
High Quality at Short Time-to-Market:
Challenges Towards This Goal and Guidelines

for the Realization

Frank Elberzhager(&) and Matthias Naab

Fraunhofer Institute for Experimental Software Engineering IESE,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{frank.elberzhager,matthias.naab}@iese.fraunhofer.de

Abstract. High quality and short time-to-market are business goals that are
relevant for almost every company since decades. However, the duration
between new releases heavily decreased, and the level of quality that customers
expect increased drastically during the last years. Achieving both business goals
imply investments that have to be considered. In this article, we sketch 22 best
practices that help companies to strive towards a shorter time-to-market while
providing high quality software products. We share furthermore experiences
from a practical environment where a selected set of guidelines was applied.
Especially DevOps including an automated deployment pipeline was an
essential step towards high quality at short time-to-market.

Keywords: Quality � Time-to-market � Guidelines � Experiences

1 Introduction

Shorter times for delivering new software products and updated versions are more and
more common. Higher speed can provide substantial business value, but only if ade-
quate quality can be delivered. Some years ago, it was quite normal to deliver a new
release once or twice a year, or in even longer intervals. Today, updates are often
released many times a week, sometimes even every few seconds. Internet companies
are clearly the leaders of fast releases (e.g., Amazon made changes to production on
average every 11.6 s in 2011, and many Google services are released several times a
week (for more details, see [1, 2]), but also more traditional companies like car
manufacturers delivering safety-relevant products are following suit (e.g., Volvo cars
[3] or Tesla).

With short time-to-market, two views can be distinguished:

1. Delivering the first release within a short time between project start and first release
2. Delivering frequent subsequent updated releases within short times between start of

increment and release

We will mainly concentrate on the second aspect. This is far more challenging, and
requires sustainable processes, roles, a tool landscape, and a certain culture among
other things.

© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 121–132, 2018.
https://doi.org/10.1007/978-3-319-71440-0_7

One key reason for short time-to-market is earlier value, which can be refined into
four concrete benefits:

1. Customers can use new features earlier – the company can earn money earlier
2. A company is on the market faster than competitors – the company can earn more

money
3. A company gets faster feedback – the company can further improve the software

product or implement new feature requests from customers
4. A company provides small updates instead of large ones – the company can reduce

the risk of providing the wrong software.

The motivation for companies to achieve a shorter time-to-market is clearly
business-driven (as it aims at providing business value), it is no end-in-itself. The
objectives have thereby to be clearly derived. Jan Bosch stated “no efficiency
improvement will outperform cycle time reduction” [4].

On the other hand, short time-to-market should usually not cannibalize the quality
of the software system, at least not to a large extent. High quality is important to
convince customers of the value of the software product. Throwing a new product or
release onto the market without proper quality assurance, documentation, and further
related tasks can speedup time-to-market, but it is not sustainable at all. Though there
might be situations where it is reasonable to concentrate solely on speed, and not on
quality at all (or only to a minor extent), this is not the usual case and we exclude it
from our scope.

But how does the need for speed impact the company’s software quality require-
ments? And why does development time and operation quality requirements need
strong improvement? From our perspective, these are key aspects when high quality at
short time-to-market should be implemented in a sustainable way. Guidelines that we
present in this article outline the areas where investment is needed to make high quality
happen at short time-to-market. Finally, we will discuss applicable factors for signif-
icantly reducing release times. Therefore, we concentrate on three main questions in
this paper:

1. What exactly does high quality mean?
2. Where and how to invest for high quality at short time-to-market?
3. What is the applicability of high quality at short time-to-market?

We answer the first question in Sect. 2 together with our procedure how we
elaborated this question. Section 3 presents our results and gives several best practices
and guidelines to strive towards high quality at a short time-to-market. Section 4 gives
some practical hints that help companies to implement certain guidelines, and provides
some experiences from a concrete industrial context. Finally, Sect. 5 concludes the
article and provides some follow up questions for researchers and practitioners.

122 F. Elberzhager and M. Naab

2 Procedure and Concepts

2.1 Procedure

We started our conceptual work by creating a general view on the topic. For this, we
scanned several articles and publications that already exist about this topic (e.g., [7–
17]). From our analysis, a motivation that, why, and where investments need to be
done, was often missing. Usually, the goal of high quality and short time-to-market is
considered, and we also found recommendations for improvements (e.g., best prac-
tices). However, in this article, we distinguish stronger between different qualities, and
derived concrete investment areas to achieve a certain value, respectively benefits.
Based on this general picture which is presented in Sect. 2.2, we identified next areas
which are influenced when a company wants to achieve high quality at short
time-to-market. We identified four concrete ones, which are partly based on former
project experiences with software developing companies. In order to derive concrete
guidelines, we performed a two hour workshop with seven experts in areas such as
architecture, process improvement, and implementation. All the detailed feedback was
consolidated and resulted in six concrete guideline topics which are presented in
Sect. 3. We applied some of these guidelines with respect to a practical context and
gained further practical experience which is shown in Sect. 4.

2.2 Conceptual View

Optimizing either delivery time or quality is challenging in itself. High quality at short
time-to-market is even more challenging, and not every company benefits equally from
high-frequency releases, or would have to change too many things so that the
investment would not be worth the benefit. So a company needs to start asking the
following questions, describing the goals:

• What are the key reasons in the company’s market and which products should be
released with short time-to-market?

• What is a reasonable time-to-market that the company wants to achieve?
• What is the level of quality that should not be affected?

These business-related questions have to be roughly answered first, followed by
technical and organizational questions to realize the identified goals and to check the
feasibility of achieving the goals. Many new and more fine-grained questions emerge
when striving towards a shorter time-to-market, e.g.

• What does an efficient release process look like?
• What software-architecture is needed?
• What is the necessary infrastructure to be provided?
• What is a reasonable team structure?
• What tools do support fast delivery?

Figure 1 illustrates the transition towards high quality at short time-to-market. One
key reason why software is built is the functionality it realizes. However, only if this
functionality comes with an adequate quality in the software, it is actually useful. The

High Quality at Short Time-to-Market 123

concept of quality needs thereby to be refined in order to understand what is expected
to be existing by nature, and which parts need further investment. Thus, we distinguish
four categories of quality characteristics of a software product:

• Absence of bugs
• Runtime quality (e.g., performance, security)
• Development time (short: Devtime) quality (e.g., maintainability, testability,

extensibility, flexibility)
• Operation quality (e.g., updateability, recoverability).

The focus in development organizations is often on functionality, absence of bugs,
and runtime qualities. This is quite natural, because these quality characteristics are
directly visible to the customer, while devtime quality and operation quality rather
serve the development organization (in particular if it also operates the software). This
is also backed by the ISTQB Worldwide Testing Practice Report from 2015 reporting
that the focus of quality assurance is on runtime qualities, such as performance,
usability, or security [5].

High quality also means absence of bugs and runtime quality. However, in order to
be able to deliver this quality characteristics with high speed over time, it becomes
inevitable to also increase the devtime quality and the operation quality.

• Devtime quality is necessary to allow making additions and changes quickly
(maintainability, extensibility, flexibility, etc.) and testing the changes with a high
level of confidence within a reasonable period of time (which necessarily implies a
large degree of automated testing).

Software Product

Releases at
low frequency

Absence of
Bugs

Runt ime
Qualit y

Devt ime
Qualit y

Operat ion
Qualit y

Value
• Earl ier value
• Earl ier than competi tors
• Earl ier feedback
• Reduced risk, less frict ion

Investment
• Culture / Organizat ion
• Architecture
• Tools / Automation
• Process

Funct ionalit y

Releases at
high frequency

Reduce
t ime-t o-market

Software Product

Devt ime
Quality

Operat ion
Qualit y

Absence
of Bugs

Runt ime
Qualit y

Funct ionalit y

Fig. 1. Implications on quality when shifting towards reduced time-to-market

124 F. Elberzhager and M. Naab

• Operation quality is necessary to enable reliable and fast releases with a high degree
of automation and to quickly react to potential failures of the newly released
software.

That is, the goal is to deliver absence of bugs (or at least a minimization) and
runtime quality to the customer, and the means for realizing this is to invest in devtime
quality and operation quality. As functionality is available earlier, a slightly reduced
amount of functionality might even be acceptable. Due to the ability to correct prob-
lems much faster than before, a bit more tolerance for bugs might exist. Figure 1
depicts this relationship. It is very important that all the people in a development
organization have a clear picture of these different characteristics of quality and how
they will change when they strive for more speed.

High quality at short time-to-market does not come for free. It is clearly a business
value and a competitive advantage, and thus it is obvious that investments are needed.
We already pointed out now two areas of quality that need strong improvement for high
quality at short time-to-market: Devtime quality attributes and operation quality
attributes.

Next, we broaden the view on areas of investment. For this, we have identified four
high-level areas, which need investments to make high quality at short time-to-market
happen:

• Culture/Organization: The people in the development organization have to be fully
aware that releasing fast is of value and that everyone has to contribute. Changes to
the organizational structure might be necessary to empower people to develop and
release fast.

• Architecture: The architecture of the software has to strongly support fast releases,
that is in particular the realization of development time and operation quality
attributes (e.g. updateability, recoverability, testability) while maintaining the run-
time quality attributes (e.g. performance, user experience, security, availability, …)
at the same time.

• Tools/Automation: Automation is key for fast releases with high quality: Only if the
quality assurance, build, and release is highly automated and reliable the releases
can be done with high confidence in a high frequency.

• Processes: Processes have to focus on the full end-to-end coverage from ideation of
new features to putting them into production with low friction and delay.

For each of these four high-level areas, concrete guidelines can be derived. We
gathered a list of more than 40 best practices. For example, in the area of architecture,
we discussed programming rules, concrete qualities such as testability that need to be
coped by the concrete architecture, or encapsulation principles. Further examples for
the area ‘culture’ are keeping the customer in mind or high communication skills.
However, besides many obvious ideas, we consolidated all feedback into six main
guideline topics and summarized concrete hints (see next Section).

High Quality at Short Time-to-Market 125

3 Guidelines and Implementation

The four areas (i.e., culture, architecture, tools, and processes) which need investment
are connected and do overlap. In the following, we provide more concrete topics and
guidelines, which mostly touch multiple of these areas (for example, take continuous
delivery: For continuous delivery, the software architecture has to cope with fast
integrations and deployments, and a full process needs to be defined with a high degree
of automation). Some hints how to select them and where to start is given in Sect. 3.2.

3.1 Guidelines

We derived six topics that reflect different aspects during software development. The
concrete guidelines touch, as mentioned before, often not only one area, but several.
Topic 1 focuses on the concrete customer and the business value, i.e. something the
company always should have in mind with all the methods and procedures they apply:
It is never for the software product itself, but always to serve the customer and to earn
money. Customer satisfaction is not negligible, as a bad satisfaction threatens the
company’s success. The second topic concentrates on bringing the software product
and also the company to the next level, i.e., to continuously reflect the business and all
related aspect of the development. The third topic focuses more on technical issues
during the release process and how to improve it. This is a major topic to really become
fast. The fourth topic concentrates on means to provide high quality. Topic five then
sets the focus on the whole company and reflects what is important on this higher level
to support high quality at short time-to-market. Finally, topic six considers data in order
to understand the current situation, but also to measure success and to identify further
improvement ideas.

We do not claim that this is a complete list, but it touches main aspects that should
be considered when a company wants to strive towards high quality at short
time-to-market. Overall, we present 22 concrete guidelines next.

• Topic 1: Customer and business value
◦ Focus on building the right software system that serves your customers and
provides the highest value for your business.

◦ Build as little as necessary; building less takes less time.
◦ Consistently prioritize in requirements engineering.
◦ Incorporate early feedback and data to enable continuous adjustment.

• Topic 2: Innovation and differentiation
◦ Do not reinvent the wheel; do not invest your time into things that are already
there.

◦ Focus on the things that make your product and your business unique.
◦ Use cloud-based technologies where possible.
◦ Continuously renew: What is innovation today may be a common feature
tomorrow.

• Topic 3: Release capability
◦ Introduce continuous delivery, integration, and deployment for (partially)

automated, and thus faster, releases.

126 F. Elberzhager and M. Naab

◦ Adopt DevOps practices; they aim at assuring smooth interplay between
development and operation throughout the release step.

◦ Design for updateability: Provide the ability to run different software product
versions; use effective API version management; migrate data; etc.

◦ Modularize software to enable independent releases of features and software
parts: Microservices are an architectural style that proposes many decisions
supporting decoupled development and releases.

◦ Make teams responsible for the development, release, and operation of their
modules and create the ability to release independently (respect Conway’s law
concerning the organizational structure).

• Topic 4: High quality investments
◦ Do quality assurance early to avoid going in the wrong direction (for example,
prototyping, architecture evaluation, etc.).

◦ Try out concepts and features early with a strong customer focus.
◦ Design for high testability and, in particular, for a high degree of automated
testing.

◦ Design for robustness: Provide the ability to keep failures local and to recover
quickly in the case of failures.

◦ Establish a culture of making even good things better over time.
• Topic 5: Overall agile development organization

◦ Establish a culture of speed and fast decisions.
◦ Follow agile development principles and be responsive.

• Topic 6: Utilization of data to improve business and software
◦ Perform A/B tests, for example, to get early feedback about alternative fea-
tures and about the quality by gradually delivering the software to the
customers.

◦ Ask your users for (anonymous) feedback, respectively collect data from log
files.

3.2 Implementation Hints

We believe that high quality at short time-to-market will become more relevant for
many industries and companies, as there is a strong ability to create business value.
High quality at short time-to-market is nothing that can be bought out of the box.
Rather, it is a deliberate business decision that comes with many consequences,
changes and investments. To make it happen, the company developing the software has
to strongly adapt and invest into the areas culture/organization, architecture,
tools/automation, and processes.

The concrete manifestation differs from company to company. That starts with
different releases cycles and ends at detailed technologies that are used. Such concrete
environmental factors have to be considered during the definition of a concrete
migration and improvement strategy.

The following aspects have an impact on the applicability and the concrete defi-
nitions of high quality at short time-to-market:

High Quality at Short Time-to-Market 127

• Adherence to quality standards and certifications: Whether high release cycles are
possible can be determined by regulations concerning quality assurance and
certification.

• Customer expectations and ability to create value: Only if regular and fast updates
are perceived to be accepted by customers and can result in a business value the
investments into high quality at short time-to-market are justified.

• Status of existing software: The age and overall quality of the software (in particular
the devtime quality and the operation quality) have an impact whether it is advisable
to invest into high quality at short time-to-market for the current software (or rather
do it for a successor)

• Control over execution environment: Companies offering software-as-a-service
(SaaS) have the advantage that they have good control over the execution envi-
ronment while companies offering physical goods like cars might have to update
software in millions of hardware instances. However, even these things might
change with strongly improving network capabilities allowing to move more and
more functions to a cloud-based environment.

When a company wants to move towards high quality at short time-to-market, the
following questions should initiate that journey:

• What does “high quality” mean in this context, how is “short” in time-to-market
interpreted?

• What is the respective improvement in value that is expected to gain?
• What does this direction mean for the organization, the processes, the architecture,

and the tools?
• Which topics are most reasonable to start with?

It should be kept in mind that it is about the balance between high quality and fast
delivery, and both have to be considered to find the right balance. This means, it is
about acceptable quality and it is about acceptable release frequency. The guidelines of
this article can point out aspects to reason about, to prioritize, and to start introducing.
They are deliberately not presented as a migration roadmap because the transition to
high quality at short time-to-market will be individual and thus requires an individual
migration roadmap.

4 Experiences with Selected Guidelines from the Fujitsu EST
Environment

We accompanied Fujitsu EST for about one year in an improvement initiative [6]. The
improvement vision of this initiative was driven by several objectives, among others
the goal of higher quality and reduced release cycles (culture of making good things
better, culture of speed and fast decisions). These goals were set at the beginning of
the joined project. Concrete improvement steps could then be derived step-by-step, and
a migration plan was defined based on an analysis of the current development pro-
cesses, team structure, and the tool landscape.

128 F. Elberzhager and M. Naab

The general focus of the joined project was to investigate the benefits of DevOps in
the given context, and an implementation of selected DevOps practices. The intro-
duction of DevOps was our main mission, which is reflected by one of the central
aspects of the guideline list. DevOps, which wants to bring development and operations
together, aims at sharing a higher joined responsibility of development and operations
staff, and wants to break down barriers between these different parts and the corre-
sponding mindsets. While DevOps in itself provides several concrete practices, it
supports shorter time-to-markets by, for example, lower friction between development
and operations, or much higher automation supported by an automated deployment
pipeline. Both were major outcomes of this project, and Fig. 2 provides an overview of
the deployment pipeline that was defined and implemented in the given context.

The pipeline consists of four steps, and was – except the exploratory testing – fully
automated in the end:

1. Commit: This stage starts as soon as a developer commits new or changed code to
the source version control system. It invokes the continuous integration server,
which builds the application and generates artifacts. The artifacts are stored and
reused in the subsequent stages. If the build fails, the developer is notified and the
commit does not progress.

2. Automated testing: The artifacts generated in the previous stage are deployed to a
testing environment. Automatic testing is done for all parts of the software. The
environment is provisioned and configured automatically. If the tests fail, the
artifacts do not progress any further.

2.
automated

test ing

1.
commit

3.
exploratory

test ing

4.
product ion ENDSTART

Repository
Management

Release
Management

Test ing & Defect
t racking

Containerizat ion Collaborat ion

No tool

Exist ing tool

Intermediate solut ion
/ conceptual idea

Deployment Cloud Conf igurat ion
Management

MonitoringCont inuous
Integrat ion

Build

Source Code
Management

Logging

Fig. 2. Deployment pipeline and tool categories in the Fujitsu EST environment to support high
quality at short time-to-market

High Quality at Short Time-to-Market 129

3. Exploratory testing: Once the automatic testing stage has been passed, the artifacts
are deployed to an exploratory testing environment for manual testing. The envi-
ronment is again created automatically. Once the tests are finished, the artifacts can
go to the next stage; otherwise, they stop here.

4. Production: After the exploratory testing stage, the artifacts are deployed to the final
production environment and users can use the application directly. The production
environment is created automatically and monitored continuously. If something
goes wrong, the system rolls back to a previous release. All the deployments are
done following a deployment strategy. Users ideally do not experience any
downtime and the transition from one release to another is smooth.

Figure 2 also presents an overview of tool categories that we considered in the
pipeline. There exist numerous tools for every step, and it again depends on the concrete
environment which ones fit best. Seven tool categories were already covered in the
Fujitsu EST environment. For the commit stage, Jenkins was used as the continuous
integration tool, Maven and Grunt for the build process, and GIT for source code
management. Services of the Google Cloud were applied for steps 2-4. For release
management, Jenkins was considered, and for containerization, Docker was the choice.
Google Cloud provides the Docker management itself. For repository management,
Docker Registry and Artifactory were used. Finally, for testing, quality assurance, and
issue reporting purposes, jUnit, Karma, sonarQube, and Bugzilla were applied.

Collaboration was out of scope due to the small size of the team and the little
current need. Also, logging was not further considered as this is done during coding,
i.e., before committing and thus before the main parts of the pipeline. It was decided to
focus on monitoring only after implementation of the first complete pipeline.
Deployment was supported by shell scripts.

The main focus in the Fujitsu EST context to complete the pipeline thus was on
configuration and repository management. For both tool categories, existing tools were
collected and classified according to the requirements of the context. More than 40
configuration management tools exist, of which Puppet, Chef, Ansible, and Salt are the
most popular ones considering the available success stories. The main observations
were that Chef does not have a real-time configuration option, which was needed by the
software product. While Chef and Puppet are mature tools compared to Ansible and
Salt, they are very much developer-oriented, making it difficult for operators to handle
them. On the other hand, Ansible and Salt are tools that are more oriented towards
system administration and allow to write modules in any language. Thus, the decision
was to try out Ansible. A similar procedure of evaluating and selecting tools based on
the requirements of the context was followed for the artifact repository. In this case,
Artifactory was the choice.

Besides the introduction of DevOps, high automation with several tools, and a
concentration on quality aspects, we discussed some further best practices, but
neglected also some. For example, we did not change the software architecture to a
microservice architecture. The concepts and implications were discussed, but as the
team was small and the software product rather simple, the investment was not seen as
worthwhile at the current point. This might change over time, but it shows that every
decision must be taken based on well-conceived reasons.

130 F. Elberzhager and M. Naab

In the end and after the deployment pipeline had been set up and implemented and
further improvements as sketched had been introduced, Fujitsu EST wanted to measure
the effects. Fujitsu EST added six quantitative metrics to an existing dashboard. It was
shown that fast deployments with high quality are now possible. About 10 min are
required from a commit to the completion of automated testing. Deployment to the
production stage takes about 20 min, depending on the time used for exploratory
testing and the upload to the production environment in the Cloud.

As Fujitsu EST shifted more towards a service provider, and had to care about
operations as well, they wanted to understand how the users experience their services.
Thus, it was discussed how feedback could be gathered from the customer. Simple
mechanisms, such as providing an email address where customers could give feedback,
or a feedback bar on the webpage, were implemented.

To conclude our experience, we could improve the time-to-market with selecting a
set of 6–8 of our improvement suggestions (see bold ones), and provide high quality.
Many of the guidelines from our list were further refined to make them more opera-
tional. It took some investment and also learning [6], but the results in the given context
were worthwhile the effort. The whole journey was supported by a migration plan to
define the concrete steps needed, and to monitor the success.

5 Summary and Outlook

In this paper, we argued that for today’s companies it is often needed to shift more
towards a shorter timer-to-market, while still caring about high quality. There is no
unique way to achieve these business goals, and for every company, the concrete
instantiation means different things. In order to provide a certain starting point for such
a journey, we provided a list of six improvement topics with overall 22 guidelines.
Such a list is far away from being complete, but provides initial ideas in which
direction a company can move, respectively what improvements might be reasonable to
address. The list is mainly based on experience from software engineering experts and
it is our goal to extend such a list in the future, and to provide further guidelines for the
concrete application of selected guidelines. We shared the experience for a selected set
of guidelines how we implemented them in the concrete Fujitsu EST environment.

There are also open issues for research from our point of view:

• What concrete guidelines will result in an as ideal as possible solution?
• What is the best order of such guidelines to be implemented, and how can a

migration plan be derived based on context factors from a concrete company?
• How can the benefit be measured?

We believe that the trend towards high quality at short time-to-market will continue
and that companies will have to cope with this challenge. Thereby, fast releases does
not necessarily mean several times a day, but can mean to shift from monthly releases
to weekly ones, for example. Research and practice therefore have to find solutions to
address such needs, and guidelines as presented in this article can be an initial step – for
selecting concrete improvements, but also for identifying future research directions.

High Quality at Short Time-to-Market 131

References

1. Kim, G., Behr, K., Spafford, G.: The Phoenix Project – A Novel About IT, DevOps, and
Helping Your Business Win. It Revolution Press (2014)

2. http://www.thoughtworks.com/de/insights/blog/case-continuous-delivery. Accessed June
2017

3. Keynote at ICSA (2017). https://youtu.be/VP1AhGGCFeI. Accessed: June 2017
4. Bosch, J.: Speed, Data, and Ecosystems: Excelling in a Software-Driven World. CRC Press

(2016)
5. ISTQB Worldwide Software Testing Practices Report. http://www.istqb.org/references/

surveys/istqb-worldwide-software-testing-practices-report.html. Accessed June 2017
6. Elberzhager, F., Arif, T., Naab, M., Süß, I., Koban, S.: From agile development to devops:

going towards faster releases at high quality – experiences from an industrial context. In:
Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2017. LNBIP, vol. 269, pp. 33–44.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49421-0_3

7. Erich, F., Amrit, C., Daneva, M.: Cooperation between software development and
operations: a literature review. In: ESEM (2014)

8. http://dev2ops.org/2010/02/what-is-devops/. Accessed June 2017
9. Katua, P.: DevOps from the ground up, thoughtworks. In: GOTO Conference (2014)
10. Buytaert, K.: DevOps, DevOps, DevOps. In: Froscon (2011)
11. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspectives. Addison-Wesley

Professional (2015)
12. CA Technologies: DevOps: the worst-kept secret to winning in the application economy

(2014)
13. Puppet labs & IT Revolution Press: 2013 State of DevOps report (2013)
14. Wickett, J.: The DevOps way of delivering results in the enterprise, Mentor Embedded

(2012)
15. Kim, G.: Top 11 things you need to know about DevOps. IT Revolution Press
16. Debois, P.: Modeling DevOps, Yow Conference (2013)
17. Sharma, S., Coyne, B.: DevOps for Dummies, 2nd IBM Limited Edition (2015)

132 F. Elberzhager and M. Naab

http://www.thoughtworks.com/de/insights/blog/case-continuous-delivery
https://youtu.be/VP1AhGGCFeI
http://www.istqb.org/references/surveys/istqb-worldwide-software-testing-practices-report.html
http://www.istqb.org/references/surveys/istqb-worldwide-software-testing-practices-report.html
http://dx.doi.org/10.1007/978-3-319-49421-0_3
http://dev2ops.org/2010/02/what-is-devops/

	High Quality at Short Time-to-Market: Challenges Towards This Goal and Guidelines for the Realization
	Abstract
	1 Introduction
	2 Procedure and Concepts
	2.1 Procedure
	2.2 Conceptual View

	3 Guidelines and Implementation
	3.1 Guidelines
	3.2 Implementation Hints

	4 Experiences with Selected Guidelines from the Fujitsu EST Environment
	5 Summary and Outlook
	References

