
LN
BI

P
30

2

10th International Conference, SWQD 2018
Vienna, Austria, January 16–19, 2018
Proceedings

Software Quality
Methods and Tools for Better
Software and Systems

Dietmar Winkler
Stefan Biffl
Johannes Bergsmann (Eds.)

 123

Lecture Notes
in Business Information Processing 302

Series Editors

Wil M.P. van der Aalst
Eindhoven University of Technology, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Dietmar Winkler • Stefan Biffl
Johannes Bergsmann (Eds.)

Software Quality

Methods and Tools for Better
Software and Systems

10th International Conference, SWQD 2018
Vienna, Austria, January 16–19, 2018
Proceedings

123

Editors
Dietmar Winkler
Vienna University of Technology
Vienna
Austria

Stefan Biffl
Vienna University of Technology
Vienna
Austria

Johannes Bergsmann
Software Quality Lab GmbH
Linz
Austria

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-71439-4 ISBN 978-3-319-71440-0 (eBook)
https://doi.org/10.1007/978-3-319-71440-0

Library of Congress Control Number: 2017959622

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-4743-3124

Message from the General Chair

The Software Quality Days (SWQD) conference and tools fair started in 2009 and has
grown to be the biggest conference on software quality in Europe with a strong
community. The program of the SWQD conference is designed to encompass a
stimulating mixture of practical presentations and new research topics in scientific
presentations as well as tutorials and an exhibition area for tool vendors and other
organizations in the area of software quality.

This professional symposium and conference offer a range of comprehensive and
valuable opportunities for advanced professional training, new ideas, and networking
with a series of keynote speeches, professional lectures, exhibits, and tutorials.

The SWQD conference is suitable for anyone with an interest in software quality,
such as software process and quality managers, test managers, software testers, product
managers, agile masters, project managers, software architects, software designers,
requirements engineers, user interface designers, software developers, IT managers,
release managers, development managers, application managers, and similar roles.

The guiding conference topic of SWQD 2018 was “Software Quality 4.0: Methods
and Tools for Better Software and Systems,” as changed product, process, and service
requirements, e.g., distributed engineering projects, mobile applications, involvement
of heterogeneous disciplines and stakeholders, frequent changing requirements,
extended application areas, and new technologies include new challenges and might
require new and adapted methods and tools to support quality assurance activities early.

January 2018 Johannes Bergsmann

Message from the Scientific Program Chair

The 10th Software Quality Days (SWQD) conference and tools fair brought together
researchers and practitioners from business, industry, and academia working on quality
assurance and quality management for software engineering and information tech-
nology. The SWQD conference is one of the largest software quality conferences in
Europe.

Over the past years a growing number of scientific contributions were submitted to
the SWQD symposium. Starting in 2012 the SWQD symposium included a dedicated
scientific program published in scientific proceedings. For the seventh year we received
16 high-quality submissions from researchers across Europe which were each
peer-reviewed by three or more reviewers. Out of these submissions, the editors
selected six contributions as full papers, for an acceptance rate of 38%. Furthermore,
two short papers, representing promising research directions, were accepted to spark
discussions between researchers and practitioners at the conference. This year we
invited two scientific keynote speakers for the scientific program, who contributed with
two invited papers.

The main topics from academia and industry focused on systems and software
quality management methods, improvements of software development methods and
processes, latest trends and emerging topics in software quality, and testing and soft-
ware quality assurance.

This book is structured according to the sessions of the scientific program following
the guiding conference topic “Software Quality 4.0: Methods and Tools for better
Software and Systems”:

• Safety and Security
• Requirements Engineering and Requirements-Based Testing
• Software Requirements and Architecture
• Crowdsourcing in Software Engineering
• Experimentation in Software Engineering
• Smart Environments

January 2018 Stefan Biffl

Organization

SWQD 2018 was organized by Software Quality Lab GmbH and the Vienna University
of Technology, Institute of Software Technology and Interactive Systems.

Organizing Committee

General Chair

Johannes Bergsmann Software Quality Lab GmbH

Scientific Program Chair

Stefan Biffl Vienna University of Technology

Proceedings Chair

Dietmar Winkler Vienna University of Technology

Organizing and Publicity Chair

Petra Bergsmann Software Quality Lab GmbH

Program Committee

SWQD 2018 established an international committee of well-known experts in software
quality and process improvement to peer-review the scientific submissions.

Maria Teresa Baldassarre University of Bari, Italy
Miklos Biro Software Competence Center Hagenberg, Austria
Matthias Book University of Iceland, Iceland
Ruth Breu University of Innsbruck, Austria
Maya Daneva University of Twente, The Netherlands
Oscar Dieste Universidad Politecnica de Madrid, Spain
Frank Elberzhager Fraunhofer IESE, Germany
Michael Felderer University of Innsbruck, Austria
Gordon Fraser University of Sheffield, UK
Ahmad Nauman Ghazi Blekinge Institute of Technology, Sweden
Volker Gruhn Universität Duisburg-Essen, Germany
Roman Haas Technical University of Munich, Germany
Jens Heidrich Fraunhofer IESE, Germany
Frank Houdek Daimler AG, Germany
Slinger Jansen Utrecht University, The Netherlands

Marcos Kalinowski Pontifical Catholic University of Rio de Janeiro
(PUC-Rio), Brazil

Petri Kettunen University of Helsinki, Finland
Marco Kuhrmann Clausthal University of Technology, Germany
Ricardo Machado CCG-Centro de Computação Gráfica, Portugal
Eda Marchetti ISTI-CNR, Italy
Emilia Mendes Blekinge Institute of Technology, Sweden
Daniel Méndez Fernández Technische Universität München, Germany
Paula Monteiro Universidade do Minho, Portugal
Juergen Muench Reutlingen University, Germany
Oscar Pastor Lopez Universitat Politecnica de Valencia, Spain
Dietmar Pfahl University of Tartu, Estonia
Rick Rabiser Johannes Kepler University Linz, Austria
Rudolf Ramler Software Competence Center Hagenberg, Austria
Andreas Rausch Technische Universität Clausthal, Germany
Barbara Russo Free University of Bolzano/Bozen, Italy
Ina Schieferdecker Fraunhofer FOKUS/TU Berlin, Germany
Miroslaw Staron University of Gothenburg, Sweden
Rini Van Solingen Delft University of Technology, The Netherlands
Andreas Vogelsang Technische Universität Berlin, Germany
Stefan Wagner University of Stuttgart, Germany
Dietmar Winkler Vienna University of Technology, Austria

Additional Reviewers

Tiago Amorim
Michael Huber
Clemens Sauerwein

X Organization

Contents

Safety and Security

Security Challenges in Cyber-Physical Production Systems 3
Peter Kieseberg and Edgar Weippl

Monitoring of Access Control Policy for Refinement and Improvements 17
Antonello Calabró, Francesca Lonetti, and Eda Marchetti

Requirements Engineering and Requirements-Based Testing

On Evidence-Based Risk Management in Requirements Engineering 39
Daniel Méndez Fernández, Michaela Tießler,
Marcos Kalinowski, Michael Felderer, and Marco Kuhrmann

Requirement-Based Testing - Extracting Logical Test Cases
from Requirement Documents. 60

Harry M. Sneed

Crowdsourcing in Software Engineering

Expert Sourcing to Support the Identification of Model Elements
in System Descriptions . 83

Marta Sabou, Dietmar Winkler, and Sanja Petrovic

Software and Systems Architecture

Are Your Requirements Covered? . 103
Richard Mordinyi

High Quality at Short Time-to-Market: Challenges Towards This
Goal and Guidelines for the Realization . 121

Frank Elberzhager and Matthias Naab

Prioritizing Corrective Maintenance Activities for Android Applications:
An Industrial Case Study on Android Crash Reports 133

Valentina Lenarduzzi, Alexandru Cristian Stan, Davide Taibi,
Gustavs Venters, and Markus Windegger

http://dx.doi.org/10.1007/978-3-319-71440-0_1
http://dx.doi.org/10.1007/978-3-319-71440-0_2
http://dx.doi.org/10.1007/978-3-319-71440-0_3
http://dx.doi.org/10.1007/978-3-319-71440-0_4
http://dx.doi.org/10.1007/978-3-319-71440-0_4
http://dx.doi.org/10.1007/978-3-319-71440-0_5
http://dx.doi.org/10.1007/978-3-319-71440-0_5
http://dx.doi.org/10.1007/978-3-319-71440-0_6
http://dx.doi.org/10.1007/978-3-319-71440-0_7
http://dx.doi.org/10.1007/978-3-319-71440-0_7
http://dx.doi.org/10.1007/978-3-319-71440-0_8
http://dx.doi.org/10.1007/978-3-319-71440-0_8

Experimentation in Software Engineering

Evaluation of an Integrated Tool Environment for Experimentation
in DSL Engineering. 147

Florian Häser, Michael Felderer, and Ruth Breu

Smart Environments

Leveraging Smart Environments for Runtime Resources Management 171
Paolo Barsocchi, Antonello Calabró, Francesca Lonetti,
Eda Marchetti, and Filippo Palumbo

Author Index . 191

XII Contents

http://dx.doi.org/10.1007/978-3-319-71440-0_9
http://dx.doi.org/10.1007/978-3-319-71440-0_9
http://dx.doi.org/10.1007/978-3-319-71440-0_10

Safety and Security

Security Challenges in Cyber-Physical
Production Systems

Peter Kieseberg1(B) and Edgar Weippl2

1 SBA Research, Vienna, Austria
pkieseberg@sba-research.org

2 TU Wien, Vienna, Austria
edgar.weippl@tuwien.ac.at

Abstract. Within the last decade, Security became a major focus in the
traditional IT-Industry, mainly through the interconnection of systems
and especially through the connection to the Internet. This opened up
a huge new attack surface, which resulted in major takedowns of legit-
imate services and new forms of crime and destruction. This led to the
development of a multitude of new defense mechanisms and strategies,
as well as the establishing of Security procedures on both, organizational
and technical level. Production systems have mostly remained in iso-
lation during these past years, with security typically focused on the
perimeter. Now, with the introduction of new paradigms like Industry
4.0, this isolation is questioned heavily with Physical Production Sys-
tems (PPSs) now connected to an IT-world resulting in cyber-physical
systems sharing the attack surface of traditional web based interfaces
while featuring completely different goals, parameters like lifetime and
safety, as well as construction. In this work, we present an outline on the
major security challenges faced by cyber-physical production systems.
While many of these challenges harken back to issues also present in tra-
ditional web based IT, we will thoroughly analyze the differences. Still,
many new attack vectors appeared in the past, either in practical attacks
like Stuxnet, or in theoretical work. These attack vectors use specific
features or design elements of cyber-physical systems to their advantage
and are unparalleled in traditional IT. Furthermore, many mitigation
strategies prevalent in traditional IT systems are not applicable in the
industrial world, e.g., patching, thus rendering traditional strategies in
IT-Security unfeasible. A thorough discussion of the major challenges in
CPPS-Security is thus required in order to focus research on the most
important targets.

Keywords: Cyber-physical systems · CPS
Cyber-physical production systems · CPPS · Industry 4.0
Advanced manufacturing · Security

1 Introduction

With the continuing digitalization of our economy, even the more traditional
branches of the producing industry have become increasingly connected to net-
c© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 3–16, 2018.
https://doi.org/10.1007/978-3-319-71440-0_1

4 P. Kieseberg and E. Weippl

works in general, and specifically the Internet. While this brings a lot of new
changes with respect to new products and services, it also becomes an increasing
challenge for the security of said systems. In the past, several spectacular attacks
were launched against industrial environments, most notably the STUXNET [15]
malware that aimed at and succeeded in infiltrating a specially sealed environ-
ment and carried out an attack that was specifically designed to cause severe
damage in an unobtrusive manner. Still, while STUXNET [15] might be the
most famous example, typical production systems contain an increasing amount
of networking infrastructure, thus becoming cyber-physical systems. This espe-
cially means that the systems are not sealed off by a so-called air-gap anymore,
but have digital interfaces to the outside world, sometimes even at the compo-
nent level. Thus, also the attack landscape changed drastically from focusing
on getting physical access to a plant towards fully digital attacks carried out
through insecure entry points, which are often not even known to the factory
operator. In addition, this increasing attack surface is not only a purely finan-
cial problem for the operator, but can even have a massive effect on national
security in case when infrastructures critical for the nation (e.g., power plants,
grid components) are attacked. The recent attacks on the Ukrainian power grid
may serve as a perfect example [16]. Thus, in this paper we will discuss the
implications of introducing networking equipment into industrial environments
from a security perspective. One major focus will be the secure introduction of
networks into CPS, while the other major focus lies in protecting the production
system engineering process, a topic that has not been in the focus of research
until now. While this paper cannot give solutions to most of these problems,
we will discuss potential solution strategies that can be the starting point for
further research.

The rest of this paper is structured as follows: In Sect. 2 we discuss security
issues in industrial environments, including a separation from IoT-systems, which
are often mingled. Section 3 deals with the issue of security in the Production
System Engineering process (PSE process), concerning both, the introduction of
security as a step inside the PSE, as well as securing the PSE itself. The paper
is summarized and concluded in Sect. 4.

2 Security Challenges in Industrial Environments

In this section we will discuss major security challenges in cyber-physical sys-
tems, especially with respect to their counterparts in traditional web based sys-
tems.

2.1 Industrial Environments Versus IoT

When challenging the issue of security in industrial systems, the discussion is
often mixed with the challenge of securing products and services based on the
“Internet of Things” (IoT), especially when dealing with the Industry 4.0 par-
adigm. Of course there are certain similarities between IoT and Industry 4.0

Security Challenges in Cyber-Physical Production Systems 5

installations, namely that they both often rely on the availability of cheap elec-
tronics that can be used as sensors, actuators, control mechanisms or other
cyber-physical elements. This similarity is often extended to the whole field of
introducing security to industrial systems, still, in our opinion there are major
differences between cyber-physical production environments and typical IoT-
installations that reflect on the security measures that can be enforced.

One major difference lies in the typical life span of either of the two instal-
lations. While industrial environments are designed for long life spans typically
ranging around 40 to 50 years, IoT installations are seen as more of an end user
focused thing with typical consumer life spans of some few years. Of course this
is not always the case as e.g., in building automation. Still, this of course does
not mean that a production system is never changed during its life span and it
must also be taken into account that many parts will be exchanged for spare
parts during the lifetime of such an environment, still, many parameters and
major parts will still be in place after decades, leading to the problem of heav-
ing to deal with insecure legacy systems, where sometimes even the producer
might long have been gone. This issue also leads to the problem of heterogeneity
in industrial environments, as decades of development and technical progress
might lie between different components inside the same factory, an issue that is
currently not typical for IoT-systems.

Another major difference lies in the pricing of the components, where current
IoT environments focus on low-cost sensors and modules that can be applied
in large quantities, whereas industrial modules are often expensive. This also
disallows the exchange of insecure components that cannot be fixed or isolated
in industrial environments, as opposed to the typical IoT installation.

Certification is another issue that is very typical for industrial environments,
especially regarding the issue of safety, especially when human lives are con-
cerned, which is rather typical for environments like steel mills and similar
installations. Most certifications require the owner of the factory to undergo
re-certification for every major change, and often even in case of minor changes,
applied to the production system. This is not only pertaining to changes on the
hardware side, but also in case of software changes, making patching, which is a
typical security strategy in the IoT world, very expensive and time-consuming.
Thus, while IoT-systems are more similar to software-only systems with respect
to patching, industrial environments typically do not have this option. This is
additionally reinforced by the issue stated above on legacy systems that often
either lack the performance for introducing security measures, or where simply
even the knowledge on their internal system workings is lost throughout the
decades.

2.2 Challenges Regarding Software Development and Networking

In the modern world of traditional IT and network security, a multitude of
different mechanisms and strategies has been devised in order to provide security,
as well as to protect vital information. As outlined in Sect. 2.1, several standard

6 P. Kieseberg and E. Weippl

security strategies from the traditional software world cannot be applied that
easily in cyber-physical production environments.

One major difference to traditional IT systems, and one that is especially
critical for cyber-physical systems integrated with the Internet or other accessible
network interfaces, is the topic of patching. During the past year, the notion of
Secure Software Development Lifecycles (SSDLCs) [12] has become a de-facto
standard for the development of software, especially in critical environments,
but also in many standard applications [18]. One major aspect of these SSDLCs
is the notion of patching, i.e., finding and fixing bugs in software that is already
shipped to customers and applying the respective changes in the form of software
updates. The speed and quality of these fixes is a well-regarded measure for the
overall security fitness of the companies behind these products and the removal
of products from the SSDLC is typically regarded as discontinuation of said
product (e.g., Windows XP). The issues with patching in industrial environments
are manifold and ask for completely new strategies:

– Due to safety requirements, quick changes to parts of an industrial environ-
ment are typically not allowed, neither on the hardware, nor on the software
side. Depending on the regulations of the respective industry, re-certification
might become mandatory even in case of very small changes in the software,
thus introducing non-negligible costs and, even more problematic in the case
of patches, a considerable delay in the application of the patch.

– Due to the considerable life spans of industrial systems, a lot of legacy systems
can typically be found in older plants, for which no patches are delivered by
the vendors, or even the vendors themselves might not exist anymore.

– Especially in case of legacy systems with their outdated technology, the per-
formance of these systems is often not strong enough to cater for the require-
ments of modern security measures like strong end-to-end encryption of sys-
tem messages or digital signatures, as these operations are quite expensive in
nature.

– Industrial systems are very complex environments with a multitude of mod-
ules interacting with each other. Furthermore, many factories are one of a
kind, i.e., the selection of components, their interactions, specifications, but
even whole subsystems are unique. Therefore, patching a module inside such
a complex system can easily result in side effects that cannot be foreseen when
only considering the isolated module. Testing changes for such side effect is
practically impossible, changes to the system thus potentially dangerous.

– Another problem is the delivery of the patches: While modern systems often
rely on connection to the Internet, this is often not true for industrial plants.
Furthermore, many industrial production units do not allow for downtime,
which is a major issue with patching, especially when the component in ques-
tion is not made for being patched at all, i.e., techniques like hot-patching [20]
cannot be used.

Thus, one of the major challenges in the area of IT-Security for cyber-physical
production systems is the question, how to deal with prominent insecure modules
inside the factory. Furthermore, many protocols still in use do not cater for

Security Challenges in Cyber-Physical Production Systems 7

security needs at all. This is often due to the fact that at the time of construction
of the plant, security had not been an issue. Introducing security to such a system
is often problematic due to time constraints, e.g., in real-time systems, where the
overhead introduced by security measures like encrypted data transfer cannot
be tolerated. In addition, changes to the communication protocols introduce a
lot of additional changes in all the modules that communicate with the module
in question, leading to a cascade of additional changes to the system.

Traditionally, this security issue was solved by providing a so-called air-gap
between the different systems, i.e., the internal systems were not connected to
the Internet at all. Still, there are some problems with this strategy:

1. With the introduction of the Industry 4.0 paradigm, an increasing number
of modules require connection with each other or even (indirectly) with an
outside network.

2. Through the exchange of parts during the regular maintenance processes, new
interfaces can be introduced to modules. This is due to the fact that stan-
dard chip sets are typically used in order to lower costs. These standard chip
sets typically possess a minimum set of capabilities used by many customers,
in order to sell high volumes. Thus, a new spare part that was built to the
same requirements than the original one might, unbeknownst to the mainte-
nance crew, provide an additional networking interface that can be used by
attackers, thus expanding the attack surface.

3. Even in case of providing an air-gap, there have been successful attacks as
outlined by the Stuxnet attack, but also other instances [4].

Again, this challenge must be met with additional research on how to deal with
systems that were designed to be completely unreachable by external attackers
and therefore cannot provide the security measures required for modern inter-
connected environments. It must be noted that many of these problems are
especially prominent in brown-field scenarios, where existing factories with a lot
of existing legacy systems are upgraded, while some of these problems might be
mitigated in pure green-field scenarios by proactively selecting subsystems that
already take care about security issues.

2.3 Attack Detection and Security Models

The detection of attacks is one of the major issues when providing security to sys-
tems. In traditional IT systems, Intrusion Detection Systems (IDS) [2] together
with anti-virus software are typical measures for attack detection, as well as infor-
mation gathering on detected attacks. Many forms of intrusion detection have
been devised in the past, ranging from pure network profiling to anomaly-based
self-learning systems based on modern machine learning algorithms that work
by learning “typical behaviour” based on normal usage and then try to detect
uncommon traffic that might hint at an attack [6]. While IDSs are a typical mea-
sure in modern IT-systems, they can cause problems in industrial environments,
especially with the introduction of overhead. This is, again, especially problem-
atic in the case of real-time systems, where even minimal additional overhead is

8 P. Kieseberg and E. Weippl

non-negligible and, especially in combination with legacy systems, might lead to
damages to the system or even introduce safety issues. The same holds true for
scanners scanning for malware on the network or on the machines.

In order to be able to supply a comprehensive analysis of the whole reach of
different attacks, typical systems need to be analyzed and generalized into sets of
abstract models that can be used for the further analysis. This also includes the
modeling of the inherent attributes, especially target controls, side parameters
and requirements, in order to provide as generalized models as possible. To the
best of our knowledge, there exist no generalized models related to the security
of industrial systems to this date.

In order to be able to assess the security of a system based on a model, it
is not only required to model the system itself, but also the possible attackers
and the attack vectors, as well as the targets of attackers. Especially the latter
can be very different from normal IT-systems, as industrial systems are typically
far more vulnerable with respect to timing and small delays or small changes in
parameters (e.g., temperature control in a steel mill) can cause serious and some-
times irreparable damages. With these differences in targets, also the attacker
models will differ strongly compared to the typical attacker models of standard
IT-security, which requires further investigation. Furthermore, as industrial sys-
tems often possess completely different architectures when compared to normal
IT-systems, also the attack vectors require new models.

In addition, the cyber-physical world offers other classes of attacks: Due
to the complexity of the cyberphysical world and especially the criticality of
operations with respect to timing and other parameters, many new attack sce-
narios can be devised with major differences to typical goals in IT-Security. For
example, typically sensors send information on the state of a physical process
to a control unit that regulates the process by steering actuators, thus result-
ing in complex control loops. Most prominent example is the introduction of
manipulated sensor information into feedback loops, as done by the Stuxnet
malware [15]. The main issue, why this was such a successful attack, lies in the
complexity of the underlying physical process, which is only understood by a
small selection of experts. Furthermore, results are not binary in the physical
world: The machine does not “work or not work”, it might still work in case of
a successful attack, but not as optimal, outside of specifications or with higher
deterioration. One issue that has been previously identified as important issue is
the topic of detection of manipulated sensors. This new class of attacks, which
can be considered to be the “attacks of the future” with respect to industrial sys-
tems, need to be investigated before they can be modeled in the testing process,
since they are relatively new and, to this date, under-researched. Based on these
theoretical foundations, models need to be devised that can be incorporated into
automated testing processes.

2.4 Securing Data

Often overlooked, even from an expert perspective, the protection of data is a
highly critical aspect in industrial systems. This does not only adhere to the

Security Challenges in Cyber-Physical Production Systems 9

classical topic of protecting sensitive personal information in medical industrial
environments, but also includes data that is often overlooked: Control informa-
tion for the industrial process itself, as well as sensor information. Both data
streams are vital for the industrial process, not only for the flawless operation,
but the optimal setting of parameters is often secret allowing a company to e.g.,
produce cheaper than its competition. While the control units might be the same
for all competing companies on a specific market, the details on the settings thus
often constitute a well-protected company secret. With the introduction of net-
working to these control units, this secret information requires special protection,
as it is a valuable target for industrial espionage. Furthermore, an attacker could
also gain vital knowledge on the system by monitoring sensor data, as well as
even carry out specific attacks by manipulating older sensor data stored. These
data assets need to be modeled for any automated testing process. Furthermore,
another attack vector that is often overlooked is the testing process itself. When
testing systems, they typically need to set all operational parameters in order for
realistic testing, which could reveal a lot of industrial knowledge to the tester.
Currently, there are no approaches tackling this problem [7].

Today, data in industrial environments is not specially secured, as the main
paradigm that was in force when designing the foundations of such systems
was that the system (and thus the data) is strictly separated from any outside
network, thus making special data protection unnecessary. With the advent of
the Industrie 4.0 paradigm, this construction paradigm has changed drastically,
still, this has not been reflected much in current designs of data stores [11].
General concepts on how to securely store information for industrial processes,
especially considering control and steering parameters which are often neglected
by IT-analysts in their risk assessment, thus remains an open research question,
including designs for secure data stores that are specifically tailored to the needs
and requirements of industrial systems.

Another research aspect related to data protection that requires further aca-
demic research is the topic of provable deletion. The topic of provable deletion
of data, i.e., forms of deletion that do not allow data restore, has been neglected
in Security research for the longest time. Just recently, this topic gained some
attention in research (as well as in the industry) due to the General Data Protec-
tion Regulation (GDPR) [8] that requires operators to provable delete sensitive
private information on request by the owner of said information (typically the
data subject). While this feature is already explicitly required by the GDPR,
the regulation does not give any further details on this issue, which leaves a huge
gap for research: Neither does it state, what provable deletion actually is, nor
does it give guidelines on how to achieve a process compliant with the GDPR.
Regarding the definition, this is especially a problem for complex systems that
store data on many levels and aggregation forms, including backups for disaster
recovery. Especially when using more complex mechanisms like databases, which
typically need to comply with concepts of data redundancy, crash recovery and
so forth, no applicable deletion process exists to this date that works against all
known forms of digital forensics, short of physical destruction of the equipment

10 P. Kieseberg and E. Weippl

of course [9]. Since testing is often done using real-world data and control infor-
mation in order to simulate the real-world environment, the test bed amasses
sensitive data, which is required to be deleted after the end of the test procedure,
or sometimes even after each test run. Thus, it is important to research methods
for effective data deletion in complex systems in order to enhance the resilience
of the test bed with respect to data leakage.

3 Security Challenges for the PSE Process

One issue that until now has not received the respect and attention it deserves
lies within the way plants are designed and constructed, the Production System
Engineering (PSE) process. This process lies at the very heart of the develop-
ment of new production lines (green field), as well as in the processes regarding
upgrading and re-designing existing plants (brown field). Especially the latter
one becomes increasingly important in an economy that is highly driven by
savings and cost-efficiency, as well as by the introduction of new products and
services based on the utilization of (sensor) data and other information. In this
section we will discuss two major issues, (i) the introduction of security as field
of expertise into the PSE process and (ii) the protection of the PSE process itself
against manipulation and industrial espionage.

3.1 Current Approaches in Production System Engineering

Planning industrial environments is a very complicated task and requires the
incorporation of experts from different fields like mechanical and electrical
engineering. In practice, the processes are planned using a waterfall model as
described in standard literature, such as the VDI guidelines 2221 [22] and VDI
2206 [21]. Contrary to this, the applied process is often quite different from this
strict waterfall model, as changes in subsequent steps need experts involved at
an earlier stage to re-iterate their work. In addition to the problem of result-
ing mismatches between plans and actions, the whole environment has changed
considerably in the past years, resulting in increasing parallelization of engi-
neering activities [3] and an increased number of engineering cycles required in
order to arrive with a production system model applicable to production system
installation [13].

Furthermore, production system engineering tends to solve discipline-specific
steps in a predefined (but project-dependent) sequence [10,17], during which
the subsequent discipline bases their engineering decisions on the results of the
previous steps. Usually, there is no review of previous design decisions. Thereby,
it may happen that prior engineering decisions limit the decision options of
later development phases. This is especially challenging for the integration of
data security considerations as an additional engineering discipline [23], since
decisions taken during the production process design, mechanical engineering,
and electrical engineering may limit applicable security measures in a way that
does not allow to fulfill security requirements at all.

Security Challenges in Cyber-Physical Production Systems 11

3.2 Introducing Security to PSE

Currently, the development of industrial production systems follows a waterfall
model with feedback mechanisms that require a significant manual interaction
and lack clear documentation. While this can be a problem for the design process
as a whole, it is a fundamental problem for defining a secure environment or
putting the required security measures into place, as even very small changes
on the functional level in any design step can have a huge impact on the over-
all system. For example, an engineer might exchange a part for a functionally
equivalent one, which just happens to have another chip set integrated that addi-
tionally provides a wireless LAN interface while having no impact on any other
step. Thus, also last-minute changes on-site during the deployment phase must
be tracked and incorporated in the security analysis.

One issue with the current model is the introduction of software at the end of
the design chain after all other steps have already been finished, thus not allow-
ing the introduction of hardware-based measures (e.g., de-coupling and unlinking
of networks, hardware security appliances) without reverting to a previous step.
Also, introducing security at this late step means that many previous design deci-
sions have been made without the notion of security in mind. However, security
cannot be introduced in one of the earlier steps alone, as they are lacking the
information of the latter design phases, as outlined above. The issue is that every
step introduces changes to the overall system that directly reflect on security,
therefore, security needs to be considered in each step, including feedback loops
to all other steps in order to solve newly arising risks at the most suitable stage.
How to introduce such cross-domain solutions into PSE is currently an open
research question, next to how to make this process that spans several very dif-
ferent domains, ranging from machine engineering over electronics to IT an agile
one.

3.3 Securing the PSE Process

While Sect. 3.2 discussed the challenges of introducing security as a field of exper-
tise into the design process of CPPSs, in this section we will briefly outline the
issue of securing the PSE process itself.

The main issue is that, in contrast to the classical example of medical research
in hospitals, many experts from several different domains, each with its own set
of tools, taxonomies and design obstacles, need to work together, while every
change in one of the domains potentially results in changes in the other domains.
While this effect is also present in current environments, the problem is gaining
another level of complexity when introducing the agile PSE process required for
tackling security issues (see Sect. 3.2), as the number of changes going back and
forth will increase drastically. The problem is becoming even more complex since,
as outlined before, especially in security, seemingly small functional changes can
result in the emerging of serious new attack vectors and/or vulnerabilities.

Furthermore, as this issue can boil down to a question of accountability, it
must be ensured that the mechanisms provide actual prove as to who is the

12 P. Kieseberg and E. Weippl

person responsible. Thus, many open research questions with respect to provid-
ing integrity focus on developing mechanisms that provide a provable tracking
of changes in the design process. As an additional requirement, many of the
experts in such a process have equal rights and, due to the high level of special-
ization in each domain, there is no central authority available to decide on the
different changes. The actual state of the PSE process must be determined in a
distributed manner, i.e., all experts have to agree on a specific state as the valid
one. On possible solution could lie in the adoption of smart contracts and other
blockchain-based approaches, as they provide exactly this functionality in other
domains [5]. Furthermore, in order to seal certain parts of the PSE, some form
of rights management and access control must be devised that can be applied
to a highly dynamic set of assets and users, without requiring a central steering
instance. None of the involved parties can assess how and to what extend the
knowledge of other domains needs to be protected, i.e., each expert has to have
full control over what to share and how to guard the assets. This is an open
research issue in the scientific community, but possibly this could be combined
with the blockchain based approaches in order to generate smart contracts that
provide access control and rights management.

With respect to securing interfaces, the main differences between standard IT
systems and the systems prevalent in industrial environments come into play:
While standard IT systems change quickly, industrial systems are in use for
decades. Also, it is not possible to make significant changes to industrial sys-
tems once they are deployed, which also holds true for a lot of industry-specific
planning and design software used in PSE. Thus, a secure agile PSE process
requires its tools to be shielded from each other, as a weakness in one of them
could impact the others, e.g., by extracting knowledge from the PSE process or
introducing changes invisible to other parties. While the latter is addressed by
new technologies for tracking changes, it is clear that the agile PSE process must
itself be secured against weaknesses, opening up a selection of specific research
questions that need to be tackled.

3.4 Securing PSE Information

Industrial espionage and the loss of knowledge to competitors is one of the major
obstacles in cooperative design projects. This problem is increasing further due
to the ongoing specialization w.r.t. the integration of IT technologies into clas-
sical systems. Consequently, more and more experts have to get involved in the
design process. This development will continue when implementing agile PSE
processes, including cross-domain topics like security which extend the amount
of interactions while reducing the ability to put functionalities into black boxes
(i.e., hiding details). With respect to security, a lot of this hidden functional-
ity must be disclosed in order to analyze and model the attack surface as well
as possible attack vectors. Furthermore, certain steps might be outsourced to
other partners, either due to cost issues or for political reasons (e.g., manda-
tory involvement of local subcontractors). If numerous different partners that

Security Challenges in Cyber-Physical Production Systems 13

probably are competitors in other tenders are working on the same project, the
protection of know-how is of the utmost importance.

With respect to the protection of knowledge, major research issues which are
not satisfactorily solved to date are to be found in automating the measuring of
protection requirements w.r.t. derived information, e.g., in the course of aggre-
gations and other transformations. Furthermore, the question of how to abstract
planning information in order to provide knowledge protection is unanswered.

One approach to knowledge protection in PSE is the generation of sealed
development environments. While such approaches exist in other domains,
mainly in the medical sector, the requirements and side parameters regarding
such an environment are very different for the PSE process, mainly due to the
issue that there is no dedicated data owner facing a selection of data analy-
ses. The agile PSE process requires an environment consisting of many different
experts that provide knowledge either directly or indirectly by applying changes
and making decisions. This also means that the knowledge to be protected is far
more abstract than, e.g., medical data records. Currently it is unclear how to
model and quantify this knowledge, therefore we plan to do extensive research
on this issue. Furthermore, sealed environments need to provide modular feature
sets, i.e., a wide selection of programs of which many are outdated, unsupported,
or non-standardized and user knowledge management. Channeling this complex-
ity into a sealed environment while allowing for updates and new features to be
introduced is very complicated and a challenging research task.

In addition, there is a certain amount of data that requires strict protection,
ranging from actual sensor information akin to data found in traditional med-
ical environments to meta-information and algorithms to specific configuration
information that possesses great value for the owner. In order to protect these
types of information, research in the area of data leak protection is required.
In contrast to other data-preserving technologies, data leak protection aims at
provably finding data leaks, i.e., users having access to data and distributing it
illegally. Two basic concepts have been proven to be especially promising, which
are (i) the use of obfuscation/diversification and (ii) the concept of watermark-
ing.

The basic idea behind obfuscation lies in making the information unintelli-
gible for any attacker, thus removing its value. While typically used to protect
code, i.e., by generating a version of the program that cannot be reversed eas-
ily [19], there are also strategies to obfuscate data [24]. The main issue with obfus-
cation, however, is that compared to cryptography the strength of the obfusca-
tion is typically not measurable [19]. Furthermore, these techniques target nor-
mal IT-environments and do not take the requirements of industrial systems,
e.g., performance-wise, into account. In addition, they target non-collaborative
environments where one side is seen as passive user, which is completely differ-
ent from partners in a cooperative development environment. Still, obfuscation
can play a vital part in the protection of algorithms, as well as diversifying soft-
ware environments, i.e., making the execution paths of a software installation
depending on external parameters like passwords, user names or even control

14 P. Kieseberg and E. Weippl

information in order to reduce the danger of class breaks. While these tech-
niques exist for traditional IT environments, there is still a lot of research to be
conducted for applying them in industrial environments.

Data leak detection through watermarking follows a completely different con-
cept. While defensive mechanisms like obfuscation and anonymization strife to
remove the value of the leaked information to the attacker (proactive measures),
watermarking is a reactive measure that aims at identifying exfiltrated data in
order to support legal measures. One of the main reasons is that even anonymized
data might still hold significant value and it might not be possible to reduce the
quality of information distributed to cooperating experts without destroying
the cooperation. Typical approaches in the literature aim at protecting large
amounts of structured data [25], e.g., records in a medical database. Many of
these approaches work by inserting additional data, e.g., by inserting new or
changing existing tuples [1] or by using the intrinsic features of the anonymiza-
tion process [14]. Still, these approaches do not work for the full range of informa-
tion that needs protection in industrial environments, especially not for control
or configuration information, which is often only of very small size and very
sensitive to even minor changes or loss of granularity as introduced by the types
of algorithms outlined above.

4 Conclusion

In this work we discussed the major issues of providing security in cyber-physical
production systems. The focus of our analysis was directed into two major direc-
tions, (i) the problem of introducing security into CPPS and the differences to
securing traditional IT-systems and (ii) introducing security into the production
system engineering process (PSE). Especially for the latter, we not only dis-
cussed the issue of designing secure systems within an agile process, but we also
discussed on how to secure the process itself with respect to manipulation and
industrial espionage. Both topics have been thoroughly neglected by academics
until now, but need to be considered as important issues when discussing the
hardening of critical systems.

In conclusion, the topic of providing in-depth security at a professional level,
comparable to the one achievable in traditional software environments, in cyber-
physical production systems still requires large efforts on the academic, but also
the industrial side. While in this work we focused on academic research ques-
tions, it must also be kept in mind that the work to adapt the results of such
research into real-life applications requires a lot of effort from the side of the
industry. With dwindling profits in both, the producing industries, as well as in
the production systems engineering industry, this will remain a problem. Still, as
many of these cyber-physical systems also represent critical national infrastruc-
ture, solutions for securing these systems need to be devised and implemented
soon.

Security Challenges in Cyber-Physical Production Systems 15

References

1. Agrawal, R., Kiernan, J.: Watermarking relational databases. In: Proceedings of
the 28th International Conference on Very Large Data Bases, pp. 155–166. VLDB
Endowment (2002)

2. Barry, B.I.A., Chan, H.A.: Intrusion detection systems. In: Stavroulakis, P., Stamp,
M. (eds.) Handbook of Information and Communication Security, pp. 193–205.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-04117-4 10

3. Barth, M., Biffl, S., Drath, R., Fay, A., Winkler, D.: Bewertung der offenheit von
engineering-tools. Open Autom. 4(13), 12–15 (2013)

4. Byres, E.: The air gap: SCADA’s enduring security myth. Commun. ACM 56(8),
29–31 (2013)

5. Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V.: Blockchain technology:
beyond bitcoin. Appl. Innov. 2, 6–10 (2016)

6. Depren, O., Topallar, M., Anarim, E., Ciliz, M.K.: An intelligent intrusion detec-
tion system (IDS) for anomaly and misuse detection in computer networks. Expert
Syst. Appl. 29(4), 713–722 (2005)

7. Diemer, J.: Sichere industrie-4.0-plattformen auf basis von community-clouds. In:
Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Handbuch Industrie 4.0
Bd. 1. VDI Springer Reference, pp. 177–204. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-45279-0 39

8. Interinstitutional File: Proposal for a regulation of the european parliament and
of the council on the protection of individuals with regard to the processing of
personal data and on the free movement of such data (general data protection
regulation) (2012)

9. Villaronga, E.F., Kieseberg, P., Li, T.: Humans forget, machines remember: artifi-
cial intelligence and the right to be forgotten. Comput. Secur. Law Rev. 8 (2017)

10. Hell, K., Lüder, A.: Wiederverwendung im engineering. ZWF Zeitschrift für
wirtschaftlichen Fabrikbetrieb 111(6), 337–341 (2016)

11. Kagermann, H.: Recommendations for Implementing the Strategic Initiative Indus-
trie 4.0. Forschungsunion, Essen (2013)

12. Howard, M., Lipner, S.: The Security Development Lifecycle, vol. 8. Microsoft
Press, Redmond (2006)

13. Hundt, L., Lüder, A.: Development of a method for the implementation of interop-
erable tool chains applying mechatronical thinking—use case engineering of logic
control. In: 2012 IEEE 17th Conference on Emerging Technologies and Factory
Automation (ETFA), pp. 1–8. IEEE (2012)

14. Kieseberg, P., Schrittwieser, S., Mulazzani, M., Echizen, I., Weippl, E.: An algo-
rithm for collusion-resistant anonymization and fingerprinting of sensitive micro-
data. Electron. Mark. 24(2), 113–124 (2014)

15. Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3),
49–51 (2011)

16. Liang, G., Weller, S.R., Zhao, J., Luo, F., Dong, Z.Y.: The 2015 ukraine blackout:
implications for false data injection attacks. IEEE Trans. Power Syst. 32(4), 3317–
3318 (2017)

17. Lindemann, U.: Methodische Entwicklung Technischer Produkte: Methoden Flexi-
bel und Situationsgerecht Anwenden. Springer, Heidelberg (2006). https://doi.org/
10.1007/978-3-642-01423-9

18. McGraw, G.: Software security. IEEE Secur. Priv. 2(2), 80–83 (2004)

https://doi.org/10.1007/978-3-642-04117-4_10
https://doi.org/10.1007/978-3-662-45279-0_39
https://doi.org/10.1007/978-3-662-45279-0_39
https://doi.org/10.1007/978-3-642-01423-9
https://doi.org/10.1007/978-3-642-01423-9

16 P. Kieseberg and E. Weippl

19. Nagra, J., Collberg, C.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Pearson Education, London (2009)

20. Ramaswamy, A., Bratus, S., Smith, S.W., Locasto, M.E.: Katana: a hot patching
framework for elf executables. In: International Conference on Availability, Relia-
bility, and Security, ARES 2010, pp. 507–512. IEEE (2010)

21. Richtlinie, V.D.I.: 2206: Entwicklungsmethodik für mechatronische Systeme. VDI-
Verlag, Düsseldorf (2004)

22. Richtlinie, V.D.I.: 2221 (1993): Methodik zum Entwickeln und Konstruieren tech-
nischer Systeme und Produkte. VDI-Verlag, Düsseldorf (2007)

23. Riel, A., Kreiner, C., Macher, G., Messnarz, R.: Integrated design for tackling
safety and security challenges of smart products and digital manufacturing. CIRP
Ann.-Manuf. Technol. 66, 177–180 (2017)

24. Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., Weippl, E.: Pro-
tecting software through obfuscation: can it keep pace with progress in code analy-
sis? ACM Comput. Surv. (CSUR) 49(1), 4 (2016)

25. Sion, R., Atallah, M., Prabhakar, S.: Watermarking relational databases (2002)

Monitoring of Access Control Policy
for Refinement and Improvements

Antonello Calabró, Francesca Lonetti, and Eda Marchetti(B)

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”,
Consiglio Nazionale delle Ricerche (CNR), via G. Moruzzi 1, 56124 Pisa, Italy

{antonello.calabro,francesca.lonetti,eda.marchetti}@isti.cnr.it

Abstract. Access Control is among the most important security mech-
anisms to put in place in order to secure applications, and XACML is
the de facto standard for defining access control policies. As systems
and resource utilization evolve, access control policies become increas-
ingly difficult to manage and update according to contextual behaviour.
This paper proposes a policy monitoring infrastructure able to identify
policy abnormal behaviour and prevent misuse in granting/denying fur-
ther accesses. This proposal relies on coverage adequacy criteria as well
as KPIs definition for assessing the most common usage behaviors and
provide feedback for refinement and maintenance of the current access
control policy. It integrates a flexible and adaptable event based monitor-
ing facility for run time validation of policy execution. A first validation
on an example shows the effectiveness of the proposed approach.

Keywords: Monitoring · Coverage criteria · KPI · Access control policy

1 Introduction

In the Factory of the Future as well as Industry 4.0 more often the adopted
context-aware applications rely on a widespread use of wireless sensors and actu-
ators to monitor the process evolution, guide the users interaction and automate
the business process at large. The aggregation of high volumes of volatile data
and sensitive user information rises a multitude of security and privacy chal-
lenges. Typically, large organizations have to rule millions of accesses across
thousands of IT resources and sensors. This cause an effective risk of providing
users with an excessive or not appropriate access rights over time. In such a situ-
ation the proper implementation and enforcement of access control mechanisms
becomes imperative. They are able to rule the highly connected and pervasive
software intensive systems and prevent unauthorized, erroneous or even mali-
cious usage of critical resources.

Among security mechanisms, a critical role is played by access control sys-
tems. These aim at ensuring that only the intended subjects can access the
protected data and the subjects get only the permission levels required to accom-
plish their tasks and no more. To this purpose, access control systems involve
c© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 17–36, 2018.
https://doi.org/10.1007/978-3-319-71440-0_2

18 A. Calabró et al.

three related activities, namely: identification of the user or service requesting
an access; authentication of the declared identity, usually by means of creden-
tials; and finally authorization of authenticated users to perform a set of allowed
operations.

Authorization mechanisms are typically based on access control policies that
rule: the level of confidentiality of data; the procedures for managing data and
resources; the classification of resources into category sets yielding different secu-
rity requirements. Access control policies must be specified and verified with
great accuracy: as any error or overlook could result either in forbidding due
access rights, or worse in authorizing accesses that should be denied, thus jeop-
ardizing the security of the protected data.

XACML (eXtensible Access Control Markup Language) [1] is a widely used
standard language for specifying access control policies. It is an XML-based lan-
guage conceived with interoperability, extensibility, and distribution in mind,
thus enabling the specification of very complex rules. However, such advantages
are paid in terms of complexity and verbosity. Writing XACML policies is hard
and may be deceiving, as inconsistencies could arise between the security require-
ments the policy authors intend to specify, and those that the policies actually
state. This can easily happen for instance when either some modifications are
introduced in a complex policy or when the policy is obtained from the integra-
tion of more policies coming from different organizations.

Especially in large scale organizations the common practice, to partially solve
this problem, is to define and implement just the basic policies, usually extracted
by the internal regulations and requirements that remain unchanged in time.
The side effect of such an attitude is that policies could become outdated over
time, leading either inconsistencies with the evolved behavioral and technological
organization environment, or security vulnerabilities.

So far most, of the research activities have been mainly focused on policy test-
ing [2–5] and only few proposals target the on-line validation and improvement
of the policies specifications [6].

The idea of this paper is providing to the policy authors, or more in general
to any stakeholder using the policy (generically referred in the following as the
policy validators), an integrated dynamic framework to validate and monitor the
actual resources access and users behavior. This in order to update, correct or
improve the policy specification in granting/denying the accesses.

Through the proposed framework the policy validators may have: (i) a better
knowledge of the actual policy usage, (ii) define and on-line calculate possible
key performance indicators (KPIs) useful to adjust the policies and (iii) detect
possible policy vulnerabilities or outdated rules.

The proposal relies on: (i) the derivation of the relevant coverage information
from the policy specification; (ii) the collection of events (requests/responses)
during the policy execution by means of a monitoring facility, (iii) and the analy-
sis of them so to collect important policy accesses information and assess defined
KPIs.

Monitoring of Access Control Policy for Refinement and Improvements 19

Indeed monitoring the different requests and responses lets the collection of
source data such as: the identification of most accessed resources; the tracking
of type of users requiring a resource access; the time and the decision of whether
the request is granted or denied and so on. These can be very useful data for
modeling the most common user behaviors and detecting possible policy flaws or
improvements. Moreover key performance indicators, relative to the criticality of
some specific actions or data, can be specified and on-line computed for a better
resources access control. For instance possible KPIs could be: the frequency
of the resource access by a specific users; the identification of users that most
frequently require a specific action; the date and time when the access permission
of a specific resource is more frequently activated and so on.

Deviation of the observed data from the boundaries values established for
each KPI could indicate abnormal behavior and could required a deeper analysis
to identify possibly access control policy modifications or improvements.

The contribution of this paper can be summarized into:

– the integration of a monitoring framework into an access control system archi-
tecture;

– the definition of the architecture of the Policy Monitoring Infrastructure
enabling: the definition of specific KPIs; the policy parsing so to extract
coverage information; the monitoring of requests and response execution so
to compute coverage data; the analysis of data collected to assessing their
compliance with the access control rules and specified KPI;

– an instantiation of the proposed architecture on the XACML access control
language.

An simulation example showing the usage of the proposed monitoring frame-
work is also provided considering a prototyped version of a booking system of the
Multimedia Laboratory of Pisa university, used for improving foreign languages
or preparing lecture material.

Preliminary results of such example demonstrated the feasibility of the pro-
posal and highlighted some of the potentialities of the Policy Monitor Infrastruc-
ture. Indeed without such a feature most of the weaknesses evidenced in the
experiment and suggestions for access control policy improvements were not
easily identifiable.

The remainder of this paper is structured as follows: Sect. 2 introduces the
basic concepts of access control systems and coverage testing; Sect. 3 presents the
architecture of the Policy Monitoring Infrastructure; Sect. 4 reports of the usage
of the Policy Monitoring Infrastructure on example; Related works are presented
in Sect. 5 and finally, Sect. 6 concludes the paper also hinting at discussion and
future work.

2 Background

In the following section some basic concepts about XACML access control sys-
tems and coverage testing are provided.

20 A. Calabró et al.

2.1 XACML and Access Control Systems

Access control is one of the most adopted security mechanisms for the protection
of resources and data against unauthorized, malicious or improper usage or mod-
ification. It is based on the implementation of access control policies expressed
by a specific standard such for instance the widely adopted eXtensible Access
Control Markup Language (XACML) [1].

XACML is a platform-independent XML-based language for the specification
of access control policies. Briefly, an XACML policy has a tree structure whose
main elements are: PolicySet, Policy, Rule, Target and Condition. The PolicySet
includes one or more policies. A Policy contains a Target and one or more rules.
The Target specifies a set of constraints on attributes of a given request. The
Rule specifies a Target and a Condition containing one or more boolean func-
tions. If the Condition is evaluated to true, then the Rule’s Effect (a value of
Permit or Deny) is returned, otherwise a NotApplicable decision is formulated
(Indeterminate is returned in case of errors). The PolicyCombiningAlgorithm
and the RuleCombiningAlgorithm define how to combine the results from mul-
tiple policies and rules respectively in order to derive a single access result. The
structure of an access control policy and an access control request is sketched in
Fig. 1. While an example is provided in Listing 1.

Fig. 1. Anatomy of an XACML policy and an XACML request

The main components of an XACML based access control system are shown
in Fig. 2. In particular the Policy Administration Point (PAP) is the system
entity in charge of managing the policies; the Policy Enforcement Point (PEP),
usually embedded into an application system, receives the access request in its
native format, constructs an XACML request and sends it to the Policy Deci-
sion Point (PDP); the Policy Information Point (PIP) provides the PDP with

Monitoring of Access Control Policy for Refinement and Improvements 21

the values of subject, resource, action and environment attributes; the PDP
evaluates the policy against the request and returns the response, including the
authorization decision to the PEP.

Fig. 2. Access control system architecture

2.2 Adequacy Criteria and Coverage

The notion of adequacy criteria has been extensively investigated in software
engineering literature, an in particular for software testing where it is generally
used to assess the effectiveness of a test suite [7,8]. In test coverage criteria, a set
of requirements that a test suite must fulfill is established and it is mapped onto
a set of entities that must be covered when the test cases are executed, as for
instance all statements or all branches of a program control-flow. The coverage
criterion is satisfied if all the entities are covered; otherwise, the percentage of
covered entities represents a quality measure of the test suite.

The intuitive motivation behind measuring test coverage is that if some entity
has never been tested, it might contain undetected faults. Obviously, the converse
reasoning does not apply: if we had covered all entities and detected no failures,
this does not necessarily imply that the program is correct. In a similar way, we
propose here to assess the adequacy of the access control policy execution by
identifying what are the relevant entities to be covered and by assessing if all of
them, or otherwise what percentage, have been executed.

As for test adequacy, the motivation behind assessing access control policy
execution adequacy is that if some entities are not covered, we cannot exclude
that these might hide some problems, policy incompleteness, entity misuses or
security flaw. Similarly to the testing session, i.e. the period along which the
test adequacy is measured, the observation window is the observation period
associated to the access control policy execution coverage measure.

Intuitively, a sliding observation window over a time measurement unit can
be established, which could be either continuous (e.g. the entities covered in the
last week) or discrete (e.g., the most recent 15 entities). The proposed access con-
trol policy adequacy criterion extends the general monitoring adequacy criterion

22 A. Calabró et al.

presented in [9,10], by defining and implementing an instantiation of this ade-
quacy criterion for the XACML access control policy execution. In particular we
consider the following definition:

Definition 1. Denote ri ∈ R the i-th entity to be covered, and by δi ∈ Δ the
length of its associated observation window. The access control policy execution
adequacy criterion C dynamically measures the coverage on R for a given entity
i at each time unit t as follows:

C[R,Δ](t) =
∑|R|

i=1 λi(t)
|R|

where for ri ∈ R and δi ∈ Δ

λi(t) =
{

1 if ri is covered at least once in [t − δi, t]
0 otherwise

.

According to this definition the length of δi could be different for each ri, or
could be the same for all entities. In summary the definition of access control
policy execution adequacy introduces the following concepts:

– an “adequate access control policy execution” is a policy execution on which
a set of entities ri are covered in a window δi;

– a Policy Monitoring, i.e. an infrastructure that, at every instant t, can provide
a coverage measure as in Definition 1. If this is less than 1, it can provide a
list of those entities that have not been covered;

– an entity that is not covered is an entity of the access control policy that has
not been executed for some time.

Inside a access control policy execution what is an entity to be covered can
be provided at different levels and with different targets [2,11]. In this paper we
consider the XACML smart coverage approach presented in [11] which focuses on
the XACML policy rules coverage. Briefly, the criterion computes the Rule Target
Set, i.e. the union of the target of the rule, and all enclosing policy and policy
sets targets. The main idea is that in order to match the rule target, the requests
must first match the enclosing policy and policy sets targets. If the rule target has
several subjects, resources, actions, and environments and the enclosing policy
and policy set targets are empty, to cover the rule target the request should have
specifical structure. It should include a subject contained in target subjects set,
a resource contained in the target resources set, an action contained in the target
actions set, an environment contained in the target environments set. Finally, if
the Rule Target Set of a rule is empty and its condition is evaluated to True or
False, all requests are covering this rule. We refer to [11] for further details.

In this paper, according to this criterion, we adopted the following definitions:

Definition 2 (Rule Entity). Given a XACML access control policy, a Rule
Ri and its Rule Target Set, a rule entity REi is the couple (Rule Target Set,
Rule Verdict) where the Rule Verdict is the verdict associated to the Rule Ri

when its condition is evaluated to True.

Monitoring of Access Control Policy for Refinement and Improvements 23

Definition 3 (Rule Coverage Domain). Considering a XACML access con-
trol policy, the Rule Coverage Domain is the set of all the Rule Entities of the
policy.

Definition 4 (Percentage of Rule Coverage). With reference to Defini-
tion 1, the percentage of rule coverage at time t is given by 100*C, where R is
the Rule coverage domain.

Consequently, at a given instant a XACML access control policy execution
is adequated with respect to the rule coverage criterion if the percentage of Rule
Entities covered is 100% (or greater than an established threshold level).

3 Policy Monitoring Infrastructure

With reference to Fig. 3, we present in this section the components of the Policy
Monitoring Infrastructure. In particular:

Fig. 3. Policy monitoring infrastructure

– Policy Enforcement Point (PEP). It is usually embedded into an application
system, receives the access request in its native format, constructs an XACML
request and sends it to the Policy Decision Point (PDP) through the Monitor
Engine;

– Policy Administration Point (PAP). It is the system entity in charge of storing
and managing the XACML policies. It sends the policy both to the Policy
Decision Point (PDP) for its evaluation and to the Trace Generator for the
traces extraction.

24 A. Calabró et al.

– Policy Decision Point (PDP). It evaluates the policy against the request and
returns the response, including the authorization decision, to the Monitoring
Engine. It communicates with the Monitoring Engine though a dedicated
interface such as a REST one.

– Trace generator. It is in charge of implementing the proposed access con-
trol policy adequacy criterion. It takes in input the policy from the Policy
Administration Point and, according to the coverage criterion, derives all the
possible Rule Entities. Usually, the Rule Entities extraction is realized by an
optimized unfolding algorithm that exploits the policy language structure.
Intuitively, the main goal is to derive an acyclic graph, defining a partial
order on policy elements. Several proposals are available such as [2,11] for
XACML policy specification. Once extracted, the Rule Entities are provided
to the Monitor Engine.

– Monitor Engine. It is in charge of collecting data of interest during the run-
time policy execution. There can be different solutions for monitoring activity.
In this paper we rely on Glimpse [12] infrastructure which has the peculiarity
of decoupling the events specification from their collection and processing.
The main components of the Monitoring Engine are: (i) the Complex Events
Processor (CEP) which analyzes the events and correlates them to infer more
complex events; (ii) the Rules Generator that generates the rules using the
rule templates starting from the derived Rule Entities to be monitored. A
generic rule consists of two main parts: the events to be matched and the
constraints to be verified, and the events/actions to be notified after the rule
evaluation; We refer to [12] for a more detailed description of the Glimpse
architecture.

– Policy Analyzer. It is in charge of the final derivation of the KPIs values
according to the covered and non covered Rule Entities. Moreover, according
to the coverage criterion it is able to identify the Rule Entities of the policy
that could generate flaws or security violations, providing hints to the Policy
Validator for policy improvement or refinement.

– GUI. It allows to define the KPIs to be monitored (KPI editor) and to visu-
alize to the Policy Validators the collected coverage data and KPI values
(Dashboard) so to let them to analyze and possibly refine the policy. KPI
Editor exploits the Domain Specific Language feature of the Drools technolo-
gies. In particuar it extracts from the policy specificion some set of values
(for instance enviroment condition parameters, subjects, resources, actions
an other target contraints) and provides a set of predefined fuctions and log-
ical operators useful for the definition of the KPIs. The purpose is to let the
user able to compose rules using a familiar set of logical expressions without
requiring knowledge of the implementation language of the Monitor Engine.

4 Example

In this section we present an example of instantiation and use of the Policy
Monitoring Infrastructure depicted in Sect. 3. In particular, in the following

Monitoring of Access Control Policy for Refinement and Improvements 25

subsections we briefly introduce the example considered (Sect. 4.1) and discuss
the results collected (Sect. 4.2).

4.1 Example Description

The example considered in this paper is a prototyped version of a booking sys-
tem of the Multimedia Laboratory of Pisa university, used for improving foreign
languages or preparing lecture material. Since the number of stations of this
laboratory is limited to 25, the access to different types of users (Master Stu-
dents, PhD Students, Professors) during the working day is regulated by an
access control policy which automatically distributes the booking requests over
three time slots. Listing 1 presents the simplified version of the XACML access
control policy used for booking a station in the Multimedia Laboratory. Specifi-
cally, the policy includes a policy target (lines 8–29) allowing the access only for
booking the MultimediaLab resource. A first rule (ruleA) (lines 30–64) specifies
that Master Students can book the lab starting from 9 am for 4 h. A second rule
(ruleB) (lines 65–99) specifies that PHD Students can book the lab starting from
14 pm for 4 h, while a third rule (ruleC) (lines 100–134) specifies that Professors
can book the lab only after 18 pm. Finally, the default rule (line 135) denies the
access in the other cases. Users of the Multimedia Laboratory are not aware of
this internal access control policy and through associated PEP they can ask for
booking in all the working day time slots.

26 A. Calabró et al.

Monitoring of Access Control Policy for Refinement and Improvements 27

In this section we show the use of the Policy Monitoring Infrastructure schema-
tize in Fig. 3, for analyzing the load of the booking Multimedia Laboratory system
during a working day. For this we set up an experiment in which we simulated the
behavior of different types of users (Master Students, PhD Students, Professors) in
booking the Multimedia Laboratory according to their preferred time slots. In par-
ticular considering the Definition 2 of Sect. 2 and the policy of Listing 1, through

28 A. Calabró et al.

the Trace Generator component, the Policy Monitoring Infrastructure automat-
ically derives the set of Rule Entities as reported in Table 1.

Successively, thought the KPI Editor of the Policy Monitoring Infrastructure
GUI, we defined the following KPIs:

– KPI1 = daily percentage the overall accesses of Master Students, PhD Stu-
dents and Professors greater than 60%

– KPI1.1 = daily percentage of accesses of Master Students greater than 36%
– KPI1.2 = daily percentage of accesses of PhD Students greater than 6%
– KPI1.3 = daily percentage of accesses of Professors greater than 18%
– KPI2 = daily number of allowed requests in each time slot less or equal

than 25.

From an implementation point of view the above defined KPIs have been
translated into the following rules:

– KPI1 = daily percentage of coverage of RE1 RE2 and RE3 greater than 60%
– KPI1.1 = daily percentage of coverage of RE1 greater than 36%
– KPI1.2 = daily percentage of coverage of RE2 greater than 6%
– KPI1.3 = daily percentage of coverage of RE3 greater than 18%
– KPI2 = daily number of allowed requests in each time slot less or equal

than 25.

Table 1. Rule Coverage Domain of Listing 1

RE1 = {(∅, {MultimediaLab}, {booking}, ∅),({MasterStudent}, ∅, ∅, 9 − 13), Permit}
RE2 = {(∅, {MultimediaLab}, {booking}, ∅),({PhDStudent}, ∅, ∅, 13 − 17), Permit}
RE3 = {(∅, {MultimediaLab}, {booking}, ∅),({Professor}, ∅, ∅, 17 − 21), Permit}
RE4 = {(∅, {MultimediaLab}, {booking}, ∅),(∅, ∅, ∅, ∅), Deny}

Finally to set up the simulation environment we established the frequency of
a booking request of the three type of users. For this we took the data relative
to the requests to the Multimedia Laboratory booking system of the last five
years from people belonging to the Software Engineering course of University
of Pisa. Then we derived the following percentages: 60%, 30%, 10% for Master
Students, PhD Students, Professors respectively. Moreover, we made interviews
to a sample of Professors (10), Master Students (60) and PhD Students (30)
asking them their preferred time slots. According to their preferences, we derived
the average values of frequencies of preferred time slots as shown in Table 2.

The collected information has been used to derive the sample of booking
requests useful for the simulation experiment as reported in the last column of
Table 2. Specifically for each of the time slot and according to the computed per-
centages distribution, we manually derived an overall sample of 1000 XACML
requests distributed as in the Table. Each of these requests includes a subject

Monitoring of Access Control Policy for Refinement and Improvements 29

(values chosen from Master Student, PhD Student, Professor), a resource (Mul-
timediaLab), an action (booking) and a time slot (values chosen from 17–21,
13–17, 9–13).

Knowing that the booking system of the Multimedia Laboratory receives on
average 50 booking requests per day, through the Policy Monitoring Infrastruc-
ture GUI, we set the observation windows of our simulation experiment to a day
long (see Definition 1 in Sect. 2). Then we randomly selected, from the generated
1000 XACML requests, sets of 50 requests. We repeated the selection considering
a period of 5 weeks, i.e. 25 observation windows, for a overall number of 1250
executed requests.

Bypassing in this simulation experiment the PEP Component, the Monitor
Engine Component sent the requests of one by one to the PDP of the Multimedia
Laboratory booking system and collected the coverage data.

Table 2. Request frequency

Type of users Percentage frequency Time slot Preferred percentage # Generated requests

Master students 60% 17–21 60% 360

13–17 35% 210

9–13 5% 30

Professors 10% 17–21 5% 5

13–17 80% 80

9–13 15% 15

PhD students 30% 17–21 20% 60

13–17 70% 210

9–13 10% 30

4.2 Results

In this section we report the results obtained from the simulation experiment.
As shown in Table 3, we run on the PDP 50 randomly selected requests per day
and we collected, through the Monitor Engine, the data useful for evaluating
the KPIs and deriving interesting information on the Multimedia Laboratory
booking profiles.

Specifically in the first column there is the incremental number of observa-
tion windows considered in the experiment (25 days). From the second to the
forth column (from the fifth to the seventh and from the eighth to the tenth)
there are the data relative to the Master Students (Professors and PhD Stu-
dents respectively) booking requests for defined time slots (17–21, 13–17, 9–13).
These data have been collected by the Monitor Engine component by comparing
and matching the Rule Entities values with the XACML requests and the corre-
sponding PDP responses. These values have been then refined and analyzed the
Policy Analyzer Component to derive the KPIs values as reported in Table 3.

30 A. Calabró et al.

In particular in the last four columns there are the daily values computed for
the KPI1, KPI1.1, KPI1.2 and KPI1.3 respectively. Finally in the columns high-
lighted in gray (fourth, fifth, ninth column with bottom label KPI2) there are
the comupted KPI2 values corresponding to the daily number of allowed requests
in each time slot. Average percentage value for each column is provided in the
last row. Results of Table 3 are provided to the Policy Validator through the
Dashboard component of the Policy Monitoring Infrastructure GUI.

From the analysis of the data collected during the monitoring activity the
Policy Validator could derive differen information such for instance:

– the KPI1 is never satisfied because in each observation windows the coverage
percentage is always less than 41% (maximum reached value) with an average
value of 29.07% quite far from the established boundary of 60%. This means
that the current implemented access control policy does not mach the real
booking behavior of the three different users: few booking requests accepted
and an extremely high value rejected. Indeed (by difference) the average per-
centage of coverage of Rule Entity RE4 is 70.93%. This situation evidences a
pressing need to improve the access control policy to better satisfy the real
users behavior.

– From a detailed analysis of the data collected of KPI1.1, KPI1.2 and KPI1.3
emerges that the failure of KPI1 is mainly due to the behavior of Master
Students and Professors. Indeed, while KPI1.3 is most of the times satisfied
(a part from Day 9 and Day 19 where the percentage of coverage are 16%
and 13.33% respectively) demonstrating a good ruling of booking access for
the PhD Students, KPI1.1, KPI1.2 are never verified. Percentage of accepted
booking requests for Master Students rarely reaches values greater than 6%
(only Days 10 and 21) and is on average 2.55%. These values are very far
from the established 36% of the KPI1.1. Almost the same situation can be
experienced for Professors, where the greater value for KPI1.2 is 4.17% with
an average of 0.82%. Therefore, improvements on the access control policy
for the booking slot times for Master Students and Professors are necessary.

– Considering the daily number of allowed requests in each time slot (i.e. fourth,
fifth, ninth column with bottom label KPI2) the values are always less or
equal than the established 25 and therefore KPI2 is always satisfied. However,
the number of allowed requests for PhD Students are always between 8 and
19, with an average of 12, meaning a quite good resource allocation. While,
for Master Students and Professors the situation is quite different. Allowed
booking requests for Master Students varies from 0 to 4 with an average of 1.2;
for Professors varies from 0 to 2 with an average of 0.4. This means that in the
morning and evening time slot the Multimedia Laboratory is almost empty.
This is in line with the results obtained for KPI1.1, KPI1.2 and KPI1.3.

The KPIs analysis stressed the exigence of an access control policy improve-
ment specifically for the Master Students and Professors. Suggestions come from
a detailed analysis of the requests covering the Rule Entity RE4, i.e. the requests
denied by the PDP. In collecting coverage and KPIs data, the Policy Monitoring
Infrastructure provides to the Policy Validator additional information about the

Monitoring of Access Control Policy for Refinement and Improvements 31

nature of the denied requests. Specifically the Policy Monitoring Infrastructure
evidences which kind of subject is booking the Multimedia Laboratory and at
what time. These data are reported in Table 3 in the second and third column
for Master Students, in the sixth and seventh column for Professors, and in the
eighth and tenth column for PhD Students. Analyzing this information the Pol-
icy Validator can observe that most of the requests from Master Students are
associated to the time slot 17–21, while few variations in booking activity can
be observed for the Professors (just very small increase for the 9–13 time slot).

An immediate possible improvement is therefore to swap the time slots imple-
mented in the access control policy for Master Students and Professors i.e. chang-
ing in the first rule (ruleA) at lines 47 from 9 to 17, and in the third rule (ruleC)
at line 117 from 17 to 9.

Table 3. Experiment results: first round

For aim of completeness we performed a second simulation experiment using
the same setting of the previous one but with the access control policy modified
as described above. In Table 3 we reported the obtained results.

From the analysis of the new results the Policy Validator could observe that:

– Excluding 6 observation windows, where the coverage percentage is in any
case greater than 54%, the KPI1 is almost satisfied with an average value of

32 A. Calabró et al.

Table 4. Experiment results: second round

64.80%. The implemented changes in the access control policy provide a big
improvement to this KPI and confirm that now the access control policy is
more close to the real booking behavior of different users (Table 4).

– From the detailed analysis of the data collected for KPI1.1, KPI1.2 and
KPI1.3 emerges that: KPI1.3 is still most of the times satisfied (a part from
5 observation windows where the percentage of coverage in any case greater
than 11%); percentage of accepted booking requests from Master Students
is increased on average (average value is 39.24%) and only in 7 observation
windows the value is less than the boundary 36%, but in any case greater
than 26%. The KPI1.2 is still not satisfied with values low than the estab-
lished 6%. In such specific case, by analyzing the data of Professors booking
requests (see fiftht and seventh column) it is evident that in any case Profes-
sors rarely ask for booking Multimedia Laboratory. To improve this situation
alternative way of modifying the access policy should be considered.

– The daily number of allowed requests in each time slot (i.e. second, seventh
and ninth column with bottom label KPI2) are still always less or equal
than 25 and therefore KPI2 always satisfied. However, the number of allowed
requests for Master Students is improved a lot with values varying from 12 to
24 with an average of 18,12. This means a good improvement for the resource

Monitoring of Access Control Policy for Refinement and Improvements 33

allocation for Master and PhD Students even if the situation for Professors
remain almost unchanged.

Of course further improvements to the access control policy could be possible
in particular for improving the resource allocation during the 9-13 slot where the
Multimedia Laboratory remains almost empty. For instance providing parallel
booking slot sessions and so on. However this would be a simple experiment to
illustrate the importance and the potentialities of a Policy Monitoring Infrastruc-
ture inside an access control systems. Indeed without such a feature the analyzed
data were not available and improvements not easily identifiable.

5 Related Works

This work spans over several research directions, including: monitoring of dis-
tributed systems and access control system validation.

5.1 Access-Control

In the last decades a large variety of policies and policy models have been
proposed to define authorized operations on specific resources. Well known
examples of access control models include Mandatory Access Control (MAC)
Model, Discretionary Access Control (DAC) Model, Role-Based Access Control
(RBAC) Model and more recently eXtensible Access Control Markup Language
(XACML) conforming services and applications. Many framework have been pre-
sented for specification and validation of access control policies [13–15]. Some
works such as [13] use UML based models for expressing role based access control
on domain concepts and provide automated facilities for translating these models
into XACML code. Other works extract information from business process mod-
els to formulate a set of XACML based security policies [16] or derive process-
related RBAC models from process execution histories [17]. These models do
not consider policy detection and management mechanisms in large and complex
environments able to detect inconsistencies of policy specifications and allow pol-
icy adaptability to evolving contextual behaviour or technological environment.
Some proposals representing an attempt to address this issue are the works
in [6,18]. Specifically, the authors of [6] present a dynamic policy management
process and access management system that integrates the analysis of user man-
agement data as well as contextual data. Similarly to our approach, this work
addresses policy recommendations based on contextual data and KPI validation
but it relies on mining engine more than on adaptable and flexible monitor-
ing facilities. The work in [18] presents a self adaptive authorization framework
to automatically identifying security flaws and autonomously change the access
control policy configuration. Similarly to our approach this framework uses mon-
itoring facilities of the authorization system to identify abnormal behaviour and
is compliant with RBAC/ABAC authorization infrastructure. Differently from
[18], the main goal of the policy monitoring infrastructure proposed in this paper
is not to implement self adaptation but providing feedbacks to policy validators
for updating and refining policies according to contextual changes.

34 A. Calabró et al.

5.2 Monitoring

Several general-purpose monitoring proposals are currently available, which can
be mainly divided into two groups: those that are embedded in the execution
engine such as [19,20] and those that can be integrated into the execution frame-
work as an additional component such for instance [21]. Both the solutions have
specific advantages. For sure, an embedded solution reduces the performance
delay of the execution framework, mainly in terms of interactions and commu-
nication time. Coverage indicators can be directly evaluated by the execution
framework, which can also execute corrective actions in case of important devi-
ations. The main disadvantage of these approaches is the lack of flexibility both
in the data collection, coverage measures definition and language adopted. Usu-
ally, in these proposals all the interested parameters, have to be predefined and
modeled directly into the execution engine, by means of specific editors, and
are dependent on the notation used for the policy definition. Thus any change
requires to redesign or improve the execution engine itself, preventing in such
manner the possibility of dynamic modification.

Among the additional monitor facility in this paper we refer to the monitoring
framework called Glimpse [12], which is extremely flexible and adaptable to
various scenarios and SOA architecture patterns.

6 Discussion and Conclusions

In this paper we proposed a Policy Monitoring Infrastructure to dynamically
validate and monitor the actual resources access and users behavior in order
to update, correct or improve the policy specification in granting/denying the
accesses. Through the proposal of this paper policy validators can have a better
knowledge of the actual policy usage, define and on-line calculate possible key
performance indicators (KPIs) useful to adjust the policies and detect possible
policy vulnerabilities or outdated rules.

The results collected in the experiment demonstrated the feasibility of
the proposal and highlighted some of the potentialities of the Policy Monitor
Infrastructure. Indeed without such a feature most of the weaknesses evidenced
in the experiment and suggestions for access control policy improvements were
not easily identifiable.

In its simplicity the experiment open the path for further improvements of
the proposed infrastructure. As future work we would like to integrate in the
Infrastructure other coverage criteria, which can be more focused on the pecu-
liarities of the access control system adopted in the different industrial context.
We would like also to extend the Policy Monitoring Infrastructure considering
different access and usage control policy specification languages. Finally we are
planning to include in the Infrastructure a component able to automatically
infer, from the coverage data collected, an alternative operational access control
policy so to automatically validate and assess the original the XACML policy
against the modification or changes experienced in the real world usage. This can

Monitoring of Access Control Policy for Refinement and Improvements 35

help the policy validators to get a clearer idea of the constraints and permissions
expressed in the policy and identify the possible improvements or modifications.

Concerning threats to validity of the presented experiment, four aspects can
be considered: the Rule Entities generation, user profiling for the simulation set
up, the KPIs specification and the derivation of the XACML requests. Indeed,
the coverage criterion, the sample of users selected during the interview stage
and the KPIs defined may have influenced the reported results. Moreover due
to manually derived XACML requests as well as the random selection of test
cases in each observation windows, could be that different choices might have
provided different effectiveness results. However the experiment would only be
an example of Policy Monitoring Infrastructure usage.

Acknowledgments. This work has been partially supported by the GAUSS national
research project (MIUR, PRIN 2015, Contract 2015KWREMX).

References

1. OASIS: Extensible Access Control Markup Language (XACML) version 2.0,
February 2005

2. Martin, E., Xie, T., Yu, T.: Defining and measuring policy coverage in testing access
control policies. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307,
pp. 139–158. Springer, Heidelberg (2006). https://doi.org/10.1007/11935308 11

3. Bertolino, A., Daoudagh, S., El Kateb, D., Henard, C., Le Traon, Y., Lonetti, F.,
Marchetti, E., Mouelhi, T., Papadakis, M.: Similarity testing for access control.
Inf. Softw. Technol. 58, 355–372 (2015)

4. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Schilders, L.: Automated
testing of extensible access control markup language-based access control systems.
IET Softw. 7(4), 203–212 (2013)

5. Calabrò, A., Lonetti, F., Marchetti, E.: Access control policy coverage assessment
through monitoring. In: Proceedings of TELERISE 2017 Workshops, Trento, Italy,
12 September 2017 (2017, to apper)

6. Hummer, M., Kunz, M., Netter, M., Fuchs, L., Pernul, G.: Adaptive identity
and access management–contextual data based policies. EURASIP J. Inf. Secur.
2016(1), 19 (2016)

7. Rapps, S., Weyuker, E.: Selecting software test data using data flow information.
IEEE Trans. Softw. Eng. SE-11(4), 367–375 (1985)

8. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366–427 (1997)

9. Bertolino, A., Marchetti, E., Morichetta, A.: Adequate monitoring of service com-
positions. In: Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE 2013, pp. 59–69 (2013)

10. Bertolino, A., Calabró, A., Lonetti, F., Marchetti, E.: Towards business process
execution adequacy criteria. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD
2016. LNBIP, vol. 238, pp. 37–48. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-27033-3 3

11. Bertolino, A., Le Traon, Y., Lonetti, F., Marchetti, E., Mouelhi, T.: Coverage-based
test cases selection for XACML policies. In: Proceedings of ICST Workshops, pp.
12–21 (2014)

https://doi.org/10.1007/11935308_11
https://doi.org/10.1007/978-3-319-27033-3_3
https://doi.org/10.1007/978-3-319-27033-3_3

36 A. Calabró et al.

12. Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., Sabetta, A.: Towards a model-
driven infrastructure for runtime monitoring. In: Troubitsyna, E.A. (ed.) SERENE
2011. LNCS, vol. 6968, pp. 130–144. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24124-6 13

13. Daoudagh, S., El Kateb, D., Lonetti, F., Marchetti, E., Mouelhi, T.: A toolchain
for model-based design and testing of access control systems. In: 2015 3rd Interna-
tional Conference on Model-Driven Engineering and Software Development (MOD-
ELSWARD), pp. 411–418. IEEE (2015)

14. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: An automated testing
framework of model-driven tools for XACML policy specification. In: 2014 9th
International Conference on the Quality of Information and Communications Tech-
nology (QUATIC), pp. 75–84. IEEE (2014)

15. Ferraiolo, D., Atluri, V., Gavrila, S.: The policy machine: a novel architecture
and framework for access control policy specification and enforcement. J. Syst.
Architect. 57(4), 412–424 (2011)

16. Wolter, C., Schaad, A., Meinel, C.: Deriving XACML policies from business
process models. In: Weske, M., Hacid, M.-S., Godart, C. (eds.) WISE 2007.
LNCS, vol. 4832, pp. 142–153. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-77010-7 15

17. Baumgrass, A., Schefer-Wenzl, S., Strembeck, M.: Deriving process-related RBAC
models from process execution histories. In: 2012 IEEE 36th Annual Computer
Software and Applications Conference Workshops, pp. 421–426, July 2012

18. Bailey, C., Chadwick, D.W., De Lemos, R.: Self-adaptive authorization framework
for policy based RBAC/ABAC models. In: 2011 IEEE Ninth International Confer-
ence on Dependable, Autonomic and Secure Computing (DASC), pp. 37–44. IEEE
(2011)

19. Daoudagh, S., Lonetti, F., Marchetti, E.: Assessment of access control systems
using mutation testing. In: Proceedings of TELERISE, pp. 8–13 (2015)

20. Mouelhi, T., El Kateb, D., Le Traon, Y.: Chapter five-inroads in testing access
control. Adv. Comput. 99, 195–222 (2015)

21. Carvallo, P., Cavalli, A.R., Mallouli, W., Rios, E.: Multi-cloud applications security
monitoring. In: Au, M.H.A., Castiglione, A., Choo, K.-K.R., Palmieri, F., Li, K.-C.
(eds.) GPC 2017. LNCS, vol. 10232, pp. 748–758. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57186-7 54

https://doi.org/10.1007/978-3-642-24124-6_13
https://doi.org/10.1007/978-3-642-24124-6_13
https://doi.org/10.1007/978-3-540-77010-7_15
https://doi.org/10.1007/978-3-540-77010-7_15
https://doi.org/10.1007/978-3-319-57186-7_54
https://doi.org/10.1007/978-3-319-57186-7_54

Requirements Engineering and
Requirements-Based Testing

On Evidence-Based Risk Management
in Requirements Engineering

Daniel Méndez Fernández1(B), Michaela Tießler1, Marcos Kalinowski2,
Michael Felderer3, and Marco Kuhrmann4

1 Technical University of Munich, Munich, Germany
{Daniel.Mendez,Michaela.Tiessler}@tum.de

2 Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
kalinowski@inf.puc-rio.br

3 University of Innsbruck, Innsbruck, Austria
michael.felderer@uibk.ac.at

4 Clausthal University of Technology, Clausthal-Zellerfeld, Germany
kuhrmann@acm.org

Abstract. Background: The sensitivity of Requirements Engineering
(RE) to the context makes it difficult to efficiently control problems
therein, thus, hampering an effective risk management devoted to allow
for early corrective or even preventive measures.
Problem: There is still little empirical knowledge about context-specific
RE phenomena which would be necessary for an effective context-
sensitive risk management in RE.
Goal: We propose and validate an evidence-based approach to assess
risks in RE using cross-company data about problems, causes and effects.
Research Method: We use survey data from 228 companies and build
a probabilistic network that supports the forecast of context-specific RE
phenomena. We implement this approach using spreadsheets to support
a light-weight risk assessment.
Results: Our results from an initial validation in 6 companies strengthen
our confidence that the approach increases the awareness for individual
risk factors in RE, and the feedback further allows for disseminating our
approach into practice.

Keywords: Requirements engineering · Risk management
Evidence-based research

1 Introduction

Requirements Engineering (RE) has received much attention in research and
practice due to its importance to software project success. Precise and consis-
tent requirements directly contribute to appropriateness and cost-effectiveness in
the development of a system [1] whereby RE is a critical determinant of produc-
tivity and software (process) quality [2]. Yet, RE remains an inherently complex

c© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 39–59, 2018.
https://doi.org/10.1007/978-3-319-71440-0_3

40 D. Méndez Fernández et al.

discipline due to the various individual socio-economic and process-related influ-
ences in the industrial environments. In contrast to many other disciplines, RE
is largely characterised by the particularities of the application domain, and
it is largely driven by uncertainty and also by human factors. All this influ-
ences the way of working in individual contexts including the choice of methods,
approaches, and tools in RE. In fact, what might work very well in one project
setting might be completely alien to the needs and the culture of the next [3].
The lack of possibilities to standardise the discipline with universal solutions
renders it consequently difficult to efficiently control and optimise the quality of
RE as an appropriate means to an end.

In consequence, the individual particularities of the contexts hamper an effec-
tive risk management devoted to allow for early corrective or even preventive
measures. Hence, it is not surprising that despite the importance of excellence in
RE, we can still observe various problems in industrial environments rooted all
in insufficient RE [4,5]. Requirements Engineering risk factors which might be
typical for one project setting, might not be valid for others; for instance, while
one project might be characterised by frequent changes in the requirements, the
requirements in another project might be stable. Another factor to be consid-
ered is the currently weak state of empirical evidence in RE [4,5]. The lack of
proper empirical figures that would demonstrate what phenomena occur in prac-
tical settings, what problems practitioners face, and what success factors we can
infer for the various contexts makes it impossible for available risk management
approaches to consider context-sensitive risk factors and related corrective and
even preventive measures for RE.

To efficiently consider the particularities of RE in risk management
approaches, we postulate that we first need knowledge about the current state
of practice in industrial environments and problems faced therein. Motivated
by this situation, we initiated the Naming the Pain in Requirements Engineer-
ing (NaPiRE) initiative (see Sect. 2). NaPiRE constitutes a globally distributed
family of bi-yearly replicated surveys on the industrial status quo and problems
in RE. This allows to steer research in RE in a problem-driven manner and the
establishment of proper solutions based on a better understanding of the needs
of the various industrial contexts.

In this paper, we contribute the first steps towards a holistic evidence-based
RE risk management approach that explicitly takes into account the particular-
ities in RE as described above. We concentrate on assessing risk factors in RE.
In particular, we use the cross-company data from NaPiRE to build a holistic
model of context-sensitive problems, causes, and effects. We use this knowledge
to implement a probabilistic network that allows to calculate the posterior prob-
ability of certain risk factors based on knowledge about the current situation. We
use this to propose a first evidence-based RE risk assessment approach which we
validate in 6 companies. We conclude by outlining current work on integrating
guidelines to mitigate and correct problems in RE to make the consequential
next step from a RE risk assessment approach to a holistic, evidence-based RE
risk management approach.

On Evidence-Based RE Risk Management 41

Our contribution and the feedback by the practitioners supports us and other
researchers already in proposing further solutions to requirements engineering
that need to rely on cross-company data. Further, our proposed risk assessment
approach already allows practitioners to reflect on their current situation by
increasing their awareness for potential problems in RE.

The remainder of this paper is organised as follows: In Sect. 2 we introduce
the background and related work. In Sect. 3, we elaborate on the research design.
In Sect. 4, we describe our overall risk assessment approach and in Sect. 5, we
report on a validation conducted in 6 companies, before concluding our paper in
Sect. 6.

2 Background and Related Work

Software risk management constitutes means to efficiently assess and control risk
factors affecting the overall software development activities [6] (planned ones
and deviations) and is often associated with “project management for adults”
as baptised by DeMarco et al. [7]. The importance of risk management for soft-
ware engineering in general and requirements engineering in particular has been
addressed in several risk management approaches tailored to software engineer-
ing processes [8]. Already the spiral model of Boehm [9] explicitly includes risk
management within software development. The Riskit method [10] provides a
sound theoretical foundation of risk management with a focus on the qualitative
understanding of risks before their possible quantification. Karolak [11] proposes
a risk management process for software engineering that contains the activities
risk identification, risk strategy, risk assessment, risk mitigation, and risk pre-
diction. With ISO 31000 [12], which was released in 2009, there is even a family
of standards for risk management available that can also be instantiated in soft-
ware engineering and its subareas like testing, where ISO 31000 has already been
applied in the context of risk-based testing [13], or requirements engineering.

A recent study on industrial development practices [14] shows that practi-
tioners see the need to explicitly include traditional risk management approaches
into RE that tends to be done rather agile. This further strengthens our con-
fidence in the need to tailor risk management approaches to the particularities
of RE actively taking into account the volatility therein (as discussed in our
introduction).

In fact, most work on risk management in the context of requirements engi-
neering focuses on identifying risks in a bottom-up approach and analysing risks
during the requirements engineering process. For instance, Asnar et al. [15] pro-
vide a goal-driven approach for risk assessment in requirements engineering, and
Haisjackl et al. [16] provide an estimation approach and respective tool sup-
port [16]. For risk management within requirements engineering itself, Lawrence
et al. [17] provide a list of top risks in requirements engineering, which includes
overlooking a crucial requirement, inadequate customer representation, mod-
elling only functional requirements, not inspecting requirements, attempting
to perfect requirements before beginning construction as well as representing

42 D. Méndez Fernández et al.

requirements in the form of designs. However, evidence-based approaches to risk
management in requirements engineering as proposed in this paper are so far not
available. For such an approach, we need a proper empirical basis on require-
ments engineering which has been recently established by the NaPiRE (Naming
the Pain in Requirements Engineering) initiative.

The NaPiRE initiative was started in 2012 in response to the lack of proper
empirical figures in RE research. The idea was to establish a broad survey inves-
tigating the status quo of RE in practices together with contemporary problems
practitioners encounter. This should lead to the identification of interesting fur-
ther research areas as well as success factors for RE. We created NaPiRE as a
means to collaborate with researchers from all over the world to conduct the
survey in different countries. This allows us to investigate RE in various cultural
environments and increase the overall sample size. Furthermore, we decided to
run the survey every two years so that we can cover slightly different areas
over time and have the possibility to observe trends. NaPiRE aims to be open,
transparent and anonymous while yielding accurate and valid results.

At present, the NaPiRE initiative has over 50 members from more than 20
countries mostly from Europe, North-America, South-America, and Asia. There
have been two runs of the survey so far. The first was the test run performed only
in Germany and in the Netherlands in 2012/13. The second run was performed
in 10 countries in 2014/15. All up-to-date information on NaPiRE together with
links to instruments used, the data, and all publications is available on the web
site http://www.re-survey.org. The first run in Germany together with the over-
all study design was published in [4]. It already covered the spectrum of status
quo and problems. Overall, we were able to get full responses from 58 companies
to test a proposed theory on the status quo in RE. We also made a detailed qual-
itative analysis of the experienced problems and how they manifest themselves.
For the second run, we have published several papers [18–21] concentrating on
specific aspects and the data from only one or two countries and one paper [5]
focusing on RE problems, causes and effects based on the complete data set
covering data reported by 228 companies. An analysis of the data with a focus
on risk management and evidence-based risk management in RE has not been
published so far.

3 Research Design

Our overall goal is to provide first steps towards a holistic evidence-based RE
risk management approach that allows to steer a context-sensitive risk man-
agement based on empirical cross-company data and, thus, bridges shortcom-
ings of currently available approaches. Our research, therefore, needs to rely on
data reflecting practical problems in RE that are typical for certain context fac-
tors. The scope of validity (and relevance) of the proposed solution consequently
depends on the practical contexts from which the data was obtained and where
we applied our approach.

Our research design is therefore strongly inspired by the (design science)
engineering cycle as exemplary described by Wieringa and Moralı in [22]. That

http://www.re-survey.org

On Evidence-Based RE Risk Management 43

is, we follow a cyclic development approach which is initially based on idealised
assumptions, solution design, and validation as well as evaluation in practice,
before revising our assumptions. With each iteration, we can make more real-
istic assumptions and scale our solution proposal and its effects up to practice.
However, in contrast to classical design science research aimed at practical prob-
lem solving, where we develop individual solutions to practical problems, our
aim is not to solely understand the effects of such solution proposals. Instead,
our aim is also to better understand the particularities of contexts and phenom-
ena involved and to actively incorporate them in our solution. That is, we begin
with understanding which problems practitioners experience in certain contexts,
develop our evidence-based RE Risk Assessment approach and – by transfer into
practice – we can use the observations to make our context assumptions more
reliable and precise for the next iteration.

The resulting methodological approach reflects the basic notion of knowledge
transfer. Our model is therefore structured in analogy to the technology transfer
model as described by Gorschek et al. [23] and sketched in Fig. 1 to visualise the
cyclic nature.

Industry

Academia

Problem
Analysis

Validation

Solution
Concept

Prototypical
Implementation

Large-
scale

Evaluation

Empirical data

Concepts

ToolFeedback

Field study

Context-

insights

Fig. 1. Overall research design. The last step including a field study as part of a large-
scale evaluation is in scope of current activities and out of scope of this paper.

Starting with a problem analysis based on cross-company data emerging from
the NaPiRE initiative, we develop a first solution proposal, which we transfer into
a prototypical tool implementation. We use this prototype for a first validation
with industry participants as a preparation for a large-scale evaluation. At the
end of the iteration, we use the observations from the large-scale evaluation to
increase our empirical data set with additional context factors before entering
the next development iteration.

In this paper, we report on the first iteration where we develop and vali-
date our initial approach to evidence-based RE Risk Assessment and outline

44 D. Méndez Fernández et al.

the next steps of a continuous evaluation and refinement towards a holistic Risk
Management approach which is in scope of current work.

In the following, we introduce the single steps to the extent necessary in
context of our contribution at hands.

3.1 Problem Analysis

Our data for the initial problem analysis is largely based on the last replication
of the NaPiRE initiative (see Sect. 2), including cross-company data from 228
companies located in 10 countries. There, we investigated the status quo on
the practices applied in requirements engineering as well as problems, causes,
and effects as experienced and reported by practitioners from various domains.
Table 1 exemplarily illustrates the most frequently cited top 10 problems as
reported by the respondents starting with an accumulation of the problems and
the summary of the single (top 5) ranks of the problems.

Table 1. Most cited top 10 RE problems as reported in [5].

RE Problem Total Cause for

project failure

Ranked

as #1

Ranked

as #2

Ranked

as #3

Ranked

as #4

Ranked

as #5

Incomplete and/or hidden

requirements

109 (48%) 43 34 25 23 17 10

Communication flaws between

project team and customer

93 (41%) 45 36 22 15 9 11

Moving targets (changing goals,

business processes and/or

requirements)

76 (33%) 39 23 16 13 12 12

Underspecified requirements that

are too abstract

76 (33%) 28 10 17 18 19 12

Time boxing/not enough time in

general

72 (32%) 24 16 11 14 17 14

Communication flaws within the

project team

62 (27%) 25 19 13 11 9 10

Stakeholders with difficulties in

separating requirements from

known solution designs

56 (25%) 10 13 13 12 9 9

Insufficient support by customer 45 (20%) 24 6 13 12 6 8

Inconsistent requirements 44 (19%) 15 8 9 6 9 12

Weak access to customer needs

and/or business information

42 (18%) 16 7 10 8 8 9

We can see, for instance, that incomplete requirements dominate the list
of top 10 problems in RE directly followed by communication flaws between
the project team and the customer. To elaborate on risk factors and how they
propagate in a project ecosystem, we need, however, knowledge going beyond
single problems.

On Evidence-Based RE Risk Management 45

From Problems to Cause-Effect Chains. For each of the problems reported, we
further analyse the data on the causes and the effects to increase our under-
standing about the criticality of the problems and their root causes. The latter is
important to understand possibilities for corrective or even preventive measures.
For instance, the main causes for communication flaws between the project team
and the customer are of organisational nature, including causes such as language
barriers, missing engagement by the customer, or missing direct communication
with the customer. Effects of the problem include, inter alia, a poorer product
quality by incorrect or missing features. A richer introduction into the problems,
causes, and effects in RE can be taken from our previously published material [5].

Figure 2 illustrates the full-scale model of the causes and the effects of the
problems as distilled from the NaPiRE data set. Visualising the full-scale model
serves two purposes: It shall demonstrate that (1) the model includes complex
cross-dependencies and single phenomena can lead to several problems, and that
(2) despite the complexity of the model, it already supports a basic understand-
ing of the phenomena involved in software development projects and how they
propagate through the different phases. Yet, such a model still does not help
understanding context-sensitive conditional dependencies which renders it nearly
useless for operationalisation as a risk assessment approach. That is, for an effec-
tive evidence-based RE risk assessment, we need data that allows us to infer, at
least with a certain level of confidence, those effects certain problems have based
on a selection of specific context-specific conditions that characterise a project
situation at any point in time.

From Cause-Effect Chains to Conditional Probabilistic Distributions. Finally, to
lay the foundation for an evidence-based risk assessment which includes oper-
ationalisable conditional dependencies, we analyse the data by making use of
Bayesian networks. We already made positive experiences in using Bayesian net-
works in defect causal analyses [24]. Here, we use Netica 1 to implement the
cause-effect information in dependency to context factors such as company size,
team distribution or software process model used (agile or plan-driven). Such
an implementation allows us to quantify the conditional probabilistic distribu-
tions of all phenomena involved. More precisely, it allows us to, based on the
NaPiRE data used as learning set, use the Bayesian network inferences to obtain
the posterior probabilities of certain phenomena to occur when specific causes
are known. Figure 3 shows such an exemplary inference for the consequences
and their probabilities of the phenomena missing direct communication to the
customer (highlighted in grey).

We use this analytically curated data as a basis for the proposal of our
evidence-based risk assessment approach.

3.2 Solution Concept and Prototypical Implementation

Once understanding the data and its potential, we elaborate the design of our
initial evidence-based RE Risk Assessment approach. This approach shall, in a
1 https://www.norsys.com/.

https://www.norsys.com/

46 D. Méndez Fernández et al.

Fig. 2. Full-scale cause-effect visualisation of the RE problems, causes and effects. Not
intended to be read in detail (but we cordially invite the reader to zoom in).

Fig. 3. Predictive inference for effects of missing direct communication to the customer.

On Evidence-Based RE Risk Management 47

first step, serve the purpose of providing means to assess risk factors in a light-
weight manner based on knowledge about a current project situation – while still
offering anchor points for extensions to a holistic risk management approach.

To this end, we conceptualise the elements and constructs necessary for RE
risk management via a meta model. This meta model captures the elements
necessary for a holistic risk management in RE. Figure 4 visualises a simplified
resulting model, while highlighting those elements in scope of the initial approach
for a risk assessment, i.e. the approach used for our first iteration presented in
this paper. In centre of our attention are events. Events are phenomena that
materialise in a measurable manner as well as their causes and effects. Those
events either impact tasks carried out in a project or artefacts created/modified
in the course of such tasks and can occur with various impacts at a certain
probability (i.e. risks).

SW Design SW Testing

SW Requirements

Risk Management

Requirement Product

Artefact

Event Task

Risk Management
ReportRisk

probability
impactOnTime
impactOnQuality
impactOnFuntionality

Measure

Fallback

Reduce

Avoid

TransferAccept

Strategy

Customer

Company

companySize
country
sector
processModel

Project Team

distribution
teamSize

cause

impact

Project Context

Product Development

Fig. 4. Strongly simplified meta model for evidence-based RE risk management. Darker
elements encompass entities relevant for risk assessment which is in scope of first devel-
opment iteration. Elements in light grey encompass entities necessary for extension to
a holistic risk management approach.

Of further interest are the context factors used to characterise the develop-
ment project, such as team characteristics or company characteristics. Please

48 D. Méndez Fernández et al.

note that the meta model is intentionally incomplete and simplified and shall
serve the sole purpose of highlighting those elements in scope of risk assessment.
Out of scope, yet necessary for a holistic risk management are the implementa-
tion of measures used to, e.g., avoid certain risks.

To apply our approach in practical settings, we implement it via a light-
weight prototype. To this end, we rely on spreadsheets realised via MS Excel for
the presentation and reporting of risk factors and interactive calculation of the
probabilities to encounter those factors based on a current situation (as learnt
based on the data analysis described above). We further implement a graphical
visualisation of all RE phenomena to increase the awareness of a current project
situation using NodeXL. Details on the outcome can be taken from Sect. 4 where
we introduce the resulting approach.

3.3 Validation

While the prototypical implementation already serves as an initial proof of con-
cept, we want to better understand the suitability of the approach to practical
contexts. This helps us preparing for the large-scale evaluation depicted at the
upper part of Fig. 1. To this end, we conduct structured interviews with prac-
titioners in face to face meetings using their answers to potentially revise the
proposed (candidate) approach for a broader evaluation. In those interviews,
we use the instrument summarised in Table 2 and developed from scratch in a
curiosity-driven manner. Further details on the validation can be taken from
Sect. 5.

3.4 Large-Scale Evaluation and Next Steps

Once we understand the practitioners’ perceptions of our light-weight approach
allowing for last modifications of our risk assessment approach, we can scale up to
practice by applying it in a longitudinal field study. Based on the outcome of the
large-scale evaluation, we intend to gather knowledge about further barriers and
limitations in context of risk management in RE. Further, such an evaluation
will allow us to further scaling up by integrating proper measures for mitigating
potential risks, thus, it allows us for a problem-driven (methodological) transition
from risk assessment to risk management. These last steps are in scope of current
activities at the time of writing this paper.

3.5 Validity Procedures

It is noteworthy that the proposed approach relies on some assumptions on the
NaPiRE data, which could represent threats to validity. The most important
one concerns the accuracy of the coding process used to analyse the answers
to the open questions RE problems, causes, and effects (used as a basis for
the described risk assessment quantification). Coding is essentially a creative
task with subjective facets of coders like experience, expertise and expectations.

On Evidence-Based RE Risk Management 49

Table 2. Summary of the interview questions (structure: M = metadata, A = approach,
T = tool; type: FT = open free text, SC = closed single choice, LI = Likert scale rating).

ID Question Type

M 1 What is the size of your company? FT

M 2 Please briefly describe the main sector of your company and the application
domain of the software you build

FT

M 3 How would you characterise the projects that you typically work in? FT

M 4 What is your role in those projects? FT

M 5a Is there already a methodology to manage risks in your company? SC

M 5b How do you manage risks in your company? FT

M 6 Which characteristic values would you consider for risk assessment? FT

M 7 Does this risk management also address risks in Requirements Engineering? FT

M 8 How important is it to address RE Risks in Risk Management? LI

M 9 Do you think it makes sense to distinguish RE Risk Management from the
overall Risk Management?

LI

A 10 Do you think the approach is more precise than other risk assessment
approaches?

SC

A 11a Do you think it makes sense to assess the risks based on phenomena? SC

A 11b Why? FT

A 12 What are the benefits the approach? FT

A 13 What do you dislike about the approach? FT

A 14 What are the barriers for the approach? FT

A 15 What should we do to improve the approach? FT

T 16 How appropriate do you think of criticality as a parameter for risk
assessment?

LI

T 17 Do you think using the tool would improve your performance in doing your
job?

LI

T 18 Do you think using the tool at work would improve your productivity? LI

T 19 Do you think using the tool would enhance your effectiveness in your job? LI

T 20 Would you find the tool useful in your job? LI

T 21 Do you think learning to operate the tool would be easy for you? LI

T 22 Would you find it easy to get the tool to do what you want to do? LI

T 23 Do you think it would be easy for you to become skilful in the use of the tool? LI

T 24 Do you find the tool easy to use? LI

T 25a Would you use such a tool for RE risk assessment? LI

T 25b Why? FT

T 26 What would be necessary for using the tool? LI

T 27a How would you rate the tool in total? LI

T 27b Why? FT

T 28 How would you rate the risk assessments provided by the tool in total? LI

T 29 Would you rather adopt a pre-implemented tool or implement it with the
risks that applied in your company?

SC

30 Do you have further remarks? FT

50 D. Méndez Fernández et al.

This threat was minimised by peer-reviewing the coding process. Concerning the
NaPiRE survey itself, it was built on the basis of a theory induced from available
studies and went through several validation cycles and pilot trials. Further details
on the research methods employed can be taken from our previous publication [5].

4 Evidence-Based RE Risk Assessment Approach

This section presents the synthesised evidence-based risk management approach.
Section 4.1 introduces into the overall approach from a conceptual level, and
Sect. 4.2 presents the prototypical implementation.

4.1 Overall Approach to Evidence-Based RE Risk Assessment

The risk assessment is integrated with an overall project-based risk management.
Figure 5 provides the approach’s concept. Right in a Project, we integrate the
RE risk assessment with the overall project’s risk management and expect a
continuous implementation, i.e. we assume that a company implements its own
risk management as a continuous task performed throughout the whole project.

Fig. 5. Elementary concepts of the RE risk assessment approach.

Key to the approach presented is the data used for the (initial) risk assess-
ment (Fig. 5; left). The required data can either taken from an external data
pool, in our case NaPiRE data (see Sect. 3), or from historical company data.
Eventually, the company has to decide whether or not grounding the risk assess-
ment in internal or external data. Using internal data brings in the opportunity
to learn from past projects, i.e. to improve the company-specific risk manage-
ment approach based on lessons learnt. Using external data instead, however,
provides advantages, too. We postulate that by using cross-company data, risks
that might have not materialised so far in own project settings can be captured
based on third-party experience. Once the data source(s) has been selected,
data needs to be prepared in order to carry out the risk assessment. Specifically,
cause-effect models need to be developed (e.g., using Netica; Fig. 3) to provide
processable input for the analysis tool (Sect. 4.2). In a project, five tasks are
carried out:

On Evidence-Based RE Risk Management 51

1. In a state-of-the-art analysis, the current project status is evaluated, possible
risks, and already materialising risks are analysed—usually by looking for
phenomena that “announce” an upcoming problem.

2. In the assessment, based on the input data, the phenomena and associated
risk (cause and effects) are calculated and the impact is estimated.

3. In the interpretation, the risks are analysed and prioritised based on the
computed probabilities and expected impact (e.g., using a risk classification
matrix as used in PRINCE2 or a self-defined criticality index; see Sect. 4.2).

4. Based on the prioritisation, defined actions to adequately respond to the risks
identified are initiated.

5. Eventually, the analysis results and the actions initiated are reported. Report-
ing is used to complete the cycle and prepare the next assessment iteration,
i.e. updated reporting data complement the general data basis. Also, report-
ing helps to evolve the general data basis, such that further projects can
benefit from the reported findings.

4.2 Prototypical Implementation

The overall approach was developed using a variety of tools. Besides the tools
used for the analysis, i.e. the modelling of the dependency networks and the
probability graphs (Fig. 3, Netica), a prototypical support tool was realised using
Microsoft Excel. The tool is applied to a given project setup in two steps. Figure 6
shows the first step—the configuration. In the configuration, the user is asked
to characterise the project of interest in terms of the context factors company
size, distributed work, and use of agile software development. The second part
of the configuration aims at selecting all phenomena (see Sect. 3.1) of interest.

Fig. 6. Exemplary configuration of the risk assessment tool (basis: NaPiRE data).

52 D. Méndez Fernández et al.

Based on the selection, in the second step, the tool generates a report (Fig. 7)
that comprises two parts: first, a risk assessment report is generated, which
includes the risks and the known context-related causes associated with the
phenomena chosen. The assessment report further present the criticality index
and an estimate visualising the likelihood of a risk materialising in the current
context. In the prototypical implementation, we use a custom criticality index,
which is calculated as follows:

pi
n

· pij
nj

·
(

1 +
ciTRUE

ci

)

The index is calculated with the sum of the weighted phenomena ci, the sum
of the weighted phenomena ciTRUE

that apply in the current context, the size n
of the data set used and the subset nj used for the phenomena that apply, the
frequency of an identified problem in the whole data set pi, and the frequency
of a problem pij in the subset under consideration.

Fig. 7. Example of a risk assessment report based on the the configuration from Fig. 6.

The second part of the report visualises the the cause-effect graph in which
the selected phenomena are highlighted and embedded in the overall network.
This allows for inspecting the phenomena and finding orientation in the complex
model.

5 Validation

Our overall objective in our validation is to better understand the current prac-
titioners’ views and acceptance of our solution proposal and get first feedback

On Evidence-Based RE Risk Management 53

on potential barriers and limitations they see in the presented approach and the
proposed tool. This shall help us in preparing for the large-scale evaluation in
practice and the dissemination of our solution proposal. To this end, we con-
duct interviews with 6 practitioners from different companies and formulate the
research questions listed in Table 3.

Table 3. Research questions for the interview study.

RQ 1 How are requirements engineering risks assessed in projects?

RQ 2 What are the benefits and drawbacks of the presented approach?

RQ 3 What are the barriers for using the presented approach?

RQ 4 Could practitioners imagine to use the presented tool in practice?

RQ 5 What changes would be necessary to employ it in project settings?

After exploring what the state of practice in risk assessment is in the respec-
tive project environments, we are first interested in the general perception of the
benefits and drawbacks in the presented approach. To actively prepare for the
evaluation and give us the chance for last improvements, we further want to know
barriers practitioner see in using our approach, whether they can imagine using
the tool, and what changes would be necessary for using our solution proposal.
As a preparation for the questions on the tool (RQ 4 and RQ 5), we simulated
a given scenario to show the respondents the functionality of the tool in a live
demo. The detailed instrument used for the interviews is shown in Sect. 3.3.

Please note that for reasons of confidentiality, but also because the answers
were all recorded in German, we have to refrain from disclosing the raw data. In
the following, we briefly introduce into the demographics before addressing each
of the presented research questions.

5.1 Demographics

Our six respondents represent companies which differ in the sector and con-
straints attached, thus, covering a broader demographical spectrum. All six
respondents are situated in Germany and their contextual information are sum-
marised in Table 4.

In the following, we introduce the interview results. Where reasonable and
possible, we provide original statements. Please note, however, that these state-
ments are translated from Germany and in parts slightly paraphrased for the
sake of understandability.

5.2 RQ 1: State of Practice in RE Risk Assessment

The state of practice in RE risk assessment is as diverse as the respondents’
environments. Some have already defined a risk management approach, others

54 D. Méndez Fernández et al.

Table 4. Respondents overview (anonymised).

ID Company size Main company
sector

Role in projects Project size Process
model

Project
distribution

1 300 IT consulting Business
analyst

4–10 Scrum Nationally
distributed

2 100 Quality
management,
testing

External
consultant for
RE and Testing

Medium and
large

Agile:
Scrum,
Kanban

Internationally
distributed

3 6000–6500 Software
development
and consulting

Internal
consultant

20–40 Scrum, RUP Internationally
distributed

4 20000 Accounting,
IT-consulting

IT (Risk)-
consultant

N/A N/A N/A

5 30000 Insurance Project
manager

2–120 Agile and
traditional
approaches

Mostly
national
distributed

6 180000 Software
consulting,
customer
solution
development

Requirements
engineer

35 Waterfall,
agile
approaches

Internationally
distributed

are currently establishing one. The most mature risk assessment approach we
encountered was by respondent 3 who reports that at the beginning of each
project, a cost estimation is conducted that includes the assessment of the rela-
tive risk of the project by means of a predefined checklist.

As for the characteristics valued most important in context of risk assessment
(Q 8), following statement seems most representative for the respondents:

“Probability of the risks and the potential monetary impact (including
damages to the reputation)”

When asked if their current risk assessment approach also addresses risks
in RE (Q 7), only 2 respondents stated that requirements-related aspects were
considered.

As for the importance to address RE risks in Risk Management (Q 8), the
respondents had overall an agreement attitude:

“[...] the sooner [risk management] starts, the better” as it enables ?to
identify problems at the beginning.?

On a scale from one to five, the respondents from two companies rate it with the
highest importance, three with four and only one makes the rating dependent
from the contract type. In case of a fixed price contract, he rates it with 4–5; for
time and material contracts, he rates the importance with 1–2 only.

On Evidence-Based RE Risk Management 55

5.3 RQ 2: Benefits and Drawbacks of the Approach

When asked on the benefits and drawbacks of the presented approach, the
answers provided a rich and diverse picture. 3 of 6 respondents clearly stated that
the presented approach would be more precise for RE than available approaches
(Q 10) while only 1 stated it would be not. Further, 4 of 6 respondents stated
it would make sense to assess risks based on the empirically grounded RE phe-
nomena (Q 11a), while, again, only 1 did not agree. When asked for their ratio-
nale (Q 11b), most respondents stated that such an evidence-based view would
increase the awareness for risks in RE. A further positive aspect highlighted was
that the approach would rely on previously made experiences in same or similar
environments:

“Embarrassing to repeat the same mistakes.”

Challenges associated with the approach included:

“It makes sense, but it seems difficult to realise in our company” as
well as “Projects are not very comparable and, thus, we would need
larger amounts of data. Sizing the clusters [sets of context factors] is

challenging.”

When asked directly for the benefits of the approach (Q 12), our respondents
stated that it would offer an experience-based continuous learning including risks
one might not be fully aware of, and it would offer the possibility to compare
different project situations based on common risk factors. This would improve
the situation for project leads by gaining more control.

When asked for what they disliked (Q 13), respondents stated, in one form or
the other, that transparency on risk factors experienced by other projects with
similar characteristics might lead to more insecurity of the project team:

“Too much data may lead to confusion.”

Our respondents further stated that the maintainability of such an approach
would constitute another challenge:

“Keeping the data up-to-date is an elaborate task [as we need to] ensure
high data quality.”

56 D. Méndez Fernández et al.

5.4 RQ 3: Barriers for Using the Approach

As the main barriers for using the presented approach (Q 14), our respondents
stated, in tune with the previous statement, the need to maintain large amounts
of data. A further statement included that a strong focus on risks related to
RE might lead to pessimism. A further perceived barrier affected the fear for
projects giving up their individual characteristics when being compared with
other projects:

“Single projects would have the impression their individual
characteristics would be neglected.”

When asked what we could do to improve the approach (Q 15), we encoun-
tered mainly two aspects: Inclusion of time as a dimension into the phenomena
that would allow to calculate the time until risks may manifests as real events,
and a better visualisation for especially large amounts of data.

5.5 RQ 4: Usability of the Tool

As for the usability of the tool presented via a live demo, we asked our respon-
dents the questions from Table 2 and visualise the results in Fig. 8. While the
focus of our validation was on qualitative feedback, it is still noteworthy that
the prototypical implementation yielded overall a reasonably good acceptance
while acknowledging that—although the tool offers a light-weight mechanism to
assess the risks—it still requires effort for the data maintenance and curation
(reflected in a mixed rating in the performance and productivity).

Fig. 8. Evaluation of the concept and the tool prototype with the six practitioners.
The figure summarises the number of responses as stacked bar charts, ordered by their
agreement on Likert scales from 1 (low/no agreement) to 5 (high agreement).

On Evidence-Based RE Risk Management 57

5.6 RQ 5: Necessary Changes

When asked for the necessary changes we would need to apply to the whole
approach and to the corresponding prototypical tool (Q 26), two major aspects
were prominent:

“Support in the data collection and [possibilities to better] compare
company data with the data of other companies” as well as “Improved

reliability of the data”.

Those statements are, in fact, in tune with our expectations from the current
stage of development were we could only use the context factors known from the
baseline data in NaPiRE. Overall, our respondents concluded along that line,
which can be summarised by this exemplary statement:

“Detailed project characteristics need to be included [as context
factors]”

as well as by the need to further scale up from risk assessment to a holistic risk
management as exemplarily reflected in this statement:

“Countermeasures should be included”

In summary, the need to increase the precision and reliability of the data
by adding more data points as well as context factors, and the need to extend
the approach with context-sensitive recommendations in form of guidelines is in
tune with our hopes and expectations expressed in Sect. 3. This strengthens our
confidence in the suitability to release our approach for a large-scale evaluation
which is in scope of current activities.

6 Conclusion

In this paper, we elaborated on the need for an evidence-based risk management
approach that considers the particularities of RE. We argued that for such an
approach, we would need a proper empirical basis on practical problems, root
causes and effects in industrial RE. To lay a first foundation for such a risk
management approach, we presented a cyclic research design that makes use
of empirical data gathered from the NaPiRE project yielding a first approach
for an evidence-based RE risk assessment. We implemented this risk assessment
approach and conducted a first validation by interviewing 6 respondents from
different companies.

The results of the validation have shown potential for improvement, but it
also strengthens our confidence in the maturity of our solution proposal and its

58 D. Méndez Fernández et al.

suitability to be transferred into practice and applied in a large-scale evalua-
tion. In particular, the feedback from the practitioners indicate an increase of
awareness for individual risk factors in RE which so far could not be provided
by existing traditional risk management approaches. They also strengthened our
confidence in continuing the envisioned future work. This work includes running
a field study which is currently in preparation and enriching our approach with
a set of recommendations associated with context-sensitive risk factors as shown
in previous work on guidelines to prevent RE problems [20,25].

Acknowledgements. We are grateful to all practitioners who participated in the
evaluation and who shared their experiences and insights into their environments.

References

1. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceed-
ings of the Conference on the Future of Software Engineering, pp. 35–46. ACM,
New York (2000)

2. Damian, D., Chisan, J.: An empirical study of the complex relationships between
requirements engineering processes and other processes that lead to payoffs in
productivity, quality, and risk management. IEEE Trans. Softw. Eng. 32(7), 433–
453 (2006)

3. Méndez Fernández, D., Wieringa, R.: Improving requirements engineering by arte-
fact orientation. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.)
PROFES 2013. LNCS, vol. 7983, pp. 108–122. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39259-7 11

4. Méndez Fernández, D., Wagner, S.: Naming the pain in requirements engineering:
a design for a global family of surveys and first results from Germany. Inf. Softw.
Technol. 57, 616–643 (2015)

5. Méndez Fernández, D., Wagner, S., Kalinowski, M., Felderer, M., Mafra, P., Vetro,
A., Conte, T., Christiansson, M.T., Greer, D., Lassenius, C., Männistö, T., Nayebi,
M., Oivo, M., Penzenstadler, B., Pfahl, D., Prikladnicki, R., Ruhe, G., Schekel-
mann, A., Sen, S., Spinola, R., de la Vara, J., Tuzcu, A., Wieringa, R.: Naming
the pain in requirements engineering: contemporary problems, causes, and effects
in practice. Empir. Softw. Eng. 22, 2298–2338 (2016)

6. Boehm, B.W.: Software risk management: principles and practices. IEEE Softw.
8(1), 32–41 (1991)

7. DeMarco, T., Lister, T.: Waltzing with Bears: Managing Risk on Software Projects.
Dorset House Publishing Co., Inc., New York (2003)

8. Pfleeger, S.: Risky business: what we have yet to learn about risk management. J.
Syst. Softw. 53(3), 265–273 (2000)

9. Boehm, B.: A spiral model of software development and enhancement. Computer
21(5), 61–72 (1988)

10. Kontio, J.: Risk management in software development: a technology overview and
the riskit method. In: Proceedings of the 21st International Conference on Software
Engineering, pp. 679–680. ACM (1999)

11. Karolak, D., Karolak, N.: Software Engineering Risk Management: A Just-in-Time
Approach. IEEE Computer Society Press, Los Alamitos (1995)

12. ISO 31000:2009 risk management-principles and guidelines. International Organi-
zation for Standardization, Geneva, Switzerland (2009)

https://doi.org/10.1007/978-3-642-39259-7_11
https://doi.org/10.1007/978-3-642-39259-7_11

On Evidence-Based RE Risk Management 59

13. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Softw. Tools
Technol. Transf. 16(5), 559–568 (2014)

14. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Trektere,
K., McCaffery, F., Prause, C.R., Hanser, E., Linssen, O.: Hybrid software and
system development in practice: waterfall, scrum, and beyond. In: Proceedings of
the International Conference on Software System Process ICSSP (2017)

15. Asnar, Y., Giorgini, P., Mylopoulos, J.: Goal-driven risk assessment in requirements
engineering. Requir. Eng. 16(2), 101–116 (2011)

16. Haisjackl, C., Felderer, M., Breu, R.: RisCal-a risk estimation tool for software
engineering purposes. In: 2013 39th EUROMICRO Conference on Software Engi-
neering and Advanced Applications (SEAA), pp. 292–299. IEEE (2013)

17. Lawrence, B., Wiegers, K., Ebert, C.: The top risk of requirements engineering.
IEEE Softw. 18(6), 62–63 (2001)

18. Kalinowski, M., Spinola, R., Conte, T., Prikladnicki, R., Méndez Fernández, D.,
Wagner, S.: Towards building knowledge on causes of critical requirements engi-
neering problems. In: Proceedings of the 27th International Conference on Software
Engineering and Knowledge Engineering (SEKE) (2015)

19. Méndez Fernández, D., Wagner, S., Kalinowski, M., Schekelmann, A., Tuzcu, A.,
Conte, T., Spinola, R., Prikladnicki, R.: Naming the pain in requirements engi-
neering: comparing practices in Brazil and Germany. IEEE Softw. 32(5), 16–23
(2015)

20. Kalinowski, M., Felderer, M., Conte, T., Sṕınola, R., Prikladnicki, R., Winkler, D.,
Fernández, D.M., Wagner, S.: Preventing incomplete/hidden requirements: reflec-
tions on survey data from Austria and Brazil. In: Winkler, D., Biffl, S., Bergsmann,
J. (eds.) SWQD 2016. LNBIP, vol. 238, pp. 63–78. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-27033-3 5

21. Wagner, S., Méndez Fernández, D., Felderer, M., Kalinowski, M.: Requirements
engineering practice and problems in agile projects: results from an international
survey. In: Proceedings of the XX Ibero-American Conference on Software Engi-
neering (CIbSE) (2017)

22. Wieringa, R., Moralı, A.: Technical action research as a validation method in infor-
mation systems design science. In: Peffers, K., Rothenberger, M., Kuechler, B.
(eds.) DESRIST 2012. LNCS, vol. 7286, pp. 220–238. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29863-9 17

23. Gorschek, T., Garre, T., Larsson, S., Wohlin, C.: A model for technology transfer
in practice. IEEE Softw. 23(6), 88–95 (2006)

24. Kalinowski, M., Curty, P., Paes, A., Ferreira, A., Spinola, R., Méndez Fernández,
D., Felderer, M., Wagner, S.: Supporting defect causal analysis in practice with
cross-company data on causes of requirements engineering problems. In: Proceed-
ings of the 39th International Conference on Software Engineering (2017)

25. Mafra, P., Kalinowski, M., Méndez Fernández, D.M., Felderer, M., Wagner, S.:
Towards guidelines for preventing critical requirements engineering problems. In:
42th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA) (2016)

https://doi.org/10.1007/978-3-319-27033-3_5
https://doi.org/10.1007/978-3-319-27033-3_5
https://doi.org/10.1007/978-3-642-29863-9_17

Requirement-Based Testing - Extracting
Logical Test Cases from Requirement

Documents

Harry M. Sneed1,2(&)

1 Technical University of Dresden, Dresden, Germany
Harry.Sneed@T-Online.de
2 SoRing Kft., Budapest, Hungary

Abstract. Much has been written on the subject of model-based testing, i.e.
taking the test cases from the system model. The prerequisite to that is that the
testers have access to a design model, preferably in UML. Less has been pub-
lished on the subject of requirement-based testing, i.e. taking the test cases
directly from the requirement document, which is usually some structured text.
Model-based testing has, to a certain extent, already been automated. Tools
process the model XMI schema to extract logical test cases or test conditions as
they are referred to in the ISO Standard-29119. There has yet to be any tools to
extract test cases from requirement documents since this entails natural language
processing and presupposes the marking up of the documents. The author began
his research in this field already in 2003 while working as tester in a large scale
financial services project in Vienna. There he was able to generate several
thousand logical test cases and store them in the project test case database. His
first internationally published paper on the subject was at the QSIC Conference
in 2007. Since then he has published another five papers on the subject, alone
and with others. At the heart of this approach is a text analysis tool named
TestSpec which processes both English and German language requirement texts.
The tool has been used in several projects to set up a logical test case database
and to determine the extent of the planned system test. By counting the number
of test conditions contained in the requirements text, it is possible to better
estimate test effort. In all cases it proves to be helpful to testers in recognizing
and defining test cases. It saves the effort involved in manually scanning through
large text documents often containing several hundred pages in search of fea-
tures to be tested. What used to take many days can now be done within a few
minutes with the help of the tool. Not only that, but the tool also generates a test
plan and a test specification in accordance with the ISO/IEEE standard. In this
paper the automated approach to extracting test conditions from natural lan-
guage text is explained and how it is implemented by the tool. In this
praxis-oriented paper four test projects are cited which deal with very different
types of requirement documents.

Keywords: Requirement documentation � Test automation
Natural language processing � Test conditions � Logical test cases
Test case types � Test case descriptions
Functional and non-functional requirements � Use cases specifications

© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 60–79, 2018.
https://doi.org/10.1007/978-3-319-71440-0_4

1 Background of This Work

The author has been involved for some years now in estimating the cost of proposed
systems. He receives the requirement document, referred to in German as the “Las-
tenheft” and is expected to measure the scope of the implementation using some
requirement metric such as function-points, object-points or use case-points. To
accomplish this he only has a couple of days since the average user is not willing to pay
more for cost estimation. For this purpose the author has developed a text processing
tool which counts the objects, the nouns used, the states defined, the actions prescribed
and the use-cases. The most reliable measure is that of the use-cases. Users are more
prone to define use-cases more accurately than anything else. As a minimum they will
identify the use-cases and describe them in a short text. If they are diligent, they will
also identify the use-case paths and their steps. Each step is an action which should be
carried out. It may be that the inputs and outputs of the use-case are also part of the
use-case description, making it possible to count function-points but this is seldom the
case. If the user insists on counting function-points, this can only be done indirectly by
transposing use-case points into function-points by means of some statistical averages
on the relationship of use-cases to function-points. Object-points are counted by
counting the nouns used in the use-case descriptions. If test cases are to be counted, this
can only be done by identifying the use-cases and then counting the actions, states and
conditions referred to in the use-case descriptions [1].

Of the 12 requirement documents that the author has been called upon to analyze in
the past two years:

• one for recording all the practicing medical doctors in the country
• one for recording all the motor vehicles in the country
• one for prescribing registration cashier machines for the country
• one for prescribing a toll collection system or the country
• one for prescribing a document archiving system for the country
• one for prescribing an employee payment system for two states
• one for administering the medical insurance of all retirees in the country
• one for the marketing, production planning, distribution and post sales services of

hearing aids
• one for the mobile care of disabled and elderly citizens of a large city
• one for the school administration of a large city
• one for administering the disposal of electronic garbage
• one for room management in a major university.

Nine of them contained some form of use-case description. In the other three the
author had to insert dummy use-cases to be able to identify events. It is principally
possible to identify potential test cases without use-cases. In this case the test cases are
linked to the requirements, but there is no connection to the physical IT system.
Requirements must be somehow linked to the planned system. This is where the use
case comes into play [2].

Requirement-Based Testing - Extracting Logical Test Cases 61

2 Model-Based Versus Requirement-Based Testing

Model-based testing uses some subset of the design model to extract test cases from. It
could be the activity diagrams or the sequence diagrams or a combination of both. It
could also be the use-case diagrams. In industrial practice it is more likely that the users
will rely on use-cases to prescribe the implementation of their proposed systems.
Use-cases are the link between the requirement documentation and the system design.
The system design with its diverse diagram types – sequence, diagram, activity diagram
and state diagram – is seldom complete and often not done at all, but more and more
use-cases are used to identify and describe the transactions performed by a planned
system [3].

Requirements are simply wishes of the user. There is no way to know if and how
these wishes will be fulfilled. One could attach the requirements to the object of a
system but there is no guarantee that these objects will really be used. Therefore it is
best to link the requirements to the real system by means of use-cases. A given
requirement must be fulfilled by at least one use-case in order to be considered as
satisfied. Whether it satisfied properly is another question, but at least it is assigned to
be satisfied [4].

Of those 12 systems whose requirements were analyzed by the author, only three of
them were later designed. For the rest a fully designed model was never created. The
code was created on the basis of the requirement document, i.e. the prescribed
use-cases. In most cases class diagrams were used to sketch the architecture of the
system and in some activity diagrams were used to depict the flow of control, but it
never got to the sequence and state diagrams. The only documents which could be used
for specifying test cases were the use-case descriptions and the requirement texts of the
requirements assigned to those use cases.

62 H. M. Sneed

Thus, as we can see here, the problem with model-based testing is that there is
seldom an adequate model to base the test on. There is only a requirement document
and that too is more often incomplete. By analyzing the text of the requirements it is
possible to recognize actions, states and conditions. For each action, a logical test case,
or test condition, is generated to test if that action is really executed. For each state, a
logical test case is generated which checks if that state actually occur. For each con-
dition two logical test cases are generated – one for the positive outcome and one for
the negative outcome. This leads to a large number of logical test cases ordered by
requirement. But these test cases are not connected with the executable IT system. They
are simply an indicator of what should be tested [5].

To connect requirement test cases to the real system, use-cases are needed.
Requirements are assigned to particular use-cases to be fulfilled. If a functional
requirement is not assigned to a use-case, it is assumed be out of the system. If a
non-functional requirement such as a response time limitation is not assigned to a
particular use-case, it should always be fulfilled, i.e., it applies to all use-cases. Behind
each use-case is a set of elementary code units – procedures, functions or methods,
executed in a prescribed sequence. They may be physically distributed among many
different code components but at runtime they are included in the same execution path
of one or more use-cases. In this way the requirements and with them their test cases
are connected to the code. This is the essence of requirement-based testing. The test
cases are aimed at the requirements but via the requirements also at the use-cases which
fulfill those requirements [6]. The association chain is:

Test Case ! Requirement ! Use-Case ! Code

As pointed out above, test cases can also be aimed directly at Use-Cases without
any reference to the requirements.

Test Case ! Use-Case ! Code

3 Generating Logical Test Cases

The focus of this paper is on identifying and generating logical test cases, or test
conditions as they are referred to in the ISO-29119 standard [7]. A test condition
defines a particular feature of the system. This can be an action, a state or a rule. An
action would be “to place an order”. A state is “the ordered article is available”. A rule
would be “the customer can only place an order if the ordered article is available”.
A rule is as shown here actually a combination of a state with an action. In decision
tables, the conditions are in the upper rows, the actions are in the lower rows and the
columns join the two, where they cross – the intersections – are the logical test cases,
i.e. the test conditions.

Requirement-Based Testing - Extracting Logical Test Cases 63

When given the task of defining test cases for a system test, the tester has to
visually scan the requirement document to recognize the relevant actions, states and
rules. Wherever the tester locates them, they are tagged as a potential logical test case.
Those logical test cases are then listed out in the order of the text sections in which they
are found. This could be a requirement, a use-case description, an object description or
simply a text paragraph. In the end the tester produces a list of all test conditions
grouped by text section and by test condition type. They can then be assigned to a
particular test in which they are to be executed and to a particular tester who is
responsible for testing them [8].

When automating the test condition generation, the same procedure is followed.
First, the text has to be converted into a machine processable form. If it is in PDF or
Word format, it has to be converted to pure text. If there are tables in the text, they have
to be adjusted. If there are pictures or diagrams, they are left out. The pure text version
of the requirement document is a list of variable length lines with key words to identify
the line types.

The key words for marking the line types of a requirement document are not a
prerequisite for identifying the test conditions [9]. Test conditions can be identified and
extracted even from a formless prose text, but then they cannot be assigned to a
particular requirement type. They can only be assigned to the section or paragraph in
which they are found. That is why it is important to insert key words into the text
before processing it. Requirements should be uniquely identified with a requirement
identifier such as FREQ-01. Objects should be identified with an object identifier and
data elements with a data identifier. Use-cases are to be marked with a use-case label.
The attributes of a use-case, e.g. actor, trigger, precondition, post condition, path, step,
etc. should also be marked as such. To be easily recognized, the key word should be
placed at the beginning of the line and followed by at least one space as a delimiter.

&FUNC-REQ-04 Billing
For every customer order in which at least one item is fulfilled, an invoice is to be
printed and sent to the customer. The invoices are to be prepared once a month at the
end of the month. The invoice should include the items ordered, their prices, the total
sum, the VAT and the amount due. All invoices should be checked by the accountant
before being sent out.

&BR-01: Unauthorized customers may not order articles.
&BR-02: Customers with bad credibility may not order articles.
&BR-03: Only articles on stock may be ordered.
&BR-04: An order item can only be fulfilled if the amount of articles on stock is more
than the minimum amount required.

&Actor-01: Customer
&Actor-02: Accountant
&Actor-03: Dispatcher
&Actor-04: Stock Clerk

A use case description will of course include several key words, one for every
attribute as depicted below.

64 H. M. Sneed

Attribute Description

&UseCase Customer_Query
Fulfill Func-Req-01
Process BO-01, BO-02
Input Gui-01i
Output Gui-01o
Implements BR-01
&Trigger Menu_selection
&Actor Customer
Frequency Continuous
PreCondition Customer is authorized

Articles are stored by category
PostCondition Articles of the selected category are displayed by name in alphabetical order
MainPath (1) System displays article categories

(2) Customer selects a category
(3) System displays all articles in that category with their prices in ascending
alphabetical order

AlternatePath None
Exceptions System rejects customer if he is not authorized
Rules Only authorized customers have access to the articles on stock

The key words used can be selected by the user. There is a set of some 20
predefined keywords contained in the text processing tool. However the user has the
possibility of replacing these fixed four character mnemotechnical abbreviations with
names of his own. For instance he can replace REQU with “Financial Requirement” or
OBJT with “BusinessObject” There is a special keyword table for making this
renaming. It should be filled out before starting the text analysis. Then, when the text is
read, the user defined keywords will replace the literal identifiers.

SKIP = ignore lines beginning with this word
REQU = this word indicates a requirement
MASK = this word indicates a user interface
INFA = this word indicates a system interface
REPO = this word indicates a report
INPT = this word indicates a system input
OUTP = this word indicates a system output
SERV = this word indicates a web service
DATA = this word indicates a data store
ACT = this word indicates a system actor
TRIG = this word indicates a trigger
PRE = this word indicates a precondition
POST = this word indicates a post condition
PATH = this word indicates a logical path or sequence of steps
EXCP = this word indicates an exception condition
ATTR = this word indicates any user assigned text attribute

Requirement-Based Testing - Extracting Logical Test Cases 65

RELA = this word indicates a relation between use cases
REFS = this word indicates a reference to a requirement
RULE = this word indicates a business rule
PROC = this word indicates a business process.

When the text is read, the lines are distinguished between title lines and text lines.
Title lines are recognized by having a title number such as 1.2.3 or by having a key
word such as FREQ-01 or UseCase-02. The title lines mark the end of the last text
section and the beginning of the next one. The sentences with a text section should end
with a period or a semicolon or a question mark, i.e. the usual punctuation characters.
The first action of a text parser is to build up the sentences. Once the sentences are
available they are parsed token by token to recognize nouns, verbs, adjectives and
conditions. Each noun is checked against a predefined noun list. Only if a sentence
contains a predefined noun, i.e. a relevant object, will it be processed further. Further
processing entails recognizing the verbs, adjectives, adverbs and conditional phrases.
To this end the sentence structures are compared against grammar patterns. An action is
recognized when a subject is combined with a verb and an object. A state is recognized
if an object is linked to an adverb, such as “article is stored”, or “the bill is paid”. Rules
are recognized if there is a conditional phrase in the sentence like if; when; until; as
long as; in case of; should, etc. If the sentence satisfies any of these criteria, it will be
cut out of the requirement text and classified as an action, a state or a rule [10].

Extracted sentences are stored in a test condition table together with their type and
the section in which they appear. That section, requirement or use-case is referred to as
the test target. The result is a logical test case or test condition table which can be further
processed by the tester, for instance with the tool Excel. There the user may add
additional attributes such as the tester name, the test vase priority and the test case status.
The goal is to have a test condition for each and every feature in the proposed system.
The requirement defines the feature and the logical test case tests if the requirement is
fulfilled. The use-case implements the requirements with the paths and steps. The steps
are described by action-type sentences from which test conditions are derived. The pre-
and post-conditions are specified by state definitions from which the state-based test
conditions are extracted. The exceptions are described mostly in the form of conditions.
These use-case oriented test conditions are partly redundant to the requirement oriented
conditions since they are describing the same functionality but from another point of
view, the viewpoint of implementation. The test conditions taken from the requirements
are focused on the “what”; those taken from the used-case are focused on the “how”.
Together they make up a complete test of the planned system [11].

It can be that the specification of the “what” is in a separate document than the
specification of the “how”, In German, the two documents are referred to as “Las-
tenheft” and “Pflichtenheft”. However, since the results of the automated text analysis
are additive, this does not matter. The test conditions from all documents analyzed are
merged together. This leads to a large number of redundant conditions which in the end
have to be removed, but it is better for test conditions to be redundant than to be
missing. In the German speaking world the “Lastenheft”, i.e. the required features are
written by the user organization, whereas the “Pflichtenheft” is written by the supplier
organization. The former document prescribes what is wanted, the second documents

66 H. M. Sneed

prescribes how it is to be achieved. This division of responsibility sounds very logical
in theory, but in practice it does not always work out. As pointed out by Balzer the
“how” and the “what” are very often intertwined [12]. And as Davis remarks one man’s
“what” is another man’s “how” [13]. Besides, the “how” may not match to the “what”
and this is not discovered until the test. Comparing the test conditions extracted from
the two different documents is a good and inexpensive way of finding out if they are
consistent.

Checking the “how” against the “what” is best done by matching their respective
test conditions. If a test condition for a use-case contains the same nouns and the same
verbal expressions as a test condition for a requirement, the requirement is considered
to be fulfilled by that use-case. By matching their respective test conditions, use-cases
can be traced to the requirements and vice versa, the requirements to the use-cases. This
is also a first step to measuring requirement test coverage. To be covered a functional
requirement must be assigned to a specific use-case. This is discovered by matching
their test conditions [14].

Generating test conditions or logical test cases from the requirement document
serves therefore at least three purposes:

1. It is the basis for defining the ultimate system test cases,
2. It enables the matching of the proposed implementation against the desired features,
3. It provides a metric for estimating the costs of system testing.

It has now been recognized that testing makes up for over 50% of the project costs
[15]. The costs of testing depends to a great extend upon the number of test cases that
have to be run. That member can be derived from the number of the test conditions. As
a rule there are double as many physical test cases as there are logical test cases. If users
know their test productivity in executed test cases per person day, they will be able to
project the total test effort required from the number of logical test cases. Thus, there
are three factors to be considered in estimating test costs:

• The number of logical test cases
• The relation of logical to physical test cases
• The number of physical test cases per tester day [16].

4 Transforming Logical into Physical Test Cases

That brings us to the question of how to get from test conditions to the real executable
test cases. Executable test cases are no more than logical test cases, i.e. test conditions
with data. Two types of data have to be added to each test condition – the input and the
expected output. The data supplied as input has to be representative of the data used in
production. The data defined as output has to be calculated from the input data
according to the test condition. If the input is € 1000 per month and the requirement is
to raise the salary by 10%, the expected output will be € 1100. Not all of the expected
outputs have to be specified, but at least the critical results should be. There is no
alternative to a manual calculation other than using values from previous tests or

Requirement-Based Testing - Extracting Logical Test Cases 67

production runs. In defining a physical test case, the tester can refer to those existing
output values. Otherwise, the tester has to calculate the outputs.

In defining the input data, the user can also refer to external sources or insert the
values directly into the test case. If he or she selects the first approach, the input field
will contain a reference to the source of the input values for this variable. It could be
that the tester has prepared a sample input screen with all the values for a particular
use-case. It could be that the tester refers to a table of pre-prepared values, for instance
the contents of a test database. In either case the input data has to be accessible to the
tester or test driver at runtime [17].

The other alternative is for the tester to build the input data into the test case
description. If the data values are compact that is not a problem. They will fit into a
column of the test case table. If they are long strings, the tester should place them into
separate tables and refer to them by their position or by their key. Here too the data
tables must be available at testing time for the tester or test driver to access.

As we can see, it is not at all trivial to combine the test conditions with test data.
The means of reaching that end go well beyond the scope of this paper. The emphasis
here is on detecting and documenting the test conditions, as a prerequisite to specifying
the final physical test cases. This step can be automated using existing text processing
technology as demonstrated in the case studies cited here. The second step of producing
executable test cases with real data is not yet automatable, at least not at the current
state of technology and may never be. The human tester is required to provide rep-
resentative input values and to define expected result values. This remains the biggest
challenge of software testing and is certainly a subject for further research [18].

5 Case Studies from Industrial Practice

To illustrate how requirement-based testing works four sample requirement documents
are referred to here.

• The requirements of an online betting system
• The requirements of a mobile phone answering service
• The requirements of an airport customs office
• The requirements of a governmental website.

In the first case the test conditions were generated from a text document in which
only the requirements are listed out. This was a requirement document for a betting
system. In the second case the test conditions were generated from a text document in
which only the use-cases were specified. This was a requirement document for han-
dling incoming calls on a cell phone. In the third case, the test conditions were gen-
erated from a text document which contained both a list of requirements and a
specification of the use-cases. It was the requirement documentation of an airport
custom office. In the fourth case the test conditions were taken from a set of use cases
prescribing social welfare services offered by a governmental website. The samples
demonstrate that test conditions can be extracted automatically from a wide range of
requirement document types.

68 H. M. Sneed

5.1 Generating Test Conditions for a Betting System

The system in this case study is a system for reporting the results of sporting events. The
users, in this case the event reporters, log into the feed system. If they are authorized and
accredited to report events, they have access to the notification screens. Depending on
the type of event, they can select what reporting screen they want to use and enter their
data sporting events. If the notification matches to a known event, it is accepted and
stored into a notification database. There it is matched with other reports on the same
event. To be acknowledged as true, three different notifications from three different
sources have to match. Then the data reported is stored in a final result database to be
compared with the bets placed. (see the following Sample Requirements).

[RF 43] Notifications are added to a notification interface, which contains
information about

 The reason of the notification
 The kind of the notification
 The type of the notification
 The date/time of the notification
 If action needed: A link to the place where the action is needed.
[RF 44] The user is able “take” a notification (locked for others),
 do the action and mark the notification as “finished”.
 If the action is finished, the user name is stored by the notification.

From a technical point of view, the event notifications were actually emails in XML
format that were queued in the order in which they came in. They were then processed
sequentially by a continuously running mail reception server to be validated or rejected.
The output was a database of sporting event results.

This short 32 page requirement document contained:

• 95 functional requirements
• 4 non-functional requirements and
• 12 data requirements.

Besides the requirement texts it also contained 6 prototype GUI samples, 3 logical
data models and a work flow diagram. The requirements were marked with a require-
ment identifier RF for Functional Requirement, RN for Non-Functional Requirement
and RD for Data Requirement, followed by a sequence number, The GUI samples were
identified by a keyword UI and the data models by the keyword DM.

The automated text analysis revealed that this document had

• 567 sentences
• 6879 words
• 116 nouns
• 279 verbs
• 100 conditional phrases.

To be tested were

Requirement-Based Testing - Extracting Logical Test Cases 69

• 150 states
• 106 actions and
• 100 conditions.

This added up to a total of 356 potential test conditions, i.e. logical test cases. After
the duplicates were removed, there remained 287 conditions, states and actions to be
tested. These were generated in the form of a text report, an excel table and an XML
file where they were ordered by requirement type and test type.

When the test itself was conducted additional test conditions were added as needed.
It turned out that it was not possible to foresee all the exception conditions, so in the
end there were again more than 350 test conditions which were all converted over into
physical test cases. Two Austrian testers were assigned to manually execute the test
cases by typing in the feed messages but they turned out to be too slow and too
expensive and were replaced by Slovakian testers. It had been the intention of the
author to automate the test however he was pulled out of the project before he had the
opportunity to complete the XML data generation tool. This he had to do later at his
own expense. Users are very reluctant to finance the development of tools, even if it is
to their own benefit.

The question remains as to whether it was worth it to extract the test conditions
automatically from the requirements document. The same result could have been
achieved manually with the aid of an excel table, but it would have required much more
time and could not have been done by one person. With the use of the requirement
analysis tool it was possible to generate all the test conditions within a week. Without
the tool it would have required two persons at least a month.

5.2 Generating Test Conditions for a Cell Phone Answering Service

The system described here is a multi-device subscriber for handling incoming calls on a
cell phone. The subscriber receives a speech or video telephone call addressed to the
master device. All phones addressed by the incoming call start ringing. The user
responds to the call on one phone and the other phones stop ringing. The call is
registered and booked for charging.

This cell phone system was specified by 71 separate use-cases. Each use-case had
the following contents:

• general description
• main track
• alternative track
• exceptions.

The general description was accompanied by a work flow diagram depicting the
flow of control. The tracks were described as a sequence of numbered steps, some of
which were conditional. The average size of a step was about 4 lines. Conditional steps
were somewhat longer with a text for each alternative outcome. (see Sample Use Case
Steps).

70 H. M. Sneed

Sample Use Case Steps
1) If BSG_FAX, BSG_DATA or BSG_DATA64KBIT was detected, the

MultiDevice logic sends depending on the type of trigger (T-CSI or VPN dialled
trigger) a sinap:CUE or a sinap:CON message, writes a Call Ticket, invokes the
profile synchronization and terminates afterwards.

2) If under any condition the MTC call shall be released with a final
announcement, this is applicable to BSG_SPEECH, only. For BSG_VT the MTC call
will be simply released.

3) If BSG_VT has been detected, but VT_PR_ACTIVE is FALSE, i.e. no parallel
ringing shall be applied, the MTC call shall be set up to the master-MSISDN, only.
Note that if profile:VTActivated was not set, i.e. the subscriber receives a VT call for
the first time, the flag will be set (via J-330).

4) Whenever an ODSB, a Direct Dialling to a slave card or an internal call between
SIM cards of a MultiDevice subscriber is detected, the MTC will be released with a
final announcement. The MultiDevice logic writes a Call Ticket, invokes the profile
synchronization and terminates afterwards.

The cell phone requirement specification document had more than 300 pages with
an average of 4 pages per use-case. For demonstrating the definition of logical test
cases, four use-cases were selected.

The difficulty in processing the document lay in the many detailed steps of each
use-case and in the fact that the actions of each step were listed out as bullet points
rather than as full services. In addition to that, some steps contained data definitions
similar to methods in C++.

Step (1) The SEP is initialized and the data reset
Step (2) The SEP receives a smap – IDP – and triggers the MTC Base Handling

service logic

• determine basic service result
• check for VPN networking (VPN – IW = FALSE for further processing)
• normalize the receiving smap – IDP, CdPA into longest format
• checks CFU status (CFU_not_active)……

Step (3) The SEP initiates a call set up towards card0 (Master MSISDW) via
smap-CON with the following parameters:

• Supression of GMS-CF
• Destination Routing Address including MNP prefix
• Melody Data
• Arm EDPs for outgoing legs.

Step (4) Message will be relayed to the MSC.
The many acronyms such as here the MSC added to the difficulty of parsing this

test. Any token expressed in capital letters was treated here as a noun, i.e. as a potential

Requirement-Based Testing - Extracting Logical Test Cases 71

object. From the four use-cases selected for the study, 257 logical test case were
extracted – 37 states, 131 actions and 77 conditions. Here too the test conditions were
given out in three alternative formats – as text, as XML and as CSV, ordered by
use-case and step. This information proved to be very useful in specifying the final
physical test cases. At least the testers knew what had to be tested. Furthermore it was
useful in estimating the costs of testing based on 0.3 tester days per logical test case.
This added up to 86 tester days just for these four use cases. To test all 71 use cases
would have cost more than 1527 person days.

The automated extraction of test conditions from the T-Mobile requirement spec-
ification was mainly used in estimating the number of test cases required and the costs
of the tests. It could not be used for generating the test cases themselves. The
requirement text proved to be too inaccurate. It had to be interpreted by the human
testers interacting with the mobile device. The cell phone software was developed in
India. The testing was to be done in Germany. Unfortunately, the author has no
information on the outcome of this test. His role was restricted to estimating the costs
of the test which turned out to be more than what the cell phone provider was willing to
pay. As a consequence, the contact to this customer was lost.

5.3 Generating Test Conditions for an Airport Customs Office

The third case study in extracting test conditions from requirements text has to do with
the custom office at an international airport. Foreign travelers are refunded the value
added tax on purchases made within the country. In this requirement document the
functional requirements were listed out and marked with the identifier FR-nn.
Non-functional requirements were marked with the identifier NR-nn. There were
altogether 93 requirements – 70 functional and 23 non-functional.

FR-08 Customer Client Desk
The CAS provides a Customs Desk Client to provide a non-automated electronic

approval of TFS transactions.
NR-09 Operation in extreme weather conditions
As the pilot country will be Finland, we have to fulfill the special requirements of

Finland. Customs validation in Finland happens in Nuijamaa and Vaalimaa outside
the office. Custom officers (in this case GR personnel) are going to cars / busses and
controlling goods outside (-20°C)1. At Helsinki airport goods are controlled by check
in personal in the landside. CAS-Terminal and Kiosk have to be designed for those
environmental circumstances.

FR-10 Refund Transactions
The CAS-Project will create xTFS Transactions, but the paper based transaction do

not influence the system described here. Nevertheless the refund project (another
project in the eTFS-Program) has to assure, that a transaction is refunded if the
electronic transaction is approved (independent from if the paper cheque was stamped
or rejected) If the eTFS transaction is rejected then the transaction is not refunded,
even if the paper check is approved = stamped. This means, that the eTFS transaction
is the deciding one.

72 H. M. Sneed

This document also contained the use-case descriptions. First, the requirements
were listed out and then the use-cases for implementing those requirements. At the
beginning there was a process data model which defined the entities processed and their
relationships to one another.

The functional requirements were expressed in one to three precise English sen-
tences describing an action, a state or a rule. The state requirements often listed out
alternative states such as payment modes – credit card, GR-card or cash. A typical
functional requirement was

FR-08 Customer Client Desk
CAS should have a Customer Desk Client to provide a non-automated electronic
approval of TFS transactions.

A typical non-functional requirement was

NR-09 operations in extreme weather conditions
Since the pilot country will be Finland, the system must fulfill the special requirements
of that land. Customs validation in Finland often happens outside of the office; Custom
officers are going to cars/busses and controlling goods outside at -20 degree tem-
perature. At Helsinki airport goods are controlled by check-in personnel. CAS-Ter-
minal and Kiosk have to be designed for such environmental circumstances.

The list of requirements was followed by a series of use-case descriptions. For each
use-case the following attributes were defined within a prescribed template:

• short description
• purpose e.g. to refund VAT
• primary actors involved, e.g. traveler, customs officer
• goal of primary actor
• main path with detailed steps e.g. (1) entry of the request shall be done by a

machine reading device; (2) the user enters a request for refund via the keyboard.
• there are different boxes of the GUI to enter it – passport-id, country, amount

involved, credit card number, etc.

Typical use cases were as such:

• search transaction set
• search approval candidate transactions
• set custom status automatically
• set custom status manually

Requirement-Based Testing - Extracting Logical Test Cases 73

A typical use case description appeared as follows:

UC-2 Set custom status automatically
Short
description

Transactions are automatically approved with an electronic
stamp or not approved. In the latter case, no custom status has
been changed and they are stored as approval attempt if the
calling system was the kiosk.

Level User Goal
Primary Actors Terminal User, Kiosk
Preconditions Actor is logged in, System knows the transaction set and has

already predetermined the status. The inputs have been
validated, dynamic traveler data are complete.
Approval key is available for the software.

Goal
Primary Actor

Get approved transactions.

.
Main Path: Set custom status

If the predetermined custom status of each transaction in the
transaction set is approvable (=green) OR

if parameter “auto-approve subset possible” = “yes” (which
means that the system can approve subsets of the transaction set)
then the system sets the custom status of all green transactions to
“approved”.

Variant 1: parameter “auto-approve subset possible” = “no”
and some transactions are red

In the main path an OR condition is defined indicating that two test conditions have
to be generated – one for the true branch and one for the false branch.

Since this document was marked up by keywords from the beginning by the
responsible analysts, there was little the tester hat to do to prepare it for automated
analysis, only some minor editing to separate text sections and to mark the use cases.

The measurement of the document revealed that there were

• 1257 English sentences
• 14.355 words
• 3698 nouns
• 356 verbs
• 238 conditional phrases
• 26 user interfaces
• 17 user reports
• 8 actors
• 26 use-cases
• 28 paths
• 47 steps.

Already it was possible to see on hand of the relationship between use-cases, paths
and steps that the requirement document was incomplete. The first few use-cases were

74 H. M. Sneed

described in great detail; the later use-cases were not described at all. They only had
titles. This often happens in requirement analysis projects. Since the time is limited, the
analyst simply stops their work when the time runs out. This should not be allowed. If
there is not enough time, then the whole requirement analysis phase should be skipped
over. This document was a good example of an incomplete requirement analysis.
Nevertheless, from these incomplete document 296 states, 158 actions and 238 con-
ditions could be identified for a total of 796 logical test cases. The test conditions were
stored as a text, an XML file and in an Excel table, grouped by requirement and
use-case. These tables were used to estimate the testing costs and a starting point for the
final test case specification.

The test of the airport customs operation was carried out and eventually automated
based on the logical test cases extracted from the requirements document. Here too the
automatically extracted test cases were not enough to cover the test of the whole
system. Another 100 non-functional test cases were later added bringing up the total
number of test cases to 900. It required more than 200 tester days to run through all the
test cases using the tool Selenium. The test project was completed after two months but
without testing the complete functionality. The customer preferred risking errors to
paying for a more through test. The project deadline had priority over the system
quality.

5.4 Generating Test Conditions for Testing a Governmental Website

The fourth project concerns an E-Government web application for informing citizens of
their welfare benefits in the German State of Saxony. The Web Portal allows citizens
throughout the state to log in and to submit their particular life circumstances. The
citizen is then given a directory of public services available to him such as child
support, financial aide, free counseling, day care centers, etc. Once a certain service is
selected, the system then displays which public offices are responsible for rendering
that service, where they are located, how to get there and when they are open. In
addition, the appropriate forms are presented for the citizen to download and fill out to
apply for that public service. In Germany, it is possible for a citizen to live well on
public welfare services and many do, especially in former Eastern Germany where
unemployment is extremely high. Such systems are, therefore, in great demand.

As with many modern web applications, the software was not developed from
scratch, but assembled from different frameworks and existing components. The
existing components were taken from other states and modified to satisfy the specific
requirements of the State of Saxony. The final code amounted to circa 35k Java
statements running in a J2EE environment, but was never turned over to the customer,
since the development contractor was also the service and platform provider. Thus, we
have a typical sample of a solution being offered as a service rather than a product.

To make sure that the service satisfied the requirements, a separate contract was
awarded to an Austrian testing company to test the system. The system test was a
separate sub project with its own budget and its own objectives. The objectives were to
test all of the requirements, both functional and non-functional, to document all of the
tests made, to report all errors found to the customer and in the end, to turn over a

Requirement-Based Testing - Extracting Logical Test Cases 75

report summarizing the test results. A maximum of four calender months and 16 person
months were allocated for the test.

The baseline for the test was a set of requirement documents with a volume of over
200 pages of German prosa text, prototypes of the 24 web pages and specifications of
the 11 API and WDSL interfaces [19]. The author who was sent there to prepare the
test recognized immediately that he could not specify the test cases alone in the time
allocated. It took at least a day to process two pages of text. That would have meant
100 days of work just specifying test cases. To shorten the process he installed the
German text processor and analyzed the texts automatically. Some adjustments had to
be made to the tool, but within a week he could begin generating test conditions. In the
first pass through the text the nouns or potential objects were recognized. In the second
pass, the text was read again together with the list of objects. By parsing the sentences,
the tool was able to recognize all of the actions performed on the objects, all of the
states that objects could be in and all of the conditions, i.e. business rules, governing
the behavior of the objects.

Three classes of lexical expressions were extracted from the text and used to
generate functional test cases:

• actions
• states and
• rules.

An action would be to check if a state service as available. A state would be if the
citizen is eligible for that state service or not. A rule begins with a predicate such as if,
whenever, in so far as, in case of, etc. It queries the state of an object, as in the sentence
“If the applicant is an unmarried, unemployed, mother of at least one child, she is
elgible for motherhood aid.” Or “As long as a citizen is elgible for motherhood aide and
one child is of school age, she will receive a monthly supplement for school costs”.

The first condition checked a state. The second condition linked an action to a state.
Actions, states and conditions, i.e. rules, need to be tested. They were the predicates of
the functional test. Therefore, a test case was generated for every action on a relevant
object and for every state a relevant object could be in, as well as for every rule. In the
case of rules two test cases were generated – one for the positive outcome and one for
the negative outcome.

It is clear that many generated test cases were redundant. So the three sets of test
cases were joined to create a common subset in which each test case was unique. Since
the whole process was automated it could be done in a half day and still allow another
half day for the tester to weed out the insignificant test cases. The final table of test
cases was then sent to the user analysts to prioritize. In this E-Government project that
took another two weeks, but it was astonishing that the user actually did this ranking
critical, high, medium and low priority test cases. At the end there were over 950 test
cases, which had been extracted from the three word documents. This could never have
been done automatically within that time.

This particular test project turned out to be a success. Another 500 physical test cases
were added during the test bringing the total test cases up to 1455. The logical test cases
were supplemented by real data taken from previous citizen requests. 176 of the 1455
test cases uncovered at least one error. Altogether some 457 defects were found with an

76 H. M. Sneed

effort of 392 tester days. That low cost could never have been achieved without
automating the test condition generation as recommended by Peters and Parnas [20].

6 Related Work

In comparison to model based testing there is not a whole lot of related work in this
field. There are relatively few researchers dealing with requirement-based testing. In
Germany Mario Friske from the Frauenhofer FIRST Institute published a paper on the
generation of test cases from use case descriptions already in 2004. In his first step
logical test cases or test conditions were extracted from the requirements text using a
text analyzer. In the second step test data was added to the test conditions to create
physical test cases. In the third step test scripts were generated which could be auto-
matically interpreted [21]. This work of Friske never got out of the research laboratory
but it is interesting to note that it took place at the same time this author was developing
his first text analyzer for the recognition of test cases in industrial requirement texts.
Later on Friske and Pirk refined the approach and reported on it at the 35th GI-Annual
Conference under the title “Werkzeuggestützte interaktive Formalisierung textueller
Anwendungsfallbeschreibungen für den Systemtest” [22]. They even received a prize
for their innovative work. In Austria Michael Felderer and Armin Beer have published
work on the test of requirements using defect taxonomies. The defect categories are
compared with the requirement specifications to identify potential test cases with a high
probability of detecting defects [23].

In the USA work on the generation of test cases from requirement specification goes
back to the RXVP project in the late 1970s. The General Research Corporation
developed a set of testing tools referred to as the QA-Lab for testing the software of the
ballistic missle defense system. Those tools included RTest for extracting test cases from
the Rnet requirements [24]. Work on that subject has been going on at universities and
research institutes ever since. The University of Minnesota has established a particularly
outstanding reputation for its work in this field of requirement-based testing. Besides
their books and articles the research team there consisting of the professors Heimdahl,
Whalen and Miller offers courses via the internet [25] For a basic introduction to the
subject readers are referred to the work of Magyorodi at the web site of Bloodworth
Integrated Technology [26]. For more information they are referred to the work of Offutt
et al. who have established criteria for generating specification-based tests [27].

7 Conclusions and Lessons Learned

The conclusion from these projects in automated test condition generation is that the
extraction of logical test cases from a semi-formal requirement text can be automated
and that the automated result is no worse than if the extraction is made manually. In
fact, it can be much better – complete and accurate. The main advantage is that it is
faster and cheaper. To manually extract the 796 test conditions from the custom refund
requirements would have taken several weeks. With a tool it only took two days – one
day to mark up the document and one day to run the analysis.

Requirement-Based Testing - Extracting Logical Test Cases 77

Therefore, if testers are going to specify test cases at all, then it is better to use a tool
to select the test conditions. There is still enough to do manually in converting the test
conditions to physical test cases with real data. The selection and assignment of input
data values remains a significant research challenge as is the definition of the expected
output values. For that real artificial intelligence is required [28].

The essence of requirement-based testing is the derivation of test cases from the
requirement document. This begins with the identification and extraction of the test
conditions. Every state of objects, every processing action and every logical rule is a
potential test condition and should be recorded as such. Once the test conditions have
been recorded, they can then be extended to include data values representative of the
target application but first the test conditions have to be specified. Doing this manually
is tedious and requires significant human effort. Automating it is a big step forward in
making software testing more affordable.

References

1. Sneed, H.: Testing against natural language requirements. In: 7th IEEE International
Conference on Software Quality, QSIC 2007, Portland, p. 380, October 2007

2. Badni, M., Badni, L., Flageol, W.: On the relationship between use cases and test suite size.
ACM SIGSOFT Softw. Eng. Notes 38(4), 1 (2013)

3. Roßner, T., Brandes, C., Götz, H., Winter, M.: Basiswissen – Modellbasierter Test. Dpunkt
verlag, Heidelberg (2010)

4. Davis, A.: Software Requirements – Analysis and Specification. Prentice-Hall, Englewood
Cliffs (1990)

5. Miriyala, K., Harandi, M.: Automatic derivation of formal software specifications from
informal descriptions. IEEE Trans. S.E. 17(10), 1126 (1991)

6. Poston, R.: “Action-Driven Test Case Design” in Tutorial: Automating Specification –

Based Software Testing. IEEE Press, Los Alamitos (1996). p. 47
7. Daigl, M., Glunz, R.: ISO-29119 – Softwaretest Normen verstehen und anwenden. Dpunkt

verlag, Heidelberg (2016)
8. Potts, C., Takahashi, K., Anton, A.: Inquiry-based requirements analysis. IEEE Softw. 12(2),

21 (1994)
9. Bach, J.: Reframing requirements analysis. IEEE Comput. 32(6), 113 (2000)
10. Miller, T.W.: Data and Text Mining – A Business Application Approach. Prentice-Hall,

Upper Saddle River (2005)
11. Haumer, P., Pohl, K., Weidenhaupt, K.: Requirement elicitation and validation with real

world scenarios. IEEE Trans. S.E. 24(12), 1089 (1998)
12. Swartow, W., Balzer, R.: On the inevitable intertwining of specification and implementation.

Comm. ACM 25(7), 438 (1982)
13. Davis, A.: System phenotypes. IEEE Softw. 21(4), 54 (2003)
14. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT

Press, Cambridge (1999)
15. Beizer, B.: Software Testing Techniques, p. 107. van Nostrand Reinhold, New York (1983)
16. Sneed, H., Seidl, R., Baumgartner, M.: Der Systemtest. Hanser Verlag, München-Wien

(2008)
17. Fraser, M., Kumar, K., Vaisnavi, V.: Informal and fomal requirement specification

languages – bridging the gap. IEEE Trans. S.E. 17(5), 454 (1991)

78 H. M. Sneed

18. Sneed, H.: Bridging the concept to implementation gap in software system testing. In:
Proceedings of IEEE QSIC Conference, Oxford, G.B., p. 56, August 2008

19. Sneed, H.: Testing an eGovernment website. In: Proceedings of the WSE 2005, Budapest,
p. 3. IEEE Computer Society Press, September 2005

20. Peters, R., Parnas, D.: Using test oracles generated from program documentation. IEEE
Trans S.E. 28(2), 146 (2002)

21. Friske, M.: Testfallerzeugung aus Use-Case Beschreibungen. GI Softwaretechnik Trends 24
(3), 20 (2004)

22. Friske, M., Pirk, H.: Werkzeuggestützte interactive Formalisierung textueller Anwendungs-
beschreibungen für den Systemtest. GI Softwaretechnik Trends 35(1), 27 (2015)

23. Felderer, M., Beer, A.: Eine industriell erprobte Methode für den Review und Test von
Anforderungen mit Hilfe von Fehlertaxonomien. GI Softwaretechnik Trends 34(1), 5 (2014)

24. Ramamoorthy, C.V., Ho, S.F.: Testing large software systems with automated software
evaluation systems. IEEE Trans. S.E. 1(1), 51 (1975)

25. https://www.tutorialpoint.com/software_testing_dictionary/requirements_based_testing.htm
26. Magorodi, G.: What is requirements-based testing? Bloodworth Integrated Technologies,

March 2003
27. Offutt, J., Xiong, Y., Liu, S.: Criteria for generating specification-based tests. In: Proceedings

of the of 5th IEEE International Conference on Engineering of Complex Computer Systems,
p. 72, October 1999

28. Wilson, W., et al.: Automated quality analysis of natural language requirement specifica-
tions. In: 19th International Conference on Software Engineering, ICSE 2007, Montreal,
May 2007, p. 158 (1997)

Requirement-Based Testing - Extracting Logical Test Cases 79

https://www.tutorialpoint.com/software_testing_dictionary/requirements_based_testing.htm

Crowdsourcing in Software Engineering

Expert Sourcing to Support the Identification
of Model Elements in System Descriptions

Marta Sabou(&), Dietmar Winkler, and Sanja Petrovic

Institute of Software Technology and Interactive Systems,
Vienna University of Technology, Vienna, Austria

{marta.sabou,dietmar.winkler,

sanja.petrovic}@tuwien.ac.at

Abstract. Context. Expert sourcing is a novel approach to support quality
assurance: it relies on methods and tooling from crowdsourcing research to split
model quality assurance tasks and parallelize task execution across several
expert users. Typical quality assurance tasks focus on checking an inspection
object, e.g., a model, towards a reference document, e.g., a requirements
specification, that is considered to be correct. For example, given a text-based
system description and a corresponding model such as an Extended Entity
Relationship (EER) diagram, experts are guided towards inspecting the model
based on so-called expected model elements (EMEs). EMEs are entities, attri-
butes and relations that appear in text and are reflected by the corresponding
model. In common inspection tasks, EMEs are not explicitly expressed but
implicitly available via textual descriptions. Thus, a main improvement is to
make EMEs explicit by using crowdsourcing mechanisms to drive model quality
assurance among experts. Objective and Method. In this paper, we investigate
the effectiveness of identifying the EMEs through expert sourcing. To that end,
we perform a feasibility study in which we compare EMEs identified through
expert sourcing with EMEs provided by a task owner who has a deep knowl-
edge of the entire system specification text. Conclusions. Results of the data
analysis show that the effectiveness of the crowdsourcing-style EME acquisition
is influenced by the complexity of these EMEs: entity EMEs can be harvested
with high recall and precision, but the lexical and semantic variations of attribute
EMEs hamper their automatic aggregation and reaching consensus (these EMEs
are harvested with high precisions but limited recall). Based on these lessons
learned we propose a new task design for expert sourcing EMEs.

Keywords: Review � Models � Model quality assurance � Model elements
Empirical study � Feasibility study � Crowdsourcing � Task design

1 Introduction

During the design of software systems, a variety of models are created in the process of
transforming requirements and/or specifications of the desired system into the corre-
sponding software. These models include Extended Entity Relationship (EER) dia-
grams or UML model variants for designing databases and software system structures
and behavior. The tasks of creating such models from software specifications and their

© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 83–99, 2018.
https://doi.org/10.1007/978-3-319-71440-0_5

subsequent verification to ensure their quality, i.e., through software model inspection
[1], are cognitively intense tasks, that require significant time and effort investment
from software engineers. In particular, large software models and large associated
reference documents, such as requirement specifications, are challenging to inspect
with limited resources in one inspection session as overly long sessions typically lead
to cognitive fatigue [6]. Thus, a typical inspection session is scheduled for about two
hours; large artifacts have to be scheduled in multiple inspection sessions to achieve
sufficient coverage of the inspection object. Therefore, reference documents and
inspection objects need to be split accordingly. Furthermore, different inspection tasks
can be distributed among a group of domain experts for inspection. Human Compu-
tation and Crowdsourcing (HC&C) mechanisms can help splitting the workload and
distributing inspection tasks among a group of experts [9, 10].

In general, HC&C techniques rely on splitting large and complex problems into
multiple, small and easy tasks solvable by an average contributor in a suitable popu-
lation and then coordinating the collection and aggregation of individual
micro-contributions into a larger result [8]. As a result, we defined and introduced a
novel Crowdsourcing-based Software Inspection (CSI) process, previously described
in [9, 10] and illustrated in Fig. 1.

The CSI process covers the Preparation and Software Inspection core steps of the
traditional inspection process and consists of four fundamental phases: (1) CSI
Preparation and Planning; (2) Text Analysis (TA) of reference documents to identify
model building blocks, i.e., Expected Model Elements (EMEs) and aggregation of
identified EMEs; (3) Model Analysis (MA) to identify candidate defects in the software
model; and (4) Follow-up for defect analysis and aggregation.

During the Preparation and Planning Phase (Phase 1), the moderator performs
inspection planning. He additionally fulfills the CSI management role. His tasks
include (a) scoping of inspection artifacts, (b) preparing the crowdsourcing environ-
ment, and (c) uploading reference documents and inspection artifacts into the crowd-
sourcing platform, such as Crowdflower1.

Reference
Documents

Review
Ar facts

(e.g. models)

CSI Planning

Moderator,
CSI Mgmt.

EME Iden fica on

Model Analysis
(MA)

Defect Analysis
& Aggrega on

CF Tool CSI worker

TA
Guideline

Output
Language

Selected
EMEs &
Synonyms

Defect
Report

Output
Language

RefDoc

Model Scope

EMEs EME Analysis &
Aggrega on

CSI
Management

CSI worker

MA
Guideline

1 2a 2b 3 4

1. Prepara on and
Planning Phase

3. Model Analysis (MA)
Phase

4. Follow-up Phase2. Text Analysis (TA) Phase

MA
Prep

Author Moderator,
CSI Mgmt.

Fig. 1. Crowd-based software inspection (CSI) process [10].

1 www.crowdflower.com.

84 M. Sabou et al.

http://www.crowdflower.com

The goal of the Text Analysis (Phase 2) is the elicitation of key components (i.e.,
building blocks or co-called Expected Model Elements (EMEs)) of the model based on
the reference document. EMEs include entities, attributes, and relations, that are present
in system requirements specifications (i.e., reference documents) and need to be
modeled in the corresponding software model, e.g., in an EER diagram. Table 1 in
Sect. 4 lists typical EMEs extracted from the description of a restaurant billing system,
representing the reference document (i.e., a requirements specification). Key EME
classes include correct EMEs, synonyms and variations, and incorrect EMEs (see
Sect. 4 for details). Note that the EME identification phase is supported by a crowd-
sourcing application. This phase focuses on two sub-phases: (2a) identification of
candidate EMEs by a group of inspectors. We experiment with a task design where
inspectors are shown one specification sentence at a time and asked to provide, based
on an input syntax, the EMEs appearing in that sentence (see Fig. 4 for a task
screenshot). Results are sets of candidate EMEs provided by every crowd worker in
this sub-phase; (2b) EME analysis and aggregation where the moderator compiles an
agreed set of EMEs based on individual results. Result is an agreed set of EMEs as
input for the model analysis phase of the CSI process (Phase 3). Note that in this paper
we focus on phase 2b, i.e., the EME identification and aggregation step.

In the Model Analysis phase (Phase 3), inspectors verify the model itself (e.g., an
EER diagram), or a subset thereof, while being guided by EMEs. In other words, EMEs
are used as anchors for splitting the model verification task into smaller instances that
can be solved in a distributed fashion according to HC&C principles. Output of this
phase is a set of candidate defect lists provided by individual inspectors during their
crowdsourcing task. The role of the CSI management in phase 3 is to prepare the model
or a sub-model to be inspected (based on CSI planning definitions). In the Follow-Up
Phase (Phase 4), the CSI management aggregates reported defects. Output of this final
phase is a set of defects as a consensus of individual defect lists. Note that this task is
completed by the CSI management.

To investigate the efficiency and effectiveness of defect detection in context of model
inspection with CSI, we have conducted a large-scale empirical study involving uni-
versity students as study participants in the fall of 2016. We have already reported initial
findings of the CSI process approach regarding effectiveness and efficiency of defect
detection when guided by high quality EMEs. High quality EMEs have been identified by
the study authors [9, 10]. In context of the CSI process approach EME identification is the
main output of the Text Analysis process phase. In this paper, we turn our attention to the
feasibility of this text analysis task. Namely, we want to assess the feasibility of dis-
tributing the task of identifying EMEs in textual documents that describe a system
specification to a number of experts as opposed to being solved by a single expert.
Another key goal is to use lessons learned to improve the design of the text analysis task.
For evaluation purposes, we perform a partial analysis of the CSI feasibility study
reported in [9, 10] with focus on the text analysis output. We look at the EME’s identified
in one of 4 sessions of the feasibility study and compare these EMEs to a gold standard
created by the study authors (i.e., high quality EMEs used in previous investigations).We
conclude that, while entity EMEs can be identified with high precision, precision heavily
deteriorates formore complex EME types wheremore variations are possible. This points
to the need of new task designs for collecting EMEs in a reliable manner.

Expert Sourcing to Support the Identification of Model Elements 85

The remainder of this paper is structured as follows: Sect. 2 presents related work
and Sect. 3 introduces to the research questions. In Sect. 4 we present the setup of the
feasibility study and in Sect. 5 the experimental results and discussions. Section 6
provides a discussion of the experimental results and reflects on limitations. Section 7
summarizes lessons learned for text analysis task design. Finally, Sect. 8 concludes and
identifies future work.

2 Related Work

HC&C methods have been recently used to solve a diversity of Software Engineering
(SE) tasks and lead to the emerging research area of Crowdsourced Software Engi-
neering (CSE) defined as “the act of undertaking any external software engineering
tasks by an undefined, potentially large group of online workers in an open call
format” [4, 5].

The intensified interest in the application of crowdsourcing techniques in SE can be
seen as a response to the appearance of mechanized labor (micro tasking) platforms
such as Amazon Mechanical Turk2 (AMT) or CrowdFlower (See footnote 1) (CF).
These platforms have popularized the Micro tasking crowdsourcing model. Micro
tasking differs from more traditional models of distributed work in SE, such as col-
laboration and peer-production, by being more scalable, thanks to enabling parallel
execution of small task units by non-necessarily expert contributors [4]. As such, Micro
tasking is promising to address challenges in several cognitively complex software
engineering tasks, including software inspection and model element identification.
Some of the benefits of the Micro tasking model are [5]: improved coordination (e.g.,
of inspection team members, tasks, and results), reduction of cognitive fatigue (by
removing redundant work and reusing intermediate results from previous steps),
increased coverage (as some parts of large artifacts might not be covered with tradi-
tional, weakly-coordinated approaches), more diversity (support for dealing with var-
ious inspection artifacts and access to a wider variety of inspectors), and accelerated
processes (by parallelization of small tasks and access to more inspectors).

Because of these benefits, crowdsourcing has been applied to address a variety of
tasks pertaining to all stages of the Software Development Life Cycle (SDLC) as
reported by Mao et al. in a recent, extensive survey [5]. Based on their classification,
we derived an intuitive overview of the intensity of crowdsourcing research in each
SDLC stage as shown in Fig. 2. Seventeen (17) papers report work within the Planning
and Analysis phase on tasks such as requirements acquisition, extraction and catego-
rization. The problems from the Design phase have attracted less approaches, with only
four papers attempting crowdsourced user interface and architecture design. Imple-
mentation phase specific tasks such a coding and debugging have been investigated in
26 papers. Problems that were crowdsourced from the Testing phase were reported by
22 papers and included usability, performance and GUI testing. Within the Mainte-
nance phase, crowdsourcing was used for software adaptation, documentation and

2 www.mturk.com.

86 M. Sabou et al.

http://www.mturk.com

localization among others, attracting a similar volume of approaches as the imple-
mentation phase. None of the investigated papers cover static quality assurance
approaches such as software inspection, where the CSI process provides benefits for
early defect detection in software models [9, 10].

However, extracting higher-level conceptual elements from text with HC&C
techniques has been investigated before. For example, Cascade [3] is an approach to
build classification hierarchies (i.e., taxonomies) from collections of independent text
items (e.g., textual answers from question answering sites). An important step is to
identify categories that best describe each text item. Cascade is designed to run on
collections of independent items and it would not be suitable to extract higher-level
conceptual elements (e.g., entities, relations) from ordered, logically-connected
sequences of items such as sentences in a systems description document.

Approaches that can extract conceptual elements from interconnected item sets
include PhraseDetectives [7], for co-reference resolution in text corpora, or, work on
extracting categories in interconnected texts [2]. Unlike previous works, André et al.
also focuses on tasks where domain expertise is desirable and shows that non-expert
users can be supported in making sense of specialized texts [2]. This is an important
aspect in the context of software inspection, which is more amenable to be solved by
experts through expert sourcing (i.e., enlisting experts to solve tasks by using HC&C
principles) rather than layman crowds.

In summary, a variety of HC&C approaches have been proposed to solve a wide
range of SE tasks in all phases of the SDLC. Yet, the software model inspection task,
situated within Planning and Analysis and Design SDLC phases, has not been
addressed. Our work focuses on this gap and explores how HC&C micro tasking
principles can be used to improve software inspection processes through expert based
crowdsourcing (i.e., expert sourcing).

Fig. 2. Overview of number of papers classified by Mao et al. [5] as using crowdsourcing for
tasks corresponding to each software development life-cycle stage.

Expert Sourcing to Support the Identification of Model Elements 87

3 Research Questions

With focus on EME identification in context of the CSI process approach, the main
research questions focus on:

RQ1: What is the overall quality of the CSI-based EME identification? To what
extent can this distributed process lead to a high-quality set of EMEs? In the study
context, we consider the EMEs provided by the study authors as a gold standard
example of high quality EMEs.

RQ2: What are performance differences when identifying different types of EMEs?
What challenges arise when distributing the identification of EMEs of increasing
structural complexity? For the purpose of this paper, we define the structural
complexity of an EME as the number of relations between atomic entities. For
example, entities (e.g., customer) are the least complex EMEs as they refer to a
single concept. Entity attributes such as customer.name establish a binary relation
between an entity and its attribute and therefore have a higher structural complexity
than entity EMEs. Relations, e.g., (customer, orders, order) relate three atomic
entities in a triple being thus more complex than entity attribute EMEs. Relation
attributes and relation cardinalities are the most structurally complex EMEs as they
express more knowledge that relation EMEs.

RQ3: What are alternative expert sourcing task designs? Based on lessons learned
from the analysis of the collected data, we want to identify new task design
strategies that could address the limitations of the current design and lead to better
results.

4 Feasibility Study Setup

The analysis reported in this paper relies on data collected in a large-scale feasibility
study of the CSI-process which was described in [9, 10]. Figure 3 shows the overall
experiment design with three study groups: Study group A conducts two stages of the
CSI process, i.e., a text analysis and a model analysis; Study group B performs similar
tasks in a different sequence; finally Study group C performs a traditional inspection
process as a control group. All study groups received a tutorial at the beginning of the
experiment run. Because the main goal is to investigate the effects on eliciting Expected
Model Elements (EMEs) we focus on Study group A and B in this paper (Study group
C does not include a task to explicitly identify and report EMEs – thus, we excluded
this study group in the rest of the paper). Note that analysis results of all study groups
have been described in [9, 10].

In context of this paper, the study design for EME elicitation consists of two main
groups A and B performing the two stages of the CSI process. For group A and B, we
applied a cross-over design, i.e., text analysis (60 min) followed by the model analysis
(60 min) for group A and similar tasks in an inverse order for group B. This cross-over
design was chosen in order to address one of the goals of the overall study, namely to
assess the impact of previous domain knowledge on the defect detection performance

88 M. Sabou et al.

of the inspectors. In other words, we want to compare defect detection performance for
inspectors that have read the specification beforehand (group A) with the performance
of inspectors that detect defects only based on the EMEs and the model (group B). The
time inspectors spent on each task was limited to one hour per task to (a) investigate the
impact of splitting larger tasks into smaller pieces of work – a key capability of HC&C
approaches, (b) enable efficient defect task execution (prior pilot runs showed that 1 h
is sufficient to enable efficient EME identification and defect detection), and (c) to have
a manageable experiment duration. Note that the size of the inspection artifact under
investigation is suitable for a two hour inspection task, evaluated during pilot runs.

Common to all study groups is a tutorial (30 min) related to the method applied
including a small practical example to get familiar with methods under investigation
and related tool support. For the model analysis we used a pre-defined set of EMEs to
avoid dependencies between different tasks within the experiment groups. These EMEs
were provided by the experiment team, i.e., the authors. We used different experimental
material for the tutorials (application domain: parking garage scenarios) and the
experiment (application domain: restaurant scenarios).

Study Population. The study was an integral part of a university course on “Software
Quality Assurance” with undergraduate students at Vienna University of Technology.
We captured background experience in a questionnaire before the study. Because most
of the participants work at least part time in industry, we consider the participants as
junior professionals [10]. We applied a class-room setting with an overall number of 75
participants (63 crowd workers and 12 inspectors) which attended 4 experiment
workshops organized on different days. The group assignment was based on a random
distribution of participants to study groups. Overall we had 12 study groups (four
groups A, four groups B, and four croups C) during the 4 experiment workshops. Note
that group C has been excluded from the analysis in context of this paper.

Study Material. We used study materials from a well-known application domain, i.e.,
typical scenarios and processes of a restaurant to avoid domain-specific knowledge

Tutorial
Group A

Text Analysis
Group A

Model Analysis
Group A

Model Analysis
Group B

Text Analysis
Group B

Tutorial
Group C Traditional Inspection (Group C)

30 min 60 min 60 min

Crowdsourcing-Based Inspection (CSI)

Traditional Best-Practice Inspection (Pen&Paper, P&P)

120 min

Tutorial
Group B

Study Group A (Text Analysis Model Analysis)

Study Group B (Model Analysis Text Analysis)

30 min 60 min 60 min

30 min

Study Group C (Best-Practice Inspection)
Out of Scope
in this paper

Fig. 3. Feasibility study setup [9].

Expert Sourcing to Support the Identification of Model Elements 89

limitations. The core study material were (a) a textual reference document, i.e., a
system requirements specification including 3 pages in English language and consisting
of 7 scenarios and (b) an Extended Entity Relationship (EER) diagram including 9
entities, 13 relationships, and 32 attributes. Furthermore, we used an experience
questionnaire to capture background skills of the participants and feedback question-
naires after each step of experiment process. Finally, we provided guidelines that drove
the experiment and the inspection process.

Gold Standard EMEs. The authors of the study identified 110 EMEs representing
entities, relations, entity and relation attributes as well as relation multiplicities, which

Table 1. Example EME’s from the gold standard.

EME Type 1: “Correct EMEs as those that appear in the EER model”
Entities: customer; order; invoice; setMenu
Relations: (customer, orders, order)

(order, orderedFoodItem, foodItem)
Entity/relation attribute customer.name

invoice.sum
(customer, orders,order).date
(ingredient, isProcuredBy, shoppingTour).price

Relation cardinalities (customer(1), orders,order(0..n))
(order (0..n), orderedFoodItem, foodItem (0..n))

EME Type 2: “Synonyms and lexical variants of correct EMEs.”
Entities: person; menu
Relations: (foodItem, partOf, order)

(order, has, foodItem)
Entity/relation attribute Invoice.amount

order.date
(shoppingList, contains, ingredient).price

Relation cardinalities (customer(1), orders, order(n))
EME Type 3: “Correct variants of modeling different from the input
model”
Entities: dailyPlan; payment
Relations: (foodItem, has, foodItemPrice)
Entity/relation attribute order.status

invoice.paid_date
(customer, orders,order).status

Relation cardinalities customer(1), cancels, order(0..n))
EME Type 4: “Wrong EMEs which should not be part of a correct
model”
Entities: cook; restaurant; guest
Relations: (order, contains, ingredient)
Entity/relation attribute food.calorie

table.seats
(order, has, ingredient).amount

Relation cardinalities (customer(1..n), orders,order(1))

90 M. Sabou et al.

together constitute a set of Gold Standard EMEs (see some examples of EMEs from
the Gold Standard in Table 1). For each type of EME, authors identified 4 categories:

1. Correct EMEs as those that appear in the EER model (EME Type 1).
2. Synonyms and lexical variants of correct EMEs (EME Type 2).
3. Correct variants of modeling that are different from the input model, i.e., the textual

requirements specification (EME Type 3).
4. Wrong EMEs which should not be part of a correct model (e.g., superfluous) (EME

Type 4).

Tooling. The CrowdFlower application has been used to drive the text and model
analysis tasks. For the text analysis, the specification document was divided in sen-
tences and participants were asked to identify EMEs in one sentence at a time. The
corresponding CrowdFlower task contained as set of instructions and a form-based
input space. The instructions explained the task in general, provided an introductory
paragraph about the system that needs to be built, contained EME examples including
an explanation of their specification syntax as well as some examples of sentences
(from another domain) and the EMEs extracted from those sentences. The instructions
are available for each task, but the instruction pane can be minimized for optimal
viewing. The data collection space listed a sentence and provided forms for collecting
the different EME types. Under each form, instructions were repeated about the
expected naming convention and syntax.

Table 1 presents examples for identified EMEs based on the identified categories.
Figure 4 illustrates and example implemented in the Crowdflower User Interface to

Fig. 4. CrowdFlower task interface (form-based data collection).

Expert Sourcing to Support the Identification of Model Elements 91

identify EMEs as a crowdsourcing task. Note that we provided a so-called “Output
language”, i.e., a data format that unifies the data input from experiment participants.

5 Experimental Results

For the initial data analysis process we focus on the evaluation of data collected within
one of the 4 experiment workshops by groups A and B participating in this work-
shop. Individual workshops were self-contained events and had similar numbers of
participants as depicted in Table 2; the 6 participants of Group A received 14 sentences
to process while the 7 participants of Group B worked on 17 sentences.

Table 2 also contains statistics about the actual numbers of EMEs collected from all
participants before applying algorithms to aggregate individual contributions to each
sentence as described in Sects. 5.1 and 5.2 (see corresponding Aggregation heading).
Overall, when merging data from groups A and B, we collected 440 individual entity
EME suggestions, which correspond to 76 syntactically unique entity EMEs. Entity
and relation attributes accounted to 375 EMEs, out of which 270 were syntactically
unique. Lastly, we obtained 282 relationship EMEs, with 240 syntactically unique
values. An immediate observation here is that the number of recommended entities
decreases as EMEs get more complex. At the same time, the percentage of unique
EMEs from all EMEs is decreasing which is due to the following two factors:
(1) syntactic heterogeneity increases with more complex EMEs and therefore they
cannot be aggregated with syntactic string matching; (2) there is also an increased
modeling heterogeneity, as participants might adapt different modeling approaches for
the same information, thus hampering reaching consensus.

Table 2. Overview of experimental results in terms of identified EMEs (before/after aggrega-
tion) as well as precision and recall with respect to gold standard EMEs.

Group A Group B Group A+B

Number of sentences 14 17 31
Group participants 6 7 Not relevant
Entity EMEs
All (unique) entity EMEs 201 (42) 239 (43) 440 (76)
Entity EMEs from all sentences (unique) 25 (11) 37 (13) 62 (17)
Precision 91% 92% 88%
Recall 88% 88% 100%
Entity and relation attribute EMEs
All (unique) attribute EMEs 137 (104) 238 (171) 375 (270)
Attribute EMEs from all sentences (unique) 17 (14) 28 (26) 45 (37)
Precision 100% 100% 100%
Recall 15% 43% 59%
All (unique) relation EMEs 114 (97) 168 (145) 282 (240)

92 M. Sabou et al.

5.1 Identification of ENTITY Model Elements

This section discusses the analysis of the entity type EMEs by both groups A and B.

Aggregation. The aggregation of EMEs suggested by individual participants took
place at the level of each sentence. From the entity EMEs provided by all participants
in the group for a given sentence, only the EMEs that were recommended by more than
half of the participants were selected. In practical terms, we counted the frequency of
each entity EME and computed a popularity score by dividing this frequency to the
number of participants that rated the corresponding sentence. EMEs with popularity
score higher than or equal to 0.5 were selected. To identify the EME output of a group,
we created the union of sentence level entity EMEs, and selected the unique EMEs
from these. Note that, in the case of entity EMEs, recommended EMEs were not
pre-processed neither syntactically nor semantically. For example, we did not correct
typos and did not stem the EMEs from plural to singular form. This means, that the
EMEs “ingredient” and “ingredients” were treated as two syntactically different EMEs.
For the final set of EMEs, we mapped these to the gold standard to determine their type
(i.e., 1-correct EME, 2-synonym EME, 3-alternative EME, and 4-incorrect EME).
Based on this mapping we computed the precision of the final EME set as the ratio
between the EMEs of type 1–3 (i.e., correct of syntactic/semantic variations) and all
identified EMEs.

For group A of the investigated workshop, a total of 25 EMEs were derived from
14 sentences based on contributions from 6 participants, corresponding to 11 unique
EMEs. Based on the alignment to the gold standard we obtained precision of 91% (only
1 of 11 entities was wrongly identified). Recall was computed with respect to the 9
EMEs of type “1” (i.e., those EMEs that are part of the EER diagram). All EMEs were
identified except “recipe”, leading to a recall of 88%.

Group B, received more sentences therefore lead to the identification of more
sentence level EMEs (37), corresponding to 13 unique EMEs in the final EME set, a
precision value of 92% and recall of 88% (as in the case of group A, a single EME from
the gold standard was not found, namely “invoice”).

Joining the results of the two groups to obtain the EMEs for the entire reference
document, we obtain a precision of 88% and a recall of 100%. Interesting observations
to be drawn from here are as follows. Almost the entire set of entity EMEs was
identified by each group although each group received just half of the sentence corpus
(due to the cross-over design), since key entities are mentioned through the sentences.
Exploiting such repetition could lead to more elegant task designs for crowdsourcing
entity identification.

5.2 Identification of Entity and Relation ATTRIBUTE Model Elements

This section discusses the analysis of the entity attribute and relation attribute type
EMEs collected from both groups A and B.

Aggregation. In the case of entity and relation attributes, participants contributed a
large variation of syntactically diverse EMEs. Indeed, in group A, from 137 contributed
EMEs (100 entity attributes, 37 relation attributes) contributed by all participants for all

Expert Sourcing to Support the Identification of Model Elements 93

sentences, 104 were unique EME strings (73 entity attributes, 31 relation attributes).
Therefore, given this high syntactic variation, an automatic aggregation per sentence as
performed in the case of entity EMEs was not possible. Instead, we have inspected the
proposed EMEs per sentence and replaced syntactic variations of the same EME to
allow for aggregation. For example, for sentence Sc6S1 (the first sentence in scenario
6), participants contributed EMEs such as: order.fullfilled, foodOrder.isFulfilled,
order.fulfilledAsPlanned which were all replaced with their semantic equivalent
order.fulfilled?. Aggregation in terms of majority voting was performed then on the
new set of EMEs. As for entity EMEs, the agreement threshold was kept at 0.5.

For Group A, a total of 17 attribute EMEs resulted from the sentence level majority
voting, 14 of these were unique. All resulting EMEs were of type 1, 2, or 3, therefore
the precision was 100%. However, when compared to the proposed gold standard of 39
attribute EMEs of type 1, only 6 of these were identified, leading to a recall of 15%.

From Group B, 28 attribute EMEs were collected, 26 of these being unique and all
of type 1, 2, or 3. Therefore precision was 100%, while recall was 43% (17 of the
identified EMEs corresponded to group 1 EMEs from the gold standard).

When merging the output EME sets from groups A and B, the EME set contains 45
EMEs out of which 37 are unique. We observe here that, unlike in the case of the entity
EMEs, the overlap between the attribute EMEs derived by the two groups is quite low,
as different parts of the specification point to different attributes. As a consequence, the
recall of the overall EME set is 59% (23 EMEs correspond to EMEs from the gold
standard).

6 Discussion and Limitations

This section focuses on the discussion of individual results towards the introduced
research questions and addresses limitations and threats to validity.

6.1 Discussion

Answering our first research question (RQ1: What is the overall quality of the CSI-
based EME identification?), we conclude that the process of distributed identification
of EMEs following HC&C principles is feasible and leads to a set of EMEs that have a
high overlap with a manually created gold standard set of EMEs.

Our second research question, RQ2, focused on: What are performance differences
when identifying different types of EMEs? Based on our analysis, we conclude that the
performance of verifying EMEs varies depending on the EME type:

• Entity type EMEs were identified with a high recall (100%, see Table 2) and
precision (88%). We also observed that, since EME’s are mentioned through the
specification, a reliable set of EMEs can be extracted even just from half of the
specification by either of the two study groups. This prompts to the possibility to
change task design in order to more efficiently use human processing when iden-
tifying entity EMEs.

94 M. Sabou et al.

• Attribute (and relation) type EMEs were identified with a high precision (100%),
but with a low recall (59%) because the syntactic and semantic variations of these
EMEs are considerably higher than for entity EMEs. Because of this syntactic
heterogeneity, free-text collection makes aggregation with automatic tools not
feasible and opens the need for more guided task design to enable such automation
in the future.

• The number of proposed EMEs decreased as the complexity of the EMEs increased.
That is, while many entity EMEs were proposed (404), participants provided less
entity attributes or relation attributes (375) and relations (282). Potential reasons for
this phenomenon are: (1) the cognitive overload of the task is too high, as the
participants are asked to do too much and therefore naturally provide less input for
the more complex parts of the task; (2) writing down complex EMEs such as
relations is too time-consuming and requires high effort so participant avoid it.

From the overall CSI-process perspective, the high precision of the entire EME set
means that this set can act as a reliable guidance for defect detection in the follow-up
model analysis task. To further improve the EME detection task and to answer RQ3
(What are alternative expert sourcing task designs?), we propose a novel text analysis
task design in Sect. 7.

6.2 Limitations and Threats to Validity

Internal validity concerns a causal relationship between the experiment treatment and
the observed results, without the influence of potential confounding factors that are not
controlled or measured [11]. Domain specific issues have been addressed by selecting a
well-known application domain. The experiment package was intensively reviewed by
experts to avoid errors. Furthermore, we executed a set of pilot runs to ensure the
feasibility of the study design [9, 10].

In terms of external validity, that is the generalization of the results to a larger
population or to a different environment [11], we distinguish the following threats:
Participants were 75 undergraduate students of computer science and business infor-
matics at Vienna University of Technology. The study was a mandatory part of the
course on “Software Quality Assurance”. Most of the participants work at least
part-time in software engineering organizations. Thus, we consider them as junior
professionals comparable to industrial settings. We used an experience questionnaire to
capture and assess prior experiences and skills. Application domain. We used typical
scenarios and requirements derived from restaurant processes. Thus, all participants are
familiar with this application domain. Quality of specification documents. Admittedly,
we have used a high quality specification document which has been carefully reviewed
by the experiment team, i.e., the authors, during the preparation for the study. In
addition we executed pilot runs of the study to ensure the quality and understandability
of the study material.

Expert Sourcing to Support the Identification of Model Elements 95

7 Lessons Learned for Text Analysis Task Design

Lessons learned from this initial analysis of EMEs collected in a distributed manner
prompt to several improvements at task design level, as follows (and in response to
RQ3):

• Process Improvement: Introduce a workflow of simpler tasks. One way to overcome
the complexity of the current task which hampers the acquisition of more complex
EMEs, is to divide the task into a workflow of smaller tasks, each focusing on the
acquisition of one EME type only.

• Tooling: Replace free-text input tasks with more guided interfaces. The structural
complexity of the collected EMEs has an influence on two key factors. First, the
higher input effort discourages participants from adding these EMEs, so less EMEs
are collected. Second, the syntactic and semantic variation increases in such manner
that reaching a consensus and automatic aggregation of these EMEs to allow
majority voting become challenging and in some cases unfeasible. Replacing
free-text input fields with more guided interfaces could overcome these limitations
and (1) help EME aggregation while (2) fostering consensus building.

• Reduce redundancy. In the case of entity EMEs, these are frequently mentioned in
several sentences of the specification and therefore lead to the redundant identifi-
cation of EMEs at the cost of the participants’ time and effort. Task design for entity
EMEs should take this into consideration and try to reduce the redundant identi-
fication of EMEs.

Based on these envisioned improvements, we propose an updated workflow for
distributed identification of EMEs, as shown in Fig. 5. The process starts with a col-
lection of sentences from the specification which serves as input to the Entity Identi-
fication task to identify entity EMEs. To reduce redundancy of EME identification, we
envision a task design where an initial set of EMEs are identified and aggregated from a
subset of the sentences and then this set is subsequently approved and if necessary
extended by participants.

Even with the current design (see Fig. 1), entity identification leads to a high
quality and high coverage entity EME set. This can be used as an input to subsequent
tasks for entity attribute and relation identification.

The Entity Attribute Identification task will consist of participants receiving a
sentence and an entity EME in this sentence and being asked to enumerate attributes of
that entity EME. For entities that appear in more sentences, two approaches could be
considered. Firstly, if a high EME set coverage is desired, then this EME should be
shown with all sentences it appears in as different sentences are likely to describe
different attributes of the entity EME. Secondly, if fast execution is more desired than
good coverage, the sentence to be shown could be determined according to the voting
score obtained. In other words, a sentence where an entity EME was selected by many
participants would be considered as most suitable for that EME and the EME would be
shown only in combination with that sentence.

Each Relation Identification task would receive a sentence with a set of entity
EMEs in this sentence and could be designed in diverse ways. In the first variant,

96 M. Sabou et al.

participants could be asked to provide those entity pairs between which a relation exists
as free text input following a recommended syntax (with or without naming the rela-
tion). In the second variant, all combinations of entity EME pairs from a sentence could
be generated and participants asked to select only those pairs between which a relation
holds. This second variant has a lower effort on participants and results are easier to
integrate based on selections as opposed to free-text inputs from the first variant.

Lastly, the Relation Attribute Identification task would benefit from the output of
the Relation Identification task. For a given sentence and relation in this sentence,
participants should identify potential relation attributes described in the sentence. The
proposed and improved workshop process (see Fig. 5) aims at guiding participants and
foster reaching consensus to a set of EMEs that can be subsequently used as input to
the Model Analysis task of the CSI process. While inspecting the data, we identified in
the collected responses diverse modeling choices, such as the following examples:

• (customer(1), orders, order(0..n)).isTakeout versus order.isTakeout;
• (customer(1), has, order(0…n)).orderNumber versus order.number;
• (setMenu, contains, foodItem).price vs. setMenu.price and foodItem.price.

With the current design, less popular modeling choices will be lost in favor of those
that the majority agrees on. Yet, harvesting diverse ways to model the same specifi-
cation could be beneficial for other contexts, for example when building a model rather
than verifying a given model. In this context, a crowdsourcing process could identify,
from a specification different models that capture a variety of views. For that purpose,
new workflows should be considered that focus on preserving modeling diversity as
opposed of building consensus.

8 Conclusion and Future Work

In this paper, we focus on interpreting results from the Text Analysis step of the
CrowdSourcing-based Inspection (CSI) process [9, 10] which supports early defect
detection of large-scale software engineering artifacts and models based on textual

Fig. 5. Proposed workflow for distributed EME identification.

Expert Sourcing to Support the Identification of Model Elements 97

system specifications. The goal of the Text Analysis step is the distributed identification
of Expected Model Elements (EMEs) within the system specification. EME terms
represent important model elements derived from a reference document and are used as
an input in the subsequent Model Analysis step of CSI where the defect detection in
software engineering models takes place.

We analysed a subset of the data collected in a large-scale feasibility study of CSI,
focusing on the comparison of the EMEs collected in a distributed fashion with a gold
standard set of EMEs created by a single expert. Our key finding was that the text
analysis task can lead to a highly precise set of EMEs which can serve as a suitable
input for the defect detection tasks in the Model Analysis phase of CSI. However, while
the precision of EME set is high, its recall is low for EMEs other than entities. Indeed,
when harvesting more complex EMEs (e.g., entity and relation attribute), study par-
ticipants provided a wide range of syntactically diverse EMEs. These leads to two
difficulties. First, automatic result aggregation is challenging. Second, even after
manually mapping syntactic variants of EMEs to a base form, we noticed difficulties in
reaching a consensus as participants provided different EMEs based on diverse mod-
elling views.

We concluded that these limitations are a side-effect of the current task design,
which is too complex and not sufficiently guided to help consensus building. Therefore,
we propose a new task design which is based on a workflow of simpler tasks, each
focusing on the acquisition of one entity type. Also, we propose that these tasks are
more guided: we start with the acquisition of entity EMEs which can be acquired with
high recall and precision and use these to guide the following tasks. To support
automatic aggregation of results, where possible, we replace free-text input with
selection from a set of EMEs derived from previous steps.

Future Work. This paper reports on preliminary findings after initial manual analysis
of a subset of the data. Lessons learned from this manual stage will serve to define
automatic processing scripts that can be used to (semi-)automatically interpret the rest
of the data and more reliably verify the results of this paper. Follow-up experiments
will also test the newly proposed task design with respect to improving the effec-
tiveness of EME identification. We will also apply the results of this work to the task of
model acquisition from textual specifications. In particular, here we are interested in
investigating diverse types of workflows, namely those that foster EME set diversity as
opposed to fostering consensus.

Acknowledgments. We would like to thank the participants of the software quality course at
Vienna University of Technology in the winter term 2016/2017 for participating in the study.

References

1. Aurum, A., Petersson, H., Wohlin, C.: State-of-the-art: software inspection after 25 years.
J. Softw. Test. Verif. Reliab. 12(3), 133–154 (2002)

2. André, P., Kittur, A., Dow, S.: Crowd synthesis: extracting categories and clusters from
complex data. In: Proceedings of the Conference on Computer Supported Cooperative Work
(CSCW), pp. 989–998 (2014)

98 M. Sabou et al.

3. Chilton, L.B., Little, G., Edge, D., Weld, D.S., Landay, J.A.: Cascade: crowdsourcing
taxonomy creation. In: Proceedings of the Conference on Human Factors in Computing
Systems (CHI), pp. 1999–2008 (2013)

4. LaToza, T.D., van der Hoek, A.: Crowdsourcing in software engineering: models. IEEE
Softw. Motiv. Chall. 33(1), 74–80 (2016)

5. Mao, K., Capra, L., Harman, M., Jia, Y.: A survey of the use of crowdsourcing in software
engineering. J. Syst. Softw. 126, 57–84 (2016)

6. NASA: Software Formal Inspection Standards, NASA-STD-8739.9, NASA (2013)
7. Poesio, M., Chamberlain, J., Kruschwitz, U., Robaldo, L., Ducceschi, L.: Phrase detectives:

utilizing collective intelligence for internet-scale language resource creation. ACM Trans.
Interact. Intell. Syst. 3(1), 44p. (2013)

8. Quinn, A., Bederson, B.: Human computation: a survey and taxonomy of a growing field. In:
Proceedings of Human Factors in Computing Systems (CHI), pp. 1403–1412 (2011)

9. Winkler, D., Sabou, M., Petrovic, S., Carneiro, G., Kalinowski, M., Biffl, S.: Investigating
model quality assurance with a distributed and scalable review process. In: Proceedings of
the 20th Ibero-American Conference on Software Engineering, Experimental Software
Engineering (ESELAW) Track. Springer, Buenos Aires, Argentina (2017)

10. Winkler, D., Sabou, M., Petrovic, S., Carneiro, G., Kalinowski, M., Biffl, S.: Improving
model inspection processes with crowdsourcing: findings from a controlled experiment. In:
Stolfa, J., Stolfa, S., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2017. CCIS, vol. 748,
pp. 125–137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64218-5_10

11. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wessl, A.: Experimentation
in Software Engineering. Springer, Heidelberg (2012)

Expert Sourcing to Support the Identification of Model Elements 99

http://dx.doi.org/10.1007/978-3-319-64218-5_10

Software and Systems Architecture

Are Your Requirements Covered?

Richard Mordinyi1,2(B)

1 BearingPoint GmbH, Vienna, Austria
richard.mordinyi@bearingpoint.com,rmordinyi@sba-research.org

2 SBA Research, Vienna, Austria

Abstract. The coverage of requirements is a fundamental need through-
out the software life cycle. It gives project managers an indication how
well the software meets expected requirements. A precondition for the
process is to link requirements with project artifacts, like test cases.
There are various (semi-) automated methods deriving traceable rela-
tions between requirements and test scenarios aiming to counteract time
consuming and error-prone manual approaches. However, even if trace-
ability links are correctly established coverage is calculated based on
passed test scenarios without taking into account the overall code base
written to realize the requirement in the first place.

In this paper the “Requirements-Testing-Coverage” (ReTeCo) app-
roach is described that establishes links between requirements and test
cases by making use of knowledge available in software tools supporting
the software engineering process and are part of the software engineering
tool environment. In contrast to traditional approaches ReTeCo gener-
ates traceability links indirectly by gathering and analyzing information
from version control system, ticketing system and test coverage tools.
Since the approach takes into account a larger information base it is able
to calculate coverage reports on a fine-grained contextual level rather
than on the result of high-level artifacts.

Keywords: Requirement · Testing · Test scenario · Coverage
Issue tracking system · Version control system

1 Introduction

The success of a software engineering project mostly depends on the business
value it is able to produce. It is therefore essential that beside achieving quality
in software artifacts team members strive for fulfilling elicited requirements. The
ability to ensure that the software meets the expected requirements also depends
on methods being able to report that the piece of software delivered did in fact
meet all the requirements. Especially in the context of maturing software that
goes into several iterations of enhancements and bug fixes, it becomes more and
more daunting to ensure requirement coverage in the software [3].

Generally, requirement coverage is the number of requirements passed in
proportion to the total number of requirements [27]. A requirement is considered
c© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 103–120, 2018.
https://doi.org/10.1007/978-3-319-71440-0_6

104 R. Mordinyi

passed if it has linked test cases and all of those test cases are passed. This
implies that there has to be a traceable mapping [22] between requirements and
test cases. If a link between a requirement and another project artifact, e.g. a test
case, exists and this link is correct, the requirement is covered by that project
artifact. If however test cases are not associated with individual requirements it
could be difficult for testers to determine if requirements are adequately tested
[42] leading to reported problems [10,22,26].

There are various approaches how traceability links between requirements
and test cases may be identified (see Sect. 2 for details). Some of them rely
on certain keywords across artifacts which are manually inserted and main-
tained by software developers and testers and used to establish links, while other
approaches aim for full automation without human guidance by e.g., information
retrieval methods. Regardless of their accuracy [14] in establishing such links,
the main limitation of those methods is that links taken into consideration for
requirement coverage reports reflect upon requirements and test cases as high
level artifacts. While methods may access the code base during the analyzing
process in order to reason about potential links they do not consider that part
of the source base that actually represents and forms a specific requirement or
is covered by tests [20].

However, project and test managers would like to have both information on
the quality of the code base as well as on how well that quality is reflected
upon the requirements which are to be fulfilled and delivered. Therefore, they
need detailed, fine-grained information that allows them to reason about the
progressing quality of a requirement during development phases. The quality of
the code base may be measured by methods like code coverage - the degree to
which the source code of a program has been tested [41]. However, in the context
of requirements coverage we need to refine its definition as the degree to which
the source code of (i.e. relevant to execute/composes) a requirement is covered
by tests.

This paper describes the “Requirements-Testing-Coverage” (ReTeCo) app-
roach that automatically establishes links between requirements and test cases
by identifying the source code lines that form a requirement and by identifying
the test cases which cover those source code lines. If a source code line that is
covered by a test case is part of the source code line relevant for a requirement,
a match has been found and a link between the requirement and the test case is
created. Identification of requirement relevant source code lines is performed (a)
by extracting the issue number(s) of a ticketing system which are in relation to
a requirement and (b) by analyzing the log of the versioning system for changes
on the code base introduced in the context of the issue. A match between a
requirement and any of the test cases is given if code coverage analyzes shows
that any of the identified source code lines is covered by at least one of the test
cases. If a set of source code lines supports a single requirement, the number of
source code lines (within that set) which are covered by test scenarios represent
the percentage of coverage. Based on large open source projects we will show
the feasibility of the approach and will discuss its advantages and limitations.

Are Your Requirements Covered? 105

The remainder of this paper is structured as follows: Sect. 2 summarizes
related work on requirements traceability and approaches on deriving require-
ments and test scenario relations. Section 3 presents research questions while
Sect. 4 depicts a typical use case. Section 5 describes the ReTeCo approach. The
feasibility and the initial evaluation results of the prototype implementation are
illustrated in Sect. 6 and discussed in Sect. 7. Finally, Sect. 8 draws conclusions
and pictures future work.

2 Related Work

Traceability is the ability to follow the changes of software artifacts created
during software development [28,36] and is described by the links that map
related artifacts [32]. This section summarizes related work on various methods
and approaches on requirements traceability, requirements coverage by means of
test scenarios, and traceability between test cases and source code.

2.1 Manually Guided Approaches

Attempts to automate the generation of traceability links concentrated on pars-
ing the text in the code documentation to find textual relations to requirement
identifiers or to the requirement descriptions [24]. Similar approaches like [34]
improved accuracy by introducing specific types of comments. When text writ-
ten in these comments follow some rules, the tool can trace it accurately to its
requirement. The advantage of this approach is that it separates the comments
written for the trace from the documentation itself. Despite their accuracy, the
text parser must be very accurate and must interpret the meaning of the tex-
tual documentation to find a relation to the requirements. Even if the parser is
accurate, there is no guarantee that the documentation of both the requirements
and the code is up-to-date. Poor maintenance lead to wrong results and thus to
higher risks undesirably increasing efforts required from developers.

2.2 Information Retrieval

In the information retrieval area, there are various models which provide prac-
tical solutions for semi-automatically recovering traceability links [4]. At first,
links are generated by comparing source artifacts (e.g., requirements, use cases)
with target artifacts (e.g., code, test cases) and ranking pairs of them by their
similarity, which is calculated depending on the used model. A threshold defines
the minimum similarity score for a link to be considered as a candidate link.
These candidate links are then evaluated manually, where false positives are fil-
tered out. The remaining correct links are called traceability links. Evaluations
[12] show that this process of traceability links recovery with the aid of an infor-
mation retrieval tool is significantly faster than manual methods and tracing
accuracy is positively affected. Nevertheless, human analysts are still needed for

106 R. Mordinyi

final decisions regarding the validity of candidate links. Some variations of the
method are depicted in the following paragraphs.

The vector space model (VSM)[4] represents all artifacts as vectors which
contain the word occurrences of all vocabulary terms. The cosine of the angle
between two corresponding vectors is used as the similarity measure of two arti-
facts. In the probabilistic model (PM)[4] the similarity score is represented as
the probability that a target artifact is related to a source artifact. It was shown
that similar results are achieved when preliminary morphological analysis (e.g.,
stemming) are performed, regardless of the used model.

The Latent Semantic Indexing (LSI)[31] extends VSM by additionally captur-
ing semantic relations of words like synonymy (words with equivalent meaning)
and polysemy (word with multiple meanings) [39]. Performance evaluations show
that LSI is able to compete with the VSM and PM methods, with the advantage
of not being dependent on preliminary morphological analysis. This is especially
useful for languages with complex grammar (e.g., German, Italian), for which
stemming is not a trivial task [29].

The problem of vocabulary mismatch occurs because IR methods assume
that a consistent terminology is used, which means, that concepts are described
with the same words throughout the project. However, during a projects life-
cycle the used terminology usually gets inconsistent and related artifacts are
not recognized anymore. This leads to declining tracing accuracy. [30] evaluates
the natural language semantic methods VSM with thesaurus support (VSM-T)
[25], Part-of-Speech-enabled VSM (VSM-POS) [8], LSI [13], latent Dirichlet allo-
cation (LDA) [5], explicit semantic analysis (ESA)[18] and normalized Google
distance (NGD) [9]. The authors compare the methods to the basic VSM and
show that explicit semantic methods (NGD, ESA, VSM-POS, VSM-T) provide
better results than latent methods (LSI, LDA) in terms of precision. On the
other hand, latent methods achieve higher recall values.

In [19] a way to check requirements-to-code candidate/trace links automati-
cally is suggested by utilizing code patterns of calling relationships. It is based on
that methods or functions in the source code that implement the same require-
ment are related as caller and callee. As a consequence, an expected trace for a
method or a function can be computed by examining neighboring caller/callee
methods and their associated requirements. Invalid candidate/trace links can be
detected by comparing the expected trace with the actual trace.

However, there are limitations when using IR-based traceability link recov-
ery methods that cannot be completely solved by improvements of IR meth-
ods either. Namely, it is not possible to identify all correct trace links without
manually eliminating a large number of false positives. Lowering the similarity
threshold to find more correct links, will in fact lead to a strongly increasing
amount of incorrect links that have to be removed manually [29].

2.3 Model-Based Techniques

Model-based requirement traceability techniques try to translate requirements to
e.g., UML, XML or formal specifications. This is necessary to semi-automatically

Are Your Requirements Covered? 107

generate trace links and/or check them to consequently establish a certain degree
of automation. In [1] informal requirements are restructured by means of the
Systems Modelling Language (SysML) [15] into a requirement-model. These ele-
ments are manually linked with various elements of different design models,
which are used for automatically deriving test cases relying on different cover-
age criteria and the corresponding links. In [17] trace links are generated during
model transformations, which are applied to produce a design model and in
further consequence discipline-specific models from a requirement model. The
resulting correspondence model between source and target represents the trace
links. Methods relying on UML models are for example described in [23] or [43].
The former links Use Case Diagrams and the corresponding code with the help
of machine learning. Developers have to establish just about 6% trace links ini-
tially. After that the machine learning algorithm can automatically link the most
of the remaining ones. The latter describes a special method for model driven
development in the web engineering domain. The requirements are expressed as
XML and translated by the means of XSL-transformation to an OOWS navi-
gational model. Afterwards the links are extracted and requirement coverage is
measured.

In the application of formal specifications/models requirement-, architecture-
and design models are expressed for example as linear temporal logic [21], in Z-
notation [40] or B-Notation [6]. The generation and/or validation of the trace
links can be automated through a model checker [21], a rule based checker [40] or
model based testing [6]. Further research work has been invested in techniques
like annotating code, design elements or tests with traceability information [2,
14,33], scenario-based techniques [16], graph-based techniques [7], or techniques
in the context of test cases [38] relying on naming conventions, explicit fixture
declarations, static test call graphs, run time traces and lexical analysis, and
co-evolution logs.

3 Research Issues

The quality of software development tools and environments in supporting devel-
opment has improved significantly during the last decade. While at first the
effective, quality-assured support of development was one of the main concerns,
nowadays tools tend to focus on better interconnecting the engineer with other
information sources. They tend to interlink information [35] in any of the used
tools in the project’s software engineering environment as much as possible. Any-
how, effective software engineering projects cannot afford to dispense using at
least a requirement modeling tool, issue tracking system, or a version control
system [37] in their environment.

Since the main aim of an engineering project is to meet requirements as
expected by the customer, it is essential for project managers and for engineers
to know the degree of requirement coverage. Given the limitations of current
requirements traceability approaches (see Sect. 2) we have formulated the fol-
lowing research questions:

108 R. Mordinyi

RQ1: how to make use of links between information units provided by engineer-
ing tools for the establishment of traceability links between requirements and
test cases?
RQ2: to what extent do interlinked information in engineering tools allow more
fine-grained reporting on coverage?
RQ3: to what degree is an automated process for coverage calculation achievable
or still require human intervention?

To answer these research issues we designed the “Requirements-Testing-
Coverage” (ReTeCo) approach and implemented a prototype1. We then per-
formed initial evaluations using the code base, requirements and issue sets of
large and popular open source projects.

4 Use Case

Figure 1 depicts a typical software engineering process describing how require-
ments are “transformed” into source code. The requirements engineer is respon-
sible for eliciting and clearly specifying the project’s requirements (Fig. 1, 1).
Usually, such artifacts are managed by a requirements management tool, like
Polarion2, Rational3, or RMsis4. In cooperation with a release manager and usu-
ally with a member of the development team the requirements are divided into
multiple working tasks (i.e. issues) (Fig. 1, 2), each having a unique identifier (i.e.
issue number/id). This requires high understanding of the client specifications
and the business goals alongside with high understanding of the technical abili-
ties of the development teams. Tools for managing working tasks are for example
Bugzilla5, HP Quality Center6, or Atlassian Jira7. At this point the release man-
ager inserts a (web) link into the working task pointing to the requirement, so
that any other team member is able to look up the details of the requirement in
case of unclarities.

In principle, a working tasks may describe any pensum for the assignee of
the task. In this context it either describes the details to be implemented by the
developer (Fig. 1, 3a), or it documents the test cases to be implemented by a
tester (Fig. 1, 3b).

In both cases development will be done using a version control system. Once
the working task is finished the changes in the repository are committed and
pushed (Fig. 1, 4a and 4b). The changes made to the code base reflect the
required behaviour as described in each working task. The commit itself requires
the committer to provide a commit message. Beside describing what changes
were added to the code base, the committer also adds the ID of the working

1 download available at https://github.com/mindpixel/requirementsCoverage.
2 http://polarion.siemens.com.
3 http://www-03.ibm.com/software/products/en/ratidoor.
4 https://products.optimizory.com/rmsis.
5 https://www.bugzilla.org/.
6 https://saas.hpe.com/en-us/software/Quality-Center.
7 https://www.atlassian.com/software/jira.

https://github.com/mindpixel/requirementsCoverage
http://polarion.siemens.com
http://www-03.ibm.com/software/products/en/ratidoor
https://products.optimizory.com/rmsis
https://www.bugzilla.org/
https://saas.hpe.com/en-us/software/Quality-Center
https://www.atlassian.com/software/jira

Are Your Requirements Covered? 109

Software
Developer

Requirements
Engineer

Release
Manager

Software
Tester

1

Version
Control
System

commits
code

commits
code

defines

assigns to assigns to
3a 3b

4b4a

Requirement

Issue

creates2

Fig. 1. Intertwining processes of various stakeholders in a software engineering envi-
ronment

task to the message8 indicating the context in which the development was done.
Depending on the size of the working task or the way a developer works several
commits may have been done in the context of one working task.

The release manager needs to estimate and evaluate the state of development
at different phases of the project life cycle so that he/she can decide upon delivery
of the software. Once all working tasks have been done, he/she asks - among other
things - the following questions to ensure high-quality delivery: (a) which test
scenarios check intended functionality of a requirement, (b) how many of those
tests are positive, (c) how many of those tests fail, and (d) could have any test
cases been overlooked?

5 Solution Approach

The following section explains the traceability link model (TLM) and the process
of how to make use of it for detailed requirement coverage reports.

5.1 Traceability Link Model

The “Requirements-Testing-Coverage” (ReTeCo) approach calculates the cover-
age of a requirement as the degree to which the source code of (i.e. relevant to
execute) a requirement is covered by tests. In order to to do it needs to rely on
a traceable link between a requirement and a source code line. Figure 2 presents
the relation of engineering artifacts that form the TLM for ReTeCo.
8 an example on message structure: https://confluence.atlassian.com/fisheye/using-

smart-commits-298976812.html.

https://confluence.atlassian.com/fisheye/using-smart-commits-298976812.html
https://confluence.atlassian.com/fisheye/using-smart-commits-298976812.html

110 R. Mordinyi

Issue

Software
Developer

Requirements
Manager

Release
Manager

ReqID - IssueNr

Requirement
Description

Epic

Story

Task / SubTask

Commit

IssueNr

IssueNr - Message

Fig. 2. Tool-supported linking of model elements define implicit traceability links

The central element of the TLM is the Issue. An issue is in relation to a
requirement as well as to the code base. The relation between requirement and
an issue is set up when the requirement is organized as a set of issues reflecting
the intend of the requirement. The relation is defined within an issue containing
a reference to the requirement. This means that there is a 1:n relation between
the two model elements.

The relation between source code lines and an issue is set up by the devel-
oper when the developer commits the changes into the version control system
introduced into the code base due to the task description in the issue. The rela-
tion is defined within the commit message by providing the issue number in that
message. Since a source code line may have been altered several times, there is
an n:m relation between source code and issue.

Issues may also be organized in an hierarchy. In the context of agile software
development [11] it is common to distinguish between Epics, Stories, Tasks (and
Sub-Tasks). An epic is a large body of work that can be broken down into a
number of smaller stories. A story or user story is the smallest unit of work
in an agile framework. It is a software system requirement that is expressed in
a few short sentences, ideally using non-technical language. The goal of a user
story is to deliver a particular value back to the customer. A task is a concrete
implementation requirement for the development team. Relations between the
various issues types are created (semi-) automatically whenever a sub-issue is
created.

Are Your Requirements Covered? 111

5.2 Selection of Code Coverage Tool

The ReTeCo approach relies on the analysis of coverage reports created by cov-
erage tools. However, there are a variety of code coverage tools which differ in
their capabilities and weaknesses. For the prototype implementation it is there-
fore necessary to set up a set of selection criteria (see also Table 1):

SC1 - Test Relation Support: In order to be able to calculate the percentage
of passed and failed tests of test covered lines, it is important to have a relation
model between test scenarios and source code lines. Is a coverage tool capa-
ble of providing such information? SC2 - Export Capability: The ReTeCo
approach aimed to automatically analyze the code coverage report and extract
information from the report. Is the resulting coverage report usable for further
automated processing? SC3 - License: For an open source prototype imple-
mentation following APLv2 the compatibility of the inspected tool’s license has
to be checked. SC4 - Build Process Support: In order to increase the flex-
ibility of the approach, it needs to be checked to what extent the tool may be
embedded into a build process systems.

Table 1. Results of the criteria investigation.

Criteria & Tools Test relation
support

Export capability License Build process support

JaCoCo No HTML, XML, CSV EPL Maven

EclEmma No HTML, XML, CSV EPL No

Cobertura No HTML, XML, CSV Free, GNU GPL Maven

SonarQube No No LGPL v3 Maven, Ant, Gradle

As shown in Table 1, there is no tool that is able to provide a relation model
between tests and source code lines. For the prototype it has been decided to
go with JaCoCo as it is widely used and has a solid documentation. This also
means that the calculation of the relation had to be implemented explicitly.

5.3 Requirement Coverage Calculation Process

This section explains the main process step (see also Fig. 3) of the ReTeCo
approach as well as implementation details of the prototype:

1. Check Consistency of the Project: In the first step the process has to
ensure that project under investigation is correct and the source code can be
compiled.

2. Build Source Index: In the second step the process searches all directories
recursively for source code files and memorizes their locations.

3. Build Commit Index: In the third step (see also Fig. 4) the process traces
each line of the source code to the Issue-ID that initially created or changed

112 R. Mordinyi

Assure
consistent

project

Gather source
code files

Map each source
code line to an

issue

Gather path to
requirement for

each issue

1 2 3

4

Derive code
coverage for each

test case
5

Calculate
Requirement

Coverage
6

Fig. 3. Main process steps of the ReTeCo approach

that line. In the ReTeCo prototype this is done by parsing the commit (i.e.
log) messages of the version management system. The prototype parses a git
repository9 of the target project by using the JGit framework10. It calls a series
of git commands on the repository for each source code file to find out which issue
is related to which source code line. At first, the prototype calls the command git
blame for the inspected file. The result of this command contains the revision
number for each line of code. Then the prototype calls the command git log
for the each revision number. The result of running this command contains
the commit message of the commit in which the line of code was modified.
By parsing the commit message (e.g., using regular expression) the Issue-ID is
extracted from the commit message. After repeating this process step for all
lines of source code in all source files, the final outcome of this step is a set of
traceable relations between source code lines and Issue-IDs.

4. Build Requirement Index: In the fourth step, each IssueID is traced back
to a requirement. Under the circumstance that there is a hierarchy of issues, for
each issue the corresponding parent issue is requested from the issue tracking
system until the “root” issue (e.g., Epic) has been found. As explained in the
previous section, the “root” issue contains the reference to the requirement it
is reflecting. At this point the traceability links between source code lines and
requirements have been established.

5. Perform Test Coverage: In the next step the code coverage information
of the project is gathered. In this step for each line of source code it needs to
be retrieved by which test case that line is covered. The outcome of this process
step is a set of relations between source code lines and covering test cases. The
prototype divides this task into two steps. In the first step all test cases are
executed (e.g., by calling the maven11 test goal). During the process the name
of each test cases and its status (success or failure) is collected. The prototype
retrieves this information by parsing the maven surefire report12. In the second

9 https://git-scm.com/.
10 https://eclipse.org/jgit/.
11 https://maven.apache.org/.
12 http://maven.apache.org/surefire/maven-surefire-plugin/.

https://git-scm.com/
https://eclipse.org/jgit/
https://maven.apache.org/
http://maven.apache.org/surefire/maven-surefire-plugin/

Are Your Requirements Covered? 113

List of Files
NO

more files
to process?

Call „git blame“ for the next file

YES

Collect „blame“ results for all lines

more „blame“
results to process?

NO

Get the revision-ID of the line
from its „blame“ result

Call git log for the revision-ID
and parse the commit message

to get the Issue-ID

Store the line, the issue and
the relation between them

Fig. 4. Process steps for calculating issue-code relation

step a code coverage measurement tool is run (e.g., JaCoCo13) to measure the
test coverage information of the project. However, JaCoCo is not able to provide
direct traces between a specific test case and a source code line. It only indicates
if the code is traversed by any of the test cases. Therefore, code coverage reports
are created for each test case separately in order to be able to relate each test
case and its resulting report to a specific issue and thus to a requirement. The
prototype parses the resulting JaCoCo report and extracts which lines of code
are relevant to the coverage measurement.

6. Calculate Requirement Coverage: In the final step the requirement cov-
erage report is calculated (see Figs. 5 and 6 as examples). At this point it is
known (a) which source code line is related to which Issue-IDs (and therefore
to which requirement) and (b) which source code line is covered by which test
case. This allows the process to start calculating the coverage for each require-
ment. Calculation is done by analyzing and aggregating the results of each test
coverage report in the context of the corresponding issues and source code lines.
The final outcome of this process step contains the coverage information of the
entire project - for each requirement, and for each issue of each requirement.

13 http://www.eclemma.org/jacoco/.

http://www.eclemma.org/jacoco/

114 R. Mordinyi

6 Initial Evaluation

In the following we demonstrate the feasibility of our approach by illustrating
initial evaluation results. In order to investigate and evaluate the approach, we
have implemented a prototype(see footnote 1) and analyzed its performance
in sense of execution time and memory consumption. We have evaluated the
ReTeCo approach in the context of two open source projects ops4j paxweb14 and
Apache qpid15. Table 2 depicts the key characteristics of each of the projects:
size of the code base, number of test cases, number of issues, and number of
commits.

The evaluations were conducted on a Intel Core i7-2620M with 2,7 GHz and
8 GB RAM running on a Windows 7 environment. The prototype was imple-
mented in java and compiled with Java 8. It uses JGit(see footnote 10) v4.4 to
execute git commands, Maven Invoker16 v2.2 in order to execute maven goals
on target projects, JaCoCo(see footnote 13) v0.7.9 as the code coverage mea-
surement tool to create the code coverage reports of the target project, and
JFreeChart17 v1.0.14 to create pie-charts showing the final requirements cover-
age reports.

Table 2. Characteristics of investigated open source projects

Project # of source code lines # of test cases # of issues log size

org.ops4j.pax.web 82705 63 1229 3979

org.apache.qpid.qpid-java-build 481112 1775 1684 7768

Table 2 shows that the qpid project has 5,8 times more source code lines
(even half the number of commits) and 28 times more test cases than the paxweb
project. Although qpid is a larger project the execution of the prototype requires
only relatively little more amount of RAM, as shown in Table 3. However, the
process execution time is in case of qpid significantly greater than in case of
paxweb. Anyhow, the reason for the large execution time is given due to the
limitation of JaCoCo. JaCoCo is not capable of directly (i.e. on the first run)
reporting traces between test cases and a source code lines. Each test case had
to be run separately, leading to high execution times.

Figure 5 shows collected information about the coverage of a single issue
which is in relation to 6 test cases. It shows that while 377 lines of code were
written or updated in the context of that issue, only 6 of them are relevant for
coverage analysis. Left out of consideration are lines such as comments, javadoc,
import statements, or configuration files. 50% of those lines are covered by tests -
2 lines (33,33%) positively (i.e. tests pass) and 1 line (16,67%) negatively (i.e.
tests fail). The rest 3 lines (50%) are not covered by tests at all.
14 https://github.com/ops4j/org.ops4j.pax.web.
15 https://qpid.apache.org/.
16 https://maven.apache.org/plugins/maven-invoker-plugin/.
17 http://www.jfree.org/jfreechart/.

https://github.com/ops4j/org.ops4j.pax.web
https://qpid.apache.org/
https://maven.apache.org/plugins/maven-invoker-plugin/
http://www.jfree.org/jfreechart/

Are Your Requirements Covered? 115

Table 3. Evaluation results of investigated open source projects

Project Execution time Memory consumption

org.ops4j.pax.web 1 h 15 min 177 M

org.apache.qpid.qpid-java-build 2d 09 h 34 min 207 M

Fig. 5. Excerpt of the coverage report in the context of an issue

Figure 6 shows aggregated information related to the details of a requirement.
It shows that 30065 lines of code were contributed to the requirement in 319
issues. Out of them 3642 lines of code are considered relevant. Out of the set of
relevant lines 208 lines of code or 5.71% are covered by tests - 158 lines (4.34%)
positively and 50 lines (1.37%) negatively. The rest of the lines 94.29% are not
covered by tests.

Fig. 6. Excerpt of the coverage report in the context of a requirement

7 Discussion

The Requirements-Testing-Coverage (ReTeCo) approach aims to provide a
requirements coverage report on the basis of aggregated test coverage results
of each issue contributing to the composition of the requirement.

Although the approach is automatically capable of calculating the require-
ments coverage on a source code line bases, it depends on some preconditions.
It requires from various members of a software engineering project to properly
handle working task identifiers (i.e. Issue-IDs of an issue tracking system). The
approach needs from the release manager to insert a reference to the require-
ment into the issue. In case of an issue hierarchy it needs to have ensured that

116 R. Mordinyi

the hierarchy allows unambiguous traceability from leaf issues to the root issue.
Finally, it needs from developers to have the Issue-ID inserted into the commit
message.

However, these tasks are not performed by a single role, but may be distrib-
uted among project members reducing the overall complexity and responsibility
for each of the roles. Additionally, as described in Sect. 2 some of these tasks
can be automated (e.g., by using textual comparison). Furthermore, test man-
agers or requirement managers do not need to make any directives for developers
regarding the correct nomenclature and usage of source code elements (like nam-
ing of classes, javadoc structure, or use of specific keywords) helping developers
concentrate on the task described in their issue. While the correct interlinking of
issues may be outsourced to the deployed issue tracking system, quality checks
may be put in place which ensure: (a) root issue has a reference to a requirement
(e.g., if a certain reference-type is instantiated can be queried in an issue track-
ing system) and (b) the commit message follows a certain regular expression
pattern (e.g., check if Issue-ID is followed by message content can be executed
in pre-commit git hooks).

In general uncovered requirements refer to requirements with no linked test
cases. It helps project members know about test cases that should be created to
cover such requirements as well. The ReTeCo approach is also capable of pointing
out such requirements. However, the approach considers uncovered requirements
as ones where no source code line is covered by any test case in the context of
the issues composing that requirement.

The percentage value calculated by the presented approach may be mislead-
ing and has to be read with caution. There are at least two scenarios to consider:

Scenario 1: Assuming there is a group of requirements but from development
point of view only with small differences between them. Usually, a developer
invests a lot of time and code into realizing the first requirement while imple-
menting the others through parameterization. This implies that there is a large
number of commits and issues related to the first requirement while only little
for the others. Since the changed code base is smaller for those requirements, it
is therefore easier to reach higher coverage.

Scenario 2: If there is requirement under development it might be the case
that the approach temporarily calculates 100% coverage. This however, may only
state that the source code lines composing the requirement up to that point in
time are completely covered by tests. The approach is not able to indicate when
development of a requirement has finished.

The approach assumes that changes to the code base are mainly introduced
in the context of an issue which was created at some point in the software
engineering life cycle and represents a part of a requirement - independent of
the size of the change. Consequently, the approach “assumes” that if source
code lines were removed within a commit they were removed as a result of the
issue’s intention. For example, the removed lines may have contributed to a
misbehaviour of the system (i.e. bug) and the issue’s intention was to fix it.

Are Your Requirements Covered? 117

However, there are also changes which are committed to the code base with-
out an Issue-ID. From the authors’ experience the handling of such commits is a
subject of discussions among project members. An example may be the release
of the software system which requires the incremental of versions numbers. Com-
mits without a reference to an issue will be ignored by the approach.

8 Conclusion and Future Work

It is the project members responsibility to develop and deliver requirements as
expected by the customer. It is also their responsibility to achieve quality in soft-
ware artifacts, especially in the ones needed to fulfill the requirement. Require-
ments coverage indicates the number of requirements passed in proportion to
the total number of requirements. A requirement is considered passed if it has
linked test cases and all of those test cases are passed. This requires traceable
links between requirements and test cases. While there are various approaches
describing how to establish mappings (semi-) automatically, they focus on test
cases as high level artifacts without taking into consideration the code base that
is under test or compose a requirement.

This paper presented the “Requirements-Testing-Coverage” (ReTeCo) app-
roach which creates traceability links between requirements and test cases
through source code lines which (a) have been written in the context of an
issue, (b) have been committed into a version control system, and (c) produce
code coverage results. Although the approach requires manual human assistance
to properly set Issue-IDs, it does not require explicit linking of requirements
and test cases as it recreates traceability links implicitly through analyzing ref-
erences created by various team members throughout the software development
life cycle between requirements, issues, and commit message. Since the app-
roach takes into account source code lines it is able to calculate coverage reports
on a fine-grained contextual level. The paper therefore calculates requirement
coverage not by passed test cases linked to that requirement but indirectly, by
analyzing the lines of tested source code composing a requirement.

Initial evaluation results in the context of two open source projects showed
the feasibility of the proposed approach. However, the ReTeCo approach is not
able to identify relations between requirements and test cases if tests do not
cover any source code line realizing a requirement.

Future work will focus on (a) combining the ReTeCo approach with
approaches from related work in order to avoid manual linking of requirements
with issues and issues with commits (e.g., based on textual comparison) when-
ever they are created or committed, (b) improving precision of the approach by
considering dependencies between requirements, and (c) developing methods for
handling cross-cutting aspects (e.g., quality requirements) that are related to
many source code elements. From the prototype implementation point of view
we intend to develop one that updates its indices incrementally on per-commit
basis so that it can be embedded in a Continuous Integration and Testing life
cycle.

118 R. Mordinyi

References

1. Abbors, F., Truscan, D., Lilius, J.: Tracing requirements in a model-based testing
approach. In: 2009 First International Conference on Advances in System Testing
and Validation Lifecycle, pp. 123–128, September 2009

2. Ahn, S., Chong, K.: A feature-oriented requirements tracing method: a study of
cost-benefit analysis. In: 2006 International Conference on Hybrid Information
Technology, vol. 2, pp. 611–616, November 2006

3. Ali, N., Guhneuc, Y.G., Antoniol, G.: Trustrace: mining software repositories to
improve the accuracy of requirement traceability links. IEEE Trans. Softw. Eng.
39(5), 725–741 (2013)

4. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. IEEE Trans. Softw. Eng. 28(10),
970–983 (2002). https://doi.org/10.1109/TSE.2002.1041053

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003). http://dl.acm.org/citation.cfm?id=944919.944937

6. Bouquet, F., Jaffuel, E., Legeard, B., Peureux, F., Utting, M.: Requirements trace-
ability in automated test generation: application to smart card software validation.
SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005). https://doi.org/10.1145/1082983.
1083282

7. Burgstaller, B., Egyed, A.: Understanding where requirements are implemented. In:
2010 IEEE International Conference on Software Maintenance, pp. 1–5, September
2010

8. Capobianco, G., Lucia, A.D., Oliveto, R., Panichella, A., Panichella, S.: Improving
IR-based traceability recovery via noun-based indexing of software artifacts. J.
Softw. Evol. Process 25(7), 743–762 (2013). https://doi.org/10.1002/smr.1564

9. Cilibrasi, R.L., Vitanyi, P.M.B.: The Google similarity distance. IEEE Trans.
Knowl. Data Eng. 19(3), 370–383 (2007). https://doi.org/10.1109/TKDE.2007.
48

10. Cleland-Huang, J., Chang, C.K., Christensen, M.: Event-based traceability for
managing evolutionary change. IEEE Trans. Softw. Eng. 29(9), 796–810 (2003)

11. Cockburn, A.: Agile Software Development. Addison-Wesley Longman Publishing
Co. Inc., Boston (2002)

12. De Lucia, A., Oliveto, R., Tortora, G.: Assessing IR-based traceability recovery
tools through controlled experiments. Empir. Softw. Eng. 14(1), 57–92 (2009).
https://doi.org/10.1007/s10664-008-9090-8

13. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990). https://
doi.org/10.1002/(SICI)1097-4571(199009)41:6〈391::AID-ASI1〉3.0.CO;2-9

14. Delgado, S.: Next-generation techniques for tracking design requirements coverage
in automatic test software development. In: 2006 IEEE Autotestcon, pp. 806–812,
September 2006

15. Delligatti, L.: SysML Distilled: A Brief Guide to the Systems Modeling Language,
1st edn. Addison-Wesley Professional, Boston (2013)

16. Egyed, A., Grunbacher, P.: Automating requirements traceability: beyond the
record replay paradigm. In: Proceedings of 17th IEEE International Conference
on Automated Software Engineering, pp. 163–171 (2002)

17. Fockel, M., Holtmann, J., Meyer, J.: Semi-automatic establishment and mainte-
nance of valid traceability in automotive development processes. In: 2012 Second
International Workshop on Software Engineering for Embedded Systems (SEES),
pp. 37–43, June 2012

https://doi.org/10.1109/TSE.2002.1041053
http://dl.acm.org/citation.cfm?id=944919.944937
https://doi.org/10.1145/1082983.1083282
https://doi.org/10.1145/1082983.1083282
https://doi.org/10.1002/smr.1564
https://doi.org/10.1109/TKDE.2007.48
https://doi.org/10.1109/TKDE.2007.48
https://doi.org/10.1007/s10664-008-9090-8
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

Are Your Requirements Covered? 119

18. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In: Proceedings of the 20th International Joint
Conference on Artifical Intelligence, IJCAI 2007, pp. 1606–1611. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (2007). http://dl.acm.org/citation.
cfm?id=1625275.1625535

19. Ghabi, A., Egyed, A.: Code patterns for automatically validating requirements-to-
code traces. In: 2012 Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pp. 200–209, September 2012

20. Gittens, M., Romanufa, K., Godwin, D., Racicot, J.: All code coverage is not
created equal: a case study in prioritized code coverage. In: Proceedings of the
2006 Conference of the Center for Advanced Studies on Collaborative Research,
CASCON 2006. IBM Corp., Riverton, NJ, USA (2006). http://dx.doi.org/10.1145/
1188966.1188981

21. Goknil, A., Kurtev, I., Van Den Berg, K.: Generation and validation of traces
between requirements and architecture based on formal trace semantics. J. Syst.
Softw. 88, 112–137 (2014). https://doi.org/10.1016/j.jss.2013.10.006

22. Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability prob-
lem. In: Proceedings of IEEE International Conference on Requirements Engineer-
ing, pp. 94–101, April 1994

23. Grechanik, M., McKinley, K.S., Perry, D.E.: Recovering and using use-case-
diagram-to-source-code traceability links. In: Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, ESEC-FSE 2007,
pp. 95–104. ACM, New York (2007). http://doi.acm.org/10.1145/1287624.1287640

24. Guo, J., Monaikul, N., Cleland-Huang, J.: Trace links explained: an automated
approach for generating rationales. In: 2015 IEEE 23rd International Requirements
Engineering Conference (RE), pp. 202–207, August 2015

25. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation
for requirements tracing: the study of methods. IEEE Trans. Softw. Eng. 32(1),
4–19 (2006). https://doi.org/10.1109/TSE.2006.3

26. Heindl, M., Biffl, S.: A case study on value-based requirements tracing. In: Pro-
ceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, ESEC/FSE-13, pp. 60–69. ACM, New York (2005). http://doi.acm.org/
10.1145/1081706.1081717

27. Krishnamoorthi, R., Mary, S.S.A.: Factor oriented requirement coverage based
system test case prioritization of new and regression test cases. Inf. Softw.
Technol. 51(4), 799–808 (2009). http://www.sciencedirect.com/science/article/
pii/S0950584908001286

28. Lago, P., Muccini, H., van Vliet, H.: A scoped approach to traceability manage-
ment. J. Syst. Softw. 82(1), 168–182 (2009). https://doi.org/10.1016/j.jss.2008.08.
026

29. Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in
software artifact management systems using information retrieval methods. ACM
Trans. Softw. Eng. Methodol. 16(4) 2007. http://doi.acm.org/10.1145/1276933.
1276934

30. Mahmoud, A., Niu, N.: On the role of semantics in automated requirements tracing.
Requir. Eng. 20(3), 281–300 (2015). https://doi.org/10.1007/s00766-013-0199-y

31. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: Proceedings of the 25th International

http://dl.acm.org/citation.cfm?id=1625275.1625535
http://dl.acm.org/citation.cfm?id=1625275.1625535
http://dx.doi.org/10.1145/1188966.1188981
http://dx.doi.org/10.1145/1188966.1188981
https://doi.org/10.1016/j.jss.2013.10.006
http://doi.acm.org/10.1145/1287624.1287640
https://doi.org/10.1109/TSE.2006.3
http://doi.acm.org/10.1145/1081706.1081717
http://doi.acm.org/10.1145/1081706.1081717
http://www.sciencedirect.com/science/article/pii/S0950584908001286
http://www.sciencedirect.com/science/article/pii/S0950584908001286
https://doi.org/10.1016/j.jss.2008.08.026
https://doi.org/10.1016/j.jss.2008.08.026
http://doi.acm.org/10.1145/1276933.1276934
http://doi.acm.org/10.1145/1276933.1276934
https://doi.org/10.1007/s00766-013-0199-y

120 R. Mordinyi

Conference on Software Engineering, ICSE 2003, pp. 125–135. IEEE Computer
Society, Washington, DC, USA (2003). http://dl.acm.org/citation.cfm?id=776816.
776832

32. Maro, S., Anjorin, A., Wohlrab, R., Steghfer, J.P.: Traceability maintenance: fac-
tors and guidelines. In: 2016 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 414–425, September 2016

33. Ni, D.C., Martinez, J., Eccles, J., Thomas, D., Lai, P.K.M.: Process automation
with enumeration and traceability tools. In: Proceedings of the IEEE International
Conference on Industrial Technology 1994, pp. 361–365, December 1994

34. Ooi, S.M., Lim, R., Lim, C.C.: An integrated system for end-to-end traceability
and requirements test coverage. In: 2014 IEEE 5th International Conference on
Software Engineering and Service Science, pp. 45–48 (June 2014)

35. Ortu, M., Destefanis, G., Kassab, M., Marchesi, M.: Measuring and understand-
ing the effectiveness of JIRA developers communities. In: 2015 IEEE/ACM 6th
International Workshop on Emerging Trends in Software Metrics, pp. 3–10, May
2015

36. Parizi, R.M., Lee, S.P., Dabbagh, M.: Achievements and challenges in state-of-
the-art software traceability between test and code artifacts. IEEE Trans. Reliab.
63(4), 913–926 (2014)

37. Portillo-Rodrguez, J., Vizcano, A., Piattini, M., Beecham, S.: Tools used in global
software engineering: a systematic mapping review. Inf. Softw. Technol. 54(7), 663–
685 (2012). http://www.sciencedirect.com/science/article/pii/S0950584912000493

38. Rompaey, B.V., Demeyer, S.: Establishing traceability links between unit test cases
and units under test. In: 2009 13th European Conference on Software Maintenance
and Reengineering, pp. 209–218, March 2009

39. Rosario, B.: Latent semantic indexing: an overview (2000). http://www.cse.msu.
edu/cse960/Papers/LSI/LSI.pdf

40. Sengupta, S., Kanjilal, A., Bhattacharya, S.: Requirement traceability in software
development process: an empirical approach. In: 2008 The 19th IEEE/IFIP Inter-
national Symposium on Rapid System Prototyping, pp. 105–111, June 2008

41. Stanbridge, C.: Retrospective requirement analysis using code coverage of GUI
driven system tests. In: 2010 18th IEEE International Requirements Engineering
Conference, pp. 411–412, September 2010

42. Tahat, L.H., Vaysburg, B., Korel, B., Bader, A.J.: Requirement-based automated
black-box test generation. In: 25th Annual International Computer Software and
Applications Conference, COMPSAC 2001, pp. 489–495 (2001)

43. Valderas, P., Pelechano, V.: Introducing requirements traceability support in
model-driven development of web applications. Inf. Softw. Technol. 51(4), 749–
768 (2009). https://doi.org/10.1016/j.infsof.2008.09.008

http://dl.acm.org/citation.cfm?id=776816.776832
http://dl.acm.org/citation.cfm?id=776816.776832
http://www.sciencedirect.com/science/article/pii/S0950584912000493
http://www.cse.msu.edu/cse960/Papers/LSI/LSI.pdf
http://www.cse.msu.edu/cse960/Papers/LSI/LSI.pdf
https://doi.org/10.1016/j.infsof.2008.09.008

High Quality at Short Time-to-Market:
Challenges Towards This Goal and Guidelines

for the Realization

Frank Elberzhager(&) and Matthias Naab

Fraunhofer Institute for Experimental Software Engineering IESE,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{frank.elberzhager,matthias.naab}@iese.fraunhofer.de

Abstract. High quality and short time-to-market are business goals that are
relevant for almost every company since decades. However, the duration
between new releases heavily decreased, and the level of quality that customers
expect increased drastically during the last years. Achieving both business goals
imply investments that have to be considered. In this article, we sketch 22 best
practices that help companies to strive towards a shorter time-to-market while
providing high quality software products. We share furthermore experiences
from a practical environment where a selected set of guidelines was applied.
Especially DevOps including an automated deployment pipeline was an
essential step towards high quality at short time-to-market.

Keywords: Quality � Time-to-market � Guidelines � Experiences

1 Introduction

Shorter times for delivering new software products and updated versions are more and
more common. Higher speed can provide substantial business value, but only if ade-
quate quality can be delivered. Some years ago, it was quite normal to deliver a new
release once or twice a year, or in even longer intervals. Today, updates are often
released many times a week, sometimes even every few seconds. Internet companies
are clearly the leaders of fast releases (e.g., Amazon made changes to production on
average every 11.6 s in 2011, and many Google services are released several times a
week (for more details, see [1, 2]), but also more traditional companies like car
manufacturers delivering safety-relevant products are following suit (e.g., Volvo cars
[3] or Tesla).

With short time-to-market, two views can be distinguished:

1. Delivering the first release within a short time between project start and first release
2. Delivering frequent subsequent updated releases within short times between start of

increment and release

We will mainly concentrate on the second aspect. This is far more challenging, and
requires sustainable processes, roles, a tool landscape, and a certain culture among
other things.

© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 121–132, 2018.
https://doi.org/10.1007/978-3-319-71440-0_7

One key reason for short time-to-market is earlier value, which can be refined into
four concrete benefits:

1. Customers can use new features earlier – the company can earn money earlier
2. A company is on the market faster than competitors – the company can earn more

money
3. A company gets faster feedback – the company can further improve the software

product or implement new feature requests from customers
4. A company provides small updates instead of large ones – the company can reduce

the risk of providing the wrong software.

The motivation for companies to achieve a shorter time-to-market is clearly
business-driven (as it aims at providing business value), it is no end-in-itself. The
objectives have thereby to be clearly derived. Jan Bosch stated “no efficiency
improvement will outperform cycle time reduction” [4].

On the other hand, short time-to-market should usually not cannibalize the quality
of the software system, at least not to a large extent. High quality is important to
convince customers of the value of the software product. Throwing a new product or
release onto the market without proper quality assurance, documentation, and further
related tasks can speedup time-to-market, but it is not sustainable at all. Though there
might be situations where it is reasonable to concentrate solely on speed, and not on
quality at all (or only to a minor extent), this is not the usual case and we exclude it
from our scope.

But how does the need for speed impact the company’s software quality require-
ments? And why does development time and operation quality requirements need
strong improvement? From our perspective, these are key aspects when high quality at
short time-to-market should be implemented in a sustainable way. Guidelines that we
present in this article outline the areas where investment is needed to make high quality
happen at short time-to-market. Finally, we will discuss applicable factors for signif-
icantly reducing release times. Therefore, we concentrate on three main questions in
this paper:

1. What exactly does high quality mean?
2. Where and how to invest for high quality at short time-to-market?
3. What is the applicability of high quality at short time-to-market?

We answer the first question in Sect. 2 together with our procedure how we
elaborated this question. Section 3 presents our results and gives several best practices
and guidelines to strive towards high quality at a short time-to-market. Section 4 gives
some practical hints that help companies to implement certain guidelines, and provides
some experiences from a concrete industrial context. Finally, Sect. 5 concludes the
article and provides some follow up questions for researchers and practitioners.

122 F. Elberzhager and M. Naab

2 Procedure and Concepts

2.1 Procedure

We started our conceptual work by creating a general view on the topic. For this, we
scanned several articles and publications that already exist about this topic (e.g., [7–
17]). From our analysis, a motivation that, why, and where investments need to be
done, was often missing. Usually, the goal of high quality and short time-to-market is
considered, and we also found recommendations for improvements (e.g., best prac-
tices). However, in this article, we distinguish stronger between different qualities, and
derived concrete investment areas to achieve a certain value, respectively benefits.
Based on this general picture which is presented in Sect. 2.2, we identified next areas
which are influenced when a company wants to achieve high quality at short
time-to-market. We identified four concrete ones, which are partly based on former
project experiences with software developing companies. In order to derive concrete
guidelines, we performed a two hour workshop with seven experts in areas such as
architecture, process improvement, and implementation. All the detailed feedback was
consolidated and resulted in six concrete guideline topics which are presented in
Sect. 3. We applied some of these guidelines with respect to a practical context and
gained further practical experience which is shown in Sect. 4.

2.2 Conceptual View

Optimizing either delivery time or quality is challenging in itself. High quality at short
time-to-market is even more challenging, and not every company benefits equally from
high-frequency releases, or would have to change too many things so that the
investment would not be worth the benefit. So a company needs to start asking the
following questions, describing the goals:

• What are the key reasons in the company’s market and which products should be
released with short time-to-market?

• What is a reasonable time-to-market that the company wants to achieve?
• What is the level of quality that should not be affected?

These business-related questions have to be roughly answered first, followed by
technical and organizational questions to realize the identified goals and to check the
feasibility of achieving the goals. Many new and more fine-grained questions emerge
when striving towards a shorter time-to-market, e.g.

• What does an efficient release process look like?
• What software-architecture is needed?
• What is the necessary infrastructure to be provided?
• What is a reasonable team structure?
• What tools do support fast delivery?

Figure 1 illustrates the transition towards high quality at short time-to-market. One
key reason why software is built is the functionality it realizes. However, only if this
functionality comes with an adequate quality in the software, it is actually useful. The

High Quality at Short Time-to-Market 123

concept of quality needs thereby to be refined in order to understand what is expected
to be existing by nature, and which parts need further investment. Thus, we distinguish
four categories of quality characteristics of a software product:

• Absence of bugs
• Runtime quality (e.g., performance, security)
• Development time (short: Devtime) quality (e.g., maintainability, testability,

extensibility, flexibility)
• Operation quality (e.g., updateability, recoverability).

The focus in development organizations is often on functionality, absence of bugs,
and runtime qualities. This is quite natural, because these quality characteristics are
directly visible to the customer, while devtime quality and operation quality rather
serve the development organization (in particular if it also operates the software). This
is also backed by the ISTQB Worldwide Testing Practice Report from 2015 reporting
that the focus of quality assurance is on runtime qualities, such as performance,
usability, or security [5].

High quality also means absence of bugs and runtime quality. However, in order to
be able to deliver this quality characteristics with high speed over time, it becomes
inevitable to also increase the devtime quality and the operation quality.

• Devtime quality is necessary to allow making additions and changes quickly
(maintainability, extensibility, flexibility, etc.) and testing the changes with a high
level of confidence within a reasonable period of time (which necessarily implies a
large degree of automated testing).

Software Product

Releases at
low frequency

Absence of
Bugs

Runt ime
Qualit y

Devt ime
Qualit y

Operat ion
Qualit y

Value
• Earl ier value
• Earl ier than competi tors
• Earl ier feedback
• Reduced risk, less frict ion

Investment
• Culture / Organizat ion
• Architecture
• Tools / Automation
• Process

Funct ionalit y

Releases at
high frequency

Reduce
t ime-t o-market

Software Product

Devt ime
Quality

Operat ion
Qualit y

Absence
of Bugs

Runt ime
Qualit y

Funct ionalit y

Fig. 1. Implications on quality when shifting towards reduced time-to-market

124 F. Elberzhager and M. Naab

• Operation quality is necessary to enable reliable and fast releases with a high degree
of automation and to quickly react to potential failures of the newly released
software.

That is, the goal is to deliver absence of bugs (or at least a minimization) and
runtime quality to the customer, and the means for realizing this is to invest in devtime
quality and operation quality. As functionality is available earlier, a slightly reduced
amount of functionality might even be acceptable. Due to the ability to correct prob-
lems much faster than before, a bit more tolerance for bugs might exist. Figure 1
depicts this relationship. It is very important that all the people in a development
organization have a clear picture of these different characteristics of quality and how
they will change when they strive for more speed.

High quality at short time-to-market does not come for free. It is clearly a business
value and a competitive advantage, and thus it is obvious that investments are needed.
We already pointed out now two areas of quality that need strong improvement for high
quality at short time-to-market: Devtime quality attributes and operation quality
attributes.

Next, we broaden the view on areas of investment. For this, we have identified four
high-level areas, which need investments to make high quality at short time-to-market
happen:

• Culture/Organization: The people in the development organization have to be fully
aware that releasing fast is of value and that everyone has to contribute. Changes to
the organizational structure might be necessary to empower people to develop and
release fast.

• Architecture: The architecture of the software has to strongly support fast releases,
that is in particular the realization of development time and operation quality
attributes (e.g. updateability, recoverability, testability) while maintaining the run-
time quality attributes (e.g. performance, user experience, security, availability, …)
at the same time.

• Tools/Automation: Automation is key for fast releases with high quality: Only if the
quality assurance, build, and release is highly automated and reliable the releases
can be done with high confidence in a high frequency.

• Processes: Processes have to focus on the full end-to-end coverage from ideation of
new features to putting them into production with low friction and delay.

For each of these four high-level areas, concrete guidelines can be derived. We
gathered a list of more than 40 best practices. For example, in the area of architecture,
we discussed programming rules, concrete qualities such as testability that need to be
coped by the concrete architecture, or encapsulation principles. Further examples for
the area ‘culture’ are keeping the customer in mind or high communication skills.
However, besides many obvious ideas, we consolidated all feedback into six main
guideline topics and summarized concrete hints (see next Section).

High Quality at Short Time-to-Market 125

3 Guidelines and Implementation

The four areas (i.e., culture, architecture, tools, and processes) which need investment
are connected and do overlap. In the following, we provide more concrete topics and
guidelines, which mostly touch multiple of these areas (for example, take continuous
delivery: For continuous delivery, the software architecture has to cope with fast
integrations and deployments, and a full process needs to be defined with a high degree
of automation). Some hints how to select them and where to start is given in Sect. 3.2.

3.1 Guidelines

We derived six topics that reflect different aspects during software development. The
concrete guidelines touch, as mentioned before, often not only one area, but several.
Topic 1 focuses on the concrete customer and the business value, i.e. something the
company always should have in mind with all the methods and procedures they apply:
It is never for the software product itself, but always to serve the customer and to earn
money. Customer satisfaction is not negligible, as a bad satisfaction threatens the
company’s success. The second topic concentrates on bringing the software product
and also the company to the next level, i.e., to continuously reflect the business and all
related aspect of the development. The third topic focuses more on technical issues
during the release process and how to improve it. This is a major topic to really become
fast. The fourth topic concentrates on means to provide high quality. Topic five then
sets the focus on the whole company and reflects what is important on this higher level
to support high quality at short time-to-market. Finally, topic six considers data in order
to understand the current situation, but also to measure success and to identify further
improvement ideas.

We do not claim that this is a complete list, but it touches main aspects that should
be considered when a company wants to strive towards high quality at short
time-to-market. Overall, we present 22 concrete guidelines next.

• Topic 1: Customer and business value
◦ Focus on building the right software system that serves your customers and
provides the highest value for your business.

◦ Build as little as necessary; building less takes less time.
◦ Consistently prioritize in requirements engineering.
◦ Incorporate early feedback and data to enable continuous adjustment.

• Topic 2: Innovation and differentiation
◦ Do not reinvent the wheel; do not invest your time into things that are already
there.

◦ Focus on the things that make your product and your business unique.
◦ Use cloud-based technologies where possible.
◦ Continuously renew: What is innovation today may be a common feature
tomorrow.

• Topic 3: Release capability
◦ Introduce continuous delivery, integration, and deployment for (partially)

automated, and thus faster, releases.

126 F. Elberzhager and M. Naab

◦ Adopt DevOps practices; they aim at assuring smooth interplay between
development and operation throughout the release step.

◦ Design for updateability: Provide the ability to run different software product
versions; use effective API version management; migrate data; etc.

◦ Modularize software to enable independent releases of features and software
parts: Microservices are an architectural style that proposes many decisions
supporting decoupled development and releases.

◦ Make teams responsible for the development, release, and operation of their
modules and create the ability to release independently (respect Conway’s law
concerning the organizational structure).

• Topic 4: High quality investments
◦ Do quality assurance early to avoid going in the wrong direction (for example,
prototyping, architecture evaluation, etc.).

◦ Try out concepts and features early with a strong customer focus.
◦ Design for high testability and, in particular, for a high degree of automated
testing.

◦ Design for robustness: Provide the ability to keep failures local and to recover
quickly in the case of failures.

◦ Establish a culture of making even good things better over time.
• Topic 5: Overall agile development organization

◦ Establish a culture of speed and fast decisions.
◦ Follow agile development principles and be responsive.

• Topic 6: Utilization of data to improve business and software
◦ Perform A/B tests, for example, to get early feedback about alternative fea-
tures and about the quality by gradually delivering the software to the
customers.

◦ Ask your users for (anonymous) feedback, respectively collect data from log
files.

3.2 Implementation Hints

We believe that high quality at short time-to-market will become more relevant for
many industries and companies, as there is a strong ability to create business value.
High quality at short time-to-market is nothing that can be bought out of the box.
Rather, it is a deliberate business decision that comes with many consequences,
changes and investments. To make it happen, the company developing the software has
to strongly adapt and invest into the areas culture/organization, architecture,
tools/automation, and processes.

The concrete manifestation differs from company to company. That starts with
different releases cycles and ends at detailed technologies that are used. Such concrete
environmental factors have to be considered during the definition of a concrete
migration and improvement strategy.

The following aspects have an impact on the applicability and the concrete defi-
nitions of high quality at short time-to-market:

High Quality at Short Time-to-Market 127

• Adherence to quality standards and certifications: Whether high release cycles are
possible can be determined by regulations concerning quality assurance and
certification.

• Customer expectations and ability to create value: Only if regular and fast updates
are perceived to be accepted by customers and can result in a business value the
investments into high quality at short time-to-market are justified.

• Status of existing software: The age and overall quality of the software (in particular
the devtime quality and the operation quality) have an impact whether it is advisable
to invest into high quality at short time-to-market for the current software (or rather
do it for a successor)

• Control over execution environment: Companies offering software-as-a-service
(SaaS) have the advantage that they have good control over the execution envi-
ronment while companies offering physical goods like cars might have to update
software in millions of hardware instances. However, even these things might
change with strongly improving network capabilities allowing to move more and
more functions to a cloud-based environment.

When a company wants to move towards high quality at short time-to-market, the
following questions should initiate that journey:

• What does “high quality” mean in this context, how is “short” in time-to-market
interpreted?

• What is the respective improvement in value that is expected to gain?
• What does this direction mean for the organization, the processes, the architecture,

and the tools?
• Which topics are most reasonable to start with?

It should be kept in mind that it is about the balance between high quality and fast
delivery, and both have to be considered to find the right balance. This means, it is
about acceptable quality and it is about acceptable release frequency. The guidelines of
this article can point out aspects to reason about, to prioritize, and to start introducing.
They are deliberately not presented as a migration roadmap because the transition to
high quality at short time-to-market will be individual and thus requires an individual
migration roadmap.

4 Experiences with Selected Guidelines from the Fujitsu EST
Environment

We accompanied Fujitsu EST for about one year in an improvement initiative [6]. The
improvement vision of this initiative was driven by several objectives, among others
the goal of higher quality and reduced release cycles (culture of making good things
better, culture of speed and fast decisions). These goals were set at the beginning of
the joined project. Concrete improvement steps could then be derived step-by-step, and
a migration plan was defined based on an analysis of the current development pro-
cesses, team structure, and the tool landscape.

128 F. Elberzhager and M. Naab

The general focus of the joined project was to investigate the benefits of DevOps in
the given context, and an implementation of selected DevOps practices. The intro-
duction of DevOps was our main mission, which is reflected by one of the central
aspects of the guideline list. DevOps, which wants to bring development and operations
together, aims at sharing a higher joined responsibility of development and operations
staff, and wants to break down barriers between these different parts and the corre-
sponding mindsets. While DevOps in itself provides several concrete practices, it
supports shorter time-to-markets by, for example, lower friction between development
and operations, or much higher automation supported by an automated deployment
pipeline. Both were major outcomes of this project, and Fig. 2 provides an overview of
the deployment pipeline that was defined and implemented in the given context.

The pipeline consists of four steps, and was – except the exploratory testing – fully
automated in the end:

1. Commit: This stage starts as soon as a developer commits new or changed code to
the source version control system. It invokes the continuous integration server,
which builds the application and generates artifacts. The artifacts are stored and
reused in the subsequent stages. If the build fails, the developer is notified and the
commit does not progress.

2. Automated testing: The artifacts generated in the previous stage are deployed to a
testing environment. Automatic testing is done for all parts of the software. The
environment is provisioned and configured automatically. If the tests fail, the
artifacts do not progress any further.

2.
automated

test ing

1.
commit

3.
exploratory

test ing

4.
product ion ENDSTART

Repository
Management

Release
Management

Test ing & Defect
t racking

Containerizat ion Collaborat ion

No tool

Exist ing tool

Intermediate solut ion
/ conceptual idea

Deployment Cloud Conf igurat ion
Management

MonitoringCont inuous
Integrat ion

Build

Source Code
Management

Logging

Fig. 2. Deployment pipeline and tool categories in the Fujitsu EST environment to support high
quality at short time-to-market

High Quality at Short Time-to-Market 129

3. Exploratory testing: Once the automatic testing stage has been passed, the artifacts
are deployed to an exploratory testing environment for manual testing. The envi-
ronment is again created automatically. Once the tests are finished, the artifacts can
go to the next stage; otherwise, they stop here.

4. Production: After the exploratory testing stage, the artifacts are deployed to the final
production environment and users can use the application directly. The production
environment is created automatically and monitored continuously. If something
goes wrong, the system rolls back to a previous release. All the deployments are
done following a deployment strategy. Users ideally do not experience any
downtime and the transition from one release to another is smooth.

Figure 2 also presents an overview of tool categories that we considered in the
pipeline. There exist numerous tools for every step, and it again depends on the concrete
environment which ones fit best. Seven tool categories were already covered in the
Fujitsu EST environment. For the commit stage, Jenkins was used as the continuous
integration tool, Maven and Grunt for the build process, and GIT for source code
management. Services of the Google Cloud were applied for steps 2-4. For release
management, Jenkins was considered, and for containerization, Docker was the choice.
Google Cloud provides the Docker management itself. For repository management,
Docker Registry and Artifactory were used. Finally, for testing, quality assurance, and
issue reporting purposes, jUnit, Karma, sonarQube, and Bugzilla were applied.

Collaboration was out of scope due to the small size of the team and the little
current need. Also, logging was not further considered as this is done during coding,
i.e., before committing and thus before the main parts of the pipeline. It was decided to
focus on monitoring only after implementation of the first complete pipeline.
Deployment was supported by shell scripts.

The main focus in the Fujitsu EST context to complete the pipeline thus was on
configuration and repository management. For both tool categories, existing tools were
collected and classified according to the requirements of the context. More than 40
configuration management tools exist, of which Puppet, Chef, Ansible, and Salt are the
most popular ones considering the available success stories. The main observations
were that Chef does not have a real-time configuration option, which was needed by the
software product. While Chef and Puppet are mature tools compared to Ansible and
Salt, they are very much developer-oriented, making it difficult for operators to handle
them. On the other hand, Ansible and Salt are tools that are more oriented towards
system administration and allow to write modules in any language. Thus, the decision
was to try out Ansible. A similar procedure of evaluating and selecting tools based on
the requirements of the context was followed for the artifact repository. In this case,
Artifactory was the choice.

Besides the introduction of DevOps, high automation with several tools, and a
concentration on quality aspects, we discussed some further best practices, but
neglected also some. For example, we did not change the software architecture to a
microservice architecture. The concepts and implications were discussed, but as the
team was small and the software product rather simple, the investment was not seen as
worthwhile at the current point. This might change over time, but it shows that every
decision must be taken based on well-conceived reasons.

130 F. Elberzhager and M. Naab

In the end and after the deployment pipeline had been set up and implemented and
further improvements as sketched had been introduced, Fujitsu EST wanted to measure
the effects. Fujitsu EST added six quantitative metrics to an existing dashboard. It was
shown that fast deployments with high quality are now possible. About 10 min are
required from a commit to the completion of automated testing. Deployment to the
production stage takes about 20 min, depending on the time used for exploratory
testing and the upload to the production environment in the Cloud.

As Fujitsu EST shifted more towards a service provider, and had to care about
operations as well, they wanted to understand how the users experience their services.
Thus, it was discussed how feedback could be gathered from the customer. Simple
mechanisms, such as providing an email address where customers could give feedback,
or a feedback bar on the webpage, were implemented.

To conclude our experience, we could improve the time-to-market with selecting a
set of 6–8 of our improvement suggestions (see bold ones), and provide high quality.
Many of the guidelines from our list were further refined to make them more opera-
tional. It took some investment and also learning [6], but the results in the given context
were worthwhile the effort. The whole journey was supported by a migration plan to
define the concrete steps needed, and to monitor the success.

5 Summary and Outlook

In this paper, we argued that for today’s companies it is often needed to shift more
towards a shorter timer-to-market, while still caring about high quality. There is no
unique way to achieve these business goals, and for every company, the concrete
instantiation means different things. In order to provide a certain starting point for such
a journey, we provided a list of six improvement topics with overall 22 guidelines.
Such a list is far away from being complete, but provides initial ideas in which
direction a company can move, respectively what improvements might be reasonable to
address. The list is mainly based on experience from software engineering experts and
it is our goal to extend such a list in the future, and to provide further guidelines for the
concrete application of selected guidelines. We shared the experience for a selected set
of guidelines how we implemented them in the concrete Fujitsu EST environment.

There are also open issues for research from our point of view:

• What concrete guidelines will result in an as ideal as possible solution?
• What is the best order of such guidelines to be implemented, and how can a

migration plan be derived based on context factors from a concrete company?
• How can the benefit be measured?

We believe that the trend towards high quality at short time-to-market will continue
and that companies will have to cope with this challenge. Thereby, fast releases does
not necessarily mean several times a day, but can mean to shift from monthly releases
to weekly ones, for example. Research and practice therefore have to find solutions to
address such needs, and guidelines as presented in this article can be an initial step – for
selecting concrete improvements, but also for identifying future research directions.

High Quality at Short Time-to-Market 131

References

1. Kim, G., Behr, K., Spafford, G.: The Phoenix Project – A Novel About IT, DevOps, and
Helping Your Business Win. It Revolution Press (2014)

2. http://www.thoughtworks.com/de/insights/blog/case-continuous-delivery. Accessed June
2017

3. Keynote at ICSA (2017). https://youtu.be/VP1AhGGCFeI. Accessed: June 2017
4. Bosch, J.: Speed, Data, and Ecosystems: Excelling in a Software-Driven World. CRC Press

(2016)
5. ISTQB Worldwide Software Testing Practices Report. http://www.istqb.org/references/

surveys/istqb-worldwide-software-testing-practices-report.html. Accessed June 2017
6. Elberzhager, F., Arif, T., Naab, M., Süß, I., Koban, S.: From agile development to devops:

going towards faster releases at high quality – experiences from an industrial context. In:
Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2017. LNBIP, vol. 269, pp. 33–44.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49421-0_3

7. Erich, F., Amrit, C., Daneva, M.: Cooperation between software development and
operations: a literature review. In: ESEM (2014)

8. http://dev2ops.org/2010/02/what-is-devops/. Accessed June 2017
9. Katua, P.: DevOps from the ground up, thoughtworks. In: GOTO Conference (2014)
10. Buytaert, K.: DevOps, DevOps, DevOps. In: Froscon (2011)
11. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspectives. Addison-Wesley

Professional (2015)
12. CA Technologies: DevOps: the worst-kept secret to winning in the application economy

(2014)
13. Puppet labs & IT Revolution Press: 2013 State of DevOps report (2013)
14. Wickett, J.: The DevOps way of delivering results in the enterprise, Mentor Embedded

(2012)
15. Kim, G.: Top 11 things you need to know about DevOps. IT Revolution Press
16. Debois, P.: Modeling DevOps, Yow Conference (2013)
17. Sharma, S., Coyne, B.: DevOps for Dummies, 2nd IBM Limited Edition (2015)

132 F. Elberzhager and M. Naab

http://www.thoughtworks.com/de/insights/blog/case-continuous-delivery
https://youtu.be/VP1AhGGCFeI
http://www.istqb.org/references/surveys/istqb-worldwide-software-testing-practices-report.html
http://www.istqb.org/references/surveys/istqb-worldwide-software-testing-practices-report.html
http://dx.doi.org/10.1007/978-3-319-49421-0_3
http://dev2ops.org/2010/02/what-is-devops/

Prioritizing Corrective Maintenance Activities
for Android Applications: An Industrial Case

Study on Android Crash Reports

Valentina Lenarduzzi1 , Alexandru Cristian Stan1 ,
Davide Taibi1,2(&) , Gustavs Venters1 , and Markus Windegger3

1 Free University of Bolzano-Bozen, 39100 Bolzano-Bozen, Italy
{vlenarduzzi,astan,dtaibi,g.venters}@unibz.it

2 Pervasive Computing Department, Tampere University of Technology,
Tampere, Finland

davide.taibi@tut.fi
3 SASAbus, 39100 Bolzano-Bozen, Italy

windegger@sasabz.it

Abstract. Context: Unhandled code exceptions are often the cause of a drop in
the number of users. In the highly competitive market of Android apps, users
commonly stop using applications when they find some problem generated by
unhandled exceptions. This is often reflected in a negative comment in the
Google Play Store and developers are usually not able to reproduce the issue
reported by the end users because of a lack of information.
Objective: In this work, we present an industrial case study aimed at priori-

tizing the removal of bugs related to uncaught exceptions. Therefore, we
(1) analyzed crash reports of an Android application developed by a public
transportation company, (2) classified uncaught exceptions that caused the
crashes; (3) prioritized the exceptions according to their impact on users.
Results: The analysis of the exceptions showed that seven exceptions gen-

erated 70% of the overall errors and that it was possible to solve more than 50%
of the exceptions-related issues by fixing just six Java classes. Moreover, as a
side result, we discovered that the exceptions were highly correlated with two
code smells, namely “Spaghetti Code” and “Swiss Army Knife”. The results of
this study helped the company understand how to better focus their limited
maintenance effort. Additionally, the adopted process can be beneficial for any
Android developer in understanding how to prioritize the maintenance effort.

Keywords: Continuous monitoring � Software quality � Technical debt

1 Introduction

In the quickly evolving world of mobile applications, users can nowadays choose
among a large variety of alternatives. On the one hand, this huge market boosts the
competition among similar apps. On the other hand, users can easily switch to com-
petitor applications if some features are missing or – as commonly happens – not
responding correctly. The cost of acquiring lost customers is always high, and losing

© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 133–143, 2018.
https://doi.org/10.1007/978-3-319-71440-0_8

http://orcid.org/0000-0003-0511-5133
http://orcid.org/0000-0001-9453-2953
http://orcid.org/0000-0002-3210-3990
http://orcid.org/0000-0003-3185-8416

customers because of bugs and issues – which are often related to code exceptions –
occurs very frequently.

Android applications sometimes crash or are irresponsive, and several users com-
monly report this with negative comments in the Google Play Store, complaining about
non-functioning parts such as unresponsive buttons or other issues. This behavior is
often due to uncaught exceptions happening [23, 24]. We consider uncaught exceptions
those exceptions not caught in “try/catch” blocks that may occur at any time due to
programming errors that the developers did not expect to deal with (e.g., “Out-
OfMemoryError”, “NullPointerExceptions”) [17].

In this paper, we report on an industrial case study about an Android application
developed by SASAbus SpA AG, an Italian public transportation company1. Since
SASAbus had limited resources available for the maintenance of their application, our
aim was to support them in the identification of better ways to invest their maintenance
effort in order to prevent the greatest possible number of issues related to code
exceptions and to have them lose the lowest possible number of customers. Therefore,
our goal was to understand which code exception(s) generated most of the crashes, or
generally what the bugs in the application were, to allow focusing corrective mainte-
nance on solving the most relevant errors with the little resources available.

Crash reports are collected directly from the Google Play Store, which provides a
system that collects for the developers the latest exceptions that generated a fatal error
of the application.

The results of our study showed that six uncaught exceptions occurred in more than
70% of the crashes and that it is possible to reduce this high percentage by investing a
limited amount of effort. Furthermore, from the manual inspection of the code that
threw the exceptions, we observed the prominent presence of two code smells [3]
(“Spaghetti Code” and “Swiss Army Knife”) in similar exceptions. Moreover, this
result confirms the findings of Microsoft, who reported that 50% of crashes are caused
by 1% of bugs [18].

This paper is structured as follows: Sect. 2 describes the continuous exception
monitoring approaches. Section 3 reports the case study. Section 4 discusses the results
while Sect. 5 draws conclusions and provides an outlook on future work.

2 The Exception Monitoring System

Although the trend towards DevOps and continuous exception monitoring tools is
growing constantly2, to the best of our knowledge the literature on exception moni-
toring is still very limited [1, 2].

Exception monitoring tools have been introduced recently and are usually collo-
cated in the operational side of the DevOps pipeline [19]; however, the majority of
these instruments are crash reporting systems: when a fatal error in the application

1 SASAbus. www.sasabus.it.
2 https://trends.google.com.

134 V. Lenarduzzi et al.

http://www.sasabus.it
https://trends.google.com

happens, users get a summary message and are asked whether they are willing to report
the details to the development team.

However, developers get only crash-related data, while non-fatal errors, which are
often triggered by unhandled exceptions, remain unreported, hence not getting ana-
lyzed and solved. Recently, some tools aimed at dealing with this issue have been
introduced on the market: Most of them offer ways to integrate exception-collecting
plugins within the client to be monitored, while others simply require the addition of
dependencies or libraries to the source code. When an unhandled exception occurs,
some contextual data is collected on the client and forwarded to a server (on the
premises or in the cloud), which stacks and categorizes the exceptions.

One of the most frequently adopted exception monitoring tools is Firebase, the
default crash report provided in the Google Play Store. Firebase sends crash reports to
developers, reporting a list of fatal crashes and the exceptions that caused them. Fur-
thermore, Firebase also allows tracking uncaught exceptions, even though this feature
requires instrumenting the code by adding a custom logger to the classes and sub-
stantially modifying all the source code.

One of the goals of our research is to improve the resolution of such problems
quickly and promptly by capturing also concealed problems related to exceptions in the
software, categorizing them, and solving the issues accordingly.

In Table 1, we present some of the most commonly adopted exception monitoring
tools on the market.

3 The Case Study

In this section, we report on our case study, which aimed at (1) understanding how to
manage and capture exceptions, and which exceptions need to be focused on in order to
solve most of the errors, and (2) at reducing the frequency of exceptions.

Table 1. The most common exception management tools

Tool Supported programming
language

Exception
categorization

Open
source

Link

OverOps Java, Scala, Closure,
.NET

Yes No www.overops.com

Airbrake All major ones Yes Yes http://airbrake.io
Sentry All major ones Yes Yes www.sentry.io
Rollbar All major ones Yes Yes www.rollbar.com
Raygun All major ones Yes Yes www.raygun.org
Honeybadger All major ones Yes Yes www.honeybadger.io
Stackhunter Java Yes No www.stackhunter.io
Bugsnag All major ones Yes Yes www.bugsnag.com
Exceptionless All major ones Yes Yes www.exceptionless.com
Firebase Android, iOS Yes No https://firebase.google.com

Prioritizing Corrective Maintenance Activities for Android Applications 135

http://www.overops.com
http://airbrake.io
http://www.sentry.io
http://www.rollbar.com
http://www.raygun.org
http://www.honeybadger.io
http://www.stackhunter.io
http://www.bugsnag.com
http://www.exceptionless.com
https://firebase.google.com

In the following sub-sections, we will present the study process we adopted: First,
we will describe the study goal as well as the questions and metrics to be collected;
then we will describe the design and the execution of the study; and finally, we will
present the results we obtained.

3.1 Study Goal, Questions and Metrics

According to our expectations, we formulated the goal of the case study according to
the GQM approach [16] as:

Analyze the unhandled exceptions
for the purpose of prioritizing them
with respect to their frequency
from the point of view of the end user
in the context of the SASABus application

Therefore, we formulated our research questions as follows and further derived the
relative metrics.

RQ1: Which are the most frequently recurring exceptions in our Android application?
In this RQ, we aim at identifying the most frequent exceptions in order to rank them
based on frequency. We expect to have a subset of frequent exceptions that generate
most of the errors.
M1: Total number of exceptions. This metric considers all the exceptions that

occurred in running apps.
M2: Number of unique exceptions.
M3: Number of occurrences of the same exception.
M4: Number of occurrences of the same exception from the same class.

As an example, consider the exceptions listed in Table 2. In this case, the total
number of exceptions (M1) is six. The number of unique exceptions M2 is three (E1, E2,
E3), and the number of occurrences of the same exception (M3) is three for E1, two for
E2, and one for E3. However, taking into account M4, we see that E1 was raised twice in
class C1 and once in class C2, while exception E2 was raised twice, both times in C1.

Table 2. Example of exceptions raised by an application

Date Exception Class

01/01/2017 08:00 E1 C1
01/01/2017 08:30 E1 C2
01/01/2017 09:00 E1 C1
02/01/2017 09:30 E2 C1
02/01/2017 10:30 E2 C1
02/01/2017 11:30 E3 C4

136 V. Lenarduzzi et al.

RQ2: Which and how many exception-related issues should be fixed in order to
reduce the number of exceptions by 70%?

With this RQ, we analyze the frequency of the exceptions and identify those
exceptions that need to be addressed in order to reduce their occurrence by 70%.
This RQ was required by the industrial partner, who seeks to reduce their number of
unhandled exceptions and to increase user satisfaction, as well as to reduce the number
of negative comments due to some unresponsive features caused by the exceptions.

As a consequence of RQ1, we expect to be able to solve 70% of the exceptions by
fixing only 20% of the issues.

As an example, considering the exceptions reported in Table 1, addressing
exception E1 in class C1 and E2 in class C2 would be more beneficial than solving E1
in C2 or E3 in C4.

RQ3: Which classes generate more exceptions?
This RQ aims at understanding whether some classes deserve more attention or need

to be refactored.
In our example, we can identify C1 as a class worth getting the developers’

attention.

3.2 The Analyzed Application

This case study is based on the analysis of the SASAbus Android application, available
on the Google Play Store3. The application has been downloaded by nearly 50 K users
and is currently used by more than 10 K users. The source code is also available as
Open Source4. The app was developed by SASAbus with the aim of providing bus
timetables, delays and locations of buses, and other travel-related information. The
software is developed with an agile process, and it migrating flawlessly from an ad-hoc
process to SCRUM from several years [13].

Figure 1 shows the SASAbus application on the Google Play Store.

3.3 Results

In order to answer to our research questions, we analyzed the SASAbus Android crash
reports from April 2013 to March 2017 (we chose this time range because the Google
Play Store does not save reports older than four years).

Before analyzing the individual result of each RQ, we confirmed the normality of
the exception distribution by means of the Shaphiro-Wilk test and analyzed the
descriptive statistics.

As for RQ1, the SASAbus application collected 1208 exceptions in four years, with
an average of 0.83 exceptions per day. Peaks in the number of exceptions per day were
reached during high season (e.g., Christmas and summer time), with a maximum of
eight exceptions per day.

3 SASAbus on the Google Play Store. https://play.google.com/store/apps/details?id=it.sasabz.android.
sasabus&hl=en.

4 SASAbus GitHub repository. https://github.com/SASAbus/SASAbus.

Prioritizing Corrective Maintenance Activities for Android Applications 137

https://play.google.com/store/apps/details?id=it.sasabz.android.sasabus&hl=en
https://play.google.com/store/apps/details?id=it.sasabz.android.sasabus&hl=en
https://github.com/SASAbus/SASAbus

Fig. 1. The SASAbus application on the Google Play Store

Table 3. Frequency of exceptions

Java exception Frequency %

java.lang.RuntimeException 433 35.8
java.lang.NullPointerException 212 17.5
java.lang.ClassCastException 124 10.3
java.lang.UnsupportedOperationException 106 8.8
java.lang.IllegalStateException 94 7.8
java.lang.ClassNotFoundException 57 4.7
android.view.WindowManager$BadTokenException 45 3.7
java.lang.IllegalAccessException 26 2.2
android.database.sqlite.SQLiteDatabaseCorruptException 23 1.9
java.lang.IndexOutOfBoundsException 23 1.9
java.lang.IllegalArgumentException 21 1.7
java.lang.InstantiationException 16 1.3
Native crash 8 0.7
java.lang.StringIndexOutOfBoundsException 7 0.6
android.database.sqlite.SQLiteException 4 0.3
java.lang.OutOfMemoryError 4 0.3
android.util.AndroidRuntimeException 3 0.2
java.io.IOException 1 0.1
java.lang.NoSuchMethodError 1 0.1
Total 1208

138 V. Lenarduzzi et al.

We identified 19 types of unique exceptions with different frequencies (Table 3).
Two exceptions were caught in more than 50% of the cases, namely “java.lang.Run-
timeException” and “java.lang.NullPointerException”, while other exceptions occurred
rarely.

Taking into account the classes that had more exceptions, we can see that 44.8% of
the exceptions were thrown by three Java classes (Table 4). However, the same
exceptions were often thrown by different classes.

The analysis of RQ2 and RQ3 led us to the identification of the exceptions that
should be addressed by the developers. As requested by SASAbus, our goal was to
identify the classes that generated 70% of the exceptions.

Table 5 reports the frequency of the exceptions per class, where the “Freq.” column
reports the number of times the exception was thrown by the class reported in the
column “Java Class”, while “Rel Freq.” reports how often an exception of the same
type was thrown by the selected class. For reasons of space, Table 5 only reports the

Table 4. Frequency of exceptions per class that raised more than 10 exceptions

Java class Frequency %

android.graphics.Bitmap 223 18.5
android.os.Looper 211 17.5
java.util.Collections$UnmodifiableCollection 106 8.8
it.sasabz.sasabus.ui.busstop.NextBusFragment$2 81 6.7
dalvik.system.BaseDexClassLoader 57 4.7
android.support.v4.app.Fragment 44 3.6
android.support.v4.app.FragmentManagerImpl 41 3.4
android.view.ViewRootImpl 33 2.7
it.sasabz.sasabus.opendata.client.model.BusStation 31 2.6
it.sasabz.sasabus.ui.busstop.NextBusFragment$1 31 2.6
it.sasabz.sasabus.ui.busstop.NextBusFragment$7 28 2.3
it.sasabz.android.sasabus.classes.adapter.MyWayListAdapter 27 2.2
java.lang.Class 26 2.2
android.database.sqlite.SQLiteConnection 23 1.9
android.support.v7.widget.RecyclerView$n 21 1.7
it.sasabz.sasabus.ui.busschedules.BusScheduleDetailsFragment 19 1.6
it.sasabz.sasabus.ui.busschedules.BusSchedulesFragment$4 17 1.4
it.sasabz.sasabus.ui.routing.SearchResultsFragment 17 1.4
it.sasabz.sasabus.ui.busstop.NextBusFragment$6 16 1.3
java.lang.reflect.Constructor 16 1.3
android.app.LoadedApk 13 1.1
android.view.ViewRoot 12 1
it.sasabz.android.sasabus.classes.services.CheckUpdate 11 0.9
it.sasabz.android.sasabus.fcm.a.e 10 0.8
org.mapsforge.map.reader.MapDatabase 10 0.8

Prioritizing Corrective Maintenance Activities for Android Applications 139

name of the class, omitting the package. Package names can be easily associated from
Table 4. As an example, “RuntimeException” was thrown 433 times, (222 times in
class “Bitmap.java” and 211 times in class “Looper.java”). Finally, column “Abs
Freq.” reports the impact of the exception over the total number of occurrences. For
instance, RuntimeException, thrown 222 times in the class Bitmap, accounted for 18%
of the 1208 exceptions.

Summing up, the first seven exceptions occurred in nearly 70% of the cases.
Furthermore, one method of the class “NextBusFragment” threw 124
“ClassCastExceptions” and 55 “NullPointerExceptions”. Hence, focusing corrective
maintenance on the first six classes of this table would fix the issues that generated 70%
of the exceptions.

4 Discussion

A first analysis of the source code forced us to consider the importance of adopting a
continuous exception monitoring system. In the last four years of this code’s evolution,
32 classes generated a total of 1208 exceptions, and just six of them threw nearly 70%
of the exceptions. Maintenance is an expensive task [4] and, considering the limited
resources available to SASAbus, they will now be able to focus their maintenance effort
especially on the most critical issues, solving the biggest number of issues with the
lowest possible effort.

Based on the results obtained, we manually inspected the source code of these six
classes and found interesting side results.

One of the main side results is that in most of the classes generating exceptions, we
identified code smells, a set of structural software characteristics that indicate code or
design problems that can make software hard to evolve and maintain [3].

Table 5. Frequency of exceptions per class. Package named is omitted for reasons of space.

Java classes Exception Freq. Rel
freq.

Abs.
freq.

Bitmap RuntimeException 222 51% 18%
Looper RuntimeException 211 49% 17%
NextBusFragment ClassCastException 124 100% 10%
Collections
$UnmodifiableCollection

UnsupportedOperationException 106 100% 9%

BaseDexClassLoader ClassNotFoundException 57 100% 5%
NextBusFragment NullPointerException 55 26% 5%
MyWayListAdapter NullPointerException 54 25% 4%
BusScheduleDetailsFragment NullPointerException 38 18% 3%
SearchResultsFragment NullPointerException 34 16% 3%
BusStation NullPointerException 31 15% 3%
Class IllegalAccessException 26 100% 2%
Constructor InstantiationException 16 100% 1%

140 V. Lenarduzzi et al.

Both of the classes that generated “RuntimeException” have a “Spaghetti Code”
structure, while the other classes were generally very complex or structured as a “Swiss
Army Knife”. Although this result is not statistically significant and was not obtained
with a rigorous method, we are planning to train SASAbus developers in code smells
and code quality practices to help them write cleaner code, which would be easier to
maintain in the future. However, the result can be already beneficial from the devel-
opment team, that could start to create a knowledge base of their development prac-
tices, reporting the bad practices that generated the exception. As example, we
recommended to start keeping track of the data with the Agile Experience Factory [5].

Based on the results provided by this work, SASAbus decided to adopt an
exception monitoring tool. Starting in May 2017, they began using Sentry because of
its open source license, which allows on-premise installations to collect the data, and
because of the ease of configuration, which requires only the addition of one depen-
dency library to the code base without the need to instrument the source code.

The results of this work contribute to understanding the importance of a continuous
exception monitoring approach.

As for threats to validity, in our work we prioritized the exceptions based on their
frequency, since they were all related to crash reports that caused the shutdown of the
application. A continuous monitoring approach that reports uncaught exceptions should
also be able to classify them, i.e., not only provide their frequency, but also relate them
to their severity. The results obtained are useful for SASAbus but not statistically
significant, since they were not obtained using a rigorous method. These results and the
approach we adopted can be validated in future studies, also applying defect prediction
techniques.

5 Conclusion

In this work, we presented an industrial case study aimed at understanding the most
frequent exceptions raised by an Android application adopted by more than 10 K users.

We analyzed the crash reports and the exceptions from the last four years, iden-
tifying seven types of exceptions that occurred in more than 70% of the cases.

A manual code inspection enabled us to understand that most of the exceptions
were generated by bad code practices, mainly code smells, which decrease the read-
ability, understandability, and maintainability of the code, hence causing bugs and
issues [7, 12].

The results of this work helped SASAbus to clearly understand where to focus their
corrective maintenance effort, working on the most frequent issues, as well as solving
most of the problems with the least effort possible. Before the analysis of their
exceptions, the application crashed nearly once a day because of uncaught exceptions,
and several users reported the unresponsive features on the Google Play Store, such as
unresponsive buttons or other exception-related issues. The results of the newly
installed continuous monitoring system will be visible in the near future, when
developers will be able to not only detect the most frequent exceptions, but also to
intervene based on the severity of the issue.

Prioritizing Corrective Maintenance Activities for Android Applications 141

The main lesson learned from this work is that, thanks to a continuous monitoring
tool and statistical analysis of the exceptions, companies can easily understand how to
better address part of the corrective maintenance effort.

A classic fault prediction approach based on code analysis, might have indicated
the high possibility of running into problems when delivering the app in a proactive
way. Therefore, we are planning to apply prediction models, both based on internal and
on external metrics, similar to these we already applied in [6, 9, 10, 14, 15] paired with
this approach.

We are currently working on analyzing change proneness in classes that generated
issues, including bugs and fixes manually reported by users and developers in the issue
tracker and not actually related to exceptions [12].

As described in our previous work [8, 11], future work will include the analysis of
static metrics and code smells of this application, as well as understanding possible
correlations between code smells and issues. Another future work will be the analysis
of comments and the relations between negative comments, crashes and exception, so
as to better address maintenance activities. Moreover, other approach for the automatic
discover of android crashes such as [20, 21, 22] could be adopted to better focus the
maintenance activities.

References

1. Krall, A., Probst, M.: Monitors and exceptions: how to implement Java efficiently. Concur.
Pract. Exp. 10(11–13), 837–850 (1998)

2. Turner, L.D., Owhoso, V.: Use ERP internal control exception reports to monitor and
improve controls. Manag. Account. Q. 10(3), 41–50 (2009)

3. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

4. Lenarduzzi, V., Sillitti, A., Taibi, D.: Analyzing forty years of software maintenance models.
In: International Conference on Software Engineering (ICSE 2017), Buenos Aires,
Argentina (2017)

5. Taibi, D., Lenarduzzi, V., Diebold, P., Lunesu, I.: Operationalizing the experience factory
for effort estimation in agile processes. In: International Conference on Evaluation and
Assessment in Software Engineering (EASE 2017), Karlskrona, Sweden, 15–16 June 2017.
http://doi.org/10.1145/3084226.3084240

6. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: Predicting OSS trustworthiness on the basis of
elementary code assessment. In: International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM 2010), Bolzano-Bozen, Italy, 16–17 September 2010. http://
doi.org/10.1145/1852786.1852834

7. Taibi, D., Janes, A., Lenarduzzi, V.: Towards a lean approach to reduce code smells
injection: an empirical study. In: Sharp, H., Hall, T. (eds.) XP 2016. LNBIP, vol. 251,
pp. 300–304. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33515-5_30

8. Lenarduzzi, V., Stan, A.C., Taibi, D., Tosi, D., Venters, G.: A dynamical quality model to
continuously monitor software maintenance. In: 11th European Conference on Information
Systems Management (ECISM 2017), Genoa, Italy, 14–15 September 2017

9. Tosi, D., Lavazza, L., Morasca, S., Taibi, D.: On the definition of dynamic software
measures. In: International Symposium on Empirical Software Engineering and Measure-
ment (ESEM 2012), pp. 39–48. ACM, New York (2012). http://doi.org/10.1145/2372251.
2372259

142 V. Lenarduzzi et al.

http://doi.org/10.1145/3084226.3084240
http://doi.org/10.1145/1852786.1852834
http://doi.org/10.1145/1852786.1852834
http://dx.doi.org/10.1007/978-3-319-33515-5_30
http://doi.org/10.1145/2372251.2372259
http://doi.org/10.1145/2372251.2372259

10. Taibi, D., Lavazza, L., Morasca, S., Tosi, D.: An empirical investigation of perceived
reliability of open source Java programs. In: Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC 2012), Riva del Garda, Italy, 26–30 March 2012.
http://doi.org/10.1145/2245276.2231951

11. Taibi, D., Janes, A., Lenarduzzi, V.: How developers perceive code smells and antipatterns
in source code: a replicated study. Inf. Softw. Technol. J. (IST) 92, 223–235 (2017). https://
doi.org/10.1016/j.infsof.2017.08.008

12. Janes, A., Lenarduzzi, V., Stan, A.C.: A continuous software quality monitoring approach
for small and medium enterprises. In: Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion (ICPE 2017 Companion), L’Aquila,
Italy (2017). http://doi.org/10.1145/3053600.3053618

13. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: Applying SCRUM in an OSS development
process: an empirical evaluation. In: Sillitti, A., Martin, A., Wang, X., Whitworth, E. (eds.)
XP 2010. LNBIP, vol. 48, pp. 147–159. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13054-0_11

14. Bianco, V.D., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: The QualiSPo approach to OSS
product quality evaluation. In: Proceedings of the 3rd International Workshop on Emerging
Trends in Free/Libre/Open Source Software Research and Development, pp. 23–28. ACM,
New York (2010). http://doi.org/10.1145/1833272.1833277

15. Morasca, S., Taibi, D., Tosi, D.: Towards certifying the testing process of open-source
software: new challenges or old methodologies? In: Proceedings of the 2009 ICSE
Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
Development, FLOSS 2009, pp. 25–30 (2009). http://doi.org/10.1109/FLOSS.2009.
5071356

16. Caldiera, G., Rombach, H.D., Basili, V.: Goal question metric approach. In: Encyclopedia of
Software Engineering, pp. 528–532. Wiley, New York (1994)

17. Java Oracle: Uncaught Exceptions Documentation. https://docs.oracle.com/javase/7/docs/
api/java/lang/Thread.UncaughtExceptionHandler.html. Accessed May 2017

18. Rooney, P.: Microsoft’s CEO: 80-20 Rule Applies To Bugs, Not Just Features. CRN News,
03 October 2002. http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-
applies-to-bugs-not-just-features.htm

19. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-fault
monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859–872 (2004)

20. Moran, K., Linares-Vásquez, M., Bernal-Cárdenas, C., Vendome, C., Poshyvanyk, D.:
Automatically discovering, reporting and reproducing android application crashes. In: 2016
IEEE International Conference on Software Testing, Verification and Validation (ICST).
IEEE (2016)

21. White, M., Linares-Vásquez, M., Johnson, P., Bernal-Cárdenas, C., Poshyvanyk, D.:
Generating reproducible and replayable bug reports from android application crashes. In:
2015 IEEE 23rd International Conference on Program Comprehension (ICPC). IEEE (2015)

22. Agarwal, S., Mahajan, R., Zheng, A., Bahl, V.: Diagnosing mobile applications in the wild.
In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks. ACM
(2010)

23. Kechagia, M., Spinellis, D.: Undocumented and unchecked: exceptions that spell trouble. In:
Proceedings of the 11th Working Conference on Mining Software Repositories. ACM
(2014)

24. Cinque, M., Cotroneo, D., Testa, A.: A logging framework for the on-line failure analysis of
android smart phones. In: Proceedings of the 1st European Workshop on AppRoaches to
MObiquiTous Resilience. ACM (2012)

Prioritizing Corrective Maintenance Activities for Android Applications 143

http://doi.org/10.1145/2245276.2231951
http://dx.doi.org/10.1016/j.infsof.2017.08.008
http://dx.doi.org/10.1016/j.infsof.2017.08.008
http://doi.org/10.1145/3053600.3053618
http://dx.doi.org/10.1007/978-3-642-13054-0_11
http://dx.doi.org/10.1007/978-3-642-13054-0_11
http://doi.org/10.1145/1833272.1833277
http://doi.org/10.1109/FLOSS.2009.5071356
http://doi.org/10.1109/FLOSS.2009.5071356
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.UncaughtExceptionHandler.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.UncaughtExceptionHandler.html
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm

Experimentation in Software
Engineering

Evaluation of an Integrated Tool Environment
for Experimentation in DSL Engineering

Florian Häser, Michael Felderer(B), and Ruth Breu

Department of Computer Science, University of Innsbruck, Innsbruck, Austria
{florian.haeser,michael.felderer,ruth.breu}@uibk.ac.at

Abstract. Domain specific languages (DSL) are a popular means for
providing customized solutions to a certain problem domain. So far,
however, language workbenches lack sufficient built-in features in pro-
viding decision support when it comes to language design and improve-
ment. Controlled experiments can provide data-driven decision support
for both, researchers and language engineers, for comparing different lan-
guages or language features. This paper provides an evaluation of an
integrated end-to-end tool environment for performing controlled exper-
iments in DSL engineering. The experimentation environment is pre-
sented by a running example from engineering domain specific languages
for acceptance testing. The tool is built on and integrated into the Meta
Programming System (MPS) language workbench. For each step of an
experiment the language engineer is supported by suitable DSLs and
tools all within the MPS platform. The evaluation, from the viewpoint
of the experiments subject, is based on the technology acceptance model
(TAM). Results reveal that the subjects found the DSL experimentation
environment intuitive and easy to use.

Keywords: Domain specific languages · DSL · Language engineering
Experimentation · Model-based software engineering
Meta Programming System · Empirical software engineering

1 Introduction

Domain specific languages (DSLs) are powerful languages used to build cus-
tomized solutions for certain problem domains. In model-driven software engi-
neering they are used because they provide less complexity and enable easier
communication with domain experts [1]. They are not only widely used in prac-
tice [2], but also well researched [3,4].

A recent comprehensive systematic mapping study on DSL engineering con-
ducted by Kosar et al. [4] revealed that within the DSL community, researchers
only rarely evaluate their languages. Although all steps of the language engi-
neering process are important, researchers mostly focus on the design and imple-
mentation, rather than domain analysis and maintenance. The mapping study
provides evidence which shows that DSLs are rarely validated by taking end-user
c© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 147–168, 2018.
https://doi.org/10.1007/978-3-319-71440-0_9

148 F. Häser et al.

feedback into account. Thus researchers assume that they developed a DSLs per-
fectly tailored for the domain. Similar results are provided by Carver et al. [5]
and Gabriel et al. [6].

The Meta Programming System (MPS) [7], an industry-ready language work-
bench, supports language engineers in the design and implementation phase. This
includes the definition of syntax, semantics and the creation of language specific
editors. Those editors bring remarkable benefit for the language user in defining
DSL constructs.

So far, language workbenches do not provide sufficient decision support when
it comes to domain analysis and language adaptation during maintenance. This
is, however, essential for successful language engineering. A language engineer
does not always know in advance, what effects a certain adaptation will have
to a DSL. For instance, he or she can not know in advance before doing some
experimentation if a certain adaptation makes a language really better with
respect to aspects such as creation time or resulting document length of the
scripts written in the adapted DSL.

Controlled experiments [8] allow to compare different DSL features and pro-
vide data-driven decision support for both language engineers and researchers.
In the last decade, the number of conducted experiments in the field of soft-
ware engineering increased. This significantly increased the body of knowledge
on limitations and benefits of software engineering methods and techniques [8].

As mentioned above, this is, however, not entirely true for the field of DSL
engineering, where experiments are still rare [4].

We assume that one major reason for this is the missing integrated tool sup-
port which enables especially language engineers in practice but also researchers
to conduct controlled experiments directly within a DSL workbench in a straight-
forward and methodologically sound way. Such an integrated end-to-end tool
environment also enables easy replication of experiments. This is the case because
with a (semi-)formal definition the experimental setting can automatically be
interchanged and reproduced.

Freire et al. [9] conducted a systematic literature review on automated sup-
port for controlled experiments. They discovered that there are already method-
ologies and tools available, which support parts or even the entire experimenta-
tion process. Those approaches, however, are not suitable for experiments with
DSLs. They often only provide a DSL to formulate experiments, which is a use-
ful input for us. DSL engineering is not performed on the web and its empirical
analysis includes not only questionnaires but also automatic measurements, as
only produced and collected in a real language workbench.

This paper contributes the empirical evaluation of an integrated tool environ-
ment for performing controlled experiments in DSL engineering. The integrated
tool environment itself has been presented already as tool paper at EASE’16
[10], where it received a best tool paper award, and is summarized in this paper
to provide the context for the presented empirical study. We are not proposing
yet another DSL suited for experimentation, instead we have integrated existing
DSLs and extended the DSL engineering environment MPS to cover language

Software Quality Assurance During Implementation 149

experimentation and to support the maintenance phase of the language engi-
neering process.

MPS supports a mixed notation which includes textual, tabular and graphi-
cal representation of concepts. Our environment supports the language engineer
with DSL design (the experimental object in our case) and all other phases of
controlled experiments. This includes planning, operation, analysis & interpreta-
tion, and presentation & package. We based our platform on already established
DSLs and tools which have been all integrated into MPS.

For the planning of experiments we base our work on the established DSL
ExpDSL [11]. The language is used to formulate goals and hypotheses. For sta-
tistical methods metaR [12] is reused to simplify the application of complex
R-functions for non-experts like most language engineers. The experiment oper-
ation is backed up by a MPS extension able to monitor and collect metrics like
creation time or document length. For performing the analysis & interpretation
phase, R output is displayed in the MPS editor and raw data can be exported
as comma separated values (CSV). Finally, for presentation & package a DSL
for LaTeX is applied [13]. The integration of several DSLs and representation is
enabled by the projectional editors of MPS. They allow the mixture of languages
and alternative representations of data, such as plots. Everything together can
be displayed within one single document (see Fig. 4). The full integration enables
researchers and practitioners to conduct controlled experiments in an easy way.
All without media breaks and with different levels of rigor.

Fig. 1. Integrated DSL experiment environment architecture [10]

The remainder of this paper is organized as follows. Section 2 gives a rough
overview on related approaches. Section 3 presents an example experiment to
demonstrate DSL experimentation in the domain of acceptance testing of web
applications. The example is used as a running example in order to explain the
environment. Section 4 provides an overview of the architecture, the underlying

150 F. Häser et al.

workflow and the tool implementation of the integrated experimentation envi-
ronment for DSL engineering. Sections 3 and 4 are based on a previous tool paper
[10] presented at EASE’16. For better understandability the case from Sect. 3 is
applied to the steps on conducting a controlled experiment. Section 5 presents a
qualitative evaluation of the experiment platform. Finally, Sect. 6 concludes the
paper and presents future work and visions for the tool environment.

2 Related Work

In this section we present related work with regard to evaluation of DSLs and
experimentation environments for software engineering artifacts.

As already mentioned in the previous section Kosar et al. [4] did a compre-
hensive literature review on the DSL engineering research field. They empirically
discovered that researchers are not evaluating their languages. There may be var-
ious reasons for that issue, among them missing tool support. Some recent pub-
lications provide frameworks and tools for evaluating languages before and after
launching them. Barîsić et al. [14] have elaborated a usability evaluation frame-
work for DSLs. In the framework they propose the use of controlled experiments
for evaluating languages. Izquierdo et al. [15] also propose that the involvement
of the real end-user is essential for building and evaluating DSLs.

Tairas and Cabot [16] on the contrary presented a post-hoc evaluation analy-
sis methodology. The DSL is analyzed after launching it based on its actual usage.
It gives the language engineer insights on language artifacts that need improve-
ment. Even though they have evaluated their approach results do not indicated
if updates to the language based on the analysis also improve the language prior
introducing it. We think that such an analysis cannot replace the involvement of
a real user, but it is useful to identify language concepts that need improvement.

Freire et al. [9] conducted a systematic review on tool support for planning
and conducting controlled experiments in general. They found that tool support
is mainly limited to the planning phase. The experimenter is often supported by
some sort of DSL or ontology for defining an experiment. Support means either
textual as presented by Garcia et al. [17] and Siy and Wu [18] or graphically
as of Cartaxo et al. [19]. The textual ontologies allow the formal definition of
experiments and checking constraints regarding the validity of such.

Freire et al. [20] proposed the first integrated environment supporting all
required steps of an experiment, i.e., planning, execution and interpretation.
This was done by developing the ExpDSL approach.

Additionally expressibility and completeness was empirically evaluated [11]
in various case studies.

Efforts in developing experiment environments have been taken by various
researchers. Mostly they differ for their application domains.

In the domain of high-performance computing a set of integrated tools
for supporting experiments have been developed by Hochstein et al. [21]. The
‘Experiment Manager Framework’ is supporting almost all experiment related

Software Quality Assurance During Implementation 151

activities but also has some limitations. Especially the adaptation to a differ-
ent domain such as DSL engineering is difficult. For example the built-in auto-
mated data capturing and its analysis have been developed for high performance
computing source code. Other limitations are regarding the lacking support for
extending the platform with new statistical design types, as this is not possible
easily.

Sjøberg et al. [22] developed SESE (Simula Experiment Support Environ-
ment), a web based experiment environment. Subjects are guided through the
experiment with assignments. For each assignment the time to spend it, is mea-
sured. Additional material can be distributed centrally and the framework allows
the centralized collection of results and generated artifacts such as source code.
The solution is applicable in many different domains introduces, however, lots of
media breaks, as subjects have to switch between applications and tools. As of
now, automated metric capturing for language related aspects are not realizable
in a web based tool. Thus, using SESE for language related experiments is not
optimal.

Because of the limitations with existing approaches and the possibilities on
operating within the very same language workbench a language is developed, we
have decided to provide an integrated tool environment for DSL experimentation.
Instead of reinventing everything, we reused different tested languages and tools.
Planning an experiment is done with ExpDSL as introduced above. It forms the
base template for our tool chain. ExpDSL differs from a technological point of
view, as it is based on Xtext. Our environment bases on MPS.

Our DSL experimentation environment is the first one that supports all
phases of experimentation in DSL engineering in one integrated environment.
As mentioned before, we presented the integrated tool environment itself, which
is evaluated in this paper, already in a previous publication [10]. In addition,
in [23] we used the DSL engineering environment to evaluate whether support for
business domain concepts is beneficial for DSLs to specify acceptance test cases.
In this paper, we provide an evaluation of our integrated DSL experimentation
environment based on the technology acceptance model.

3 Running Example Description

With the aid of the integrated tool environment we have performed a DSL exper-
iment for comparing two similar testing languages for acceptance testing of web
applications.

The experiment was realized with 22 graduate computer science students in
the context of an exercise during a lecture. Especially, for acceptance testing,
students are well suited as experimental subjects if a domain familiar to the
students is chosen, because then the experiment setting with student participants
is similar to the situation of acceptance testing in industry, where it is common
to have acceptance tests executed by test personnel with domain knowledge,
but only little experience in systematic testing, which is normally the case for
students [24]. The domains for defining acceptance tests were therefore selected

152 F. Häser et al.

to be familiar to students, i.e., printing of a signed certificate of studies as well
as performing a simple task on the used teaching platform.

An important requirement for the adaptation of a test language is that the
time for defining a certain test case is not significantly higher after the adapta-
tion. In reality time can be influenced by many factors such as usability issues
or understanding problems. Therefore, such a metric should always be triangu-
lated with other results, e.g., from questions of an accompanying questionnaire.
Nevertheless, the analysis of creation time is well suited for describing the tool
environment.

In the real experiment we have also analyzed various other metrics and fac-
tors, among them perceived quality of the created test cases.

Listing 1 shows a part of a test case written with the simple DSL (DSL1).
It only consists of two predefined keywords, the step keyword, denoted with “-”,
and the check keyword.

Listing 1. Example for the simplified test language

Test Case Specification : Pa r t i c i p a t e to student
seminar

− open a browser
− check whether i t has s t a r t ed s u c c e s s f u l l y
− v i s i t http ://www. uibk . ac . at
− check i f the s i t e has been loaded
− c l i c k on the Link named OLAT
. . .

Figure 2 shows a test case with the extended DSL (DSL2), in a screenshot
taken during the conduction of the experiment.

Fig. 2. Example for the enriched test language [10]

Both languages are suitable for writing acceptance tests for web applications.
DSL1 allows the user freedom in writing test cases. It may represent a language
introduced in a company for providing initial tool support in writing acceptance
tests. The second language, i.e., DSL2, is enriched with extensions from the

Software Quality Assurance During Implementation 153

actual application domain. It could potentially allow faster definition of test
cases compared to DSL1, but without empirical evidence the language engineer
is not sure about that. DSL2 may represent an evolution of DSL1 for improving
tool support in the creation of acceptance test cases.

Although the problem sounds simple and one could intuitively argue that
using a language bound to the business domain will for sure allow a user to
create faster results than without, this has not to be the case. Language users
may feel restricted or confused by certain language concepts, because they are
named different than expected. The conduction of a simple experiment can reveal
issues with a language before introducing it by giving the language engineer data-
driven decision support.

4 Integrated DSL Experimentation Environment

The architecture of the integrated tool environment is outlined in this section
together with a short introduction of the methodology. Each experiment step
is described with the aid of the example experiment case as presented above.
The architecture and the methodology are closely aligned with the steps on
planning and executing a controlled experiment as proposed by Wohlin et al. [8].
Those steps (see Fig. 3) are planning, operation, analysis & interpretation, and
presentation & package.

Figure 1 shows an overview on the integrated environment. It consists of three
major parts, for planning, conduction and analysis. Each part is supported by
specific languages and tools. All accessible from within the language workbench.

The planning phase is supported by reusing the experiment definition lan-
guage (ExpDSL) developed by Freire et al. [11]. ExpDSL was empirically eval-
uated in 18 experiments. In its second revision the DSL supports almost the
entire experiment stack. MetaR, developed by Campagne [12] simplifies data
analysis with R and makes it accessible for people that have limited experience
in statistics. This might be the case for some language engineers.

In order to collect metrics during the experiment an extension to the MPS
platform has been implemented. It supports the experiment operation phase in
various aspects and can be configured within the language workbench.

Packaging and reporting is supported by applying the DSL for LaTeX as
provided by Völter [13]. It can be used to automatically create reports and pre-
filled LaTeX paper templates, which include R-plots and raw data from which
one can generate PDF reports.

4.1 Methodology

In this section each supported experimentation phase is described and exempli-
fied based on the sample experiment as introduced in Sect. 3. The methodology
follows the procedure as shown in Fig. 3.

154 F. Häser et al.

Experiment Planning

Variable Selection

Choice of Design Type

Experiment Operation

Execution

Analysis & Interpretation

Descriptive Statistics

Hypothesis Testing

Presentation & Package

Experiment Report

0,0

0,5

1,0

1,5

2,0

2,5

3,0

ExpDSL

metaR

MPS Plugin

R

LaTeX

1)

2)

3)

4)

Experiment Step MPS Support

Fig. 3. Supported steps of a controlled experiment [10]

Experiment Planning. For this phase we have reused ExpDSL [11] a DSL
for formulating all relevant aspects of an experiment in a precise way. It allows
the researcher or language engineer formulating experiment goals, hypotheses,
choose a statistical method and to specify dependent and independent variables
as well as metrics in a sound way. The base language was extended with features
that are based on metaR [12]. Additionally, we have introduced a mapping of
certain variables to concrete data, which is collected automatically during the
operation phase. This allows an automated generation of certain plots and to
automatically test some of the hypotheses.

As shown in the example, some information, e.g., the abstract, is needed for
generating the final report.

In practice, a language engineer may only be interested in some basic results
of an experiment with lack of full rigor. The basic results are sometimes enough
to provide sufficient decision support. Because of that and due to the space

Software Quality Assurance During Implementation 155

limitation we omit details of the complete statistical analysis like power analysis,
which are for sure also possible, in the sample experiment description.

The basic example case describes the goals and hypotheses (see Listing 2)
together with its alternative. Additionally, Fig. 4 sketches the related hypothesis
tests and box plots. In the DSL relevant keywords are highlighted, e.g., ‘Goals’
or ‘Hypotheses’. Additionally the goal question metric template has been imple-
mented [25]. The actual experiment design formulation is a major aspect for the
experiment conduction. One not only has to specify statistical methods, but also
select variables and their corresponding metrics.

Listing 2. Example goals and hypotheses

Abstract This paper presents a controlled experiment. . .
Goals
G1: Analyze the efficiency of similar test DSLs
for the purpose of evaluation
with respect to creation time
from the point of view of a DSL user
in the context of graduate students using
assisting editors for test case creation.
Hypotheses
H0 : The time to create tests with both DSLs is equal
H1 : The time to create tests differs significantly

Some of the metrics can directly be linked to some of the predefined mea-
sures. Such a measure could be for instance the document length, the creation
time or also the number of deletions within one language concept. This is enabled
because the experiment platform is fully integrated to the actual language work-
bench.

It is important to mention that as of now, the prototype only supports ‘single
factor two level’ experiment designs. For the upcoming milestone we planned to
allow other design types and additional automated language related measure-
ments.

Experiment Operation. In the operation phase, the very same language work-
bench, used to develop the language and for planning the experiment can be used
to conduct the experiment. Basically it has two operation modes, either slave or
master (see Fig. 1).

After starting an experiment, test subjects request their assignment from
the master instance. While solving the assignment, each client instance collects
empirical evidence and sends them back to the master at the end of the experi-
ment. For instance in our case the clients are used by the subjects for creating
test cases with either DSL1 or DSL2. Among them time measurements, number
of deletions and edits.

For supporting the operation phase and enabling the automated collection of
data, we have developed an extension plug-in to the MPS language workbench.
Each variable as defined in the planning phase is linked to a certain trigger. Start

156 F. Häser et al.

and stop buttons for measuring time in an ongoing task is for example one of
those triggers.

The master instance (see Fig. 1) knows the formal experiment description is
responsible for distributing assignments and collecting all results. After finishing
the experiment, the execution of previously specified statistical analysis proce-
dures is started and a preliminary report is shown. As shown in Fig. 4 it is a
modifiable report, which can be adapted to the needs of the language engineer.

Analysis and Interpretation. The analysis & interpretation phase deals with
evaluating the hypothesis given collected data. In our case for instance, after
performing a normality test, a t-test can be applied in order to verify if the time
to create test cases differs significantly.

Fig. 4. Editor within the language workbench with instant preview [10]

Figure 4 shows an example output, that has been generated during the exe-
cution of the example experiment as introduced in Sect. 3.

During the analysis one could discover interesting insights. The ability to
adapt the analysis on the fly, all assisted by the tool is one of the benefits of
having an integrated tool environment.

Figure 4 shows a box plot comparing the creation times of a certain test case
for DSL1 and DSL2 respectively.

The box-plot already indicates, that the creation time is smaller for DSL2.
For being absolutely sure and verify the significance, one needs to perform further

Software Quality Assurance During Implementation 157

statistical analysis. After performing a normality test, a t-test can be executed.
Figure 4 shows the editor right in the moment of the definition of the test. The
platform is a very initial prototype supporting a small set of statistical methods.
Thus, for detailed analysis there is the possibility to export the raw data as
comma separated values (CSV) file. RStudio [26] or RapidMiner [27] allow the
import of such data for further analysis.

While using the experiment platform in a real experiment situation, with
automated collection of language related metrics, which is important for DSL
experimentation, we discovered that there is also a strong need for supporting
questionnaires and analysis support.

Questionnaires are not supported as of now, but listed as a top priority
feature for the upcoming release.

Presentation & Package. The final phase of the experimentation process is
the creation of the report according to to experiment definition. By now the
tool environment is able to automatically generate a simple PDF report with
information in an easy to read way. Reports are generated from LaTeX tem-
plates which base on the recommendations of Wohlin et al. [8]. They contain
all relevant information of the experiment. We are aware that this phase con-
sists of more than just a PDF report. Collected data, both raw and generated
through analysis, should be included as well as experiment protocols. Until now
the prototype is only able to export raw data.

5 Evaluation of the Platform

The integrated experiment platform was used and evaluated in concrete DSL
experiments as described in the previous section. In this section we provide an
overview of the design of the case study which accompanied the DSL exper-
iments. In the design and reporting of this case study, we follow the recom-
mended guidelines for conducting and reporting case study research in software
engineering by Runeson et al. [28].

As already mentioned above we have used the experiment platform for con-
ducting a real DSL experiment. We have found significant differences between
two different versions of a language. The actual implementation of the exper-
iment, with the dedicated platform, did not produce any unconsidered issues.
The success of the experiment shows already that the tool is useful and suitable
for DSL experiments from the viewpoint of a language engineer, as it provides
data-driven and evidence-based decision support. Experiments, however, also
rely a lot on the commitment of subjects. If they do not find the tool useful, it
may bias the outcome and success of the DSL experiment. Therefore we decided
to further evaluate the platform from the experiments subject point of view.

The evaluation itself was inspired by the Technology Acceptance Model
(TAM) [29]. TAM is a convenient theory used to explain whether, and how,
users come to accept new technologies. Basically, it is used to measure the two
metrics perceived usefulness and ease of use. Perceived usefulness is defined as

158 F. Häser et al.

[29] “the degree to which a person believes that using a particular system would
enhance his or her job performance”. Perceived ease of use is described as [29]
“the degree to which a person believes that using a particular system would be
free of effort”.

The subjects of the experiment platform are not going to use the system
in their daily job, therefore above mentioned initial definitions are not entirely
true for the sake of our evaluation. However both, usefulness and ease of use,
as perceived by subjects, can influence the result of an actual DSL experiment.
In order to mitigate that risk and keep the bias for the DSL experiment low we
have designed the case study as follows.

5.1 Evaluation Design

Based on the goal, question, metric (GQM) template [8,30], we can formulate
the goal of this experiment as follows:

In this case study, we investigate whether the domain specific language exper-
iment platform is useful and easy to use with respect to perceived usefulness and
perceived ease of use.

Research Questions. From the above formulated GQM template we have
identified the following research questions:

– RQ1: Is the integrated tool environment useful for creating test case specifi-
cations (perceived usefulness)?

– RQ2: Is the integrated tool environment easy and intuitive (perceived ease
of use)?

Case and Subject Selection. We have developed the experimentation plat-
form for DSL engineering in order to conduct an experiment, in which we com-
pared two different DSLs with respect to various aspects, such as creation time
or document length. As part of the DSL experiment, we distributed a question-
naire to the subjects consisting of both quantitative and qualitative questions.
Each of the experiment participants was therefore not only a subject in the
DSL experiment, but also in this evaluation. Intentionally, the subjects have not
been trained before. They only followed a five minute tutorial, where the basic
commands of the language editor were demonstrated.

Data Collection Procedure. For the data collection procedure, we prepared
a questionnaire that was distributed to the experiment subjects after completing
the DSL experiment. There was no time limit for filling out the questionnaire.
The questionnaire was filled out on paper and collected at the end of the exper-
iment.

Software Quality Assurance During Implementation 159

Analysis Procedure. The analysis was performed by two researchers with a
mix of qualitative and quantitative methods.

In order to answer both research questions based on answers of the question-
naire, the following concepts have been evaluated as perceived by the experiment
subjects. To guarantee that each subject has the same understanding of those
concepts, each of them was explained shortly as follows:

To answer RQ1 on perceived usefulness, we based our questionnaire on the
work of Davis [31], which elaborated a set of questions, that allow the quantifi-
cation of perceived usefulness. As already mentioned above perceived usefulness,
as originally defined, does not directly apply in our context. Subjects are not
going to use the system or tool as part of their daily work. Therefore, we have
selected and adapted the questions accordingly (see below). Note that we have
not included all TAM related questions. The evaluation is only inspired by TAM.

For answering RQ2 on the perceived ease of use, we based our questionnaire
on the System Usability Scale as worked out by Brooke [32]. Again we did not
use the entire catalog of questions to keep this side experiment manageable.
Similarly to the questions for RQ1, we only did selected those, we thought were
relevant for evaluating the ease of use, of the experiment platform.

We are aware, that those adaptation make a comparison to similarly evalu-
ated technology difficult. The resulting trend, however, gives a good indication
of both perceived usefulness and ease of use.

– RQ1. Perceived usefulness
– Support: Did you feel supported, compared to performing the task in a

text editor?
– Benefit: Did you get beneficial support while performing the experiment?
– Responsiveness: Did you have to wait a lot for the tool, while using it?
– Restrictiveness: Did you feel restricted by the tool during the experi-

ment?
– RQ2. Perceived ease of use

– Intuition: How quickly do you think other computer scientists need to
learn to use this tool?

– Usability: Was the tool in general easy to use?

In the questionnaire, subjects were able to rate above introduced concepts on
a four-point Likert-Scale ranging from “Strongly agree” (1) to “Not at all” (4).

For triangulating results from the quantitative evaluation and to get a
broader view and understanding on the usability of the experiment platform,
we provided a set of open questions. The questions are very general, allowing a
lot of freedom and creativity in answering them.

– What did you like about the experiment platform?
– What did you not like about the experiment platform?
– Do you have any suggestions for improvements for the tool?

Answers to those questions have been examined together by two of the
authors and after then analyzed using the open coding technique as of Glaser
and Strauss [33]. The results to this analysis are presented in Sect. 5.2.

160 F. Häser et al.

Validity Procedure. Following the guidelines of Runeson et al. [28], the threats
to validity of the evaluation have been analyzed according to construct, inter-
nal and external validity. In addition, the reliability of the evaluation was also
considered. For each type of validity, we have prepared countermeasures. Coun-
termeasures for each validity type are described in detail in Sect. 5.3.

5.2 Results and Discussion

This section presents the results of the evaluation grouped according to the two
research questions as introduced in Sect. 5.1. The questions are addressing the
perceived usefulness (RQ1) and the perceived ease of use (RQ2). For each of the
two research questions, the results are summarized and interpreted. Extreme
deviations are discussed in detail.

A total of 22 responses have been collected. As part of the validity procedure
and for finding correlations, we have included questions about prior testing expe-
rience and DSLs in the questionnaire. Similar to the other quantitative questions
subject had to choose from a four-point Likert-Scale. Figure 5 shows the basic
statistics on the responses of those questions.

Fig. 5. Prior experience on testing and DSLs

Perceived Usefulness (RQ1). Figure 6 shows the results for the perceived
usefulness criteria in form of a violin plot, which is a combination of box plot
and density chart.

Software Quality Assurance During Implementation 161

Subjects were able to answer the questions, as presented in Sect. 5.1, to pre-
defined answers based on a Likert-scale ranging from “Strongly agree” (1) to “Not
at all” (4).

For all criteria, the standard deviation was below or around 1, which is an
indicator for meaningful results.

The two criteria “Beneficing” and “Restrictiveness” have been perceived as
minimal useful. For the latter, this is a desired result, as we wanted the platform
support to be as minimalistic as possible. This is good, for keeping variables that
are not under the experimenters’ control, low.

Initially, we had no explanation for the bad results for the criteria “Ben-
eficing”, however, triangulation with open coding revealed the cause. Subjects
felt well-supported in the beginning of the experiment, however, they wished,
for example to dynamically introduce new language concepts during the exper-
iment. This was definitely out of scope of the experiment, and not intended at
all by the experimenters.

The responsiveness of the tool was considered good.
“Support” by the experiment platform, compared to performing the exact

same experiment with a regular text editor was evaluated on average as very
good. These results indicate, that the participating subjects see the usefulness
of the platform, leading to a high perceived usefulness in general.

Perceived Ease of Use (RQ2). The results from the questions as of RQ2 are
represented in Fig. 7. Both criteria show that the use of the experiment platform
was both intuitive and also easy to use, resulting in a high overall ease of use.

Similarly to the results of RQ1, the standard deviation is very low, in this
case for both around 0.6. This indicates meaningful and representative results.
Triangulation with open coding as presented later in this section, endorses the
results.

Having a good ease of use reduces the learning phase during a DSL exper-
iment and may lower the bias produced by it. In addition, as a great majority
of the participating subjects found the environment easy to use, metrics such
as time are more accurate and representing the actual time of solving a task,
including only little overhead produced by the learning of how to use the tool.

For analyzing the results of the open questions and triangulating the to the
quantitative ones, we used the open coding technique as proposed by Glaser and
Strauss [33]. Open coding is a repetitive process, in which data is interpretively
broken down analytically and assigned to codes. The codes do not belong to
any existing theory, they are just based on the actual meaning of the underlying
data. This technique is used to get new insights by interpreting phenomena as
reflected in data in a non-standard way.

In the following, the open codes, its properties and examples of the partici-
pants’ exact words are presented for each question as described in Sect. 5.1.

For the question “What did you like about the experiment platform?” we
have created the following open codes:

162 F. Häser et al.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Fig. 6. Results for perceived usefulness criteria

Complexity reducing:

– Even though there were many steps, it was easy to do
– Process is very simple
– Enforces clear structure with a restricted syntax
– The tool provides a good structure, however, it is restrictive

No preliminary knowledge needed:

– Every DSL user should be able to perform the task
– No need to learn the language first
– You only need to know the CRTL+Space shortcut
– Non-computer scientists can learn quickly the tool
– This can be used by a non computer science person as well

Software Quality Assurance During Implementation 163

1.
0

1.
5

2.
0

2.
5

3.
0

1.
0

1.
5

2.
0

2.
5

3.
0

Fig. 7. Results for perceived ease of use criteria

Simple user interface:

– Simple & easy
– Each step is performed in a simple way
– Intuitive user interface
– Easy to understand

Intuitive usage:

– Straight forward
– The tool is easy to understand and to use
– Each step was intuitive
– Auto-completion feature supports intuitive usage

Quick tool:

– Quickly and easy to write steps
– Fast fluid work-flow

As one can immediately see, results from the open coding coincide with the
results of the quantitative analysis. Subjects find the tool very intuitive and
easy to use. One additional interesting result, which was not explicitly part of
the quantitative analysis, is whether a subject needs some preliminary knowledge
prior to performing the experiment task. Open coding revealed that the partic-
ipants like the intuitive usage and stated that even non-computer scientists can
use the tool without learning it before.

Results from the quantitative analysis indicate that the subjects felt
restricted by the tool, performing the task. Open coding mitigates that fact.
By being restrictive the tool enforces a good and clear structure and reduces the
complexity of the outcome.

164 F. Häser et al.

The answers for the questions “What did you not like about the experiment
platform?” and “Do you have any suggestions for improvements for the tool?”
only produced one code:

Missing feature:

– Copy&Paste not working
– “Ctrl+Backspace” not working
– No syntax highlighting for some keywords
– Some predefined commands were incomplete

Subjects mainly complained about missing features they know from other
tools, or basic features such as copy and paste. This affects the expected per-
ceived usefulness and has to be considered in future releases. In addition, partici-
pants did not like that only a small subset of the domain was implemented. Even
though that was intended by the experimenter, this also negatively influences
the perceived usefulness.

5.3 Threats to Validity

This section presents the threats to validity for our results together with the
countermeasures that have been applied to mitigate those threats. As proposed
by Runeson et al. [28], they are divided into construct validity, reliability, internal
validity and external validity.

Construct validity addresses whether the study really represents answers to
the research questions and whether it is consistent with the underlying intention.
We wanted to analyze if subjects find the experiment platform easy to use and
also useful. Those questions have not only been asked directly, i.e., “Was the tool,
in general easy to use?” but were triangulated by additional indirect questions
for which open coding was applied to analyze them.

Reliability addresses if the collected and analyzed data can be reproduced by
others coming to the same results. It is a well-known threat to all data-centric
studies. Results from the open coding analysis technique are of course highly
depended on the background and perception of the researcher that are willing to
reproduce the evaluation. A counteraction to this fact was that two of the authors
did the open coding on their own. After then the results have been compared. We
did not find any crucial differences during the comparison, which suggests, that
others may come to the same results. In addition, we did prepare a personality
test based on the Big Five [34]. It consisted of five questions all related to the
conscientiousness. As a result of the test, which was very positive on average, we
can ensure the validity of both the qualitative and the quantitative questions.
For further increasing the validity, the test was provided in the mother tongue
of the subjects, in order to minimize understanding issues.

Internal validity concerns that an observation between treatment and out-
come is causal and not as desired a result of factors that are not under the

Software Quality Assurance During Implementation 165

experimenters control. We have considered that information exchange among
participants may threaten the internal validity. Therefore we have communi-
cated, that the participants had to work on their own without communicating
to other participants in order to mitigate this threat.

External validity is concerned with the fact to what extent it may be possible
to generalize the findings. It is a known issue with student experiments that
they may threaten the external validity. According to Tichy [35] there are four
situations that allow the use of students as subject: (1) if they are well trained
for performing the task they are supposed to fulfill, (2) when comparing different
methods, the trend of the difference is to be expected to be comparable to that
of professionals, (3) in order to eliminate hypotheses, for example if a student
experiment reveals no effect on an observable, it this is also very likely to have the
same outcome with professionals, or (4) as a prerequisite for experiments with
professionals. For the context of our evaluation situations 1–3 apply. This makes
it very likely that the subject selection does not influence the external validity.
The results can therefore to a reasonable extent be interpreted in a similar way
to those of a comparable study performed in an industrial setting. For further
lowering the external validity we may have to replicate the evaluation. We think
that because of the advantages of projectional over textual editors it may be
difficult to generalize those findings also to other language workbenches such as
Xtext.

6 Conclusion

This paper presented a fully integrated tool environment for experimentation
in DSL engineering based on the Meta Programming System (MPS) language
workbench. All steps of experimentation, i.e., planning, operation, analysis &
interpretation and presentation & packaging, are supported within the very
same environment. Each step is supported by a specialized DSL implemented
in MPS or by an MPS extensions, e.g., for automated metrics collection. A lan-
guage engineer or a researcher is supported in performing experiments on DSLs
by providing immediate, evidence-based decision support. The environment is
demonstrated with a running example, where two DSLs for acceptance testing
of web applications are evaluated with respect to test case creation time. The
example shows the practical application of the integrated environment. To the
best of our knowledge our approach is the first one providing end-to-end support
for experiments in DSL engineering within a single integrated tool environment.

The application of the platform in a real DSL experiment, revealed interesting
significant differences between two languages used for testing web applications.
This actual application shows already the usefulness from the viewpoint of an
experimenter, therefore we decided to empirically evaluate it from the viewpoint
of experiment subjects. This not only because the commitment of subjects is
essential for experiments. If the tool has a good perceived usefulness and ease of
use we can expect a low bias created in learning how to use the tool.

166 F. Häser et al.

Based on our initial findings we can say that the subjects had, in general,
no problems with using the experiment platform in a real DSL experimentation
situation. This is not only true for subjects, that had prior experience with DSLs
in general or tools such as Xtext or MPS, but also for unexperienced participants.
Results from the qualitatively evaluated questions, with open coding analysis,
substantiate those finding. Both ease of use and usefulness are showing a positive
trend, which may indicate, that the experimentation platform has only little
influence on the result of the DSL experiment. However, this finding has to
be further evaluated empirically, for instance by conducting case studies and
interviews with DSL engineers or other users of our experimentation platform.

We already planned the extension of our tool by integrating the entire fea-
ture set as described in ExpDSL. This includes for example the definition and
execution of questionnaires. Additionally, one important lesson we have learned
during the conduction of the real experiment as described in this paper is the fact
that the automatically collected metrics need to be triangulated with qualita-
tive analysis. Open and closed coding analysis appeared to be a suitable analysis
method for that issue, thus we plan to implement support for it in the upcoming
release. Furthermore, we also plan to conduct an experiment in an industrial
setting for improving the tool environment and for evaluating it from the per-
spective of professionals.

Acknowledgment. This research was partially funded by the research project MOB-
STECO (FWF P26194).

References

1. Fowler, M.: Domain-Specific Languages. Addison-Wesley Signature Series (Fowler).
Pearson Education, London (2010)

2. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,
Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages (2013). dslbook.org

3. Dias-Neto, A.C., Travassos, G.H.: Model-based testing approaches selection for
software projects. Inf. Softw. Technol. 51(11), 1487–1504 (2009)

4. Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: a systematic mapping
study. Inf. Softw. Technol. 71, 77–91 (2016)

5. Carver, J.C., Syriani, E., Gray, J.: Assessing the frequency of empirical evaluation
in software modeling research. In: EESSMod (2011)

6. Gabriel, P., Goulao, M., Amaral, V.: Do software languages engineers evaluate
their languages? arXiv preprint arXiv:1109.6794 (2011)

7. JetBrains Team: MPS: Meta Programming System. Jetbrains (2015)
8. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-

mentation in Software Engineering. Springer Science & Business Media, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29044-2

9. Freire, M.A., da Costa, D.A., Neto, E.C., Medeiros, T., Kulesza, U., Aranha, E.,
Soares, S.: Automated support for controlled experiments in software engineering: a
systematic review. In: The 25th International Conference on Software Engineering
and Knowledge Engineering, Boston, MA, USA, 27–29 June 2013, pp. 504–509
(2013)

http://dslbook.org
http://arxiv.org/abs/1109.6794
https://doi.org/10.1007/978-3-642-29044-2

Software Quality Assurance During Implementation 167

10. Häser, F., Felderer, M., Breu, R.: An integrated tool environment for experimen-
tation in domain specific language engineering. In: Proceedings of the 20th Inter-
national Conference on Evaluation and Assessment in Software Engineering, p. 20.
ACM (2016)

11. Freire, M., Kulesza, U., Aranha, E., Nery, G., Costa, D., Jedlitschka, A., Campos,
E., Acuña, S.T., Gómez, M.N.: Assessing and evolving a domain specific language
for formalizing software engineering experiments: an empirical study. Int. J. Softw.
Eng. Knowl. Eng. 24(10), 1509–1531 (2014)

12. Campagne, F.: MetaR: a DSL for statistical analysis. Campagne Laboratory (2015)
13. Völter, M.: Preliminary experience of using mbeddr for developing embedded soft-

ware. In: Tagungsband des Dagstuhl-Workshops, p. 73 (2014)
14. Barišić, A., Amaral, V., Goulão, M., Barroca, B.: Evaluating the usability of

domain-specific languages. In: Recent Developments, Formal and Practical Aspects
of Domain-Specific Languages (2012)

15. Izquierdo, J.L.C., Cabot, J., López-Fernández, J.J., Cuadrado, J.S., Guerra, E., de
Lara, J.: Engaging end-users in the collaborative development of domain-specific
modelling languages. In: Luo, Y. (ed.) CDVE 2013. LNCS, vol. 8091, pp. 101–110.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40840-3_16

16. Tairas, R., Cabot, J.: Corpus-based analysis of domain-specific languages. Softw.
Syst. Model. 14(2), 889–904 (2015)

17. Garcia, R.E., Höhn, E.N., Barbosa, E.F., Maldonado, J.C.: An ontology for con-
trolled experiments on software engineering. In: SEKE, pp. 685–690 (2008)

18. Siy, H., Wu, Y.: An ontology to support empirical studies in software engineering.
In: 2009 International Conference on Computing, Engineering and Information,
ICC 2009, pp. 12–15. IEEE (2009)

19. Cartaxo, B., Costa, I., Abrantes, D., Santos, A., Soares, S., Garcia, V.: ESEML:
empirical software engineering modeling language. In: Proceedings of the 2012
Workshop on Domain-Specific Modeling, pp. 55–60. ACM (2012)

20. Freire, M., Accioly, P., Sizílio, G., Campos Neto, E., Kulesza, U., Aranha, E.,
Borba, P.: A model-driven approach to specifying and monitoring controlled exper-
iments in software engineering. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldas-
sarre, M.T. (eds.) PROFES 2013. LNCS, vol. 7983, pp. 65–79. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39259-7_8

21. Hochstein, L., Nakamura, T., Shull, F., Zazworka, N., Basili, V.R., Zelkowitz, M.V.:
An environment for conducting families of software engineering experiments. Adv.
Comput. 74, 175–200 (2008)

22. Sjøberg, D.I., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasanovic,
A., Koren, E.F., Vokác, M.: Conducting realistic experiments in software engineer-
ing. In: 2002 Proceedings 2002 International Symposium on Empirical Software
Engineering, pp. 17–26. IEEE (2002)

23. Häser, F., Felderer, M., Breu, R.: Is business domain language support beneficial
for creating test case specifications: a controlled experiment. Inf. Softw. Technol.
79, 52–62 (2016)

24. Felderer, M., Herrmann, A.: Manual test case derivation from uml activity diagrams
and state machines: a controlled experiment. Inf. Softw. Technol. 61, 1–15 (2015)

25. Van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal question metric
(GQM) approach. Encycl. Softw. Eng. (2002)

26. RStudio Team: RStudio: Integrated Development Environment for R. RStudio Inc.,
Boston, MA (2015)

27. RapidMiner Team: Rapid-I: RapidMiner: Predictive Analytics Platform (2015)

https://doi.org/10.1007/978-3-642-40840-3_16
https://doi.org/10.1007/978-3-642-39259-7_8

168 F. Häser et al.

28. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

29. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Q. 13(3), 319–340 (1989)

30. Shull, F., Singer, J., Sjøberg, D.I.: Guide to Advanced Empirical Software Engineer-
ing, vol. 93. Springer, London (2008). https://doi.org/10.1007/978-1-84800-044-5

31. Davis, F.D.: User acceptance of information technology: system characteristics,
user perceptions and behavioral impacts. Int. J. Man Mach. Stud. 38(3), 475–487
(1993)

32. Brooke, J.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189(194),
4–7 (1996)

33. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for
Qualitative Research. Transaction Publishers, Piscataway (2009)

34. Rammstedt, B., John, O.P.: Measuring personality in one minute or less: a 10-item
short version of the big five inventory in English and German. J. Res. Pers. 41(1),
203–212 (2007)

35. Tichy, W.F.: Hints for reviewing empirical work in software engineering. Empirical
Softw. Eng. 5(4), 309–312 (2000)

https://doi.org/10.1007/978-1-84800-044-5

Smart Environments

Leveraging Smart Environments for Runtime
Resources Management

Paolo Barsocchi, Antonello Calabró(B), Francesca Lonetti, Eda Marchetti,
and Filippo Palumbo

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”,
Consiglio Nazionale delle Ricerche (CNR), via G. Moruzzi 1, 56124 Pisa, Italy

{paolo.barsocchi,antonello.calabro,francesca.lonetti,
eda.marchetti,filippo.palumbo}@isti.cnr.it

Abstract. Smart environments (SE) have gained widespread attention
due to their flexible integration into everyday life. Applications leveraging
the smart environments rely on regular exchange of critical information
and need accurate models for monitoring and controlling the SE behav-
ior. Different rules are usually specified and centralized for correlating
sensor data, as well as managing the resources and regulating the access
to them, thus avoiding security flaws. In this paper, we propose a dynamic
and flexible infrastructure able to perform runtime resources’ manage-
ment by decoupling the different levels of SE control rules. This allows
to simplify their continuous updating and improvement, thus reducing
the maintenance effort. The proposed solution integrates low cost wire-
less technologies and can be easily extended to include other possible
existing equipments. A first validation of the proposed infrastructure on
a case study is also presented.

Keywords: Smart environment · Monitoring · Sensors
Access control policy

1 Introduction

The interaction between people and ubiquitous computing [1], nowadays iden-
tified as a Smart Environment (SE), is an important area of interest. The SE
paradigm depends on communication and cooperation among numerous devices,
sensor networks embedded in the environment itself, servers in a fixed infrastruc-
ture and the increasing number of mobile devices carried by people. Thousands
of smart devices are now operating in cities, gathering information and providing
smart applications for e.g. environmental monitoring, energy management, traf-
fic management, smart buildings and smart parking [2]. These devices integrate
computation, networking, and physical processes and are able to monitor and
control physical objects providing an extremely efficient and economic mean for
improving the quality of life of citizens.

c© Springer International Publishing AG 2018
D. Winkler et al. (Eds.): SWQD 2018, LNBIP 302, pp. 171–190, 2018.
https://doi.org/10.1007/978-3-319-71440-0_10

172 P. Barsocchi et al.

From the networking point of view, one of the solutions adopted by the SE is
constituted by the Wireless Sensor Networks (WSNs) [3], which are autonomous
devices managing sensing, computing and wireless communication capabilities.
The integration of computation, networking, and physical processes require reg-
ular exchange of critical information in timely and reliable fashion and a specific
modeling and control of the SE behavior. Considering, in particular, the control
point of view, a SE usually involves three levels of rules: (i) the rules for man-
aging and correlating sensors data and technologies; (ii) the rules able to guide
the SE process, to define the users and the systems behavior, and to protect
against possible problems and inconveniences faults; (iii) the access control rules
that manage the resources (sensors, technologies, data, and so on) and protect
against possible malicious use or security flaws.

However, independently of the formalism adopted, writing such kind of rules
is a hard, verbose and error-prone activity. Considering in particular behavioral
and access control ones, their modifications and updating may cause inconsis-
tencies and/or security flaws; therefore, an accurate, time and effort consuming
validation and verification should be implemented [4,5].

Especially in large scale organizations, in order to partially solve this problem,
the common practice is to exploit the internal regulations and network speci-
fication requirements so to define just the basic control rules that may remain
unchanged for a considerable amount of time. Thus existing solutions, generally
try to adopt a static specification of the different rules and to centralize their
control inside the architecture. As side effect the management of SE behavior
could become quickly outdated over time, leading either inconsistencies with
the evolved behavioral and technological organization environment, or security
vulnerabilities.

From the previous considerations, the solution proposed in this paper relies
on the decoupling the different levels of control rules, so to maximize their effec-
tiveness and reduce as much as possible their maintenance and updating effort.
The control levels considered are: the Sensors Rules, which define the sensors
behavior and activities; the Usage Control Rules, which define the users and
sensors interactions; and the Access Control Rules, which manage the accesses
to the different resources expressed through a specific control policy formalism.
As better detailed in the remaining of this paper, from a practical point of view,
each of the control rule levels is in charge of a different independent reasoner,
in order to completely separate the continuous behavioral and accesses control
from physical network control.

The paper is organized as in the following. Section 2 highlights more the moti-
vations of the proposal and the research questions considered. Section 3 presents
some basic concepts about usage and access control systems. Section 4 presents
the proposed infrastructure for runtime management and control of smart envi-
ronments. Section 5 provides a first validation of the proposed approach on a
case study. Related work are presented in Sect. 6 whereas Sect. 7 concludes the
paper also hinting at future work.

Leveraging Smart Environments for Runtime Resources Management 173

2 Motivations and Research Questions

Much of the research work has been done in the field of smart buildings, smart
home, smart city, however there is still the necessity of improving their qual-
ity and performance in the management of control rules (Sensors Rules, Usage
Control Rules and Access Control Rules) so to make them smarter in taking
intelligent and prompt decisions [6]. In the field of rule based systems, some
smart proposals have been developed, especially in processing schemes [7], which
mainly consist of algorithms and the complex event processing mechanism. How-
ever for reducing the overall delivery, operation and maintenance effort of the
control rules typically a static approach is adopted: i.e. fixing (or rarely vary-
ing) the control rules and directly embedding them into the processing engine
controlling the environment so to minimize their verification and assessment.

The target of this paper is enhance the flexibility and adaptability of the cur-
rent state of the practice, by proposing a solution in which the different control
rules or (subsets of them) can be activated/inhibited or on-the-fly defined and
modified according to runtime organization exigencies. The idea is to leave the
freedom to the organization manager to select or define the sets of control rules
more suitable for his/her purpose at any specific time. For this the processing
engine controlling the smart environment is enhanced with features for either
directly specifying the proper set of control rules or to select the most suitable
ones from a pre-defined collection of frequently adopted rules. A dedicated engine
will manage the frequent updates/modifications of the set of rules, checking their
correctness and compliance, and overriding when necessary the those anymore
valid, without an impact on the overall management of organization.

The adoption of automated infrastructure for the definition and assessments
of control rules is a valid help in their specification and implementation. Moreover
it represents an important improvement for quality and performance of the smart
environment, because it enhances the control of the possible violations or security
problems. Summarizing the proposal of this paper will improve the current state
of the practice by:

– providing the possibility to modify and implement in extremely short time,
specific and temporary rules. For instance manager will have the possibility to
automatically change the access control rules of a specific environment many
times during a day (or particular period), in relation to either the role of the
subject requiring the access, or the access time or the sensor values available
for the considered environment.

– Forcing the persons in charge of control rules to formally define them for any
critical situations. This avoids the specification of generic control rules which
could be inefficient or even useless in case of problematic conditions. This
will have several positive impacts: (i) focus on control rules on specific prob-
lems, so minimize misunderstanding or weaknesses in their implementation
and management; (ii) provide more suitable solutions due to the possibility to
early define or adapt the corrective actions to be performed in case of prob-
lems, security or safety flaws; (iii) better document the organization control

174 P. Barsocchi et al.

behavior in case of specific (critical) situations. Indeed many times specific
control rules are just best practices inside an organization and not formally
defined. Exploiting automatic facility for the definition and collection of con-
trol rules provides a useful knowledge database that can be used in case of
similar situations or for training new personnel.

– The separation of the different control rules into three levels (Sensors Rules,
Usage Control Rules and Access Control Rules) so to better map the distri-
bution of knowledge between organization stakeholders. The use of a unique
infrastructure for the definition, management and implementation of the three
different levels of control rules lets the personnel with different, and many time
separated, background knowledge to easily interact and work together in a
unique environment. This from one side will keep the separation of roles and
knowledge and from the other will improve the overall organization control
correctness.

In the developing of the proposed infrastructure the following research ques-
tions have been considered:

– RQ1: Flexibility: is the proposal useful for improving the definition of control
rules for different specific situations?

– RQ2: Adaptability: is the proposal useful for improving the selection of the
proper control rules depending on specific environmental conditions?

– RQ3: Low cost: is the overhead introduced by the proposed infrastructure
acceptable? In particular, we will assess whether it can have an impact on
the overall cost of smart environment implementation, installation and inte-
gration.

– RQ4: Usability: is the proposed usable by not domain experts? In particular,
we will assess whether the required technical baseline knowledge can have an
impact on usability of the proposed implementation.

3 Access and Usage Control

Access control is one of the most adopted security mechanisms for the protec-
tion of resources and data against unauthorized, malicious or improper usage or
modification. In the last decades, a large variety of policies and policy models
have been proposed to define authorized operations on specific resources, such
as (RBAC) Model [8] and (XACML) [9]. An XACML policy defines the access
control requirements of a protected system. An access control request aims at
accessing a protected resource in a given system whose access is regulated by
a security policy. The request is evaluated on the Policy Decision Point (PDP)
against the policy and the access is granted or denied.

A simplified vision of an XACML policy has a hierarchical structure: at the
top level there is the policy set, which can contain in turn one (or more) policy
set(s) or policy elements. A policy set (a policy) consists of a target, a set of
rules and a rule combining algorithm. The target specifies the subjects, resources,
actions and environments on which a policy can be applied. If a request satisfies

Leveraging Smart Environments for Runtime Resources Management 175

the target of the policy set (policy), then the set of rules of the policy set (policy)
is checked, else the policy set (policy) is skipped. A rule is composed by: a target,
which specifies the constraints of the request that are applicable to the rule; a
condition, which is a boolean function evaluated when the request is applicable
to the rule. If the condition is evaluated to true, the result of the rule evaluation
is the rule effect (Permit or Deny), otherwise a NotApplicable result is given. If
an error occurs during the application of a request to the policy, Indeterminate
is returned. The rule combining algorithm specifies the approach to be adopted
to compute the decision result of a policy when more than one rule may be
applicable to a given request. Listing 2 provides an example of XACML policy.

Usage control model (UCON) [10] is one of the emerging and comprehensive
attribute based access control models that has the ability of monitoring the con-
tinuous updates in a system addressing the limitations related to attribute muta-
bility and continuous usage permission validation. UCON model is an extension
of the traditional access control models, which besides authorizations introduces
new factors in the decision process, namely obligations, conditions, and mutable
attributes. Mutable attributes are paired with subjects and objects, and their
values are updated as a consequence of the decision process. Hence, the attributes
that have been evaluated by the security policy to initially grant an access to
a resource could change their values, while the access is in progress in such a
way that the access right does not hold anymore. In this case, the access should
be interrupted to preserve the system security. For this reason, UCON policies
specify whether or not a decision factor must be evaluated before and/or during
the usage of the resource (continuous policy enforcement).

4 Infrastructure

In this Section, we provide some details about the infrastructure used to decouple
Sensors, Usage Control and Access Control rules in order to reply also to research
questions of Sect. 2.

As shown in Fig. 1, the Infrastructure is conceptually divided in different
nodes (see Fig. 1): (i) the Access Control Engine is the node in charge of imple-
menting the access control management. (ii) the Glimpse: Monitoring Infrastruc-
ture is the node monitoring and enforcing the Sensors and Usage rules; (iii) the
Sensors and Actuators are physical (hardware) components of the infrastructure:
(iv) the Management Interface is the GUI (Graphical User Interface) through
which the different rules can be defined and feedbacks and log analysis can be
provided.

As in Fig. 1, the Administrators are in charge of providing the definition of
the three levels of rules for the overall infrastructure. This can be done by means
of a GUI on which Rules editor and Policies editor components are running.
Specifically, through Rules Editor the Administrators can define the Sensors and
Usage rules using a specific language (further details are provided in Sect. 4.2).
Additionally, by means of Policy Editor they can define the XACML access
control policies that will rule the resources access. Finally, through the GUI

176 P. Barsocchi et al.

Fig. 1. Proposed architecture

the Administrators can visualize logging data, monitoring results, sensors and
actuators status. In the following subsections, more details about the above
mentioned nodes are provided.

4.1 Access Control Engine

This node manages the resource access by enforcing the XACML Policy defined
by the Administrators. In particular, the Access Control Engine node contains
three components (Fig. 1 top right): (i) the Policy Enforcement Point (PEP),
usually embedded into an application system. It receives the access request in
its native format from the Glimpse: Monitoring Infrastructure, constructs an
XACML request and sends it to the Policy Decision Point (PDP); it receives
the PDP responses and forwards them to the Glimpse: Monitoring Infrastruc-
ture through its REST (REpresentational State Transfer) Interface called REST
Engine; (ii) the Policy Decision Point (PDP) evaluates the policy with respect
to the request and returns the response, including the authorization decision to

Leveraging Smart Environments for Runtime Resources Management 177

the PEP ; (iii) the Policy Administration Point (PAP) is the component entity
in charge of managing the policies and deploying them on the PDP; it receives
the XACML access control policy by the Management Interface.

4.2 Monitoring Components

The monitor infrastructure, integrated into the proposed infrastructure, is a
flexible, adaptable and dynamic solution independent of any specific sensor or
access control network notation or execution. With respect to similar compo-
nents and tools currently available, the monitor infrastructure included in this
proposal, has been enhanced with facilities for activation the counter measures
or the recovering activities in case of violations of some performance constraints.
These constraints are not mandatory specified at the system startup, but can
be automatically raised from the rule engines involved or can be improved at
runtime by injecting new rules on the complex event processors. The monitoring
framework presented in this paper has been inspired by the monitoring architec-
ture presented in [11,12]. The Glimpse: Monitoring Infrastructure node (Fig. 1)
manages the complex event processing and the interactions with Sensors, Actua-
tors and Access Control Engine, and includes new features devoted to the usage
and access control request generation.

The main monitoring components are:

– The Rules Manager component is in charge of orchestrating the rules genera-
tion starting from the templates stored within the component Rule templates
Repository through the Rules Generator component.

– The Rules Generator is the component in charge of synthesizing the rules
starting from the directives received by the Rules Manager by means of tech-
niques based on generative programming approaches [13,14].

– The Rules Templates Manager is an additional internal repository storing the
meta-rules enabling the run-time adaptation by means of generative proce-
dures.

– The CEP - Events CEP (Complex Event Processing) Events is a rule engine
realized by means of the Drools rule language [15]. It correlates the events
flowing from Sensors with the rules loaded by the Rules Manager component.

– The CEP - Usage is in charge of correlating complex events generated by the
CEP - Events with the rules related to the usage of the resources, loaded by
the Rules Manager.

– The Rest Engine, is the component in charge of communicating through
REST [16] interfaces with the Access Control Engine in order to send/re-
ceive the Access Control Engine request/response.

– The Response Dispatcher through the Message Broker (AMQ), realized by
means of ActiveMQ [17], sends events to the actuators managed by the Actu-
ators gateway.

The peculiarities of the proposed architecture is to include for the first time a
chain of two CEP entities, the CEP - Events and the CEP - Usage, for decoupling

178 P. Barsocchi et al.

the activities concerning the management of the sensors from those more related
to the administration of the resource usage and alarming situations. This makes
easier the definition of new primitive events generated by (new/updated) sensors
and the inferring of events in the form of composite events in a way completely
independent of the access and usage control rules. Moreover, it lets a quick and
high level updating of the general resource access and usage regulations and the
planning of specific corrective actions in case of alarms or resource violations,
leveraging from the specific sensor network on which they are implemented.

From a practical point of view, all the communications among monitoring
components are performed through messages sent to the Message Broker (AMQ),
running on top of an Enterprise Service Bus like ServiceMix [18]. In order to
improve the communication security, each component exposes a SSL certificate
(self-signed certificates).

4.3 Sensors and Actuators Components

Sensors and Actuators (in top left side of Fig. 1) are deployed over the network
and communicate with the infrastructure through the Sensors gateway and the
Actuators gateway, respectively. These hardware components send messages to
the Glimpse: Monitoring Infrastructure through a Message Broker (AMQ) using
a predefined event type.

From a technical point of view, the sensor nodes considered in the proposed
infrastructure are based on the module Core2530, produced by WaveShare Elec-
tronics1. The sensor nodes are connected with a ZigBee node2, which is able to:
evaluate the real power consumption of the target environment; identify all the
indoor movements of users through Passive Infrared Sensors (PIR-based motion
sensors); detect environmental noise; measure temperature and relative humid-
ity. Every node of the distributed sensor network is configured as a ZigBee router
to exploit multi-hop functionality and it periodically sends the measured data
to the ZigBee coordinator. The ZigBee network ensures a reliable communica-
tions in indoor environments without suffering due to the multipath effect [19].
Moreover, each user is equipped with a Bluetooth Low Energy (BLE) beacon3,
which periodically sends a message useful for locating and identifying the user.
Figure 2 shows the hardware used for sensing the environment. In particular, on
the left there are the RadBeacon Dot4 and the BLED1125 used as a sender and
receiver beacon, while on the right side there is a ZigBee node.

The middleware, named Sensor Weaver, uses ZB4O6 to interact with sensors
and actuators deployed in the ZigBee networks [20] and integrates the BLE in

1 http://www.wvshare.com/.
2 http://www.zigbee.org/.
3 https://developer.mbed.org/blog/entry/BLE-Beacons-URIBeacon-AltBeacons-

iBeacon/.
4 http://store.radiusnetworks.com/collections/all/products/radbeacon-dot.
5 https://www.bluegiga.com/.
6 http://zb4osgi.aaloa.org/.

http://www.wvshare.com/
http://www.zigbee.org/
https://developer.mbed.org/blog/entry/BLE-Beacons-URIBeacon-AltBeacons-iBeacon/
https://developer.mbed.org/blog/entry/BLE-Beacons-URIBeacon-AltBeacons-iBeacon/
http://store.radiusnetworks.com/collections/all/products/radbeacon-dot
https://www.bluegiga.com/
http://zb4osgi.aaloa.org/

Leveraging Smart Environments for Runtime Resources Management 179

Fig. 2. The hardware used to sense the environment

order to abstract the different kinds of technologies. The gateway node provides
access to the sensors discovered through an IP network and a communication
platform. The main goal of Sensor Weaver is to provide a secure communica-
tion platform for the exchange of sensing information in a distributed sensor
network environment [21,22]. Moreover, Sensor Weaver also provides tools and
applications that enable long-term sensor monitoring and automatically control
the actuators deployed in the WSN [23,24].

Fig. 3. The architecture of sensor weaver

In order to separate communication concerns of Sensor Weaver, we designed
several communication buses. Each bus has a specific managing role (see Fig. 3):
(i) a Service Bus for the service life-cycle events; (ii) a Context Bus for the sensor
measurement updates; (iii) a Control Bus for the invocations of actuators. We
implement Sensor Weaver on top of the OSGi platform and we use the MQTT
messaging service [25,26].

4.4 Research Questions Analysis

As evidenced by the technical description of the infrastructure, its development
has been focused on the improving as much as possible its flexibility and adapt-
ability. In particular the availability of the Management Interface makes easier

180 P. Barsocchi et al.

the definition of different kinds of control rules, lets to target on specific situa-
tions and provides the visualization of the monitor results. Moreover the avail-
ability of editors, such as the Rules editor and Policies editor, let a more friendly
and usable definition of the control rules especially for people not expert in the
different specification languages. All this evidences positively reply to the RQ1
and RQ4 of Sect. 2.

Concerning instead the RQ2, adaptability is guaranteed by the separation of
the infrastructure into the different nodes (see Fig. 1), each one responsible of
the implementation and management of separate set of control rules. The facil-
ities provided let to detect and to correlate events generated by different layers
supporting in parallel sensors, access and usage control features. In particular
the innovate adoption of a chain of two CEP entities, assures the decoupling of
the activities concerning the management of the sensors from those related to
the resource usage. This let also a better management of alarming conditions
and maximizing the adaptability of the infrastructure to different situations and
exigencies.

Finally considering the RQ3, as highlighted in Sect. 4.3, cost of the pro-
posed infrastructure is mitigated by the choice of the technology adopted for the
infrastructure implementation. Indeed among the different proposals, the trade-
off solution adopted in this paper relies on ZigBee [27]. This is a recognized low
cost standard-based wireless technology designed to address the unique needs of
low-power WSNs, and to model the different resource capabilities. It guarantees
the non-invasiveness of the installations and the possibility of integration with
other possible existing equipments.

5 Infrastructure Application

In this section, we describe the usage of the proposed infrastructure for the
management of a cold storage room inside the ISTI-CNR (Istituto Scienza e
Tecnologie dell’Informazione - Consiglio Nazionale delle Ricerche of Pisa Italy)7
research area. However due to space limitation sand for aim of simplicity, we
report here just a simplified description of the management of this medical cold
storage called Laboratory Cold Room (LCR). It is out of the scope of this paper
to go into the complex details of the sets of rules necessary for managing the
LCR. Here, we voluntarily keep the scenario simplified to better explain the role
and the advantages of the proposed infrastructure. The complete description of
the implementation can be found in [28].

The control of Laboratory Cold Room focuses on three different main aspects:
to keep the temperature required for safe and secure storage of a wide range
of laboratory materials; to rule the access to the room; to activate corrective
actions in case of detected violations or alarming situations. For this the room
has been instrumented with different sensors and several sets of control rules
have been defined. These last include: (i) Sensor Rules for managing the security
boundary value of each sensor or combination of them (for instance, the tolerance
7 http://www.isti.cnr.it.

http://www.isti.cnr.it

Leveraging Smart Environments for Runtime Resources Management 181

temperature, humidity ranges, and so on); (ii) Access Control policies ruling
who and when can access LCR (name or the role of people that are allowed
to work in the LCR); (iii) Usage Control Rules for managing sensors failures,
resource violations, and alarming situation in general (for instance, the technical
personnel to be called in case of problems).

5.1 Case Study Set up

As shown in Fig. 4 the Laboratory Cold Room has been equipped with a bea-
con receiver for gathering data from BLE beacons and with several sensors
(see Sect. 4.3 for more details), which are: Temperature and humidity; Pres-
ence (PIR-based); Energy consumption; Noise detector; RFID Bagde Reader for
Room access Control. An instance of the Monitoring Infrastructure has been
deployed on: ubuntu@n037.smart-applications.area.pi.cnr.it, a virtual machine
running on top of ISTI-CNR cloud infrastructure, while the Access Control
Engine was running on avalon.isti.cnr.it. The probes that generate events related
to the sensors and the actuators are running on top of the middleware: ener-
gia.isti.cnr.it and the events are flowing through the message broker AMQ run-
ning on atlantis.isti.cnr.it.

Fig. 4. Deployment configuration

5.2 Sensors, Access and Usage Rules Management

In this Section, we focus on the interaction between CEP - Events, CEP - Usage
and the Access control Engine for the enforcement of the sensors, access and

182 P. Barsocchi et al.

usage rules. Specifically, as shown in Fig. 1, through the Rules Editor the Admin-
istrators loaded the sensors rule useful for monitoring the sensors status and the
access rules for the identification of who is currently asking resource access.

When an employee, through the RFID Bagde Reader, tries to access the
LRC, the CEP - Events receives the access request and extracts the room ID
and the badge ID. By querying the ISTI-CNR internal employees database, the
CEP - Events retrieves (Role, Owner room id) attributes related to the user
who is asking for the access. Using the data collected, the CEP - Events sends a
Policy evaluation request through the Rest Engine to the Access Control Engine
node and a PdpAccessRequest event to the CEP - Usage to notify that an access
request has been sent. The PEP translates the request into an XACML access
request and sends it to the PDP, which evaluates the request according to the
access control policies injected by PAP, and sends back the response to thePEP,
which in turn sends back to the CEP - Usage through the Rest Engine.
1 [.. setup and import omitted ..]
2
3 declare SensorFailureEvent
4 @idroom: int
5 @idsensor: int
6 end
7
8 rule "Check␣data␣from␣temperature␣sensor"
9 no -loop true

10 salience 1
11 dialect "java"
12 when
13 $aEvent:GlimpseBaseEventSB(this.isConsumed == false , this.isException == false ,
14 (this.getTemperature == null || < -20 || > 0));
15
16 $bEvent:GlimpseBaseEventSB(
17 this.isConsumed == false , this.isException == false ,
18 (this.getTemperature == null || < -20 || > 0),
19 this after $aEvent , this.getSensorID == $aEvent.getSensorID);
20 then
21 SensorFailureEvent failureDetected = new SensorFailureEvent(idRoom ,idSensor);
22 CepBinder.sendEventTo("CEP␣-␣Usage", failureDetected);
23 $aEvent.setConsumed(true); $bEvent.setConsumed(true);
24 retract ($ aEvent); retract ($ bEvent);
25 end

Listing 1. Sensors rule

An example of a sensors rule used by the CEP - Events for controlling all
the installed sensors is shown in Listing 1. In particular, when the CEP - Events
receives from the monitored sensors, for two consecutive times, null or out-of-
range values (lines 13–14 and 17–18 of Listing 1), the CEP - Events generates
a complex event called SensorFailureEvent for notifying the detected failure to
the CEP - Usage, so that it can activate the corrective actions. For confidential
reasons, we do not provide here the complete specification of the XACML access
control policies adopted for managing access to the different rooms inside the
ISTI-CNR research area. As reported in Listing 2, we just show an extract of
some of the rules implemented in ISTI-CNR access control policies so to better
explain the potentialities and features of the proposed infrastructure. Among
the different types of rooms (resources) of the ISTI-CNR access control policies,
here we focus on three of them: common room, office room, and LCR.

The ISTI-CNR access control policies specify different kinds of employees
(subjects); however, considering the LRC, the most important are: Biologist,
Physician and Technician. The policies manage also several types of actions for
each room, however in this section we only consider the simpler one: the access.

Leveraging Smart Environments for Runtime Resources Management 183

Finally, the ISTI-CNR access control policies specify different environment values
and conditions; for aim of simplicity here we only consider the case in which the
environment represents the different time slots, in which an employee can access
the different rooms. Considering Listing 2. the rules specify that:

1. Rule 1: each employee can access his own office and the common rooms during
the business-time (from 8am to 8pm);

2. Rule 2: only an employee, who is either Biologist of Physician, can access the
LCR during the business-time;

3. Rule 3: The Technician can access the LCR at any time.

1 <Policy PolicyId="SmartPolicy" RuleCombiningAlgId="first -applicable">
2 <Target >
3 <Subjects ><Subject ><SubjectMatch MatchId="string -equal">
4 <AttributeValue DataType="string">employee </AttributeValue >
5 </SubjectMatch ></Subject ></Subjects >
6 <Resources ><Resource ><ResourceMatch MatchId="string -equal">
7 <AttributeValue DataType="string">CNR</AttributeValue >
8 </ResourceMatch ></Resource ></Resources >
9 <Actions ><Action ><ActionMatch MatchId="string -equal">

10 <AttributeValue DataType="string">acces</AttributeValue >
11 </ActionMatch ></Action ></Actions >
12 </Target >
13 <Rule RuleId="Rule1" Effect="Permit">
14 <Target >
15 <Resources >
16 <Resource ><ResourceMatch MatchId="string -equal">
17 <AttributeValue DataType="string">CNR</AttributeValue >
18 </ResourceMatch >
19 <ResourceMatch MatchId="string -equal">
20 <AttributeValue DataType="string">office room</AttributeValue >
21 </ResourceMatch ></Resource >
22 <Resource ><ResourceMatch MatchId="string -equal">
23 <AttributeValue DataType="string">CNR</AttributeValue >
24 </ResourceMatch >
25 <ResourceMatch MatchId="string -equal">
26 <AttributeValue DataType="string">common room</AttributeValue >
27 </ResourceMatch ></Resource >
28 </Resources >
29 <Environments >
30 <Environment ><EnvironmentMatch MatchId="time -equal">
31 <AttributeValue DataType="time">8:00:00 </AttributeValue >
32 </EnvironmentMatch ></Environment >
33 <Environment ><EnvironmentMatch MatchId="dayTimeDuration -equal">
34 <AttributeValue DataType="dayTimeDuration">PT12H</AttributeValue >
35 </EnvironmentMatch ></Environment ></Environments >
36 </Target >
37 </Rule>
38 <Rule RuleId="Rule2" Effect="Permit">
39 <Target >
40 <Resources ><Resource ><ResourceMatch MatchId="string -equal">
41 <AttributeValue DataType="string">LCR</AttributeValue >
42 </ResourceMatch></Resource ></Resources >
43 <Environments >
44 <Environment ><EnvironmentMatch MatchId="time -equal">
45 <AttributeValue DataType="time">8:00:00 </AttributeValue >
46 </EnvironmentMatch ></Environment >
47 <Environment ><EnvironmentMatch MatchId="dayTimeDuration -equal">
48 <AttributeValue DataType="dayTimeDuration">PT12H</AttributeValue >
49 </EnvironmentMatch ></Environment ></Environments >
50 </Target >
51 <Condition ><Apply FunctionId="string -at -least -one -member -of">
52 <AttributeValue DataType="string">biologist </AttributeValue >
53 <AttributeValue DataType="string">physician </AttributeValue >
54 </Apply></Condition >
55 </Rule>
56 <Rule RuleId="Rule3" Effect="Permit">
57 <Target >
58 <Subjects ><Subject ><SubjectMatch MatchId="string -equal">
59 <AttributeValue DataType="string">technician </AttributeValue >
60 </SubjectMatch ></Subject ></Subjects >
61 <Resources ><Resource ><ResourceMatch MatchId="string -equal">
62 <AttributeValue DataType="string">LCR</AttributeValue >
63 </ResourceMatch ></Resource ></Resources >
64 </Target >
65 </Rule>
66 <Rule RuleId="default" Effect="Deny"/>
67 </Policy >

Listing 2. Smart environment access policy

184 P. Barsocchi et al.

At run time, the request sent by the CEP - Events to the Access Control
Engine is evaluated by the PDP component and the corresponding reply is sent
back to the CEP - Usage, which uses the received (permit or deny) response to
allow the resource access or to deny it in case of possible violations or resource
misuses. In both cases, the CEP - Usage is in charge of notifying the Actuators
of the (corrective) actions to be executed. An example of usage rule implemented
by the CEP - Usage is shown in Listing 1. In particular, the rule checks if there
are pending access requests to the LCR and ongoing alarms. In this last case,
it retrieves from the employee data base the contact data of the technician in
charge of managing the alarm and it inhibits any possible access to LCR, apart
from the selected technician.

5.3 Maintenance Activity Scenario

This section describes the management of the scenario in which an alarm is raised
by the sensors and a corrective maintenance request is sent to the technician. The
scenario preconditions are the following: (i) Each employee is registered on the
internal ISTI-CNR personal data base; (ii) Each employee accesses the different
rooms by means of a personal badge equipped with a beacon bluetoot, as shown
in Fig. 2; (iii) The LCR room is closed by default and constantly monitored
by sensors able to send events to the Monitoring Infrastructure; (iv) No one is
currently inside the LCR and sensor values are within their allowed ranges.

Initially, a Physician requires to access the LCR by using the LCR RFID
badge reader connected the to nearest network. According to the interaction
described in Sect. 5.2, an event is sent to the CEP - Events through the Message
Broker and the proper access request is sent to the Access Control Engine. This
last evaluates the request and sends back the response to the PEP, which in turn
sends back to the CEP - Usage through the REST Engine.

As shown in Listing 3, if: any revocation of permission is ongoing (line 8),
there are not critical conditions (i.e. the values of temperature, humidity, energy
consumption, noise are in the allowed ranges - line 18), and PDP response
includes a permit (i.e. Physician requires to access the LCR during the business-
time -line 15), the CEP - Usage sends an event to the Actuator gateway for
enabling the door opening through the Response Dispatcher.

Supposing instead that a critical condition has been detected by CEP -
Events, for instance either the power consumption sensors is out of range or
there are significant variations in the noise or the temperature is in a not allowed
range, a SensorFailureEvent event is sent to the CEP - Usage (line 46 of List-
ing 1). This last overrides the PDP response allowing the access to the technician
only and sends an event to the Actuator gateway for enabling the door opening
to the technician only (line 50–51 of Listing 3).

Moreover, the CEP - Usage sends an alarm event to the Supervision through
a specific Actuator gateway for requesting exceptional maintenance of the LCR
(line 37 of Listing 3).

Leveraging Smart Environments for Runtime Resources Management 185

1 [.. setup and import omitted ..]
2
3 declare SensorFailureEvent
4 @idroom: int
5 @idsensor: int
6 end
7
8 rule "If␣there␣are␣NOT␣pending␣alarm␣forward␣PDP␣access␣response"
9 no -loop true

10 salience 1
11 dialect "java"
12
13 when
14 $aEvent:PdpAccessRequest ();
15 $bEvent:PdpAccessResponse (this.isConsumed == false , this.isException == false ,
16 this.getIdRequest == $aEvent.getIdRequest , ($ bEvent.getResponse == "Permit" || "Deny"),
17 this after $aEvent);
18 not(SensorFailureEvent(this.isConsumed == false , this.isException == false ,
19 this.idRoom == $aEvent.idRoom , this.idSensor == $aEvent.idSensor));
20
21 then
22 Actuators.ManageAccess ($ aEvent.getIdSensor () ,$aEvent.getIdroom (), $bEvent.getResponse ()));
23 end
24
25 rule "If␣there␣are␣failures␣take␣countermeasures"
26 no -loop true
27 salience 1
28 dialect "java"
29
30 when
31 $aEvent:SensorFailureEvent();
32 then
33 Alarm.NotifyToSupervision ($ aEvent.idsensor , $aEvent.idroom);
34 end
35
36 rule "If␣there␣are␣pending␣alarm␣check␣accesses"
37 no -loop true
38 salience 1
39 dialect "java"
40
41 when
42 $aEvent:PdpAccessRequest ();
43 $bEvent:PdpAccessResponse (this.isConsumed == false , this.isException == false ,
44 this.getIdRequest == $aEvent.getIdRequest , ($ bEvent.getResponse == "Permit" || "Deny"),
45 this after $aEvent);
46 $cEvent:SensorFailureEvent(this.isConsumed == false , this.isException == false ,
47 this.idRoom == $aEvent.idRoom);
48
49 then
50 Actuators.ManageAccess ($ aEvent.getIdSensor () ,$aEvent.getIdroom (),
51 PersonnelDatabase.checkIfIsTechnician ($ aEvent.getIdUser));
52 end

Listing 3. Usage rule

5.4 Results Analysis and Lesson Learned

For space limitation we just provided very few details about the adoption of
the proposed infrastructure inside ISTI-CNR research area. The experiment
described here is part of a larger one that will involve control of all the ISTI-CNR
area. The main peculiarity of the proposed approach is that the control of the
different rooms is not centralized, but can be specialized time to time according
the different research exigencies and in agreement with general administrative
and security regulations.

Though the proposed infrastructure each lab head, or even each researcher,
has the freedom to specify its own control rules depending on the sensors installed
in the room or the required behavior, without changing those for the rest the
area. Considering specifically the LRC, the infrastructure proposed let a detailed
control management of the many PhD students requiring the access to the lab-
oratory. Indeed without a deep impact on the generic control rules, and again
in agreement with administrative and security regulations, it was possible to

186 P. Barsocchi et al.

differentiate for each PhD student, both the allowed access time and the allowed
activity when specific experimentation were ongoing.

From this experimentation two main considerations have come to light:

– Different stakeholders may have different views of the control management of
a specific environment, sometimes even ignoring which are the common best
practices or the corrective activities. In the specific case of LRC defining pre-
cisely the Sensors, Usage and Access control rules required many interviews
and interactions with different ISTI personnel having separate competencies:
researchers from one side and technicians from the other. However, the adop-
tion of the proposed infrastructure forced them to provide, for the first time,
the documentation of the procedures ruling the LRC laboratory, to highlight
the critical points both from the sensors and usage point of view and to define
precisely responsibilities and activities to be performed in case of security and
safety flaws.

– Leaving the freedom of each lab head to define the more suitable control
rules, evidenced a stringent necessity to improve the infrastructure with more
dynamic features for a careful validation of consistency and correctness of the
set of rules so to avoid violations of the general administrative and security
regulations.

6 Related Work

This work spans over several research directions, including: smart environment,
access and usage control and monitoring approaches.

Enabling Platforms in Smart Environments: The SE paradigm depends
on communication and cooperation between numerous devices, sensor networks
embedded in the environment itself, servers in a fixed infrastructure and the
increasing number of mobile devices carried by people. In order to enable the
SE paradigm, diverse platforms and software infrastructures have been proposed
in the literature [29]. Among these, FI-WARE8 is emerging as a core standard
platform for Smart and Connected Communities (SCC) [30,31]. The FI-WARE
project is producing new tools to facilitate the development of application and
fostering a major inclusion of software standards for smart cities [32]. These
tools are provided as Generic Enablers (GE): software components that can be
configured and deployed on a cloud platform in order to easily implement an
application. Another important enabling platform for SE is represented by the
universAAL architecture9, with a particular focus on IoT and Ambient Assisted
Living (AAL) [33]. Besides its concrete open source implementation, universAAL
proposes an architectural reference model based on a set of virtual communica-
tion buses as semantic brokers for context events, semantic service requests (and

8 http://www.fiware.org.
9 http://www.universaal.info/.

http://www.fiware.org
http://www.universaal.info/

Leveraging Smart Environments for Runtime Resources Management 187

responses), and user interaction functions. For these reasons, we used the separa-
tion of concerns and the service discovery capabilities offered by the universAAL
reference model to build the middleware architecture proposed in this paper.

Access and Usage Control: Concerning the testing of access control policies,
combinatorial approaches have been proven to be effective in the automated
generation of the test cases (access requests). Among the various proposals,
the Targen tool [34] generates test inputs by using combinatorial coverage of
the truth values of independent clauses of XACML policy values, while the X-
CREATE tool [35] relies on combinatorial approaches of the subject, resource,
action and environment values taken from the XACML policy. The main advan-
tage of this approach with respect to Targen is the higher structural variability
of the derived test inputs able to guarantee the coverage of the input domain
of the XACML policy. Other works address model-based testing and provide a
methodology for the generation of test cases based on combinatorial approaches
of the elements of the model (role names, permission names, context names).

Concerning the Usage Control systems, the work in [36] proposes a usage con-
trol model based on UCON and describes a framework to implement it in an oper-
ating system kernel, on top of the existing DAC mechanism. Other available solu-
tions, such as [37], propose proactive mechanisms for preventing possible policy
violations and present a combination of runtime monitoring and self-adaptation
to simplify the autonomic management of authorization infrastructures. In recent
years, as surveyed in [38], testing of authorization systems has been focused on
evidencing the appropriateness of the UCON enforcement mechanism, focusing
on the performance analysis or establishing proper enforcement mechanisms by
means of formal models. Finally, the authors of [39] address the testing of the Pol-
icy Decision Point (PDP) implementation within the PolPA authorization sys-
tem, which enables history-based and usage-based control of accesses proposing
two testing strategies specifically conceived for validating the history-based access
control and the usage control functionalities of the PolPA PDP.

Monitoring: Several general-purpose monitoring proposals are currently avail-
able, which can be mainly divided into two groups: those that are embedded
in the execution engine, such as [40,41], and those that can be integrated into
the execution framework as an additional component, such for instance [42–44].
Both the solutions have specific advantages. For sure, an embedded solution
reduces the performance delay of the execution framework, mainly in terms of
interactions and communication time. Coverage indicators can be directly eval-
uated by the execution framework, which can also execute corrective actions in
case of important deviations. The main disadvantage of these approaches is the
lack of flexibility in the data collection, the coverage measure definition and the
language adopted.

7 Conclusions

In this paper, we proposed an infrastructure for runtime management and control
of smart environments. The main advantages of the proposed solution are its

188 P. Barsocchi et al.

flexibility and the possibility of decoupling the different levels of rules that are
defined and implemented for managing the resources of the smart environments
and regulate the access to them. Specifically, three levels of rules are defined:
the Sensor Rules for correlating sensors data and technologies; theUsage Control
Rules, which define the users and sensors interactions; and the Access Control
Rules, which manage the accesses to the different resources expressed through a
specific control policy formalism. This allows an easy maintenance and updating
of control rules when context changes or constraints violations take place.

A first validation on a real cased study, considering a medical cold storage
and implementing an XACML policy, has been described. The presented sce-
nario evidenced the effectiveness of the proposed approach to correlate events
generated by different sensors and to leverage different levels of rules for raising
alarms, when critical situations are detected.

As a future work, we would like to validate the proposed solution in other
smart environments with different peculiarities and security constraints as well
as different access control policy specification languages. Moreover, we plan to
extend the infrastructure to include more refined levels of rules, further decou-
pling the management and control functionalities of the proposed infrastructure.

Acknowledgments. This work has been partially funded by the projects GAUSS, a
National Research project (MIUR, PRIN 2015, Contract 2015KWREMX), and SIGS
(FAR/FAS 2014-2016 research program of the Tuscany Region).

References

1. Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)
2. Tragos, E.Z., Bernabe, J.B., Staudemeyer, R.C., Luis, J., Ramos, H., Fragkiadakis,

A., Skarmeta, A., Nati, M., Gluhak, A.: Trusted IoT in the complex landscape of
governance, security, privacy, availability and safety. In: Digitising the Industry-
Internet of Things Connecting the Physical, Digital and Virtual Worlds. River
Publishers Series in Communications, pp. 210–239 (2016)

3. Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory
and Practice. Wiley, Hoboken (2010)

4. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: An automated testing
framework of model-driven tools for XACML policy specification. In: 9th QUATIC
2014, Guimaraes, Portugal, 23–26 September 2014, pp. 75–84 (2014)

5. Daoudagh, S., Kateb, D.E., Lonetti, F., Marchetti, E., Mouelhi, T.: A toolchain
for model-based design and testing of access control systems. In: MODELSWARD
2015 Angers, Loire Valley, France, 9–11 February 2015, pp. 411–418 (2015)

6. Ahmad, A., Rathore, M.M., Paul, A., Hong, W.H., Seo, H.: Context-aware mobile
sensors for sensing discrete events in smart environment. J. Sens. (2016)

7. Drăgoicea, M., Bucur, L., Pătraşcu, M.: A service oriented simulation architecture
for intelligent building management. In: Falcão e Cunha, J., Snene, M., Nóvoa, H.
(eds.) IESS 2013. LNBIP, vol. 143, pp. 14–28. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36356-6_2

8. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38–47 (1996)

https://doi.org/10.1007/978-3-642-36356-6_2
https://doi.org/10.1007/978-3-642-36356-6_2

Leveraging Smart Environments for Runtime Resources Management 189

9. OASIS Standard: eXtensible Access Control Markup Language (XACML) Version
2.0 (2005)

10. Park, J., Sandhu, R.: The UCON ABC usage control model. ACM Trans. Inf. Syst.
Secur. (TISSEC) 7(1), 128–174 (2004)

11. Calabrò, A., Lonetti, F., Marchetti, E.: Monitoring of business process execution
based on performance indicators. In: 41st, EUROMICRO-SEAA 2015, Madeira,
Portugal, 26–28 August 2015, pp. 255–258 (2015)

12. Calabrò, A., Lonetti, F., Marchetti, E.: KPI evaluation of the business process
execution through event monitoring activity. In: ES 2015, Basel, Switzerland, 14–
15 October 2015, pp. 169–176 (2015)

13. Czarnecki, K., Eisenecker, U.W.: Generative Programming - Methods, Tools and
Applications. Addison-Wesley, Boston (2000)

14. Bertolino, A., Calabrò, A., De Angelis, G.: A generative approach for the adaptive
monitoring of SLA in service choreographies. In: Daniel, F., Dolog, P., Li, Q. (eds.)
ICWE 2013. LNCS, vol. 7977, pp. 408–415. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39200-9_34

15. Drools, J.: Drools Fusion: Complex Event Processor. http://www.jboss.org/drools/
drools-fusion.html

16. Wilde, E., Pautasso, C. (eds.): REST: From Research to Practice. Springer, New
York (2011). https://doi.org/10.1007/978-1-4419-8303-9

17. Apache: Apache ActiveMQ. http://activemq.apache.org/
18. Oracle: Java message service documentation. Technical report (2016). http://www.

oracle.com/technetwork/java/docs-136352.html
19. Barsocchi, P., Oligeri, G., Potortì, F.: Measurement-based frame error model for

simulating outdoor Wi-Fi networks. IEEE Trans. Wirel. Commun. 8(3), 1154–1158
(2009)

20. Furfari, F., Girolami, M., Lenzi, S., Chessa, S.: A service-oriented zigbee gateway
for smart environments. J. Ambient Intell. Smart Environ. 6(6), 691–705 (2014)

21. Palumbo, F., Ullberg, J., Štimec, A., Furfari, F., Karlsson, L., Coradeschi, S.:
Sensor network infrastructure for a home care monitoring system. Sensors 14(3),
3833–3860 (2014)

22. Barsocchi, P., Ferro, E., Fortunati, L., Mavilia, F., Palumbo, F.: EMS@CNR: an
energy monitoring sensor network infrastructure for in-building location-based ser-
vices. In: 2014 International Conference on High Performance Computing & Sim-
ulation (HPCS), pp. 857–862. IEEE (2014)

23. Barbon, G., Margolis, M., Palumbo, F., Raimondi, F., Weldin, N.: Taking arduino
to the internet of things: the ASIP programming model. Comput. Commun. 89,
128–140 (2016)

24. Palumbo, F., La Rosa, D., Chessa, S.: GP-m: mobile middleware infrastructure for
ambient assisted living. In: 2014 IEEE Symposium on Computers and Communi-
cation (ISCC), pp. 1–6. IEEE (2014)

25. Kim, Y., Schmid, T., Charbiwala, Z.M., Srivastava, M.B.: ViridiScope: design and
implementation of a fine grained power monitoring system for homes. In: Proceed-
ings of the 11th International Conference on Ubiquitous Computing, pp. 245–254.
ACM (2009)

26. Girolami, M., Palumbo, F., Furfari, F., Chessa, S.: The integration of ZigBee
with the GiraffPlus robotic framework. In: O’Grady, M.J., Vahdat-Nejad, H.,
Wolf, K.-H., Dragone, M., Ye, J., Röcker, C., O’Hare, G. (eds.) AmI 2013.
CCIS, vol. 413, pp. 86–101. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-04406-4_10

https://doi.org/10.1007/978-3-642-39200-9_34
https://doi.org/10.1007/978-3-642-39200-9_34
http://www.jboss.org/drools/drools-fusion.html
http://www.jboss.org/drools/drools-fusion.html
https://doi.org/10.1007/978-1-4419-8303-9
http://activemq.apache.org/
http://www.oracle.com/technetwork/java/docs-136352.html
http://www.oracle.com/technetwork/java/docs-136352.html
https://doi.org/10.1007/978-3-319-04406-4_10
https://doi.org/10.1007/978-3-319-04406-4_10

190 P. Barsocchi et al.

27. Palumbo, F., Barsocchi, P., Furfari, F., Ferro, E.: AAL middleware infrastructure
for green bed activity monitoring. J. Sens. 2013 (2013)

28. CNR: Smartcampus technical report. Technical report (2016). http://www.
smart-applications.area.pi.cnr.it/doc/smartareaTechnicalDescription.pdf

29. Namiot, D., Sneps-Sneppe, M.: On software standards for smart cities: API or DPI.
In: Proceedings of the 2014 ITU Kaleidoscope Academic Conference: Living in a
Converged World-Impossible Without Standards?, pp. 169–174. IEEE (2014)

30. Glikson, A.: Fi-ware: core platform for future internet applications. In: Proceedings
of the 4th Annual International Conference on Systems and Storage (2011)

31. Sun, Y., Song, H., Jara, A.J., Bie, R.: Internet of things and big data analytics for
smart and connected communities. IEEE Access 4, 766–773 (2016)

32. Ramparany, F., Marquez, F.G., Soriano, J., Elsaleh, T.: Handling smart environ-
ment devices, data and services at the semantic level with the FI-ware core plat-
form. In: Big Data 2014, pp. 14–20. IEEE (2014)

33. Salvi, D., Montalva Colomer, J.B., Arredondo, M.T., Prazak-Aram, B., Mayer, C.:
A framework for evaluating ambient assisted living technologies and the experience
of the universaal project. J. Ambient Intell. Smart Environ. 7(3), 329–352 (2015)

34. Martin, E., Xie, T.: Automated test generation for access control policies. In: Sup-
plemental Proceedings of 17th International Symposium on Software Reliability
Engineering (ISSRE), November 2006

35. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Schilders, L.: Automated
testing of extensible access control markup language-based access control systems.
IET Softw. 7(4), 203–212 (2013)

36. Teigao, R., Maziero, C., Santin, A.: Applying a usage control model in an operating
system kernel. J. Netw. Comput. Appl. 34(4), 1342–1352 (2011)

37. Bailey, C.: Application of self-adaptive techniques to federated authorization mod-
els. In: 2012 34th International Conference on Software Engineering (ICSE), pp.
1495–1498. IEEE (2012)

38. Nyre, Å.A.: Usage control enforcement - a survey. In: Tjoa, A.M., Quirchmayr,
G., You, I., Xu, L. (eds.) CD-ARES 2011. LNCS, vol. 6908, pp. 38–49. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23300-5_4

39. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Martinelli, F., Mori, P.:
Testing of PolPA-based usage control systems. Softw. Q. J. 22(2), 241–271 (2014)

40. Daoudagh, S., Lonetti, F., Marchetti, E.: Assessment of access control systems
using mutation testing. In: TELERISE 2015, Florence, Italy, 18 May 2015, pp.
8–13 (2015)

41. Bertolino, A., Daoudagh, S., Kateb, D.E., Henard, C., Traon, Y.L., Lonetti, F.,
Marchetti, E., Mouelhi, T., Papadakis, M.: Similarity testing for access control.
Inf. Softw. Technol. 58, 355–372 (2015)

42. Carvallo, P., Cavalli, A.R., Mallouli, W., Rios, E.: Multi-cloud applications security
monitoring. In: Au, M.H.A., Castiglione, A., Choo, K.-K.R., Palmieri, F., Li, K.-C.
(eds.) GPC 2017. LNCS, vol. 10232, pp. 748–758. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57186-7_54

43. Bertolino, A., Calabró, A., Lonetti, F., Marchetti, E.: Towards business process
execution adequacy criteria. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD
2016. LNBIP, vol. 238, pp. 37–48. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-27033-3_3

44. Calabrò, A., Lonetti, F., Marchetti, E., Spagnolo, G.O.: Enhancing business process
performance analysis through coverage-based monitoring. In: 10th QUATIC 2016,
Lisbon, Portugal, 6–9 September 2016, pp. 35–43 (2016)

http://www.smart-applications.area.pi.cnr.it/doc/smartareaTechnicalDescription.pdf
http://www.smart-applications.area.pi.cnr.it/doc/smartareaTechnicalDescription.pdf
https://doi.org/10.1007/978-3-642-23300-5_4
https://doi.org/10.1007/978-3-319-57186-7_54
https://doi.org/10.1007/978-3-319-57186-7_54
https://doi.org/10.1007/978-3-319-27033-3_3
https://doi.org/10.1007/978-3-319-27033-3_3

Author Index

Barsocchi, Paolo 171
Breu, Ruth 147

Calabró, Antonello 17, 171

Elberzhager, Frank 121

Felderer, Michael 39, 147

Häser, Florian 147

Kalinowski, Marcos 39
Kieseberg, Peter 3
Kuhrmann, Marco 39

Lenarduzzi, Valentina 133
Lonetti, Francesca 17, 171

Marchetti, Eda 17, 171
Méndez Fernández, Daniel 39
Mordinyi, Richard 103

Naab, Matthias 121

Palumbo, Filippo 171
Petrovic, Sanja 83

Sabou, Marta 83
Sneed, Harry M. 60
Stan, Alexandru Cristian 133

Taibi, Davide 133
Tießler, Michaela 39

Venters, Gustavs 133

Weippl, Edgar 3
Windegger, Markus 133
Winkler, Dietmar 83

	Message from the General Chair
	Message from the Scientific Program Chair
	Organization
	Contents
	Safety and Security
	Security Challenges in Cyber-Physical Production Systems
	1 Introduction
	2 Security Challenges in Industrial Environments
	2.1 Industrial Environments Versus IoT
	2.2 Challenges Regarding Software Development and Networking
	2.3 Attack Detection and Security Models
	2.4 Securing Data

	3 Security Challenges for the PSE Process
	3.1 Current Approaches in Production System Engineering
	3.2 Introducing Security to PSE
	3.3 Securing the PSE Process
	3.4 Securing PSE Information

	4 Conclusion
	References

	Monitoring of Access Control Policy for Refinement and Improvements
	1 Introduction
	2 Background
	2.1 XACML and Access Control Systems
	2.2 Adequacy Criteria and Coverage

	3 Policy Monitoring Infrastructure
	4 Example
	4.1 Example Description
	4.2 Results

	5 Related Works
	5.1 Access-Control
	5.2 Monitoring

	6 Discussion and Conclusions
	References

	Requirements Engineering and Requirements-Based Testing
	On Evidence-Based Risk Management in Requirements Engineering
	1 Introduction
	2 Background and Related Work
	3 Research Design
	3.1 Problem Analysis
	3.2 Solution Concept and Prototypical Implementation
	3.3 Validation
	3.4 Large-Scale Evaluation and Next Steps
	3.5 Validity Procedures

	4 Evidence-Based RE Risk Assessment Approach
	4.1 Overall Approach to Evidence-Based RE Risk Assessment
	4.2 Prototypical Implementation

	5 Validation
	5.1 Demographics
	5.2 RQ 1: State of Practice in RE Risk Assessment
	5.3 RQ 2: Benefits and Drawbacks of the Approach
	5.4 RQ 3: Barriers for Using the Approach
	5.5 RQ 4: Usability of the Tool
	5.6 RQ 5: Necessary Changes

	6 Conclusion
	References

	Requirement-Based Testing - Extracting Logical Test Cases from Requirement Documents
	Abstract
	1 Background of This Work
	2 Model-Based Versus Requirement-Based Testing
	3 Generating Logical Test Cases
	4 Transforming Logical into Physical Test Cases
	5 Case Studies from Industrial Practice
	5.1 Generating Test Conditions for a Betting System
	5.2 Generating Test Conditions for a Cell Phone Answering Service
	5.3 Generating Test Conditions for an Airport Customs Office
	5.4 Generating Test Conditions for Testing a Governmental Website

	6 Related Work
	7 Conclusions and Lessons Learned
	References

	Crowdsourcing in Software Engineering
	Expert Sourcing to Support the Identification of Model Elements in System Descriptions
	Abstract
	1 Introduction
	2 Related Work
	3 Research Questions
	4 Feasibility Study Setup
	5 Experimental Results
	5.1 Identification of ENTITY Model Elements
	5.2 Identification of Entity and Relation ATTRIBUTE Model Elements

	6 Discussion and Limitations
	6.1 Discussion
	6.2 Limitations and Threats to Validity

	7 Lessons Learned for Text Analysis Task Design
	8 Conclusion and Future Work
	Acknowledgments
	References

	Software and Systems Architecture
	Are Your Requirements Covered?
	1 Introduction
	2 Related Work
	2.1 Manually Guided Approaches
	2.2 Information Retrieval
	2.3 Model-Based Techniques

	3 Research Issues
	4 Use Case
	5 Solution Approach
	5.1 Traceability Link Model
	5.2 Selection of Code Coverage Tool
	5.3 Requirement Coverage Calculation Process

	6 Initial Evaluation
	7 Discussion
	8 Conclusion and Future Work
	References

	High Quality at Short Time-to-Market: Challenges Towards This Goal and Guidelines for the Realization
	Abstract
	1 Introduction
	2 Procedure and Concepts
	2.1 Procedure
	2.2 Conceptual View

	3 Guidelines and Implementation
	3.1 Guidelines
	3.2 Implementation Hints

	4 Experiences with Selected Guidelines from the Fujitsu EST Environment
	5 Summary and Outlook
	References

	Prioritizing Corrective Maintenance Activities for Android Applications: An Industrial Case Study on Android Crash Reports
	Abstract
	1 Introduction
	2 The Exception Monitoring System
	3 The Case Study
	3.1 Study Goal, Questions and Metrics
	3.2 The Analyzed Application
	3.3 Results

	4 Discussion
	5 Conclusion
	References

	Experimentation in Software Engineering
	Evaluation of an Integrated Tool Environment for Experimentation in DSL Engineering
	1 Introduction
	2 Related Work
	3 Running Example Description
	4 Integrated DSL Experimentation Environment
	4.1 Methodology

	5 Evaluation of the Platform
	5.1 Evaluation Design
	5.2 Results and Discussion
	5.3 Threats to Validity

	6 Conclusion
	References

	Smart Environments
	Leveraging Smart Environments for Runtime Resources Management
	1 Introduction
	2 Motivations and Research Questions
	3 Access and Usage Control
	4 Infrastructure
	4.1 Access Control Engine
	4.2 Monitoring Components
	4.3 Sensors and Actuators Components
	4.4 Research Questions Analysis

	5 Infrastructure Application
	5.1 Case Study Set up
	5.2 Sensors, Access and Usage Rules Management
	5.3 Maintenance Activity Scenario
	5.4 Results Analysis and Lesson Learned

	6 Related Work
	7 Conclusions
	References

	Author Index

