
Monitoring of Access Control Policy
for Refinement and Improvements

Antonello Calabró, Francesca Lonetti, and Eda Marchetti(B)

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”,
Consiglio Nazionale delle Ricerche (CNR), via G. Moruzzi 1, 56124 Pisa, Italy

{antonello.calabro,francesca.lonetti,eda.marchetti}@isti.cnr.it

Abstract. Access Control is among the most important security mech-
anisms to put in place in order to secure applications, and XACML is
the de facto standard for defining access control policies. As systems
and resource utilization evolve, access control policies become increas-
ingly difficult to manage and update according to contextual behaviour.
This paper proposes a policy monitoring infrastructure able to identify
policy abnormal behaviour and prevent misuse in granting/denying fur-
ther accesses. This proposal relies on coverage adequacy criteria as well
as KPIs definition for assessing the most common usage behaviors and
provide feedback for refinement and maintenance of the current access
control policy. It integrates a flexible and adaptable event based monitor-
ing facility for run time validation of policy execution. A first validation
on an example shows the effectiveness of the proposed approach.

Keywords: Monitoring · Coverage criteria · KPI · Access control policy

1 Introduction

In the Factory of the Future as well as Industry 4.0 more often the adopted
context-aware applications rely on a widespread use of wireless sensors and actu-
ators to monitor the process evolution, guide the users interaction and automate
the business process at large. The aggregation of high volumes of volatile data
and sensitive user information rises a multitude of security and privacy chal-
lenges. Typically, large organizations have to rule millions of accesses across
thousands of IT resources and sensors. This cause an effective risk of providing
users with an excessive or not appropriate access rights over time. In such a situ-
ation the proper implementation and enforcement of access control mechanisms
becomes imperative. They are able to rule the highly connected and pervasive
software intensive systems and prevent unauthorized, erroneous or even mali-
cious usage of critical resources.

Among security mechanisms, a critical role is played by access control sys-
tems. These aim at ensuring that only the intended subjects can access the
protected data and the subjects get only the permission levels required to accom-
plish their tasks and no more. To this purpose, access control systems involve
c© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 17–36, 2018.
https://doi.org/10.1007/978-3-319-71440-0_2

18 A. Calabró et al.

three related activities, namely: identification of the user or service requesting
an access; authentication of the declared identity, usually by means of creden-
tials; and finally authorization of authenticated users to perform a set of allowed
operations.

Authorization mechanisms are typically based on access control policies that
rule: the level of confidentiality of data; the procedures for managing data and
resources; the classification of resources into category sets yielding different secu-
rity requirements. Access control policies must be specified and verified with
great accuracy: as any error or overlook could result either in forbidding due
access rights, or worse in authorizing accesses that should be denied, thus jeop-
ardizing the security of the protected data.

XACML (eXtensible Access Control Markup Language) [1] is a widely used
standard language for specifying access control policies. It is an XML-based lan-
guage conceived with interoperability, extensibility, and distribution in mind,
thus enabling the specification of very complex rules. However, such advantages
are paid in terms of complexity and verbosity. Writing XACML policies is hard
and may be deceiving, as inconsistencies could arise between the security require-
ments the policy authors intend to specify, and those that the policies actually
state. This can easily happen for instance when either some modifications are
introduced in a complex policy or when the policy is obtained from the integra-
tion of more policies coming from different organizations.

Especially in large scale organizations the common practice, to partially solve
this problem, is to define and implement just the basic policies, usually extracted
by the internal regulations and requirements that remain unchanged in time.
The side effect of such an attitude is that policies could become outdated over
time, leading either inconsistencies with the evolved behavioral and technological
organization environment, or security vulnerabilities.

So far most, of the research activities have been mainly focused on policy test-
ing [2–5] and only few proposals target the on-line validation and improvement
of the policies specifications [6].

The idea of this paper is providing to the policy authors, or more in general
to any stakeholder using the policy (generically referred in the following as the
policy validators), an integrated dynamic framework to validate and monitor the
actual resources access and users behavior. This in order to update, correct or
improve the policy specification in granting/denying the accesses.

Through the proposed framework the policy validators may have: (i) a better
knowledge of the actual policy usage, (ii) define and on-line calculate possible
key performance indicators (KPIs) useful to adjust the policies and (iii) detect
possible policy vulnerabilities or outdated rules.

The proposal relies on: (i) the derivation of the relevant coverage information
from the policy specification; (ii) the collection of events (requests/responses)
during the policy execution by means of a monitoring facility, (iii) and the analy-
sis of them so to collect important policy accesses information and assess defined
KPIs.

Monitoring of Access Control Policy for Refinement and Improvements 19

Indeed monitoring the different requests and responses lets the collection of
source data such as: the identification of most accessed resources; the tracking
of type of users requiring a resource access; the time and the decision of whether
the request is granted or denied and so on. These can be very useful data for
modeling the most common user behaviors and detecting possible policy flaws or
improvements. Moreover key performance indicators, relative to the criticality of
some specific actions or data, can be specified and on-line computed for a better
resources access control. For instance possible KPIs could be: the frequency
of the resource access by a specific users; the identification of users that most
frequently require a specific action; the date and time when the access permission
of a specific resource is more frequently activated and so on.

Deviation of the observed data from the boundaries values established for
each KPI could indicate abnormal behavior and could required a deeper analysis
to identify possibly access control policy modifications or improvements.

The contribution of this paper can be summarized into:

– the integration of a monitoring framework into an access control system archi-
tecture;

– the definition of the architecture of the Policy Monitoring Infrastructure
enabling: the definition of specific KPIs; the policy parsing so to extract
coverage information; the monitoring of requests and response execution so
to compute coverage data; the analysis of data collected to assessing their
compliance with the access control rules and specified KPI;

– an instantiation of the proposed architecture on the XACML access control
language.

An simulation example showing the usage of the proposed monitoring frame-
work is also provided considering a prototyped version of a booking system of the
Multimedia Laboratory of Pisa university, used for improving foreign languages
or preparing lecture material.

Preliminary results of such example demonstrated the feasibility of the pro-
posal and highlighted some of the potentialities of the Policy Monitor Infrastruc-
ture. Indeed without such a feature most of the weaknesses evidenced in the
experiment and suggestions for access control policy improvements were not
easily identifiable.

The remainder of this paper is structured as follows: Sect. 2 introduces the
basic concepts of access control systems and coverage testing; Sect. 3 presents the
architecture of the Policy Monitoring Infrastructure; Sect. 4 reports of the usage
of the Policy Monitoring Infrastructure on example; Related works are presented
in Sect. 5 and finally, Sect. 6 concludes the paper also hinting at discussion and
future work.

2 Background

In the following section some basic concepts about XACML access control sys-
tems and coverage testing are provided.

20 A. Calabró et al.

2.1 XACML and Access Control Systems

Access control is one of the most adopted security mechanisms for the protection
of resources and data against unauthorized, malicious or improper usage or mod-
ification. It is based on the implementation of access control policies expressed
by a specific standard such for instance the widely adopted eXtensible Access
Control Markup Language (XACML) [1].

XACML is a platform-independent XML-based language for the specification
of access control policies. Briefly, an XACML policy has a tree structure whose
main elements are: PolicySet, Policy, Rule, Target and Condition. The PolicySet
includes one or more policies. A Policy contains a Target and one or more rules.
The Target specifies a set of constraints on attributes of a given request. The
Rule specifies a Target and a Condition containing one or more boolean func-
tions. If the Condition is evaluated to true, then the Rule’s Effect (a value of
Permit or Deny) is returned, otherwise a NotApplicable decision is formulated
(Indeterminate is returned in case of errors). The PolicyCombiningAlgorithm
and the RuleCombiningAlgorithm define how to combine the results from mul-
tiple policies and rules respectively in order to derive a single access result. The
structure of an access control policy and an access control request is sketched in
Fig. 1. While an example is provided in Listing 1.

Fig. 1. Anatomy of an XACML policy and an XACML request

The main components of an XACML based access control system are shown
in Fig. 2. In particular the Policy Administration Point (PAP) is the system
entity in charge of managing the policies; the Policy Enforcement Point (PEP),
usually embedded into an application system, receives the access request in its
native format, constructs an XACML request and sends it to the Policy Deci-
sion Point (PDP); the Policy Information Point (PIP) provides the PDP with

Monitoring of Access Control Policy for Refinement and Improvements 21

the values of subject, resource, action and environment attributes; the PDP
evaluates the policy against the request and returns the response, including the
authorization decision to the PEP.

Fig. 2. Access control system architecture

2.2 Adequacy Criteria and Coverage

The notion of adequacy criteria has been extensively investigated in software
engineering literature, an in particular for software testing where it is generally
used to assess the effectiveness of a test suite [7,8]. In test coverage criteria, a set
of requirements that a test suite must fulfill is established and it is mapped onto
a set of entities that must be covered when the test cases are executed, as for
instance all statements or all branches of a program control-flow. The coverage
criterion is satisfied if all the entities are covered; otherwise, the percentage of
covered entities represents a quality measure of the test suite.

The intuitive motivation behind measuring test coverage is that if some entity
has never been tested, it might contain undetected faults. Obviously, the converse
reasoning does not apply: if we had covered all entities and detected no failures,
this does not necessarily imply that the program is correct. In a similar way, we
propose here to assess the adequacy of the access control policy execution by
identifying what are the relevant entities to be covered and by assessing if all of
them, or otherwise what percentage, have been executed.

As for test adequacy, the motivation behind assessing access control policy
execution adequacy is that if some entities are not covered, we cannot exclude
that these might hide some problems, policy incompleteness, entity misuses or
security flaw. Similarly to the testing session, i.e. the period along which the
test adequacy is measured, the observation window is the observation period
associated to the access control policy execution coverage measure.

Intuitively, a sliding observation window over a time measurement unit can
be established, which could be either continuous (e.g. the entities covered in the
last week) or discrete (e.g., the most recent 15 entities). The proposed access con-
trol policy adequacy criterion extends the general monitoring adequacy criterion

22 A. Calabró et al.

presented in [9,10], by defining and implementing an instantiation of this ade-
quacy criterion for the XACML access control policy execution. In particular we
consider the following definition:

Definition 1. Denote ri ∈ R the i-th entity to be covered, and by δi ∈ Δ the
length of its associated observation window. The access control policy execution
adequacy criterion C dynamically measures the coverage on R for a given entity
i at each time unit t as follows:

C[R,Δ](t) =
∑|R|

i=1 λi(t)
|R|

where for ri ∈ R and δi ∈ Δ

λi(t) =
{

1 if ri is covered at least once in [t − δi, t]
0 otherwise

.

According to this definition the length of δi could be different for each ri, or
could be the same for all entities. In summary the definition of access control
policy execution adequacy introduces the following concepts:

– an “adequate access control policy execution” is a policy execution on which
a set of entities ri are covered in a window δi;

– a Policy Monitoring, i.e. an infrastructure that, at every instant t, can provide
a coverage measure as in Definition 1. If this is less than 1, it can provide a
list of those entities that have not been covered;

– an entity that is not covered is an entity of the access control policy that has
not been executed for some time.

Inside a access control policy execution what is an entity to be covered can
be provided at different levels and with different targets [2,11]. In this paper we
consider the XACML smart coverage approach presented in [11] which focuses on
the XACML policy rules coverage. Briefly, the criterion computes the Rule Target
Set, i.e. the union of the target of the rule, and all enclosing policy and policy
sets targets. The main idea is that in order to match the rule target, the requests
must first match the enclosing policy and policy sets targets. If the rule target has
several subjects, resources, actions, and environments and the enclosing policy
and policy set targets are empty, to cover the rule target the request should have
specifical structure. It should include a subject contained in target subjects set,
a resource contained in the target resources set, an action contained in the target
actions set, an environment contained in the target environments set. Finally, if
the Rule Target Set of a rule is empty and its condition is evaluated to True or
False, all requests are covering this rule. We refer to [11] for further details.

In this paper, according to this criterion, we adopted the following definitions:

Definition 2 (Rule Entity). Given a XACML access control policy, a Rule
Ri and its Rule Target Set, a rule entity REi is the couple (Rule Target Set,
Rule Verdict) where the Rule Verdict is the verdict associated to the Rule Ri

when its condition is evaluated to True.

Monitoring of Access Control Policy for Refinement and Improvements 23

Definition 3 (Rule Coverage Domain). Considering a XACML access con-
trol policy, the Rule Coverage Domain is the set of all the Rule Entities of the
policy.

Definition 4 (Percentage of Rule Coverage). With reference to Defini-
tion 1, the percentage of rule coverage at time t is given by 100*C, where R is
the Rule coverage domain.

Consequently, at a given instant a XACML access control policy execution
is adequated with respect to the rule coverage criterion if the percentage of Rule
Entities covered is 100% (or greater than an established threshold level).

3 Policy Monitoring Infrastructure

With reference to Fig. 3, we present in this section the components of the Policy
Monitoring Infrastructure. In particular:

Fig. 3. Policy monitoring infrastructure

– Policy Enforcement Point (PEP). It is usually embedded into an application
system, receives the access request in its native format, constructs an XACML
request and sends it to the Policy Decision Point (PDP) through the Monitor
Engine;

– Policy Administration Point (PAP). It is the system entity in charge of storing
and managing the XACML policies. It sends the policy both to the Policy
Decision Point (PDP) for its evaluation and to the Trace Generator for the
traces extraction.

24 A. Calabró et al.

– Policy Decision Point (PDP). It evaluates the policy against the request and
returns the response, including the authorization decision, to the Monitoring
Engine. It communicates with the Monitoring Engine though a dedicated
interface such as a REST one.

– Trace generator. It is in charge of implementing the proposed access con-
trol policy adequacy criterion. It takes in input the policy from the Policy
Administration Point and, according to the coverage criterion, derives all the
possible Rule Entities. Usually, the Rule Entities extraction is realized by an
optimized unfolding algorithm that exploits the policy language structure.
Intuitively, the main goal is to derive an acyclic graph, defining a partial
order on policy elements. Several proposals are available such as [2,11] for
XACML policy specification. Once extracted, the Rule Entities are provided
to the Monitor Engine.

– Monitor Engine. It is in charge of collecting data of interest during the run-
time policy execution. There can be different solutions for monitoring activity.
In this paper we rely on Glimpse [12] infrastructure which has the peculiarity
of decoupling the events specification from their collection and processing.
The main components of the Monitoring Engine are: (i) the Complex Events
Processor (CEP) which analyzes the events and correlates them to infer more
complex events; (ii) the Rules Generator that generates the rules using the
rule templates starting from the derived Rule Entities to be monitored. A
generic rule consists of two main parts: the events to be matched and the
constraints to be verified, and the events/actions to be notified after the rule
evaluation; We refer to [12] for a more detailed description of the Glimpse
architecture.

– Policy Analyzer. It is in charge of the final derivation of the KPIs values
according to the covered and non covered Rule Entities. Moreover, according
to the coverage criterion it is able to identify the Rule Entities of the policy
that could generate flaws or security violations, providing hints to the Policy
Validator for policy improvement or refinement.

– GUI. It allows to define the KPIs to be monitored (KPI editor) and to visu-
alize to the Policy Validators the collected coverage data and KPI values
(Dashboard) so to let them to analyze and possibly refine the policy. KPI
Editor exploits the Domain Specific Language feature of the Drools technolo-
gies. In particuar it extracts from the policy specificion some set of values
(for instance enviroment condition parameters, subjects, resources, actions
an other target contraints) and provides a set of predefined fuctions and log-
ical operators useful for the definition of the KPIs. The purpose is to let the
user able to compose rules using a familiar set of logical expressions without
requiring knowledge of the implementation language of the Monitor Engine.

4 Example

In this section we present an example of instantiation and use of the Policy
Monitoring Infrastructure depicted in Sect. 3. In particular, in the following

Monitoring of Access Control Policy for Refinement and Improvements 25

subsections we briefly introduce the example considered (Sect. 4.1) and discuss
the results collected (Sect. 4.2).

4.1 Example Description

The example considered in this paper is a prototyped version of a booking sys-
tem of the Multimedia Laboratory of Pisa university, used for improving foreign
languages or preparing lecture material. Since the number of stations of this
laboratory is limited to 25, the access to different types of users (Master Stu-
dents, PhD Students, Professors) during the working day is regulated by an
access control policy which automatically distributes the booking requests over
three time slots. Listing 1 presents the simplified version of the XACML access
control policy used for booking a station in the Multimedia Laboratory. Specifi-
cally, the policy includes a policy target (lines 8–29) allowing the access only for
booking the MultimediaLab resource. A first rule (ruleA) (lines 30–64) specifies
that Master Students can book the lab starting from 9 am for 4 h. A second rule
(ruleB) (lines 65–99) specifies that PHD Students can book the lab starting from
14 pm for 4 h, while a third rule (ruleC) (lines 100–134) specifies that Professors
can book the lab only after 18 pm. Finally, the default rule (line 135) denies the
access in the other cases. Users of the Multimedia Laboratory are not aware of
this internal access control policy and through associated PEP they can ask for
booking in all the working day time slots.

26 A. Calabró et al.

Monitoring of Access Control Policy for Refinement and Improvements 27

In this section we show the use of the Policy Monitoring Infrastructure schema-
tize in Fig. 3, for analyzing the load of the booking Multimedia Laboratory system
during a working day. For this we set up an experiment in which we simulated the
behavior of different types of users (Master Students, PhD Students, Professors) in
booking the Multimedia Laboratory according to their preferred time slots. In par-
ticular considering the Definition 2 of Sect. 2 and the policy of Listing 1, through

28 A. Calabró et al.

the Trace Generator component, the Policy Monitoring Infrastructure automat-
ically derives the set of Rule Entities as reported in Table 1.

Successively, thought the KPI Editor of the Policy Monitoring Infrastructure
GUI, we defined the following KPIs:

– KPI1 = daily percentage the overall accesses of Master Students, PhD Stu-
dents and Professors greater than 60%

– KPI1.1 = daily percentage of accesses of Master Students greater than 36%
– KPI1.2 = daily percentage of accesses of PhD Students greater than 6%
– KPI1.3 = daily percentage of accesses of Professors greater than 18%
– KPI2 = daily number of allowed requests in each time slot less or equal

than 25.

From an implementation point of view the above defined KPIs have been
translated into the following rules:

– KPI1 = daily percentage of coverage of RE1 RE2 and RE3 greater than 60%
– KPI1.1 = daily percentage of coverage of RE1 greater than 36%
– KPI1.2 = daily percentage of coverage of RE2 greater than 6%
– KPI1.3 = daily percentage of coverage of RE3 greater than 18%
– KPI2 = daily number of allowed requests in each time slot less or equal

than 25.

Table 1. Rule Coverage Domain of Listing 1

RE1 = {(∅, {MultimediaLab}, {booking}, ∅),({MasterStudent}, ∅, ∅, 9 − 13), Permit}
RE2 = {(∅, {MultimediaLab}, {booking}, ∅),({PhDStudent}, ∅, ∅, 13 − 17), Permit}
RE3 = {(∅, {MultimediaLab}, {booking}, ∅),({Professor}, ∅, ∅, 17 − 21), Permit}
RE4 = {(∅, {MultimediaLab}, {booking}, ∅),(∅, ∅, ∅, ∅), Deny}

Finally to set up the simulation environment we established the frequency of
a booking request of the three type of users. For this we took the data relative
to the requests to the Multimedia Laboratory booking system of the last five
years from people belonging to the Software Engineering course of University
of Pisa. Then we derived the following percentages: 60%, 30%, 10% for Master
Students, PhD Students, Professors respectively. Moreover, we made interviews
to a sample of Professors (10), Master Students (60) and PhD Students (30)
asking them their preferred time slots. According to their preferences, we derived
the average values of frequencies of preferred time slots as shown in Table 2.

The collected information has been used to derive the sample of booking
requests useful for the simulation experiment as reported in the last column of
Table 2. Specifically for each of the time slot and according to the computed per-
centages distribution, we manually derived an overall sample of 1000 XACML
requests distributed as in the Table. Each of these requests includes a subject

Monitoring of Access Control Policy for Refinement and Improvements 29

(values chosen from Master Student, PhD Student, Professor), a resource (Mul-
timediaLab), an action (booking) and a time slot (values chosen from 17–21,
13–17, 9–13).

Knowing that the booking system of the Multimedia Laboratory receives on
average 50 booking requests per day, through the Policy Monitoring Infrastruc-
ture GUI, we set the observation windows of our simulation experiment to a day
long (see Definition 1 in Sect. 2). Then we randomly selected, from the generated
1000 XACML requests, sets of 50 requests. We repeated the selection considering
a period of 5 weeks, i.e. 25 observation windows, for a overall number of 1250
executed requests.

Bypassing in this simulation experiment the PEP Component, the Monitor
Engine Component sent the requests of one by one to the PDP of the Multimedia
Laboratory booking system and collected the coverage data.

Table 2. Request frequency

Type of users Percentage frequency Time slot Preferred percentage # Generated requests

Master students 60% 17–21 60% 360

13–17 35% 210

9–13 5% 30

Professors 10% 17–21 5% 5

13–17 80% 80

9–13 15% 15

PhD students 30% 17–21 20% 60

13–17 70% 210

9–13 10% 30

4.2 Results

In this section we report the results obtained from the simulation experiment.
As shown in Table 3, we run on the PDP 50 randomly selected requests per day
and we collected, through the Monitor Engine, the data useful for evaluating
the KPIs and deriving interesting information on the Multimedia Laboratory
booking profiles.

Specifically in the first column there is the incremental number of observa-
tion windows considered in the experiment (25 days). From the second to the
forth column (from the fifth to the seventh and from the eighth to the tenth)
there are the data relative to the Master Students (Professors and PhD Stu-
dents respectively) booking requests for defined time slots (17–21, 13–17, 9–13).
These data have been collected by the Monitor Engine component by comparing
and matching the Rule Entities values with the XACML requests and the corre-
sponding PDP responses. These values have been then refined and analyzed the
Policy Analyzer Component to derive the KPIs values as reported in Table 3.

30 A. Calabró et al.

In particular in the last four columns there are the daily values computed for
the KPI1, KPI1.1, KPI1.2 and KPI1.3 respectively. Finally in the columns high-
lighted in gray (fourth, fifth, ninth column with bottom label KPI2) there are
the comupted KPI2 values corresponding to the daily number of allowed requests
in each time slot. Average percentage value for each column is provided in the
last row. Results of Table 3 are provided to the Policy Validator through the
Dashboard component of the Policy Monitoring Infrastructure GUI.

From the analysis of the data collected during the monitoring activity the
Policy Validator could derive differen information such for instance:

– the KPI1 is never satisfied because in each observation windows the coverage
percentage is always less than 41% (maximum reached value) with an average
value of 29.07% quite far from the established boundary of 60%. This means
that the current implemented access control policy does not mach the real
booking behavior of the three different users: few booking requests accepted
and an extremely high value rejected. Indeed (by difference) the average per-
centage of coverage of Rule Entity RE4 is 70.93%. This situation evidences a
pressing need to improve the access control policy to better satisfy the real
users behavior.

– From a detailed analysis of the data collected of KPI1.1, KPI1.2 and KPI1.3
emerges that the failure of KPI1 is mainly due to the behavior of Master
Students and Professors. Indeed, while KPI1.3 is most of the times satisfied
(a part from Day 9 and Day 19 where the percentage of coverage are 16%
and 13.33% respectively) demonstrating a good ruling of booking access for
the PhD Students, KPI1.1, KPI1.2 are never verified. Percentage of accepted
booking requests for Master Students rarely reaches values greater than 6%
(only Days 10 and 21) and is on average 2.55%. These values are very far
from the established 36% of the KPI1.1. Almost the same situation can be
experienced for Professors, where the greater value for KPI1.2 is 4.17% with
an average of 0.82%. Therefore, improvements on the access control policy
for the booking slot times for Master Students and Professors are necessary.

– Considering the daily number of allowed requests in each time slot (i.e. fourth,
fifth, ninth column with bottom label KPI2) the values are always less or
equal than the established 25 and therefore KPI2 is always satisfied. However,
the number of allowed requests for PhD Students are always between 8 and
19, with an average of 12, meaning a quite good resource allocation. While,
for Master Students and Professors the situation is quite different. Allowed
booking requests for Master Students varies from 0 to 4 with an average of 1.2;
for Professors varies from 0 to 2 with an average of 0.4. This means that in the
morning and evening time slot the Multimedia Laboratory is almost empty.
This is in line with the results obtained for KPI1.1, KPI1.2 and KPI1.3.

The KPIs analysis stressed the exigence of an access control policy improve-
ment specifically for the Master Students and Professors. Suggestions come from
a detailed analysis of the requests covering the Rule Entity RE4, i.e. the requests
denied by the PDP. In collecting coverage and KPIs data, the Policy Monitoring
Infrastructure provides to the Policy Validator additional information about the

Monitoring of Access Control Policy for Refinement and Improvements 31

nature of the denied requests. Specifically the Policy Monitoring Infrastructure
evidences which kind of subject is booking the Multimedia Laboratory and at
what time. These data are reported in Table 3 in the second and third column
for Master Students, in the sixth and seventh column for Professors, and in the
eighth and tenth column for PhD Students. Analyzing this information the Pol-
icy Validator can observe that most of the requests from Master Students are
associated to the time slot 17–21, while few variations in booking activity can
be observed for the Professors (just very small increase for the 9–13 time slot).

An immediate possible improvement is therefore to swap the time slots imple-
mented in the access control policy for Master Students and Professors i.e. chang-
ing in the first rule (ruleA) at lines 47 from 9 to 17, and in the third rule (ruleC)
at line 117 from 17 to 9.

Table 3. Experiment results: first round

For aim of completeness we performed a second simulation experiment using
the same setting of the previous one but with the access control policy modified
as described above. In Table 3 we reported the obtained results.

From the analysis of the new results the Policy Validator could observe that:

– Excluding 6 observation windows, where the coverage percentage is in any
case greater than 54%, the KPI1 is almost satisfied with an average value of

32 A. Calabró et al.

Table 4. Experiment results: second round

64.80%. The implemented changes in the access control policy provide a big
improvement to this KPI and confirm that now the access control policy is
more close to the real booking behavior of different users (Table 4).

– From the detailed analysis of the data collected for KPI1.1, KPI1.2 and
KPI1.3 emerges that: KPI1.3 is still most of the times satisfied (a part from
5 observation windows where the percentage of coverage in any case greater
than 11%); percentage of accepted booking requests from Master Students
is increased on average (average value is 39.24%) and only in 7 observation
windows the value is less than the boundary 36%, but in any case greater
than 26%. The KPI1.2 is still not satisfied with values low than the estab-
lished 6%. In such specific case, by analyzing the data of Professors booking
requests (see fiftht and seventh column) it is evident that in any case Profes-
sors rarely ask for booking Multimedia Laboratory. To improve this situation
alternative way of modifying the access policy should be considered.

– The daily number of allowed requests in each time slot (i.e. second, seventh
and ninth column with bottom label KPI2) are still always less or equal
than 25 and therefore KPI2 always satisfied. However, the number of allowed
requests for Master Students is improved a lot with values varying from 12 to
24 with an average of 18,12. This means a good improvement for the resource

Monitoring of Access Control Policy for Refinement and Improvements 33

allocation for Master and PhD Students even if the situation for Professors
remain almost unchanged.

Of course further improvements to the access control policy could be possible
in particular for improving the resource allocation during the 9-13 slot where the
Multimedia Laboratory remains almost empty. For instance providing parallel
booking slot sessions and so on. However this would be a simple experiment to
illustrate the importance and the potentialities of a Policy Monitoring Infrastruc-
ture inside an access control systems. Indeed without such a feature the analyzed
data were not available and improvements not easily identifiable.

5 Related Works

This work spans over several research directions, including: monitoring of dis-
tributed systems and access control system validation.

5.1 Access-Control

In the last decades a large variety of policies and policy models have been
proposed to define authorized operations on specific resources. Well known
examples of access control models include Mandatory Access Control (MAC)
Model, Discretionary Access Control (DAC) Model, Role-Based Access Control
(RBAC) Model and more recently eXtensible Access Control Markup Language
(XACML) conforming services and applications. Many framework have been pre-
sented for specification and validation of access control policies [13–15]. Some
works such as [13] use UML based models for expressing role based access control
on domain concepts and provide automated facilities for translating these models
into XACML code. Other works extract information from business process mod-
els to formulate a set of XACML based security policies [16] or derive process-
related RBAC models from process execution histories [17]. These models do
not consider policy detection and management mechanisms in large and complex
environments able to detect inconsistencies of policy specifications and allow pol-
icy adaptability to evolving contextual behaviour or technological environment.
Some proposals representing an attempt to address this issue are the works
in [6,18]. Specifically, the authors of [6] present a dynamic policy management
process and access management system that integrates the analysis of user man-
agement data as well as contextual data. Similarly to our approach, this work
addresses policy recommendations based on contextual data and KPI validation
but it relies on mining engine more than on adaptable and flexible monitor-
ing facilities. The work in [18] presents a self adaptive authorization framework
to automatically identifying security flaws and autonomously change the access
control policy configuration. Similarly to our approach this framework uses mon-
itoring facilities of the authorization system to identify abnormal behaviour and
is compliant with RBAC/ABAC authorization infrastructure. Differently from
[18], the main goal of the policy monitoring infrastructure proposed in this paper
is not to implement self adaptation but providing feedbacks to policy validators
for updating and refining policies according to contextual changes.

34 A. Calabró et al.

5.2 Monitoring

Several general-purpose monitoring proposals are currently available, which can
be mainly divided into two groups: those that are embedded in the execution
engine such as [19,20] and those that can be integrated into the execution frame-
work as an additional component such for instance [21]. Both the solutions have
specific advantages. For sure, an embedded solution reduces the performance
delay of the execution framework, mainly in terms of interactions and commu-
nication time. Coverage indicators can be directly evaluated by the execution
framework, which can also execute corrective actions in case of important devi-
ations. The main disadvantage of these approaches is the lack of flexibility both
in the data collection, coverage measures definition and language adopted. Usu-
ally, in these proposals all the interested parameters, have to be predefined and
modeled directly into the execution engine, by means of specific editors, and
are dependent on the notation used for the policy definition. Thus any change
requires to redesign or improve the execution engine itself, preventing in such
manner the possibility of dynamic modification.

Among the additional monitor facility in this paper we refer to the monitoring
framework called Glimpse [12], which is extremely flexible and adaptable to
various scenarios and SOA architecture patterns.

6 Discussion and Conclusions

In this paper we proposed a Policy Monitoring Infrastructure to dynamically
validate and monitor the actual resources access and users behavior in order
to update, correct or improve the policy specification in granting/denying the
accesses. Through the proposal of this paper policy validators can have a better
knowledge of the actual policy usage, define and on-line calculate possible key
performance indicators (KPIs) useful to adjust the policies and detect possible
policy vulnerabilities or outdated rules.

The results collected in the experiment demonstrated the feasibility of
the proposal and highlighted some of the potentialities of the Policy Monitor
Infrastructure. Indeed without such a feature most of the weaknesses evidenced
in the experiment and suggestions for access control policy improvements were
not easily identifiable.

In its simplicity the experiment open the path for further improvements of
the proposed infrastructure. As future work we would like to integrate in the
Infrastructure other coverage criteria, which can be more focused on the pecu-
liarities of the access control system adopted in the different industrial context.
We would like also to extend the Policy Monitoring Infrastructure considering
different access and usage control policy specification languages. Finally we are
planning to include in the Infrastructure a component able to automatically
infer, from the coverage data collected, an alternative operational access control
policy so to automatically validate and assess the original the XACML policy
against the modification or changes experienced in the real world usage. This can

Monitoring of Access Control Policy for Refinement and Improvements 35

help the policy validators to get a clearer idea of the constraints and permissions
expressed in the policy and identify the possible improvements or modifications.

Concerning threats to validity of the presented experiment, four aspects can
be considered: the Rule Entities generation, user profiling for the simulation set
up, the KPIs specification and the derivation of the XACML requests. Indeed,
the coverage criterion, the sample of users selected during the interview stage
and the KPIs defined may have influenced the reported results. Moreover due
to manually derived XACML requests as well as the random selection of test
cases in each observation windows, could be that different choices might have
provided different effectiveness results. However the experiment would only be
an example of Policy Monitoring Infrastructure usage.

Acknowledgments. This work has been partially supported by the GAUSS national
research project (MIUR, PRIN 2015, Contract 2015KWREMX).

References

1. OASIS: Extensible Access Control Markup Language (XACML) version 2.0,
February 2005

2. Martin, E., Xie, T., Yu, T.: Defining and measuring policy coverage in testing access
control policies. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307,
pp. 139–158. Springer, Heidelberg (2006). https://doi.org/10.1007/11935308 11

3. Bertolino, A., Daoudagh, S., El Kateb, D., Henard, C., Le Traon, Y., Lonetti, F.,
Marchetti, E., Mouelhi, T., Papadakis, M.: Similarity testing for access control.
Inf. Softw. Technol. 58, 355–372 (2015)

4. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Schilders, L.: Automated
testing of extensible access control markup language-based access control systems.
IET Softw. 7(4), 203–212 (2013)

5. Calabrò, A., Lonetti, F., Marchetti, E.: Access control policy coverage assessment
through monitoring. In: Proceedings of TELERISE 2017 Workshops, Trento, Italy,
12 September 2017 (2017, to apper)

6. Hummer, M., Kunz, M., Netter, M., Fuchs, L., Pernul, G.: Adaptive identity
and access management–contextual data based policies. EURASIP J. Inf. Secur.
2016(1), 19 (2016)

7. Rapps, S., Weyuker, E.: Selecting software test data using data flow information.
IEEE Trans. Softw. Eng. SE-11(4), 367–375 (1985)

8. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366–427 (1997)

9. Bertolino, A., Marchetti, E., Morichetta, A.: Adequate monitoring of service com-
positions. In: Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE 2013, pp. 59–69 (2013)

10. Bertolino, A., Calabró, A., Lonetti, F., Marchetti, E.: Towards business process
execution adequacy criteria. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD
2016. LNBIP, vol. 238, pp. 37–48. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-27033-3 3

11. Bertolino, A., Le Traon, Y., Lonetti, F., Marchetti, E., Mouelhi, T.: Coverage-based
test cases selection for XACML policies. In: Proceedings of ICST Workshops, pp.
12–21 (2014)

https://doi.org/10.1007/11935308_11
https://doi.org/10.1007/978-3-319-27033-3_3
https://doi.org/10.1007/978-3-319-27033-3_3

36 A. Calabró et al.

12. Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., Sabetta, A.: Towards a model-
driven infrastructure for runtime monitoring. In: Troubitsyna, E.A. (ed.) SERENE
2011. LNCS, vol. 6968, pp. 130–144. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24124-6 13

13. Daoudagh, S., El Kateb, D., Lonetti, F., Marchetti, E., Mouelhi, T.: A toolchain
for model-based design and testing of access control systems. In: 2015 3rd Interna-
tional Conference on Model-Driven Engineering and Software Development (MOD-
ELSWARD), pp. 411–418. IEEE (2015)

14. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: An automated testing
framework of model-driven tools for XACML policy specification. In: 2014 9th
International Conference on the Quality of Information and Communications Tech-
nology (QUATIC), pp. 75–84. IEEE (2014)

15. Ferraiolo, D., Atluri, V., Gavrila, S.: The policy machine: a novel architecture
and framework for access control policy specification and enforcement. J. Syst.
Architect. 57(4), 412–424 (2011)

16. Wolter, C., Schaad, A., Meinel, C.: Deriving XACML policies from business
process models. In: Weske, M., Hacid, M.-S., Godart, C. (eds.) WISE 2007.
LNCS, vol. 4832, pp. 142–153. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-77010-7 15

17. Baumgrass, A., Schefer-Wenzl, S., Strembeck, M.: Deriving process-related RBAC
models from process execution histories. In: 2012 IEEE 36th Annual Computer
Software and Applications Conference Workshops, pp. 421–426, July 2012

18. Bailey, C., Chadwick, D.W., De Lemos, R.: Self-adaptive authorization framework
for policy based RBAC/ABAC models. In: 2011 IEEE Ninth International Confer-
ence on Dependable, Autonomic and Secure Computing (DASC), pp. 37–44. IEEE
(2011)

19. Daoudagh, S., Lonetti, F., Marchetti, E.: Assessment of access control systems
using mutation testing. In: Proceedings of TELERISE, pp. 8–13 (2015)

20. Mouelhi, T., El Kateb, D., Le Traon, Y.: Chapter five-inroads in testing access
control. Adv. Comput. 99, 195–222 (2015)

21. Carvallo, P., Cavalli, A.R., Mallouli, W., Rios, E.: Multi-cloud applications security
monitoring. In: Au, M.H.A., Castiglione, A., Choo, K.-K.R., Palmieri, F., Li, K.-C.
(eds.) GPC 2017. LNCS, vol. 10232, pp. 748–758. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57186-7 54

https://doi.org/10.1007/978-3-642-24124-6_13
https://doi.org/10.1007/978-3-642-24124-6_13
https://doi.org/10.1007/978-3-540-77010-7_15
https://doi.org/10.1007/978-3-540-77010-7_15
https://doi.org/10.1007/978-3-319-57186-7_54
https://doi.org/10.1007/978-3-319-57186-7_54

	Monitoring of Access Control Policy for Refinement and Improvements
	1 Introduction
	2 Background
	2.1 XACML and Access Control Systems
	2.2 Adequacy Criteria and Coverage

	3 Policy Monitoring Infrastructure
	4 Example
	4.1 Example Description
	4.2 Results

	5 Related Works
	5.1 Access-Control
	5.2 Monitoring

	6 Discussion and Conclusions
	References

