Prioritizing Corrective Maintenance Activities
for Android Applications: An Industrial Case
Study on Android Crash Reports

Valentina Lenarduzzi' ®, Alexandru Cristian Stan'®,
Davide Taibi'>®9 , Gustavs Venters! @, and Markus Windegger3

! Free University of Bolzano-Bozen, 39100 Bolzano-Bozen, Italy
{vlenarduzzi,astan,dtaibi, g. venters}@unibz. it
2 Pervasive Computing Department, Tampere University of Technology,
Tampere, Finland
davide. taibi@tut. fi
3 SASAbus, 39100 Bolzano-Bozen, Italy
windegger@sasabz. it

Abstract. Context: Unhandled code exceptions are often the cause of a drop in
the number of users. In the highly competitive market of Android apps, users
commonly stop using applications when they find some problem generated by
unhandled exceptions. This is often reflected in a negative comment in the
Google Play Store and developers are usually not able to reproduce the issue
reported by the end users because of a lack of information.

Objective: In this work, we present an industrial case study aimed at priori-
tizing the removal of bugs related to uncaught exceptions. Therefore, we
(1) analyzed crash reports of an Android application developed by a public
transportation company, (2) classified uncaught exceptions that caused the
crashes; (3) prioritized the exceptions according to their impact on users.

Results: The analysis of the exceptions showed that seven exceptions gen-
erated 70% of the overall errors and that it was possible to solve more than 50%
of the exceptions-related issues by fixing just six Java classes. Moreover, as a
side result, we discovered that the exceptions were highly correlated with two
code smells, namely “Spaghetti Code” and “Swiss Army Knife”. The results of
this study helped the company understand how to better focus their limited
maintenance effort. Additionally, the adopted process can be beneficial for any
Android developer in understanding how to prioritize the maintenance effort.

Keywords: Continuous monitoring - Software quality - Technical debt

1 Introduction

In the quickly evolving world of mobile applications, users can nowadays choose
among a large variety of alternatives. On the one hand, this huge market boosts the
competition among similar apps. On the other hand, users can easily switch to com-
petitor applications if some features are missing or — as commonly happens — not
responding correctly. The cost of acquiring lost customers is always high, and losing

© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 133-143, 2018.
https://doi.org/10.1007/978-3-319-71440-0_8

http://orcid.org/0000-0003-0511-5133
http://orcid.org/0000-0001-9453-2953
http://orcid.org/0000-0002-3210-3990
http://orcid.org/0000-0003-3185-8416

134 V. Lenarduzzi et al.

customers because of bugs and issues — which are often related to code exceptions —
occurs very frequently.

Android applications sometimes crash or are irresponsive, and several users com-
monly report this with negative comments in the Google Play Store, complaining about
non-functioning parts such as unresponsive buttons or other issues. This behavior is
often due to uncaught exceptions happening [23, 24]. We consider uncaught exceptions
those exceptions not caught in “try/catch” blocks that may occur at any time due to
programming errors that the developers did not expect to deal with (e.g., “Out-
OfMemoryError”, “NullPointerExceptions™) [17].

In this paper, we report on an industrial case study about an Android application
developed by SASAbus SpA AG, an Italian public transportation company'. Since
SASAbus had limited resources available for the maintenance of their application, our
aim was to support them in the identification of better ways to invest their maintenance
effort in order to prevent the greatest possible number of issues related to code
exceptions and to have them lose the lowest possible number of customers. Therefore,
our goal was to understand which code exception(s) generated most of the crashes, or
generally what the bugs in the application were, to allow focusing corrective mainte-
nance on solving the most relevant errors with the little resources available.

Crash reports are collected directly from the Google Play Store, which provides a
system that collects for the developers the latest exceptions that generated a fatal error
of the application.

The results of our study showed that six uncaught exceptions occurred in more than
70% of the crashes and that it is possible to reduce this high percentage by investing a
limited amount of effort. Furthermore, from the manual inspection of the code that
threw the exceptions, we observed the prominent presence of two code smells [3]
(“Spaghetti Code” and “Swiss Army Knife”) in similar exceptions. Moreover, this
result confirms the findings of Microsoft, who reported that 50% of crashes are caused
by 1% of bugs [18].

This paper is structured as follows: Sect. 2 describes the continuous exception
monitoring approaches. Section 3 reports the case study. Section 4 discusses the results
while Sect. 5 draws conclusions and provides an outlook on future work.

2 The Exception Monitoring System

Although the trend towards DevOps and continuous exception monitoring tools is
growing constantly?, to the best of our knowledge the literature on exception moni-
toring is still very limited [1, 2].

Exception monitoring tools have been introduced recently and are usually collo-
cated in the operational side of the DevOps pipeline [19]; however, the majority of
these instruments are crash reporting systems: when a fatal error in the application

! SASAbus. www.sasabus.it.
2 https://trends.google.com.

http://www.sasabus.it
https://trends.google.com

Prioritizing Corrective Maintenance Activities for Android Applications 135

happens, users get a summary message and are asked whether they are willing to report
the details to the development team.

However, developers get only crash-related data, while non-fatal errors, which are
often triggered by unhandled exceptions, remain unreported, hence not getting ana-
lyzed and solved. Recently, some tools aimed at dealing with this issue have been
introduced on the market: Most of them offer ways to integrate exception-collecting
plugins within the client to be monitored, while others simply require the addition of
dependencies or libraries to the source code. When an unhandled exception occurs,
some contextual data is collected on the client and forwarded to a server (on the
premises or in the cloud), which stacks and categorizes the exceptions.

One of the most frequently adopted exception monitoring tools is Firebase, the
default crash report provided in the Google Play Store. Firebase sends crash reports to
developers, reporting a list of fatal crashes and the exceptions that caused them. Fur-
thermore, Firebase also allows tracking uncaught exceptions, even though this feature
requires instrumenting the code by adding a custom logger to the classes and sub-
stantially modifying all the source code.

One of the goals of our research is to improve the resolution of such problems
quickly and promptly by capturing also concealed problems related to exceptions in the
software, categorizing them, and solving the issues accordingly.

In Table 1, we present some of the most commonly adopted exception monitoring
tools on the market.

Table 1. The most common exception management tools

Tool Supported programming | Exception Open | Link
language categorization | source
OverOps Java, Scala, Closure, Yes No WWW.OVerops.com
.NET
Airbrake All major ones Yes Yes | http://airbrake.io
Sentry All major ones Yes Yes www.sentry.io
Rollbar All major ones Yes Yes | www.rollbar.com
Raygun All major ones Yes Yes WWW.raygun.org
Honeybadger | All major ones Yes Yes www.honeybadger.io
Stackhunter | Java Yes No www.stackhunter.io
Bugsnag All major ones Yes Yes | www.bugsnag.com
Exceptionless | All major ones Yes Yes www.exceptionless.com
Firebase Android, i0S Yes No https://firebase.google.com

3 The Case Study

In this section, we report on our case study, which aimed at (1) understanding how to
manage and capture exceptions, and which exceptions need to be focused on in order to
solve most of the errors, and (2) at reducing the frequency of exceptions.

http://www.overops.com
http://airbrake.io
http://www.sentry.io
http://www.rollbar.com
http://www.raygun.org
http://www.honeybadger.io
http://www.stackhunter.io
http://www.bugsnag.com
http://www.exceptionless.com
https://firebase.google.com

136 V. Lenarduzzi et al.

In the following sub-sections, we will present the study process we adopted: First,
we will describe the study goal as well as the questions and metrics to be collected;
then we will describe the design and the execution of the study; and finally, we will
present the results we obtained.

3.1 Study Goal, Questions and Metrics

According to our expectations, we formulated the goal of the case study according to
the GQM approach [16] as:

Analyze the unhandled exceptions

for the purpose of prioritizing them

with respect to their frequency

from the point of view of the end user

in the context of the SASABus application

Therefore, we formulated our research questions as follows and further derived the
relative metrics.

RQ1: Which are the most frequently recurring exceptions in our Android application?

In this RQ, we aim at identifying the most frequent exceptions in order to rank them

based on frequency. We expect to have a subset of frequent exceptions that generate

most of the errors.

MI1: Total number of exceptions. This metric considers all the exceptions that
occurred in running apps.

M2: Number of unique exceptions.

M3: Number of occurrences of the same exception.

M4: Number of occurrences of the same exception from the same class.

As an example, consider the exceptions listed in Table 2. In this case, the total
number of exceptions (M1) is six. The number of unique exceptions M2 is three (E1, E2,
E3), and the number of occurrences of the same exception (M3) is three for E1, two for
E2, and one for E3. However, taking into account M4, we see that E1 was raised twice in
class C1 and once in class C2, while exception E2 was raised twice, both times in C1.

Table 2. Example of exceptions raised by an application

Date Exception | Class
01/01/2017 08:00 | E1 Cl1
01/01/2017 08:30 | E1 Cc2
01/01/2017 09:00 | E1 Cl1
02/01/2017 09:30 | E2 C1
02/01/2017 10:30 | E2 C1
02/01/2017 11:30 | E3 C4

Prioritizing Corrective Maintenance Activities for Android Applications 137

RQ2: Which and how many exception-related issues should be fixed in order to
reduce the number of exceptions by 70%?

With this RQ, we analyze the frequency of the exceptions and identify those
exceptions that need to be addressed in order to reduce their occurrence by 70%.
This RQ was required by the industrial partner, who seeks to reduce their number of
unhandled exceptions and to increase user satisfaction, as well as to reduce the number
of negative comments due to some unresponsive features caused by the exceptions.

As a consequence of RQ1, we expect to be able to solve 70% of the exceptions by
fixing only 20% of the issues.

As an example, considering the exceptions reported in Table 1, addressing
exception El in class C1 and E2 in class C2 would be more beneficial than solving E1
in C2 or E3 in C4.

RQ3: Which classes generate more exceptions?

This RQ aims at understanding whether some classes deserve more attention or need
to be refactored.

In our example, we can identify C1 as a class worth getting the developers’
attention.

3.2 The Analyzed Application

This case study is based on the analysis of the SASAbus Android application, available
on the Google Play Store’. The application has been downloaded by nearly 50 K users
and is currently used by more than 10 K users. The source code is also available as
Open Source*. The app was developed by SASAbus with the aim of providing bus
timetables, delays and locations of buses, and other travel-related information. The
software is developed with an agile process, and it migrating flawlessly from an ad-hoc
process to SCRUM from several years [13].
Figure 1 shows the SASAbus application on the Google Play Store.

3.3 Results

In order to answer to our research questions, we analyzed the SASAbus Android crash
reports from April 2013 to March 2017 (we chose this time range because the Google
Play Store does not save reports older than four years).

Before analyzing the individual result of each RQ, we confirmed the normality of
the exception distribution by means of the Shaphiro-Wilk test and analyzed the
descriptive statistics.

As for RQ1, the SASAbus application collected 1208 exceptions in four years, with
an average of 0.83 exceptions per day. Peaks in the number of exceptions per day were
reached during high season (e.g., Christmas and summer time), with a maximum of
eight exceptions per day.

* SASAbus on the Google Play Store. https:/play.google.com/store/apps/details?id=it.sasabz.android.
sasabus&hl=en.
* SASAbus GitHub repository. https:/github.com/SASAbus/SASAbus.

https://play.google.com/store/apps/details?id=it.sasabz.android.sasabus&hl=en
https://play.google.com/store/apps/details?id=it.sasabz.android.sasabus&hl=en
https://github.com/SASAbus/SASAbus

138

V. Lenarduzzi et al.

SASAbus

SASAbus Team Travel & Local
H PeGI3

B This app is compatible with all of your devices.

*hkk 453 2

Add to Wishlist m

Fig. 1. The SASAbus application on the Google Play Store

Table 3. Frequency of exceptions

Java exception Frequency | %
java.lang.RuntimeException 433 35.8
java.lang.NullPointerException 212 17.5
java.lang.ClassCastException 124 10.3
java.lang.UnsupportedOperationException 106 8.8
java.lang.IllegalStateException 94 7.8
java.lang.ClassNotFoundException 57 4.7
android.view.WindowManager$BadTokenException 45 3.7
java.lang.IllegalAccessException 26 2.2
android.database.sqlite.SQLiteDatabaseCorruptException | 23 1.9
java.lang.IndexOutOfBoundsException 23 1.9
java.lang.Illlegal ArgumentException 21 1.7
java.lang.InstantiationException 16 1.3
Native crash 8 0.7
java.lang.StringIndexOutOfBoundsException 7 0.6
android.database.sqlite.SQLiteException 4 0.3
java.lang.OutOfMemoryError 4 0.3
android.util. AndroidRuntimeException 3 0.2
java.io.JOException 1 0.1
java.lang.NoSuchMethodError 1 0.1
Total 1208

Prioritizing Corrective Maintenance Activities for Android Applications 139

We identified 19 types of unique exceptions with different frequencies (Table 3).
Two exceptions were caught in more than 50% of the cases, namely “java.lang.Run-
timeException” and “java.lang.NullPointerException”, while other exceptions occurred
rarely.

Taking into account the classes that had more exceptions, we can see that 44.8% of
the exceptions were thrown by three Java classes (Table 4). However, the same
exceptions were often thrown by different classes.

Table 4. Frequency of exceptions per class that raised more than 10 exceptions

Java class Frequency | %

android.graphics.Bitmap 223 18.5
android.os.Looper 211 17.5
java.util.Collections$UnmodifiableCollection 106 8.8
it.sasabz.sasabus.ui.busstop.NextBusFragment$2 81 6.7
dalvik.system.BaseDexClassLoader 57 4.7
android.support.v4.app.Fragment 44 3.6
android.support.v4.app.FragmentManagerImpl 41 34
android.view.ViewRootImpl 33 2.7
it.sasabz.sasabus.opendata.client.model. BusStation 31 2.6
it.sasabz.sasabus.ui.busstop.NextBusFragment$1 31 2.6
it.sasabz.sasabus.ui.busstop.NextBusFragment$7 28 23
it.sasabz.android.sasabus.classes.adapter.My WayListAdapter 27 22
java.lang.Class 26 22
android.database.sqlite.SQLiteConnection 23 1.9
android.support.v7.widget.RecyclerView$n 21 1.7
it.sasabz.sasabus.ui.busschedules.BusScheduleDetailsFragment | 19 1.6
it.sasabz.sasabus.ui.busschedules.BusSchedulesFragment$4 17 1.4
it.sasabz.sasabus.ui.routing.SearchResultsFragment 17 1.4
it.sasabz.sasabus.ui.busstop.NextBusFragment$6 16 1.3
java.lang.reflect.Constructor 16 1.3
android.app.LoadedApk 13 1.1
android.view.ViewRoot 12 1

it.sasabz.android.sasabus.classes.services.CheckUpdate 11 0.9
it.sasabz.android.sasabus.fcm.a.e 10 0.8
org.mapsforge.map.reader.MapDatabase 10 0.8

The analysis of RQ2 and RQ3 led us to the identification of the exceptions that
should be addressed by the developers. As requested by SASAbus, our goal was to
identify the classes that generated 70% of the exceptions.

Table 5 reports the frequency of the exceptions per class, where the “Freq.” column
reports the number of times the exception was thrown by the class reported in the
column “Java Class”, while “Rel Freq.” reports how often an exception of the same
type was thrown by the selected class. For reasons of space, Table 5 only reports the

140 V. Lenarduzzi et al.

Table 5. Frequency of exceptions per class. Package named is omitted for reasons of space.

Java classes Exception Freq. |Rel Abs.
freq. freq.
Bitmap RuntimeException 222 51% | 18%
Looper RuntimeException 211 49% | 17%
NextBusFragment ClassCastException 124 100% | 10%
Collections UnsupportedOperationException | 106 100% 9%
$UnmodifiableCollection
BaseDexClassLoader ClassNotFoundException 57 100% 5%
NextBusFragment NullPointerException 55 26% 5%
MyWayListAdapter NullPointerException 54 25% 4%
BusScheduleDetailsFragment | NullPointerException 38 18% 3%
SearchResultsFragment NullPointerException 34 16% 3%
BusStation NullPointerException 31 15% 3%
Class Tllegal AccessException 26 100% 2%
Constructor InstantiationException 16 100% 1%

name of the class, omitting the package. Package names can be easily associated from
Table 4. As an example, “RuntimeException” was thrown 433 times, (222 times in
class “Bitmap.java” and 211 times in class “Looper.java”). Finally, column “Abs
Freq.” reports the impact of the exception over the total number of occurrences. For
instance, RuntimeException, thrown 222 times in the class Bitmap, accounted for 18%
of the 1208 exceptions.

Summing up, the first seven exceptions occurred in nearly 70% of the cases.
Furthermore, one method of the class “NextBusFragment” threw 124
“ClassCastExceptions” and 55 “NullPointerExceptions”. Hence, focusing corrective
maintenance on the first six classes of this table would fix the issues that generated 70%
of the exceptions.

4 Discussion

A first analysis of the source code forced us to consider the importance of adopting a
continuous exception monitoring system. In the last four years of this code’s evolution,
32 classes generated a total of 1208 exceptions, and just six of them threw nearly 70%
of the exceptions. Maintenance is an expensive task [4] and, considering the limited
resources available to SASAbus, they will now be able to focus their maintenance effort
especially on the most critical issues, solving the biggest number of issues with the
lowest possible effort.

Based on the results obtained, we manually inspected the source code of these six
classes and found interesting side results.

One of the main side results is that in most of the classes generating exceptions, we
identified code smells, a set of structural software characteristics that indicate code or
design problems that can make software hard to evolve and maintain [3].

Prioritizing Corrective Maintenance Activities for Android Applications 141

Both of the classes that generated “RuntimeException” have a “Spaghetti Code”
structure, while the other classes were generally very complex or structured as a “Swiss
Army Khnife”. Although this result is not statistically significant and was not obtained
with a rigorous method, we are planning to train SASAbus developers in code smells
and code quality practices to help them write cleaner code, which would be easier to
maintain in the future. However, the result can be already beneficial from the devel-
opment team, that could start to create a knowledge base of their development prac-
tices, reporting the bad practices that generated the exception. As example, we
recommended to start keeping track of the data with the Agile Experience Factory [5].

Based on the results provided by this work, SASAbus decided to adopt an
exception monitoring tool. Starting in May 2017, they began using Sentry because of
its open source license, which allows on-premise installations to collect the data, and
because of the ease of configuration, which requires only the addition of one depen-
dency library to the code base without the need to instrument the source code.

The results of this work contribute to understanding the importance of a continuous
exception monitoring approach.

As for threats to validity, in our work we prioritized the exceptions based on their
frequency, since they were all related to crash reports that caused the shutdown of the
application. A continuous monitoring approach that reports uncaught exceptions should
also be able to classify them, i.e., not only provide their frequency, but also relate them
to their severity. The results obtained are useful for SASAbus but not statistically
significant, since they were not obtained using a rigorous method. These results and the
approach we adopted can be validated in future studies, also applying defect prediction
techniques.

5 Conclusion

In this work, we presented an industrial case study aimed at understanding the most

frequent exceptions raised by an Android application adopted by more than 10 K users.
We analyzed the crash reports and the exceptions from the last four years, iden-

tifying seven types of exceptions that occurred in more than 70% of the cases.

A manual code inspection enabled us to understand that most of the exceptions
were generated by bad code practices, mainly code smells, which decrease the read-
ability, understandability, and maintainability of the code, hence causing bugs and
issues [7, 12].

The results of this work helped SASAbus to clearly understand where to focus their
corrective maintenance effort, working on the most frequent issues, as well as solving
most of the problems with the least effort possible. Before the analysis of their
exceptions, the application crashed nearly once a day because of uncaught exceptions,
and several users reported the unresponsive features on the Google Play Store, such as
unresponsive buttons or other exception-related issues. The results of the newly
installed continuous monitoring system will be visible in the near future, when
developers will be able to not only detect the most frequent exceptions, but also to
intervene based on the severity of the issue.

142 V. Lenarduzzi et al.

The main lesson learned from this work is that, thanks to a continuous monitoring
tool and statistical analysis of the exceptions, companies can easily understand how to
better address part of the corrective maintenance effort.

A classic fault prediction approach based on code analysis, might have indicated
the high possibility of running into problems when delivering the app in a proactive
way. Therefore, we are planning to apply prediction models, both based on internal and
on external metrics, similar to these we already applied in [6, 9, 10, 14, 15] paired with
this approach.

We are currently working on analyzing change proneness in classes that generated
issues, including bugs and fixes manually reported by users and developers in the issue
tracker and not actually related to exceptions [12].

As described in our previous work [8, 11], future work will include the analysis of
static metrics and code smells of this application, as well as understanding possible
correlations between code smells and issues. Another future work will be the analysis
of comments and the relations between negative comments, crashes and exception, so
as to better address maintenance activities. Moreover, other approach for the automatic
discover of android crashes such as [20, 21, 22] could be adopted to better focus the
maintenance activities.

References

1. Krall, A., Probst, M.: Monitors and exceptions: how to implement Java efficiently. Concur.
Pract. Exp. 10(11-13), 837-850 (1998)

2. Turner, L.D., Owhoso, V.: Use ERP internal control exception reports to monitor and
improve controls. Manag. Account. Q. 10(3), 41-50 (2009)

3. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

4. Lenarduzzi, V., Sillitti, A., Taibi, D.: Analyzing forty years of software maintenance models.
In: International Conference on Software Engineering (ICSE 2017), Buenos Aires,
Argentina (2017)

5. Taibi, D., Lenarduzzi, V., Diebold, P., Lunesu, I.: Operationalizing the experience factory
for effort estimation in agile processes. In: International Conference on Evaluation and
Assessment in Software Engineering (EASE 2017), Karlskrona, Sweden, 15-16 June 2017.
http://doi.org/10.1145/3084226.3084240

6. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: Predicting OSS trustworthiness on the basis of
elementary code assessment. In: International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM 2010), Bolzano-Bozen, Italy, 1617 September 2010. http://
doi.org/10.1145/1852786.1852834

7. Taibi, D., Janes, A., Lenarduzzi, V.: Towards a lean approach to reduce code smells
injection: an empirical study. In: Sharp, H., Hall, T. (eds.) XP 2016. LNBIP, vol. 251,
pp- 300-304. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33515-5_30

8. Lenarduzzi, V., Stan, A.C., Taibi, D., Tosi, D., Venters, G.: A dynamical quality model to
continuously monitor software maintenance. In: 11th European Conference on Information
Systems Management (ECISM 2017), Genoa, Italy, 14-15 September 2017

9. Tosi, D., Lavazza, L., Morasca, S., Taibi, D.: On the definition of dynamic software
measures. In: International Symposium on Empirical Software Engineering and Measure-
ment (ESEM 2012), pp. 39-48. ACM, New York (2012). http://doi.org/10.1145/2372251.
2372259

http://doi.org/10.1145/3084226.3084240
http://doi.org/10.1145/1852786.1852834
http://doi.org/10.1145/1852786.1852834
http://dx.doi.org/10.1007/978-3-319-33515-5_30
http://doi.org/10.1145/2372251.2372259
http://doi.org/10.1145/2372251.2372259

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Prioritizing Corrective Maintenance Activities for Android Applications 143

Taibi, D., Lavazza, L., Morasca, S., Tosi, D.: An empirical investigation of perceived
reliability of open source Java programs. In: Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC 2012), Riva del Garda, Italy, 26-30 March 2012.
http://doi.org/10.1145/2245276.2231951

Taibi, D., Janes, A., Lenarduzzi, V.: How developers perceive code smells and antipatterns
in source code: a replicated study. Inf. Softw. Technol. J. (IST) 92, 223-235 (2017). https://
doi.org/10.1016/j.infsof.2017.08.008

Janes, A., Lenarduzzi, V., Stan, A.C.: A continuous software quality monitoring approach
for small and medium enterprises. In: Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion (ICPE 2017 Companion), L’Aquila,
Italy (2017). http://doi.org/10.1145/3053600.3053618

Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: Applying SCRUM in an OSS development
process: an empirical evaluation. In: Sillitti, A., Martin, A., Wang, X., Whitworth, E. (eds.)
XP 2010. LNBIP, vol. 48, pp. 147-159. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13054-0_11

Bianco, V.D., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: The QualiSPo approach to OSS
product quality evaluation. In: Proceedings of the 3rd International Workshop on Emerging
Trends in Free/Libre/Open Source Software Research and Development, pp. 23-28. ACM,
New York (2010). http://doi.org/10.1145/1833272.1833277

Morasca, S., Taibi, D., Tosi, D.: Towards certifying the testing process of open-source
software: new challenges or old methodologies? In: Proceedings of the 2009 ICSE
Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
Development, FLOSS 2009, pp. 25-30 (2009). http://doi.org/10.1109/FLOSS.2009.
5071356

Caldiera, G., Rombach, H.D., Basili, V.: Goal question metric approach. In: Encyclopedia of
Software Engineering, pp. 528-532. Wiley, New York (1994)

Java Oracle: Uncaught Exceptions Documentation. https://docs.oracle.com/javase/7/docs/
api/java/lang/Thread.UncaughtExceptionHandler.html. Accessed May 2017

Rooney, P.: Microsoft’s CEO: 80-20 Rule Applies To Bugs, Not Just Features. CRN News,
03 October 2002. http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-
applies-to-bugs-not-just-features.htm

Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-fault
monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859-872 (2004)

Moran, K., Linares-Véasquez, M., Bernal-Cardenas, C., Vendome, C., Poshyvanyk, D.:
Automatically discovering, reporting and reproducing android application crashes. In: 2016
IEEE International Conference on Software Testing, Verification and Validation (ICST).
IEEE (2016)

White, M., Linares-Véasquez, M., Johnson, P., Bernal-Cardenas, C., Poshyvanyk, D.:
Generating reproducible and replayable bug reports from android application crashes. In:
2015 IEEE 23rd International Conference on Program Comprehension (ICPC). IEEE (2015)
Agarwal, S., Mahajan, R., Zheng, A., Bahl, V.: Diagnosing mobile applications in the wild.
In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks. ACM
(2010)

Kechagia, M., Spinellis, D.: Undocumented and unchecked: exceptions that spell trouble. In:
Proceedings of the 11th Working Conference on Mining Software Repositories. ACM
(2014)

Cinque, M., Cotroneo, D., Testa, A.: A logging framework for the on-line failure analysis of
android smart phones. In: Proceedings of the 1st European Workshop on AppRoaches to
MObiquiTous Resilience. ACM (2012)

http://doi.org/10.1145/2245276.2231951
http://dx.doi.org/10.1016/j.infsof.2017.08.008
http://dx.doi.org/10.1016/j.infsof.2017.08.008
http://doi.org/10.1145/3053600.3053618
http://dx.doi.org/10.1007/978-3-642-13054-0_11
http://dx.doi.org/10.1007/978-3-642-13054-0_11
http://doi.org/10.1145/1833272.1833277
http://doi.org/10.1109/FLOSS.2009.5071356
http://doi.org/10.1109/FLOSS.2009.5071356
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.UncaughtExceptionHandler.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.UncaughtExceptionHandler.html
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm

	Prioritizing Corrective Maintenance Activities for Android Applications: An Industrial Case Study on Android Crash Reports
	Abstract
	1 Introduction
	2 The Exception Monitoring System
	3 The Case Study
	3.1 Study Goal, Questions and Metrics
	3.2 The Analyzed Application
	3.3 Results

	4 Discussion
	5 Conclusion
	References

