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Abstract. Context. Expert sourcing is a novel approach to support quality
assurance: it relies on methods and tooling from crowdsourcing research to split
model quality assurance tasks and parallelize task execution across several
expert users. Typical quality assurance tasks focus on checking an inspection
object, e.g., a model, towards a reference document, e.g., a requirements
specification, that is considered to be correct. For example, given a text-based
system description and a corresponding model such as an Extended Entity
Relationship (EER) diagram, experts are guided towards inspecting the model
based on so-called expected model elements (EMEs). EMEs are entities, attri-
butes and relations that appear in text and are reflected by the corresponding
model. In common inspection tasks, EMEs are not explicitly expressed but
implicitly available via textual descriptions. Thus, a main improvement is to
make EMEs explicit by using crowdsourcing mechanisms to drive model quality
assurance among experts. Objective and Method. In this paper, we investigate
the effectiveness of identifying the EMEs through expert sourcing. To that end,
we perform a feasibility study in which we compare EMEs identified through
expert sourcing with EMEs provided by a task owner who has a deep knowl-
edge of the entire system specification text. Conclusions. Results of the data
analysis show that the effectiveness of the crowdsourcing-style EME acquisition
is influenced by the complexity of these EMEs: entity EMEs can be harvested
with high recall and precision, but the lexical and semantic variations of attribute
EMEs hamper their automatic aggregation and reaching consensus (these EMEs
are harvested with high precisions but limited recall). Based on these lessons
learned we propose a new task design for expert sourcing EMEs.

Keywords: Review � Models � Model quality assurance � Model elements
Empirical study � Feasibility study � Crowdsourcing � Task design

1 Introduction

During the design of software systems, a variety of models are created in the process of
transforming requirements and/or specifications of the desired system into the corre-
sponding software. These models include Extended Entity Relationship (EER) dia-
grams or UML model variants for designing databases and software system structures
and behavior. The tasks of creating such models from software specifications and their
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subsequent verification to ensure their quality, i.e., through software model inspection
[1], are cognitively intense tasks, that require significant time and effort investment
from software engineers. In particular, large software models and large associated
reference documents, such as requirement specifications, are challenging to inspect
with limited resources in one inspection session as overly long sessions typically lead
to cognitive fatigue [6]. Thus, a typical inspection session is scheduled for about two
hours; large artifacts have to be scheduled in multiple inspection sessions to achieve
sufficient coverage of the inspection object. Therefore, reference documents and
inspection objects need to be split accordingly. Furthermore, different inspection tasks
can be distributed among a group of domain experts for inspection. Human Compu-
tation and Crowdsourcing (HC&C) mechanisms can help splitting the workload and
distributing inspection tasks among a group of experts [9, 10].

In general, HC&C techniques rely on splitting large and complex problems into
multiple, small and easy tasks solvable by an average contributor in a suitable popu-
lation and then coordinating the collection and aggregation of individual
micro-contributions into a larger result [8]. As a result, we defined and introduced a
novel Crowdsourcing-based Software Inspection (CSI) process, previously described
in [9, 10] and illustrated in Fig. 1.

The CSI process covers the Preparation and Software Inspection core steps of the
traditional inspection process and consists of four fundamental phases: (1) CSI
Preparation and Planning; (2) Text Analysis (TA) of reference documents to identify
model building blocks, i.e., Expected Model Elements (EMEs) and aggregation of
identified EMEs; (3) Model Analysis (MA) to identify candidate defects in the software
model; and (4) Follow-up for defect analysis and aggregation.

During the Preparation and Planning Phase (Phase 1), the moderator performs
inspection planning. He additionally fulfills the CSI management role. His tasks
include (a) scoping of inspection artifacts, (b) preparing the crowdsourcing environ-
ment, and (c) uploading reference documents and inspection artifacts into the crowd-
sourcing platform, such as Crowdflower1.
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Fig. 1. Crowd-based software inspection (CSI) process [10].

1 www.crowdflower.com.
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The goal of the Text Analysis (Phase 2) is the elicitation of key components (i.e.,
building blocks or co-called Expected Model Elements (EMEs)) of the model based on
the reference document. EMEs include entities, attributes, and relations, that are present
in system requirements specifications (i.e., reference documents) and need to be
modeled in the corresponding software model, e.g., in an EER diagram. Table 1 in
Sect. 4 lists typical EMEs extracted from the description of a restaurant billing system,
representing the reference document (i.e., a requirements specification). Key EME
classes include correct EMEs, synonyms and variations, and incorrect EMEs (see
Sect. 4 for details). Note that the EME identification phase is supported by a crowd-
sourcing application. This phase focuses on two sub-phases: (2a) identification of
candidate EMEs by a group of inspectors. We experiment with a task design where
inspectors are shown one specification sentence at a time and asked to provide, based
on an input syntax, the EMEs appearing in that sentence (see Fig. 4 for a task
screenshot). Results are sets of candidate EMEs provided by every crowd worker in
this sub-phase; (2b) EME analysis and aggregation where the moderator compiles an
agreed set of EMEs based on individual results. Result is an agreed set of EMEs as
input for the model analysis phase of the CSI process (Phase 3). Note that in this paper
we focus on phase 2b, i.e., the EME identification and aggregation step.

In the Model Analysis phase (Phase 3), inspectors verify the model itself (e.g., an
EER diagram), or a subset thereof, while being guided by EMEs. In other words, EMEs
are used as anchors for splitting the model verification task into smaller instances that
can be solved in a distributed fashion according to HC&C principles. Output of this
phase is a set of candidate defect lists provided by individual inspectors during their
crowdsourcing task. The role of the CSI management in phase 3 is to prepare the model
or a sub-model to be inspected (based on CSI planning definitions). In the Follow-Up
Phase (Phase 4), the CSI management aggregates reported defects. Output of this final
phase is a set of defects as a consensus of individual defect lists. Note that this task is
completed by the CSI management.

To investigate the efficiency and effectiveness of defect detection in context of model
inspection with CSI, we have conducted a large-scale empirical study involving uni-
versity students as study participants in the fall of 2016. We have already reported initial
findings of the CSI process approach regarding effectiveness and efficiency of defect
detection when guided by high quality EMEs. High quality EMEs have been identified by
the study authors [9, 10]. In context of the CSI process approach EME identification is the
main output of the Text Analysis process phase. In this paper, we turn our attention to the
feasibility of this text analysis task. Namely, we want to assess the feasibility of dis-
tributing the task of identifying EMEs in textual documents that describe a system
specification to a number of experts as opposed to being solved by a single expert.
Another key goal is to use lessons learned to improve the design of the text analysis task.
For evaluation purposes, we perform a partial analysis of the CSI feasibility study
reported in [9, 10] with focus on the text analysis output. We look at the EME’s identified
in one of 4 sessions of the feasibility study and compare these EMEs to a gold standard
created by the study authors (i.e., high quality EMEs used in previous investigations).We
conclude that, while entity EMEs can be identified with high precision, precision heavily
deteriorates formore complex EME types wheremore variations are possible. This points
to the need of new task designs for collecting EMEs in a reliable manner.
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The remainder of this paper is structured as follows: Sect. 2 presents related work
and Sect. 3 introduces to the research questions. In Sect. 4 we present the setup of the
feasibility study and in Sect. 5 the experimental results and discussions. Section 6
provides a discussion of the experimental results and reflects on limitations. Section 7
summarizes lessons learned for text analysis task design. Finally, Sect. 8 concludes and
identifies future work.

2 Related Work

HC&C methods have been recently used to solve a diversity of Software Engineering
(SE) tasks and lead to the emerging research area of Crowdsourced Software Engi-
neering (CSE) defined as “the act of undertaking any external software engineering
tasks by an undefined, potentially large group of online workers in an open call
format” [4, 5].

The intensified interest in the application of crowdsourcing techniques in SE can be
seen as a response to the appearance of mechanized labor (micro tasking) platforms
such as Amazon Mechanical Turk2 (AMT) or CrowdFlower (See footnote 1) (CF).
These platforms have popularized the Micro tasking crowdsourcing model. Micro
tasking differs from more traditional models of distributed work in SE, such as col-
laboration and peer-production, by being more scalable, thanks to enabling parallel
execution of small task units by non-necessarily expert contributors [4]. As such, Micro
tasking is promising to address challenges in several cognitively complex software
engineering tasks, including software inspection and model element identification.
Some of the benefits of the Micro tasking model are [5]: improved coordination (e.g.,
of inspection team members, tasks, and results), reduction of cognitive fatigue (by
removing redundant work and reusing intermediate results from previous steps),
increased coverage (as some parts of large artifacts might not be covered with tradi-
tional, weakly-coordinated approaches), more diversity (support for dealing with var-
ious inspection artifacts and access to a wider variety of inspectors), and accelerated
processes (by parallelization of small tasks and access to more inspectors).

Because of these benefits, crowdsourcing has been applied to address a variety of
tasks pertaining to all stages of the Software Development Life Cycle (SDLC) as
reported by Mao et al. in a recent, extensive survey [5]. Based on their classification,
we derived an intuitive overview of the intensity of crowdsourcing research in each
SDLC stage as shown in Fig. 2. Seventeen (17) papers report work within the Planning
and Analysis phase on tasks such as requirements acquisition, extraction and catego-
rization. The problems from the Design phase have attracted less approaches, with only
four papers attempting crowdsourced user interface and architecture design. Imple-
mentation phase specific tasks such a coding and debugging have been investigated in
26 papers. Problems that were crowdsourced from the Testing phase were reported by
22 papers and included usability, performance and GUI testing. Within the Mainte-
nance phase, crowdsourcing was used for software adaptation, documentation and

2 www.mturk.com.
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localization among others, attracting a similar volume of approaches as the imple-
mentation phase. None of the investigated papers cover static quality assurance
approaches such as software inspection, where the CSI process provides benefits for
early defect detection in software models [9, 10].

However, extracting higher-level conceptual elements from text with HC&C
techniques has been investigated before. For example, Cascade [3] is an approach to
build classification hierarchies (i.e., taxonomies) from collections of independent text
items (e.g., textual answers from question answering sites). An important step is to
identify categories that best describe each text item. Cascade is designed to run on
collections of independent items and it would not be suitable to extract higher-level
conceptual elements (e.g., entities, relations) from ordered, logically-connected
sequences of items such as sentences in a systems description document.

Approaches that can extract conceptual elements from interconnected item sets
include PhraseDetectives [7], for co-reference resolution in text corpora, or, work on
extracting categories in interconnected texts [2]. Unlike previous works, André et al.
also focuses on tasks where domain expertise is desirable and shows that non-expert
users can be supported in making sense of specialized texts [2]. This is an important
aspect in the context of software inspection, which is more amenable to be solved by
experts through expert sourcing (i.e., enlisting experts to solve tasks by using HC&C
principles) rather than layman crowds.

In summary, a variety of HC&C approaches have been proposed to solve a wide
range of SE tasks in all phases of the SDLC. Yet, the software model inspection task,
situated within Planning and Analysis and Design SDLC phases, has not been
addressed. Our work focuses on this gap and explores how HC&C micro tasking
principles can be used to improve software inspection processes through expert based
crowdsourcing (i.e., expert sourcing).

Fig. 2. Overview of number of papers classified by Mao et al. [5] as using crowdsourcing for
tasks corresponding to each software development life-cycle stage.
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3 Research Questions

With focus on EME identification in context of the CSI process approach, the main
research questions focus on:

RQ1: What is the overall quality of the CSI-based EME identification? To what
extent can this distributed process lead to a high-quality set of EMEs? In the study
context, we consider the EMEs provided by the study authors as a gold standard
example of high quality EMEs.

RQ2: What are performance differences when identifying different types of EMEs?
What challenges arise when distributing the identification of EMEs of increasing
structural complexity? For the purpose of this paper, we define the structural
complexity of an EME as the number of relations between atomic entities. For
example, entities (e.g., customer) are the least complex EMEs as they refer to a
single concept. Entity attributes such as customer.name establish a binary relation
between an entity and its attribute and therefore have a higher structural complexity
than entity EMEs. Relations, e.g., (customer, orders, order) relate three atomic
entities in a triple being thus more complex than entity attribute EMEs. Relation
attributes and relation cardinalities are the most structurally complex EMEs as they
express more knowledge that relation EMEs.

RQ3: What are alternative expert sourcing task designs? Based on lessons learned
from the analysis of the collected data, we want to identify new task design
strategies that could address the limitations of the current design and lead to better
results.

4 Feasibility Study Setup

The analysis reported in this paper relies on data collected in a large-scale feasibility
study of the CSI-process which was described in [9, 10]. Figure 3 shows the overall
experiment design with three study groups: Study group A conducts two stages of the
CSI process, i.e., a text analysis and a model analysis; Study group B performs similar
tasks in a different sequence; finally Study group C performs a traditional inspection
process as a control group. All study groups received a tutorial at the beginning of the
experiment run. Because the main goal is to investigate the effects on eliciting Expected
Model Elements (EMEs) we focus on Study group A and B in this paper (Study group
C does not include a task to explicitly identify and report EMEs – thus, we excluded
this study group in the rest of the paper). Note that analysis results of all study groups
have been described in [9, 10].

In context of this paper, the study design for EME elicitation consists of two main
groups A and B performing the two stages of the CSI process. For group A and B, we
applied a cross-over design, i.e., text analysis (60 min) followed by the model analysis
(60 min) for group A and similar tasks in an inverse order for group B. This cross-over
design was chosen in order to address one of the goals of the overall study, namely to
assess the impact of previous domain knowledge on the defect detection performance
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of the inspectors. In other words, we want to compare defect detection performance for
inspectors that have read the specification beforehand (group A) with the performance
of inspectors that detect defects only based on the EMEs and the model (group B). The
time inspectors spent on each task was limited to one hour per task to (a) investigate the
impact of splitting larger tasks into smaller pieces of work – a key capability of HC&C
approaches, (b) enable efficient defect task execution (prior pilot runs showed that 1 h
is sufficient to enable efficient EME identification and defect detection), and (c) to have
a manageable experiment duration. Note that the size of the inspection artifact under
investigation is suitable for a two hour inspection task, evaluated during pilot runs.

Common to all study groups is a tutorial (30 min) related to the method applied
including a small practical example to get familiar with methods under investigation
and related tool support. For the model analysis we used a pre-defined set of EMEs to
avoid dependencies between different tasks within the experiment groups. These EMEs
were provided by the experiment team, i.e., the authors. We used different experimental
material for the tutorials (application domain: parking garage scenarios) and the
experiment (application domain: restaurant scenarios).

Study Population. The study was an integral part of a university course on “Software
Quality Assurance” with undergraduate students at Vienna University of Technology.
We captured background experience in a questionnaire before the study. Because most
of the participants work at least part time in industry, we consider the participants as
junior professionals [10]. We applied a class-room setting with an overall number of 75
participants (63 crowd workers and 12 inspectors) which attended 4 experiment
workshops organized on different days. The group assignment was based on a random
distribution of participants to study groups. Overall we had 12 study groups (four
groups A, four groups B, and four croups C) during the 4 experiment workshops. Note
that group C has been excluded from the analysis in context of this paper.

Study Material. We used study materials from a well-known application domain, i.e.,
typical scenarios and processes of a restaurant to avoid domain-specific knowledge
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Text Analysis
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Model Analysis 
Group B

Text Analysis
Group B

Tutorial
Group C Traditional Inspection (Group C)
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Fig. 3. Feasibility study setup [9].
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limitations. The core study material were (a) a textual reference document, i.e., a
system requirements specification including 3 pages in English language and consisting
of 7 scenarios and (b) an Extended Entity Relationship (EER) diagram including 9
entities, 13 relationships, and 32 attributes. Furthermore, we used an experience
questionnaire to capture background skills of the participants and feedback question-
naires after each step of experiment process. Finally, we provided guidelines that drove
the experiment and the inspection process.

Gold Standard EMEs. The authors of the study identified 110 EMEs representing
entities, relations, entity and relation attributes as well as relation multiplicities, which

Table 1. Example EME’s from the gold standard.

EME Type 1: “Correct EMEs as those that appear in the EER model”
Entities: customer; order; invoice; setMenu
Relations: (customer, orders, order)

(order, orderedFoodItem, foodItem)
Entity/relation attribute customer.name

invoice.sum
(customer, orders,order).date
(ingredient, isProcuredBy, shoppingTour).price

Relation cardinalities (customer(1), orders,order(0..n))
(order (0..n), orderedFoodItem, foodItem (0..n))

EME Type 2: “Synonyms and lexical variants of correct EMEs.”
Entities: person; menu
Relations: (foodItem, partOf, order)

(order, has, foodItem)
Entity/relation attribute Invoice.amount

order.date
(shoppingList, contains, ingredient).price

Relation cardinalities (customer(1), orders, order(n))
EME Type 3: “Correct variants of modeling different from the input
model”
Entities: dailyPlan; payment
Relations: (foodItem, has, foodItemPrice)
Entity/relation attribute order.status

invoice.paid_date
(customer, orders,order).status

Relation cardinalities customer(1), cancels, order(0..n))
EME Type 4: “Wrong EMEs which should not be part of a correct
model”
Entities: cook; restaurant; guest
Relations: (order, contains, ingredient)
Entity/relation attribute food.calorie

table.seats
(order, has, ingredient).amount

Relation cardinalities (customer(1..n), orders,order(1))
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together constitute a set of Gold Standard EMEs (see some examples of EMEs from
the Gold Standard in Table 1). For each type of EME, authors identified 4 categories:

1. Correct EMEs as those that appear in the EER model (EME Type 1).
2. Synonyms and lexical variants of correct EMEs (EME Type 2).
3. Correct variants of modeling that are different from the input model, i.e., the textual

requirements specification (EME Type 3).
4. Wrong EMEs which should not be part of a correct model (e.g., superfluous) (EME

Type 4).

Tooling. The CrowdFlower application has been used to drive the text and model
analysis tasks. For the text analysis, the specification document was divided in sen-
tences and participants were asked to identify EMEs in one sentence at a time. The
corresponding CrowdFlower task contained as set of instructions and a form-based
input space. The instructions explained the task in general, provided an introductory
paragraph about the system that needs to be built, contained EME examples including
an explanation of their specification syntax as well as some examples of sentences
(from another domain) and the EMEs extracted from those sentences. The instructions
are available for each task, but the instruction pane can be minimized for optimal
viewing. The data collection space listed a sentence and provided forms for collecting
the different EME types. Under each form, instructions were repeated about the
expected naming convention and syntax.

Table 1 presents examples for identified EMEs based on the identified categories.
Figure 4 illustrates and example implemented in the Crowdflower User Interface to

Fig. 4. CrowdFlower task interface (form-based data collection).
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identify EMEs as a crowdsourcing task. Note that we provided a so-called “Output
language”, i.e., a data format that unifies the data input from experiment participants.

5 Experimental Results

For the initial data analysis process we focus on the evaluation of data collected within
one of the 4 experiment workshops by groups A and B participating in this work-
shop. Individual workshops were self-contained events and had similar numbers of
participants as depicted in Table 2; the 6 participants of Group A received 14 sentences
to process while the 7 participants of Group B worked on 17 sentences.

Table 2 also contains statistics about the actual numbers of EMEs collected from all
participants before applying algorithms to aggregate individual contributions to each
sentence as described in Sects. 5.1 and 5.2 (see corresponding Aggregation heading).
Overall, when merging data from groups A and B, we collected 440 individual entity
EME suggestions, which correspond to 76 syntactically unique entity EMEs. Entity
and relation attributes accounted to 375 EMEs, out of which 270 were syntactically
unique. Lastly, we obtained 282 relationship EMEs, with 240 syntactically unique
values. An immediate observation here is that the number of recommended entities
decreases as EMEs get more complex. At the same time, the percentage of unique
EMEs from all EMEs is decreasing which is due to the following two factors:
(1) syntactic heterogeneity increases with more complex EMEs and therefore they
cannot be aggregated with syntactic string matching; (2) there is also an increased
modeling heterogeneity, as participants might adapt different modeling approaches for
the same information, thus hampering reaching consensus.

Table 2. Overview of experimental results in terms of identified EMEs (before/after aggrega-
tion) as well as precision and recall with respect to gold standard EMEs.

Group A Group B Group A+B

Number of sentences 14 17 31
Group participants 6 7 Not relevant
Entity EMEs
All (unique) entity EMEs 201 (42) 239 (43) 440 (76)
Entity EMEs from all sentences (unique) 25 (11) 37 (13) 62 (17)
Precision 91% 92% 88%
Recall 88% 88% 100%
Entity and relation attribute EMEs
All (unique) attribute EMEs 137 (104) 238 (171) 375 (270)
Attribute EMEs from all sentences (unique) 17 (14) 28 (26) 45 (37)
Precision 100% 100% 100%
Recall 15% 43% 59%
All (unique) relation EMEs 114 (97) 168 (145) 282 (240)
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5.1 Identification of ENTITY Model Elements

This section discusses the analysis of the entity type EMEs by both groups A and B.

Aggregation. The aggregation of EMEs suggested by individual participants took
place at the level of each sentence. From the entity EMEs provided by all participants
in the group for a given sentence, only the EMEs that were recommended by more than
half of the participants were selected. In practical terms, we counted the frequency of
each entity EME and computed a popularity score by dividing this frequency to the
number of participants that rated the corresponding sentence. EMEs with popularity
score higher than or equal to 0.5 were selected. To identify the EME output of a group,
we created the union of sentence level entity EMEs, and selected the unique EMEs
from these. Note that, in the case of entity EMEs, recommended EMEs were not
pre-processed neither syntactically nor semantically. For example, we did not correct
typos and did not stem the EMEs from plural to singular form. This means, that the
EMEs “ingredient” and “ingredients” were treated as two syntactically different EMEs.
For the final set of EMEs, we mapped these to the gold standard to determine their type
(i.e., 1-correct EME, 2-synonym EME, 3-alternative EME, and 4-incorrect EME).
Based on this mapping we computed the precision of the final EME set as the ratio
between the EMEs of type 1–3 (i.e., correct of syntactic/semantic variations) and all
identified EMEs.

For group A of the investigated workshop, a total of 25 EMEs were derived from
14 sentences based on contributions from 6 participants, corresponding to 11 unique
EMEs. Based on the alignment to the gold standard we obtained precision of 91% (only
1 of 11 entities was wrongly identified). Recall was computed with respect to the 9
EMEs of type “1” (i.e., those EMEs that are part of the EER diagram). All EMEs were
identified except “recipe”, leading to a recall of 88%.

Group B, received more sentences therefore lead to the identification of more
sentence level EMEs (37), corresponding to 13 unique EMEs in the final EME set, a
precision value of 92% and recall of 88% (as in the case of group A, a single EME from
the gold standard was not found, namely “invoice”).

Joining the results of the two groups to obtain the EMEs for the entire reference
document, we obtain a precision of 88% and a recall of 100%. Interesting observations
to be drawn from here are as follows. Almost the entire set of entity EMEs was
identified by each group although each group received just half of the sentence corpus
(due to the cross-over design), since key entities are mentioned through the sentences.
Exploiting such repetition could lead to more elegant task designs for crowdsourcing
entity identification.

5.2 Identification of Entity and Relation ATTRIBUTE Model Elements

This section discusses the analysis of the entity attribute and relation attribute type
EMEs collected from both groups A and B.

Aggregation. In the case of entity and relation attributes, participants contributed a
large variation of syntactically diverse EMEs. Indeed, in group A, from 137 contributed
EMEs (100 entity attributes, 37 relation attributes) contributed by all participants for all
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sentences, 104 were unique EME strings (73 entity attributes, 31 relation attributes).
Therefore, given this high syntactic variation, an automatic aggregation per sentence as
performed in the case of entity EMEs was not possible. Instead, we have inspected the
proposed EMEs per sentence and replaced syntactic variations of the same EME to
allow for aggregation. For example, for sentence Sc6S1 (the first sentence in scenario
6), participants contributed EMEs such as: order.fullfilled, foodOrder.isFulfilled,
order.fulfilledAsPlanned which were all replaced with their semantic equivalent
order.fulfilled?. Aggregation in terms of majority voting was performed then on the
new set of EMEs. As for entity EMEs, the agreement threshold was kept at 0.5.

For Group A, a total of 17 attribute EMEs resulted from the sentence level majority
voting, 14 of these were unique. All resulting EMEs were of type 1, 2, or 3, therefore
the precision was 100%. However, when compared to the proposed gold standard of 39
attribute EMEs of type 1, only 6 of these were identified, leading to a recall of 15%.

From Group B, 28 attribute EMEs were collected, 26 of these being unique and all
of type 1, 2, or 3. Therefore precision was 100%, while recall was 43% (17 of the
identified EMEs corresponded to group 1 EMEs from the gold standard).

When merging the output EME sets from groups A and B, the EME set contains 45
EMEs out of which 37 are unique. We observe here that, unlike in the case of the entity
EMEs, the overlap between the attribute EMEs derived by the two groups is quite low,
as different parts of the specification point to different attributes. As a consequence, the
recall of the overall EME set is 59% (23 EMEs correspond to EMEs from the gold
standard).

6 Discussion and Limitations

This section focuses on the discussion of individual results towards the introduced
research questions and addresses limitations and threats to validity.

6.1 Discussion

Answering our first research question (RQ1: What is the overall quality of the CSI-
based EME identification?), we conclude that the process of distributed identification
of EMEs following HC&C principles is feasible and leads to a set of EMEs that have a
high overlap with a manually created gold standard set of EMEs.

Our second research question, RQ2, focused on: What are performance differences
when identifying different types of EMEs? Based on our analysis, we conclude that the
performance of verifying EMEs varies depending on the EME type:

• Entity type EMEs were identified with a high recall (100%, see Table 2) and
precision (88%). We also observed that, since EME’s are mentioned through the
specification, a reliable set of EMEs can be extracted even just from half of the
specification by either of the two study groups. This prompts to the possibility to
change task design in order to more efficiently use human processing when iden-
tifying entity EMEs.
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• Attribute (and relation) type EMEs were identified with a high precision (100%),
but with a low recall (59%) because the syntactic and semantic variations of these
EMEs are considerably higher than for entity EMEs. Because of this syntactic
heterogeneity, free-text collection makes aggregation with automatic tools not
feasible and opens the need for more guided task design to enable such automation
in the future.

• The number of proposed EMEs decreased as the complexity of the EMEs increased.
That is, while many entity EMEs were proposed (404), participants provided less
entity attributes or relation attributes (375) and relations (282). Potential reasons for
this phenomenon are: (1) the cognitive overload of the task is too high, as the
participants are asked to do too much and therefore naturally provide less input for
the more complex parts of the task; (2) writing down complex EMEs such as
relations is too time-consuming and requires high effort so participant avoid it.

From the overall CSI-process perspective, the high precision of the entire EME set
means that this set can act as a reliable guidance for defect detection in the follow-up
model analysis task. To further improve the EME detection task and to answer RQ3
(What are alternative expert sourcing task designs?), we propose a novel text analysis
task design in Sect. 7.

6.2 Limitations and Threats to Validity

Internal validity concerns a causal relationship between the experiment treatment and
the observed results, without the influence of potential confounding factors that are not
controlled or measured [11]. Domain specific issues have been addressed by selecting a
well-known application domain. The experiment package was intensively reviewed by
experts to avoid errors. Furthermore, we executed a set of pilot runs to ensure the
feasibility of the study design [9, 10].

In terms of external validity, that is the generalization of the results to a larger
population or to a different environment [11], we distinguish the following threats:
Participants were 75 undergraduate students of computer science and business infor-
matics at Vienna University of Technology. The study was a mandatory part of the
course on “Software Quality Assurance”. Most of the participants work at least
part-time in software engineering organizations. Thus, we consider them as junior
professionals comparable to industrial settings. We used an experience questionnaire to
capture and assess prior experiences and skills. Application domain. We used typical
scenarios and requirements derived from restaurant processes. Thus, all participants are
familiar with this application domain. Quality of specification documents. Admittedly,
we have used a high quality specification document which has been carefully reviewed
by the experiment team, i.e., the authors, during the preparation for the study. In
addition we executed pilot runs of the study to ensure the quality and understandability
of the study material.
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7 Lessons Learned for Text Analysis Task Design

Lessons learned from this initial analysis of EMEs collected in a distributed manner
prompt to several improvements at task design level, as follows (and in response to
RQ3):

• Process Improvement: Introduce a workflow of simpler tasks. One way to overcome
the complexity of the current task which hampers the acquisition of more complex
EMEs, is to divide the task into a workflow of smaller tasks, each focusing on the
acquisition of one EME type only.

• Tooling: Replace free-text input tasks with more guided interfaces. The structural
complexity of the collected EMEs has an influence on two key factors. First, the
higher input effort discourages participants from adding these EMEs, so less EMEs
are collected. Second, the syntactic and semantic variation increases in such manner
that reaching a consensus and automatic aggregation of these EMEs to allow
majority voting become challenging and in some cases unfeasible. Replacing
free-text input fields with more guided interfaces could overcome these limitations
and (1) help EME aggregation while (2) fostering consensus building.

• Reduce redundancy. In the case of entity EMEs, these are frequently mentioned in
several sentences of the specification and therefore lead to the redundant identifi-
cation of EMEs at the cost of the participants’ time and effort. Task design for entity
EMEs should take this into consideration and try to reduce the redundant identi-
fication of EMEs.

Based on these envisioned improvements, we propose an updated workflow for
distributed identification of EMEs, as shown in Fig. 5. The process starts with a col-
lection of sentences from the specification which serves as input to the Entity Identi-
fication task to identify entity EMEs. To reduce redundancy of EME identification, we
envision a task design where an initial set of EMEs are identified and aggregated from a
subset of the sentences and then this set is subsequently approved and if necessary
extended by participants.

Even with the current design (see Fig. 1), entity identification leads to a high
quality and high coverage entity EME set. This can be used as an input to subsequent
tasks for entity attribute and relation identification.

The Entity Attribute Identification task will consist of participants receiving a
sentence and an entity EME in this sentence and being asked to enumerate attributes of
that entity EME. For entities that appear in more sentences, two approaches could be
considered. Firstly, if a high EME set coverage is desired, then this EME should be
shown with all sentences it appears in as different sentences are likely to describe
different attributes of the entity EME. Secondly, if fast execution is more desired than
good coverage, the sentence to be shown could be determined according to the voting
score obtained. In other words, a sentence where an entity EME was selected by many
participants would be considered as most suitable for that EME and the EME would be
shown only in combination with that sentence.

Each Relation Identification task would receive a sentence with a set of entity
EMEs in this sentence and could be designed in diverse ways. In the first variant,
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participants could be asked to provide those entity pairs between which a relation exists
as free text input following a recommended syntax (with or without naming the rela-
tion). In the second variant, all combinations of entity EME pairs from a sentence could
be generated and participants asked to select only those pairs between which a relation
holds. This second variant has a lower effort on participants and results are easier to
integrate based on selections as opposed to free-text inputs from the first variant.

Lastly, the Relation Attribute Identification task would benefit from the output of
the Relation Identification task. For a given sentence and relation in this sentence,
participants should identify potential relation attributes described in the sentence. The
proposed and improved workshop process (see Fig. 5) aims at guiding participants and
foster reaching consensus to a set of EMEs that can be subsequently used as input to
the Model Analysis task of the CSI process. While inspecting the data, we identified in
the collected responses diverse modeling choices, such as the following examples:

• (customer(1), orders, order(0..n)).isTakeout versus order.isTakeout;
• (customer(1), has, order(0…n)).orderNumber versus order.number;
• (setMenu, contains, foodItem).price vs. setMenu.price and foodItem.price.

With the current design, less popular modeling choices will be lost in favor of those
that the majority agrees on. Yet, harvesting diverse ways to model the same specifi-
cation could be beneficial for other contexts, for example when building a model rather
than verifying a given model. In this context, a crowdsourcing process could identify,
from a specification different models that capture a variety of views. For that purpose,
new workflows should be considered that focus on preserving modeling diversity as
opposed of building consensus.

8 Conclusion and Future Work

In this paper, we focus on interpreting results from the Text Analysis step of the
CrowdSourcing-based Inspection (CSI) process [9, 10] which supports early defect
detection of large-scale software engineering artifacts and models based on textual

Fig. 5. Proposed workflow for distributed EME identification.
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system specifications. The goal of the Text Analysis step is the distributed identification
of Expected Model Elements (EMEs) within the system specification. EME terms
represent important model elements derived from a reference document and are used as
an input in the subsequent Model Analysis step of CSI where the defect detection in
software engineering models takes place.

We analysed a subset of the data collected in a large-scale feasibility study of CSI,
focusing on the comparison of the EMEs collected in a distributed fashion with a gold
standard set of EMEs created by a single expert. Our key finding was that the text
analysis task can lead to a highly precise set of EMEs which can serve as a suitable
input for the defect detection tasks in the Model Analysis phase of CSI. However, while
the precision of EME set is high, its recall is low for EMEs other than entities. Indeed,
when harvesting more complex EMEs (e.g., entity and relation attribute), study par-
ticipants provided a wide range of syntactically diverse EMEs. These leads to two
difficulties. First, automatic result aggregation is challenging. Second, even after
manually mapping syntactic variants of EMEs to a base form, we noticed difficulties in
reaching a consensus as participants provided different EMEs based on diverse mod-
elling views.

We concluded that these limitations are a side-effect of the current task design,
which is too complex and not sufficiently guided to help consensus building. Therefore,
we propose a new task design which is based on a workflow of simpler tasks, each
focusing on the acquisition of one entity type. Also, we propose that these tasks are
more guided: we start with the acquisition of entity EMEs which can be acquired with
high recall and precision and use these to guide the following tasks. To support
automatic aggregation of results, where possible, we replace free-text input with
selection from a set of EMEs derived from previous steps.

Future Work. This paper reports on preliminary findings after initial manual analysis
of a subset of the data. Lessons learned from this manual stage will serve to define
automatic processing scripts that can be used to (semi-)automatically interpret the rest
of the data and more reliably verify the results of this paper. Follow-up experiments
will also test the newly proposed task design with respect to improving the effec-
tiveness of EME identification. We will also apply the results of this work to the task of
model acquisition from textual specifications. In particular, here we are interested in
investigating diverse types of workflows, namely those that foster EME set diversity as
opposed to fostering consensus.

Acknowledgments. We would like to thank the participants of the software quality course at
Vienna University of Technology in the winter term 2016/2017 for participating in the study.
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