information they

receive from other clients is authentic. The image processing is assumed to be able

to detect if two images are similar or completely distinct. In addition, we assume the

challenge images to be watermarked, i.e., it is not possible for an adversary to simply

reuse these images at a later point in time.

Finally, we we will assume scenarios, where adversarial contributions appear in

“bursts”, i.e., ignoring a location’s actual quality, adversarial contributions will either

occur at the beginning or the end of a contribution “history”. This is based on the

observations from Hu et al. (2011), i.e., an adversary might either create novel con-

tributions for a location that has none, or try to negate whatever contributions already

exists. In either case the contributions aim at either discrediting a location or boost-

ing its reputation. To realize this, they have to occur within a certain clustered time-

frame. This holds true even if adversaries would try to make the contributions with

temporary displacements to avoid attracting attention.

3.3.2 Threats

Threats can originate from both clients and location owners. Reasons to manipulate

contributions could be that the client is a competitor of the location owner and wishes

to discredit the location, or that she is employed by the location owner to add positive

information regarding the location. The location owner could also act as a client

herself.

Generally, an adversary (either a client or location owner) can easily spoof her

GPS location. That step would by itself however not necessarily break the CLP

approach. In particular, we identified the following additional actions that are nec-

essary to pose a threat:

∙ Malicious first contribution. An adversary (client or location owner) can con-

tribute with an initial image which is not of the location L she claims to be at.

For example, she can take a picture of any other location L’ and have that image

uploaded. Afterwards the adversary can add further images and information from

the fake initial location L’.

∙ Similar looking locations. An adversary might try to make a contribution from

a location L’ for the location L by trying to find an image that she believes might

be accepted by the system. That is, after receiving the challenge for a segment of
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an image of L, she searches an image database and finds one that she believes has

similar enough features.

∙ Catalog of real images. An adversary could take many pictures of the actual loca-

tion L and store those in a data storage. Afterwards the adversary could create

contributions and use the image database for looking up an appropriate proof that

complies with the CLP approach.

∙ Systematically boosting fake contributions. Adversaries could systematically

reject all images they know are real and try to find images fitting to fake images.

∙ Creating a fake image tree. Adversaries could systematically reject all images

until they receive the new challenge and afterwards continue rejecting any image

that is not within that image tree and only append to that tree.

∙ Accepting only new challenges. Adversaries could systematically reject all chal-

lenges until they receive the new challenge and create only new image trees with

fake images.

∙ Man-in-the-middle. A known attack against the Captcha system was an appli-

cation that relayed Captchas to third users, which were incentivized by various

rewards to return the solved problem to the original user. With our system, such

man-in-the middle attacks are much harder as somebody needs to be present at the

actual location.

The next section will evaluate these threats using a simulation approach, and discuss

countermeasures for the threats which CLP cannot prevent.

4 Technical Evaluation

In this section, we will discuss the advantages and disadvantages, as well as the pres-

ence of adversaries in the CLP approach in more depth. Recall that upon receiving

an image, a user has two options to respond: {img, reject}, where the first response

means sending an image i (either appended to the challenge image ic with an over-

lap of 50%, or a completely new one), and the second means to reject the challenge

image, thus discrediting it, and receiving a new challenge (this second response is

not available for the new challenge).

4.1 Honest and Adversarial User Responses

For each challenge, we have to evaluate the possible answers of a user uh (honest),

and a user ua (adversarial). Note that we do not make any statements on the honesty

of the contribution of a user, but only on its location—someone who is present at

a certain location can still send reviews discrediting a competitor. The user has to

be at the location, though, and cannot simply outsource the task to some company

operating from another location.
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The new challenge. If a user receives a new challenge, there is only one possible

response, namely to send a new image i, which will be stored in the CLP system as

part of a user’s contribution. As we do not know if u is honest or adversarial, the

system simply stores the image without any further processing.

The append challenge. When appending to an image ic, honest and adversarial

users react differently. In the following, we assume that uh always is correctly fol-

lowing protocol, while ua chooses either the potentially best outcome for herself, or

the worst impact on the system (to destabilize it). As such, user uh will perform one

of the following two actions:

∙ The user finds the scene depicted by the challenge image ic at the location, and is

able to append as requested. She will send the appended image i, which will be

stored as part of a contribution associated with the given location.

∙ The user is not able to find the scene depicted by ic, and thus has to reject the chal-

lenge. The challenge image ic is now discredited, i.e., the CLP system increases

the rejection count of image ic. This will later be important, when we assess which

users to trust, and which users to flag as adversarial.

A dishonest user ua will react completely different upon receiving an append chal-

lenge. Let us first assume the challenge image ic is honest, i.e., the scene depicted by

it can be found at the location. In this case, the adversarial user has two options:

∙ She can reject the honest image ic, thus discrediting it, and receive a new challenge.

The CLP provider will store that ua discredited the image, and continue as usual.

∙ Append a dishonest image by taking the overlapping half of ic, generating some

arbitrary image for the other half, and sending it back to the CLP provider. Again,

the CLP system does not know this is an adversarial image yet, so it will store the

the image as part of the user’s contribution.

Choosing the first option, ua builds up distrust towards honest users, which can

be an advantage, as long as her adversarial identity is not revealed. With the second

option, ua builds up trust, as long as the contribution is not discredited by honest

users. In case the challenge image ic itself is dishonest, ua would have the same

choices again. However, rejecting a dishonest image would discredit the adversarial

owner of that image, and result in uncovering the owner’s mischievous doings. As

such, it would always benefit honest users, and the trustworthiness of the system. We

can thus assume that in order to get the maximal benefit for herself, a malicious user

always appends to a dishonest image.

We introduce the probabilities pr (reject) and pa = 1 − pr (append) with which

the response of an adversarial user is chosen. As discussed above, pa = 1 for a

dishonest challenge image, as the adversary will always append. We will evaluate

different values of pr and pa for a honest challenge image below, but for example, if

the probability to reject is pr = 1, this means the adversarial user will reject until she

either has to append to a dishonest image or gets a challenge for a new image (the

prove challenge will also always be rejected, as from a user perspective, append and

prove look equal).
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Fig. 8 Schematic representation of the images in the CLP system. Each image can stem from a

honest or from an adversarial user, and has a certain number of agreements (successfully appended)

and rejections associated with it (number of times the image was rejected during an append or

prove challenge). Whenever a new challenge is responded with a new image, another such a “list of

images” is started

The prove challenge. From a user’s perspective, the prove challenge cannot be

distinguished from the append challenge. As such, the responses are the same, but

since the CLP system has additional knowledge this results in a different procedure

on the system.

Namely, the system will check for any appended image, if it corresponds to any of

the other images taken at this position. This results in a number of agreeing images,

and a number of disagreeing ones. In the worst case, all adversaries work together,

i.e., they send images that agree with each other, but not with the images of the honest

users. On the other hand, all images of honest users always agree with each other, per

our definition of honesty. Figure 8 shows the images associated with a given tree of

images, displayed as a list of stacks of proved images. Such a list is started whenever

an image is entering the system as response to a new challenge. The images in this

list can stem from honest and adversarial users, and thus create a number of trust
votes for each other. For example, in a stack with 5 honest images, and 3 adversarial

ones, each of the honest images has 4 votes of trust, and 3 votes of distrust, while

each of the adversarial images has 5 votes of distrust, and 2 votes of trust. The votes

are simply computed by applying image processing techniques to all images, and

measuring how many of the features of two images agree with each other. Note that

these images would all overlap each other, for clarity they were drawn separated in

Fig. 8.

In addition to these trust votes, each image can be appended to or be rejected

in response to append and prove challenges, which is counted for each image in

variables na (number of agreements) and nr (number of rejections).

4.2 Assessing Adversarial Users

We are ultimately interested in determining which users are adversaries, and which

users can be trusted. As a system, our initial trust towards each user is the same, but
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given user votes, we can determine which users we can trust more, and as a result,

which users’ reviews we have to remove from the system again. We can do this using

the knowledge gained from rejected images, as well as from proved images that do

not match.

In the following analysis, we restrict ourselves to saying that every user can at

most prove her location once (i.e., each user is unique and does not appear for mul-

tiple images nor multiple locations). We reason that security improves if users are

allowed to prove their location several times and at multiple locations, as honest users

can build up trust, which can be weighted more when wanting to detect adversaries.

Insofar, the situation considered here is a worst-case scenario which should improve

in real-world systems.

As described above, we have two sets of votes for each image, one from rejec-

tions, and one from comparison to other proved images. The rejection votes make

statements about users thinking that a particular image is adversarial (i.e., it will con-

tain an arbitrary number of votes, depending on the number of times the image was

chosen to be part of a challenge). The prove votes make a similar statement implic-

itly, and thus always contains a number of votes corresponding to all other proved

images at the same location.

We can now count the positive votes in a set of prove images Ip (which should

depict the same location) for any given image i (and thus the user who posted it) as:

vi,p = na + agree(i, Ip)

where na is the number of users who successfully appended to this image and

agree(i, Ip) is the number of images of the same location that agree (i.e., have enough

matching features for the image processing to recognize them as the same location)

with this image. The number of negative votes is computed as:

vi,n = nr + (|Ip| − agree(i, Ip))

where nr is the number of users who rejected to append to this image and |Ip| −
agree(i, Ip) is the number of images at the same place which do not agree with this

image. We now trust an image (and thus the user who posted it) if vi,p > vi,n. This

also means that we trust the location of the user to be genuine. Note that with this

scheme, we can discover adversarial users at any later point in time, and eventually

remove their mischievous reviews. We thus have to recompute trust whenever a new

user contribution enters the system, and assess which users we trust, and whom we

have to classify as adversarial.

4.3 Simulating CLP Challenges and User Responses

To evaluate the influence of different probabilities and parameters on the number of

adversaries CLP is able to identify, we now present a simulation of the approach.

The simulation model exactly follows the above described method, i.e., honest and
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adversarial users want to add a contribution to a system, and are challenged to either

provide a new image, append to an existing one, or prove an image. While the append
and prove challenges look equal from a user’s point of view, the system handles their

responses differently. Within the simulation, we model a restricted view of the world

for the CLP system, as well as for the clients themselves. As the simulator knows

everything (in particular, which users are honest, and which ones are adversarial),

we can easily compute how many users were correctly classified as adversarial by

the system, and how many honest users are wrongly accused of being dishonest. In

an optimal system, no honest user would be treated as an dishonest, and no adversary

would be treated as honest.

The simulation routine is shown in Algorithm 1. The functions generateUser (L1)

and generateChallenge (L4) simply generate either honest or adversarial users, and

new, append or prove challenges, according to the rules defined above. insertImage
(L10) increases the agreement count, and inserts the image at the correct position

in the right image tree. The core function simulateStep first generates a random user

and a random challenge (L13–15), and then applies the logic described above to

the image collection, depending on the type of challenge. If a user rejects a cer-

tain challenge image, the goto (L22/26) statements cause the simulator to generate a

new challenge, and restart the procedure. Finally, we count the number of distrusted

honest users hdistr. as the percentage of all honest users, for whom the majority vote

yielded that they should not be trusted, and atrust. as the percentage of all adversaries,

for whom the vote yielded that they should be considered honest.

We ran the simulation for a range of values for the parameters pnew, pprov, pr and

padv, in order to determine the best values for pnew and pprov (papp can be calculated

from them), given different adversary strategies. Table 1 shows the best values (when

minimizing atrust) for pnew and pprov for given probabilities of adversaries, and dif-

ferent adversarial strategies. beg. and end are two adversary strategies, where there

either is a burst of adversaries in the beginning (padv = 0.7 for the first 25 contri-

butions, and 0.1 for the rest) or in the end (padv = 0.7 for the last 25 contributions,

otherwise 0.1). For each parameter combination, we ran the simulations five times

for 100 contributions each, and measured the average of the final percentages for

distrusted honest users and trusted adversaries.

Figure 9 gives exemplary outputs for three simulations. On the left, a scenario

with padv = 0.2 is shown, while in the middle the adversaries are clustered in the

Fig. 9 Output of three simulation runs, where honest and adversarial persons use CLP to upload

contributions to a review site
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Algorithm 1: The simulator function, which is executed iteratively. Each itera-

tion adds another user contribution, either from an honest or from an adversar-

ial user. 𝐈 = {I0,… , In} corresponds to the image trees associated with a cer-

tain location, and is initially empty. The function random() generates a random

number r ∈ [0, 1], the function randomImage(⋅) selects a random image from

all images in the trees passed to it, and the probabilities padv, pnew, papp, and

pr describe the percentage of adversarial users, new challenges, append chal-

lenges, and the reject strategy of adversarial users. We assume insertImage(⋅)
knows how to append a new image ir to the image tree, given a predecessor

ic. A and R are accept and reject counters for all images, and are initially 0 for

every image. Finally, filter(⋅, f ) only returns the images which fulfill the predi-

cate function f .

1 Function generateUser ()
2 if random() < padv then return AdversarialUser
3 else return HonestUser
4 Function generateChallenge (𝐈)
5 if |𝐈| = 0 then return NewChallenge
6 r ← random()

7 if r < pnew then return NewChallenge
8 else if r < pnew + pprov then return ProveChallenge(randomImage(𝐈))
9 else return AppendChallenge(randomImage(𝐈))

10 Function insertImage (ic, ir)
11 A[ic] ← A[ic] + 1
12 append(𝐈, ic, ir)
13 Function simulateStep ()
14 u ← generateUser()

15 c ← generateChallenge(𝐈)
16 switch c do
17 case NewChallenge do
18 𝐈 ← 𝐈 ∪ {I(ir)} ⊳ Where I(ir) starts a new image tree.
19 case AppendChallenge(ic) or ProveChallenge(ic) do
20 if typeof u = HonestUser then
21 if typeofowner ic = HonestUser then insertImage(ic, ir)
22 else R[ic] ← R[ic] + 1; go to 15

23 else
24 if typeofowner ic = DishonestUser then insertImage(ic, ir)
25 else
26 if random() < pr then R[ic] ← R[ic] + 1; go to 15

27 else insertImage(ic, ir)

28 hdistrusted ← |filter(𝐈, i ↦typeofowner i = HonestUser and vi,n > vi,p)|

29 atrusted ← |filter(𝐈, i ↦typeofowner i = DishonestUser and vi,n < vi,p)|
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Table 1 Different scenarios, and the percentage of identified adversaries. hdistr. is the percentage

of honest users that are distrusted, atrust. is the percentage of adversaries that are wrongly trusted

padv pr pnew pprov hdistr. [%] atrust. [%]

0.1 0.2 0.05 0.35 0.0 1.7

0.5 0.05 0.70 0.1 8.1

0.8 0.05 0.05 3.3 9.5

0.2 0.1 0.05 0.25 0.0 4.8

0.5 0.05 0.50 0.1 7.8

0.8 0.05 0.25 1.1 16.0

0.4 0.1 0.05 0.50 6.7 27.4

0.5 0.05 0.80 2.4 27.8

0.8 0.05 0.80 7.6 42.4

0.8 0.1 0.10 0.35 15.3 87.5

0.5 0.05 0.50 11.3 87.6

0.8 0.05 0.30 14.1 89.4

beg. 0.1 0.05 0.20 0.4 14.2

0.5 0.05 0.20 0.1 26.5

0.8 0.05 0.75 0.4 33.1

end 0.1 0.05 0.85 0.4 13.6

0.5 0.05 0.75 0.8 16.2

0.8 0.05 0.40 0.7 24.4

beginning, and on the right in the end (as described in the previous paragraph).

pnew = 0.1, pprov = 0.3 and pr = 0.2 were constant.

It can be seen from both Table 1 and Fig. 9 that CLP usually is able to identify a

large number of adversaries. The best strategies for adversaries are to either simply

suppress the honest users (large padv), or to choose a large pr, i.e., simply reject

everything until the are allowed to send a new image. However, we argue that such

users could be identified (for example, by always sending a append images with

many trust votes), and thus it is not a good choice for adversaries to choose pr very

large. In reality, we would hopefully also always see a substantial number of honest

users (otherwise, the place would not be of interest), i.e., padv cannot get too large.

Finally, it is interesting to see that pnew should be low. This is because new challenges

are the primary means for adversaries to hide their malicious intent. In reality, we

cannot chose pnew too small, as honest users must have a chance to eventually submit

a genuine new picture (otherwise, they would always have to reject).
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4.4 Countermeasures

As the previous section argued, CLP is inherently able to detect a substantial share of

adversarial users. Attacks generally become more difficult with a growing number

of images, because the number of possible segments that we could challenge the

user with is equal to the number of images for the location. Thus, even when an

attacker finds a similar location, assuming a high enough number of images exist,

finding a match becomes more difficult. In particular, since we have the 100% check

it is possible that the system chooses the same image multiple times countering the

possibility of a similar looking image.

Another easy way to handle malicious contributions is to allow clients to request a

reset of the contributions, i.e., removing all contributions for a location. Graduations

of such a solution are possible too, e.g., removing only the last n contributions. In

practice, this could be implemented by adding a trust or gamification (cf. Weiser et al.

2015) layer on top of CLP, which would allow “power users” to manually assess all

images at a location in return for points or other game elements.

Additionally, it is possible to adapt the size and position of image segments. For

example instead of choosing 50% to the right of an image, we could extract two

snippets, one of size 200 × 200 pixels and one with 400 × 400 pixels at an randomly

chosen position of the “stitched up” image and ask a client to take a picture containing

the smaller segment. Afterwards we could extract a segment of 400 × 400 pixels from

the response image and match that against the challenge image of same size.

Allowing users to make contributions for multiple locations would allow them

to build up trust, which can be used to spot malicious users. This could be further

enhanced by using time geography (Miller 2005) to assess whether a person could

have traveled between two locations within a given time frame.

5 Discussion

In this work, we presented a method for posing a location based challenge that allows

a location based service provider to verify if a user was as at a particular location.

Such a location proof is particularly important in crowd-sourced scenarios where a

service provider wishes to ensure a certain degree of authenticity of the collected

information.

The underlying idea is simple: We ask a user to take a picture of the location she

wants to make a contribution for. That picture needs to partially match an existing

picture contributed by some other user. Should the image match, we store it in the

system and compare it to an ever-increasing set of images depicting the same scene,

which allows assessing whom we can trust, and whom we should classify as adver-

sarial. The advantage of such a principle is that it can be applied in large scale, as

nowadays nearly everybody has a smartphone with a decent camera and fast image

processing algorithms exist. We thus avoid any additional infrastructure or contexts
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that are difficult to achieve, which current state of the art methods for location veri-

fication usually require (additional local infrastructure or co-located witnesses).

We thoroughly analyzed our method for possible attack scenarios and found that

while we cannot ensure the authenticity of the location of every user, in many real-

istic scenarios CLP can detect the majority of attackers. That is, our method is not

“bullet-proof” (like a cryptographic method) but makes malicious contributions in

a real world scenario considerably more expensive (similar to Captchas, where the

challenges are more difficult for automated systems, CLP challenges are more diffi-

cult for people absent from a certain location). Moreover, we were able to quantify

how many attackers we can identify under which circumstances (in particular for

which given probabilities). While our analysis is based on a simulation, the same

technology could be used in a real (prototypical) system if supplied with data from

a computer vision subsystem and integrated into a web application. As part of our

work on location based need matching systems (Bucher et al. 2017), we are working

on different location proof system implementations.

Nonetheless, the proposed method has certain limitations. The location challenge

requires an honest user to be present at the location. This is a drawback regarding the

convenience for the user. From a practical point of view the location of the photo of

a location challenge needs to be identifiable by the user. This requires that this loca-

tion is within the line-of-sight of the user. For normal locations such as restaurants

this will not be a problem. However, POIs vary greatly in sizes, e.g., for a national

park spanning multiple square kilometers finding the right location will not be fea-

sible. This can be circumvented by also considering the GPS location of the user

and only using images that are close to that GPS location. An additional challenge is

changing POIs, for example when a restaurant is renovated or a fair moves to another

location. However, one can argue that for these POIs the accuracy of an old review

also potentially decreases very fast. Additionally, the countermeasure of resetting the

contributions could be exploited here as well.

For practical deployment, gradual introductions of CLP are possible (as the hard

requirement to take a matching picture could discourage people from contributing to

a crowd-sourced service). For example, when using an “add pictures to your review”

functionality, users could be asked to try to append to existing images. This could be

transformed into a “trust score”, which still allows anyone to contribute, but gives

a higher weight to honest users. The CLP system can also be used to remove fake

reviews long after they have been posted. For example, somebody could have created

a large corpus of photos in advance and used them to create fake reviews. If one

review was identified as a fake review, due to the graph structure of the matching

photos, all connecting reviews can be found and removed from the system. Generally,

even though our approach poses a comparably weak authentication proof, extending

it with the many countermeasures we introduced and even combining it with other

verification mechanisms can make it completely infeasible for adversaries to attack.
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6 Conclusion and Future Work

This paper introduced the novel “Captcha your Location Proof” (CLP) approach,

which in contrast to earlier research in the field of Location Proofs does neither rely

on any additional infrastructure, nor on the client being in the picture. CLP rather

relies on the principle that as long as there are more honest than dishonest clients,

most of the adversarial ones can be detected and removed. Moreso, providers of

location based services employing CLP can be sure that they are providing their

clients with authentic contributions or reviews for locations or POIs. Furthermore,

from an honest client’s perspective the CLP method consists only of declaring the

wish to create a review for a POI and taking a picture thereof. Together with the high

availability of cameras in smartphones or even regular mobile phones, the simplicity

of CLP makes it especially attractive for location based service providers such as

review platforms.

Like all location proof approaches, CLP both strengths and weaknesses. We ana-

lyzed them in detail in our description of the adversarial model. In particular, we

worked out a clear differentiation between honest and dishonest clients, as well as

the possible threats they could pose. We then conducted a simulation of a possi-

ble real world application with predefined probability measures to demonstrate the

behavior and practicability of CLP in practice. Finally, we presented a set of counter-

measures that help increase the reliability of CLP and efficiently counter the threats.

For future research it might be interesting to realize CLP with a real infrastructure

and conduct user studies to both test the stability, practicability, as well as the user

acceptance of the system in a real world environment.

Nonetheless, our simulation showed that the CLP approach as it was presented in

this paper poses a scalable, easy to implement, easy to use, user friendly solution for

location proofs in an adverserial environment.
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Data Quality of Points of Interest
in Selected Mapping and Social Media
Platforms

Hartwig H. Hochmair, Levente Juhász and Sreten Cvetojevic

Abstract A variety of location based services, including navigation, geo-gaming,
advertising, and vacation planning, rely on Point of Interest (POI) data. Mapping
platforms and social media apps oftentimes host their own geo-datasets which leads
to a plethora of data sources from which POIs can be extracted. Therefore it is
crucial for an analyst to understand the nature of the data that are available on the
different platforms, their purpose, their characteristics, and their data quality. This
study extracts POIs for seven urban regions from seven mapping and social media
platforms (Facebook, Foursquare, Google, Instagram, OSM, Twitter, and Yelp). It
analyzes the POI data quality regarding coverage, point density, content classifi-
cation, and positioning accuracy, and also examines the spatial relationship (e.g.
segregation) between POIs from different platforms.

Keywords VGI ⋅ Crowd-sourcing ⋅ Point of interest ⋅ Data quality

1 Introduction

Location based services (LBS) play an important part in our everyday life. For
many tasks LBS use an inventory of points of interest (POI), also often called
places, venues, or businesses, which can originate from commercial (e.g. Google)
or crowd-sourced platforms (e.g. OpenStreetMap (OSM)). POIs can be used to
geo-reference social activities, such as posting a picture on Instagram, sending a
geo-tagged tweet, or checking into a Foursquare/Swarm location (Rösler and Liebig
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2013). POIs are also relevant for navigation solutions, e.g. when providing refer-
ence points in travel directions (Nothegger et al. 2004; Duckham et al. 2010) or for
suggesting venues along a route as part of personalized route recommendations
(Lim et al. 2015). Due to the importance of POIs in geo-applications including LBS
a solid understanding of their nature and data quality is essential to determine their
fitness for purpose. Through successful conflation of POIs from different sources,
attributes could be complemented, the number of objects increased, and the data
quality of POIs improved (Hastings 2008). Successful conflation necessitates,
however, to handle the challenging problem of data integration and achieving data
interoperability. It requires also an understanding of the nature of POIs provided on
the different platforms in order to identify promising candidates for conflation and
integration in the first place. This study will tackle the latter task by a joint com-
parison of various quality aspects of POIs from seven commercial and Volunteered
Geographic Information (VGI) crowd-sourcing platforms. This joint analysis is the
novel aspect of this contribution, which builds on quality measures (e.g. richness in
POI categories) that have been applied in other similar studies before.

From among the various data quality elements that are commonly used to
determine how well a geo-spatial dataset meets its specified criteria, this research
will closer examine relative completeness (abundance, categorization) and posi-
tional accuracy, as well as location bias by analyzing attraction and repulsion
between marked point sets from different data sources through Cross-K functions.
Most analyses in this study do not use ground truth data since perfect knowledge
about POI locations in the different cities is difficult to obtain. Instead it applies
comparative measures.

Current studies of POI quality assessment focus primarily on single data sources.
They often use intrinsic quality measures (Barron et al. 2014; Gröchenig et al.
2014) or compare the data source in question to a proprietary or governmental
reference data set (Senaratne et al. 2017). Especially OSM received considerable
attention in these aspects (Jackson et al. 2013; Fan et al. 2014). Using a set of OSM
POIs, Mülligann et al. (2011) use geo-ontologies to determine the plausibility of a
POI type within a given neighborhood, which can be used for tag recommendation,
data cleaning, and coverage recommendation. Several studies address also quality
and conflation aspects of multiple POI sources. For example, a comparison of POIs
from proprietary (TomTom, NAVTEQ, ESRI), governmental (TIGER/Line, USGS
GNIS) and crowd-sourced (OSM) data sources finds that categorization schemes in
the different platforms change over time, and that no single data source outperforms
another in all aspects (Hochmair and Zielstra 2013). To address the challenges of
integrating heterogeneous POI data sets from different sources, McKenzie et al.
(2014) developed a weighted multi-attribute method which matches POIs from
different sources and applies a variety of similarity measures, such as the Leven-
shtein distance on feature names, or category alignment based on WordNet. Sim-
ilarly, Li et al. (2016) allocate Entropy based weights to POI attributes (e.g. distance
between objects, name and sound similarity, category similarity) to improve POI
matching from different sources.
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The digital divide determines in which geographic regions users have the
technical and economic means to participate in VGI and social media activities
(Heipke 2010), which has a direct effect on VGI data quality. Furthermore, in OSM
data coverage is affected by data imports, including a 2009 import of POIs from
GNIS (Hochmair and Zielstra 2013), and a 2007 import of TIGER/Line road data in
the US (Zielstra et al. 2013). Such an import will affect not only data coverage but
also the range of OSM categories found in local datasets.

2 Data Collection

Data for the study were collected from sub-areas of the following seven cities:
Albuquerque (New Mexico), Cairns (Australia), Gainesville (Florida), London
(England), Nairobi (Kenya), Qingdao (China), and Salzburg (Austria). POI data
with geographic coordinates were downloaded through Application Programming
Interfaces (APIs) from seven selected data sources (Facebook, Foursquare, Google,
Instagram, OSM, Twitter, and Yelp) and inserted into a PostgreSQL database.
Twitter places at the different hierarchical levels (POI, neighborhood, city,
administration) were extracted from worldwide tweets posted between 20
September 2016 and 20 October 2016 rather than from the Twitter REST API
because of faster data access. The location of all Twitter place types except for POIs
are defined through a bounding box. Tweets themselves were downloaded in
JavaScript Object Notation (JSON) format through the Twitter Streaming API using
the Tweepy python library.

For data download of other sources, requests were made in a Python environ-
ment using existing API wrappers, where available (Instagram, Facebook, Yelp,
Foursquare), or using custom solutions (OSM, Google). The typical approach was
to search places within a given radius around a center point (Facebook, Instagram,
Google) or within a rectangular area (Foursquare, Yelp), which was moved along in
a grid like pattern to cover the area to be analyzed. Since APIs often limit the
returned data volume, locally refined rectangles or circles were inserted to ensure
the capture of all POIs within an area whenever this threshold was met. An illus-
tration of this refinement process for Yelp data retrieval is provided in (Juhász and
Hochmair 2017).

For OSM, a different approach was chosen since large areas can be queried via
the OverpassAPI. The query extracted all nodes with names, all ways with names
(except for waterways and routes), all ways that are bridges and have names, and all
relations (an ordered lists of nodes or ways) with a name and type = multipolygon
tag. Since in OSM certain map features, such as parks and buildings, are often
mapped as ways or relations, these were represented by their centroids in the final
dataset. A set of working code examples that illustrate the different methods and
libraries to use APIs for selected VGI and social media services, including Twitter,
Instagram, Foursquare, and OSM, are provided in the literature (Juhász et al. 2016).
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Technical details about the geo-tagging process in Twitter and Instagram, and its
effect on positioning accuracy, are discussed in another study (Cvetojevic et al.
2016). Instagram positions were obtained in October 2015 where the API could still
be used without going through an approval process, which changed effective June
1, 2016.1 All other place data, except for those from tweets, were download in May
2017.

In several data sources many POIs were stacked on top of each other at the exact
same point location. Such a case is plausible if various parties reside at a single
building. Examples are hospitals (with doctor’s offices as individual POIs
geo-coded at the same geographic location), or commercial buildings that host
several business offices. In many other cases, however, the stacking of POIs appears
incorrect, especially if there are no major buildings in the vicinity. In some cases,
stacked POIs aggregate places (e.g. businesses, plazas, parks) from across a whole
city district. Several possible explanations can be found, such as (1) different
locations being aggregated to a single point location by the platform, or (2) users
uploading information of different POIs from one physical location (e.g. after a
wireless network connection became available), and being unaware of the app
attaching that same location to all POIs. Large POI stacks often contain POIs with
made up place names (e.g., My Bed, Smoker’s Paradise, Hell, Mi Casa,
LETS OPEN Our BIBLE), people’s names or unlikely business names (e.g. Her-
style, Happy Healthy Life) with no actual business found nearby. These kind of
stacked POIs could be the outcome of location spoofing, i.e., the intentional fal-
sifying of one’s locational information (Zhao and Sui 2017). To avoid massive,
incorrect POI stacks biasing subsequent cluster and density analyses, all point
locations with 15 or more stacked POIs were manually reviewed for plausibility. If
no building or market plaza of appropriate size was found at the posted position, the
stacked POIs were removed from further analysis. The POI stack size of 15 is
arbitrarily chosen. Although this stack size does not capture small clusters, it
reduces the workload for manual cluster checking to a manageable amount.

Table 1 lists the size of identified POI clusters in descending order that were
removed before further data analysis. Most removed clusters are found in Facebook
and Instagram, which suggests that user-added places on these platforms undergo
only little review and quality control. Incorrect clusters occur in all analyzed cities,
but mostly in Nairobi, which is possibly indicative of poor positioning accuracy in
that city. In fact, one point had 1195 different Facebook places stacked on top of
each other.

All seven analyzed platforms operate worldwide, however, with some differ-
ences in data coverage between countries. Yelp and Twitter POIs, for example, are
available in only five of the seven analyzed cities.

1http://developers.instagram.com/post/133424514006/instagram-platform-update.
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3 POI Classification

3.1 Platform Comparison

Facebook, Google, OSM, Yelp, and Foursquare provide a categorization of their
POIs into different hierarchical levels. New places added by users need to follow
the provided POI categorization for these platforms. As opposed to this, the content
of Twitter and Instagram POIs can only be characterized by their name since these
platforms do not provide POI categories. For an application there can be differences
in categories between POIs shown on a Web map and POIs downloaded through an
API. The latter categorization is typically limited in detail. One example is a youth
hostel that in the Google Places API Web Service is classified as type “lodging”
whereas on Google Maps (in the Web browser) the same feature is classified as a
more detailed “2-star hotel”. Another example is “school” (API) versus “high
school” (browser map).

The list of Google place types cannot be directly retrieved from the API.
Alternative methods include extraction of place types from downloaded POIs
(similar to how it was done for Twitter), or using classifications from third parties,
such as Blumenthals.2 That Website lists Google place categories for different
language-country combinations. POI category numbers vary strongly between
languages, e.g., US English (N = 2465), British English (N = 847), German

Table 1 Size of removed clusters

Platform City Sizes of removed clusters

Facebook Albuquerque 16
Cairns 445, 246, 118, 37, 25, 24
Gainesville 279, 54, 37, 21, 20
London –

Nairobi 1195, 813, 245, 121, 64, 37, 37, 31, 26, 24, 23, 20, 18, 18, 17
Qingdao 357
Salzburg 113

Instagram Albuquerque 105, 37, 28, 28, 21, 18
Cairns 33, 20, 19
Gainesville 58, 34, 30, 29, 28, 18
London 33, 24, 23, 17
Nairobi 33, 33, 33, 33, 33, 31, 26, 26, 20, 20, 18, 18, 17, 17, 16
Qingdao 33, 33
Salzburg 33, 31

Google Nairobi 15, 15

2http://blumenthals.com/google-lbc-categories/search.php?q=&val=hl-gl%3Den-US%28PfB%
29%26ottype%3D1.
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(DE) (N = 997), French (FR) (N = 1183), or Spanish (ES) (N = 2365). The place
types returned in Google Maps (browser map) depend on the Google domain used
(i.e., google.com, google.fr, google.it, etc.). Similarly, if users suggest a new place
to be added to Google Maps, the available categories with their languages depend
on the chosen Google domain. However, when downloading Google places through
the Places API Web Service, only English place categories are returned, indepen-
dent of the language setting. The language setting does also not affect the number of
features returned. Returned place features often contain a list of place categories,
where the first category appears to be the most specific one. Examples for POI
categories include {doctor, health, point of interest, establishment} or {car dealer,
store, point of interest, establishment}.

OSM offers a free tagging system for nodes, ways, and relations, which allows a
user to add an unlimited number of attributes to features. However, the OSM
community agrees to certain key-value combinations for commonly used features.
Features are divided into 23 primary feature categories3 (amenity, building, high-
way, etc.) which represent the key of a feature. Each key can take many different
values to further specify the sub-type of the mapped feature. Key-value examples
include highway = motorway, or amenity = restaurant.

Yelp places are structured in a four-tiered hierarchy which is customized for 32
countries.4 POI classification schemes contain between about 900 and 1200 cate-
gories. A single venue can be assigned to several categories even from different
hierarchical levels, e.g. Gyms (L3), Sports Clubs (L2), and Day Spas (L2). Setting a
country determines which Yelp place categories can be added to Yelp. This is
because many POI categories are associated with a whitelist (which specifies in
which countries a category can be added) and/or a blacklist (a list of countries
where the category cannot be added). For example, category “Bird Shops” has the
following whitelist: NO, NL, DE, IT, SG, BE, ES, US, DK, SE. Thus with Sweden
(SE) as chosen country bird shops are recognized by autocomplete during manual
data entry (Fig. 1a), whereas, for example, in the UK they are not (Fig. 1b).

POI categories returned through the Yelp API depend on the local setting of the
app/request as well. Yelp uses an “alias” for each category, similar to a unique
category ID, but the name of the category returned by the API depends on the
country setting. For example, the “landmarks” alias returns a “Landmarks & His-
torical Buildings” feature category for the US, and a category “Sehenswürdigkei-
ten” for Germany.

The list of 785 Facebook place topics can be extracted from the Facebook
Graph API Explorer, which is not hierarchically structured. This list is more
comprehensive than what is offered when interactively creating a Facebook page for
a new business, brand, product etc. on the Facebook Web site.

All 920 Foursquare place categories are organized in a five-tiered hierarchical
structure, where the top hierarchy contains 10 entries including Arts &

3http://wiki.openstreetmap.org/wiki/Map_Features.
4https://www.yelp.com/developers/documentation/v2/category_list.

298 H. H. Hochmair et al.

http://wiki.openstreetmap.org/wiki/Map_Features
https://www.yelp.com/developers/documentation/v2/category_list


Entertainment or Travel & Transport. Some venues are restricted to certain coun-
tries, as is specified in the Foursquare category documentation. For example, cat-
egory “Anhui Restaurant” is available only in China and some other nearby
countries.

3.2 Observed Distribution of POI Categories

Figure 2 shows the 10 most frequently used categories of POIs that were down-
loaded in Albuquerque, Gainesville, and London from the five social media plat-
forms that provide POI categories. The analysis was limited to these three cities
since they are the only ones that provide POI information (not necessarily category
information though) for all seven platforms, and were therefore also used as
common geographic areas for other data quality metrics. The top row in Fig. 2
shows that the most prominent OSM primary key is building, followed by amenity
and shop, and that restaurant and hotel are the most prominent sub-types which
were identified through querying OSM key-value pairs. Since shops in OSM are
distributed across 73 potential shop types according to the wiki Map Features site,
no shop type makes it to the top ten in that second chart. Figure 2 as a whole reveals
that the most frequently used POI categories vary between analyzed platforms,
comprising tourism facilities (hotels, restaurants, cafes in Yelp, OSM, and Four-
square), health infrastructure (doctors, hospitals, medical in Google, Facebook), and
university buildings (Foursquare).

These differences indicate that the different platforms have strengths in different
category groups and may thus complement each other in a meaningful way. It
should be noted that charted category frequencies are based on only three cities in
the US and Europe. They will differ from category frequencies found in other cities,
especially those located in other parts of the world. Nairobi, for example, shows

Fig. 1 Trying to add a place for a country that is listed (a) and not listed (b) on the white list of
category “Bird Shops” in Yelp
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“sport” on 6th place in OSM primary keys, includes finance and banks in the top
five Google categories, maps only a single doctor’s office in Facebook, and misses
fraternity housing in Foursquare altogether. These differences reflect local varia-
tions in the presence of venues between cities.

Twitter place types do not contain thematic categories but are organized in a
spatial hierarchy instead. The coarsest place level is admin polygons which vary in
size, density, and coverage between and within countries (Fig. 3a).

A more refined place level is cities which are found primarily in Europe, Canada,
Mexico, Brazil, Japan, New Zealand, and a few other countries. Neighborhood
places represent the sub-city level with a few clusters around the world, including
the Netherlands, Australia, and New Zealand. Although metadata for city,

Fig. 2 Most frequent POI categories found in Albuquerque, Gainesville, and London

300 H. H. Hochmair et al.



neighborhood, and administrative contain only a minimum bounding box as a
feature geometry, Twitter uses accurate boundary polygons internally to determine
which city, neighborhood, etc. a tweet needs to be assigned to during the
geo-tagging process. The POI place type is the only one with point geometry and
found in several countries, including Canada, the US, Brazil, Great Britain, Ger-
many, and Japan (Fig. 3b). The POI level will be analyzed in more detail for
selected cities.

Fig. 3 Worldwide coverage of Twitter admin place type (Alaska and ocean polygons were
removed from this map for clarity) (a), and place type Point of interest (POI) (b)
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4 POI Pattern Analysis

4.1 POI Density and Spatial Distribution

Table 2 summarizes descriptive statistics of POIs for the analyzed data sources in
cities where they are available. Values in the upper row of each data source list the
number of downloaded POIs per km2, and values in the lower row denote the
average nearest neighbor index (NNi), computed as the ratio of the observed over
the mean nearest-neighbor distance (O’Sullivan and Unwin 2010). The NNi char-
acterizes a point pattern relative to complete spatial randomness, i.e., a point pattern
created by a homogenous Poisson process. An NNi < 1 indicates clustering,
whereas an NNi > 1 indicates a tendency toward evenly spaced points (dispersion).
A statistical test can be applied to check whether the NNi is significantly different
from 1. The right-most column in Table 2 (M) reports for each data source the
mean POI density and NNi from those three cities where POIs are available in all
seven data sources (Albuquerque, Gainesville, London).

The highest mean POI density can be found for Instagram, which allowed users
to add arbitrary place labels until 2015. As a consequence many POIs are incor-
rectly labeled, mislocated, duplicates, or stacked together due to positioning inac-
curacies (Cvetojevic et al. 2016). Duplicate locations appeared to be at least
partially cleaned out since October 2015, which is when Instagram was purchased
by Facebook. Since then new Instagram places can be added through Facebook. We
checked which of the Instagram places that we downloaded in October 2015 were
still available in 2017, and stored these results in a newly added “available” POI
attribute. Facebook POIs exhibit the second highest mean density. Also on that
platform a frequent occurrence of stacked place labels at single locations poses a
problem. Google shows the most consistent place density among all cities at
approximately 100–200 POIs/km2, suggesting that Google has access to high
quality base data in different parts of the world. Twitter POIs demonstrate the
lowest mean density, suggesting that the list of POIs is strictly controlled by the
company. These POIs are only suitable for approximate geo-tagging of posted
tweets, but less so for mapping and navigation purposes, which would require a
more dense pattern of POIs. Foursquare venues reveal the second lowest place
density, since they are limited to businesses (hotels, bars, bakeries), public build-
ings (city halls, university campuses and buildings, train stations), and public
locations (parks, plazas) in the analyzed cities.

Yelp offers its service in five of the analyzed cities with a high variation of POI
densities between cities, suggesting that different base datasets are used for this
platform depending on the region.

The OSM POI density is higher in the two European than the three US cities.
Compared to all other cities POI densities are lowest in Qingdao for the four data
sources offered in that city, possibly due to a lower prominence of analyzed VGI
and social media apps in that city. The analyzed area in London, which is a mixed
business and residential district located between Hyde Park and Paddington
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Railway station, shows the highest POI density in all data sources except for
Google, which may have to do with frequent visitors in the area with its railway
station and shopping streets.

NNi values < 1 in Table 2 indicate that POIs are clustered for all platforms and
cities (where data is available). All clusters are significant at p < 0.001. Clustering
can be expected since complete spatial randomness, though mathematically elegant,
is often unrealistic in the physical world (O’Sullivan and Unwin 2010). Instead,
point patterns typically display spatial dependence. It can either be modeled as first
order effect (variation in the intensity of the process across space) or as second order
effect (interaction of some kind between events). In the context of this work, a first
order effect could be the tendency of restaurants and shops to be opened along
selected roads of the built environment. Second order effects can result in clustering
or dispersion. An example in the context of this study is the frequent co-occurrence
of railway stations and restaurants (clustering), or the repulsion between public
schools (dispersion).

The degree of clustering varies strongly between the datasets. Figure 4 maps for
the analyzed area in Gainesville (enclosing polygon) the POIs for the most clustered
(Facebook, NNi = 0.51) and the least clustered (OSM, NNi = 0.74) point patterns.
The primary POI categories mapped in each platform (Fig. 2) can help to explain
some of the differences in NNi values. Facebook POIs depict primarily business
data, including shops, restaurants, retail and fitness clubs. A high density of such
venues can be found along University Avenue (running East-West to the north), and
on Community Plaza to the east. As opposed to this the OSM POI pattern shows
heavy mapping activities on the UF campus (south-west portion of the map). With
university buildings being further apart than businesses on a plaza or a shopping
street, the clustering is less pronounced than in Facebook. Though the magnitude of
the NNi for a specific data source itself is not a quality criterion, it can reveal
differences in POI distributions between compared data sources.

In the OSM POI dataset, when averaging (unweighted mean) the geometry
proportions across the seven analyzed cities, the share of POIs with node

(a) Facebook (NNi=0.51) (b) OSM (NNi=0.74)

Fig. 4 POIs in Facebook (a), and OSM (b) for the Gainesville study area
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geometries is the highest (54.1%), followed by way features (44.8%) and relations
(1.1%). However, considerable inter-urban variation in the use of geometries can be
observed (Table 3). For example, Gainesville exhibits a high percentage of way
features (71.2%) due to many UF campus buildings being mapped as closed
polyline features (Fig. 4b). A high concentration of OSM way features on uni-
versity campuses can also be observed for other cities, for example, around the
University of New Mexico in Albuquerque.

Relation objects are generally more sparsely found in OSM maps. Salzburg
stands out as an area with a relatively high proportion (3.1%) of relation objects.
This can be attributed to the detailed mapping of plazas and historic buildings with
court yards, which are mapped using inner and outer polygons as part of a relation
(Fig. 5). In summary it can be stated that for OSM POI analysis both point and way
objects should be considered since the ratio between those two geometry types
varies significantly across cities.

Table 3 Number and proportion of OSM node features, way features, and relations

Albuquerque Cairns Gainesville London Nairobi Qingdao Salzburg Mean

Nodes 343 197 161 500 251 135 1743

% 49.3 77.3 27.2 49.3 53.4 49.8 72.7 54.1

Ways 346 57 422 505 217 136 582

% 49.7 22.4 71.2 49.8 46.2 50.2 24.3 44.8

Relations 7 1 10 9 2 0 74

% 1.0 0.4 1.7 0.9 0.4 0.0 3.1 1.1

Fig. 5 OSM nodes, way centroids and relation centroids in the Salzburg study area
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4.2 Relative Clustering of Point Patterns

While so far the level of clustering of POIs was discussed for individual platforms,
statistical methods can be applied to analyze if and how POI locations from dif-
ferent platforms cluster relative to each other. For this purpose, a bivariate gener-
alization of Ripley’s K function, known as the Cross-K function (Dixon 2002), can
be applied. The Cross-K function can be formulated as

Kij rð Þ= λ− 1
j E f rð Þ½ � ð1Þ

where E[f(r)] is the expected number of type j events within a distance r of a
randomly chosen type i event, and λj is the density of j events per areal unit. If the
two point patterns i and j are identical, the Cross-K function collapses to the self-K
function K(r) which considers only locations of events but ignores information
about the type of event.

Under random labeling, that is, assigning the n1 points from type 1 and n2 points
from type 2 randomly to type 1 and type 2 events (keeping their original propor-
tions), all four bivariate Cross-K functions should equal the K function, giving
Kii(r) = Kij(r) = Kji(r) = Kjj(r) = K(r). Using place data from Gainesville as an
example, this study analyzes the spatial relationship between all possible combi-
nations of platform pairs, using events from different platforms as event types i and
j in Eq. 1. Statistical inference of the difference between the observed Cross-K
function and a Cross-K function generated by random labeling can be achieved
through Monte Carlo simulation. Within each of the 99 completed permutations of
the Monte Carlo simulation, the combined set of locations and the number of events
of each type are held fixed. The labels (of the two platforms involved in the test) are
randomly assigned to locations, which is followed by the computation of the
Cross-K function. This establishes an upper and lower simulation envelope for
random labeling at a 99% confidence level. If the observed Cross-K function falls
within the simulation envelope, POIs from both platforms are similarly clustered
around each other.

As an example for this analysis, Fig. 6 shows for all platform combinations in
Gainesville the observed Cross-K function (black), the simulation mean from the
Monte Carlo simulation (dashed red), and the 99% confidence envelope (gray area),
for distances between 0 and 2000 meters. No significant attraction between two
point patterns can be observed. While most pairwise platform point patterns are
independent of each other, there are some platform combinations where the
observed Cross-K function falls below the lower simulation envelope. This is
clearly the case for some platform combinations that involve Foursquare and OSM.
Whereas OSM is primarily contributed around the UF campus, business related
contributions to Yelp and Facebook cluster around shopping strips and plazas
(compare Fig. 4). Hence events from the platform pairs Foursquare-Yelp,
OSM-Yelp, OSM-Facebook, and Foursquare-Facebook are spatially segregated
(see Fig. 6). Google places are evenly distributed across the study area with no
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apparent clusters on the UF campus or in shopping areas. This makes it spatially
segregated from Facebook (businesses) and Instagram POI locations (clustered
around event places like student centers, campus food courts, hospitals, restaurant
areas, market plazas). Overall, these findings suggest that the urban structure of the
analyzed area is reflected in Cross-K functional patterns, and that a conflation of
POIs from different sources can lead to improved data coverage for that city.

5 Positional Accuracy

All platforms analyzed in this study provide map interfaces and/or address search
functions for manually adding new POIs. Provided that a user possesses basic map
reading capabilities, such an approach supports accurate mapping of POIs. In

Fig. 6 Cross-K functions for Gainesville with 99% confidence envelopes
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addition to this, mobile apps show a user’s current position, which can also be used
for adding a POI if the user is located directly at the new venue. It is also possible to
add coordinates to a picture in different photo sharing platforms, e.g. in Flickr. In
such cases it is encouraged to map the photographer’s position, and not that of the
photographed object (Zielstra and Hochmair 2013). However, guidelines for the
analyzed platforms in this study encourage users to add the true POI position of a
venue, and not that of the photographer’s position (if any pictures are involved at
all). An exception are older Instagram place locations (before October 2015) which
could be added by users and were often placed at a photographer’s position or
biased by the physical location from which the image was uploaded to the platform
(Cvetojevic et al. 2016).

Figure 7 provides a visual impression of the positional accuracy of POIs in
analyzed platforms, using the Salzburg downtown area as an example. Twitter POIs
are not shown since they are not available for Salzburg. No POIs should be located
within the Salzach river, with a few potential exceptions, such as a ferry service, a
river place label, or the city label. None of the POIs from Google, OSM, and Yelp
are located in the river, indicating good positional accuracy. The Facebook map
reveals a few POIs to be incorrectly placed in the river, which include a barber, a
shopping strip, and a graphic design business. Foursquare uses a review of added
locations through super users to verify locations and to increase data reliability.
A Boolean attribute in the point data set (“verified”) indicates whether a POI
underwent such a check or not. Only a small percentage of Foursquare venues is
actually marked as verified. In Salzburg this is true for 96 out of 2012 features
(4.8%), and for all seven analyzed cities this rate is slightly higher with 910 out of
13040 (7.0%). This filter process is clearly discernible in Fig. 7, where only few
verified points (light green) appear on top of non-verified points (orange). Whereas
some POIs of the unfiltered Foursquare dataset are incorrectly placed in the Salzach
river (e.g. old city hall, a snack stand, a person’s name, a coffee shop), no point in
the filtered dataset is. This indicates that the revision through super users has a
positive effect on the positional accuracy of Foursquare POIs.

The Instagram POI file used for this study was downloaded in October 2015.
Next, using the Instagram API it was verified if a POI was still available in 2017.
This information was then coded in a Boolean “available” attribute. POIs not
available any more were possibly cleaned due to inspection after Instagram has
been purchased through Facebook. Using this attribute, yellow dots in the Insta-
gram map indicate possibly reviewed (and retained) POIs, whereas the red dots
show the locations of the remaining unverified POIs from the original dataset. The
map suggests that a significant percentage of Instagram locations was removed
since 2015, namely 27.3% of POI for Salzburg and 27.5% for all seven analyzed
cities. Several POIs that are incorrectly placed in the river disappear when con-
sidering only “available” Instagram features, including a bus stop, the old city hall,
a pub, and a road. However, remaining POIs in the river (yellow dots) include bars,
restaurants, or shops, still revealing POI accuracy problems.
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To quantify the distance offsets between mapped POIs (based on coordinates
provided on the platforms) and their true location, a sample of place points was
selected for each of the available six data sources from the Salzburg downtown
area. Using the name tag of a selected POI and the authors’ local knowledge of the
area, the corresponding true location was identified (if possible) and the offset
computed. If a place was mapped on the street directly in front of the correct
building, it was counted as correct as well and assigned an offset distance of 0.
Seasonal POIs (e.g. a Christmas market) were also taken into account for the

Fig. 7 Location of places features for different platforms in the Salzburg downtown area
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analysis. As an example, Fig. 8 shows for the samples of Facebook POIs (a) and
Instagram POIs (b) their original positions (red) and corrected positions (green).

Yellow arrows denote the offset vectors from the published to the corrected
position. For Facebook 24 POIs (43.6%) had to be corrected with offsets ranging up
to 25,514 m. For Instagram this was the case for 26 POIs (40.6%) with a maximum
offset of 715.4 km. Instagram has four outliers with an offset >10 km, whereas
Facebook has only one.

Figure 9 plots the histograms of offset distances (in meters) for the six evaluated
platforms in downtown Salzburg, using a logarithmic scale on the x-axis. The
median distance offset is zero for all platforms, which means that at least half of all
POIs in each platform is correctly placed. Google and OSM sample POIs do not
reveal any positional errors, closely followed by Yelp which has moderate offsets in
12.7% of the cases. This finding suggests that, at least for the chosen test site,
mapping platforms (Google, OSM) and business platforms with strong quality
control (Yelp) provide most reliable POI positions. This finding is in-line with the
distribution of point patterns observed in Fig. 7. Foursquare (verified POIs only)
has the next smallest error rate (32.5%), followed by Instagram (40.6%) and
Facebook (43.6%). Besides higher error rates, the latter two platforms are also the
only ones with positional errors of over 10 km. Hence these two social media
platforms together with an unverified (complete) Foursquare POI dataset achieve a
lower POI reliability than other analyzed platforms. This indicates that social media
platforms with little to no quality control through the governing company perform
poorly in terms of positional accuracy when compared to mapping platforms or
platforms that implemented stricter quality control measures (i.e. approval by
moderators). To be able to provide more generalizable conclusions, however, offset
measures would have to be expanded to other cities as well.

Fig. 8 Offset vectors for POIs in Salzburg for Facebook (a) and Instagram (b)

310 H. H. Hochmair et al.



6 Discussion and Conclusions

The study examined various aspects of data quality and POI clustering for seven
mapping and social media platforms in seven study sites across the world. The
findings provide information to help determine the suitability of a given POI source
for an intended geo-application, such as an LBS. Various quality metrics (e.g.
nearest neighbor index, density, bulk uploads, spatial offsets) were compared
between different platforms in the absence of ground truth data. Even with a correct
a POI reference dataset available, POIs from the different platforms would first have

Fig. 9 Histograms of offset distances for evaluated features in downtown Salzburg
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to be matched to reference features in order to determine certain quality measures
(e.g. categorization). An example for such detailed analysis that considers both
feature location and attributes for manual feature matching (e.g. schools) in order to
determine the relative completeness of data sources is presented in (Jackson et al.
2013).

The findings of this study can be summarized as follows:

• POIs are more abundant in selected social media platforms (Facebook, Four-
square, Instagram) than in mapping and business oriented platforms with strict
quality control (Google, OSM, Yelp). Twitter is an exception with the lowest
POIs density in all areas (where present), and a lack of POI categories.

• Mapped POIs of the three social media platforms (Facebook, Foursquare,
Instagram) show higher mean offsets from their true locations than the three
map/business related platforms, based on a Salzburg sample analysis.

• Presence of erroneous POI stacks uploaded to the same point location is pri-
marily a problem of Facebook and Instagram and was observed in all cities.

• Different platforms map different POI categories as the most prominent ones.
Therefore conflation of POIs from different platforms could improve POI
completeness.

• The level of POI clustering, as determined by the nearest neighbor index, differs
between platforms, reflecting a different topical focus of platforms.

• Cross-K functions for marked point patterns showed that point patterns cluster
sometimes differently between pairs of platforms, which means that POIs are
spatially segregated. This reflects also different types of POIs mapped in com-
pared platforms.

Aspects of future work include consideration of other quality measures,
including errors of omission and commission in selected test areas, and a closer
examination of POI contribution patterns of users across different crowd-sourced
platforms (Juhász and Hochmair 2016).

References

Barron C, Neis P, Zipf A (2014) A comprehensive framework for intrinsic OpenStreetMap quality
analysis. Trans GIS 18(6):877–895

Cvetojevic S, Juhász L, Hochmair HH (2016) Positional accuracy of twitter and instagram images
in urban environments. GI_Forum 1:191–203

Dixon PM (2002) Ripley’s K function. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of
environmetrics. Wiley, Chichester

Duckham M, Winter S, Robinson M (2010) Including landmarks in routing instructions.
J Location Based Serv 4(1):28–52

Fan H, Zipf A, Fu Q, Neis P (2014) Quality assessment for building footprints data on
OpenStreetMap. Int J Geogr Inf Sci 28(14):700–719

Gröchenig S, Brunauer R, Rehrl K (2014) Estimating completeness of VGI datasets by analyzing
community activity over time periods. In: Huerta J, Schade S, Granell C (eds) Connecting a

312 H. H. Hochmair et al.



digital Europe through location and place. Lecture notes in geoinformation and cartography.
Springer, Berlin, pp 3–18

Hastings JT (2008) Automated conflation of digital gazetteer data. Int J Geogr Inf Sci 22
(10):1109–1127

Heipke C (2010) Crowdsourcing geospatial data. ISPRS J Photogramm Remote Sens 65:550–557
Hochmair HH, Zielstra D (2013) Development and completeness of points of interest in free and

proprietary data sets: a Florida case study. In: Jekel T, Car A, Strobl J, Griesebner G (eds),
GI_Forum 2013. Creating the GISociety. Wichmann, Berlin, pp 39–48

Jackson SP, Mullen W, Agouris P, Crooks A, Croitoru A, Stefanidis A (2013) Assessing
completeness and spatial error of features in volunteered geographic information. ISPRS Int J
Geo-Inf 2:507–530

Juhász L, Hochmair HH (2016) Cross-linkage between Mapillary street level photos and OSM
edits. In: Sarjakoski T, Santos MY, Sarjakoski T (eds) Geospatial data in a changing world:
selected papers of the 19th AGILE conference on geographic information science. Lecture
notes in geoinformation and cartography. Springer, Berlin, pp 141–156

Juhász L, Hochmair HH (2017) Where to catch ‘em all?’—a geographic analysis of Pokémon Go
locations. Geo-spat Inf Sci 20(3):241–251

Juhász L, Rousell A, Arsanjani JJ (2016) Technical guidelines to extract and analyze VGI from
different platforms. Data 1(3):15

Li L, Xing X, Xia H, Huang X (2016) Entropy-weighted instance matching between different
sourcing points of interest. Entropy 18(2):45

Lim KH, Chan J, Leckie C, Karunasekera S (2015) Personalized tour recommendation based on
user interests and points of interest visit durations. In: 24th international joint conference on
artificial intelligence (IJCAI 2015), Buenos Aires, Brazil

McKenzie G, Janowicz K, Adams B (2014) A weighted multi-attribute method for matching
user-generated points of interest. Cartogr Geogr Inf Sci 41(2):125–137

Mülligann C, Janowicz K, Ye M, Lee W-C (2011) Analyzing the spatial-semantic interaction of
points of interest in volunteered geographic information. In: Egenhofer MJ, Giudice NA,
Moratz R, Worboys MF (eds) Conference on spatial information theory (COSIT 2011). LNCS
6899. Springer, Berlin, pp 350–370

Nothegger C, Winter S, Raubal M (2004) Computation of the salience of features. Spat Cogn
Comput 4:113–136

O’Sullivan D, Unwin DJ (2010) Geographic information analysis, 2nd edn. Wiley, Hoboken, New
Jersey

Rösler R, Liebig T (2013) Using data from location based social networks for urban activity
clustering. In: Vandenbroucke D, Bucher B, Crompvoets J (eds) Geographic information
science at the heart of Europe. Lecture notes in geoinformation and cartography. Springer,
Berlin

Senaratne H, Mobasheri A, Ali AL, Capineri C, Haklay M (2017) A review of volunteered
geographic information quality assessment methods. Int J Geogr Inf Sci 31(1):138–167

Zhao B, Sui DZ (2017) True lies in geospatial big data: detecting location spoofing in social
media. Ann GIS 23(1):1–14

Zielstra D, Hochmair HH (2013) Positional accuracy analysis of Flickr and Panoramio images for
selected world regions. J Spat Sci 58(2):251–273

Zielstra D, Hochmair HH, Neis P (2013) Assessing the effect of data imports on the completeness
of OpenStreetMap—A United States case study. Trans GIS 17(3):315–334

Data Quality of Points of Interest in Selected Mapping … 313



Mapping Spatiotemporal Tourist
Behaviors and Hotspots Through
Location-Based Photo-Sharing Service
(Flickr) Data

Joey Ying Lee and Ming-Hsiang Tsou

Abstract Social media services and location-based photo-sharing applications,
such as Flickr, Twitter, and Instagram, provide a promising opportunity for
studying tourist behaviors and activities. Researchers can use public accessible
geo-tagged photos to map and analyze hotspots and tourist activities in various
tourist attractions. This research studies geo-tagged Flickr photos collected from the
Grand Canyon area within 12 months (2014/12/01–2015/11/30) using kernel
density estimate (KDE) mapping, Exif (Exchangeable image file format) data, and
dynamic time warping (DTW) methods. Different spatiotemporal movement pat-
terns of tourists and popular points of interests (POIs) in the Grand Canyon area are
identified and visualized in GIS maps. The frequency of Flickr’s monthly photos is
similar (but not identical) to the actual tourist total numbers in the Grand Canyon.
We found that winter tourists in the Grand Canyon explore fewer POIs comparing
to summer tourists based on their Flickr data. Tourists using high-end cameras are
more active and explore more POIs than tourists using smart phones photos.
Weekend tourists are more likely to stay around the lodge area comparing to
weekday tourists who have visited more remote areas in the park, such as the north
of Pima Point. These tourist activities and spatiotemporal patterns can be used for
the improvement of national park facility management, regional tourism, and local
transportation plans.
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1 Introduction

The tourism industry plays a key role in the economic development of many
countries. Statistics from the UN’s World Tourism Organization indicate that the
tourism industry contributes up to 40% of the gross domestic products (GDPs) of
developing countries (Ashley et al. 2007). To boost the tourism industry, the further
development of existing tourism locations and identification of new tourism
attractions are both recognized as crucial approaches in many countries. Tourism
geography research that provides a spatial view of attractions can greatly help
tourism industry development.

Over the past several years, many approaches toward mapping tourist behaviors
and hotspots using photo-sharing service data have emerged (García-Palomares
et al. 2015; Hawelka et al. 2014; Sun and Fan 2014; Vu et al. 2015). Conventional
tourism management involves a mixed method approach using quantitative research
and qualitative research based on questionnaire surveys, focus groups, and inter-
views. Traditional methodologies, such as questionnaires and interviews have
limited capability in data collection (Chen and Chen 2012; Sun and Budruk 2015).
The methodologies of tourism geography research continue to evolve as technology
advances. Recently, more and more photos were taken by smartphones and
GPS-equipped cameras in popular tourist attractions with geo-tagged information
(Tsou 2015). Many geo-tagged photos were uploaded to photo-sharing websites
such as Flickr, Instagram, and Panoramio allowing public access. Researchers can
use the public application programming interfaces (APIs) to download and analyze
these public accessible geo-tagged photos and analyze their spatiotemporal patterns.

This research studies geo-tagged Flickr photos collected from the Grand Canyon
area within 12 months (2014/12/01–2015/11/30) using kernel density estimate
(KDE) mapping, Exif (Exchangeable image file format) data, and dynamic time
warping (DTW) methods. The Grand Canyon is one of the most popular tourist
attractions in the U.S. and it is located across two states: Arizona and Utah (277
miles long, and up to 18 miles wide). There are over five million tourists visited the
Grand Canyon during the last ten years. Natural resource management and trans-
portation plans became important issue for the National Park Service (NPS) Agency.
One key question in tourism management is to identify when and where exactly
tourists are. Geo-tagging photos can indicate where and when photos have been
taken by tourists, and thus can be used for tourism management.

This study utilized the space-time analysis framework for analyzing tourist
behaviors and hotspots. Space-time analysis in geography was developed in the
1970s (Taaffe 1974; Palm and Pred 1974; Cullen 1972; Sauer 1974). Space-time
geography can provide a comprehensive analysis framework for many research
topics, such as criminology, public health, and tourism management. Space-time
geography research focuses on some unique time analysis methods, such as dura-
tion, accessibility, and trajectory by using both spatial and temporal variables.
Social media data can be a great data source for conducting space-time analysis
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since the data include both space and time variables (Yuan and Nara 2015; Issa
et al. 2017). The spatio-temporal patterns of tourists’ behaviors are bound by the
spatial distributions of different destinations, and they are easily affected by
spatio-temporal constraints. Therefore, the patterns within the analytical construct
of the space-time prism can be explored using time geography (Chen and Kwan
2012).

2 Relate Work

2.1 Analyzing Travel Behaviors Using Geo-tagged Photos

Researchers have developed various methods for acquiring tourist behavior data,
including surveys, GPS tracking, and interviews. Since GPS devices have become
inexpensive and affordable after 2000, many studies have combined GPS data with
questionnaires to analyze tourist behaviors (McKercher et al. 2012). Gao et al.
(2013) used the check-in social media data to perform traffic forecasting, disaster
relief, and advertising services. Girardin et al. (2008a, b), Popescu and Grefenstette
(2011), and Majid et al. (2013) explored the spatio-temporal pattern through Flickr
photos. Girardin et al. (2008) used Flickr photos to explore the tourist behaviors.
Popescu and Grefenstette (2011) used historical photos from certain Flickr users to
build a personal tourist recommendation system. Majid et al. (2013) used
geo-tagged Flickr photos to predict users’ tourist destination preferences. Some
studies use tag frequency of social media images to acquire tourist behavior patterns
(Sun and Fan 2014). Therefore, analyzing social media pictures with their
geo-tagged information and time stamps can be a promising method to improve
tourist management and identify regional hotspots of POIs. García-Palomares et al.
(2015) research identified tourist hotspots by analyzing social media data, as well as
revealed the spatio-temporal patterns of the identified tourist hotspots in European
cities. Furthermore, their study highlighted the difference between residents’ and
tourists’ daily attractions and travel routes. García-Palomares et al. (2015) study
relies on using spatial statistical methods (hexagons with cluster analysis) to
determine tourist hotspots and using geo-tagged photos to identify tourist attrac-
tions in Barcelona. Kádár’s (2014) analysis of geographically positioned photog-
raphy retrieved from Flickr with tourist arrivals and registered hotel bed nights
(from TourMIS website) for 16 European cities. There are high correlations
between bed nights and geo-tagged Flickr images. Birenboim (2016) utilized
Ecological Momentary Assessment (EMA) to conduct surveys for tourist experi-
ences in a high resolution spatiotemporal scale. Önder et al. (2016) traced Austria
tourists’ travel routes using their digital footprints. In their research, they collected
photos with the geo-tagged “Austria” from 2007 to 2011 using the Flickr API. To
differentiate tourist photos from non-tourist ones, they used a “time span” concept
where a user who uploads two different photos in two different places within a
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certain period is identified as a tourist. This study also used multi-level scales to
evaluate tourist footprints. The result showed that Flickr data could better represent
tourism information on a city level rather than a regional level. Their research
suggested that although Flickr could be used in tracking tourists’ digital footprints,
the accuracy of the user tracking may vary in different locations, depending on
whether it is in a region level or a city level.

Aggregated geo-tagged social media can also reveal groups’ semantic meanings
and group activities. Kisilevich et al. (2010) used P-DBSCAN (Density-based
spatial clustering of applications with noise) method to detect attractive destination
from aggregated geo-tagged photos. Kennedy and Naaman (2008) used text mining
to explore place semantics from Flickr tag data, while Cranshaw et al. (2012) used
Foursquare data to investigate socially dynamic neighborhoods using clustered
groups based on their social similarities. These research studies identified clustered
groups using Flickr photos, which can reveal human mobility and to explore the
patterns of human mobility.

Vu et al. (2015) used geo-tagged photos to explore travel behaviors in Hong
Kong. They built a Hong Kong inbound tourist Flickr photo dataset and used a
Markov chain model for travel pattern mining. Their research demonstrated that the
Markov chain model could be applied to predict the probability of tourist routes
between two tourist spots, and the result could be used by the government to
improve transportation services. The Markov chain model could also be applied to
model the tourist flows (Vu et al. 2015).

All these previous studies mentioned above did not utilize kernel density kernel
density estimate (KDE) mapping nor dynamic time warping (DTW) methods for
the analysis of tourist activtivies and hotspots, which are the major methodolgical
contributions in this paper for tourism geography.

3 Data Collection

The data downloaded from Flickr within the Grand Canyon area in December 2014 to
November 2015, which is fromwinter, spring, summer, and autumn, included 38,127
photos. The collection boundary of the GrandCanyon area had illustrated in Fig. 1. In
this study, three types of data are acquired from Flickr APIs: time, location, and
context data (Exif). The time data can be collected through timestamps of photos. The
location data can be retrieved from users’ instant locations via the mobile devices’
coordinates or the check-in places they send along with photos (geotagged). When
Flickr users upload their photos, they can choose whether they want to keep the Exif
(Exchangeable image file format) info and coordinates or not. In this study, we will
only collect the photo information containing coordinates and then used the photo id
to retrieve their Exif information if available. The Exif data include detail information
about the camera devices, such as “Manufacturer”, “Model”, “Date and Time
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(original)”. We can use the Exif data to identify photos taken by smart phones
(iPhones, Andriod phones, etc.) and cameras (Canon, Nikon, etc.).

One limitation of this study is the uncertainty of timestamps and locations. The
timestamps in Flickr photos could be the time of taking photos or uploading photos.
The geo-tagged locations can be modified or changed by users. Different types of
spatiotemporal analysis (such as seasonal or weekend/weekday comparison) could
be affected by the uncertainty of these data collection.

In this study, we used python program to collect Flickr photo information via its
APIs and then stored in MongoDB database framework. The basic statistics of these
photo data we collect are shown in Table 1.

As Table 1 shows, this study collected 38127 photo information in 2014/12/01–
2015/11/30. In which 25395 were collected with coordinates (geo-tagged) in 2015.
Among these geo-tagged photo information collected in 2015, 7471 (29.4%) of
photos were taken in weekends, 17924 (70.6%) of photos were taken in weekdays.
For the monthly change, May is the highest month for Flickr photo uploaded count,
the winter months, which is from December to February, are the lowest month.

As Fig. 2, among these photos taken by the camera, Canon and Nikon were the
most popular camera devices. 353 photos were taken by Canon EOS 6D, 207
photos were taken by Nikon D600, 123 photos were taken by Canon EOS 7D, and
113 photos were Nikon D7100. These cameras are all digital single-lens reflex
camera (DSLR), which means the users are likely professional users. As Fig. 3,
among those photos taken by phones, iPhone was the most popular device.

Fig. 1 The Flickr data collection boundary (the red box) across Utah and Arizona
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Table 1 Descriptive analysis table for photo collection in the Grand Canyon area

Total photo
collected in 2015
(2014/12/01–
2015/11/30)

38127 Total photo collected
with coordinates
(geo-tagged) in 2015

25395 (66%)

Count by different
days

Count by devices Count by seasons

Weekend 7471
(29.4%)

Non-specific 23660
(93%)

Winter 2625
(10.3%)

Weekday 17924
(70.6%)

Cameras 1377
(5.4%)

Spring 10056
(39.6%)

Smart phones 358
(1.6%)

Summer 7105
(28.0%)

Autumn 5609
(22.1%)

Total 25395 25395 25395
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Fig. 2 Photos taken counts by different camera devices
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110 photos were taken by iPhone 6 and 73 photos were taken by iPhone 5s.
49 photos were taken by iPhone 6s and 39 photos were iPhone 6s Plus. 26 photos
were taken by iPhone 6 plus.

4 Research Method

4.1 Kernel Density Estimation Mapping

To analyze the statistical outcome and identify hotspots of tourist behaviors, Kernel
Density Estimation (KDE) mapping has been implemented in this research. KDE
mapping is able to identify the hotspots visually from large datasets (Okabe et al.
2009; Tsou et al. 2013a). Using KDE has been widely used to create raster files to
explore hotspots in social media research. Han et al. (2015) used KDE to identify
hotspots using Twitter data and by exploring Twitter activity. Han also established
the differential maps to compare the changes in activity by using the raster-based
“map algebra tool” developed by ESRI after KDE hotspot maps were created.
Following the method used by Tsou et al. (2013b), the below formula was applied
to the raster formatted maps for all case studies.

Differential Map = (Each Cell Value of Map A/Maximum Cell Value of Map A)
– (Each Cell Value of Map B/Maximum Cell Value of Map B)

One important variable in the KDE method is the kernel radius. Adopting dif-
ferent sizes of kernel radius will generate different scale of hotspot analysis. This
study utilized two spatial scales of KDE for tourist activity analysis. The first level
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Fig. 3 Photos taken counts by different smart phone models
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is 50 km which can be used to identify the general (large regions) hotspots in the
Grand Canyon area. The second level is 200 m which can identify smaller hotspots
along with roads and trails (with a higher spatial resolution).

4.2 Dynamic Time Warping

To compare the similarities and difference among the trajectories, distance is used
as the common variable (Tan et al. 2005), which means if the distance is lower, the
similarity is higher. Dynamic Time Warping (DTW) is one of the methods used
with distance to compare the trajectories. In this study, the Flickr API will be
employed to generate data with user IDs, as well as coordination and time data.
However, while these photos were located as point data the tourist trajectory for
each user will still present a crucial problem that must be solved. Therefore, Python
was used to write a module to solve this problem. DTW distance value is a com-
parison value between two users. In this research, the DTW distance value of two
users was calculated by Python. When the distance is lower, the similarity is higher.

5 Major Findings

Two types of tourist activity analysis were conducted by using the 2015 geo-tagged
Flickr data in the Grand Canyon area: spatiotemporal hotspot analysis (with two
case studies), and tourist trajectory analysis. Figure 4 illustrated the spatial distri-
bution of geotagged photos (top) in the Grand Canyon area and the activity hotspot
map (bottom) using 50 km radius KDE method. The hotspot map illustrated two
popular tourist locations within the study area: Grand Canyon Village area (Visitor
Center) and Emerald Pools. Therefore, we selected the two sub-regions as our case
studies.

5.1 Spatiotemporal Hotspot Analysis

The first case study area is the Grand Canyon (GC) Village (Visitor Center) area,
which is not far from the south entrance of the park. GC Village would usually be
the first stop for visitors. It provides all kinds of facilities like hotels, visitor center,
restaurants, and gift shops (Fig. 5). Figure 5 illustrated some hotspots of geo-tagged
Flickr photos using 200 m radius KDE method. The hotspots (red color) are near
Grant Canyon Village, Hopi House and some scenery locations.

The second case study area, Emerald Pools (Fig. 6), in Zion was in the heart of
Zion Canyon, near Zion Lodge. It has a variety of accommodations and a dining
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room for visitors. To the west of Zion Lodge locates Lady Mountain, which is one
of Zion’s landmarks.

To explore how these hotspots changed pattern, differential map has applied on
the two case studies. There are three major colors used throughout the two dif-
ferential maps: (1) blue, (2) green, and (3) red. The blue areas show decreased
photo activity density, the green areas show constant density, and the red areas
show increased photo activity density.

In the Grand Canyon visitor center area, the photos taken in summer are dis-
persed off the trails and broader regions comparing to winter (Fig. 7). In case study
2 (Fig. 8), Emerald Pools, the photos taken in summer also shows similar patterns

Fig. 4 The Flickr geotagged photos (top) and the activity hotspot map (bottom) using 50 km
radius KDE method
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(more trails). Most photos taken in winter are clustering within Zion Lodge, Echo
Canyon Passage, and Zion Observation Point. On the northwest of Fig. 8 map, it
revealed only two photos taken in winter, but many photos were taken in summer.
For the seasonal patterns revealed in Fig. 8, it showed that the tourist activity areas
have been influenced by season.

Not only the seasonal patterns can be revealed through Flickr data, weekday and
weekend patterns also can be explored. For exploring weekday and weekend pat-
terns in the Grand Canyon area, Fig. 9 used differential mapping to identify the
differences between weekdays and weekends. Photos taken in weekdays are more
disperse in the park, such as the north of Pima Point comparing photos taken in
weekends. Not only the spatial difference of their disperse but also the average
travel times spent in the Grand Canyon area are different between weekdays and
weekends (Table 2). The weekday travel duration is 68 h, and the weekend travel
duration is only 45 h. The other case study also showed similar patterns (Fig. 10).

In this research, the Exif information of each photo had been collected, per the
statistics, most of the camera users use DSLR to take the photos, and most of the
phone users used iPhone. In different devices, such as camera and phone, tourist
behavior may be different. Although the three case study areas are not in the same
area, the similar spatio-temporal patterns still can be identified. The camera users
can travel apart from main tourist area, even choose the unpaved trail. The smart

Fig. 5 The Flickr photos hotspots (red) in the Grand Canyon Visitor Center and Village Areas
using 200 m radius KDE
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Fig. 6 The Flickr photos hotspots in the Emerald Pools Areas

Fig. 7 The Flickr photo differential map for the Grand Canyon Visitor Center case study: using
seasonal difference (Blue: Summer, Red: Winter)
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Fig. 8 The Flickr photo differential map for the Emerald pools case study: using seasonal
difference (Blue: Summer, Red: Winter)

Fig. 9 The Flickr photo differential map for the Grand Canyon Visitor Center case study:
Comparing weekday (blue) and weekend (red) difference
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phone users usually travel in the recommended locations suggests by National Park
Service. In the Grand Canyon Village, the camera users’ footprint could be found at
the “unpaved trail” in the west of Pima Point, which is different with smart phone
users (Fig. 11). In Emerald Pools, it can be found the photos taken by phone are
more likely cluster near Zion observation point and The Grotto Picnic area, which is
the tourist destination suggested by national park service (Fig. 12).

5.2 Travel Time and Dynamic Time Warping for Trajectory
Analysis

Geo-tagged photographs on Flickr platform showed many photos taken by tourists
or local residents. The criterion for determining whether the photographs were

Table 2 The average travel times on weekdays and weekends

Average travel duration (h)

Weekday travels 68
Weekend travels 45
All 63

Fig. 10 The Flickr photo differential map for the Emerald Pools case study: Comparing weekday
(blue) and weekend (red) difference
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Fig. 11 The Flickr photo differential map for the Grand Canyon Visitor Center case study: using
the different devices: smart phones (Red) and cameras (Blue)

Fig. 12 The Flickr photo differential map for the Emerald pools case study: using the different
device: phone (red) and camera (blue)
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taken by visitors or local residents in this study is the time period during which each
user had taken pictures: if this period exceeded one month, then the photographs
were classified as taken by residents; if the period was less than one month (720 h),
then the users were classified as tourists. Table 3 illustrated the estimated temporal
patterns of visitors in Grant Canyon area and their average travel duration.

Selected Camera Users

To analyze visitors’ trajectory patterns, we selected the top three photo-uploaded
users who took the highest numbers of photos by cameras as our case studies.
Although these top users can not represent the average visitor’s movement patterns
in the Grant Canyon area, we used these cases to demonstrate the feasibility of
DTW for trajectory analysis. To protect users’ privacy, we used “Camera user A”,
“Camera user B”, and “Camera user C” to label these top users. “Camera User A”
joined Flickr in April 2013, and the user indicated that “Not a regular user, just
wanted to share my photos to give back to the community for some of the great
photos I’ve seen here.” “Camera User B” joined Flickr in September 2009. The user
B uploaded 11714 photos on Flickr platform, and 10700 photos are geo-tagged.
“Camera user C” is similar to user B, he joined Flickr in August 2007, and the user
has 7600 geo-tagged photos of total 9177 photos uploaded on Flickr platform
(Fig. 13). To compare with the similarity of each user’s trajectory, we used DTW
analysis to measure their similarity in the distance. The DTW value of Camera users
A, B, and C are on Table 4, per their DTW distance, camera user A is 194, which is
higher than average. For camera user B and C, they have similar DTW distance
value and similar routing per their trajectories.

Selected Smart Phone Users

For the smart phone user group, we selected the top three photo-uploaded users
who took the highest numbers of photos by Smart Phones. Users who used the
phone to take the photos will be defined as “leisure tourist.” To protect their
privacy, we used “Phone user D”, “Phone user E,” and “Phone user F” to label
these users. “Phone user D” joined Flickr in September 2013. The user D uploaded
241 geo-tagged photos of total 356 photos. “Phone user E” joined Flickr in May
2008, the user uploaded 539 geo-tagged photos of total 4059 photos. User E
identified himself/herself as a Montana resident, like hiking, backpacking, car
camping, road and trail running, cross-country skiing, snowshoeing and travel.

Table 3 The average travel time for visitor in different season

Total Flickr user visitors
(estimated)

735 Total visitor average travel
duration

63.53 h

winter 108 Average travel duration 49.03 h
spring 272 Average travel duration 68.81 h
summer 221 Average travel duration 59.00 h
autumn 134 Average travel duration 70.56 h
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“Phone user F” joined Flickr in April 2010. User-F had uploaded 901 geo-tagged
photos, and 768 of them are public. To compare with the similarity of each user’s
trajectory, the DTW distance value of phone users D, E and F had been shown in
Table 5. Phone users are more likely travel within the area suggest by National Park
Service, and their travel destination is more similar. Such as phone user D and F,
their DTW value is only 13, and their trajectory has overlay within Emerald pools
area (Fig. 14).

Fig. 13 Selected three camera users’ routes (A, B, and C)

Table 4 Camera users’ DTW distance value (User B and C are more similar)

DTW distance average value
(compared to other 734 routes)

Camera
User A
route

Camera
User B
route

Camera
User C
route

Camera
User A
route

194
(less representative)

– 160 99

Camera
User B
route

121 160 – 56

Camera
User C
route

77
(more representative)

99 56 –
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Table 5 Selected phone users DTW value (User D route and F route are very similar)

DTW distance average value
(compared to other 734 routes)

Phone
User D
route

Phone
User E
route

Phone
User F route

Phone
User D
route

61 – 69 13 (very
similar
routes)

Phone
User E
route

60 69 – 199

Phone
User F
route

41 13 (very
similar
routes)

199 –

Fig. 14 Selected three smart phone users’ routes (D, E, F)
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This study only selected top three contributors of camera and smart phone users
to demonstrate the feasibility of using DTW to compare the similarity of visitors’
trajectories in the Grand Canyon area. By calculating the DTW distance value, we
can find out which user may have more similar trajectory movements comparing to
all other users. The strength of DTW analysis is to provide a quantatative value to
compare the similarity of visitors’ trajectory movement. The weakness is the
missing of spatial factors and location-based analysis in the DTW analysis.

6 Conclusion

For tourism study, social media data is a new world to explore. In the past, data
collection was expensive, monopolized. With social media data, researchers could
collect high-resolution spatiotemporal data from public social media APIs and
analyze tourist activities and behaviors. In this study, we collected and cleaned the
geo-tagged Flickr photo data, and then applied two spatio-temporal analysis
methods (KDE and DTW) to explore the tourists’ spatial and temporal activity
patterns.

The major scientific contribution in this research is to demonstrate the feasibility
of using kernel density estimate (KDE) mapping for tourism hotspot analysis and
dynamic time warping (DTW) methods for visitor’s trajectory analysis. Previous
tourism geography research works mentioned in Sect. 2 (literature review) did not
utilize any kernel density methods nor DTW methods. This research also illustrated
that adopting different sizes of kernel radius will generate different scale of hotspot
analysis. This study utilized two spatial scales of KDE for tourist activity analysis.
The first level is 50 km which can be used to identify the general (large regions)
tourism hotspots in the Grand Canyon area. The second level is 200 m which can
identify smaller hotspots along with roads and trails (with a higher spatial
resolution).

This research identified unique activity patterns between different types of users
on Flickr: camera users are exploring remote areas beyond traditional tourist
attractions. Smart phone users are more likely clustered within the lodge area and
viewpoints suggested by the tour guides. For temporal pattern analysis, this
research identified weekday tourists are more “activate” comparing to weekend
visitors. In the Grand Canyon areas, Flickr photo data can also identify the seasonal
pattern: the winter photo amount is the lowest and the increased trend for spring and
summer.

There are several limitations and challenges in this study. First, the demo-
graphics of Flickr photo users might be biased comparing to the general visitor
profiles in the Grand Canyon area. User privacy concerns and restriction are an
important issue for using Flickr data. Although this study only collected public
accessible Flickr photos, the detailed trajectory analysis might reveal some personal
information regarding specific users. Finally, the user’s travel trajectories may not
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reflect the most reality tourists’ trajectories since we only collect the top 3 most
active users.

Two future research directions could be explored in Flickr-based tourism
research: computer image processing and text analysis. Computer image process
technology using machine learning tools and deep learning methods could be used
to identify the content of photos in the Grand Canyon area to explore the activity
type in each photo. Text analysis, such as topic modeling or latent dirichlet allo-
cation (LDA) methods, can be used to aggregate the texts and tags associated with
each photos and provide additional information for various analysis, such as
emotional analysis, social network analysis, and user profile analysis.
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