
Are Your Requirements Covered?

Richard Mordinyi1,2(B)

1 BearingPoint GmbH, Vienna, Austria
richard.mordinyi@bearingpoint.com,rmordinyi@sba-research.org

2 SBA Research, Vienna, Austria

Abstract. The coverage of requirements is a fundamental need through-
out the software life cycle. It gives project managers an indication how
well the software meets expected requirements. A precondition for the
process is to link requirements with project artifacts, like test cases.
There are various (semi-) automated methods deriving traceable rela-
tions between requirements and test scenarios aiming to counteract time
consuming and error-prone manual approaches. However, even if trace-
ability links are correctly established coverage is calculated based on
passed test scenarios without taking into account the overall code base
written to realize the requirement in the first place.

In this paper the “Requirements-Testing-Coverage” (ReTeCo) app-
roach is described that establishes links between requirements and test
cases by making use of knowledge available in software tools supporting
the software engineering process and are part of the software engineering
tool environment. In contrast to traditional approaches ReTeCo gener-
ates traceability links indirectly by gathering and analyzing information
from version control system, ticketing system and test coverage tools.
Since the approach takes into account a larger information base it is able
to calculate coverage reports on a fine-grained contextual level rather
than on the result of high-level artifacts.

Keywords: Requirement · Testing · Test scenario · Coverage
Issue tracking system · Version control system

1 Introduction

The success of a software engineering project mostly depends on the business
value it is able to produce. It is therefore essential that beside achieving quality
in software artifacts team members strive for fulfilling elicited requirements. The
ability to ensure that the software meets the expected requirements also depends
on methods being able to report that the piece of software delivered did in fact
meet all the requirements. Especially in the context of maturing software that
goes into several iterations of enhancements and bug fixes, it becomes more and
more daunting to ensure requirement coverage in the software [3].

Generally, requirement coverage is the number of requirements passed in
proportion to the total number of requirements [27]. A requirement is considered
c© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 103–120, 2018.
https://doi.org/10.1007/978-3-319-71440-0_6



104 R. Mordinyi

passed if it has linked test cases and all of those test cases are passed. This
implies that there has to be a traceable mapping [22] between requirements and
test cases. If a link between a requirement and another project artifact, e.g. a test
case, exists and this link is correct, the requirement is covered by that project
artifact. If however test cases are not associated with individual requirements it
could be difficult for testers to determine if requirements are adequately tested
[42] leading to reported problems [10,22,26].

There are various approaches how traceability links between requirements
and test cases may be identified (see Sect. 2 for details). Some of them rely
on certain keywords across artifacts which are manually inserted and main-
tained by software developers and testers and used to establish links, while other
approaches aim for full automation without human guidance by e.g., information
retrieval methods. Regardless of their accuracy [14] in establishing such links,
the main limitation of those methods is that links taken into consideration for
requirement coverage reports reflect upon requirements and test cases as high
level artifacts. While methods may access the code base during the analyzing
process in order to reason about potential links they do not consider that part
of the source base that actually represents and forms a specific requirement or
is covered by tests [20].

However, project and test managers would like to have both information on
the quality of the code base as well as on how well that quality is reflected
upon the requirements which are to be fulfilled and delivered. Therefore, they
need detailed, fine-grained information that allows them to reason about the
progressing quality of a requirement during development phases. The quality of
the code base may be measured by methods like code coverage - the degree to
which the source code of a program has been tested [41]. However, in the context
of requirements coverage we need to refine its definition as the degree to which
the source code of (i.e. relevant to execute/composes) a requirement is covered
by tests.

This paper describes the “Requirements-Testing-Coverage” (ReTeCo) app-
roach that automatically establishes links between requirements and test cases
by identifying the source code lines that form a requirement and by identifying
the test cases which cover those source code lines. If a source code line that is
covered by a test case is part of the source code line relevant for a requirement,
a match has been found and a link between the requirement and the test case is
created. Identification of requirement relevant source code lines is performed (a)
by extracting the issue number(s) of a ticketing system which are in relation to
a requirement and (b) by analyzing the log of the versioning system for changes
on the code base introduced in the context of the issue. A match between a
requirement and any of the test cases is given if code coverage analyzes shows
that any of the identified source code lines is covered by at least one of the test
cases. If a set of source code lines supports a single requirement, the number of
source code lines (within that set) which are covered by test scenarios represent
the percentage of coverage. Based on large open source projects we will show
the feasibility of the approach and will discuss its advantages and limitations.



Are Your Requirements Covered? 105

The remainder of this paper is structured as follows: Sect. 2 summarizes
related work on requirements traceability and approaches on deriving require-
ments and test scenario relations. Section 3 presents research questions while
Sect. 4 depicts a typical use case. Section 5 describes the ReTeCo approach. The
feasibility and the initial evaluation results of the prototype implementation are
illustrated in Sect. 6 and discussed in Sect. 7. Finally, Sect. 8 draws conclusions
and pictures future work.

2 Related Work

Traceability is the ability to follow the changes of software artifacts created
during software development [28,36] and is described by the links that map
related artifacts [32]. This section summarizes related work on various methods
and approaches on requirements traceability, requirements coverage by means of
test scenarios, and traceability between test cases and source code.

2.1 Manually Guided Approaches

Attempts to automate the generation of traceability links concentrated on pars-
ing the text in the code documentation to find textual relations to requirement
identifiers or to the requirement descriptions [24]. Similar approaches like [34]
improved accuracy by introducing specific types of comments. When text writ-
ten in these comments follow some rules, the tool can trace it accurately to its
requirement. The advantage of this approach is that it separates the comments
written for the trace from the documentation itself. Despite their accuracy, the
text parser must be very accurate and must interpret the meaning of the tex-
tual documentation to find a relation to the requirements. Even if the parser is
accurate, there is no guarantee that the documentation of both the requirements
and the code is up-to-date. Poor maintenance lead to wrong results and thus to
higher risks undesirably increasing efforts required from developers.

2.2 Information Retrieval

In the information retrieval area, there are various models which provide prac-
tical solutions for semi-automatically recovering traceability links [4]. At first,
links are generated by comparing source artifacts (e.g., requirements, use cases)
with target artifacts (e.g., code, test cases) and ranking pairs of them by their
similarity, which is calculated depending on the used model. A threshold defines
the minimum similarity score for a link to be considered as a candidate link.
These candidate links are then evaluated manually, where false positives are fil-
tered out. The remaining correct links are called traceability links. Evaluations
[12] show that this process of traceability links recovery with the aid of an infor-
mation retrieval tool is significantly faster than manual methods and tracing
accuracy is positively affected. Nevertheless, human analysts are still needed for



106 R. Mordinyi

final decisions regarding the validity of candidate links. Some variations of the
method are depicted in the following paragraphs.

The vector space model (VSM)[4] represents all artifacts as vectors which
contain the word occurrences of all vocabulary terms. The cosine of the angle
between two corresponding vectors is used as the similarity measure of two arti-
facts. In the probabilistic model (PM)[4] the similarity score is represented as
the probability that a target artifact is related to a source artifact. It was shown
that similar results are achieved when preliminary morphological analysis (e.g.,
stemming) are performed, regardless of the used model.

The Latent Semantic Indexing (LSI)[31] extends VSM by additionally captur-
ing semantic relations of words like synonymy (words with equivalent meaning)
and polysemy (word with multiple meanings) [39]. Performance evaluations show
that LSI is able to compete with the VSM and PM methods, with the advantage
of not being dependent on preliminary morphological analysis. This is especially
useful for languages with complex grammar (e.g., German, Italian), for which
stemming is not a trivial task [29].

The problem of vocabulary mismatch occurs because IR methods assume
that a consistent terminology is used, which means, that concepts are described
with the same words throughout the project. However, during a projects life-
cycle the used terminology usually gets inconsistent and related artifacts are
not recognized anymore. This leads to declining tracing accuracy. [30] evaluates
the natural language semantic methods VSM with thesaurus support (VSM-T)
[25], Part-of-Speech-enabled VSM (VSM-POS) [8], LSI [13], latent Dirichlet allo-
cation (LDA) [5], explicit semantic analysis (ESA)[18] and normalized Google
distance (NGD) [9]. The authors compare the methods to the basic VSM and
show that explicit semantic methods (NGD, ESA, VSM-POS, VSM-T) provide
better results than latent methods (LSI, LDA) in terms of precision. On the
other hand, latent methods achieve higher recall values.

In [19] a way to check requirements-to-code candidate/trace links automati-
cally is suggested by utilizing code patterns of calling relationships. It is based on
that methods or functions in the source code that implement the same require-
ment are related as caller and callee. As a consequence, an expected trace for a
method or a function can be computed by examining neighboring caller/callee
methods and their associated requirements. Invalid candidate/trace links can be
detected by comparing the expected trace with the actual trace.

However, there are limitations when using IR-based traceability link recov-
ery methods that cannot be completely solved by improvements of IR meth-
ods either. Namely, it is not possible to identify all correct trace links without
manually eliminating a large number of false positives. Lowering the similarity
threshold to find more correct links, will in fact lead to a strongly increasing
amount of incorrect links that have to be removed manually [29].

2.3 Model-Based Techniques

Model-based requirement traceability techniques try to translate requirements to
e.g., UML, XML or formal specifications. This is necessary to semi-automatically



Are Your Requirements Covered? 107

generate trace links and/or check them to consequently establish a certain degree
of automation. In [1] informal requirements are restructured by means of the
Systems Modelling Language (SysML) [15] into a requirement-model. These ele-
ments are manually linked with various elements of different design models,
which are used for automatically deriving test cases relying on different cover-
age criteria and the corresponding links. In [17] trace links are generated during
model transformations, which are applied to produce a design model and in
further consequence discipline-specific models from a requirement model. The
resulting correspondence model between source and target represents the trace
links. Methods relying on UML models are for example described in [23] or [43].
The former links Use Case Diagrams and the corresponding code with the help
of machine learning. Developers have to establish just about 6% trace links ini-
tially. After that the machine learning algorithm can automatically link the most
of the remaining ones. The latter describes a special method for model driven
development in the web engineering domain. The requirements are expressed as
XML and translated by the means of XSL-transformation to an OOWS navi-
gational model. Afterwards the links are extracted and requirement coverage is
measured.

In the application of formal specifications/models requirement-, architecture-
and design models are expressed for example as linear temporal logic [21], in Z-
notation [40] or B-Notation [6]. The generation and/or validation of the trace
links can be automated through a model checker [21], a rule based checker [40] or
model based testing [6]. Further research work has been invested in techniques
like annotating code, design elements or tests with traceability information [2,
14,33], scenario-based techniques [16], graph-based techniques [7], or techniques
in the context of test cases [38] relying on naming conventions, explicit fixture
declarations, static test call graphs, run time traces and lexical analysis, and
co-evolution logs.

3 Research Issues

The quality of software development tools and environments in supporting devel-
opment has improved significantly during the last decade. While at first the
effective, quality-assured support of development was one of the main concerns,
nowadays tools tend to focus on better interconnecting the engineer with other
information sources. They tend to interlink information [35] in any of the used
tools in the project’s software engineering environment as much as possible. Any-
how, effective software engineering projects cannot afford to dispense using at
least a requirement modeling tool, issue tracking system, or a version control
system [37] in their environment.

Since the main aim of an engineering project is to meet requirements as
expected by the customer, it is essential for project managers and for engineers
to know the degree of requirement coverage. Given the limitations of current
requirements traceability approaches (see Sect. 2) we have formulated the fol-
lowing research questions:



108 R. Mordinyi

RQ1: how to make use of links between information units provided by engineer-
ing tools for the establishment of traceability links between requirements and
test cases?
RQ2: to what extent do interlinked information in engineering tools allow more
fine-grained reporting on coverage?
RQ3: to what degree is an automated process for coverage calculation achievable
or still require human intervention?

To answer these research issues we designed the “Requirements-Testing-
Coverage” (ReTeCo) approach and implemented a prototype1. We then per-
formed initial evaluations using the code base, requirements and issue sets of
large and popular open source projects.

4 Use Case

Figure 1 depicts a typical software engineering process describing how require-
ments are “transformed” into source code. The requirements engineer is respon-
sible for eliciting and clearly specifying the project’s requirements (Fig. 1, 1).
Usually, such artifacts are managed by a requirements management tool, like
Polarion2, Rational3, or RMsis4. In cooperation with a release manager and usu-
ally with a member of the development team the requirements are divided into
multiple working tasks (i.e. issues) (Fig. 1, 2), each having a unique identifier (i.e.
issue number/id). This requires high understanding of the client specifications
and the business goals alongside with high understanding of the technical abili-
ties of the development teams. Tools for managing working tasks are for example
Bugzilla5, HP Quality Center6, or Atlassian Jira7. At this point the release man-
ager inserts a (web) link into the working task pointing to the requirement, so
that any other team member is able to look up the details of the requirement in
case of unclarities.

In principle, a working tasks may describe any pensum for the assignee of
the task. In this context it either describes the details to be implemented by the
developer (Fig. 1, 3a), or it documents the test cases to be implemented by a
tester (Fig. 1, 3b).

In both cases development will be done using a version control system. Once
the working task is finished the changes in the repository are committed and
pushed (Fig. 1, 4a and 4b). The changes made to the code base reflect the
required behaviour as described in each working task. The commit itself requires
the committer to provide a commit message. Beside describing what changes
were added to the code base, the committer also adds the ID of the working

1 download available at https://github.com/mindpixel/requirementsCoverage.
2 http://polarion.siemens.com.
3 http://www-03.ibm.com/software/products/en/ratidoor.
4 https://products.optimizory.com/rmsis.
5 https://www.bugzilla.org/.
6 https://saas.hpe.com/en-us/software/Quality-Center.
7 https://www.atlassian.com/software/jira.

https://github.com/mindpixel/requirementsCoverage
http://polarion.siemens.com
http://www-03.ibm.com/software/products/en/ratidoor
https://products.optimizory.com/rmsis
https://www.bugzilla.org/
https://saas.hpe.com/en-us/software/Quality-Center
https://www.atlassian.com/software/jira


Are Your Requirements Covered? 109

Software
Developer

Requirements
Engineer

Release
Manager

Software
Tester

1

Version
Control
System

commits
code

commits
code

defines

assigns to assigns to
3a 3b

4b4a

Requirement

Issue

creates2

Fig. 1. Intertwining processes of various stakeholders in a software engineering envi-
ronment

task to the message8 indicating the context in which the development was done.
Depending on the size of the working task or the way a developer works several
commits may have been done in the context of one working task.

The release manager needs to estimate and evaluate the state of development
at different phases of the project life cycle so that he/she can decide upon delivery
of the software. Once all working tasks have been done, he/she asks - among other
things - the following questions to ensure high-quality delivery: (a) which test
scenarios check intended functionality of a requirement, (b) how many of those
tests are positive, (c) how many of those tests fail, and (d) could have any test
cases been overlooked?

5 Solution Approach

The following section explains the traceability link model (TLM) and the process
of how to make use of it for detailed requirement coverage reports.

5.1 Traceability Link Model

The “Requirements-Testing-Coverage” (ReTeCo) approach calculates the cover-
age of a requirement as the degree to which the source code of (i.e. relevant to
execute) a requirement is covered by tests. In order to to do it needs to rely on
a traceable link between a requirement and a source code line. Figure 2 presents
the relation of engineering artifacts that form the TLM for ReTeCo.
8 an example on message structure: https://confluence.atlassian.com/fisheye/using-

smart-commits-298976812.html.

https://confluence.atlassian.com/fisheye/using-smart-commits-298976812.html
https://confluence.atlassian.com/fisheye/using-smart-commits-298976812.html


110 R. Mordinyi

Issue

Software
Developer

Requirements
Manager

Release
Manager

ReqID - IssueNr

Requirement
Description

Epic

Story

Task / SubTask

Commit

IssueNr

IssueNr - Message

Fig. 2. Tool-supported linking of model elements define implicit traceability links

The central element of the TLM is the Issue. An issue is in relation to a
requirement as well as to the code base. The relation between requirement and
an issue is set up when the requirement is organized as a set of issues reflecting
the intend of the requirement. The relation is defined within an issue containing
a reference to the requirement. This means that there is a 1:n relation between
the two model elements.

The relation between source code lines and an issue is set up by the devel-
oper when the developer commits the changes into the version control system
introduced into the code base due to the task description in the issue. The rela-
tion is defined within the commit message by providing the issue number in that
message. Since a source code line may have been altered several times, there is
an n:m relation between source code and issue.

Issues may also be organized in an hierarchy. In the context of agile software
development [11] it is common to distinguish between Epics, Stories, Tasks (and
Sub-Tasks). An epic is a large body of work that can be broken down into a
number of smaller stories. A story or user story is the smallest unit of work
in an agile framework. It is a software system requirement that is expressed in
a few short sentences, ideally using non-technical language. The goal of a user
story is to deliver a particular value back to the customer. A task is a concrete
implementation requirement for the development team. Relations between the
various issues types are created (semi-) automatically whenever a sub-issue is
created.



Are Your Requirements Covered? 111

5.2 Selection of Code Coverage Tool

The ReTeCo approach relies on the analysis of coverage reports created by cov-
erage tools. However, there are a variety of code coverage tools which differ in
their capabilities and weaknesses. For the prototype implementation it is there-
fore necessary to set up a set of selection criteria (see also Table 1):

SC1 - Test Relation Support: In order to be able to calculate the percentage
of passed and failed tests of test covered lines, it is important to have a relation
model between test scenarios and source code lines. Is a coverage tool capa-
ble of providing such information? SC2 - Export Capability: The ReTeCo
approach aimed to automatically analyze the code coverage report and extract
information from the report. Is the resulting coverage report usable for further
automated processing? SC3 - License: For an open source prototype imple-
mentation following APLv2 the compatibility of the inspected tool’s license has
to be checked. SC4 - Build Process Support: In order to increase the flex-
ibility of the approach, it needs to be checked to what extent the tool may be
embedded into a build process systems.

Table 1. Results of the criteria investigation.

Criteria & Tools Test relation
support

Export capability License Build process support

JaCoCo No HTML, XML, CSV EPL Maven

EclEmma No HTML, XML, CSV EPL No

Cobertura No HTML, XML, CSV Free, GNU GPL Maven

SonarQube No No LGPL v3 Maven, Ant, Gradle

As shown in Table 1, there is no tool that is able to provide a relation model
between tests and source code lines. For the prototype it has been decided to
go with JaCoCo as it is widely used and has a solid documentation. This also
means that the calculation of the relation had to be implemented explicitly.

5.3 Requirement Coverage Calculation Process

This section explains the main process step (see also Fig. 3) of the ReTeCo
approach as well as implementation details of the prototype:

1. Check Consistency of the Project: In the first step the process has to
ensure that project under investigation is correct and the source code can be
compiled.

2. Build Source Index: In the second step the process searches all directories
recursively for source code files and memorizes their locations.

3. Build Commit Index: In the third step (see also Fig. 4) the process traces
each line of the source code to the Issue-ID that initially created or changed



112 R. Mordinyi

Assure 
consistent 

project

Gather source 
code files

Map each source 
code line to an 

issue

Gather path to 
requirement for 

each issue

1 2 3

4

Derive code 
coverage for each 

test case
5

Calculate 
Requirement 

Coverage
6

Fig. 3. Main process steps of the ReTeCo approach

that line. In the ReTeCo prototype this is done by parsing the commit (i.e.
log) messages of the version management system. The prototype parses a git
repository9 of the target project by using the JGit framework10. It calls a series
of git commands on the repository for each source code file to find out which issue
is related to which source code line. At first, the prototype calls the command git
blame for the inspected file. The result of this command contains the revision
number for each line of code. Then the prototype calls the command git log
for the each revision number. The result of running this command contains
the commit message of the commit in which the line of code was modified.
By parsing the commit message (e.g., using regular expression) the Issue-ID is
extracted from the commit message. After repeating this process step for all
lines of source code in all source files, the final outcome of this step is a set of
traceable relations between source code lines and Issue-IDs.

4. Build Requirement Index: In the fourth step, each IssueID is traced back
to a requirement. Under the circumstance that there is a hierarchy of issues, for
each issue the corresponding parent issue is requested from the issue tracking
system until the “root” issue (e.g., Epic) has been found. As explained in the
previous section, the “root” issue contains the reference to the requirement it
is reflecting. At this point the traceability links between source code lines and
requirements have been established.

5. Perform Test Coverage: In the next step the code coverage information
of the project is gathered. In this step for each line of source code it needs to
be retrieved by which test case that line is covered. The outcome of this process
step is a set of relations between source code lines and covering test cases. The
prototype divides this task into two steps. In the first step all test cases are
executed (e.g., by calling the maven11 test goal). During the process the name
of each test cases and its status (success or failure) is collected. The prototype
retrieves this information by parsing the maven surefire report12. In the second

9 https://git-scm.com/.
10 https://eclipse.org/jgit/.
11 https://maven.apache.org/.
12 http://maven.apache.org/surefire/maven-surefire-plugin/.

https://git-scm.com/
https://eclipse.org/jgit/
https://maven.apache.org/
http://maven.apache.org/surefire/maven-surefire-plugin/


Are Your Requirements Covered? 113

List of Files
NO

more files 
to process?

Call „git blame“ for the next file

YES

Collect „blame“ results for all lines

more „blame“ 
results to process?

NO

Get the revision-ID of the line 
from its „blame“ result

Call git log for the revision-ID 
and parse the commit message 

to get the Issue-ID

Store the line, the issue and
the relation between them

Fig. 4. Process steps for calculating issue-code relation

step a code coverage measurement tool is run (e.g., JaCoCo13) to measure the
test coverage information of the project. However, JaCoCo is not able to provide
direct traces between a specific test case and a source code line. It only indicates
if the code is traversed by any of the test cases. Therefore, code coverage reports
are created for each test case separately in order to be able to relate each test
case and its resulting report to a specific issue and thus to a requirement. The
prototype parses the resulting JaCoCo report and extracts which lines of code
are relevant to the coverage measurement.

6. Calculate Requirement Coverage: In the final step the requirement cov-
erage report is calculated (see Figs. 5 and 6 as examples). At this point it is
known (a) which source code line is related to which Issue-IDs (and therefore
to which requirement) and (b) which source code line is covered by which test
case. This allows the process to start calculating the coverage for each require-
ment. Calculation is done by analyzing and aggregating the results of each test
coverage report in the context of the corresponding issues and source code lines.
The final outcome of this process step contains the coverage information of the
entire project - for each requirement, and for each issue of each requirement.

13 http://www.eclemma.org/jacoco/.

http://www.eclemma.org/jacoco/


114 R. Mordinyi

6 Initial Evaluation

In the following we demonstrate the feasibility of our approach by illustrating
initial evaluation results. In order to investigate and evaluate the approach, we
have implemented a prototype(see footnote 1) and analyzed its performance
in sense of execution time and memory consumption. We have evaluated the
ReTeCo approach in the context of two open source projects ops4j paxweb14 and
Apache qpid15. Table 2 depicts the key characteristics of each of the projects:
size of the code base, number of test cases, number of issues, and number of
commits.

The evaluations were conducted on a Intel Core i7-2620M with 2,7 GHz and
8 GB RAM running on a Windows 7 environment. The prototype was imple-
mented in java and compiled with Java 8. It uses JGit(see footnote 10) v4.4 to
execute git commands, Maven Invoker16 v2.2 in order to execute maven goals
on target projects, JaCoCo(see footnote 13) v0.7.9 as the code coverage mea-
surement tool to create the code coverage reports of the target project, and
JFreeChart17 v1.0.14 to create pie-charts showing the final requirements cover-
age reports.

Table 2. Characteristics of investigated open source projects

Project # of source code lines # of test cases # of issues log size

org.ops4j.pax.web 82705 63 1229 3979

org.apache.qpid.qpid-java-build 481112 1775 1684 7768

Table 2 shows that the qpid project has 5,8 times more source code lines
(even half the number of commits) and 28 times more test cases than the paxweb
project. Although qpid is a larger project the execution of the prototype requires
only relatively little more amount of RAM, as shown in Table 3. However, the
process execution time is in case of qpid significantly greater than in case of
paxweb. Anyhow, the reason for the large execution time is given due to the
limitation of JaCoCo. JaCoCo is not capable of directly (i.e. on the first run)
reporting traces between test cases and a source code lines. Each test case had
to be run separately, leading to high execution times.

Figure 5 shows collected information about the coverage of a single issue
which is in relation to 6 test cases. It shows that while 377 lines of code were
written or updated in the context of that issue, only 6 of them are relevant for
coverage analysis. Left out of consideration are lines such as comments, javadoc,
import statements, or configuration files. 50% of those lines are covered by tests -
2 lines (33,33%) positively (i.e. tests pass) and 1 line (16,67%) negatively (i.e.
tests fail). The rest 3 lines (50%) are not covered by tests at all.
14 https://github.com/ops4j/org.ops4j.pax.web.
15 https://qpid.apache.org/.
16 https://maven.apache.org/plugins/maven-invoker-plugin/.
17 http://www.jfree.org/jfreechart/.

https://github.com/ops4j/org.ops4j.pax.web
https://qpid.apache.org/
https://maven.apache.org/plugins/maven-invoker-plugin/
http://www.jfree.org/jfreechart/


Are Your Requirements Covered? 115

Table 3. Evaluation results of investigated open source projects

Project Execution time Memory consumption

org.ops4j.pax.web 1 h 15 min 177 M

org.apache.qpid.qpid-java-build 2d 09 h 34 min 207 M

Fig. 5. Excerpt of the coverage report in the context of an issue

Figure 6 shows aggregated information related to the details of a requirement.
It shows that 30065 lines of code were contributed to the requirement in 319
issues. Out of them 3642 lines of code are considered relevant. Out of the set of
relevant lines 208 lines of code or 5.71% are covered by tests - 158 lines (4.34%)
positively and 50 lines (1.37%) negatively. The rest of the lines 94.29% are not
covered by tests.

Fig. 6. Excerpt of the coverage report in the context of a requirement

7 Discussion

The Requirements-Testing-Coverage (ReTeCo) approach aims to provide a
requirements coverage report on the basis of aggregated test coverage results
of each issue contributing to the composition of the requirement.

Although the approach is automatically capable of calculating the require-
ments coverage on a source code line bases, it depends on some preconditions.
It requires from various members of a software engineering project to properly
handle working task identifiers (i.e. Issue-IDs of an issue tracking system). The
approach needs from the release manager to insert a reference to the require-
ment into the issue. In case of an issue hierarchy it needs to have ensured that



116 R. Mordinyi

the hierarchy allows unambiguous traceability from leaf issues to the root issue.
Finally, it needs from developers to have the Issue-ID inserted into the commit
message.

However, these tasks are not performed by a single role, but may be distrib-
uted among project members reducing the overall complexity and responsibility
for each of the roles. Additionally, as described in Sect. 2 some of these tasks
can be automated (e.g., by using textual comparison). Furthermore, test man-
agers or requirement managers do not need to make any directives for developers
regarding the correct nomenclature and usage of source code elements (like nam-
ing of classes, javadoc structure, or use of specific keywords) helping developers
concentrate on the task described in their issue. While the correct interlinking of
issues may be outsourced to the deployed issue tracking system, quality checks
may be put in place which ensure: (a) root issue has a reference to a requirement
(e.g., if a certain reference-type is instantiated can be queried in an issue track-
ing system) and (b) the commit message follows a certain regular expression
pattern (e.g., check if Issue-ID is followed by message content can be executed
in pre-commit git hooks).

In general uncovered requirements refer to requirements with no linked test
cases. It helps project members know about test cases that should be created to
cover such requirements as well. The ReTeCo approach is also capable of pointing
out such requirements. However, the approach considers uncovered requirements
as ones where no source code line is covered by any test case in the context of
the issues composing that requirement.

The percentage value calculated by the presented approach may be mislead-
ing and has to be read with caution. There are at least two scenarios to consider:

Scenario 1: Assuming there is a group of requirements but from development
point of view only with small differences between them. Usually, a developer
invests a lot of time and code into realizing the first requirement while imple-
menting the others through parameterization. This implies that there is a large
number of commits and issues related to the first requirement while only little
for the others. Since the changed code base is smaller for those requirements, it
is therefore easier to reach higher coverage.

Scenario 2: If there is requirement under development it might be the case
that the approach temporarily calculates 100% coverage. This however, may only
state that the source code lines composing the requirement up to that point in
time are completely covered by tests. The approach is not able to indicate when
development of a requirement has finished.

The approach assumes that changes to the code base are mainly introduced
in the context of an issue which was created at some point in the software
engineering life cycle and represents a part of a requirement - independent of
the size of the change. Consequently, the approach “assumes” that if source
code lines were removed within a commit they were removed as a result of the
issue’s intention. For example, the removed lines may have contributed to a
misbehaviour of the system (i.e. bug) and the issue’s intention was to fix it.



Are Your Requirements Covered? 117

However, there are also changes which are committed to the code base with-
out an Issue-ID. From the authors’ experience the handling of such commits is a
subject of discussions among project members. An example may be the release
of the software system which requires the incremental of versions numbers. Com-
mits without a reference to an issue will be ignored by the approach.

8 Conclusion and Future Work

It is the project members responsibility to develop and deliver requirements as
expected by the customer. It is also their responsibility to achieve quality in soft-
ware artifacts, especially in the ones needed to fulfill the requirement. Require-
ments coverage indicates the number of requirements passed in proportion to
the total number of requirements. A requirement is considered passed if it has
linked test cases and all of those test cases are passed. This requires traceable
links between requirements and test cases. While there are various approaches
describing how to establish mappings (semi-) automatically, they focus on test
cases as high level artifacts without taking into consideration the code base that
is under test or compose a requirement.

This paper presented the “Requirements-Testing-Coverage” (ReTeCo) app-
roach which creates traceability links between requirements and test cases
through source code lines which (a) have been written in the context of an
issue, (b) have been committed into a version control system, and (c) produce
code coverage results. Although the approach requires manual human assistance
to properly set Issue-IDs, it does not require explicit linking of requirements
and test cases as it recreates traceability links implicitly through analyzing ref-
erences created by various team members throughout the software development
life cycle between requirements, issues, and commit message. Since the app-
roach takes into account source code lines it is able to calculate coverage reports
on a fine-grained contextual level. The paper therefore calculates requirement
coverage not by passed test cases linked to that requirement but indirectly, by
analyzing the lines of tested source code composing a requirement.

Initial evaluation results in the context of two open source projects showed
the feasibility of the proposed approach. However, the ReTeCo approach is not
able to identify relations between requirements and test cases if tests do not
cover any source code line realizing a requirement.

Future work will focus on (a) combining the ReTeCo approach with
approaches from related work in order to avoid manual linking of requirements
with issues and issues with commits (e.g., based on textual comparison) when-
ever they are created or committed, (b) improving precision of the approach by
considering dependencies between requirements, and (c) developing methods for
handling cross-cutting aspects (e.g., quality requirements) that are related to
many source code elements. From the prototype implementation point of view
we intend to develop one that updates its indices incrementally on per-commit
basis so that it can be embedded in a Continuous Integration and Testing life
cycle.



118 R. Mordinyi

References

1. Abbors, F., Truscan, D., Lilius, J.: Tracing requirements in a model-based testing
approach. In: 2009 First International Conference on Advances in System Testing
and Validation Lifecycle, pp. 123–128, September 2009

2. Ahn, S., Chong, K.: A feature-oriented requirements tracing method: a study of
cost-benefit analysis. In: 2006 International Conference on Hybrid Information
Technology, vol. 2, pp. 611–616, November 2006

3. Ali, N., Guhneuc, Y.G., Antoniol, G.: Trustrace: mining software repositories to
improve the accuracy of requirement traceability links. IEEE Trans. Softw. Eng.
39(5), 725–741 (2013)

4. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. IEEE Trans. Softw. Eng. 28(10),
970–983 (2002). https://doi.org/10.1109/TSE.2002.1041053

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003). http://dl.acm.org/citation.cfm?id=944919.944937

6. Bouquet, F., Jaffuel, E., Legeard, B., Peureux, F., Utting, M.: Requirements trace-
ability in automated test generation: application to smart card software validation.
SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005). https://doi.org/10.1145/1082983.
1083282

7. Burgstaller, B., Egyed, A.: Understanding where requirements are implemented. In:
2010 IEEE International Conference on Software Maintenance, pp. 1–5, September
2010

8. Capobianco, G., Lucia, A.D., Oliveto, R., Panichella, A., Panichella, S.: Improving
IR-based traceability recovery via noun-based indexing of software artifacts. J.
Softw. Evol. Process 25(7), 743–762 (2013). https://doi.org/10.1002/smr.1564

9. Cilibrasi, R.L., Vitanyi, P.M.B.: The Google similarity distance. IEEE Trans.
Knowl. Data Eng. 19(3), 370–383 (2007). https://doi.org/10.1109/TKDE.2007.
48

10. Cleland-Huang, J., Chang, C.K., Christensen, M.: Event-based traceability for
managing evolutionary change. IEEE Trans. Softw. Eng. 29(9), 796–810 (2003)

11. Cockburn, A.: Agile Software Development. Addison-Wesley Longman Publishing
Co. Inc., Boston (2002)

12. De Lucia, A., Oliveto, R., Tortora, G.: Assessing IR-based traceability recovery
tools through controlled experiments. Empir. Softw. Eng. 14(1), 57–92 (2009).
https://doi.org/10.1007/s10664-008-9090-8

13. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990). https://
doi.org/10.1002/(SICI)1097-4571(199009)41:6〈391::AID-ASI1〉3.0.CO;2-9

14. Delgado, S.: Next-generation techniques for tracking design requirements coverage
in automatic test software development. In: 2006 IEEE Autotestcon, pp. 806–812,
September 2006

15. Delligatti, L.: SysML Distilled: A Brief Guide to the Systems Modeling Language,
1st edn. Addison-Wesley Professional, Boston (2013)

16. Egyed, A., Grunbacher, P.: Automating requirements traceability: beyond the
record replay paradigm. In: Proceedings of 17th IEEE International Conference
on Automated Software Engineering, pp. 163–171 (2002)

17. Fockel, M., Holtmann, J., Meyer, J.: Semi-automatic establishment and mainte-
nance of valid traceability in automotive development processes. In: 2012 Second
International Workshop on Software Engineering for Embedded Systems (SEES),
pp. 37–43, June 2012

https://doi.org/10.1109/TSE.2002.1041053
http://dl.acm.org/citation.cfm?id=944919.944937
https://doi.org/10.1145/1082983.1083282
https://doi.org/10.1145/1082983.1083282
https://doi.org/10.1002/smr.1564
https://doi.org/10.1109/TKDE.2007.48
https://doi.org/10.1109/TKDE.2007.48
https://doi.org/10.1007/s10664-008-9090-8
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9


Are Your Requirements Covered? 119

18. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In: Proceedings of the 20th International Joint
Conference on Artifical Intelligence, IJCAI 2007, pp. 1606–1611. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (2007). http://dl.acm.org/citation.
cfm?id=1625275.1625535

19. Ghabi, A., Egyed, A.: Code patterns for automatically validating requirements-to-
code traces. In: 2012 Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pp. 200–209, September 2012

20. Gittens, M., Romanufa, K., Godwin, D., Racicot, J.: All code coverage is not
created equal: a case study in prioritized code coverage. In: Proceedings of the
2006 Conference of the Center for Advanced Studies on Collaborative Research,
CASCON 2006. IBM Corp., Riverton, NJ, USA (2006). http://dx.doi.org/10.1145/
1188966.1188981

21. Goknil, A., Kurtev, I., Van Den Berg, K.: Generation and validation of traces
between requirements and architecture based on formal trace semantics. J. Syst.
Softw. 88, 112–137 (2014). https://doi.org/10.1016/j.jss.2013.10.006

22. Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability prob-
lem. In: Proceedings of IEEE International Conference on Requirements Engineer-
ing, pp. 94–101, April 1994

23. Grechanik, M., McKinley, K.S., Perry, D.E.: Recovering and using use-case-
diagram-to-source-code traceability links. In: Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, ESEC-FSE 2007,
pp. 95–104. ACM, New York (2007). http://doi.acm.org/10.1145/1287624.1287640

24. Guo, J., Monaikul, N., Cleland-Huang, J.: Trace links explained: an automated
approach for generating rationales. In: 2015 IEEE 23rd International Requirements
Engineering Conference (RE), pp. 202–207, August 2015

25. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation
for requirements tracing: the study of methods. IEEE Trans. Softw. Eng. 32(1),
4–19 (2006). https://doi.org/10.1109/TSE.2006.3

26. Heindl, M., Biffl, S.: A case study on value-based requirements tracing. In: Pro-
ceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, ESEC/FSE-13, pp. 60–69. ACM, New York (2005). http://doi.acm.org/
10.1145/1081706.1081717

27. Krishnamoorthi, R., Mary, S.S.A.: Factor oriented requirement coverage based
system test case prioritization of new and regression test cases. Inf. Softw.
Technol. 51(4), 799–808 (2009). http://www.sciencedirect.com/science/article/
pii/S0950584908001286

28. Lago, P., Muccini, H., van Vliet, H.: A scoped approach to traceability manage-
ment. J. Syst. Softw. 82(1), 168–182 (2009). https://doi.org/10.1016/j.jss.2008.08.
026

29. Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in
software artifact management systems using information retrieval methods. ACM
Trans. Softw. Eng. Methodol. 16(4) 2007. http://doi.acm.org/10.1145/1276933.
1276934

30. Mahmoud, A., Niu, N.: On the role of semantics in automated requirements tracing.
Requir. Eng. 20(3), 281–300 (2015). https://doi.org/10.1007/s00766-013-0199-y

31. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: Proceedings of the 25th International

http://dl.acm.org/citation.cfm?id=1625275.1625535
http://dl.acm.org/citation.cfm?id=1625275.1625535
http://dx.doi.org/10.1145/1188966.1188981
http://dx.doi.org/10.1145/1188966.1188981
https://doi.org/10.1016/j.jss.2013.10.006
http://doi.acm.org/10.1145/1287624.1287640
https://doi.org/10.1109/TSE.2006.3
http://doi.acm.org/10.1145/1081706.1081717
http://doi.acm.org/10.1145/1081706.1081717
http://www.sciencedirect.com/science/article/pii/S0950584908001286
http://www.sciencedirect.com/science/article/pii/S0950584908001286
https://doi.org/10.1016/j.jss.2008.08.026
https://doi.org/10.1016/j.jss.2008.08.026
http://doi.acm.org/10.1145/1276933.1276934
http://doi.acm.org/10.1145/1276933.1276934
https://doi.org/10.1007/s00766-013-0199-y


120 R. Mordinyi

Conference on Software Engineering, ICSE 2003, pp. 125–135. IEEE Computer
Society, Washington, DC, USA (2003). http://dl.acm.org/citation.cfm?id=776816.
776832

32. Maro, S., Anjorin, A., Wohlrab, R., Steghfer, J.P.: Traceability maintenance: fac-
tors and guidelines. In: 2016 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 414–425, September 2016

33. Ni, D.C., Martinez, J., Eccles, J., Thomas, D., Lai, P.K.M.: Process automation
with enumeration and traceability tools. In: Proceedings of the IEEE International
Conference on Industrial Technology 1994, pp. 361–365, December 1994

34. Ooi, S.M., Lim, R., Lim, C.C.: An integrated system for end-to-end traceability
and requirements test coverage. In: 2014 IEEE 5th International Conference on
Software Engineering and Service Science, pp. 45–48 (June 2014)

35. Ortu, M., Destefanis, G., Kassab, M., Marchesi, M.: Measuring and understand-
ing the effectiveness of JIRA developers communities. In: 2015 IEEE/ACM 6th
International Workshop on Emerging Trends in Software Metrics, pp. 3–10, May
2015

36. Parizi, R.M., Lee, S.P., Dabbagh, M.: Achievements and challenges in state-of-
the-art software traceability between test and code artifacts. IEEE Trans. Reliab.
63(4), 913–926 (2014)

37. Portillo-Rodrguez, J., Vizcano, A., Piattini, M., Beecham, S.: Tools used in global
software engineering: a systematic mapping review. Inf. Softw. Technol. 54(7), 663–
685 (2012). http://www.sciencedirect.com/science/article/pii/S0950584912000493

38. Rompaey, B.V., Demeyer, S.: Establishing traceability links between unit test cases
and units under test. In: 2009 13th European Conference on Software Maintenance
and Reengineering, pp. 209–218, March 2009

39. Rosario, B.: Latent semantic indexing: an overview (2000). http://www.cse.msu.
edu/cse960/Papers/LSI/LSI.pdf

40. Sengupta, S., Kanjilal, A., Bhattacharya, S.: Requirement traceability in software
development process: an empirical approach. In: 2008 The 19th IEEE/IFIP Inter-
national Symposium on Rapid System Prototyping, pp. 105–111, June 2008

41. Stanbridge, C.: Retrospective requirement analysis using code coverage of GUI
driven system tests. In: 2010 18th IEEE International Requirements Engineering
Conference, pp. 411–412, September 2010

42. Tahat, L.H., Vaysburg, B., Korel, B., Bader, A.J.: Requirement-based automated
black-box test generation. In: 25th Annual International Computer Software and
Applications Conference, COMPSAC 2001, pp. 489–495 (2001)

43. Valderas, P., Pelechano, V.: Introducing requirements traceability support in
model-driven development of web applications. Inf. Softw. Technol. 51(4), 749–
768 (2009). https://doi.org/10.1016/j.infsof.2008.09.008

http://dl.acm.org/citation.cfm?id=776816.776832
http://dl.acm.org/citation.cfm?id=776816.776832
http://www.sciencedirect.com/science/article/pii/S0950584912000493
http://www.cse.msu.edu/cse960/Papers/LSI/LSI.pdf
http://www.cse.msu.edu/cse960/Papers/LSI/LSI.pdf
https://doi.org/10.1016/j.infsof.2008.09.008

	Are Your Requirements Covered?
	1 Introduction
	2 Related Work
	2.1 Manually Guided Approaches
	2.2 Information Retrieval
	2.3 Model-Based Techniques

	3 Research Issues
	4 Use Case
	5 Solution Approach
	5.1 Traceability Link Model
	5.2 Selection of Code Coverage Tool
	5.3 Requirement Coverage Calculation Process

	6 Initial Evaluation
	7 Discussion
	8 Conclusion and Future Work
	References




