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Foreword

Fuzzy logic, based on fuzzy sets, was introduced by Lotfi A. Zadeh along the mid
1960s and 1970s, and meant one of the most important, creative, and fruitful
concepts introduced in science and technology during the second half of twentieth
century, as it is shown by the many theoretic results and applications that are based
on fuzzy sets. Its’ introduction has, indeed, all the typical characteristics of cre-
ativity since, and by the first time, it deals with the imprecision that permeates
natural language, and that logicians and scientists in general did left aside, and even
abhorred it from a long time by over valuating the precision that is necessary for
science. Nevertheless, if fuzzy logic tries to model the reasoning with imprecise
concepts, it is not imprecise in itself; fuzzy logic is not fuzzy.

A proper fuzzy set is nothing else than the collective generated in the language
by an imprecise word, and whose ‘meaning extent’ can be measured by its mem-
bership functions, each one being designed accordingly with the current
context-dependent and purpose-driven meaning of the corresponding word that
generates the fuzzy set. Linguistic collectives, or fuzzy sets, are cloudy entities
placed in natural language where they are well anchored, since people manage them
with ease and jointly with their linguistic labels; they are classical sets whenever the
word is precisely used in the universe of discourse. If all this corresponds with
philosophically viewing, à la Wittgenstein, the meaning of words as its contextual
use, for the scientific analysis, or domestication of language, imprecision cannot be
avoided, and advancing toward the mathematical modeling of natural language and
ordinary reasoning is necessary for reaching machines that can actually ‘think’ like
people, and for advancing into ‘Computing with Words and Perceptions’ as Zadeh
advocates since the last nineties.

In addition, and once Zadeh did prove that a membership function whose
maximum in the unit interval is 1 can be seen as a possibility distribution, this
theoretic fact opened a window for using these functions to also measure the
nonrandom uncertainty that exists in language, and for both precise and imprecise
words.

Zadeh’s trial to scientifically domesticating imprecision and nonrandom uncer-
tainty was actually a novelty that did not receive immediate adhesion by scientists
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and that, without any doubt, aroused from the today disappeared field of cybernetics
which is the ascent of the successful current information technologies. As Zadeh
likes to say, fuzzy logic is a matter of degree, but it should not be forgotten that
applying fuzzy logic is also a matter of design; that all the intervening imprecise
terms should be carefully designed according with their conceptual use, and that for
this to count with mathematical models of relations, connectives, hedges, antonyms,
negations, etc., is very important.

Zadeh, a very creative engineer and scientist, not only introduced the basic ideas
of fuzzy sets and fuzzy logic, but pushed ahead with his own work its application to
many fields, ranging from expert systems and control engineering technology to
economy or medicine; as something not very usual, during his large life he is
contemplating the fertility of his ideas in fields different to those in which he did
initially expected its usefulness. Fertility, and mainly in other fields, is what Karl
Menger qualified as the success of a scientific concept.

As many creative new ideas, fuzzy logic was received with some content by
many scientists; for example, I remember how an important mathematician, by my
part a loved person and still in the first eighties, asked me if I was expecting to
‘resolve the world’ with just the unit interval! These scientists were closed in their
own world and forgot that before Zadeh, John von Neumann did ask for the
introduction of mathematical analysis into the study of ‘automata,’ or that the great
geometer Karl Menger did introduce the probabilistic ‘hazy sets’ that can be seen as
a precedent of fuzzy sets. They even forgot that, in language and reasoning, too
much precision often conducts to a loosing of meaning.

The introduction of mathematical analysis in the study of language was done in
fuzzy logic after the first papers of Zadeh, and thanks to the work of some math-
ematicians. Indeed, and from the very beginning of fuzzy logic, several (then
young) mathematicians did enter into the new field and contributed to its theoretic
development with the study of some of its ideas like it was, for instance, the
analysis of the several ways of mathematically representing the basic ‘If/then’
conditionals that are relevant for the modeling of the important rule-based systems,
that experts established for linguistically describing the behavior of some dynamical
systems. This task was continued by mathematicians along the world, and today it
is easy to recognize their work in, for instance, the mathematic contributions made
in the study of t-norms, negations and antonyms, aggregation functions, implication
functions, indistinguishability (or fuzzy equivalence) relations, fuzzy integrals,
fuzzy graphs.

In my own case, after being mathematically educated in a strict ‘bourbakism,’
typical of the fifties and sixties of the twentieth Century, and coming from a
postdoctoral study of probabilistic metric spaces, my interest in fuzzy logic was a
partial consequence of feeling that mathematics, and at least its teaching, was going
too far from the real world problems when most of the knowledge fixed in its
corpus historically comes from questions posed in engineering, natural sciences,
financial sciences, social sciences, etc. That the secession between mathematics and
real world was not actually good neither for mathematics, nor for real world
problems; at the end, and as Galileo said, the book of nature is written in the
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language of mathematics, and at least from Newton, the scientific study of the world
cannot be made without mathematics. Natural language and ordinary reasoning are
also in the world, and rationality (the old Greek ‘Logos’) deserves to be scientifi-
cally studied.

Along the years, each time I am more convinced that if something called ‘fuzzy
mathematics’ has no sense, what is full of sense is to conduct studies on new
mathematical concepts that can, eventually, facilitate some new instruments for the
study of both linguistic imprecision and nonrandom uncertainty; instruments that
can help penetrating into the ‘logos.’ This book is a nice example of this kind of
mathematical contributions that flourished around Zadeh’s initial ideas, namely,
fuzzy graphs, that were introduced by the late Prof. Azriel Rosenfeld as early as in
1975.

If directed graphs grounded on a classical set and with graduate arcs are not only
well known, but widely used in many applications, graphs defined on a fuzzy set in
its ground have interesting applications in the many cases in which elements in such
ground are affected by some imprecision allowing its graduation. Fuzzy graphs
translate into fuzzy sets the graduate relational concept of a numerically valued
graph and reduce them when the fuzzy set is but a crisp one; they still deserve more
applications than those that have been done and, for instance, in the mathematical
modeling of linguistic graded relationships between imprecise statements.

This book by Sunil Mathew, John N. Mordeson, and Devender S. Malik can
contribute to both help continuing the mathematical development of fuzzy graph
theory and to expand more its use in the applications; actually, the book comes to
complement what is currently available in the literature concerning fuzzy graphs,
like the two precedent books coauthored by John N. Mordeson.

Were only for this fact the book already deserves to be welcomed, but, in
addition, it not only contains most of all that has been published on fuzzy graphs,
including the important contributions made by its authors, but presents all in a
mathematically well organized and clearly understandable form.

The three authors should be congratulated by the excellent presentation of the
theory of fuzzy graphs they reached with this book that, I am sure, will receive
careful attention and will be appreciated by both the specialists, as well as by those
aiming at applying the big collection of ideas on fuzzy graphs it contains.

Oviedo (Asturias), Spain Enric Trillas
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Preface

Lotfi Zadeh introduced the concept of a fuzzy subset of a set in 1965 as a way to
represent uncertainty. His ideas have motivated the interest of researchers world-
wide. One such researcher was Azriel Rosenfeld. He was one of the fathers of fuzzy
graph theory. His development of the concept of a fuzzy graph provides the
motivation of this book and the research it contains.

The book deals with current ideas in fuzzy graphs. It is not an attempt to provide
an exhaustive study. There are individual topics in fuzzy graphs that would provide
enough material for an entire book in them. Still it covers most of the major
developments in fuzzy graph theory during the period 1975–2017. The book should
be of interest to research mathematicians, computer scientists, and social scientists.
It is the first volume of a two volume set. The second volume focuses on the
application of fuzzy graph theory to the problem of human trafficking.

Some of the material in this book has appeared in [127]. We include it here since
the development of the book rests on it.

We provide in Chap. 1 only the very basics of fuzzy set theory needed to
understand the book. We assume the reader is familiar with basic notions of
mathematics including set theory. Since this book is designed primarily for
researchers with a knowledge of fuzzy set theory, we only provide a few concepts
from fuzzy sets and relations mainly to set forth our notation to be used in the book.

In Chap. 2, we present basic concepts of fuzzy graphs which are needed later in
the chapter and in the remainder of the book. For example, we introduce and
present basic results on paths, connectedness, forests, trees, and fuzzy cutsets. Other
basic concepts include bridges, cutsets, and blocks. We examine the connection
between cycles and fuzzy trees. We present deeper results on blocks and in fact give
a characterization of blocks in fuzzy graphs. We examine special types of cycles
such as strong cycles and locamin cycles. We then present results on important
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types of fuzzy graphs such as fuzzy line graphs and fuzzy interval graphs. The study
of fuzzy interval graphs includes the fuzzy analog of Marczewski’s theorem, the
Gilmore and Hoffman characterization, and the Fulkerson and Gross characteriza-
tion. The chapter is concluded with the development of certain operations on fuzzy
graphs such as the Cartesian cross product, the composition, union, and join of two
fuzzy graphs.

In Chap. 3, we focus on the connectivity of fuzzy graphs. We describe various
types of edges in fuzzy graphs with respect to connectivity properties and char-
acterize different fuzzy graph structures. We then consider vertex connectivity and
edge connectivity. We provide generalized versions of connectivity parameters
introduced by Yeh and Bang in 1975. Menger’s theorem is very celebrated result in
graph theory. We present a version of Menger’s theorem for fuzzy graphs.

Chapter 4 develops further results involving blocks. An application involving
undirected network of roads is given. Attention is then turned to critical blocks and
block graphs. Connectivity-transitive and cyclically transitive fuzzy graphs are
examined next.

Chapter 5 starts by considering connectedness and acyclic levels. A new mea-
sure of connectivity of fuzzy graphs, called cycle connectivity, and two different
types of bridges, called bonds and cutbonds, are discussed. Various metrics are also
examined. Attention is also given to detour distance in fuzzy graphs.

In Chap. 6, the notion of a sequence in fuzzy graphs is introduced. Most of the
fuzzy graph structures are characterized using different types of sequences. The
notion of saturation in fuzzy graphs is also introduced. The chapter concludes with
a study of strong intervals and strong gates in fuzzy graphs.

In Chap. 7, we present the work on interval-valued fuzzy graphs that is mostly
due to Akram. It includes results concerning the operations, Cartesian product,
composition, union, and join of fuzzy interval graphs. Other results deal with
isomorphisms, complete, and self-complementary interval-valued fuzzy graphs.
The important work of Craine on fuzzy interval graphs appears in Chap. 2.

In Chap. 8, we present the work on bipolar fuzzy graphs that is mostly due to
Akram. This work includes results on operations of bipolar fuzzy graphs similar to
the results in Chaps. 2 and 7. Results concerning isomorphisms of bipolar fuzzy
graphs as well as results concerning strong and regular bipolar fuzzy graphs are
provided. The chapter concludes with the work by Mathew and others on con-
nectivity concepts of bipolar fuzzy graphs.

The authors are thankful to everyone who supported this project. It is our hope
that this book will help students and researchers all over the globe to learn and to
apply fuzzy graph theory. We welcome all suggestions and comments from
everyone so that we can improve this book as a useful resource for students,
teachers, scientists, and engineers for addressing the challenges of today’s world.
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Chapter 1
Fuzzy Sets and Relations

The notion of a fuzzy graph was initially introduced by Kauffman in [91]. How-
ever, the development of fuzzy graph theory is due to the ground setting papers of
Rosenfeld [154] and Yeh and Bang [186]. In Rosenfeld’s paper, basic structural and
connectivity concepts were presented while Yeh and Bang introduced different con-
nectivity parameters and discussed their application. Rosenfeld obtained the fuzzy
analogs of several graph-theoretic concepts like bridges, paths, cycles, trees, and
connectedness. Most of the theoretical development of fuzzy graph theory is based
on Rosenfeld’s initial work.

Fuzzy graph theory is finding more and more applications. Applications can be
found in cluster analysis, pattern classification, data base theory, social sciences,
neural networks, decision analysis, group structure, portfoliomanagement, andmany
other areas [128].

1.1 Fuzzy Sets

Probability theory, considered as the only theory to deal with uncertainty till the
middle of the 20th century was based on the well known YES or NO logic, known
as the two valued logic of Aristotle. Aristotelian logic provides the information,
whether an element belongs to a set or not. Most of the human inventions like the
switch, computer, vehicles, and so on are based on this logic. In 1965, Lotfi A
Zadeh, [190] in his seminal paper introduced a new type of set called a fuzzy set
and a new logic later known as fuzzy logic. Zadeh’s line of thought was different.
Instead of YES or NO, regarding the existence of an element in a set, he used the
degree of membership, which allows an element to exist in a set with partial grades of
memberships. The applications of fuzzy logic are profound andwidespread.Artificial
intelligence, electronics, transportation, robotics and pattern recognition are some of
the major areas that use fuzzy logic.

There are a large number of books available in both theory and applications of
fuzzy sets and logic. In the first chapter, we present only the basic concepts from

© Springer International Publishing AG 2018
S. Mathew et al., Fuzzy Graph Theory, Studies in Fuzziness
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2 1 Fuzzy Sets and Relations

fuzzy set theory needed for this book. We assume that the reader is knowledgeable
on the basics of set theory. However, we first must set our notation.

Z denotes the integers
R denotes the set of all real numbers
N denotes the set of positive integers or natural numbers
We let ∧ denote minimum or infimum and ∨ denote maximum or supremum.
Let A and B be subsets of a universal setU.Wewrite A ⊆ B if A is a subset of B

or equivalently B ⊇ A if B contains A. We write A ⊂ B if A ⊆ B and there exists
x ∈ B such that x /∈ A. The intersection of A and B is denoted by A ∩ B and the
union of A and B is denoted by A∪ B.We let B\A denote the set difference of A in
B. Thus, B\A = {x ∈ B | x /∈ A}. If B = U, then we write Ac forU\A and call Ac

the complement of A.We let A× B denote the Cartesian cross product of A and B.
We let ∅ denote the empty set.

Definition 1.1.1 Let X be a set. A fuzzy subset of X is a function from X into the
closed interval [0, 1].

We can interpret a fuzzy subset μ of a set X as giving the membership degree of
every element of X in some “subset” of X , i.e, given in some descriptive manner. For
example, A might be the set of all young people in a set of people X. Of course, A is
not been well-defined here but we might let μ assign to every member of X a value
t from [0, 1] in such away that t represents the membership degree of x in A, i.e., a
measure of “youngness.” We shall use the term fuzzy set, hereafter to denote fuzzy
subset of a set, if there is no confusion regarding the underlying set. We let FP(X)
denote the set of all fuzzy subsets of X. We call FP(X) the fuzzy power set of X.

A basic concept of fuzzy set theory is the t-cut of a fuzzy subset μ of a set X ,
where t ∈ [0, 1]. The t-cut or t-level set of a fuzzy subset μ of X is defined to be
μt = {x ∈ X | μ(x) ≥ t}, where t ∈ [0, 1]. The strong t-cut of μ is defined as
μt+ = {x ∈ X | μ(x) > t}. The support of μ is defined to be Supp(μ) = {x ∈
X | μ(x) > 0}. We write μ∗ for Supp(μ) at times. Clearly a t-cut of a fuzzy set is a
crisp set and the support is indeed a strong t-cut. The 1-cut is usually termed as the
core of the fuzzy set μ. The height h(μ) of fuzzy set μ is the largest membership
value obtained by an element in the fuzzy set. A fuzzy set is said to be normal if
h(μ) = 1 and subnormal if h(μ) < 1. The height of μ may be defined alternately
as the supremum of all t such that μt = ∅.
Example 1.1.2 Consider the fuzzy subset μ ofR given in Fig. 1.1. Here μ∗ = (0, 3),
μ1 = [1, 2]. Thus, the core of the fuzzy set μ is [1, 2]. Also, h(μ) = 1 and hence it
is a normal fuzzy set.

Example 1.1.3 Consider the set X = {1, 2, 3, . . . , 10}. Define the fuzzy sub-
set μ of X , representing ‘real numbers near to 5’ as {(1, 0.1), (2, 0.3), (3, 0.6),
(4, 0.8), (5, 1), (6, 0.8), (7, 0.6), (8, 0.3), (9, 0.1), (10, 0)}. Because μ(5) = 1, μ
is a normal fuzzy subset of X . Also, note that 10 /∈ μ∗. Now μ0.5 = μ0.5+ =
{3, 4, 5, 6, 7}, μ0.6 = {3, 4, 5, 6, 7} and μ0.6+ = {4, 5, 6}.
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Fig. 1.1 A fuzzy subset of
the real line

Definition 1.1.4 A fuzzy subset μ of a set X is said to be convex if μ(λx1 + (1 −
λ)x2) ≥ μ(x1) ∧ μ(x2) for all x1, x2 ∈ X and for all λ ∈ [0, 1].

Clearly a fuzzy set is convex if all its t-cuts are convex.

Definition 1.1.5 For a finite fuzzy subset μ of X , the cardinality of μ is defined as
|μ| =

∑

x∈X
μ(x). The relative cardinality of μ is defined as ‖μ‖ = |μ| / |X | .

We next define some set theoretical operations for fuzzy sets. Let μ and ν be
fuzzy subsets of a set X. We write μ ⊆ ν if for all x ∈ X, μ(x) ≤ ν(x). If
μ ⊆ ν and there exists x ∈ X such that μ(x) < ν(x), we write μ ⊂ ν. We define
μ ∩ ν by for all x ∈ X, (μ ∩ ν)(x) = μ(x) ∧ ν(x). We define μ ∪ ν by for all
x ∈ X, (μ ∪ ν)(x) = μ(x) ∨ ν(x).

The notion of intersection for fuzzy sets can also be defined by use of a variety
of t-norms.

Definition 1.1.6 A function i : [0, 1] × [0, 1] → [0, 1] is called a t-norm if it
satisfies the following conditions:

(i) For all x ∈ [0, 1], i(1, x) = x .
(i i) For all x, y ∈ [0, 1], i(x, y) = i(y, x).
(i i i) For all x, y, z ∈ [0, 1], i(x, i(y, z)) = i(i(x, y), z).
(iv) For all w, x, y, z ∈ [0, 1], w ≤ x and y ≤ z implies i(w, y) ≤ i(x, z).

Example 1.1.7 The following are examples of t-norms: for all x, y ∈ [0, 1],
(i) i(x, y) =

{
x ∧ y if x ∨ y = 1,
0 otherwise

(i i) i(x, y) = 0 ∨ (x + y − 1)
(i i i) i(x, y) = xy

2−(x+y−xy)
(iv) i(x, y) = xy
(v) i(x, y) = x ∧ y.

The t-norm in (v) is often called the standard intersection for fuzzy subsets.
The notion of union for fuzzy sets can be defined by a variety of t-conorms as

defined next.
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Definition 1.1.8 A function u : [0, 1] × [0, 1] → [0, 1] is called a t-conorm if it
satisfies the following conditions:

(i) For all x ∈ [0, 1], u(0, x) = x .
(i i) For all x, y ∈ [0, 1], u(x, y) = u(y, x).
(i i i) For all x, y, z ∈ [0, 1], u(x, u(y, z)) = u(u(x, y), z).
(iv) For all w, x, y, z ∈ [0, 1], w ≤ x and y ≤ z implies u(w, y) ≤ u(x, z).

Example 1.1.9 The following are examples of t-conorms:
(i) Standard union: u(x, y) = x ∨ y
(i i) Algebraic sum: u(x, y) = x + y − xy
(i i i) Bounded sum: u(x, y) = 1 ∧ (x + y)

(iv) Drastic union: u(x, y) =
⎧
⎨

⎩

x if y = 0,
y if x = 0,
1 otherwise.

Next we introduce the notion of a complement.

Definition 1.1.10 A function c : [0, 1] → [0, 1] is called a fuzzy complement if
the following conditions hold:

(i) c(0) = 1 and c(1) = 0.
(i i) For all x, y ∈ [0, 1], x ≤ y implies c(x) ≥ c(y).

A desirous property for a fuzzy complement c to possess is continuity. Another
is that it be involutive, i.e., for all x ∈ [0, 1], c(c(x)) = x . An example of a fuzzy
complement is the standard complement, i.e., c(x) = 1 − x for all x ∈ [0, 1].

In classical set theory, the operations of intersection and union are dual with
respect to complement in the sense that they satisfy De Morgan’s laws,

(A ∩ B)c = Ac ∪ Bc and (A ∪ B)c = Ac ∩ Bc

for subsets A and B of some universe.
For fuzzy subsets, De Morgan’s laws become

c(i(a, b)) = u(c(a), c(b)) and c(u(a, b)) = i(c(a), c(b)).

It can be easily shown that if c is the standard complement, then the standard
intersection and the standard union are duals with respect to c as are many other
pairs.

Example 1.1.11 Standard union and intersection are illustrated in this example. Con-
sider the fuzzy subsets σ and μ of {1, 2, 3, 4, 5, 6, 7, 8} defined as follows.

σ = {(1, 0.1), (2, 0.5), (3, 0.8), (4, 1), (5, 0.8), (6, 0.5), (7, 0.1), (8, 0.0)}

and

μ = {(1, 0.0), (2, 0.0), (3, 0.2), (4, 0.4), (5, 0.6), (6, 0.8), (7, 1), (8, 1)}.
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Then

σ ∪ μ = {(1, 0.1), (2, 0.5), (3, 0.8), (4, 1), (5, 0.8), (6, 0.8), (7, 1), (8, 1)}

and
σ ∩ μ = {(3, 0.2), (4, 0.4), (5, 0.6), (6, 0.5), (7, 0.1)}.

1.2 Fuzzy Relations

As crisp relations represent the association between elements of two or more sets, a
fuzzy relation gives the extent of relationship between elements between two fuzzy
sets. Zadeh [190] introduced fuzzy relations in 1965. Later, Zadeh [192], Kaufman,
[91] andRosenfeld [154] developed significant results. There are several applications
for fuzzy relations.We have only a theoretical discussion about fuzzy relations in this
section. We provide a formal definition below. Most of the contents of this section
are based on Rosenfeld’s work in 1975 [154].

If S represents a set, a fuzzy relation μ on S is a fuzzy subset of S× S. In symbols,
μ : S × S → [0, 1] such that 0 ≤ μ(x, y) ≤ 1 for all (x, y) ∈ S × S. When μ takes
the values 0 and 1 alone, it becomes the characteristic function of a relation on S. If
R is a subset of S and P is a relation on S, then P becomes a relation on R only if
(x, y) ∈ P implies x ∈ R and y ∈ R. If ζ and η are the characteristic functions of R
and P respectively, then η(x, y) = 1 implies ζ(x) = ζ(y) = 1 for all x, y ∈ R. This
is equivalent to the expression η(x, y) ≤ ζ(x)∧ ζ(y) for all x, y ∈ R. Motivated by
this, we have the definition of a fuzzy relation on a fuzzy subset as follows.

Definition 1.2.1 Let σ be a fuzzy subset of a set S and μ a fuzzy relation on S. Then
μ is called a fuzzy relation on σ if μ(x, y) ≤ σ(x) ∧ σ(y) for all x, y ∈ S.

Definition 1.2.2 If S and T are two sets and σ and τ are fuzzy subsets of S and T ,
respectively, then a fuzzy relation μ from the fuzzy subset σ into the fuzzy subset
τ is a fuzzy subset μ of S × T such that μ(x, y) ≤ σ(x) ∧ τ (y) for all x ∈ S and
y ∈ T .

It is interesting to see that for μ to be a fuzzy relation, the degree of membership of
a pair of elements never exceeds the degree of membership of either of the elements.
Later, while defining a fuzzy graph, this inequality allows us to organize the flow
through an edge of a fuzzy graph in such a way that, it never exceeds the capacities
of its end vertices. Also, μα is a relation from σα into τα for all α ∈ [0, 1] and as a
consequence, μ∗ becomes a relation from σ∗ into τ ∗.

In Definition 1.2.2, if σ(x) = 1 for all x ∈ S and τ (y) = 1 for all y ∈ T , then
μ is called a fuzzy relation from S into T . Similarly, if σ(x) = 1 for all x ∈ S in
Definition 1.2.1, μ is said to be a fuzzy relation on S.

Definition 1.2.3 If σ is a fuzzy subset of a set S, the strongest fuzzy relation on σ
is the fuzzy relation μσ defined by μσ(x, y) = σ(x) ∧ σ(y) for all x, y ∈ S.
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Definition 1.2.4 For a fuzzy relation μ on S, the weakest fuzzy subset of S, on
which μ is a fuzzy relation is σμ, defined by σμ(x) = ∨y∈S(μ(x, y) ∨ μ(y, x)) for
all x ∈ S.

Definition 1.2.5 Let μ : S × T → [0, 1] be a fuzzy relation from a fuzzy subset σ
of S into a fuzzy subset τ of T and ν : T ×U → [0, 1] is a fuzzy relation from the
fuzzy subset ρ of T into a fuzzy subset η of U . Define μ ◦ ν : S × U → [0, 1] by
(μ ◦ ν)(x, z) = ∨{μ(x, y) ∧ ν(y, z) | y ∈ T } for all x ∈ S, z ∈ U. Then μ ◦ ν is
called the max–min composition of σ and τ .

The composition of any two fuzzy relations as in Definition 1.2.5 is always a
fuzzy relation. But in the next result, we only consider two fuzzy relations defined
on the same fuzzy set.

Proposition 1.2.6 If μ and ν are fuzzy relations on a fuzzy set σ, then μ◦ν is a fuzzy
relation on σ.

Proof Let S be a set and σ be a fuzzy subset of S. Because μ and ν are fuzzy relations
on σ, μ(x, y) ≤ σ(x) ∧ σ(y) and ν(y, z) ≤ σ(y) ∧ σ(z) for all x, y, z ∈ S. Thus,
μ(x, y) ∧ ν(y, z) ≤ σ(x) ∧ σ(y) ∧ σ(z) ≤ σ(x) ∧ σ(z) for all y ∈ S and hence,
(μ ◦ ν)(x, z) = ∨y∈S(μ(x, y) ∧ ν(y, z)) ≤ σ(x) ∧ σ(z) for all x, z ∈ S. �

Max–min composition is similar to matrix multiplication, where addition is
replaced by ∨ and multiplication by ∧. We can easily show that the composition
of fuzzy relations is associative. So if we denote μ ◦ μ by μ2, higher powers of
the fuzzy relation μ2,μ3, and so on, can be easily defined. Define μ∞(x, y) =
∨{μk(x, y) | k = 1, 2, . . .} for all x, y ∈ S. Also, define μ0(x, y) = 0 if x = y and
μ0(x, x) = μ(x, x) otherwise.

Proposition 1.2.7 If μ and ν are two fuzzy relations on a finite set S, then for all
t ∈ [0, 1], we have (μ ◦ ν)t = μt◦ ν t .

Proof Let (x, z) ∈ (μ◦ν)t . Then (μ◦ν)(x, z) ≥ t . By definition,μ(x, y)∧ν(y, z) ≥
t for some y ∈ S. Therefore, μ(x, y) ≥ t and ν(y, z) ≥ t , which implies (x, y) ∈ μt

and (y, z) ∈ ν t . Thus, (x, z) ∈ μt ◦ ν t by the definition of composition of functions.
Hence, (μ ◦ ν)t ⊆ μt ◦ ν t . Similarly, μt ◦ ν t ⊆ (μ ◦ ν)t . Thus, (μ ◦ ν)t = μt ◦ ν t .

�

Proposition 1.2.8 Suppose μ, ν,λ, ρ are fuzzy relations defined on a fuzzy subset
σ of S. If μ ⊆ ν and λ ⊆ ρ, then μ ◦ λ ⊆ ν ◦ ρ.

Proof Wehave (μ◦λ)(x, z) = ∨y∈S(μ(x, y)∧λ(y, z)) ≤ ∨y∈S(ν(x, y)∧ρ(y, z)) =
(ν ◦ ρ)(x, z) for all x, z ∈ S. �

Note that there are several types of composition of fuzzy relations that are available
in the literature [154]. Next we have a unary operation on a fuzzy relation.

Definition 1.2.9 Let μ be a fuzzy relation defined on a fuzzy subset σ of a set S.
Then the compliment μc of μ is defined as μc(x, y) = 1− μ(x, y) for all x, y ∈ S.
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Definition 1.2.10 Let μ : S × T → [0, 1] be a fuzzy relation from a fuzzy subset σ
of S into a fuzzy subset ν of T . Then μ−1 : T × S → [0, 1], the inverse of μ from
ν into σ is defined as μ−1(y, x) = μ(x, y) for all (y, x) ∈ T × S.

Some of the properties of fuzzy relations are given in the following result. Their
proofs are omitted as they are obvious.

Theorem 1.2.11 Let τ , π, ρ and ν be a fuzzy relations on a fuzzy subset σ of a set
S. Then the following properties hold.

(i) τ ∪ π = π ∪ τ .
(i i) τ ∩ π = π ∪ τ .
(i i i) (τ c)c = τ .
(iv) π ∪ (ρ ∪ ν) = (π ∪ ρ) ∪ ν.
(v) π ∩ (ρ ∩ ν) = (π ∩ ρ) ∩ ν.
(vi) π ◦ (ρ ◦ ν) = (π ◦ ρ) ◦ ν.
(vi i) π ∩ (ρ ∪ ν) = (π ∩ ρ) ∪ (π ∩ ν).
(vi i i) π ∪ (ρ ∩ ν) = (π ∪ ρ) ∩ (π ∪ ν).
(i x) (τ ∪ π)c = πc ∩ τ c.

(x) (τ ∩ π)c = πc ∪ τ c.

(xi) For every t ∈ [0, 1], (τ ∪ π)t = τ t ∪ πt .

(xii) For every t ∈ [0, 1], (τ ∩ π)t = τ t ∩ πt .

(xii i) If τ ⊆ ρ and π ⊆ ν, then τ ∪ π ⊆ ρ ∪ ν.
(xiv) If τ ⊆ ρ and π ⊆ ν, then τ ∩ π ⊆ ρ ∩ ν.

Definition 1.2.12 Let μ be a fuzzy relation on σ, where σ is a fuzzy subset of a set
S. Then μ is said to be reflexive if μ(x, x) = σ(x) for all x ∈ S.

When μ is a reflexive fuzzy relation on σ, it is not hard to see that μ(x, y) ≤
σ(x) = μ(x, x) and μ(y, x) ≤ σ(x) = μ(x, x) for all x, y ∈ S. In other words,
when we express a fuzzy relation in a matrix form, the elements of any row or any
column will be less than or equal to the diagonal element belonging to that row
or column. Sometimes we say μ is reflexive on σ. Next we have some interesting
properties of reflexive fuzzy relations.

Theorem 1.2.13 Let μ and ν be fuzzy relations on a fuzzy subset σ of a set S. If μ
is reflexive, then ν ⊆ ν ◦ μ and ν ⊆ μ ◦ ν.

Proof Let x, z ∈ S. Then (μ ◦ ν)(x, z) = ∨{μ(x, y)∧ ν(y, z) | y ∈ S} ≥ μ(x, x)∧
ν(x, z) = σ(x) ∧ ν(x, z). But ν(x, z) ≤ σ(x) ∧ σ(z). Therefore, σ(x) ∧ ν(x, z) =
ν(x, z). Thus, ν ⊆ μ ◦ ν. Similarly, we can prove that ν ⊆ ν ◦ μ. �

Corollary 1.2.14 If μ is reflexive, then μ ⊆ μ2.

Corollary 1.2.15 If μ is reflexive, then μ0 ⊆ μ ⊆ μ2 ⊆ μ3 ⊆ · · · ⊆ μ∞.

The proofs of Corollaries 1.2.14 and 1.2.15 can be obtained by taking ν as μ,μ2,
and so on in the proof of Theorem 1.2.13.
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Theorem 1.2.16 Let μ be a fuzzy relation on a fuzzy subset σ of a set S. If μ is
reflexive, μ0(x, x) = μ(x, x) = μ2(x, x) = μ3(x, x) = · · · = μ∞(x, x) = σ(x) for
all x ∈ S.

Proof We have μ(x, x) = σ(x) for all x ∈ S. Assume that the result is true for
k = n. That is, μn(x, x) = σ(x), for all x ∈ S. Now, for all x ∈ S, we have
μn+1(x, x) = ∨{μ(x, y) ∧ μn(y, x) | y ∈ S ≤ ∨{σ(x) ∧ σ(x) | y ∈ S} = σ(x).
Also, μn+1(x, x) = ∨{μ(x, y) ∧ μn(y, x) | y ∈ S} ≥ μ(x, x) ∧ μn(x, x) = σ(x).
Thus, μn+1(x, x) = σ(x) for all x ∈ S. �

Theorem 1.2.17 If μ and ν reflexive fuzzy relation on σ, then μ ◦ ν and ν ◦ μ are
also reflexive.

Proof (μ ◦ ν)(x, x) = ∨{μ(x, y) ∧ ν(y, x) | y ∈ S} ≤ ∨{σ(x) ∧ σ(x) | y ∈ S} =
σ(x) and (μ ◦ ν)(x, x) = ∨{μ(x, y) ∧ ν(y, x) | y ∈ S} ≥ μ(x, x) ∧ ν(x, x) =
σ(x) ∧ σ(x) = σ(x). The proof that ν ◦ μ is reflexive is similar. �

Theorem 1.2.18 If μ is reflexive on σ, then σt is reflexive on σt for all t ∈ [0, 1].
Proof Suppose μ is reflexive. Let x ∈ σt . Then μ(x, x) = σ(x) ≥ t and thus
(x, x) ∈ μt . �

Definition 1.2.19 Let μ be a fuzzy relation on σ, where σ is a fuzzy subset of a set
S. Then μ is said to be symmetric if μ(x, y) = μ(y, x) for all x, y ∈ S.

From the definition, it follows that ifμ is symmetric, then thematrix representation
of μ is symmetric.

Theorem 1.2.20 Let μ and ν be fuzzy relations on a fuzzy subset σ of a set S. Then
the following properties hold.

(i) If μ and ν are symmetric, then μ ◦ ν is symmetric if and only if μ ◦ ν = ν ◦ μ.
(i i) If μ is symmetric, then every power of μ also is symmetric.
(i i i) If μ is symmetric, then μt is a symmetric relation on σt for all t ∈ [0, 1].

Proof (i) (μ ◦ ν)(x, z) = (μ ◦ ν)(z, x) ⇔ ∨{μ(x, y) ∧ ν(y, z) | y ∈ S} =
∨{μ(z, y)∧ν(y, x) | y ∈ S} ⇔ ∨{μ(x, y)∧ν(y, z) | y ∈ S} = ∨{ν(y, x)∧μ(z, y) |
y ∈ S} ⇔ μ ◦ ν = ν ◦ μ since μ and ν are symmetric.

(i i) Assume that μn is symmetric for n ∈ N. Then μn+1(x, z) = ∨{μ(x, y) ∧
μn(y, z) | y ∈ S} = ∨{μ(y, x) ∧ μn(z, y) | y ∈ S} = ∨{μn(z, y) ∧ μ(y, x) | y ∈
S} = μn+1(z, x)

(i i i) Let 0 ≤ t ≤ 1. Suppose (x, z) ∈ μt . Then μ(x, z) ≥ t. Because μ is
symmetric, μ(z, x) ≥ t . Thus, (z, x) ∈ μt . �

Definition 1.2.21 Let μ be a fuzzy relation on σ, where σ is a fuzzy subset of a set
S. Then μ is said to be transitive if μ2 ⊆ μ.

From the definition, it is clear that for any fuzzy relation μ, μ∞ is a transitive
fuzzy relation.



1.2 Fuzzy Relations 9

Theorem 1.2.22 Let ν,μ, and τ be fuzzy relations on a fuzzy subset σ of a set S.
Then the following properties hold.

(i) If μ is transitive and ν ⊆ μ, τ ⊆ μ, then ν ◦ τ ⊆ μ.
(i i) If μ is transitive, then so is every power of μ.
(i i i) If μ is transitive, τ is reflexive and τ ⊆ μ, then μ ◦ τ = τ ◦ μ = μ.
(iv) If μ is reflexive and transitive, then μ2 = μ.
(v) If μ is reflexive and transitive, then μ0 ⊆ μ = μ2 = μ3 = · · · = μ∞.

Proof (i) (ν ◦ τ )(x, z) = ∨{ν(x, y)∧ τ (y, z) | y ∈ S} ≤ ∨{μ(x, y)∧ μ(y, z) | y ∈
S} = μ2(x, z) ≤ μ(x, z). Hence, ν ◦ τ ⊆ μ.

(i i) Assume that μn is transitive. Then μn ◦ μn ⊆ μn and μn+1 ◦ μn+1 = μ2n+2 =
μ2n ◦ μ2 ⊆ μn ◦ μ = μn+1.

(i i i) In (i), take ν to be μ. Then μ ◦ τ ⊆ μ. Also, (μ ◦ τ )(x, z) = ∨{μ(x, y) ∧
τ (y, z) | y ∈ S} ≥ μ(x, z)∧ τ (z, z) = μ(x, z)∧ σ(z) = μ(x, z). That is, μ ◦ τ ⊇ μ
and hence μ ◦ τ = μ. Similarly, we can prove that τ ◦ μ = μ.

(iv) Follows from (i i i).
(v) By (iv), μ = μ2. Assume that μn = μn+1 for n > 1. Then μn ◦ μ = μn+1 ◦ μ.

Hence, μn+1 = μn+2. �
Theorem 1.2.23 Let ν,μ, and τ be fuzzy relations on a fuzzy subset σ of a set S.
Then the following properties hold.

(i) If μ and τ are transitive and μ ◦ τ = τ ◦ μ, then μ ◦ τ is transitive.
(i i) Ifμ is symmetric and transitive, thenμ(x, y) ≤ μ(x, x)andμ(y, x) ≤ μ(x, x)

for all x, y ∈ S.
(i i i) If μ is transitive, then for any t ∈ [0, 1], μt is a transitive relation on σt .

Proof (i) (μ ◦ τ ) ◦ (μ ◦ τ ) = μ ◦ (τ ◦ μ) ◦ τ = μ ◦ (μ ◦ τ ) ◦ τ = μ2 ◦ τ 2 ⊆ μ ◦ τ .
Thus, μ ◦ τ is transitive.

(i i) Because μ is transitive, μ ◦ μ ⊆ μ. Hence, (μ ◦ μ)(x, x) ≤ μ(x, x). That
is, ∨{μ(x, y) ∧ μ(y, x) | y ∈ S} ≤ μ(x, x). Because μ is symmetric, ∨{μ(x, y) ∧
μ(x, y) | y ∈ S} ≤ μ(x, x). Thus, μ(x, y) ≤ μ(x, x). Because μ is symmetric,
μ(y, x) ≤ μ(x, x).

(i i i) Let 0 ≤ t ≤ 1. Let (x, y), (y, z) ∈ μt . Then μ(x, y) ≥ t and μ(y, z) ≥ t .
Therefore, μ(x, z) = ∨{μ(x, z) ∧ μ(w, z) | w ∈ S} ≥ μ(x, y) ∧ μ(y, z) ≥ t . Thus,
(x, z) ∈ μt . �
Definition 1.2.24 A fuzzy relation μ on a fuzzy subset σ of a set S is said to be a
fuzzy equivalence relation if it is reflexive, symmetric and transitive.

Fuzzy equivalence relations have several applications including those in pattern
classification given in [128].Nextwediscuss similarity relations introduced byZadeh
in [192]. We present the work of Tamura, Higuchi and Tanaka [173].

Definition 1.2.25 Let μ be a fuzzy relation on a set S. Then
(i) μ is ε-reflexive if for all x ∈ S, μ(x, x) ≥ ε, where ε ∈ [0, 1].
(i i) μ is irreflexive if for all x ∈ S, μ(x, x) = 0.
(i i i) μ is weakly reflexive if for all x, y ∈ S and for all ε ∈ [0, 1], μ(x, y) =

ε ⇒ μ(x, x) ≥ ε.
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Note that if ε = 1, then ε-reflexive relation coincides with a reflexive relation.

Lemma 1.2.26 If μ is a fuzzy relation from S into T , then the fuzzy relation μ ◦ μ−1

is weakly reflexive and symmetric.

Proof Now, (μ ◦ μ−1)(x, x ′) = ∨{μ(x, y) ∧ μ−1(y, x ′) | y ∈ T } ≤ ∨{μ(x, y) ∧
μ(x, y) | y ∈ T } = ∨{μ(x, y) ∧ μ−1(y, x) | y ∈ T } = (μ ◦ μ−1)(x, x). Hence,
μ ◦ μ−1 is weakly reflexive.

Also, (μ ◦ μ−1)(x, x ′) = ∨{μ(x, y) ∧ μ−1(y, x ′) | y ∈ T } = ∨{μ−1(y, x) ∧
μ(x ′, y) | y ∈ T } = ∨{μ(x ′, y) ∧ μ−1(y, x) | y ∈ T } = (μ ◦ μ−1)(x ′, x). Hence,
μ ◦ μ−1 is symmetric. �

If μ is a weakly reflexive and symmetric fuzzy relation on a set S, we can define
a family of non fuzzy subsets Fμ as follows.

Fμ = {K ⊆ S | (∃ 0 < ε ≤ 1)(∀x ∈ S)[x ∈ K ⇔ (∀x ′ ∈ K ) [μ(x, x ′) ≥ ε]]}
Thus, if we let Fμ

ε = {K ⊆ S | (∀x ∈ S)[x ∈ K ⇔ (∀x ′ ∈ K ) [μ(x, x ′) ≥ ε]]},
then ε1 ≤ ε2 ⇒ Fμ

ε2
� Fμ

ε1
, where � denotes a covering relation. That is, every

element in Fμ
ε2
is a subset of an element in Fμ

ε1
.

Definition 1.2.27 Let μ be a weakly reflexive and symmetric fuzzy relation on a
set S. A subset J of S is called ε- complete with respect to μ if for all x, x ′ ∈ J,
μ(x, x ′) ≥ ε. A maximal ε-complete set is one which is not properly contained in
any other ε-complete set.

Lemma 1.2.28 Fμ is the family of all maximal ε -complete sets with respect to μ
for 0 ≤ ε ≤ 1.

Proof Let K ∈ Fμ and x, x ′′ ∈ K . Then there exists 0 < ε ≤ 1 such that for all
x ′ ∈ K , μ(x, x ′) ≥ ε. Thus, μ(x, x ′′) ≥ ε. Hence, K is ε-complete. Let J be a subset
of S such that K ⊆ J and J is ε-complete. Let x ∈ J . Because J is ε-complete,
for all x ′ ∈ K , μ(x, x ′) ≥ ε. Because K ∈ Fμ, x ∈ K . Thus, J ⊆ K . Hence,
K is maximal. Now, let K be a maximal ε -complete set. Let x ∈ S. Then clearly
x ∈ K ⇔ for all x ′ ∈ K ,μ(x, x ′) ≥ ε. Thus, K ∈ Fμ. �

Lemma 1.2.29 Let μ be a weakly reflexive and symmetric fuzzy relation on a set S.
If μ(x, x ′) > 0, then there is some ε-complete set K ∈ Fμ such that {x, x ′} ⊆ K.

Proof If x = x ′, then {x} is clearly ε-complete for ε = μ(x, x). Suppose x =
x ′. Then because μ(x, x ′) = μ(x ′, x), by symmetry, and μ(x, x) ≥ μ(x, x ′) and
μ(x ′, x ′) ≥ μ(x, x ′) by weak reflexivity, we can see that {x, x ′} is ε -complete,
where ε = μ(x, x ′). Denote by Cε, the family of all ε-complete sets C which contain
{x, x ′}. Then Cε is not empty because {x, x ′} ∈ Cε. It follows by Zorn’s lemma
that Cε has a maximal element K . This element is also maximal in the family of
all ε-complete sets because any set including K must also include {x, x ′}. Hence,
K ∈ Fμ by Lemma 1.2.28. �

Lemma 1.2.30 If χφ represents the characteristic function of φ in S × S, and if
μ = χφ is a weakly reflexive and symmetric fuzzy relation on S, then there exists a
set T and a fuzzy relation ν from S into T such that μ = ν ◦ ν−1.
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Proof Let T denotes the set {K ∗ | K ∈ Fμ}. Define a fuzzy relation ν from S to T
as follows

ν(x, K ∗) =
{
t if x ∈ K and t is the largest number such that K ∈ Fμ

t

0 otherwise

If μ(x, x ′) = t > 0, then by Lemma 1.2.29, there is a t -complete set K ∈ Fμ such
that {x, x ′} ⊆ K . Because (ν◦ν−1)(x, x ′) = ∨K ∗ [ν(x, K ∗)∧ν(x ′∗)] ≥ t = μ(x, x ′),
we conclude that μ ⊆ ν ◦ ν−1.

Suppose now that (ν ◦ ν−1)(x, x ′) = s. Then there exists K ∗ ∈ Fs such that
ν(x, K ∗) = ν(x ′∗). This means that {x, x ′} ⊆ K and hence μ(x, x ′) ≥ s. (s =
(ν ◦ ν−1)(x, x ′) = ∨K ∗ [ν(x, K ∗) ∧ ν(K ∗, x ′)] = ∨K ∗ [ν(x, K ∗) ∧ ν(x ′∗)]. Thus,
there exists K ∗ such that either ν(x, K ∗) = s and ν(x ′∗) ≥ s or ν(x, K ∗) ≥ s and
ν(x ′∗) = s. Now, s is the largest such that K ∈ Fμ

s . Hence, ν(x, K ∗) = s and
ν(x ′∗) = s.) Therefore, ν ◦ ν−1 ⊆ μ. �

Theorem 1.2.31 A fuzzy relation μ = χφ on a set S is weakly reflexive and sym-
metric if and only if there is a set T and a fuzzy relation ν from S into T such that
μ = ν ◦ ν−1.

The proof of Theorem 1.2.31 follows from Lemmas 1.2.26 and 1.2.30.
From here on we use the notation φμ to denote the fuzzy relation in

Theorem 1.2.31.

Definition 1.2.32 A cover C on a set S is a family of subsets Si , i ∈ I of S such
that

⋃
i∈I Si = S, where I is a nonempty index set.

Definition 1.2.33 Let μ be a fuzzy relation from S into T . For ε ∈ [0, 1], we have
(i) μ is ε-determinate if for each x ∈ S, there exists at most one y ∈ T such that

μ(x, y) ≥ ε;
(i i) μ is ε-productive if for each x ∈ S, there exists at least one y ∈ T such that

μ(x, y) ≥ ε;
(i i i) μ is an ε-function if it is both ε-determinate and ε-productive.

Lemma 1.2.34 If μ is an ε-reflexive fuzzy relation on S, then φμ is ε-productive and
for each ε

′ ≤ ε, Fμ

ε′ is a cover of S.

Proof Let 0 < ε
′ ≤ ε. Because for each x ∈ S, μ(x, x) ≥ ε, and because {x} is

ε-complete, there is some K in Fμ

ε′ such that x ∈ K . Hence, Fμ

ε′ is a cover of X . Also,
by definition of φμ, x ∈ K implies that φμ(x, K ∗) ≥ ε, which implies that φμ is ε
-productive. �

When ε = 1, we use the terms determinate, productive and function for ε-
determinate, ε-productive and ε-function, respectively.

Corollary 1.2.35 If μ is reflexive, then φμ is productive and each Fμ
ε , (0 < ε ≤ 1)

is a cover of S.
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Corollary 1.2.36 μ is a reflexive and symmetric relation on S if and only if there is
a set T and a productive fuzzy relation ν from S into T such that μ = ν ◦ ν−1.

The proof of Corollary 1.2.36 follows directly fromTheorem 1.2.31 andCorollary
1.2.35.

Lemma 1.2.37 Let μ be a weakly reflexive, symmetric and transitive fuzzy relation
on S and let φε

μ denotes the relation φμ whose range is restricted to Fμ
ε . That is, φ

ε
μ

equals φμ on S×{K ∗ | K ∈ Fμ
ε }. Then for each 0 < ε ≤ 1, φε

μ is ε-determinate and
the elements of Fμ

ε are pairwise disjoint.

Proof Let K and K ′ be two elements of Fμ
ε and assume that K ∩ K ′ = ∅. For any

q1 ∈ K ∩ K ′, we have μ(q, q1) ≥ ε for all q ∈ K and μ(q1, q ′) ≥ ε for all q ′ ∈ K ′.
Because μ is transitive, we have μ(q, q ′) ≥ ε for all q ∈ K and q ′ ∈ K ′. Because μ
is weakly reflexive and symmetric, we can conclude that K ∪ K ′ is ε-complete. But
because K and K ′ are maximal ε-complete, we must conclude that K = K ′. Hence,
K = K ′ implies K ∩K ′ = ∅. Suppose x ∈ K ,where K ∈ Fμ

ε . Then φμ(x, K ∗) ≥ ε,
and because x cannot belong to any other sets in Fμ, φε

μ is ε-determinate. �

Definition 1.2.38 A similarity relation μ on S is a fuzzy relation on S, which
is reflexive, symmetric and transitive. μ is called an ε-similarity relation if it is ε-
reflexive for some 0 < ε ≤ 1, symmetric and transitive.

Clearly, a similarity relation on a set S is a fuzzy equivalence relation on S.

Corollary 1.2.39 If μ is a similarity relation on S, then for each 0 < ε ≤ 1, Fμ
ε is

a partition of S.

The proof of Corollary 1.2.39 follows from the fact that reflexivity implies weak
reflexivity, Lemmas 1.2.34 and 1.2.37.

We conclude this section with the following theorem, which is a characterization
for similarity relations.

Theorem 1.2.40 A relation μ is an ε-similarity (0 < ε ≤ 1) relation on a set S
if and only if there is another set T and an ε-function ν from S into T such that
μ = ν ◦ ν−1.

The proof of Theorem 1.2.40 follows from Theorem 1.2.31 and Corollary 1.2.39.



Chapter 2
Fuzzy Graphs

A graph represents a particular relationship between elements of a set V . It gives
an idea about the extent of the relationship between any two elements of V . We
can solve this problem by using a weighted graph if proper weights are known. But
in most of the situations, the weights may not be known, and the relationships are
‘fuzzy’ in a natural sense. Hence, a fuzzy relation can deal with the situation in a
better way. As an example, if V represents certain locations and a network of roads is
to be constructed between elements of V , then the costs of construction of the links
are fuzzy. But the costs can be compared, to some extent using the terrain and local
factors and can be modeled as fuzzy relations. Thus, fuzzy graph models are more
helpful and realistic in natural situations.

Kaufman [91] gave the first definition of a fuzzy graph. But it was Rosenfeld [154]
and Yeh and Bang [186] who laid the foundations for fuzzy graph theory. Rosenfeld
introduced fuzzy analogs of several basic graph-theoretic concepts, including sub-
graphs, paths, connectedness, cliques, bridges, cutvertices, forests, and trees. Yeh
and Bang independently introduced many connectivity concepts including vertex
and edge connectivity in fuzzy graphs and applied fuzzy graphs for the first time in
clustering of data.

In this chapter, we discuss fundamentals of fuzzy graph theory. We provide for-
mal definitions, basic concepts, and properties of fuzzy graphs. For simplicity, we
consider only undirected fuzzy graphs, unless otherwise specified. Thus, the edges
of the fuzzy graph are unordered pairs of vertices.

2.1 Definitions and Basic Properties

Let V be a nonempty set. Define the relation ∼ on V × V by for all (x, y), (u, v) ∈
V × V, (x, y) ∼ (u, v) if and only if x = u and y = v or x = v and y = u. Then
it is easily shown that ∼ is an equivalence relation on V × V . For all x, y ∈ V, let
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[(x, y)] denote the equivalence class of (x, y) with respect to ∼ . Then [(x, y)] =
{(x, y), (y, x)}.LetEV = {[(x, y)] | x, y ∈ V, x �= y}.For simplicity,weoftenwrite
E for EV when V is understood. Let E ⊆ E . A graph is a pair (V, E). The elements
of V are thought of as vertices of the graph and the elements of E as the edges.
For x, y ∈ V, we let xy denote [(x, y)]. Then clearly xy = yx . We note that graph
(V, E) has no loops or parallel edges.

Definition 2.1.1 A fuzzy graph G = (V,σ,μ) is a triple consisting of a nonempty
set V together with a pair of functions σ : V → [0, 1] and μ : E → [0, 1] such that
for all x, y ∈ V,μ(xy) ≤ σ(x) ∧ σ(y).

The fuzzy set σ is called the fuzzy vertex set of G and μ the fuzzy edge set of
G. Clearly μ is a fuzzy relation on σ. We consider V as a finite set, unless otherwise
specified. For notational convenience, we use simply G or (σ,μ) to represent the
fuzzy graph G = (V,σ,μ). Also, σ∗ and μ∗, respectively, represent the supports of
σ and μ, also denoted by Supp(σ) and Supp(μ).

Example 2.1.2 Let V = {a, b, c}. Define the fuzzy setσ on V asσ(a) = 0.5,σ(b) =
1 and σ(c) = 0.8. Define a fuzzy set μ of E such that μ(ab) = 0.5, μ(bc) = 0.7 and
μ(ac) = 0.1. Then μ(xy) ≤ σ(x) ∧ σ(y) for all x, y ∈ V . Thus, G = (σ,μ) is a
fuzzy graph. If we redefine μ(ab) = 0.6, then it is no longer a fuzzy graph.

It follows from the Definition 2.1.1 that any unweighted graph (V, E) is trivially
a fuzzy graph with σ(x) = 1 for all x ∈ V and μ(xy) = 0 or 1 for all x, y ∈ V . Also,
we write (V,μ) to denote a fuzzy graph with σ(x) = 1 for all x ∈ V .

Definition 2.1.3 Let G = (V,σ,μ) be a fuzzy graph. Then a fuzzy graph H =
(V, τ , ν) is called a partial fuzzy subgraph of G if τ ⊆ σ and ν ⊆ μ. Similarly,
the fuzzy graph H = (P, τ , ν) is called a fuzzy subgraph of G induced by P if
P ⊆ V, τ (x) = σ(x) for all x ∈ P and ν(xy) = μ(xy) for all x, y ∈ P. We write
〈P〉 to denote the fuzzy subgraph induced by P .

Example 2.1.4 LetG = (τ , ν), where τ ∗ = {a, b, c} andμ∗ = {ab, bc}with τ (a) =
0.4, τ (b) = 0.8, τ (c) = 0.5, ν(ab) = 0.3 and ν(bc) = 0.2. Then clearly G is a par-
tial fuzzy subgraph of the fuzzy graph in Example 2.1.2. Also, if P = {a, b} and
H = (τ , ν), where τ (a) = 0.5, τ (b) = 1 and ν(ab) = 0.5, then H is the induced
fuzzy subgraph of G in Example 2.1.2, induced by P.

Definition 2.1.5 Let G = (σ,μ) be a fuzzy graph. Then a partial fuzzy subgraph
(τ , ν) of G is said to span G if σ = τ . In this case, we call (τ , ν) a spanning fuzzy
subgraph of (σ,μ).

In fact a fuzzy subgraph H = (τ , ν) of a fuzzy graph G = (σ,μ) induced by a
subset P of V is a particular partial fuzzy subgraph of G. Take τ (x) = σ(x) for all
x ∈ P and 0 for all x /∈ P . Similarly, take ν(xy) = μ(xy) if xy is in a set of edges
involving elements from P , and 0 otherwise.
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Definition 2.1.6 Let G = (V,σ,μ) be a fuzzy graph. Let 0 ≤ t ≤ 1. Let σt = {x ∈
σ∗ | σ(x) ≥ t} and μt = { uv ∈ μ∗ | μ(uv) ≥ t}.

Clearly, μt ⊆ {xy | σ(x) ≥ t,σ(y) ≥ t} and hence H = (σt ,μt ) is a graph with
vertex set σt and edge set μt . H is called the threshold graph of the fuzzy graph G,
corresponding to t .

Proposition 2.1.7 Let G = (σ,μ) be a fuzzy graph and 0 ≤ s < t ≤ 1. Then the
threshold graph (σt ,μt ) is a subgraph of the threshold graph (σs,μs). Also, if H =
(ν, τ ) is a partial fuzzy subgraph of G and t ∈ [0, 1], then (ν t , τ t ) is a subgraph of
(σt ,μt ).

2.2 Connectivity in Fuzzy Graphs

Wemainly discuss the concepts of fuzzy cutvertices and fuzzy bridges in this section.
Most of the results are due to Sunitha and Vijayakumar [167, 168]. Also, Theorem
2.2.1, by Rosenfeld gives a very strong characterization for a fuzzy bridge.

A path P in a fuzzy graph G = (σ,μ) is a sequence of distinct vertices
x0, x1, . . . , xn (except possibly x0 and xn) such that μ(xi−1xi ) > 0, i = 1, . . . , n.
Here n is called the length of the path. The consecutive pairs are called the edges of
the path. The diameter of x, y ∈ V, written diam(x, y), is the length of the longest
path joining x to y. The strength of P is defined to be ∧n

i=1μ(xi−1xi ). In words, the
strength of a path is defined to be the weight of the weakest edge. We denote the
strength of a path P by d(P) or s(P). The strength of connectedness between two
vertices x and y is defined as the maximum of the strengths of all paths between x
and y and is denoted by μ∞(x, y) orCONNG(x, y). A strongest path joining any two
vertices x, y has strength μ∞(x, y). It can be shown that if (τ , ν) is a partial fuzzy
subgraph of (σ,μ), then ν∞ ⊆ μ∞. We call P a cycle if x0 = xn and n ≥ 3. Two
vertices that are joined by a path are called connected. It follows that this notion of
connectedness is an equivalence relation. The equivalence classes of vertices under
this equivalence relation are called connected components of the given fuzzy graph.
They are just its maximal connected partial fuzzy subgraphs.

Let G = (σ,μ) be a fuzzy graph, let x, y be two distinct vertices and let G ′ be the
partial fuzzy subgraph of G obtained by deleting the edge xy. That is, G ′ = (σ,μ′),
where μ′(xy) = 0 and μ′ = μ for all other pairs. We call xy a fuzzy bridge in G
if μ′∞(u, v) < μ∞(u, v) for some u, v in σ∗. In words, the deletion of the edge xy
reduces the strength of connectedness between some pair of vertices in G. Thus, xy
is a fuzzy bridge if and only if there exists vertices u, v such that xy is an edge of
every strongest path from u to v.

Theorem 2.2.1 ([154]) Let G = (σ,μ) be a fuzzy graph. Then the following state-
ments are equivalent.
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(i) xy is a fuzzy bridge.
(ii) μ′∞(x, y) < μ(xy).
(iii) xy is not the weakest edge of any cycle.

Proof (i i) ⇒ (i) If xy is not a fuzzy bridge, then μ′∞(x, y) = μ∞(x, y) ≥ μ(xy).
(i) ⇒ (i i i) If xy is the weakest edge of a cycle, then any path P involving edge

xy can be converted into a path P
′
not involving xy but at least as strong as P , by

using the rest of the cycle as a path from x to y. Thus, xy cannot be a fuzzy bridge.
(i i i) ⇒ (i i) If μ′∞(x, y) ≥ μ(xy), then there is a path from x to y not involving

xy, that has strength ≥ μ(xy), and this path together with xy forms a cycle of G in
which xy is a weakest edge. �

Let w be any vertex and let G ′ be the partial fuzzy subgraph of G obtained by
deleting the vertex w. That is, G ′ = (σ′,μ′) is the partial fuzzy subgraph of G such
thatσ′(w) = 0,σ = σ′ for all other vertices,μ′(wz) = 0 for all vertices z, andμ′ = μ
for all other edges. We call w a fuzzy cutvertex in G if μ′∞(u, v) < μ∞(u, v) for
some u, v in V such that u �= w �= v. In words,w is a fuzzy cutvertex if deleting the
vertex w reduces the strength of connectedness between some other pair of vertices.
Hence,w is a fuzzy cutvertex if and only if there exists u, v distinct fromw such that
w is on every strongest path from u to v. G ′ is called nonseparable or a block if it
has no fuzzy cutvertices. Although in a fuzzy graph, a block may have fuzzy bridges,
this cannot happen for crisp graphs. Sometimes we refer to a block in a fuzzy graph
as a fuzzy block.

Amaximum spanning tree of a connected fuzzy graph (σ,μ) is a fuzzy spanning
subgraph T = (σ, ν) of G, which is a tree, such that μ∞(u, v) is the strength of
the unique strongest u − v path in T for all u, v ∈ G. We next characterize fuzzy
cutvertices and fuzzy bridges of fuzzy graphs using maximum spanning trees.

Theorem 2.2.2 ([168]) A vertex w of a fuzzy graph G = (σ,μ) is a fuzzy cutvertex
if and only if w is an internal vertex of every maximum spanning tree of G.

Proof Let G = (σ,μ) be a fuzzy graph and w be a fuzzy cutvertex of G. Then there
exists u, v distinct from w such that w is on every strongest u − v path. Now, each
maximum spanning tree of G contains a unique strongest u − v path and hence w is
an internal vertex of every maximum spanning tree of G.

Conversely, letw be an internal vertex of every maximum spanning tree. Let T be
amaximum spanning tree and let uw andwv be edges in T . Note that the path u, w, v

is a strongest u − v path in T . If possible assume that w is not a fuzzy cutvertex.
Then between every pair of vertices u, v, there exists at least one strongest u − v

path not containingw. Consider one such u − v path P which clearly contains edges
not in T . Now, without loss of generality, let μ∞(u, v) = μ(uw) in T . Then edges in
P have strength ≥ μ(uw). Removal of uw and adding P in T will result in another
maximum spanning tree of G, of which w is an end vertex, which contradicts our
assumption. �

From Theorem 2.2.2, it can be seen that the end vertices of a maximum spanning
tree T of G cannot be fuzzy cutvertices of G. Thus, we have the following corollary.
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Fig. 2.1 A noncomplete
fuzzy graph satisfying
μ∞ = μ

Corollary 2.2.3 Every fuzzy graph G has at least two vertices which are not fuzzy
cutvertices.

Corollary 2.2.4 An edge uv of a fuzzy graph G = (σ,μ) is a fuzzy bridge if and
only if uv is in every maximum spanning tree of G.

Proof Let uv be a fuzzy bridge of G. Then the edge uv is the unique strongest u − v

path and hence is in every maximum spanning tree of G.
Conversely, let uv be in every maximum spanning tree of G and assume that

uv is not a fuzzy bridge. Then uv is the weakest edge of some cycle in G and
μ∞(u, v) ≥ μ(uv), which implies that there is at least one maximum spanning tree
of G not containing uv. �

In 1989, Bhutani [40] introduced the concept of a complete fuzzy graph as follows.
A complete fuzzy graph (CFG) is a fuzzy graph G = (σ,μ) such that μ(uv) =

σ(u) ∧ σ(v) for all u, v ∈ σ∗. IfG = (σ,μ) is a complete fuzzy graph, then μ∞ = μ
and G has no fuzzy cutvertices.

Example 2.2.5 Let V = {a, b, c, d} and X = {ab, bc, cd, da, ac, bd}. Let σ(a) =
0.7 and σ(b) = σ(c) = σ(d) = 1.Letμ be the fuzzy subset of X defined byμ(ab) =
μ(da) = μ(ac) = 0.5, μ(bc) = 1 and μ(cd) = μ(bd) = 0.7, Then μ∞ = μ, and G
has no fuzzy cutvertices, but G is not complete (Fig. 2.1).

Example 2.2.6 We show that a complete fuzzy graph may have a bridge. Let V =
{a, b, c, d} and X = {ab, bc, cd, da, ac, bd}.Letσ(a) = 0.7,σ(b) = 0.8,σ(c) = 1
and σ(d) = 0.6. Let μ be the fuzzy subset of X defined by μ(ab) = μ(ac) = 0.7,
μ(bd) = μ(cd) = μ(ad) = 0.6 and μ(bc) = 0.8. Clearly, (σ,μ) is complete and bc
is a fuzzy bridge (Fig. 2.2).

Theorem 2.2.7 If G = (σ,μ) is a complete fuzzy graph, then for any edge uv ∈ μ∗,
μ∞(u, v) = μ(uv).

Proof Bydefinition,μ2(u, v) = ∨z∈σ∗ {μ(uz) ∧ μ(zv)} = ∨{σ(u) ∧ σ(v) ∧ σ(z)} =
σ(u) ∧ σ(v) = μ(uv).

Similarly, μ3(u, v) = μ(uv) and in the same way one can show that μk(u, v) =
μ(uv) for all positive integers k. Thus,

μ∞(u, v) = sup{μk(u, v) | for all integers k ≥ 1} = μ(uv). �
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Fig. 2.2 A complete fuzzy
graph with a fuzzy bridge

Corollary 2.2.8 A complete fuzzy graph has no fuzzy cutvertices.

Theorem 2.2.7 says that every edge uv in a CFG is a strongest u − v path. Also,
a CFG can have at most one fuzzy bridge (Theorem 4, [168]), even though it has
no fuzzy cutvertices. This bridge can be easily located as seen from the following
theorem.

Theorem 2.2.9 Let G = (σ,μ) be a CFG with |σ∗| = n. Then G has a fuzzy bridge
if and only if there exists an increasing sequence {t1, t2, . . . , tn} such that tn−2 <

tn−1 ≤ tn, where ti = σ(ui ) for i = 1, 2, . . . , n. Also, the edge un−1un is the fuzzy
bridge of G.

Proof Assume that G = (σ,μ) is a complete fuzzy graph and that G has a fuzzy
bridge uv. Now, μ(uv) = σ(u) ∧ σ(v). Without loss of generality let, σ(u) ≤ σ(v),
so that μ(uv) = σ(u). Note that uv is not a weakest edge of any cycle in G. It is
required to prove that σ(u) > σ(w) for all w �= v. On the contrary, assume that
there is at least one vertex w �= v such that σ(u) ≤ σ(w). Now, consider the cycle
C : u, v, w, u. Then μ(uv) = μ(uw) = σ(u) and μ(vw) = σ(v) if σ(u) = σ(v) or
σ(u) < σ(v) ≤ σ(w) and μ(vw) = σ(w) if σ(u) < σ(w) < σ(v). In either case, the
edge uv becomes the weakest edge of a cycle and by Theorem 2.2.1, uv cannot be
a fuzzy bridge, a contradiction.

Conversely, let t1 ≤ t2 ≤ · · · ≤ tn−2 ≤ tn−1 ≤ tn and ti = σ(ui ) for all i .
Claim. Edge un−1un is the fuzzy bridge of G.
We have, μ(un−1un) = σ(un−1) ∧ σ(un) = σ(un−1) and by hypothesis, all other

edges ofG will have strength strictly less than that of σ(un−1). Thus, the edge un−1un
is not theweakest edge of any cycle inG and by Theorem 2.2.1, is a fuzzy bridge. �

We next present more connectivity properties of fuzzy cutvertices and fuzzy
bridges.

Theorem 2.2.10 Let G = (σ,μ) be a fuzzy graph such that (σ∗,μ∗) is a cycle. Then
a vertex of G is a fuzzy cutvertex if and only if it is a common vertex of two fuzzy
bridges.

Proof Let w be a fuzzy cutvertex of G. Then there exists u and v, other than w such
that w is on every strongest u-v path. Because G∗ = (σ∗,μ∗) is a cycle, there exists
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only one strongest u-v path containing w and all its edges are fuzzy bridges. Thus,
w is a common vertex of two fuzzy bridges.

Conversely, letw be a common vertex of two fuzzy bridges uw andwv.Then both
uw andwv are notweakest edges ofG.Also, the path fromu to v not containing edges
uw and wv has strength less than μ(uw) ∧ μ(wv). Hence, the strongest u-v path is
the path u, w, v and μ∞(u, v) = μ(uw) ∧ μ(wv). Thus, w is a fuzzy cutvertex. �

Theorem 2.2.11 If w is a common vertex of at least two fuzzy bridges, then w is a
fuzzy cutvertex.

Proof Let u1w and wu2 be two fuzzy bridges. Then there exists u, v such that u1w
is on every strongest u-v path. If w is distinct from u and v, then it follows that w
is a fuzzy cutvertex. Next suppose one of v, u is w so that u1w is on every strongest
u-w path or wu2 is on every strongest w-v path. Suppose that w is not a fuzzy
cutvertex. Then between every two vertices there exists at least one strongest path
not containing w. In particular, there exists at least one strongest path P joining u1
and u2, not containing w. This path together with u1w and wu2 forms a cycle.

We now consider two cases. First, suppose that u1, w, u2 is not a strongest path.
Then clearly one of u1w,wu2 or both become weakest edges of a cycle, which
contradicts that u1w and wu2 are fuzzy bridges.

Second, suppose that u1, w, u2 is also a strongest path joining u1 to u2. Then
μ∞(u1, u2) = μ(u1w) ∧ μ(wu2), the strength of P. Thus, edges of P are at least as
strong as μ(u1w) and μ(wu2), which implies that u1w,wu2 are both weakest edges
of a cycle, which again is a contradiction. �

Example 2.2.12 This example shows that the condition in Theorem2.2.11 is not nec-
essary. Let V = {a, b, c, d} and X = {ab, bc, cd, da, ac, db}. Let σ(x) = 1 for all
x ∈ V and let μ be the fuzzy subset of X defined by μ(ac) = μ(bd) = 0.9,μ(da) =
μ(cd) = 0.3 and μ(ab) = μ(bc) = 0.8. Clearly, b is a fuzzy cutvertex. However, ac
and db are the only fuzzy bridges.

Example 2.2.13 Consider the fuzzy graph G = (V, X),where V = {a, b, c, d}. Let
X = {ab, bc, cd, ad}. Let σ(s) = 1 for all s ∈ V and let μ be the fuzzy subset of X
defined by μ(ab) = μ(cd) = 0.2, and μ(bc) = μ(ad) = 0.1. Note that ab and cd
are fuzzy bridges and no vertex is a fuzzy cutvertex. This is a significant difference
from the crisp graph theory.

The fuzzy graphs in Examples 2.2.12 and 2.2.13 are given in Fig. 2.3.

Theorem 2.2.14 If uv is a fuzzy bridge, then μ∞(u, v) = μ(uv).

Proof Suppose that uv is a fuzzy bridge and that μ∞(u, v) > μ(uv). Then there
exists a strongest u–v path with strength greater than μ(uv) and all edges of this
strongest path have strength greater than μ(uv). Now, this path together with the
edge uv forms a cycle in which uv is the weakest edge, contradicting that uv is a
fuzzy bridge. �
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Fig. 2.3 Fuzzy graphs given
in Examples 2.2.12 and
2.2.13

2.3 Forests and Trees

Rosenfeld first studied the concepts of fuzzy forests and fuzzy trees in [154]. The
results in this section are by Rosenfeld [154], Mordeson and Nair [127] and Sunitha
and Vijayakumar [167, 168]. The structure of fuzzy trees is significantly different
from that of trees. In fact, a fuzzy tree can contain cycles in the classical sense. There
are several characterizations for fuzzy trees in this book.

A crisp graph that has no cycles is called acyclic or a forest. A connected forest
is a tree. A fuzzy graph is called a forest if the graph consisting of its nonzero edges
is a forest, and a tree if this graph is also connected. If G = (σ,μ) is a fuzzy graph,
we call G a fuzzy forest if it has a partial fuzzy spanning subgraph F = (σ, ν),
which is a forest, where for all edges xy not in F , i.e., such that ν(xy) = 0, we
have μ(xy) < ν∞(x, y). In words, if xy is in G, but is not in F , there is a path in
F between x and y whose strength is greater than μ(xy). Clearly, a forest is a fuzzy
forest.

Theorem 2.3.1 A fuzzy graph G is a fuzzy forest if and only if in any cycle of G
there is an edge xy such that μ(xy) < μ′∞(x, y), where G ′ = (σ,μ′) is the partial
fuzzy subgraph obtained by deleting the edge xy from G.

Proof Suppose xy is an edge, belonging to a cycle which has the property of the
theorem and for which xy is the smallest. (If there are no cycles, G is a forest and
we are done.) If we delete xy, the resulting partial fuzzy subgraph satisfies the path
property of a fuzzy forest. If there are still cycles in this graph, we can repeat the
process. Now, at each stage, no previously deleted edge is stronger than the edge
being currently deleted. Thus, the path guaranteed by the property of the theorem
involves only edges that have not yet been deleted. When no cycles remain, the
resulting partial fuzzy subgraph is a forest F. Let xy not be an edge of F. Then xy is
one of the edges that we deleted in the process of constructing F , and there is a path
from x to y that is stronger than μ(xy) and that does not involve xy nor any of the
edges deleted prior to it. If this path involves edges that were deleted later, it can be
diverted around them using a path of still stronger edges; if any of these were deleted
later, the path can be further diverted; and so on. This process eventually stabilizes
with a path consisting entirely of edges of F. Thus, G is a fuzzy forest.
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Fig. 2.4 A fuzzy tree G and
its spanning tree F

Conversely, if G is a fuzzy forest and P is any cycle, then some edge xy of
P is not in F. Thus, by definition of a fuzzy forest, we have μ(xy) < ν∞(x, y) ≤
μ′∞(x, y). �

We see that if G is connected, then so is F as determined by the construction in
the first part of the proof. The tree F thus constructed plays a very important role in
the study of fuzzy trees. Also, Theorem 2.3.1 allows fuzzy forests to have cycles, as
mentioned before.

Proposition 2.3.2 If there is at most one strongest path between any two vertices of
G, then G is a fuzzy forest.

Proof SupposeG is not a fuzzy forest. Then by the previous theorem, there is a cycle
P in G such that μ(xy) ≥ μ′(xy) for all edges xy of P. Thus, xy is a strongest path
from x to y. If we choose xy to be a weakest edge of P , it follows that the rest of P
also is a strongest path from x to y, a contradiction. �

We note that the converse of the previous proposition does not hold.

Example 2.3.3 Consider the fuzzy graphs G = (σ,μ) and F = (τ , ν) given in
Fig. 2.4 with V = {x, y, u, v, w}. Define σ, τ : V → [0, 1] by for all z ∈ V,σ(z) =
1 = τ (z). Define μ, ν : V × V → [0, 1] as μ(xy) = 0.5, μ(yw) = 0.9, μ(wv) =
0.8,μ(vu) = 0.7,μ(yu) = 0.6, ν(xy) = 0.5, ν(yw) = 0.9, ν(wv) = 0.8, ν(uv) =
0.7. It is clear that G is a fuzzy forest. F is the spanning tree of G. But note that both
x, xy, y, yu, u, uv, v and x, xy, y, yw,w,wv, v are strongest x − v paths in G.

Proposition 2.3.4 If G = (σ,μ) is a fuzzy forest, then the edges of F = (τ , ν) are
precisely the bridges of G.

Proof An edge xy not in F cannot be a bridge because μ(xy) < ν∞(x, y) ≤
μ′∞(x, y). Suppose that xy is an edge in F. If it were not a bridge, we would have a
path P from x to y, not involving xy, of strength greater than or equal to μ(xy). This
path must involve edges not in F because F is a forest and has no cycles. However,
by definition, any such edge uivi can be replaced by a path Pi in F of strength greater
than μ(uivi ). Now, Pi cannot involve xy because all its edges are strictly stronger
than μ(uivi ) ≥ μ(xy). Thus, by replacing each uivi by Pi , we can construct a path
in F from x to y that does not involve xy, giving a cycle in F , a contradiction. �
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Fig. 2.5 A fuzzy tree and a
fuzzy cycle

Definition 2.3.5 Let G = (σ,μ) be a fuzzy graph. Then

(i) G is called a tree if (Supp(σ), Supp(μ)) is a tree.
(ii) G is called a fuzzy tree if G has a fuzzy spanning subgraph F = (σ, ν), which

is a tree, such that for all uv ∈ Supp(μ)\Supp(ν), μ(uv) < ν∞(u, v). That is,
there exists a path in (σ, ν) between u and v whose strength is greater than
μ(uv).

Definition 2.3.6 Let G = (σ,μ) be a fuzzy graph. Then

(i) G is called a cycle if (Supp(σ), Supp(μ)) is a cycle.
(ii) G is called a fuzzy cycle if (Supp(σ), Supp(μ)) is a cycle and � unique xy ∈

Supp(μ) such that μ(xy) = ∧{μ(uv) | uv ∈ Supp(μ)}.
Example 2.3.7 Let V = {a, b, c, d} and X = {ab, ac, ad, bc, cd, db}. Let σ(x) =
1 for all x ∈ V and let μ be the fuzzy subset of X defined by μ(ab) = 0.9, μ(bc) =
μ(cd) = 0.7, μ(bd) = 0.3. Then (σ,μ) is neither a fuzzy cycle nor a fuzzy tree.

Example 2.3.8 Let V = {a, b, c, d} and X = {ab, ac, ad, bc, bd, cd}. Let σ(x) =
1 for all x ∈ V andμ,μ′ be fuzzy subsets of X defined byμ(ab) = 0.1,μ(bc) = 0.4,
μ(cd) = 0.3,μ(ad) = 0.2 andμ′(ab) = 0.2,μ′(bc) = 0.3,μ′(cd) = 0.2,μ′(ad) =
0.3. Then (σ,μ) is a fuzzy tree, but not a tree and not a fuzzy cycle while (σ,μ′) is
a fuzzy cycle, but not a fuzzy tree (Fig. 2.5).

Theorem 2.3.9 ([127]) Let G = (σ,μ) be a cycle. Then G is a fuzzy cycle if and
only if G is not a fuzzy tree.

Proof Suppose thatG is a fuzzy cycle. Then there exists edges x1y1, x2y2 ∈ Supp(μ)
such that μ(x1y1) = μ(x2y2) = ∧{μ(uv) | uv ∈ Supp(μ)}. If (σ, ν) is any spanning
tree of (σ,μ), then Supp(μ)\ Supp(ν) = {uv} for some u, v ∈ V because (σ,μ) is
a cycle. Hence, � a path in (σ, ν) between u and v of greater strength than μ(uv).
Thus, (σ,μ) is not a fuzzy tree.

Conversely, suppose that (σ,μ) is not a fuzzy tree. Because (σ,μ) is a cycle, we
have for all uv ∈ Supp(μ), (σ, ν) is a fuzzy spanning subgraph of (σ,μ), which
is a tree, and ν∞(u, v) ≤ μ(uv), where ν(uv) = 0 and ν(xy) = μ(xy) for all xy ∈
Supp(μ)\{uv}. Hence, μ does not attain ∧{μ(xy) | xy ∈ Supp(μ)} uniquely. Thus,
(σ,μ) is a fuzzy cycle. �
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Fig. 2.6 Fuzzy tree in
Example 2.3.11

Theorem 2.3.10 Let G = (σ,μ) be a fuzzy graph. If there exists t ∈ (0, 1] such that
(Supp(σ),μt ) is a tree, then G is a fuzzy tree. Conversely, if G is a cycle and G is a
fuzzy tree, then there exists t ∈ (0, 1] such that (Supp(σ),μt ) is a tree.

Proof Suppose that there exists t ∈ (0, 1] such that (Supp(σ),μt ) is a tree. Let ν
be the fuzzy subset of V × V such that ν = μ on μt and ν(xy) = 0 if xy ∈ E\μt .

Then (σ, ν) is a spanning fuzzy subgraph of (σ,μ) such that (σ, ν) is a fuzzy tree
because (Supp(σ),Supp(ν)) is a tree. Suppose that uv ∈ E and uv /∈ μt . Then ∃ a
path between u and v of strength ≥ t > μ(uv). Thus, (σ,μ) is a fuzzy tree. For the
converse, we note that because (σ,μ) is a cycle and a fuzzy tree, ∃ unique xy ∈
Supp(μ) such that μ(xy) = ∧{μ(uv) | uv ∈ Supp(μ)}. Let t be such that μ(xy) <
t ≤ ∧{μ(uv) | uv ∈ Supp(μ)\{xy}}. Then (Supp(σ),μt ) is a tree. �

Example 2.3.11 Let V = {a, b, c, d, e} and X = {ab, bc, ac, cd, de, ec}. Let
σ(x) = 1 for all x ∈ V and let μ be the fuzzy subset of X defined by μ(ab) =
0.3,μ(bc) = μ(ac) = 0.5,μ(ec) = μ(cd) = 1,μ(de) = 0.9. Then �t ∈ (0, 1] such
that (Supp(σ),μt ) is a tree. However, (σ,μ) is a fuzzy tree (see Fig. 2.6).

Theorem 2.3.12 If G = (σ,μ) is a fuzzy tree and (σ∗,μ∗) is not a tree, then there
exists at least one edge uv in Supp(μ) for which μ(uv) < μ∞(u, v).

Proof If G is a fuzzy tree, then by definition there exists a fuzzy spanning subgraph
F = (σ, ν), which is a tree and μ(uv) < ν∞(u, v) for all edges uv not in F. Also,
ν∞(u, v) ≤ μ∞(u, v).Thus,μ(uv) < μ∞(u, v) for all uv not in F and by hypothesis
there exists at least one edge uv not in F . �

The rest of the results in this section are from [167, 168].

Theorem 2.3.13 Let G = (σ,μ) be a connected fuzzy graph with no fuzzy cycle.
Then G is a fuzzy tree.

Proof If G∗ has no cycles, then G∗ is a tree and G is a fuzzy tree. So assume that G
has cycles and by hypothesis no cycle is a fuzzy cycle. That is, every cycle in G will
have exactly one weakest edge in it. Remove the weakest edge say e in a cycle C
of G. If there are still cycles in the resulting fuzzy graph, repeat the process, which
will eventually results in a fuzzy subgraph, which is a tree, and which is the required
spanning subgraph F . �
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When we delete a bridge, different fuzzy graph structures behave differently.
Consider the case of fuzzy trees in the following theorem.

Theorem 2.3.14 If G is a fuzzy tree, then the removal of any fuzzy bridge reduces
the strength of connectedness between its end vertices and also between some other
pair of vertices.

Proof Let G = (σ,μ) be a fuzzy tree and let uv be a fuzzy bridge of G. Then
by Proposition 2.3.4 uv is an edge of the maximum spanning tree T of G and T
contains unique strongest paths joining every pair of vertices. So removal of uv
reduces the strength of connectedness between some other pair of vertices x, y,
where x is adjacent to u and y is adjacent to v if uv is an internal edge of T , and
u = x or v = y otherwise. �

Note that whenG∗ is K2, its unique edge is a fuzzy bridge and its removal reduces
the strength of connectedness between its end vertices alone.

Theorem 2.3.15 If G = (σ,μ) is a fuzzy tree, then G is not complete.

Proof If possible, let G be a complete fuzzy graph. Then μ∞(u, v) = μ(uv) for all
u, v.Now, G being a tree, μ(uv) < ν∞(u, v) for all u, v not in F. Thus, μ∞(u, v) <
ν∞(u, v), which is impossible. �

Theorem 2.3.16 If G is a fuzzy tree, then the internal vertices of F are fuzzy cutver-
tices of G.

Proof Let w be any vertex in G, which is not an end vertex of F. Then w is the
common vertex of at least two edges in F , which are fuzzy bridges of G and by
Theorem 2.2.11, w is a fuzzy cutvertex. Also, if w is an end vertex of F , then w is
not a fuzzy cutvertex; else there would exist u, v distinct from w such that w is on
every u-v path and one such path certainly lies in F. But because w is an end vertex
of F , this is not possible. �

Corollary 2.3.17 A fuzzy cutvertex of a fuzzy tree is the common vertex of at least
two fuzzy bridges.

Theorem 2.3.18 ([167]) Let G = (σ,μ) be a fuzzy graph. Then G is a fuzzy tree if
and only if the following conditions are equivalent for all u, v ∈ V .

(i) uv is a fuzzy bridge.
(ii) μ∞(u, v) = μ(uv).

Proof Let G = (σ,μ) be a fuzzy tree and suppose that uv is a fuzzy bridge. Then
μ∞(u, v) = μ(uv) by Theorem 2.2.14. Now, let uv be an edge in G such that
μ∞(u, v) = μ(uv). If G∗ is a tree, then clearly uv is a fuzzy bridge; otherwise,
it follows from Theorem 2.3.12 that uv is in F and uv is a bridge.
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Conversely, assume that (i) and (i i) are equivalent. Construct a maximum
spanning tree T = (σ, ν) for G [38]. If uv is in T , by an algorithm in [38],
μ∞(u, v) = μ(uv) and hence uv is a fuzzy bridge. Now, these are the only fuzzy
bridges for G; for, if possible, let u′v′ be a fuzzy bridge of G, which is not in T .
Consider a cycle C consisting of u′v′ and the unique u′-v′ path in T . Now, edges of
this u′-v′ path are fuzzy bridges and so they are not weakest edges of C and thus u′v′
must be the weakest edge of C and cannot be a fuzzy bridge.

Moreover, for all edges u′v′ not in T , we have μ′(u′v′) < ν ′(u′v′); for if possible
let μ(u′v′) ≥ ν∞(u′, v′). But ν∞(u′, v′) < μ∞(u′, v′), were strict inequality holds
because u′v′ is not a fuzzy bridge. Hence, ν∞(u′, v′) < μ∞(u′, v′), which gives a
contradiction because ν∞(u′, v′) is the strength of the unique u′-v′ path in T and
by the algorithm in [36], μ∞(u′, v′) = ν∞(u′, v′). Thus, T is the required spanning
subgraph F , which is a tree and hence G is a fuzzy tree. �

From the previous theorem, it follows that the spanning fuzzy subgraph of a fuzzy
tree is unique. Also, it follows that F is nothing but the maximum fuzzy spanning
tree of G. Thus, we have the following theorem.

Theorem 2.3.19 A fuzzy graph is a fuzzy tree if and only if it has a unique maximum
fuzzy spanning tree.

If G is a fuzzy graph such that G∗ is not a tree and T is the maximum fuzzy
spanning tree of G, then there is at least one edge in G which is not a fuzzy bridge.
Also, edges not in T are not fuzzy bridges of G. So we have the following result.

Theorem 2.3.20 If G = (σ,μ) is a fuzzy graph with Supp(σ) = V and |V | = p,
then G has at most p − 1 fuzzy bridges.

If G is a fuzzy graph with T as its unique maximum fuzzy spanning tree, then
end vertices of T are not fuzzy cutvertices G. Thus, every fuzzy graph will have at
least two vertices which are not fuzzy cutvertices.

2.4 Fuzzy Cut Sets

This section is based on [127], a work by Mordeson and Nair in 1996. We begin
by some topics in graph theory, which can be found in [83]. When G is a graph,
one can associate G with two vector spaces over the field of scalars Z2 = {0, 1},
where addition and multiplication are modulo 2. Note that for 1 ∈ Z2, 1 + 1 = 0.
Let V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. A 0-chain of G
is a formal linear combination

∑
εivi of vertices and a 1-chain is a formal linear

combination of edges
∑

εi ei , where εi ∈ Z2. The boundary operator ∂ is a linear
function which maps 1-chains to 0-chains such that if e = xy, then ∂(e) = x + y.
The coboundary operator δ is a linear function which maps 0-chains to 1-chains
such that δ(v) = ∑

εi ei whenever ei is incident with v.
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Example 2.4.1 Let G = (V, E), where V = {v1, v2, . . . , v6} and E(G) = {e1, e2,
. . . , e9}, where e1 = v1v2, e2 = v1v3, e3 = v2v3, e4 = v2v4, e5 = v2v5, e6 = v3v5,

e7 = v3v6, e8 = v4v5 and e9 = v5v6. The1-chainγ1=e1 + e2 + e4 + e9 has boundary

∂(γ1) = (v1 + v2) + (v1 + v3) + (v2 + v4) + (v5 + v6)

= v3 + v4 + v5 + v6.

The 0-chain γ0 = v3 + v4 + v5 + v6 has coboundary

δ(γ0) = (e2 + e3 + e6 + e7) + (e4 + e8) + (e5 + e6 + e8 + e9) + (e7 + e9)

= e2 + e3 + e4 + e5.

A 1-chain with boundary 0 is called a cycle vector of G which can be visualized
as a set of edge disjoint cycles. The collection of all cycle vectors is called the cycle
space of G and it is clearly a vector space over Z2. A cut set of a connected graph
is a collection of edges whose removal results in a disconnected graph. A cocycle
is a minimal cutset. A coboundary of G is the coboundary of some 0-chain in
G. The coboundary of a subset of V is the set of all edges joining a point in this
subset to a point not in the subset. Hence, every coboundary is a cutset. Because
any minimal cutset is a coboundary, a cocycle is just a minimal nonzero coboundary.
The collection of all coboundaries of G is a vector space over Z2 and is called the
cocycle space ofG. A basis of this space which consists entirely of cocycles is called
a cocycle basis for G.

Let G be a connected graph. A chord of a spanning tree T of G is an edge of
G which is not in T . The subgraph of G consisting of T and any chord of T has
only one cycle. The set C(T ) of cycles obtained in this way is independent. Every
cycleC depends on the setC(T ) becauseC is the symmetric difference of the cycles
determined by the chords of T which lie in C . The cycle rank m(G) is defined to be
the number of cycles in a basis for the cycle space of G. Thus, we have the following
result.

Theorem 2.4.2 The cycle rank of a connected graph G is equal to the number of
chords of any spanning tree in G.

Similar results can be derived for the cocycle space. Assume thatG is a connected
graph. The cotree T

′
of a spanning tree T of G is the spanning subgraph of G

containing exactly those edges which are not in T . A cotree of G is the cotree of
some spanning tree T . The edges of G which are not in T

′
are called its twigs. The

subgraph ofG consisting of T
′
and any one of its twigs contains exactly one cocycle.

The collection of cocycles obtained by adding twigs to T
′
, one at a time is a basis

for the cocycle space of G. The cocycle rank m
′
(G) is the number of cocycles in a

basis for the cocycle space of G.

Theorem 2.4.3 The cocycle rank of a connected graph G is the number of twigs in
any spanning tree T of G.
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Fig. 2.7 Fuzzy graph having
no fuzzy bridges

Definition 2.4.4 Let G = (σ,μ) be a fuzzy graph. Let x ∈ V and let t ∈ [0, 1].
Define the fuzzy subset xt of V by for all y ∈ V, xt (y) = 0 if y �= x and xt (y) = t
if y = x . Then xt is called a fuzzy singleton in V . If xy ∈ E, then xyμ(xy) denotes
a fuzzy singleton in E .

Definition 2.4.5 Let G = (σ,μ) be a fuzzy graph and let S be a subset of Supp(μ).
Then

(i) {xyμ(xy) | xy ∈ S} is called a cut set of (σ,μ) if S is a cut set of (Supp(σ),
Supp(μ)).

(ii) {xyμ(xy) | xy ∈ S} is called a fuzzy cut set of (σ,μ) if ∃ u, v ∈ Supp(σ) such
that μ′∞(u, v) < μ∞(u, v),where μ′ is the fuzzy subset of E defined by μ′ = μ
on Supp(μ) and μ′(xy) = 0 for all xy ∈ S.

When S is a singleton set, a cut set is called a bridge and a fuzzy cut set is a fuzzy
bridge.

Example 2.4.6 In this example, we show there is a fuzzy graph (σ,μ) that has
no fuzzy bridges and μ is not a constant function. Let V = {a, b, c, d} and x =
{ab, bc, cd, da, bd}. Let σ(x) = 1 for all x ∈ V , μ(ab) = μ(bc) = μ(cd) =
μ(da) = 1 and μ(bd) = 0.25. Then μ is not a constant, but (σ,μ) does not have
a fuzzy bridge because the strength of connectedness between any pair of vertices
of (σ,μ) remains 0.5 even after the removal of an edge as seen from Fig. 2.7.

Theorem 2.4.7 Let G = (σ,μ) be a fuzzy graph. Let V = {v1, . . . , vn} and C =
{v1v2, v2v3, . . . , vn−1vn, vnv1}, n ≥ 3.

(i) Suppose that C ⊆ Supp(μ) and that for all v jvk ∈ Supp(μ)\C, μ(v jvk) <

∨{μ(vivi+1) | i = 1, . . . , n},where vn+1 = v1. Then eitherμ is a constant func-
tion on C or G has a fuzzy bridge.

(ii) If ∅ �= Supp(μ) ⊂ C, then G has a fuzzy bridge.

Proof (i) Suppose μ is not constant on C. Let vhvh+1 ∈ C be such that μ(vhvh+1) =
∨{μ(vivi+1) | i = 1, . . . , n}. Because μ is not constant onC , the strength of the path
C\{vhvh+1} between vh and vh+1 is strictly less than μ(vhvh+1). The strength of any
other path P between vh and vh+1 is also strictly less than μ(vhvh+1) because P must
contain an edge from Supp(μ)\C. Thus, vhvh+1μ(vhvh+1) is a fuzzy bridge.
(i i) The result here is immediate. �
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Theorem 2.4.8 Let G = (σ,μ) be a fuzzy graph. Suppose that the dimension of the
cycle space of (Supp(σ), Supp(μ)) is 1. Then G does not have a fuzzy bridge if and
only if G is a cycle and μ is a constant function.

Proof Suppose it is not the case that (σ,μ) is a cycle and μ is a constant function.
If (σ,μ) is not a cycle, then there exists xy ∈ Supp(μ) which is not part of a cycle.
Then xyμ(xy) is a bridge and hence a fuzzy bridge. Suppose that (σ,μ) is a cycle, but
μ is not a constant function. Let xy ∈ Supp(μ) be such that μ(xy) is maximal. Then
xyμ(xy) is a fuzzy bridge.

Conversely, suppose that (σ,μ) is a cycle and μ is not a constant function. Then
the deletion of an edge vivi+1 yields a unique path between vi and vi+1 of strength
equal to μ(vivi+1). Thus, vivi+1μ(vivi+1) is not a fuzzy bridge. �

Several other concepts like fuzzy chords, fuzzy cotrees, and fuzzy twigs can also
be found in [127].

2.5 Bridges, Cutsets, and Blocks

In 1985, Delgado, Verdegay, and Vila [62], defined the notions of connectedness,
fuzzy cycles, and fuzzy trees differently than Rosenfeld. They used the notion of
level sets to define these terms. They pointed out some valid reasons for their def-
initions. For example, they noted that a fuzzy graph may have different degrees of
connectedness and that two fuzzy graphs may share the property that neither is con-
nected, but there is a t-cut of one which is connected while no t-cut of the other is
connected.

Later in 2002, Mordeson and Yao [131] studied this further and obtained sev-
eral new results on connectedness by levels. The work in this section is from [131].
Connectivity analysis by levels is important in any interconnection network. The
structural properties of finite fuzzy graphs provide tools for the solutions of Opera-
tions Research problems. In this section, several connectedness properties of various
types of fuzzy graph structures are discussed. Level graphs are used to define different
variants.

Definition 2.5.1 Let d(μ) = ∧{μ(xy) | xy ∈ μ∗} and h(μ) = ∨{μ(xy) | xy ∈ μ∗}.
Then d(μ) is called the depth of μ and h(μ) is called the height of μ.

Note that d(μ) and h(μ) are undefined in Definition 2.5.1 if μ∗ = ∅.
Definition 2.5.2 Let xy ∈ μ∗. Then

(i) xy is called a bridge if xy is a bridge of (σ∗,μ∗).
(ii) xy is called a fuzzy bridge if μ′∞(u, v) < μ∞(u, v) for some uv ∈ μ∗, where

μ′ is μ restricted to E \ {xy}.
(iii) xy is called a weak fuzzy bridge if ∃ t ∈ (0, h(μ)] such that xy is a bridge for

Gt .
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Fig. 2.8 Different types of bridges in a fuzzy graph

(iv) xy is called a partial fuzzy bridge if xy is a bridge for Gt for all t ∈
(d(μ), h(μ)] ∪ {h(μ)}.

(v) xy is called a full fuzzy bridge if xy is a bridge for Gt for all t ∈ (0, h(μ)].
We note that in (iv) of Definition 2.5.2, (d(μ), h(μ)] = ∅ if d(μ) = h(μ).

Example 2.5.3 Let V = {a, b, c}. Define the fuzzy subsets σ of V and μ of E =
{ab, bc} as follows: σ(a) = σ(b) = σ(c) = 1 and μ(ab) = 0.5, μ(bc) = 0.6. Then
d(μ) = 0.5 and h(μ) = 0.6. For 0 < t ≤ 0.5, Gt = (V, {ab, bc}) and for 0.5 < t
≤ 0.6, Gt = (V , {bc}). Hence, bc is a full fuzzy bridge and ab is a weak fuzzy
bridge, but not a partial fuzzy bridge. Both ab and bc are bridges and fuzzy bridges.

Example 2.5.4 Let V = {a, b, c}. Define the fuzzy sets σ of V and μ of E =
{ab, bc, ac} as follows: σ(a) = σ(b) = σ(c) = 1, μ(ab) = 0.5, μ(ac) = 0.6, and
μ(bc) = 0.2. Then d(μ) = 0.2 and h(μ) = 0.6. For 0 < t ≤ 0.2, Gt = (V , {ab, bc,
ac}), for 0.2 < t ≤ 0.5, Gt = (V, {ab, ac}), and for 0.5 < t ≤ 0.6, Gt = (V , {ac}).
Then ac is a fuzzy bridge and a partial fuzzy bridge, but not a full fuzzy bridge and
not a bridge. The edge bc is not any of the five types of bridges.

Example 2.5.5 Let V = {a, b, c}. Define the fuzzy subsets σ of V and μ of E =
{ab, bc, ac} as follows: σ(a)= σ(b)= σ(c)= 1 and μ(ab) = μ(bc) = μ(ac) = 0.5.
Then G has no bridges of any of the five types.

The fuzzy graphs of Examples 2.5.3–2.5.5 are given in Fig. 2.8.

Example 2.5.6 Let V = {a, b, c, d}. Define the fuzzy subsets σ of V and μ of E =
{ab, bc, cd, ac} as follows: σ(a) = σ(b) = σ(c) = σ(d) = 1 and μ(ab) = 0.3 =
μ(bc), μ(ac) = 0.9 = μ(cd). Then d(μ) = 0.3 and h(μ) = 0.8. For 0 < t ≤ 0.3,
Gt = (V , {ab, bc, cd, ac}) and for 0.3 < t ≤ 0.8, Gt = (V , {ac, cd}). Hence, cd
is a full fuzzy bridge and ac is a partial fuzzy bridge, but not a full fuzzy bridge
(Fig. 2.9).

Proposition 2.5.7 xy is a full fuzzy bridge if and only if xy is a bridge for G∗ and
μ(xy) = h(μ).
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Fig. 2.9 Fuzzy graph with a
full fuzzy bridge

Fig. 2.10 Fuzzy graph in
Example 2.5.9

Proof Suppose xy is a full fuzzy bridge. Then xy is a bridge for Gt for all t ∈
(0, h(μ)].Hence, xy ∈ μh(μ) and so μ(xy) = h(μ). Because xy is a bridge for Gt for
all t ∈ (0, h(μ)], it follows that xy is a bridge for G∗ because σ∗ = σd(μ) and μ∗ =
μd(μ). Conversely, suppose that xy is a bridge for G∗ and μ(xy) = h(μ). Then xy ∈
μt for all t ∈ (0, h(μ)]. Thus, because xy is also a bridge for G∗, xy is a bridge for
Gt for all t ∈ (0, h(μ)], because each Gt is a subgraph of G∗. Hence, xy is a full
fuzzy bridge. �
Proposition 2.5.8 Suppose that xy is not contained in a cycle of G∗. Then the
following conditions are equivalent.

(i) μ(xy) = h(μ).
(ii) xy is a partial fuzzy bridge.
(iii) xy is a full fuzzy bridge.

Proof Because xy is not contained in a cycle of G∗, xy is a bridge of G∗. Hence, by
Proposition 2.5.7, (i) ⇔ (iii). Clearly, (iii) ⇒ (ii). Suppose that (ii) holds. Then xy
is a bridge for Gt for all t ∈ (d(μ), h(μ)] and so xy ∈ μh(μ).. Hence, μ(xy) = h(μ),
i.e., (i) holds. �
Example 2.5.9 Consider the fuzzy graph G = (σ,μ) with σ∗ = {x, y, z, w} and
μ∗ = {xz, xw,wy, yz} (Fig. 2.10). Define the fuzzy subsets σ and μ as follows:
σ(x) = σ(y) = σ(z) = σ(w) = 1,μ(xy) = 1, μ(xz) = 0.4, μ(xw) = 0.7,μ(wy) =
0.7, and μ(yz) = 0.3. Then d(μ) = 0.3 and h(μ) = 1. For 0 < t ≤ 0.3, Gt = (V ,
{xy, xz, xw,wy, yz}). For 0.3 < t ≤ 0.4, Gt = (V , {xy, xz, xw,wy}), for 0.4 <

t ≤ 0.7, Gt = (V , {xy, xw, yz}), and for 0.7 < t ≤ 1, Gt = (V , {xy}). Then xy is
in a cycle of G∗, xy is not a partial fuzzy bridge, and μ(xy) = h(μ). Also, xy is a
weak fuzzy bridge and a fuzzy bridge, but not a bridge (Fig. 2.10).
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Proposition 2.5.10 If xy is a bridge, then xy is a weak fuzzy bridge and a fuzzy
bridge.

Proof xy is a bridge ⇔ xy is a bridge for G∗ ⇔ xy is a bridge for Gd(μ), because
G∗ = Gd(μ) ⇒ xy is a weak fuzzy bridge. xy is a bridge implies that its removal
disconnects G∗ and so xy is a fuzzy bridge. �

Theorem 2.5.11 xy is a fuzzy bridge if and only if xy is a weak fuzzy bridge.

Proof Suppose xy is a weak fuzzy bridge. Then ∃ t ∈ (0, h(μ)] such that xy is a
bridge for Gt . Hence, the removal of xy disconnects Gt . Thus, any path from x to y
in G has an edge uv with μ(uv) < t.Hence, the removal of xy results in μ′∞(x, y) <
t ≤ μ∞(x, y). Thus, xy is a fuzzy bridge. Conversely, suppose xy is a fuzzy bridge.
Then ∃ u, v such that removal of xy results μ′∞(u, v) < μ∞(u, v). Hence, xy is on
every strongest path connecting u and v and in fact, μ(xy) is greater than or equal
to this value. Thus, there does not exist a path (other than xy) connecting x and y
in Gμ(xy), else this other path without xy would be of strength ≥ μ(xy) and would
be part of a strongest path connecting u and v, contrary to the fact xy is on every
such path. Hence, xy is a bridge of Gμ(xy) and 0 < μ(xy) ≤ h(μ). Thus, μ(xy) is a
desired t . �

Definition 2.5.12 Let x ∈ V .

(i) x is called a cutvertex if x is a cutvertex of G∗.
(ii) x is called a fuzzy cutvertex if∃ u, v ∈ V \{x} such thatμ′∞(u, v) < μ∞(u, v),

where μ′ is μ restricted to E \ {xz, zx} | z ∈ V }.
(iii) x is called a weak fuzzy cutvertex if ∃ t ∈ (0, h(μ)] such that x is a cutvertex

for Gt .
(iv) x is called a partial fuzzy cutvertex if x is a cutvertex for Gt for all t ∈

(d(μ), h(μ))] ∪ {h(μ)}.
(v) x is called a full fuzzy cutvertex if x is a cutvertex for Gt for all t ∈ (0, h(μ)].
Example 2.5.13 Consider the fuzzy graphG = (σ,μ)with σ∗ = {x, y, z} and μ∗ =
{xy, xz, yz}. Let the fuzzy subsets σ and μ be defined as σ(x) = σ(y) = σ(z) =
1,μ(xy) = 0.5, μ(xz) = 0.4, and μ(yz) = 0.3. Then d(μ) = 0.3 and h(μ) = 0.5.
For 0 < t ≤ 0.3, Gt = (V , {xy, xz, yz}), for 0.3 < t ≤ 0.4, Gt = (V , {xy, xz}),
and for 0.4 < t ≤ 0.5,Gt = (V , {xy}). Thus, x is a fuzzy cutvertex and a weak fuzzy
cutvertex, but neither a cutvertex nor a partial cutvertex.

Example 2.5.14 Consider the fuzzy graphG = (V,σ,μ)with V = {x, y, z}.Define
the fuzzy subsets σ of V and μ of E = {xy, xz, yz} as follows: σ(x) = σ(y) =
σ(z) = 1 and μ(xy) = μ(xz) = 0.7 and μ(yz) = 0.1. Then d(μ) = 0.1 and h(μ) =
0.7. For 0 < t ≤ 0.1, Gt = (V, {xy, xz, yz}) and for 0.1 < t ≤ 0.7, Gt = (V,
{xy, xz}). Thus, x is a fuzzy cutvertex and a partial fuzzy cutvertex, but neither
a cutvertex nor a full fuzzy cutvertex.
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Fig. 2.11 Fuzzy Graphs in Examples 2.5.13–2.5.16

Example 2.5.15 Let V = {x, y, z}. Define the fuzzy subsets σ of V and μ of
E = {xy, xz} as follows: σ(x) = σ(y) = σ(z) = 1 and μ(xy) = μ(xz) = 0.5. Then
d(μ) = h(μ) = 0.5. For 0 < t ≤ 0.5, Gt = (V , {xy, xz}). Thus, x is a full fuzzy
cutvertex, a fuzzy cutvertex, and a cutvertex.

Example 2.5.16 Let V = {x, y, z}. Define the fuzzy subsets σ of V and μ of E =
{xy, xz} as follows: σ(x) = σ(y) = σ(z) = 1 and μ(xy) = 0.4 and μ(xz) = 0.3.
Then d(μ) = 0.3 and h(μ) = 0.4. For 0 < t ≤ 0.3, Gt = (V , {xy, xz}) and for
0.3 < t ≤ 0.4, Gt = (V , {xy}). Thus, x is a cutvertex, a fuzzy cutvertex, and a weak
fuzzy cutvertex, but not a partial fuzzy cutvertex.

The fuzzy graphs in Examples 2.5.13–2.5.16 are given in Fig. 2.11.

Definition 2.5.17 (i) G is called a block if G∗ is a block.
(ii) G is called a fuzzy block if it has no fuzzy cutvertices.
(iii) G is called a weak fuzzy block if ∃ t ∈ (0, h(μ)] such that Gt is a block.
(iv) G is called a partial fuzzy block if Gt is a block for all t ∈ (d(μ), h(μ)]

∪{h(μ)}.
(v) G is called a full fuzzy block if Gt is a block for all t ∈ (0, h(μ)].
Example 2.5.18 Consider the fuzzy graphG = (σ,μ)with σ∗ = {x, y, z} and μ∗ =
{xy, yz, xz}. The fuzzy subsets σ and μ are defined as follows: σ(x) = σ(y) =
σ(z) = 1 and μ(xy) = μ(yz) = 0.6, and μ(xz) = 0.7. Then d(μ) = 0.6 and h(μ)
= 0.7. For 0 < t ≤ 0.6, Gt = (V, {xy, yz, xz}) and for 0.6 < t ≤ 0.7, Gt = (V ,
{xz}). Thus, G is a block, a fuzzy block, and a weak fuzzy block. G is not a partial
fuzzy block because Gt is not a block for 0.5 < t ≤ 0.9; it is not connected.
Example 2.5.19 Consider the fuzzy graphG = (σ,μ)with σ∗ = {x, y, z} and μ∗ =
{xy, yz, xz}. The fuzzy subsets σ and μ are defined as follows: σ(x) = σ(y) =
σ(z) = 1 and μ(xy) = μ(xz) = 0.8 and μ(yz) = 0.7. Then d(μ) = 0.7 and h(μ)
= 0.8. For 0 < t ≤ 0.7, Gt = (V , {xy, xz, yz}) and for 0.7 < t ≤ 0.8, Gt = (V ,
{xy, xz}). Thus, G is a block and a weak fuzzy block because G is a block for
0 < t ≤ 0.7. However, G is not a fuzzy block because x is a fuzzy cutvertex of G.

Also,G is not a partial fuzzy block because x is a cutvertex forGt for 0.7 < t ≤ 0.8.
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Fig. 2.12 Examples given in Examples 2.5.18–2.5.20

Fig. 2.13 A fuzzy block
which is not firm

Example 2.5.20 Consider the fuzzy graphG = (σ,μ)with σ∗ = {x, y, z} and μ∗ =
{xy, yz, xz}. The fuzzy subsets σ and μ are defined as follows: σ(x) = σ(y) =
σ(z) = 1 and μ(xy) = μ(xz) = μ(yz) = 0.5. Then d(μ) = h(μ) = 0.5. For 0 <

t ≤ 0.5, Gt = (V , {xy, xz, yz}). Thus, G is a block, a fuzzy block and a full fuzzy
block.

The fuzzy graphs of Examples 2.5.18–2.5.20 are given in Fig. 2.12.

Definition 2.5.21 G is said to be firm if ∧{σ(x) | x ∈ V } ≥ ∨(μ(xy) | xy ∈ μ∗}.
To this point all examples of fuzzy graphs except Fig. 2.2 in Example 2.2.6 have

been firm.

Example 2.5.22 Consider the fuzzy graphG = (σ,μ)with σ∗ = {x, y, z} and μ∗ =
{xy, yz, xz}. The fuzzy subsets σ and μ are defined as follows: σ(x) = 0.6, σ(y) =
0.7,σ(z) = 0.8, and μ(xy) = μ(xz) = 0.6, and μ(yz) = 0.7. Then d(μ) = 0.6 and
h(μ) = 0.7. For 0 < t ≤ 0.6, Gt = (V , {xy, xz, yz}) and for 0.6 < t ≤ 0.7, Gt =
(V , {yz)}). Thus, G is a block, a fuzzy block, and a full fuzzy block. We note that G
is not firm (Fig. 2.13).

2.6 Cycles and Trees

In this section, we discuss the connectedness properties of cycles and trees in fuzzy
graphs by levels. This is a continuation of results from [131].
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Fig. 2.14 A fuzzy cycle and
a partial fuzzy cycle

Definition 2.6.1 (i) G is called a cycle if G∗ is a cycle.
(ii) G is called a fuzzy cycle if G∗ is a cycle and there does not exist unique xy

∈ μ∗ such that μ(xy) = ∧{μ(uv) | uv ∈ μ∗}.
(iii) G is called a weak fuzzy cycle if ∃ t ∈ (0, h(μ)] such that Gt is a cycle.
(iv) G is called a partial fuzzy cycle if Gt is a cycle for all t ∈ (d(μ), h(μ)] ∪

{h(μ)}.
(v) G is called a full fuzzy cycle if Gt is a cycle for all t ∈ (0, h(μ)].
Example 2.6.2 Consider V = {x, y, z, w}. Let σ be the fuzzy subset of V and μ the
fuzzy subset of E = {xy, wz, xw, yz} defined as follows: σ(x) = σ(y) = σ(z) =
σ(w) = 1, μ(xy) = μ(wz) = 0.7 and μ(xw) = μ(yz) = 0.6. Then d(μ) = 0.6 and
h(μ) = 0.7. For 0 < t ≤ 0.6, Gt = (V , {xy, xw, yz, wz}) and for 0.6 < t ≤ 0.7, Gt

= (V, {xy, wz}). Thus, G is a fuzzy cycle and a weak fuzzy cycle, but G is not a
partial fuzzy cycle.

Example 2.6.3 Let V = {x, y, z, w}. Let σ be the fuzzy subset of V and μ the fuzzy
subset of E = {xy, yz, zw,wx} defined as follows: σ(x) = σ(y) = σ(z) = σ(w) =
1, μ(xy)= μ(yz)= μ(zw)= μ(wx)= 0.5, and μ(x, z)= 0.2. ThenG is not a cycle.
Now, d(μ) = 0.2 and h(μ) = 0.5. For 0 < t ≤ 0.2, Gt = (V , {xy, yz, zw,wx, xz})
which is not a cycle and for 0.2 < t ≤ 0.5, Gt = (V , {xy, yz, zw,wx}) which is a
cycle. Thus, G is a partial fuzzy cycle, but not a full fuzzy cycle.

Fuzzy graphs in Examples 2.6.2 and 2.6.3 are given in Fig. 2.14.

Proposition 2.6.4 Suppose G is a cycle. Then G is a partial fuzzy cycle if and only
if G is a full fuzzy cycle.

Proof Suppose G is a partial fuzzy cycle. Let t ∈ (0, d(μ)]. Then Gt = G∗ and G∗
is given to be a cycle. Hence, G is a full fuzzy cycle. �

Proposition 2.6.5 G is a full fuzzy cycle if and only if G is a cycle and μ is constant
on μ∗.

Proof Suppose G is a full fuzzy cycle. Then G∗ = Gd(μ) is a cycle. Suppose ∃ t1 and
t2 ∈ Im(μ)with 0 < t1 < t2. Then ∃ xy ∈ μ∗ such that μ(xy) = t1.Hence, xy /∈ μt2 .

Thus, Gt2 is not a cycle, a contradiction. Hence, μ is constant on μ∗. The converse is
immediate. �
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Fig. 2.15 A partial fuzzy
forest

Corollary 2.6.6 If G is a full fuzzy cycle, then G is a fuzzy cycle.

Proposition 2.6.7 G is a partial fuzzy cycle if and only if Gh(μ) is a cycle and
|Im(μ)\{0}| ≤ 2.

Proof Suppose G is a partial fuzzy cycle. Then clearlyGh(μ) is a cycle and in factGt

is a cycle for all t ∈ (d(μ), h(μ)] ∪ {h(μ)}. Suppose |Im(μ)\{0}| > 2. Then ∃ t such
that 0 < d(μ) < t < h(μ). Hence, ∃ xy ∈ μ∗ such that μ(xy) = t. Thus, xy /∈ μh(μ)

and so Gh(μ) is not a cycle, a contradiction. Conversely, suppose Gh(μ) is a cycle
and |Im(μ)\{0}| ≤ 2. If |Im(μ)\{0}| = 1, then G is a full fuzzy cycle by Proposition
2.6.5. Suppose |Im(μ)\{0}| = 2. Then Im(μ)\{0} = {d(μ), h(μ)}. Because Gt =
Gh(μ) for d(μ) < t ≤ h(μ), it follows that G is a partial fuzzy tree. �

Definition 2.6.8 (i) G is called a forest (tree) if G∗ is a forest (tree).
(ii) G is called a fuzzy forest (tree) if G has a fuzzy spanning subgraph (σ, ν)

which is a forest (tree) such that for all uv ∈ μ∗ \ ν∗, μ(uv) < ν∞(uv).
(iii) G is called a weak fuzzy forest (tree) if ∃ t ∈ (0, h(μ)] such that Gt is a forest

(tree).
(iv) G is called a partial fuzzy forest (tree) if Gt is a forest (tree) for all t ∈

(d(μ), h(μ] ∪ {h(μ)}.
(v) G is called a full fuzzy forest (tree) if Gt is a forest (tree) for all t ∈ (0, h(μ)].
The definition of a weak fuzzy forest in Definition 2.6.8(iii) is equivalent to the

definition of a fuzzy graph being acyclic by t-cuts in Chap.5. We will show that the
definition of a full fuzzy forest here and the one in Chap. 5 are equivalent, but that
this is not the case for the notion of a full fuzzy tree.

Example 2.6.9 Consider the fuzzy graph G = (σ,μ) with σ∗ = {x, y, z, w} and
μ∗ = {xw, yz, xy, wz}. The fuzzy subsets σ and μ are defined as follows: σ(x) =
σ(y) = σ(z) = σ(w) = 1 and μ(xw) = μ(yz) = 0.4, μ(xy) = μ(wz) = 0.8. Then
d(μ) = 0.4 and h(μ) = 0.8. For 0 < t ≤ 0.4, Gt = (V , {xw, yz, xy, wz}) and for
0.4 < t ≤ 0.8, Gt = (V , {xy, wz}). Hence, G is a partial fuzzy forest, but is neither
a fuzzy forest nor a full fuzzy forest (Fig. 2.15).

Proposition 2.6.10 G is a full fuzzy forest if and only if G is a forest.

http://dx.doi.org/10.1007/978-3-319-71407-3_5
http://dx.doi.org/10.1007/978-3-319-71407-3_5
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Fig. 2.16 A full fuzzy forest

Proof Suppose G is a full fuzzy forest. Then G∗ = Gd(μ) is a forest. Conversely,
supposeG is a forest. ThenG∗ is a forest and hence somust beGt for all t ∈ (0, h(μ)]
because each such Gt is a subgraph of G∗. �

Example 2.6.11 Consider the fuzzy graphG = (σ,μ)with σ∗ = {x, y, z} and μ∗ =
{xy, yz}. The fuzzy subsets σ and μ are defined as follows: σ(x) = σ(y) = σ(z) =
1, μ(xy) = 0.7 and μ(yz)= 0.3. Then d(μ) = 0.3 and h(μ)= 0.7. For 0 < t ≤ 0.3,
Gt = (V , {xy, yz}) and for 0.3 < t ≤ 0.7, Gt = (V , {xy}).Hence, G is a forest (and
a full fuzzy forest) without being a constant on μ∗ (Fig. 2.16). Note that Gh(μ) has
more connected components than G∗.

Proposition 2.6.12 G is a weak fuzzy forest if and only if G does not contain a cycle
whose edges are of strength h(μ).

Proof Suppose G contains a cycle whose edges are of strength h(μ). Then Gt ,

t ∈ (0, h(μ)], contains this cycle and so is not a forest. Thus, G is not a weak fuzzy
forest. Conversely, suppose G does not contain a cycle all of whose edges are of
strength h(μ). Then Gh(μ) does not contain a cycle and so is a forest. �

Corollary 2.6.13 If G is a fuzzy forest, then G is a weak fuzzy forest.

Proof G cannot have a cycle all of whose edges are of strength h(μ), else it could
not have a fuzzy spanning forest with the property that for all uv ∈ μ∗ \ ν∗, μ(uv) <
ν∞(u, v). �

Theorem 2.6.14 G is a forest and μ is a constant on μ∗ if and only if G is a full
fuzzy forest, G∗ and Gh(μ) have the same number of connected components, and G
is firm.

Proof Suppose thatG is a forest andμ is constant onμ∗.Then for all t ∈ (0, h(μ)],Gt

= G∗ and so G is a full fuzzy forest and G∗ and Gh(μ) have the same number of
connected components. Clearly, G is firm because μ is a constant on μ∗. Conversely,
suppose G is a full fuzzy forest, G∗ and Gh(μ) have the same number of connected
components, andG is firm. Suppose ∃ t1, t2 ∈ Im(μ) such that 0 < t1 < t2. Then ∃ xy
∈ μ∗ such that μ(xy) = t1.Now, xy ∈ μt1 , xy /∈ μt2 .Hence, Gt2 has more connected
components than Gt1 because G is firm, i.e., no vertices were lost. Thus, Gh(μ) has
more connected components than G∗, a contradiction. �
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Fig. 2.17 A full fuzzy forest

Example 2.6.15 Consider V = {x, y, z, w}. Define the fuzzy subsets σ of V and
μ of E = {xy, zw} as follows: σ(x) = σ(y) = σ(z) = 1, σ(w) = 0.4 and μ(xy) =
0.8, μ(zw) = 0.4. Then d(μ) = 0.4 and h(μ) = 0.8. For 0 < t ≤ 0.4, Gt = (V ,
{xy, zw}) and for 0.4 < t ≤ 0.8, Gt = ({x, y, w}, {xy}). Thus, G∗ and Gh(μ) are
forests with the same number of connected components. G is a full fuzzy forest
(Fig. 2.17), μ is not constant on μ∗, and G is not firm.

Corollary 2.6.16 G is a tree and μ is constant on μ∗ if and only if G is a full fuzzy
tree and G is firm.

Proof Suppose G is a full fuzzy tree and G is firm. Because Gt is a tree for all
t ∈ (0, h(μ)], G∗ is a tree and so Gh(μ) and G∗ have the same number of connected
components. The desired result now follows from Theorem 2.6.14. �

Example 2.6.17 Consider the fuzzy graphG = (σ,μ)with σ∗ = {x, y, z} and μ∗ =
{xy, yz}. The fuzzy subsetsσ andμ are defined as follows:σ(x) = σ(y) = 1,σ(z) =
0.6 and μ(xy) = 0.8, μ(yz) = 0.6. Then d(μ) = 0.6 and h(μ) = 0.8. For 0 < t ≤
0.6, Gt = (V , {(x, y), (y, z)}) and for 0.6 < t ≤ 0.8, Gt = ({x, y}, {xy}). Thus, G
is a tree, G is a full fuzzy tree, and G∗ and Gh(μ) have the same number of connected
components. However, G is not firm and μ is not constant on μ∗.

Example 2.6.18 Let V = {x, y, z}. Define the fuzzy subsets σ of V and μ of E =
{xy, xz, yz} as follows: σ(x) = σ(y) = 1,σ(z) = 0.7 and μ(xy) = 0.8,μ(xz) =
μ(yz) = 0.7. Then d(μ) = 0.7 and h(μ) = 0.8. For 0 < t ≤ 0.7, Gt = (V ,
{xy, xz, yz}) and for 0.7 < t ≤ 0.8,Gt = ({x, y}, {xy}). Thus, G is a partial fuzzy
tree, but not a full fuzzy tree. G is not a fuzzy tree. Hence, it is not the case that if G
is a weak fuzzy tree, then G is a fuzzy tree. G is not firm.

The fuzzy graphs in Examples 2.6.17 and 2.6.18 are given in Fig. 2.18.

Definition 2.6.19 For all t ∈ (0, 1] define σ(t) : σt → [0, 1] and μ(t) : μt → [0, 1]
by σ(t)(x) = σ(x) for all x ∈ σt ; σ(t)(x) = 0 otherwise, and μ(t)(xy) = μ(xy) for
all xy ∈ μt and μ(t)(xy) = 0 otherwise. Let G(t) = (σ(t),μ(t)) for all t ∈ (0, 1].
Proposition 2.6.20 Suppose that G is firm. If G is a weak fuzzy tree, then G is a
fuzzy tree.
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Fig. 2.18 Fuzzy graphs in
Examples 2.6.17 and 2.6.18

Proof There exist t ∈ (0, h(μ)] such that Gt is a tree. Because G is firm, G(t) is a
fuzzy spanning subgraph of G which is a tree. If uv is in μ∗ \ μt , then μ(uv) < t
and so it follows that G is a fuzzy tree. �

Example 2.6.21 Consider the fuzzy graph G = (σ,μ) with σ∗ = {x, y, z, w} and
μ∗ = {xy, yz, xz, zw, xw}. The fuzzy subsets σ andμ are defined as follows: σ(x) =
σ(y) = σ(z) = σ(w) = 1 and μ(xy) = μ(yz) = 0.8, μ(xz) = μ(zw) = 0.5,
μ(xw) = 0.2. Then d(μ) = 0.2 and h(μ) = 0.8. For 0 < t ≤ 0.2,Gt = (V , {xy, yz,
zw,wx , xz}), for 0.2 < t ≤ 0.5,Gt = (V , {xy, yz, zw, xz)}), and for 0.5 < t ≤ 0.8,
Gt = (V , {xy, yz}). We see that G is not a weak fuzzy tree. However, it is a fuzzy
tree because (σ, ν) is a fuzzy spanning subgraph of G, which is a tree, where
ν(xy) = ν(yz) = 0.8 and ν(zw) = 0.5.

Example 2.6.22 Consider V = {x, y, z, w}. Let σ be the fuzzy subset of V and μ
the fuzzy subset of E = {xy, yz, zw} defined as follows: σ(x) = σ(y) = σ(z) =
σ(w) = 1 and μ(xy) = μ(yz) = 0.8, μ(zw) = 0.6. Then G is a tree, a fuzzy tree, a
weak fuzzy tree, but not a partial fuzzy tree (if we were to define, μ(w) = 0.6, then
G would be a full fuzzy tree, but not firm).

Example 2.6.23 Let V = {x, y, z}. Let σ be the fuzzy subset of V and μ the
fuzzy subset of E = {xy, yz, yz} defined as follows: σ(x) = σ(y) = σ(z) = 1 and
μ(xy) = μ(xz) = 0.8, μ(yz) = 0.2. Then G is a fuzzy tree, but not a tree. G is a
partial fuzzy tree, but not a full fuzzy tree.

The fuzzy graphs in Examples 2.6.21–2.6.23 are given in Fig. 2.19.

Definition 2.6.24 (i) G is called connected if G∗ is connected.
(ii) G is called fuzzy connected if G is a fuzzy block.
(iii) G is called weakly connected if ∃ t ∈ (0, h(μ)] such that Gt is connected.
(iv) G is called partially connected if Gt is connected for all t ∈ (d(μ), hμ)] ∪

{h(μ)}.
(v) G is called fully connected if Gt is connected for all t ∈ (0, h(μ)].
Example 2.6.25 Consider the fuzzy graph G = (σ,μ) with σ∗ = {x, y, z, w} and
μ∗ = {xy, zw}. The fuzzy subsets σ and μ are defined as follows: σ(x) = σ(y) = 1,
σ(z) = σ(w) = 0.6 and μ(xy) = 0.8 and μ(zw) = 0.6. Then G is not connected. G
is partially connected, but not fully connected. We see that G is not firm (Fig. 2.20).
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Fig. 2.19 Fuzzy graphs in Examples 2.6.21–2.6.23

Fig. 2.20 Fuzzy graph in
Example 2.6.25

Fig. 2.21 Fuzzy graph in
Example 2.6.26

Example 2.6.26 Consider V = {x, y, z}. Let σ be the fuzzy subset of V and μ
be the fuzzy subset of E = {xy} defined as follows: σ(x) = σ(y) = 1,σ(z) = 0.6
and μ(xy) = 0.8. Then G is not connected. G is partially connected, but not fully
connected. Note that G is not firm (Fig. 2.21).

Proposition 2.6.27 If G is connected, then G is weakly connected. Conversely, if G
is firm and weakly connected, then G is connected.

Proof G connected implies G∗ is connected. Now, G∗ = Gd(μ) and so G is weakly
connected. Conversely, if Gt is connected for some t ∈ (0, h(μ)], then G∗ is con-
nected because G is firm. �
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Fig. 2.22 Fuzzy graphs in Examples 2.6.28–2.6.30

Example 2.6.28 Consider the fuzzy graphG = (σ,μ)with σ∗ = {x, y, z} and μ∗ =
{xy, yz, xz}. The fuzzy subsets σ and μ are defined as follows: σ(x) = σ(y) =
σ(z) = 1 and μ(xy) = μ(xz) = 0.8,μ(yz) = 0.6. Then G is fully connected, but μ
is not constant on μ∗.

Example 2.6.29 Consider the fuzzy graph G = (σ,μ) with σ∗ = {x, y, z, w} and
μ∗ = {xy, yz, zw}. The fuzzy subsetsσ andμ are defined as follows:σ(x) = σ(y) =
1, σ(z) = σ(w) = 0.7 and μ(xy) = 0.8, μ(yz) = 0.7, μ(zw) = 0.6. Then d(μ) =
0.6 and h(μ) = 0.8. For 0 < t ≤ 0.6, Gt = (V , {xy, yz, zw}), for 0.6 < t ≤ 0.7,
Gt = (V , {xy, yz}), and for 0.7 < t ≤ 0.8, Gt = ({x, y}, {xy}). Thus, G is weakly
connected, but not partially connected. G is connected but G is not firm.

Example 2.6.30 Consider V = {x, y, z}. Let σ be the fuzzy subset of V and μ be
the fuzzy subset of E = {xy, yz, xz} be defined as: σ(x) = σ(y) = σ(z) = 1 and
μ(xy) = 0.7,μ(yz) = μ(xz) = 0.3. Then G is weakly fuzzy connected because Gt

is connected for 0 < t ≤ 0.3. G is a weak fuzzy forest because Gt is a forest for
0.3 < t ≤ 0.7. However G is not a weak fuzzy tree because Gt is not a tree for any
t such that 0 < t ≤ 0.7.

The fuzzy graphs in Examples 2.6.28–2.6.30 are given in Fig. 2.22.

Proposition 2.6.31 (i) If G is a weak fuzzy tree, then G is weakly connected and
G is a weak fuzzy forest. Conversely, if ∃ t1, t2 ∈ (0, h(μ)] with t1 < t2 such
that Gt1 is a forest and Gt2 is connected, then G is a weak fuzzy tree.

(ii) G is a tree if and only if G is a forest and G is connected.
(iii) G is a partial fuzzy tree if and only if G is a partial fuzzy forest and G is

partially connected.
(iv) G is a full fuzzy tree if and only if G is a full fuzzy forest and G is fully connected.

Proof (i) If Gt is a tree for some t ∈ (0, h(μ)], then Gt is connected and is a forest.
For the converse,we note thatGt2 must also be a forest. Because alsoGt2 is connected,
Gt2 is a tree.

(ii), (iii), (iv): Immediate. �

Proposition 2.6.32 G is firm if and only if G(t) is firm for all t ∈ (0, h(μ)].
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Proof Suppose G is firm. Let t ∈ (0, h(μ)]. Let xy ∈ μt . Then t ≤ μ(xy)≤ ∧
{σ(x) | x ∈ σ∗} ≤ ∧{σ(x) | x ∈ σt }. Hence, ∨{μ(xy) | x, y ∈ μt } ≤ ∧(σ(x) | x ∈
σt }. Thus, if we note that μ(t)∗ = μt and σ(t)∗ = σt , we see that G(t) is firm. Con-
versely, suppose G(t) is firm for all t ∈ (0, h(μ)]. Let ∧{σ(x) | x ∈ σ∗} = t0. Then t0
> 0. Now, ∨(μ(xy) | xy ∈ μt0} ≤ t0 because G(t0) is firm and σ∗ = σt0 = σ(t0)∗. Let
xy ∈ μ∗ \μt0 .Thenμ(xy) < t0.Thus,∨{μ(xy) | xy ∈ μ∗} ≤ t0 =∧{σ(x) | x ∈ σ∗}.
Hence, G is firm. �

2.7 Blocks in Fuzzy Graphs

The definition of a nonseparable fuzzy graph first appeared in Rosenfeld’s classic
paper in 1975 [154]. But a formal study of blocks in fuzzy graphs was made by
Sunitha and Vijayakumar in 2005 [168]. Later Mathew and Sunitha [110] studied
blocks further in 2010 and characterized a class of blocks in fuzzy graphs. In graph
theory, a graph without cutvertices is called a block (or nonseparable). This concept
is generalized to fuzzy graph theory. A fuzzy graph is said to be a block if it has
no fuzzy cutvertices. It is clear that a block in fuzzy graphs has no cutvertices.
Thus, a fuzzy block is trivially a block in the classical sense, but the converse is
not true. In contrast to the conventional concept of a block in graphs, the study of
blocks in fuzzy graphs is challenging due to the complexity of its cutvertices. Note
that the cutvertices of a fuzzy graph are those vertices which reduce the strength of
connectedness between some pair of vertices rather than the total disconnection of
the fuzzy graph on its removal from the fuzzy graph.

Rosenfeld [154] observed that a block may have a fuzzy bridge. Sunitha and
Vijayakumar [168] identified that a fuzzy graph can have more than one fuzzy bridge
as seen from the example below.

Example 2.7.1 Let V = {u, v, w, x, y}. Let σ be the fuzzy subset of V and μ
be the fuzzy subset of V × V defined as follows. σ(u) = σ(v) = σ(w) = σ(x) =
σ(y) = 1 and μ(uv) = μ(xy) = 0.9,μ(vy) = μ(uy) = μ(ux) = 0.5 and μ(wx) =
μ(wy) = 0.3. It can be verified easily that G = (σ,μ) is a block. But note that both
uv and xy are fuzzy bridges (Fig. 2.23).

Fig. 2.23 A block with two
fuzzy bridges



42 2 Fuzzy Graphs

Fig. 2.24 A non fuzzy block
having two fuzzy bridges

It is obvious from the definition that no two fuzzy bridges in a block can have
a common vertex. A complete fuzzy graph is clearly a block. As pointed out in
Theorem 2.3.14, the removal of a fuzzy bridge from a fuzzy tree reduces the strength
of connectedness between some pair of vertices other than its end vertices. But, the
situation is different in blocks as seen from the following theorem.

Theorem 2.7.2 If G = (σ,μ) is a block with at least one fuzzy bridge, then removal
of any fuzzy bridge reduces the strength of connectedness between its end vertices
alone.

Proof Let G = (σ,μ) be a block and uv be a fuzzy bridge of G. Assume on the
contrary that removal of uv reduces the strength of connectedness between some
other pair of vertices ul and vl .

Case 1: Both ul and vl are distinct from u and v.
Without loss of generality let ul �= u and vl �= v. By assumption, every strongest

ul − vl path contains the edge uv. Thus, clearly removal of either u or v reduces the
strength of connectedness between ul and vl , which shows that u and v are fuzzy
cutvertices of G, contradicting that G is a block.

Case 2: One of u or v is ul or vl .
Let vl = v and ul �= u. Then as before removal of v reduces the strength of

connectedness between ul and vl showing that v is a fuzzy cutvertex of G and
similarly if ul = u and vl �= v, then u becomes a fuzzy cutvertex, both contradict the
hypothesis that G is a block. Thus, the only possibility is that ul = u and vl = v and
hence the theorem. �

The condition in Theorem 2.7.2 is not sufficient as seen from Example 2.7.3.

Example 2.7.3 Let V = {u, v, w, x, y, z}. Let σ be a fuzzy subset of V and μ be
a fuzzy subset of E defined as σ(s) = 1 for all s ∈ V and μ(uv) = μ(xy) = 0.9,
μ(vw) = μ(yw) = μ(uw) = μ(xw) = 0.5, μ(xz) = μ(uz) = 0.2. In G, uv and xy
are fuzzy bridges, but their removal does not reduce the strength of connectedness
between any pair of vertices other than their endvertices. Clearly, G is not a block as
w is a fuzzy cutvertex of G (See Fig. 2.24).

In [154], it is proposed that if every pair of vertices in a fuzzy graph G are joined
by strongest paths, then G is a block and the converse is not true. Also, if an edge uv
of a fuzzy graph is a bridge, then it is the unique strongest u − v path. Sunitha and
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Fig. 2.25 Case I of Theorem
2.7.4

Vijayakumar [168] proved that the converse of Rosenfeld’s observation is true only
for blocks having no fuzzy bridges. Hence, we have the following result.

Theorem 2.7.4 ([168]) The following statements are equivalent for a fuzzy graph
G = (σ,μ).

(i) G is a block.
(ii) Any two vertices u and v such that uv is not a fuzzy bridge are joined by two

internally disjoint strongest paths.
(iii) For every three distinct vertices of G, there is a strongest path joining any two

of them not containing the third.

Proof (i) ⇒ (i i) Let G = (σ,μ) be a block. Let u and v be any two vertices such
that μ(uv) ≥ 0 and uv is not a fuzzy bridge. If there exists a unique strongest u − v

path of length greater than or equal to 2, then the vertices on this path other than u
and v are fuzzy cutvertices of G. Hence, there exist more than one strongest u − v

paths. If these strongest u − v paths are internally disjoint, then we are done. Note
that all strongest u − v paths do not have a common vertex, if so, that vertex becomes
a fuzzy cutvertex. So consider the following cases.

Case 1:
Let P1 : u − w2 − w3 − u1 − v, P2 : u − u4 − w1 − w2 − u2 − v and P3 : u −

w1 − w3 − u3 − v be strongest u − v paths. Letw2 be the last common vertex of P1
and P2 (Fig. 2.25). Then u − w2 subpath in P1 together with w2 − u2 − v subpath
in P2 is a path (say) P disjoint from P3.

Claim: P is a strongest u − v path.
Let e1, e2 and e3 be weakest edges in P1, P2 and P3, respectively, and let

μ(e1) = μ(e2) = μ(e3) = μ∞(u, v). Then e1 should be in u − w2 subpath of P1 or
e2 should be inw2 − u2 − v subpath of P2; for if not, then strength of P > μ∞(u, v),
contradiction. Hence, P is a strongest u − v path.

Case 2:
Let P1 : u − u1 − w1 − w2 − v, P2 : u − w1 − w3 − u2 − v and P3 : u − w2 −

w3 − v be strongest u − v paths. Let w2 be the first common vertex of P1 and P3.
Then u − w2 subpath in P3 together with w2 − v subpath in P1 is a path disjoint
from P2 (Fig. 2.26). As in Case 1, it can be proved that P is a strongest u − v path.
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Fig. 2.26 Case II of
Theorem 2.7.4

Fig. 2.27 Case III of
Theorem 2.7.4

Case 3:
Let P1 : u − u2 − w1 − w2 − u3 − u4 − v, P2 : u − u1 − u2 − w3 − u3 − v and

P3 : u − w1 − w3 − w2 − v be strongest u − v paths. Letw1 andw2 be the first and
last common vertices of P1 and P3, respectively (Fig. 2.27). Then u − w1 subpath
in P3 and w1 − w2 subpath in P1 together with w2 − v subpath in P3 will give a
strongest u − v path disjoint from P2.

(i i) ⇒ (i i i)
Let u �= v �= w be any three vertices of G. Choose any two (say) u and v. If edge

uv is a fuzzy bridge, then it is the strongest u − v path and (i i i) holds. So assume
uv is not a fuzzy bridge. Now, by (i i), there exist two internally disjoint strongest
u − v paths and hence w cannot be in both.

(i i i) ⇒ (i) If possible let w be a fuzzy cutvertex of G. Then by definition there
exist u, v different from w such that w is on every strongest u − v path. But this
contradicts (i i i). �

A fuzzy analogue of the characterization of blocks in graphs given in [83] with
all six conditions is not possible. But in any fuzzy graph there exists a strongest path
between every pair of vertices. We will discuss a characterization using strongest
strong paths in this section.

An edge xy is said to be a strong if its membership value is at least as great as
the connectedness of its end vertices when the edge is deleted. That is, if μ(xy) ≥
μ

′∞(x, y) or μ(xy) ≥ CONNG−xy(x, y).A detailed discussion of strong edges will
be made in Chap.3. From the following example, it can be seen that a block can
contain edges which are even not strong.

Example 2.7.5 Let G = (σ,μ) with σ∗ = {u, v, w, x},σ(s) = 1 for all s ∈ σ∗ and
μ(uv) = μ(xu) = μ(vw) = μ(wx) = 0.9,μ(vx) = 0.2.ThenG is a block. Here vx
is the unique weakest edge of the cycle uvxu which is not strong (Fig. 2.28).

http://dx.doi.org/10.1007/978-3-319-71407-3_3
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Fig. 2.28 A block with a
non strong edge

Fig. 2.29 Fuzzy graph in
Example 2.7.6

A path in a fuzzy graph G is strong if all its edges are strong. Recall that an
x − y path P in a fuzzy graph G is said to be a strongest x − y path if d(P) =
CONNG(x, y). In a block, a strongest path need not be strong and a strong path
need not be strongest. But there exists a strongest strong path between any two
vertices of G.

Example 2.7.6 Let G = (σ,μ) with σ∗ = {u, v, w, x},σ(s) = 1 for all s ∈ σ∗ and
μ(uv) = 0.3 = μ(xu),μ(vw) = μ(wx) = 1,μ(vx) = 0.6. Edge xv is not strong
because 0.6 = μ(xv) < CONNG−xv(x, v) = 1. Thus, P : uxv is not a strong path
even though it is a strongest u − v path. d(P) = 0.3 = CONNG(u, v). Also, the
x − v path Q : xuv is not a strongest x − v path even if it is a strong x − v path
(Fig. 2.29).

Definition 2.7.7 A cycle in a fuzzy graph G is called a strong cycle if all its edges
are strong.

Example 2.7.8 Consider the fuzzy graph in Example 2.7.6. The cycle uvwxu is a
strong cycle whereas vwxv is not.

Next we have a characterization of blocks having no fuzzy bridges.

Theorem 2.7.9 ([110]) Let G = (σ,μ) be a fuzzy graph with at least three vertices
and having no fuzzy bridges. Then the following statements are equivalent.

(i) G is a block.
(ii) For any two vertices x, y of G, there exists a cycle containing the vertices x

and y which is formed by two strongest strong x − y paths.
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(iii) For each vertex u and each strong edge vw of G, there exists a cycle containing
the vertex u and the edge vw which is formed by two strongest strong u − v

paths or u − w paths.
(iv) For each pair of strong edges xy and uv of G, there exists a cycle containing

the edges xy and uv which is formed by two strongest strong x − u or y − u
paths.

(v) For every three distinct vertices of G there exists a strongest strong path joining
any two of them not containing the third.

Proof (i) ⇒ (i i) Suppose G is a block. Consider a maximum spanning tree T of G.
Clearly, every edge in a maximum spanning tree is strong. Also, every x − y path in
T is a strongest x − y path in G. Thus, between any two vertices of G there exists
a strongest strong path. Let P be a strongest strong x − y path in G. Assume that
P is a unique x − y path in G. Then P should belong to all maximum spanning
trees. Also, note that the length of P is at least two because G has no fuzzy bridges.
Thus, all internal vertices of P are internal vertices of every maximum spanning tree
and by Theorem 2.2.2, they are all fuzzy cutvertices contradicting the fact that G
is a block. Thus, it follows that the strongest strong x − y path P does not belong
to all maximum spanning trees. Hence, there exists a maximum spanning tree say
T1 not containing P . Let P1 be a strongest strong x − y path in T1. This strongest
strong path P1 together with P gives a cycle in G containing the vertices x and y
as required. Note that P and P1 should be internally disjoint because otherwise the
common vertices of P and P1 become fuzzy cutvertices of G.

(ii) ⇒ (iii)
Let u be a vertex and vw, a strong edge ofG. LetC1 be the cycle containing u and

v satisfying the conditions in (i i) and C2 be the cycle containing u and w satisfying
the conditions in (i i). Ifw is a neighbor of v in C1 or v is a neighbor ofw in C2 then
we are done.

So suppose that vw is neither in C1 nor in C2. Let P1 and P2 be the strongest
strong u − v paths in C1 and Q be a strongest strong u − w path in C2. Let z be the
vertex in Q before w and nearest to it at which Q meets P1 or P2 (note that z can
be the vertex u itself). Without loss of generality suppose that P2 is the u − v path
which meets Q at z. Let P be the union of w − z sub path of Q and z − u sub path
of P2. Then let C = P1 ∪ vw ∪ P.

Claim: C is the required cycle.
Let xy be an edge in P1 such that s(P1) = s(P2) = μ(xy). Then three cases arise.
Case 1: μ(vw) > μ(xy).
Sub Claim 1: s(P) = μ(xy).
We have, s(P) cannot exceed μ(xy), for otherwise P ∪ vw will become a strong

u − v path having strength more than the strongest u − v path P1, a contradiction.
Therefore, s(P) ≤ μ(xy). Because s(P2) = μ(xy), the strength of the u − z sub path
of P2 is greater than or equal to μ(xy). Hence, if s(P) < μ(xy), then the strength of
z − w sub path of Q < μ(xy) and thus s(Q) < μ(xy). Thus, we have P1 ∪ vw is a
strong u − w pathwhich is stronger than the strongest u − w path Q, a contradiction.
Hence, the only possibility is that s(P) = μ(xy).
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Now, we have two strongest strong paths between u and v namely P1 and P ∪ vw

whose union gives the required cycle containing the vertex u and the edge vw.
Case 2: μ(vw) = μ(xy).
If s(P) < μ(xy), then as in Case-1, s(Q) < μ(xy) and hence P1 ∪ vw becomes a

strong u − w pathwhich is stronger than the strongest u − w path Q, a contradiction.
Thus, s(P) ≥ μ(xy) and hence we have two strongest strong u − v paths namely P1
and P ∪ vw whose union gives the required cycle.

Case 3: μ(vw) < μ(xy).
Sub Claim 2: s(P) = μ(vw).

If s(P) > μ(vw), then all edges in P and P1 have strength more than μ(vw) and
thus vw becomes the unique weakest edge of the cycle P1 ∪ vw ∪ P , contradicting
our assumption that vw is a strong edge. If s(P) < μ(vw), then the strength of z − w

sub path of Q < μ(vw) because the strength of the u − z sub path of P2 ≥ μ(xy) >
μ(vw). Therefore, s(Q) < μ(vw) < μ(xy) = s(P1) and hence P1 ∪ vw is a strong
path having strength more than that of Q, which is a contradiction to the fact that Q
is a strongest strong u − w path. Thus, s(P) = μ(vw).

Sub Claim 3: P is a strongest u − w path.
To prove Sub Claim 3, it is sufficient to prove that s(Q) = μ(vw) because Q

is a strongest u − w path. Clearly, s(Q) ≥ μ(vw). If s(Q) < μ(vw), then P will
become a strong u − w path which is stronger than the strongest u − w path Q, a
contradiction. If s(Q) > μ(vw) because μ(vw) < μ(xy), all edges in P1 ∪ Q have
strength more than μ(vw) and hence vw becomes the unique weakest edge of the
cycle P1 ∪ vw ∪ Q contradicting that vw is a strong edge. Thus, s(Q) = μ(vw) and
the sub Claim 3 is proved.

Now, we have two strongest strong u − w paths namely P and P1 ∪ vw whose
union gives the required cycle containing the vertex u and edge vw. Thus, in all the
three cases the claim is proved.

(i i i) ⇒ (iv)
Let xy and uv be any two given strong edges of G. Let C1 be a cycle containing

the vertex x and the strong edge uv and let C2 be a cycle containing the vertex u and
the edge xy. If y is a neighbor of x in C1 or v is a neighbor of u in C2, we are done.
Suppose not. That is, xy is not in C1 and uv is not in C2. Without loss of generality
suppose that C1 is the union of two strongest strong x − u paths P1 and P2 with
P2 containing the strong edge uv and C2 is the union of two strongest strong u − y
paths. Let Q be the strongest strong u − y path in C2 not containing the edge xy. Let
z be the vertex nearest to u at which Q meets P1 or P2. Without loss of generality
let Q meets P2 at z. Now, let P be the union of y − z sub path of Q and z − u sub
path (containing the strong edge vu) of P2.

Claim: P1 ∪ P ∪ xy is the required cycle.
Let x ′y′ be an edge in P1 such that s(P1) = μ(x ′y′). Then three cases arise.
Case 1: μ(xy > μ(x ′y′).
Sub Claim 1: s(Q) = μ(x ′y′).
If s(Q) < μ(x ′y′), then P1 ∪ xy is a strong u − y path having strength more than

the strength of Q, a contradiction to the assumption that Q is a strongest strong
u − y path. If s(Q) > μ(x ′y′), then the u − x path Q ∪ yx has strength greater than



48 2 Fuzzy Graphs

μ(x ′y′) because, μ(xy) > μ(x ′y′), which contradicts the fact that P1 is a strongest
strong u − x path. Therefore, only possibility is that s(Q) = μ(x ′y′) and hence Sub
Claim 1 is proved.

Thus, we have strength of the y − z sub path of Q ≥ μ(x ′y′). Also, the strength
of z − u sub path of P2 ≥ μ(x ′y′), because s(P2) = μ(x ′y′). Now, if both these sub
paths are of strength greater than μ(x ′y′), then s(P) is greater than μ(x ′y′), which
contradicts the fact that Q is a strongest strong u − y path. Thus, at least one of this
sub paths should have strength equal to μ(x ′y′) and s(P) is equal to μ(x ′y′). Hence,
we have two strongest strong x − u paths namely P1 and P ∪ xy whose union gives
the required cycle containing the edges xy and uv.

Case 2: μ(xy) = μ(x ′y′).
Because the strength of the y − u path passing through x and P1 is μ(xy), we

have the strength of Q is at least μ(xy). Also, because s(P2) being μ(xy), the z − u
sub path of P2 has strength at least μ(xy). Thus, s(P) is at least μ(xy) and hence we
have two strongest strong x − u paths namely P1 and P ∪ xy whose union gives the
required cycle containing the edges xy and uv.

Case 3: μ(xy) < μ(x ′y′).
Sub Claim 2: s(Q) = μ(xy).
Clearly, s(Q) ≤ μ(xy), for otherwise all edges in P1 ∪ Q have strengthmore than

μ(xy) and hence xy becomes the unique weakest edge of the cycle P1 ∪ Q ∪ xy,
contradicting our assumption that xy is a strong edge. Now, if s(Q) < μ(xy) we
have a strong path from x to u namely xy ∪ P1 which is stronger than the strongest
y − u path Q, a contradiction. Thus, s(Q) = μ(xy).

Sub Claim 3: The strength of y − z sub path of Q is precisely μ(xy).
Because s(Q) = μ(xy), the strength of y − z sub path of Q is at least μ(xy), but

if the strength of the y − z sub path of Q is greater than μ(xy), then the x − z sub
path of P2 has strength ≥ μ(x ′y′) > μ(xy) and so we have all the edges in the two
sub paths have strength greater than μ(xy) and xy becomes the unique weakest edge
of the cycle formed by the edge xy, the x − z sub path of P2 and the y − z sub path
of Q, which contradicts the assumption that xy is a strong edge.

Also, because P2 is a strongest strong x − u path, s(P2) = μ(x ′y′). Therefore, the
strength of z − u sub path of P2 ≥ μ(x ′y′) > μ(xy). Thus, the strength of the y − u
path P is μ(xy) and hence it is a strongest strong y − u path in G. Also, note that
the strength of the y − u path P1 ∪ xy is μ(xy) because μ(x ′y′) > μ(xy). Hence, it
follows that P ∪ P1 ∪ xy is a cycle containing the edges xy and uv formed by the
union of two strongest strong y − u paths as required.

(iv) ⇒ (v)

Let x , u and w be any three distinct vertices of G. Let P be a strongest strong
x − u path in G with strength α (say). Let y be a strong neighbor of x and v a strong
neighbor of u in P . Then xy and uv are strong edges of G. By (iv), there exists a
cycle C containing the edges xy and uv formed by two strongest strong x − u paths
or y − u paths.

Case 1: C is the union of two strongest strong x − u paths.
In this case, because there exist two internally disjoint strongest strong x − u

paths, at least one of them will not contain w.
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Case 2: C is the union of two strongest strong y − u paths.
Let P1 be the y − u strongest strong path containing the edge uv and let C − P1

be the other path containing edge xy. Because P is a strongest strong x − u path,
containing y with strength α, we have μ(xy) ≥ α. Also, we have s(P1) ≥ α for
otherwise the y − u sub path of P will become a strong path stronger than the
strongest. But s(P1) cannot exceed α because C − P1 is also a strongest strong
y − u path which passes through the edge xy with μ(xy) = α. Thus, only possibility
is that s(P1) = α. In this case, s(P1 ∪ xy) is also α and hence P1 ∪ xy becomes a
strongest strong x − u path. Also, the strength of C − {P1 ∪ xy} cannot exceed α
for otherwise it is a contradiction to the fact that P is a strongest strong x − u path.
That is,

s(C − {P1 ∪ xy}) ≤ α (2.1)

Also, because C − P1 is a strongest strong y − u path, it follows that

s(C − {P1 ∪ xy}) ≥ α. (2.2)

From (2.1) and (2.2), s(C − {P1 ∪ xy}) = α. Thus, we have two internally disjoint
strongest strong x − u paths namely P1 ∪ xy and C − {P1 ∪ xy} with at least one of
them not containing the vertex w.

(v) ⇒ (i)
Assume (v). Let w be a vertex in G. By (v), between any two vertices u and v

other than w there exists a strongest strong u − v path not containing w. Thus, w
is not in all strongest paths between any pair of vertices and hence is not a fuzzy
cutvertex. Hence, G is a block. �

The remaining statements of the characterization of blocks in graphs given in
Harary [83] cannot be extended to fuzzy graphs as seen from the following example.

Example 2.7.10 Let G = (σ,μ) with σ∗ = {u, v, w, x, y, z} and μ(uv) =
μ(vw) = μ(wz) = μ(zu) = 0.8, μ(ux) = μ(xw) = μ(uy) = μ(yw) = 0.1. G is a
block. But there is no strongest strong v − w path containing the vertex x and no
strongest strong v − w path containing the strong edge ux (Fig. 2.30).

Fig. 2.30 A fuzzy block
different from block
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Fig. 2.31 Strongest strong
cycles in a fuzzy graph

2.8 Strongest Strong Cycles and θ-Fuzzy Graphs

In the previous section, we observed that blocks in fuzzy graphs cannot be fully char-
acterized even by cycles formed by two strongest strong paths. When the underlying
structure of a fuzzy graph is a cycle, we can see that it is a block only when it is
strong and is the union of two different strongest paths. A cycle is called a locamin
cycle if every vertex of the cycle lies on a weakest edge.

Definition 2.8.1 The strength of a cycle C in a fuzzy graph G is defined as the
weight of a weakest edge in C .

Definition 2.8.2 A cycleC in a fuzzy graphG is said to be a strongest strong cycle
(SSC) if C is the union of two strongest strong u − v paths for every pair of vertices
u and v in C except when uv is a fuzzy bridge of G in C .

Note that in Definition 2.8.2, it is possible that edge uv can be a fuzzy bridge of
G. But the condition that C is the union of two strongest strong u − v paths can be
relaxed for those vertices which are the end vertices of fuzzy bridges of G which are
in C . Also, CONNG(x, y) = CONNC(x, y) for all vertices x, y in C . The concept
of SSC is illustrated below.

Example 2.8.3 Let G = (σ,μ) with σ∗ = {a, b, c, d, e},σ(x) = 1 for all x ∈ σ∗,
μ(ab)=μ(ce) = 0.6,μ(ae)=μ(bc) = 0.4 and μ(cd) = μ(de)=0.3 (Fig. 2.31).
Here ab and ce are the fuzzy bridges of G. C1 = a, b, c, e, a and C2 = e, c, d, e
are strongest strong cycles while C3 = a, b, c, d, e, a is not, because C3 is not a
union of two strongest strong c − e paths. Here, CONNG(c, e) = 0.6. But none of
the c − e paths in C3 is strongest. Also, note that ce is a fuzzy bridge of G which is
not in C3.

If the underlying graph is a cycle, then the concepts of strongest strong cycle and
locamin cycle coincide and is equal to a block as seen from the next theorem.

Theorem 2.8.4 Let G = (σ,μ) a fuzzy graph such that G∗ is a cycle. Then the
following are equivalent.
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Fig. 2.32 A fuzzy graph
with a locamin cycle

(i) G is a block.
(ii) G is an SSC.
(iii) G is a locamin cycle.

Proof (i) ⇒ (i i) Suppose that G is a block, where G∗ is a cycle. Then by Theorem
2.7.4, any two vertices u and v such that uv is not a fuzzy bridge are joined by two
internally disjoint strongest paths. Clearly every edge in G is strong, otherwise G
will have exactly one non strong edge, whose removal from G results in a tree, with
all internal vertices fuzzy cutvertices, contradicting the assumption that G is a fuzzy
block. Thus, G is the union of two strongest strong u − v paths for every pair of
vertices u and v in G except when uv is a fuzzy bridge of G. Thus, G is an SSC.

(i i) ⇒ (i i i) Suppose that G is an SSC. If possible suppose that G is not locamin.
Then there exists some vertex w such that w is not on a weakest edge of G. Let
uw and wv be the two edges incident on w, which are not weakest edges. This
implies that the path uwv is the unique strongest u − v path in G, contradiction to
the assumption that G is an SSC.

(i i i) ⇒ (i) Because we consider only simple fuzzy graphs, G will have at least
three edges and the proof follows from Theorem 2.7.4. �

Generally in a fuzzy graph, a locamin cycle need not be an SSC and an SSC need
not be a locamin cycle. (See Examples 2.8.5 and 2.8.6).

Example 2.8.5 Let G = (σ,μ)with σ∗ = {a, b, c, d, e, f },σ(x) = 1 for all x ∈ σ∗
and μ(ab) = 0.4, μ(bc) = μ(da) = 0.3, μ(cd) = 0.5, μ(de) = μ(e f ) = μ( f b) =
0.9 (Fig. 2.32). Here,C1 = a, b, c, d, a is a locamin cycle but it is not an SSCbecause
there do not exist two strongest b − d paths in C1. Note that CONNG(b, d) = 1
(strength of the path b, f, e, d).

Example 2.8.6 Let G = (σ,μ)with σ∗ = {a, b, c, d, e, f },σ(x) = 1 for all x ∈ σ∗
and μ(ab) = μ(bc) = μ(ca) = μ(cd) = μ(de) = μ(e f ) = μ( f b) = 0.8, μ(da) =
0.5 (See Fig. 2.33). HereG contains no locamin cycles but there are several strongest
strong cycles. Note that in G, any cycle not containing the weakest edge da is a
strongest strong cycle.
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Fig. 2.33 Fuzzy graph with
SSC but no locamin cycles

Fig. 2.34 Counter example
for the converse of Theorem
2.8.7

Next we discuss a sufficient condition for a fuzzy graph to be a block.

Theorem 2.8.7 If any two vertices of a fuzzy graph G lie on a common SSC, then
G is a block.

Proof Let G = (σ,μ) be a fuzzy graph satisfying the condition of the theorem.
Clearly G is connected. Let w be a vertex in G. For any two vertices x and y such
that x �= w �= y, there exists an SSC containing x and y. That is, there exist two
internally disjoint strongest x − y paths in G. At most one of these paths can contain
the vertex w and hence w cannot be a fuzzy cutvertex of G. Because w is arbitrary,
it follows that G is a block. �

The converse of the above result is not true in general as seen from the next
example, but is true for a sub family of fuzzy graphs which will be discussed soon.

Example 2.8.8 Let G = (σ,μ) with σ∗ = {a, b, c, d, e, f },σ(x) = 1 for all x ∈
σ∗ and μ(ab) = μ(bc) = μ(cd) = μ(da) = 0.6, μ(ae) = μ(ec) = μ(c f ) = μ( f a)
= 0.2 (Fig. 2.34). Here the vertices b and e do not belong to a common SSC, but G
is a block.

A fuzzy graph is said to be edge disjoint when no two cycles share a common
edge. When the fuzzy graph is edge disjoint, the blocks can be easily characterized
as in the following theorem.

Theorem 2.8.9 Let G = (σ,μ) be an edge disjoint fuzzy graph with at least three
vertices. Then the following are equivalent.
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(i) G is a block.
(ii) G is an SSC.
(iii) G is a locamin cycle.

Proof (i) ⇒ (i i) Suppose G is a block. In view of Theorem 2.8.4, it is sufficient
to prove that G∗ is a cycle. Suppose G∗ is not a cycle. Because G is a block, each
vertex must be on a cycle. Thus, G is a union of more than one cycle with a unique
vertex in common. Let w be this common vertex of intersection. Then clearly w is
a cutvertex, a contradiction to (i).

(i i) ⇒ (i i i) Let G be an edge disjoint fuzzy graph such that G is an SSC. To
proveG is locamin. BecauseG is an SSC,G∗ is a cycle and hence by Theorem 2.8.4,
G is a locamin cycle.

(i i i) ⇒ (i) Let G be a locamin cycle. Then G∗ is a cycle and hence by Theorem
2.8.4, G is a block. �

The relevance of the above theorem is that any connected edge disjoint fuzzy
graph with more than one cycle will always have a fuzzy cutvertex. The following
are a set of necessary conditions for a fuzzy graph to be a block.

Theorem 2.8.10 If G = (σ,μ) is a block, then the following conditions hold and
are equivalent.

(i) Every two vertices of G lie on a common strong cycle.
(ii) Each vertex and a strong edge of G lie on a common strong cycle.
(iii) Any two strong edges of G lie on a common strong cycle.
(iv) For any two given vertices and a strong edge in G, there exists a strong path

joining the vertices containing the edge.
(v) For every three distinct vertices of G, there exist strong paths joining any two

of them containing the third.
(vi) For every three vertices of G, there exist strong paths joining any two of them

which does not contain the third.

Proof (i) Suppose that G is a block. Let u and v be any two vertices in G such that
there exists a unique strong path between u and v. Now, two cases arise. (1) uv is a
strong edge. (2) uv is either weakest edge of a cycle or there exists a u − v path of
length more than one in G.

Case 1: uv is a strong edge.
Because uv is not on any strong cycle, uv is an edge in every maximum spanning

tree ofG and hence it is a fuzzy bridge. If u is an end vertex in all maximum spanning
trees, then clearly u is a fuzzy end vertex of G and hence v is a fuzzy cutvertex of G
or vice versa, contradicting our assumption that G is a block.

Now, suppose that u is an end vertex in some maximal spanning tree T1 and v is
an end vertex in some maximal spanning tree T2. Let u′ be a strong neighbor of u in
T2. Because u is an end vertex and v is an internal vertex in T1, there exists a strong
path P in T1 from u to u′ passing through v. The path P together with the strong
edge uu′ forms a strong cycle in G, a contradiction.
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Case 2: Either uv is the weakest edge of a cycle or there exists a strong u − v

path of length more than one in G.
If uv is a weakest edge of a cycle, then there exists a strong path between u

and v. Because there is a unique strong uv path P in G, P belongs to all maximum
spanning trees. Thus, all internal vertices in P are internal vertices in all themaximum
spanning trees and hence all of them are fuzzy cutvertices in G, contradiction to the
assumption that G is a block. Thus, condition (i) holds. Next we show that each of
the given conditions are equivalent.

(i) ⇒ (i i) Suppose that every two vertices of G lie on a common strong cycle.
To prove that a given vertex and a strong edge lie on a common strong cycle. Let u
be a vertex and vw be an edge in G. Let C be a strong cycle containing u and v. If
w is a neighbor of v in C , then there is nothing to prove. Now, suppose that w is not
a neighbor of v in C . Let C1 be a strong cycle containing u and w. Let P1 and P2 be
the strong u − v paths inC and P ′

1 and P ′
2 the strong u − w paths inC1. Let x1 be the

vertex at which P ′
1 leaves P1. Then clearly u . . . (P1) . . . x1 . . . (P ′

1) . . . wv . . . (P2)u
is a strong cycle containing u and vw. If x = u then u . . . (P ′

1)) . . . wv . . . (P2)u is
the required cycle. If x1 = v, then let x2 be the vertex at which P ′

2 leaves P2. Then
u . . . (P1) . . . vw . . . (P ′

2) . . . x2 . . . (P2)u is the required strong cycle. If x2 = u, then
u . . . (P ′

2) . . . wv . . . (P1) . . . u is the required strong cycle. Because P1 and P2 are
internally disjoint, both x1 and x2 cannot be the same as v.

(i i) ⇒ (i i i) Suppose that each vertex and strong edge lie on a common strong
cycle. To prove any two strong edges lie on a common strong cycle. Let uv and xy be
two strong edges of G. Let P1 and P2 be two internally disjoint strong paths between
v and x and Q1 and Q2 be two internally disjoint strong paths between u and y. If P1,
P2, Q1 and Q2 are internally disjoint, then uv . . . (P1) . . . xy . . . (Q2) . . . u is a strong
cycle containing uv and xy. If Q1 and Q2 intersect P1 or P2, then a strong cycle
containing uv and xy can be extracted from the parts of the four cycles P1, P2, Q1

and Q2.
(i i i) ⇒ (iv) Let x and y be two vertices and let uv be a strong edge in G. Let x ′

be a strong neighbor of x and y′ be a strong neighbor of y. Now, there exists a strong
cycle C1 containing xx ′ and uv and a strong cycle C2 containing yy′ and uv. Now,
xx ′ . . . (C1) . . . uv . . . (C2) . . . y′y is a strong x − y path containing the edge uv.

(iv) ⇒ (v) Let G be a block and u, v, w be three distinct vertices of G. Let v′ be
a strong neighbor of v. Then u and w are distinct vertices and vv′ is a strong edge of
G. By (iv), there exists a strong path from u to w containing the edge uv′ (Even if
v′ = u orw). Thus, we have a strong path between the two given vertices containing
the third.

(v) ⇒ (vi) Let u, v, w be three distinct vertices of G. Let P be a strong path
between u and w containing v. Then clearly the u − v strong sub path say P ′ does
not contain w.

(vi) ⇒ (i) Let u and v be two given vertices. Let w be a third vertex in G. Let
P1 be the strong path joining u and v not containing w. Let P2 be the strong path
joining u and w not containing v and let P3 be the strong path joining v and w not
containing u. Then P1 ∪ P2 ∪ P3 will contain a strong cycle containing u and v. �
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Fig. 2.35 Cycle
connectivity

So far,wehavebeen trying to characterize fuzzyblocks as in classical graph theory.
But, in a graph, the strength of every cycle is 1 whereas in fuzzy graphs, cycles of
different strengths can pass through pairs of vertices. So a similar generalization is
impossible. But we can find a subfamily where all the characterizations are valid.
In this section, two new connectivity concepts in fuzzy graphs, namely θ-evaluation
and cycle connectivity and a new subfamily of fuzzy graphs called θ-fuzzy graphs
are discussed. Blocks in θ-fuzzy graphs are fully characterized.

Consider the following definition of θ-evaluation of a pair of vertices in a fuzzy
graph.

Definition 2.8.11 Let G = (σ,μ) be a fuzzy graph. Then for any two vertices u and
v of G, there associated a set say θ(u, v) called the θ-evaluation of u and v and
is defined as θ(u, v) = {α | α ∈ (0, 1]}, where α is the strength of a strong cycle
passing through both u and v.

Note that if there are no strong cycles passing both u and v, then θ(u, v) = ∅.
Using θ-evaluation, a new measure of connectivity in graphs, namely cycle con-

nectivity can be introduced.

Definition 2.8.12 Let G = (σ,μ) be a fuzzy graph. Then∨{α | α ∈ θ(u, v), u, v ∈
σ∗} is defined as the cycle connectivity between u and v inG and denoted byCG

u,v . If
θ(u, v) = ∅ for some pair of vertices u and v, define the cycle connectivity between
u and v to be 0.

θ-evaluation and cycle connectivity are illustrated in the following example.

Example 2.8.13 Let G = (σ,μ) with σ∗ = {a, b, c, d} with σ(a) = 0.9, σ(b) =
0.8, σ(c) = 0.7, σ(d) = 0.6 and μ(ab) = 0.8, μ(bc) = μ(ac) = 0.7, μ(bd) =
μ(cd) = μ(da) = 0.6 (Fig. 2.35). Here G is a complete fuzzy graph. θ{a, c} =
{0.6, 0.7} and hence CG

a,c = 0.7

Cycle connectivity is a measure of connectedness in a fuzzy graph and it is always
less than or equal to the strength of connectedness between any two vertices u and
v. In a crisp graph the cycle connectivity between two vertices u and v is 1 if u and
v belong to a common cycle and 0 otherwise.
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Fig. 2.36 A θ-fuzzy graph

A new subclass of fuzzy graphs called θ-fuzzy graphs, with the property that
every cycle passing through a particular pair of vertices have the same strength, is
discussed below.

Definition 2.8.14 Let G = (σ,μ) be a fuzzy graph. G is said to be a θ-fuzzy graph
if θ- evaluation of each pair of vertices in G is either empty or a singleton set. In
other words G is called a θ-fuzzy graph if for each pair of vertices u and v, either
there is no strong cycle passing through u and v or all strong cycles passing through
u and v have the same strength.

Consider the following example.

Example 2.8.15 Let G = (σ,μ) with σ∗ = {a, b, c, d, e, f }, σ(x) = 1 for all x ∈
σ∗ and μ(ab) = μ(de) = 0.5, μ(bc) = μ(cd) = μ(e f ) = μ( f a) = 0.2, μ(c f ) =
0.9 (Fig. 2.36). G is clearly a θ-fuzzy graph because all strong cycles in this graph
have strength 0.1 and hence θ(u, v) = {0.1} for any two vertices u and v.

Proposition 2.8.16 Edge disjoint fuzzy graphs are θ-fuzzy graphs.

Proof Let G be an edge disjoint fuzzy graph. First we show that two distinct vertices
cannot be in two different cycles ofG. BecauseC1 andC2 share no edge in common,
C1 and C2 intersect at u and v (say). Let P1 and P2 be the two u − v paths in C1

and Q1 and Q2 be the two u − v paths in C2. Then clearly P1 ∪ Q1, P1 ∪ Q2, P2 ∪
Q1, P2 ∪ Q2 are all cycles and some of them will definitely share edges with C1 or
C2 which is not possible. Thus, between any pair of vertices u and v ofG there exists
at most one strong cycle and hence it follows that θ- evaluation of any two vertices
in G is either empty set or a singleton. Thus, G is a θ-fuzzy graph. �

In a CFG, the cycle connectivity between vertices can be easily evaluated using
the following result.

Theorem 2.8.17 Let G = (σ,μ) be a complete fuzzy graph. Then for any two ver-
tices u and v in G, CG

u,v = ∨{∧{σ(u),σ(v),σ(w)} | w ∈ σ∗}.
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Proof Let G = (σ,μ) be a CFG. By Theorem 2.2.7, all edges of G are strong and
hence all cycles in G are strong cycles. Now, let u, v ∈ σ∗ and consider a strong
cycle C : u = u1u2u3 . . . un = vu.

Then s(C) = ∧{μ(u1u2),μ(u2u3), . . . , μ(un−1un), μ(uv)}.
Because G is complete, μ(xy) = σ(x) ∧ σ(y) for all x and y and hence s(C) =

∧{σ(u1), σ(u2), . . . , σ(un)} = σ(ul) for some l ∈ {1, 2, . . . , n}. Thus, the strength
ofC = ∧{σ(u), σ(v), σ(w)} for some vertexw ∈ σ∗, and hence for any two vertices
u and v in G, CG

u,v = ∨{∧{σ(u), σ(v), σ(w)} | w ∈ σ∗}. �

In other words, the cycle connectivity between u and v in a complete fuzzy graph
is the maximum of strengths of all triangles passing through u and v.

The next lemma is the key for the characterization of blocks in θ-fuzzy graphs.
It gives the relationship between strong paths and strongest paths in θ-fuzzy graphs
which are blocks.

Lemma 2.8.18 Let G be a θ-fuzzy graph which is a block. Then any strong u − v

path such that uv is not a fuzzy bridge is a strongest u − v path and hence any strong
cycle in G is a strongest strong cycle.

Proof Let G = (σ,μ) be a θ-fuzzy graph which is a block. Let u, v ∈ σ∗ be such
that uv is not a fuzzy bridge. Let P be a strong u − v path inG. If P is not a strongest
u − v path, then because G is a block, there exist two internally disjoint strongest
strong u − v paths say P1 and P2. Then P1 ∪ P is a strong cycle with strength less
than that of the cycle P1 ∪ P2. Both these cycles pass through u and v and hence
θ(u, v) is not a singleton or empty which is a contradiction to the fact that G is a
θ-fuzzy graph. Thus, P must be a strongest strong u − v path.

To prove the second assertion of the lemma, let C be a strong cycle in G. Let u, v
be two vertices in C such that uv is not a fuzzy bridge. Then by first part both these
u − v paths in C are strongest u − v paths. Thus, G is a strongest strong cycle. �

Thus, in a θ-fuzzy graphwhich is a block, the concepts of strong path and strongest
path coincide and as a result, the concepts of strong cycle and SSC also coincide.
Thus, all the six necessary and sufficient conditions for blocks in graphs can be
generalized to blocks in θ- fuzzy graphs.

Next we have the awaited characterization for blocks in θ-fuzzy graphs.

Theorem 2.8.19 Let G = (σ,μ) be a θ-fuzzy graph. Then the following statements
are equivalent.

(i) G is a block.
(ii) Every pair of vertices of G lie on a common strongest strong cycle.
(iii) Each vertex and a strong edge of G lie on a common strongest strong cycle.
(iv) Any two strong edges of G lie on a common strongest strong cycle.
(v) For any two given vertices u and v such that uv is not a fuzzy bridge and a

strong edge xy in G, there exists a strongest strong u − v path containing the
edge xy.
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(vi) For every three distinct vertices ui , i = 1, 2, 3 of G such that uiu j , i �= j is
not a fuzzy bridge, there exist strongest strong paths joining any two of them
containing the third.

(vii) For every three distinct vertices ui , i = 1, 2, 3 of G such that uiu j , i �= j is not
a fuzzy bridge, there exist strongest strong paths joining any two of them not
containing the third.

Proof Theorem 2.8.10 and Lemma 2.8.18 together give all the required implications
except (vi i) ⇒ (i)

To prove (vi i) ⇒ (i), note that for any vertexw ofG and for every pair of vertices
x, y, other than w, there exists a strongest x − y path not containing the vertex w.
That is, w is not on every strongest x − y path for any x and y and hence w is not a
fuzzy cutvertex. Because w is arbitrary, it follows that G is a block. �

2.9 Fuzzy Line Graphs

The contents of this section are from [125]. The study of fuzzy line graphs was
carried out by Mordeson in 1993. It was one of the first theoretical topics studied in
fuzzy graphs after Rosenfeld’s introductory paper.

The line graph, L(G), of a (crisp) graph G is the intersection graph of the set of
edges of G. Hence, the vertices of L(G) are the edges of G with two vertices of
L(G) adjacent whenever the corresponding edges of G are. We present the notion
of a fuzzy line graph. Let G = (V, X) and G ′ = (V ′, X ′) be graphs.

Definition 2.9.1 Let (σ,μ) and (σ′,μ′) be partial fuzzy subgraphs of G and G ′,
respectively. Let f be a one-to-one function of V onto V ′. Then

(i) f is called a (weak) vertex-isomorphism of (σ,μ) onto (σ′,μ′) if and only
if for all v ∈ V, (σ(v) ≤ σ′( f (v)) and Supp(σ′) = f (Supp(σ)), σ(v) = σ′( f (v));

(i i) f is called a (weak) line-isomorphism of (σ,μ) onto (σ′,μ′) if and only
if for all u, v ∈ V,μ(uv) ≤ μ′( f (u) f (v)) and Supp(μ′) = {( f (u) f (v)) | u, v ∈
Supp(μ)}, μ(uv) = μ′( f (u) f (v)).

If f is a (weak) vertex-isomorphism and a (weak) line-isomorphism of (σ,μ) onto
(σ′,μ′), then f is called a (weak) isomorphism of (σ,μ) onto (σ′,μ′). If (σ,μ) is
isomorphic to (σ′,μ′), then we write (σ,μ) � (σ′,μ′).

Let G = (V, X) be a graph, where V = {v1, . . . , vn}. Let Si = {vi , xi1, . . . ,
xiqi },where xi j ∈ X and xi j has vi as a vertex, j = 1, . . . , qi ; i = 1, . . . , n. Let S =
{S1, . . . , Sn}. Let T = {Si S j | Si , Sj ∈ S, Si ∩ Sj �= ∅, i �= j}. Then I(S) = (S, T )
is an intersection graph and G � I(S). Any partial fuzzy subgraph (ι, γ) of I(S)
with Supp(γ) = T is called a fuzzy intersection graph.

Let (σ,μ) be a partial fuzzy subgraph of G. Let I (S) be the intersection graph
described above. Define the fuzzy subsets ι, γ of S and T , respectively as follows:

For all Si ∈ S, ι(Si ) = σ(vi );
For all Si S j ∈ T, γ(Si S j ) = μ(viv j ).
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Proposition 2.9.2 Let (σ,μ) be a partial fuzzy subgraph of G. Then
(i) (ι, γ) is a partial fuzzy subgraph of I(S);
(i i) (σ,μ) � (ι, γ).

Proof (i) γ(Si S j ) = μ(viv j ) ≤ σ(vi ) ∧ σ(v j ) = ι(Si ) ∧ ι(Sj ).

(i i)Define f : V → S by f (vi ) = Si , i = 1, . . . , n. Clearly f is a one-to-one func-
tion of V onto S. Now, viv j ∈ X if and only if Si S j ∈ T and so T = { f (vi ) f (v j ) |
viv j ∈ X}. Also, ι( f (vi )) = ι(Si ) = σ(vi ) and γ( f (vi ) f (v j )) = γ(Si S j ) =
μ(viv j ). Thus, f is an isomorphism of (σ,μ) onto (ι, γ). �

Let I(S) be the intersection graph of (V, X). Let (i, γ) be the fuzzy intersec-
tion graph of I(S) as defined above. We call (ι, γ) the fuzzy intersection graph of
(σ,μ). The previous proposition shows that any fuzzy graph is isomorphic to a fuzzy
intersection graph.

The line graph of G, L(G), is by definition the intersection graph I(X). That
is, L(G) = (Z ,W ),where Z = {{x} ∪ {ux , vx } | x ∈ X, ux , vx ∈ V, x = uxvx } and
W = {Sx Sy | Sx ∩ Sy �= ∅, x, y ∈ X, x �= y} and where Sx = {x} ∪ {ux , vx }, x ∈
X. Let (σ,μ) be a partial fuzzy subgraph of G. Define the fuzzy subsets λ,ω of
Z ,W , respectively, as follows:

For all Sx ∈ Z , λ(Sx ) = μ(x);
For all Sx Sy ∈ W, ω(Sx Sy) = μ(x) ∧ μ(y).

Proposition 2.9.3 (λ,ω) is a fuzzy subgraph of L(G) and is called the fuzzy line
graph corresponding to (σ,μ).

Proof ω(Sx Sy) = μ(x) ∧ μ(y) = λ(Sx ) ∧ λ(Sy). �

Every cutpoint of L(G) is a bridge of G which is not a pendent edge, and con-
versely [83]. It is shown in [125] that the relationship between cutpoints in L(G) and
bridges in G does not carry over to the fuzzy case.

Let (σ,μ) and (σ′,μ′) be partial fuzzy subgraphs of G and G ′, respectively. If
f is a weak isomorphism of (σ,μ) onto (σ′,μ′), then it can be shown that f is
an isomorphism of (Supp(σ), Supp(μ)) onto (Supp(σ′),Supp(μ′)). If (λ,ω) is the
fuzzy line graph of (σ,μ), then it can also be shown that (Supp(λ), Supp(ω)) is the
fuzzy line graph of (Supp(σ), Supp(μ)).

Example 2.9.4 Let G = (V, X), where V = {v1, v2, v3, v4} and X = {x1 = v1v2,

x2 = v1v3, x3 = v2v3, x4 = v3v4}.Let σ(vi ) = 1, i = 1, 2, 3, 4, μ(x1) = μ(x3) = 1
and μ(x2) = μ(x4) = 1/2. Then λ(Sx1) = λ(Sx3) = 1, λ(Sx2) = λ(Sx4) = 1/2 and
ω(Sx1 Sx2) = 1, ω(Sx2 Sx3) = ω(Sx3 Sx4) = ω(Sx2 Sx4) = 1/2. If we delete x1 from G,
then the strength of connectedness between v1 and v2 before the deletion of x1 is
1 = μ(x1).Thus, x1 is a bridge of (σ,μ) (not an endline ofG).However, the strength
of connectedness between any pair of vertices Sx2 , Sx3 , Sx4 is 1/2 before and after
the deletion of Sx1 . Thus, Sx1 is not a cutvertex of (σ,μ).

Proposition 2.9.5 Let (σ,μ) and (σ′,μ′) be partial fuzzy subgraphs of G and G ′,
respectively. If f is a weak isomorphism of (σ,μ) onto (σ′,μ′), then f is an isomor-
phism of (Supp(σ), Supp(μ)) onto (Supp(σ′), Supp(μ′)).
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Proof v ∈ Supp(σ) ⇔ f (v) ∈ Supp(σ′) and uv ∈ Supp(μ) ⇔ f (u) f (v) ∈
Supp(μ′). �

Proposition 2.9.6 If (λ,ω) is the fuzzy line graph of the fuzzy graph (σ,μ), then
(Supp(λ), Supp(ω)) is the line graph of (Supp(σ), Supp(μ)).

Proof (σ,μ) is a partial fuzzy subgraph ofG and (λ,ω) is a partial fuzzy subgraph of
L(G).Now, λ(Sx ) = μ(x) for all x ∈ X and so Sx ∈ Supp(λ) ⇔ x ∈ Supp(μ).Also,
ω(Sx Sy) = μ(x) ∧ μ(y) for all Sx Sy ∈ W and so Supp(ω) = {Sx Sy | Sx ∩ Sy �= ∅,
x, y ∈ Supp(μ), x �= y}. �

Theorem 2.9.7 ([125]) Let (λ,ω) be the fuzzy line graph corresponding to (σ,μ).
Suppose that (Supp(σ), Supp(μ)) is connected. Then the following properties hold.

(i) There exists a weak isomorphism of (σ,μ) onto (λ,ω) if and only if (Supp(σ),
Supp(μ)) is a cycle andσ andμ are constant functions on Supp(σ) and Supp(μ),
respectively, taking on the same value;

(ii) If f is a weak isomorphism of (σ,μ) onto (λ,ω), then f is an isomorphism.

Proof Suppose that f is a weak isomorphism of (σ,μ) onto (λ,ω). By Proposition
2.9.5, we can see that f is an isomorphism of (Supp(σ), Supp(μ)) onto (Supp(λ),
Supp(ω)). By Proposition 2.9.6, (Supp(σ), Supp(μ)) is a cycle. Let Supp(σ) =
{v1, v2, . . . , vn} and Supp(μ) = {v1v2, v2v3, . . . , vnv1}, where v1v2 . . . vnv1 is a
cycle. Let σ(vi ) = si and μ(vivi+1 = ri , i = 1, 2, . . . , n, where vn+1 = v1. Then
sn+1 = s1 and

ri ≤ si ∧ si+1, i = 1, 2, . . . , n. (2.3)

Now, we have Supp(λ) = {S(vi ,vi+1) | i = 1, 2, . . . , n} and Supp(ω) = {(S(vi ,vi+1),

S(vi+1,vi+2)) | i = 1, 2, . . . , (n − 1)}. Also, for rn+1 = r1,λ(S(vi ,vi+1)) =μ(vi , vi+1) =
ri and ω(S(vi ,vi+1), S(vi+1,vi+2)) = μ(vi , vi+1) ∧ μ(vi+1, vi+2) = ri ∧ ri+1,

i = 1, 2, . . . , n, where vn+2 = v2. Because f is an isomorphism of (Supp(σ),
Supp(μ)) onto (Supp(λ), Supp(ω)), f maps Supp(σ) onto Supp(λ) = {S(v1,v2), . . . ,
S(vn ,v1)}. Also, f preserves adjacency. Hence, f induces a permutation π of
{1, 2, . . . , n} such that f (vi ) = S(vπ(i),vπ(i)+1) and

(vi , vi+1) → ( f (vi , f (vi+1)) = (S(vπ(i),vπ(i)+1), S(vπ(i+1),vπ(i+1)+1))

for i = 1, 2, . . . , (n − 1). Now,

si = σ(vi ) ≤ λ( f (vi )) = λ(S(vπ(i),vπ(i)+1)) = rπ(i)

and

ri = μ(vi , vi+1) ≤ ω( f (vi ), f (vi+1))

= ω(S(vπ(i),vπ(i)+1), S(vπ(i+1),vπ(i+1)+1)) = μ(vπ(i),
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vπ(i)+1) ∧ μ(vπ(i+1), vπ(i+1)+1) = rπ(i) ∧ rπ(i+1), i = 1, 2, . . . , n.

That is,
si ≤ rπ(i) and ri ≤ rπ(i) ∧ rπ(i+1), i = 1, 2, . . . , n. (2.4)

By the second part of (2.4), we have that ri ≤ rπ(i), i = 1, 2, . . . , n, and so rπ(i) ≤
rπ(π(i)), i = 1, 2, . . . , n. Continuing we have that ri ≤ rπ(i) ≤ · · · ≤ rπ j ≤ ri and so
ri = rπ(i), i = 1, 2, . . . , n, where π j+1 is the identity map. By (2.4) again, we have
ri ≤ rπ(i+1) = ri+1, i = 1, 2, . . . , n,where rn+1 = r1.Hence, by (2.3) and (2.4), r1 =
r2 = · · · = rn = s1 = s2 = · · · = sn . Thus, we have not only proved the conclusion
about σ and μ being constant functions, but we have also shown that (i i) holds.

Conversely, suppose that (Supp(σ), Supp(μ)) is a cycle and for all v ∈ Supp(σ)
and x ∈ Supp(μ), σ(v) = μ(x). By Proposition 2.9.6, (Supp(λ), Supp(ω)) is the line
graph of (Supp(σ), Supp(μ)). Because (Supp(σ), Supp(μ)) is a cycle, (Supp(σ),
Supp(μ)) ∼= (Supp(λ), Supp(ω)) by Theorem 8.2 of [83]. This isomorphism induces
an isomorphism of (σ,μ) onto (λ,ω), because σ(v) = μ(x) for all v ∈ V and x ∈ X
and so σ = μ = λ = ω on their respective domains. �

Theorem 2.9.8 Let (σ,μ) and (σ′,μ′) be partial fuzzy subgraphs of G and G ′,
respectively, such that (Supp(σ), Supp(μ)) and (Supp(σ′), Supp (μ′)) are connected.
Let (λ,ω) and (λ′,ω′) be the line graphs corresponding to (σ,μ) and (σ′,μ′),
respectively. Suppose that it is not the case that one of (Supp(σ), Supp(μ)) and
(Supp(σ′), Supp(μ′)) is K3 and the other is K1,3. If (λ,ω) � (λ′,ω′), then (σ,μ)
and (σ′,μ′) are line isomorphic.

Proof Because (λ,ω) � (λ′,ω′), (Supp(λ), Supp(ω)) � (Supp(λ′), Supp(ω′)) by
Proposition 2.9.5. Because (Supp(λ), Supp(ω)) and (Supp(λ′), Supp(ω′)) are line
graphs of (Supp(σ), Supp(μ)) and (Supp(σ′), Supp(μ′)), respectively, by Propo-
sition 2.9.6, we have that (Supp(σ), Supp(μ)) � (Supp (σ′), Supp(μ′)) by Theo-
rem 8.3 of [83]. Let g denote the isomorphism of (λ,ω) onto (λ′,ω′) and f the
isomorphism of (Supp(σ), Supp(μ)) onto (Supp(σ′), Supp(μ′)). Then λ(Suv) =
λ′(g(Suv) = λ′(g(S f (u) f (v)), where the latter equality holds by the proof of Theo-
rem 8.3 in [83] and so μ(uv) = μ′( f (u) f (v)). Hence, (σ,μ) and (σ′,μ′) are line
isomorphic. �

Proposition 2.9.9 Let (τ , ν) be a partial fuzzy subgraph of L(G). Then (τ , ν) is a
fuzzy line graph of some partial fuzzy subgraph of G if and only if for all Sx Sy ∈
W, ν(Sx Sy) = τ (x) ∧ τ (y).

Proof Suppose that ν(Sx Sy) = τ (Sx ) ∧ τ (Sy) for all Sx Sy ∈ W. For all x ∈ X,
define σ(x) = τ (Sx ). Then ν(Sx Sy) = τ (Sx ) ∧ τ (Sy) = μ(x) ∧ μ(y). Any σ that
yields the property μ(uv) ≤ σ(x) ∧ σ(y) will suffice, i.e., σ(v) = 1 for all v ∈ V .
The converse is immediate. �
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Theorem 2.9.10 (σ,μ) is a fuzzy line graph if and only if (Supp(σ), Supp(μ)) is a
line graph and for all uv ∈ Supp(μ), μ(uv) = σ(u) ∧ σ(v).

Proof Suppose that (σ,μ) is a fuzzy line graph. Then the conclusion holds by Propo-
sitions 2.9.6 and 2.9.9. Conversely, suppose that (Supp(σ), Supp(μ)) is a line graph
and for all uv ∈ Supp(μ),μ(uv) = σ(u) ∧ σ(v). Then the conclusion holds from
Proposition 2.9.9. �

2.10 Fuzzy Interval Graphs

The results in this section are due to the important work of Craine in [61]. In [61], it
was shown that a fuzzy graph without loops is the intersection graph of some family
of fuzzy sets. It was shown that the characterization of interval graphs by Gilmore
and Hoffman naturally extends to fuzzy interval graphs while that of Fulkerson and
Gross does not. We present these results here.

As stated in [61], Roberts [153] cites applications of interval graphs in archaeol-
ogy, developmental psychology, ecological modeling, mathematical sociology and
organization theory. These disciplines all have components that are ambiguously
defined, require subjective evaluation, or are satisfied to differing degrees. These are
extremely active areas of application of fuzzy methods. It is therefore valuable to
explore the extent that intersection graph results can be extended using fuzzy set
theory.

The intersection graph of a family (perhaps with repeated members) of sets is a
graph with a vertex representing each member of the family and an edge connect-
ing two vertices if and only if the two sets have nonempty intersection. Generally
loops are suppressed. If the family is composed of intervals or is the edge set of a
hypergraph, then the intersection graph is called an interval graph or a line graph,
respectively.

McAllister [119] used a different approach in defining a fuzzy intersection graph.
However, his approach did not yield the usual definition of an intersection graph
when applied to families of crisp sets. A different approach is taken in [61]. Each
definition and theorem is a natural generalization of the crisp theory.

The t-norm minimum is used to define the fuzzy intersection graph of a family of
fuzzy sets. We present a proof of a fuzzy analog of Marczewski’s theorem, [61]. The
proof shows that every fuzzy graph without loops is the intersection graph of some
family of fuzzy sets. We also show that the natural generalization of the Fulkerson
and Gross characterization of interval graphs fails, [61]. We then present a natural
generalization of the Gilmore and Hoffman characterization.

Results characterizing a fuzzy property in terms of cut level set properties are
significant, in that such theorems demonstrate the extent to which the crisp theory
can be generalized. To accomplish this here,we provide the sequence of crisp cut level
graphs given in [26]. Define the fundamental sequence of a fuzzy graph G = (σ,μ)
to be the ordered set
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fg(G) = {σ(x) > 0 | x ∈ X} ∪ {μ(xy) > 0 | (x, y) ∈ X × X},

where the decreasing order inherited from the real interval [0, 1] is used.
The first element listed in fg(G) is the maximal vertex strength while the last

element listed is the minimal nonzero edge strength.

2.10.1 Fuzzy Intersection Graphs

Wenowdefine a fuzzy intersection graph and prove some basic results. Let X be a set.
Define the function h : FP(X) → [0, 1] by for all α ∈ FP(X), h(α) = ∨{α(x) |
x ∈ X}. Then h(α) is called the height of α.

Definition 2.10.1 Let F = {α1, . . . ,αn} be a finite family of fuzzy sets defined on
a set X and consider F a crisp vertex set. The fuzzy intersection graph of F is
the fuzzy graph Int(F) = (σ,μ),where σ : F → [0, 1] is defined by σ(αi ) = h(αi )

and μ : EF → [0, 1] is defined by

μ(αiα j ) =
{
h(αi ∧ α j ) if i �= j
0 if i = j,

where we recall that EF = {[(αi ,α j )] | (ai ,α j ) ∈ F × F}.
The purpose of requiring μ(αi ,α j ) = 0 for i = j, is to preclude loops. We note

that an edge αiα j has zero strength if and only if αi ∧ α j is the zero function or
i = j.

Let F be a family of sets and c ∈ [0, 1]. Define F c = {αc | α ∈ F}, where αc is
the c-level set of α. Let G = (σ,μ) be a fuzzy graph. Let Gc denote (σc,μc).

If F = {α1, . . . ,αn} is a family of fuzzy sets and c ∈ [0, 1], then Int(F c) =
(Int(F))c. The graph Int(F c) has a vertex representingαi ∈ F if and only if h(αi ) >

c. The pair {(αi )
c, (α j )

c} is an edge of Int(F c) if and only if i �= j and h(αi ∧ α j ) ≥
c.These conditions also characterize the graph (Int(F))c. In particular, ifF is a family
of crisp subsets of X , then the fuzzy intersection graph and crisp intersection graph
definitions coincide.

Theorem 2.10.2 [61] (Fuzzy analog of Marczewski’s theorem [105]) If G = (σ,μ)
is a fuzzy graph without loops, then for some family of fuzzy sets F , G = Int(F c).

Proof Let G = (σ,μ) be a fuzzy graph on V . For each x ∈ V define the anti-
reflexive, symmetric fuzzy subset αx : EV → [0, 1] by for all y, z ∈ V ,

αx (yz) =

⎧
⎪⎪⎨

⎪⎪⎩

σ(x) if y = x and z = x
μ(xz) if y = x and z �= x
μ(yx) if y �= x and z = x
0 if y �= x and z �= x .
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We show that G is the fuzzy intersection graph of F = {αx | x ∈ V }. By definition,
αx (x, x) = σ(x) ≥ μ(xy) and so h(αx ) = σ(x) as required. For x �= y a nonzero
value of (αx ∩ αy)(zw) = αx (zw) ∧ αy(zw) occurs only if x = z and y = w(or
y = z and x = w). Thus, h(αx ∩ αy) = (αx ∩ αy)(xy) = μ(xy) and the desired
result holds. �

2.10.2 Fuzzy Interval Graphs

The families of sets most often considered in connection with intersection graphs are
families of intervals of a linearly ordered set. This class of interval graphs is central
to many applications. In this section, we define fuzzy interval graphs and examine
some of their basic properties.

In both the crisp and fuzzy cases, distinct families of sets can have the same
intersection graph. In particular, the intersection properties of a finite family of real
intervals (fuzzy numbers) can be characterized by a family of intervals (fuzzy inter-
vals) defined on a finite set. Therefore, as is common in interval graph theory [120],
we restrict our attention to intervals (fuzzy intervals) with finite support.

We generalize two characterizations of (crisp) interval graphs. Theorem 2.10.8
gives the Fulkerson and Gross characterization [74] and Theorem 2.10.16 provides
the Gilmore and Hoffman characterization [78]. Both theorems make use of relation-
ships between the finite number of points which define the intervals and the cliques
of the corresponding interval graph.

Recall a clique is a maximal (with respect to set inclusion) complete subgraph.
We adopt the convention of naming a clique by its vertex set. Clearly, if a vertex z is
not a member of a clique K , then there exists an x ∈ K such that xz is not an edge
of G.We generalize this concept in Definition 2.10.7.

Definition 2.10.3 Let X be a linearly ordered set. A. fuzzy interval I on X is a
normal, convex fuzzy subset of X. That is, there exists an x ∈ X with I(x) = 1 and
the orderingw ≤ y ≤ z implies that I(y) ≥ I(w) ∧ I(z).A fuzzy number is a real
fuzzy interval. A fuzzy interval graph is the fuzzy intersection graph of a finite
family of fuzzy intervals.

By normality of the fuzzy intervals, the vertex set of a fuzzy interval graph is
crisp.

Theorem 2.10.4 ([61]) Let G = Int(F) be a fuzzy interval graph. Then for all c ∈
(0, 1], the level graph Gc is an interval graph.

Proof Let G = Int(F) for a family of fuzzy intervals F = {α1, . . . ,αn}. For all
c ∈ (0, 1], convexity implies that each (αi )

c ∈ Fc is a crisp interval. Now, G =
(Int(F))c = Int(F c) and Gc is an interval graph. �
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Fig. 2.37 A fuzzy graph which is not a fuzzy interval graph

(a) (b) (c)

Fig. 2.38 a G0.3. b G0.5. c G0.7

(a) (b) (c)

Fig. 2.39 Interval representation of the fuzzy graph in Fig. 2.37

Example 2.10.5 The converse of the above result is not true. Consider the fuzzy
graph given in Fig. 2.37.

The level graphs of G are given in Fig. 2.38 and its interval representation in
Fig. 2.39. G is not a fuzzy interval graph.

Consider G0.7 in Fig. 2.38c. It has an interval representation. Let Sa = {a} ∪
{a f, ae, ad, ac}, Sb = {b}, Sc = {c} ∪ {ac, cd}, Sd = {d} ∪ {cd, ad}, Se = {e} ∪
{e f, ae} and S f = { f } ∪ {a f, e f }. Let {Sa, Sb, Sc, Sd , Se, S f } be the vertex set.
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We can see that the intervals in Fig. 2.39c gives an approximate representation. Simi-
larly, Fig. 2.39b is an approximate representation ofG0.5 and Fig. 2.39a is that ofG0.3.
Suppose that G = Int(F), where the fuzzy interval v ∈ Int(F) corresponds to vertex
v of G. Because h(c ∩ e) = 0, we can assume that Supp(c) lies strictly to the left of
Supp(e). By Interval Graph Theorem, there exists x1 such that x1 ∈ a0.7 ∩ c0.7 ∩ d0.7

because {a, c, d} defines a clique of Gr1 . Therefore, a(x1) ∧ c(x1) ∧ d(x1) ≥ 0.7.
Similarly, there exists an x5 such that a(x5) ∧ e(x5) ∧ f (x5) ≥ 0.7. Now, h(b ∩ d) =
0.3 and h(b ∩ f ) = 0.3 implies b(x1) ≤ 0.3 and b(x5) ≤ 0.3, respectively.

Continuing h(b ∩ c) = 0.5 and h(b ∩ e) = 0.5 imply there exist x2 and x4 with
b(x2) ≥ 0.5 and b(x4) ≥ 0.5. By the normality of b there exists x3 such that b(x3) =
1. By the convexity of the fuzzy intervals and the assumption that Supp(c) lies strictly
to the left of Supp(e), the ordering of these points must be x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5,
with x2 < x4.

Because a(x1) ≥ 0.7, a(x5) ≥ 0.7 and a is convex, it follows that a(x3) ≥ 0.7.
Hence, h(a ∩ b) ≥ 0.7. This contradicts h(a ∩ b) = 0.6. Hence, G is not a fuzzy
interval graph.

2.10.3 The Fulkerson and Gross Characterization

The Fulkerson and Gross characterization makes use of a correspondence between
the set of points on which the family of intervals is defined and the set of cliques of
the corresponding interval graph. We provide natural generalizations of the (crisp)
definitions and then show that for fuzzy graphs this relationship holds only in one
direction.

The proof of the Fulkerson and Gross theorem rests on the following ideas for
a crisp graph G∗. Suppose G∗ is an interval graph. Any set of intervals defining a
clique will have a common point. If one such point is associated with each clique,
the linear ordering of these points induces a linear ordering on the cliques of G∗.
Using this ordering the resulting vertex clique incidence matrix has convex rows.

Suppose there exists a linear ordering of the cliques of G∗ for which the vertex
clique incidence matrix has convex rows. Then each convex row naturally defines
the characteristic function of a subinterval of the linearly ordered set of cliques. The
graph G∗ is the intersection graph of this family of intervals.

Theorem 2.10.6 [74] (Fulkerson and Gross) A graph G is an interval graph if and
only if there exists a linear ordering of the cliques of G for which the vertex clique
incidence matrix has convex rows.

Definition 2.10.7 Let G = (σ,μ) be a fuzzy graph. We say that a fuzzy subgraph
K defines a fuzzy clique of G if for each t ∈ (0, 1], Kt induces a clique of Gt . We
associate with G a vertex clique incidence matrix, where the rows are indexed by
the domain of σ, the column are indexed by the family of all cliques of G, and the
x, K entry is K(x).
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Suppose that G is a fuzzy graph with fs(G) = {r1, . . . , rn} and let K be a fuzzy
clique of G. The level sets of K define a sequence Kr1 ⊆ · · · ⊆ Krn , where each Kri

is a clique of Gri . Conversely, any sequence K1 ⊆ · · · ⊆ Kn, where each Ki is a
clique of Gri defines a fuzzy clique K, where K(x) = ∨{ri | x ∈ Ki } Therefore, K
is a clique of the t-level graph Gt if and only if K = Kt for some fuzzy clique K.

Theorem 2.10.8 [61] (Fuzzy analog of Fulkerson and Gross) Let G = (V,μ) be a
fuzzy graph. Then the row of any vertex clique incidence matrix of G defines a family
of fuzzy subsets F for which G = Int(F). Further, if there exists an ordering of the
fuzzy cliques of G such that each row of the vertex clique incidence matrix is convex,
then G is a fuzzy interval graph.

Proof Let I = {K1, . . . ,Kp} be an ordered family of the fuzzy cliques of G and let
M be the vertex clique incidencematrix where the columns are given in this ordering.
For each x ∈ V , define the fuzzy subset Ix : I → [0, 1] by Ix (Ki ) = Ki (x) and let
F = {Ix | x ∈ V }.Because each vertex x has strength 1, x is contained in the 1-level
cut of some fuzzy clique Ki in I. Therefore, Ix (Ki ) = Ki (x) = 1 and Ix is normal.

We must now show for x �= y ∈ V that h(Ix ∩ Iy) = μ(xy).Also, assuming that
each row is convex implies that each Ix is a fuzzy interval and that G is a fuzzy
interval graph. By definition, if x �= y, then

h(Ix ∩ Iy) = ∨{(Ix ∩ Iy)(Ki ) | Ki ∈ I }h(Ix ∩ Iy)

= ∨{(Ix ∩ Iy)(Ki ) | Ki ∈ I }
= ∨{Ki (x) ∧ Ki (y) | Ki ∈ I } = ∨{t ∈ [0, 1} | Ki ∈ I

and xy is an edge of (Ki )
t }.

The edge strength μ(xy) = t is the maximal value where xy is an edge of Gt so
is contained in a clique of Gt . Thus, h(Ix ∩ Iy) = μ(xy) as required. �

Example 2.10.9 The fuzzy graph G given in Fig. 2.40 shows that the converse of
Theorem 2.10.8 does not hold.

Fig. 2.40 A fuzzy interval
graph
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Let the set F of fuzzy intervals be defined by the rows of the matrix F given by

F =

⎡

⎢
⎢
⎣

1 2 3 4

Ia 1 0.5 0 0
Ib 0.5 0.5 0.5 1
Ic 1 1 1 0.5
Id 0 0 1 0.5

⎤

⎥
⎥
⎦

Then G = Int(F). A vertex clique incidence matrix M is given below.

M =

⎡

⎢
⎢
⎣

K1 K2 K3 K4

a 1 0.5 0 0
b 0.5 1 0.5 1
c 1 0.5 1 0.5
d 0 0 1 0.5

⎤

⎥
⎥
⎦

We can verify by exhaustion that no ordering of the fuzzy cliques produces a
vertex clique incidence matrix M with convex rows.

2.10.4 The Gilmore and Hoffman Characterization

We begin with several graph theory definitions and state the Gilmore and Hoffman
characterization. We then give corresponding fuzzy definitions, and conclude with
the result that the Gilmore and Hoffman characterization generalizes exactly for
fuzzy interval graphs.

Let G = (X, E) be a connected graph. Recall that a chord of a spanning tree T
is an edge of G which is not in T , and recall that a cycle of length n in G = (X, E)
is a sequence x0, . . . , xn of distinct vertices, where x0xn ∈ E and 1 ≤ i ≤ n implies
xi−1xi ∈ E .A graph is chordal (triangulated) if each cycle with n > 4 has a chord.
Formally, if there exist integers j �= 0 or k �= n with 0 ≤ j < k − 1 ≤ n and x j xk ∈
E .

An orientation of a graph G = (X, E) is a directed graph GA = (X, A) that has
G as its underlying graph. We use the notation xy for an edge of G, and (x, y)
for a directed edge of the corresponding orientation. That is, xy ∈ E implies that
(x, y) ∈ A or (y, x) ∈ A but not both. A graph G is transitively orientable if there
exists an orientation of G for which (u, v) ∈ A and (v,w) ∈ A implies (u, w) ∈ A.

The proof of the following theorem can be found in [153].

Theorem 2.10.10 [78] (Gilmore and Hoffman) A graph G = (V, X) is an interval
graph if and only if it satisfies the following two conditions.

(i) Each subgraph of G induced by four vertices is chordal,
(ii) Gc is transitively orientable.
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We now show that fuzzy interval graphs are chordal and have transitively ori-
entable compliments.

Definition 2.10.11 A cycle of length n in a fuzzy graph is a sequence of distinct
vertices x0, x1, . . . , xn such that μ(x0xn) > 0 and if 1 ≤ i ≤ n, then μ(xi−1xi ) >
0. A fuzzy graph G = (σ,μ) is chordal if for each cycle with n ≥ 4, there exist
integers j �= 0 or k �= n such that 0 ≤ j < k − 1 ≤ n and μ(x j xk) ≥ ∧{μ(xi−1xi ) |
i = 1, 2, . . . , n} ∧ μ(x0xn).

It is easily shown that a fuzzy graph G = (σ,μ) is chordal if and only if for each
t ∈ (0, 1] the t-level graph of G is chordal.

Theorem 2.10.12 ([61]) If G is a fuzzy interval graph, then G is chordal.

Proof By Theorem 2.10.4, each cut level graph Gt is an interval graph. As in the
proof of Theorem 2.10.10, any interval graph is chordal. The result then follows from
Definition 2.10.11. �

To avoid confusion when dealing with cut level graphs, we base an orientation of
a fuzzy graph on an orientation of its underlying graph.

Definition 2.10.13 Let G = (σ,μ) be a fuzzy graph with fs(G) = {r1, . . . , rn} and
let A be an orientation of Grn . Then the orientation of G by A is the fuzzy digraph
GA = (σ,μA), where

μA((x, y)) =
{

μ(xy) if (x, y) ∈ A,
0 if (x, y) /∈ A.

The fuzzy graph G is called transitively orientable if there exists an orientation
which is transitive, i.e., μA((x, y)) ∧ μA((y, z)) ≤ μA((x, z)) for all x, y, z ∈ V .

The c level graph of GA has edge set {(x, y) | μA((x, y)) ≥ c}. Therefore, an
orientation of a fuzzy graph induces consistent orientations on each member of the
fundamental sequenceof cut level graphs.Conversely, it is possible to have a sequence
of transitively oriented subgraphs G1 ⊆ G2 ⊆ G3, where the transitive orientation
of G2 does not induce a transitive orientation of G1, and the transitive orientation of
G2 cannot be extended to a transitive orientation of G3.

Lemma 2.10.14 Suppose that G = Int(F) is a fuzzy interval graph. Then there
exists an orientation A that induces a transitive orientation of Gc.

Proof Suppose (α,β) is a nontrivial edge of Gc. Then h(α ∩ β) < r1 = 1 and αr1

and βr1 are disjoint. We let (α,β) ∈ A if and only if αr1 lies strictly to the left of βr1 .

Clearly A is a well-defined and transitive orientation of Cc. �

Example 2.10.15 The fuzzy graph in Example 2.10.5 (Fig. 2.37) is not a fuzzy inter-
val graph because any orientation of (d, e) shows that there is no transitive orienta-
tion of Gc. Figure2.41 shows the cut level graphs of Gc with (d, e) ∈ A. Note that
(G1)c = (Gc)1−r2 , (Gr2)c = (Gc)1−r3 and (Gr3)c = (Gc)1 where r1 = 1 here.
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(a) (b) (c)

Fig. 2.41 a (Gr3)c. b (Gr2)c. c (Gr1)c

Theorem 2.10.16 [61] (Fuzzy analog of Gilmore and Hoffman characterization) A
fuzzy graphG = (σ,μ) is a fuzzy interval graph if and only if the following conditions
hold:

(i) For all x ∈ Supp(σ) = V , σ(x) = 1 (σ is a crisp set);
(ii) Each fuzzy subgraph of G induced by four vertices is chordal;
(iii) Gc is transitively orientable.

If G is a fuzzy interval graph, the three conditions follow from Definitions 2.10.1,
2.10.3, Theorem 2.10.12 and Lemma 2.10.14, respectively.

The following discussion is from [61]. For the remainder of the section,we assume
that each fuzzy subgraph of G = (V,μ) induced by four vertices is chordal and that
A is a transitive orientation of Gc. Because the proof that G is a fuzzy interval graph
is quite involved we first outline the proof. Details are given in Definition 2.10.17
through Lemma 2.10.23; the algorithm is applied in Example 2.10.24. For notational
convenience we let Ki j denote the r j cut level set of the fuzzy set Ki .

Definition 2.10.17 Define the relation < on the family of all fuzzy cliques of G as
follows. Suppose K < L if and only if K t <t Lt , where t is the smallest element of
f s(G) such that K t �= Lt .

The lexicographic ordering < in the previous definition is clearly well defined,
complete, and transitive. Therefore, < defines a linear ordering on the family of all
fuzzy cliques of G.

Definition 2.10.18 Let G satisfy the conditions of Theorem 2.10.16 and let < be
the relation of Definition 2.10.17. Let t ∈ f s(G) and let K �= L be fuzzy cliques of
G. We say K and L are consistently ordered by < at level t provided Kt <t Lt if
and only if K < L. We say the linear ordering < is cut level consistent if for each
pair of distinct fuzzy cliques of G and for each t ∈ f s(G) the pair is consistently
ordered by < at level t .

By Theorem 2.10.8, the rows of any vertex clique incidence matrix of G define a
family of fuzzy subsets that has G as its fuzzy intersection graph. If < of Definition
2.10.17 is cut level consistent, then the rows of the vertex clique incidence matrix
will be convex and the result follows from Theorem 2.10.8.
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If < is not level consistent, then some row is not convex. We modify this matrix
in a “bottom up” construction using the notion of cut level consistent to determine
which columns are modified or deleted from the vertex clique incidence matrix. We
complete the proof by showing that in the modified matrix each row is normal and
convex and that G is the fuzzy intersection graph of the family of fuzzy intervals
defined by the rows.

By the discussion following Definitions 2.10.11 and 2.10.13 each level graph Gt

is chordal and has a transitively orientable complement. Thus, each Gt is an interval
graph and there exists a linear ordering <t on the family of all cliques of Gt . We
now establish definitions that will be used extensively in the discussion to follow.

If the linear ordering < is cut level consistent then each row of the vertex clique
incidence matrix is convex (and G is a fuzzy interval graph by Theorem 2.10.8).
We prove this statement by contrapositive. Assume there exists a row that is not
convex. Suppose that there exists a vertex x ∈ V and a sequence of fuzzy cliques
K < L < M such that L(x) < K(x) ∧ M(x) = t . Then x ∈ Kt , x /∈ Lt and x ∈
Mt . As in Theorem 2.10.10 there exists y ∈ Lt such that (x, y) /∈ E t . If (x, y) ∈ A,
then Mt <t Lt with L < M. If (y, x) ∈ A then Lt <t Kt with K < L. In either
case the ordering < is not cut level consistent.

By Example 2.10.9, there exist fuzzy interval graphs where no ordering of the
fuzzy cliques is cut level consistent. We formalize a process that modifies or deletes
“inconsistent” fuzzy cliques (matrix columns). The proof of the following lemma
shows the “local” structure of noncut level consistent orderings. The lemma is also
used to show the construction in Definition 2.10.20 is well defined.

Lemma 2.10.19 Suppose that K and L are fuzzy cliques of G and that s > t . If
Ks <s Ls and Lt <t Kt , then there exists a clique M of Gt such that either

(i) Ks ⊆ M and M <t Kt or
(ii) Ls ⊆ M and Lt <t M.

Proof We check all possible edge configurations. Recall the edge set of the graph
Gs is denoted by E s . Each case shares the general conditions shown in Fig. 2.42.
By definition of <t , there exist x ∈ Kt and y ∈ Lt , with xy /∈ E t and (x, y) ∈ A.
Similarly, there exist x ′ ∈ Ks and y′ ∈ Ls with x ′y′ /∈ E s and (y′, x ′) ∈ A. Then

(a) (b) (c) (d)

Fig. 2.42 Basic conditions for inconsistent cut level orderings
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s > t implies xy /∈ E s , xx ′ ∈ E s (or x = x ′) and yy′ ∈ E t (or y = y′). Because <t

is well defined, x ′y′ ∈ E t and either xx ′ /∈ E s or yy′ /∈ E s .
If y′x /∈ E t , then y′x /∈ E s and transitivity requires (y′, x) ∈ A and xx ′ /∈ E s

(so x /∈ Ks). We claim for each x ′′ ∈ Ks ⊆ Kt that y′x ′′ ∈ E t . For (y′, x ′′) /∈ E t with
Lt <t Kt implies (y′, x ′′) ∈ A. However,E s ⊆ E t andKs <s Ls imply (x ′′, y′) ∈ A;
a contradiction. Therefore, {y′} ∪ Ks is a complete subgraph of Gt and is contained
in a clique M of Gt . Because x /∈ M and (y′, x) ∈ A, we have M <t Kt . Thus,
property (i) holds.

Similarly, if yx ′ /∈ E t , we have that (y, x ′) ∈ A and yx ′ /∈ E s . By transitivity,
{x ′} ∪ Ls is a complete subgraph of Gt and hence is contained in a clique M of Gt .
Then (y, x ′) ∈ A implies Lt <t M and property (i i) holds.

If y′x ∈ E t and yx ′ ∈ E t , then we show that Ks ∪ Ls is a complete subgraph
of Gt . We need only to show for each x ′′ ∈ Ks and y′′ ∈ Ls that y′′x ′′ ∈ E t . Again
x ′′y′′ /∈ E t and Lt <t Kt implies (y′′, x ′′) ∈ A and y′′x ′′ /∈ E s . However,Kt <s Ls

implies (x ′′, y′′) ∈ A; a contradiction.
Therefore, Ks ∪ Ls induces a complete subgraph of Gt that is contained in some

clique M of Gt . If M <t Lt <t Kt , property (i) holds. If Lt <t M property (i i)
holds. �

Wenow construct a directed graph F and in turn a linearly ordered family of fuzzy
subsets that define columns of an incidence matrix. These fuzzy subsets will either
be fuzzy cliques of G or modifications of fuzzy cliques. The graph theory analogy
of a forest with trees allows a good visualization of “vertically growing” cut level
sets which define the required fuzzy sets.

We use the fuzzy clique ordering < to recursively construct a forest F whose
vertex set is the set of all cut level cliques of G and whose edges connect cut levels
of fuzzy sets. We recursively build the forest by “vertically” adding cut level cliques
as vertices of F and defining a set of edges between cut levels. In the recursion let i
range from 1 to n − 1.

Definition 2.10.20 ([61]) Let G = (V,μ) with f s(G) = {r1, r2, . . . , rn} be a
chordal fuzzy graph and let Gc be transitively oriented by A.

Level rn: Linearly order the set of all cliques ofGrn by the relation<rn ofDefinition
2.10.18. Each of these cliques of Grn (vertices of F) represent the root of a tree in
the forest.

Level rn−i : Let s = rn−i and t = rn−i+1. Linearly order the set of all cliques of
Gs by the relation <s . Let Xs be any set of edges that satisfy:

1. Each clique Ks of Gs is a vertex of exactly one edge of Xs .
2. If (Kt ,Ks) ∈ Xs then Kt is a clique of Gt , Ks is a clique of Gs , and Ks ⊆ Kt .

Thus, an edge joins two level sets of (some) fuzzy clique.
3. For each pair of edges (Kt ,Ks) ∈ Xs and (Lt ,Ls) ∈ Xs we have Ks <s Ls if

and only if Kt <t Lt or Kt = Lt .

Thus, when viewed as cut levels of a family of fuzzy cliques, the s level ordering
is level consistent with the next “lower” level.
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We continue with the discussion in [61]. We use Lemma 2.10.19 to demonstrate
the existence of at least one such forest, and show in the last paragraph of this section
that there may be a number of edge sets that satisfy these conditions. Let Ks be
the minimal (with respect to <s) clique of Gs . Clearly there exists a minimal (with
respect to <t ) clique Kt of Gt where Ks ⊆ Kt . Let < Kt ,Ks > ∈ Xs .

Next letLs be the successor ofKs (with respect to<s) and letLt beminimal (with
respect to <t ) such that Ls ⊆ Lt and Kt <t Lt or Kt = Lt . If Lt does not exist, let
L be maximal (with respect to <t ) with Ls ⊆ L . Now, Ks <s Ls and L <t Kt are
the conditions of Lemma 2.10.19. However, property (1) contradicts the minimality
of Kt and property (2) contradicts the maximality of L . Therefore, Lt exists and
(Lt ,Ls) ∈ Xs is well defined.

We continue recursively to construct one edge for each clique of Gs . It may be
that for some clique Mt of Gt , there is no edge from Mt . We call such a clique a dead
branch of F .

Combining the edge sets Frn−i for i ∈ {1, . . . , r − 1} defines a forest with edge set
∪n−1
i=1 F

rn−i . As in Definition 2.10.18, we lexicographically order the set of paths from
a root to a dead branch or a r1 level clique. For notational convenience, we denote
the t level vertex of path Pj by Pjt . To ensure convex rows in our (still undefined)
incidence matrix, we add nonempty vertices “above” dead branches if “adjacent”
cliques have nonempty intersection.

Suppose the path Pj ends with a dead branch at the t level. For each s ∈ f s(G)

with s > t, we continue the path Pj through the new vertex Pjs , where x ∈ Pjs if
and only if there exist i < j < k with x ∈ Pis ∩ Pks . We call this final forest F . Each
path in F has length n, and it is possible for a vertex Pjs to be the empty set.

We complete the construction by letting paths in F define a linearly ordered
family of fuzzy sets, say I . The fuzzy sets define columns of the vertex forest matrix
of (G,<); G is the interval graph of the family of rows.

Definition 2.10.21 LetG satisfy the conditions ofTheorem2.10.16. F be a forest for
G as defined in Definition 2.10.20, and Pj be a path in F of length n. Associated with
Pj define the fuzzy set μ j ∈ I on the vertex set of G by μ j (x) = ∨{s ∈ f s(G) | x
is an element of the s level vertex of Pj }.

We construct the vertex forest matrix of (G,<) indexing rows by the vertex set
of G, columns by the (ordered) fuzzy sets of I and defining the x,μi entry as μi (x).
By construction each μ j is either a fuzzy clique of G, or has a cut level set that is the
intersection of two cut level cliques.

Let F denote the family of fuzzy sets defined by the rows of the vertex forest
matrix.Wenowcomplete the proof ofTheorem2.10.16 by showing that eachmember
of F is normal and convex (a fuzzy interval) and that G = Int F .

Lemma 2.10.22 We assume the conditions and notation above. For each vertex x
of G, define Jx is a fuzzy interval.

Proof Let x be a vertex of G. Then x is a vertex in some clique of Gr1 , say K . By
Definitions 2.10.20 and 2.10.21, K is the r1 = 1 level cut of some fuzzy set μ in I .
Therefore, Jx (μ) = μ(x) = 1 and Jx is normal.
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Fig. 2.43 Level graphs G0.9, G0.7, G0.4

Each Jx is convex if i < j < k implies Jx (μi ) ∧ Jx (μk) ≤ Jx (μ j ), or equiva-
lently, if μi (x) ∧ μk(x) ≤ μ j (x). However, Definition 2.10.20 clearly provides these
conditions. If μi , μ j and μk are all fuzzy cliques, the result follows immediately from
the discussion after Definition 2.10.18. Otherwise, the result follows by definition of
the fuzzy sets μi , μ j and μk . �

Now, we conclude proof of Theorem 2.10.16, by next lemma.

Lemma 2.10.23 Given the definitions and conditions of Theorem 2.10.16 through
Lemma 2.10.22, G = I nt (F).

Proof There is a correspondence between the crisp vertex set V and the fam-
ily of fuzzy intervals F . Let x, y be distinct elements of V . We must show
that μ(xy) = h(Jx ∩ Jy). By definition, h(Jx ∩ Jy) = ∨{Jx (μ j ) ∧ Jy(μ j ) | μ j ∈
I } = ∨{μ j (x) ∧ μ j (y) | μ j ∈ I } = ∨{s ∈ f s(G) | {x, y} ⊆ μs

j }.
Because μ(xy) = t is the maximal value where xy is an edge of Gt , μ(xy) is the

maximal value where xy is in a clique of Gt . By definition each clique of Gt is the
t level set of some fuzzy set μ j ∈ I . Hence, μ(xy) = h(Jx ∩ Jy) as required. �

We provide an illustration for Theorem 2.10.16 in Example 2.10.24

Example 2.10.24 Consider the fuzzy graph G defined by the incidence matrix G
below, where f s(G) = {s, t, u} = {0.9, 0.7, 0.4}. Figure2.43 shows the cut level
graphs of G and Fig. 2.44 shows transitive orientation A of Gc.

G =

⎡

⎢
⎢
⎢
⎢
⎣

a b c d e

a 0 0.7 0.7 0.4 0.7
b 0.7 0 0.9 0 0.4
c 0.7 0.9 0 0.9 0.7
d 0.4 0 0.9 0.9 0.7
e 0.7 0.4 0.7 0.7 0

⎤

⎥
⎥
⎥
⎥
⎦
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Fig. 2.44 Transitive orientations of the complements

Using Definition 2.10.18, we linearly order the cut level cliques by: s = 0.9,
{a} <s {b, c} <s {c, d} <s {e}, t = 0.7, {a, b, c} <t {a, c, e} <t {c, d, e}, u = 0.4,
{a, b, c, e} <u {a, c, d, e}.

There are eight fuzzy cliques of G; subscripts indicate the order induced by
Definition 2.10.18. The vertex clique incidence matrix M for G is given below. The
only convex row is indexed by d. Thus, the fuzzy clique ordering is not cut level
consistent.

M =

⎡

⎢
⎢
⎢
⎢
⎣

K1 K2 K3 K4 K5 K6 K7 K8

a 0.9 0.7 0.9 0.7 0.9 0.7 0.4 0.4
b 0.7 0.9 0.4 0.4 0 0 0 0
c 0.7 0.9 0.7 0.7 0.7 0.7 0.9 0.7
d 0 0 0 0 0 0.4 0.9 0.7
e 0.4 0.4 0.7 0.9 0.7 0.9 0.7 0.9

⎤

⎥
⎥
⎥
⎥
⎦

Following Definition 2.10.20, gives the forest F of Fig. 2.45 with the incidence
matrix V , given below.

V =

⎡

⎢
⎢
⎢
⎢
⎣

P1 P2 P3 P4 P5

a 0.9 0.7 0.7 0.4 0.4
b 0.7 0.9 0.4 0 0
c 0.7 0.9 0.9 0.9 0.7
d 0 0 0 0.9 0.7
e 0.4 0.4 0.7 0.7 0.9

⎤

⎥
⎥
⎥
⎥
⎦

The paths P1, P2, P3, P4 and P5 correspond, respectively, to the fuzzy cliquesK1,
K2, K4, K7 and K8. The clique {a, c, e} is a dead branch; so P3s = P2s ∩ P4s = {c}.
The path P3 is a modification of K4, the fuzzy cliques K3, K5, and K6 are deleted.

The interval representation of a fuzzy graph G is not in general unique. The
construction heavily depends on the orientation of Gc. Different orientations can
give different vertex interval matrices. Slight modifications in Definition 2.10.20 can
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Fig. 2.45 A fuzzy interval representation for Example 2.10.24

Fig. 2.46 Alternate fuzzy interval representation for Example 2.10.24

produce different vertex interval matrices. A left right construction was followed in
the example given, while a right to left also will work nicely. Also, in the example,
it is specified that each cut level clique will be the terminal vertex of only one
edge. One can relax this condition as long as cut level consistency is maintained.
Figure2.46 gives an alternate interval representation for the fuzzy graph given in
Example 2.10.24.

2.11 Operations on Fuzzy Graphs

Fuzzy graph operations were first studied in [130] by Mordeson and Peng in 1994.
Later Sunitha and Vijayakumar [169] investigated the properties of compliments of
fuzzy graphs with respect to these operations in 2002. By a partial fuzzy subgraph
of a graph G = (V, X), we mean a partial fuzzy subgraph of (χV ,χX ), where χV

and χX denote the characteristic functions of V and X , respectively. Let (σi ,μi )

be a partial fuzzy subgraph of the graph Gi = (Vi , Xi ), i = 1, 2. The operations of
Cartesian product, composition, union, and join on (σ1,μ1) and (σ2,μ2) are given
in [130]. If the graph G is formed from G1 and G2 by one of the these operations,
necessary and sufficient conditions are given in [130] for an arbitrary partial fuzzy
subgraph of G to also be formed by the same operation from partial fuzzy subgraphs
of G1 and G2. Recall that the Cartesian product G = G1 × G2 of graphs G1 =
(V1, X1) andG2 = (V2, X2) is given by V = V1 × V2 and X = {(u, u2)(u, v2) | u ∈
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V1, u2v2 ∈ X2} ∪ {(u1, w)(v1w) | w ∈ V2, u1v1 ∈ X1}. Let σi be a fuzzy subset of
Vi and μi be a fuzzy subset of Xi , i = 1, 2.Define the fuzzy subsets σ1 × σ2 of V and
μ1μ2 of X as follows:

For all (u1, u2) ∈ V, (σ1 × σ2)(u1, u2) = σ1(u1) ∧ σ2(u2),
For all u ∈ V1, for all u2v2 ∈ X2,μ1μ2((u, u2)(u, v2)) = σ1(u) ∧ μ2(u2v2),
For all w ∈ V2, for all u1v1 ∈ X1, μ1μ2((u1, w)(v1, w)) = σ2(w) ∧ μ1(u1v1).

Proposition 2.11.1 LetG be theCartesianproduct of graphsG1 andG2.Let (σi ,μi )

is a partial fuzzy subgraphofGi , i = 1, 2.Then (σ1 × σ2,μ1μ2) is a partial subgraph
of G.

Proof We have

μ1μ2((u, u2)(u, u2)) = σ1(u) ∧ σ2(u2v2) ≤ σ1(u) ∧ (σ2(u2) ∧ σ2(v2))

= (σ1(u) ∧ σ2(u2)) ∧ (σ1(u) ∧ σ2(u2))

= (σ1 × σ2)(u, u2) ∧ (σ1 × σ2)(u, v2).

Similarly, μ1μ2((u1, w)(v1, w)) ≤ (σ1 × σ2)(u1, w) ∧ (σ1 × σ2)(v1, w). �
Theorem 2.11.2 Suppose that G is a Cartesian product of two graphs G1 and G2.

Let (σ,μ) be a partial fuzzy subgraph of G. Then (σ,μ) is a Cartesian product of
a partial fuzzy subgraph of G1 and a partial fuzzy subgraph of G2 if and only if
the following three equations have solutions for xi , y j , z jk, and wih, where V1 =
{v11, v12, . . . , v1n} and V2 = {v21, v22, . . . , v2m}:
(i) xi ∧ y j = σ(v1i , v2 j ), i = 1, . . . , n; j = 1, . . . ,m;
(ii) xi ∧ z jk = μ((v1i , v2 j )(v1i , v2k)), i = 1, . . . , n; j, k such that v2 jv2k ∈ X2;
(iii) y j ∧ wik = μ((v1i , v2 j )(v1h, v2 j )), j = 1, . . . ,m; i, h such that v1iv1h ∈ X1.

Proof Suppose that a solution exists. Consider an arbitrary, but fixed j, k in equations
(i i) and i, h in equations (i i i). Let

ẑ jk = ∨{μ((v1i , v2 j )(v1i , v2k)) | i = 1, . . . , n},
ŵik = ∨{μ((v1i , v2 j )(v1h, v2 j )) | j = 1, . . . ,m}.

Set J = {( j, k) | j, k are such that v2 jv2k ∈ X2} and I = {(i, h) | i, h are such that
v1iv1h ∈ X1}. Now, if {x1, . . . , xn} ∪ {z jk | ( j, k) ∈ J } ∪ {wih | (i, h) ∈ I } is any
solution to (i), (i i), and (i i i), then {x1, . . . , xn} ∪ {̂z jk | ( j, k) ∈ J } ∪ {ŵih | (i, h) ∈
I } is also a solution and in fact ẑ jk is a smallest possible z jk and ŵih is a smallestwih .

Fix such a solution and define the fuzzy subsets σ1,σ2,μ1, and μ2 of V1, V2, X1,

and X2, respectively, as follows:

σ1(v1i ) = xi for i = 1, . . . , n;
σ2(v2 j ) = y j for j = 1, . . . ,m;

μ2(v2 jv2k) = ẑ jk for j, k such that v2 jv2k ∈ X2;
μ1(v1iv1h) = ŵih for i, h such that v1iv1h ∈ X1.
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For any fixed j, k,

μ((v1i , v2 j )(v1i , v2k)) ≤ σ(v1i , v2 j ) ∧ σ(v1i , v2k)

= (σ1(v1i ) ∧ σ2(v2 j ) ∧ (σ1(v1i ) ∧ σ2(v2k))

≤ σ2(v2 j ) ∧ σ2(v2k), i = 1, . . . , n.

Thus, ẑ jk = ∨{μ((v1i , v2 j (v1i , v2k)) | i = 1, . . . , n} ≤ σ2(v2 j ) ∧ σ2(v2k). Hence,
μ2(v2 jv2k) ≤ σ2(v2 j ) ∧ σ2(v2k). Thus, (σ2,μ2) is a partial fuzzy subgraph of G2.

Similarly, (σ1,μ1) is a partial fuzzy subgraph of G1. Clearly, σ = σ1 × σ2 and
μ = μ1μ2.

Conversely, suppose that (σ,μ) is the Cartesian product of partial fuzzy subgraphs
G1 and G2. Then solutions to equations (i), (i i), and (i i i) exist by definition of
Cartesian product. �

Remark 2.11.3 Consider an arbitrary fixed solution to the equations (i), (i i) and
(i i i) in the proof of Theorem 2.11.2 (i f one exists). Then

(i) Let ( j, k) ∈ J and let I ′ = {i jk ∈ I | ẑ jk = μ((v1i jk , v2 j )(v1i jk , v2k))} in Theo-
rem 2.11.2. If xi jk > ẑ jk for some i jk ∈ I ′, then z jk is unique for these particular
x1, x2, . . . , xn and equals ẑ jk; if xi jk = ẑ jk for all i jk ∈ I ′. Then ẑ jk ≤ z jk ≤ 1
for these particular x1, x2, . . . , xn .

(ii) Let (i, h) ∈ I and let J ′ = { jih ∈ J | ŵih = μ((vi i , v2 jih )(v1h, v2 jih ))} in Theo-
rem 2.11.2. If y jih > ŵih for some jih ∈ J ′, then wih is unique for these par-
ticular y1, y2, . . . , ym and equals with ŵih; if y jih = ŵih for all jih ∈ J ′, then
ŵih ≤ wih ≤ 1 for these particular y1, y2, . . . , ym .

Example 2.11.4 ConsiderV1 = {v11, v12},V2 = {v21, v22}, X1 = {v11v12} and X2 =
{v21v22}. If σ((v11, v21)) = 0.25, σ((v11, v22)) = 0.5, σ((v12, v21)) = 0.1 and
σ((v12, v22)) = 0.6, then (σ,μ) is not a Cartesian product of partial fuzzy subgraphs
of G1 and G2 for any choice of μ, because equation (i) in Theorem 2.11.2 is incon-
sistent; x1 ∧ y1 = σ((v11, v21)) = 0.25, x1 ∧ y2 = σ((v11, v22)) = 0.5, x2 ∧ y1 =
σ((v12, v21)) = 0.1, x2 ∧ y2 = σ((v12, v22)) = 0.6, is impossible.

Note that examples satisfying Theorem 2.11.2(i) can be easily constructed, but
either Theorem 2.11.2(ii) or Theorem 2.11.2(iii) may be inconsistent.

We now consider the composition of two fuzzy graphs. Let G1[G2] denote the
composition of graph G1 = (V1, X1) with graph G2 = (V2, X2). Then G1[G2] =
(V1 × V2, X0), where

X0 = {(u, u2)(u, v2) | u ∈ V1, u2v2 ∈ X2}
∪{(u1, w)(v1, w) | w ∈ V2, u1v1 ∈ X1}
∪{(u1, u2)(v1, v2) | u1v1 ∈ X1, u2 �= v2}.

Let σi be a fuzzy subset of Vi and μi a fuzzy subset of Xi , i = 1, 2.Define the fuzzy
subsets σ1 ◦ σ2 and μ1 ◦ μ2 of V1 × V2 and X0, respectively, as follows:
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(σ1 ◦ σ2)(u1, u2) = σ1(u1) ∧ σ2(u2) for all (u1, u2) ∈ V1 × V2,

(μ1 ◦ μ2)((u, u2)(u, v2)) = σ1(u) ∧ μ2(u2v2) for all u ∈ V1, for all u2v2 ∈ X2,

(μ1 ◦ μ2)((u1, w)(v1, w)) = σ2(w) ∧ μ1(u1v1) for all w ∈ V2, for all u1v1 ∈ X1,

(μ1 ◦ μ2)((u1, v2)(v1, v2)) = σ2(u2) ∧ σ2(v2) ∧ μ1(u1v1)
for all (u1, v2)(v1, v2) ∈ X0\X,

where
X = {(u, u2)(u, v2) | u ∈ V1, u2v2 ∈ X2}∪

{(u1, w)(v1, w) | w ∈ V2, u1u2 ∈ X1}.

We see that σ1 ◦ σ2 = σ1 × σ2 and μ1 ◦ μ2 = μ1μ2 on X.

Proposition 2.11.5 Let G be the composition G1[G2] of graph G1 with graph G2.

Let (σi ,μi ) be a partial subgraph of Gi , i = 1, 2. Then (σ1 ◦ σ2,μ1 ◦ μ2) is a partial
fuzzy subgraph of G1[G2].
Proof We have already seen in the proof of Proposition 2.11.1 that

(μ1 ◦ μ2)((u1, u2)(v1, v2)) ≤ (σ1 ◦ σ2)((u1, u2)) ∧ (σ1 ◦ σ2)((v1, v2))

for all (u1, u2)(v1, v2) ∈ X. Suppose that (u1, u2)(v1, v2) ∈ X0\X and so u1v1 ∈ X1

and u2 �= v2. Then

(μ1 ◦ μ2)((u1, u2)(v1, v2)) = σ2(u2) ∧ σ2(v2) ∧ μ1(u1v1)

≤ σ2(u2) ∧ σ2(v2) ∧ σ1(u1) ∧ σ1(v1)

= σ1(u1) ∧ σ2(u2) ∧ σ1(u1) ∧ σ2(v2)

= (σ1 ◦ σ2)((u1, u2)) ∧ (σ1 ◦ σ2)((v1, v2)).

�

The fuzzy graph (σ1 ◦ σ2,μ1 ◦ μ2) of the previous proposition is called the com-
position of (σ1,μ1) with (σ2,μ2).

Theorem 2.11.6 Let G be the composition G1[G2] of graph G1 with graph G2. Let
(σ,μ) be a partial subgraph of G. Consider the following equations:

(i) xi ∧ y j = σ(v1i , v2 j ), i = 1, . . . , ; j = 1, . . . ,m;
(ii) xi ∧ z jk = μ(v1i , v2 j )(v1i , v2k)), i = 1, . . . , n; j, k such that v2 jv2k ∈ X2;
(iii) y j ∧ wih = μ((v1iv2 j )(v1h, v2 j )), j = 1, . . . ,m; i, h such that v1iv1h ∈ X;
(iv) y j ∧ yk ∧ wih = μ((v1i , v2 j )(v1h, v2k)),where (v1i , v2 j )(v1h, v2k) ∈ X0\X for

X defined as above.

Suppose that a solution to equations (i)–(iv) exists. If
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ŵih ≥ μ(((v1i , v2 j )(v1h, v2k)) for all (i, h) ∈ I

such that (v1i , v2 j )(v1h, v2 j ) ∈ X0\X, then (σ,μ) is a composition of partial fuzzy
subgraphs of G1 and G2.

Proof The necessary part of the theorem is clear. Suppose that a solution to equations
(i)–(iv) exists. Then there exists a solution to equations (i)–(iv) as determined in
the proof of Theorem 2.11.2 for equations (i)–(i i i) because everywih ≥ ŵih and by
the hypothesis concerning the ŵih . Thus, if μi , i = 1, 2, are defined as in the proof
of Theorem 2.11.2, we have that (σi ,μi ) is a partial fuzzy subgraph of Gi , i = 1, 2,
and σ = σ1 ◦ σ2 and μ = μ1 ◦ μ2. �

Example 2.11.7 Let G1 = (V1, X1) and G2 = (V2, X2) be graphs and let σ1,σ2,

μ1,μ2 be fuzzy subsets ofV1, V2, X1, X2, respectively.Then (σ1 × σ2,μ1μ2) is a par-
tial fuzzy subgraph ofG1 × G2, but (σi ,μi ) is not a partial fuzzy subgraph ofGi , i =
1, 2 : Let V1 = {u1, v1}, V2 = {u2, v2}, X1 = {u1v1}, and X2 = {u2v2}. Define the
fuzzy subsets σ1,σ2,μ1, and μ2 as follows: σ1(u1) = σ1(v1) = σ2(u2) = σ2(v2) =
1/2 and μ1(u1v1) = μ2(u2v2) = 3/4. Then (σi ,μi ) is not a partial fuzzy subgraph of
Gi , i = 1, 2. Now, x ∈ V1 and y ∈ V2, μ1μ2((x, u2)(x, v2)) = σ1(x) ∧ μ2(u2v2) =
1/2 = σ1(x) ∧ σ2(u2) ∧ σ2(v2) = (σ1 × σ2)(x, u2)) ∧ (σ1 × σ2)(x, v2)) and sim-
ilarly, μ1μ2((u1, y)(v1, y)) = (σ1 × σ2)(u1, y)) ∧ (σ1 × σ2)(v1, y)). Thus, (σ1 ×
σ2,μ1μ2) is a partial fuzzy subgraph ofG1 × G2.Note that for x1y1 ∈ X1 and x2y2 ∈
X2, (μ1 ◦ μ2)((x1, x2)(y1, y2)) = σ2(x2) ∧ σ2(y2) ∧ μ1(x1y1) = 1/2 = (σ1 × σ2)

((x1, x2)) ∧ (σ1 × σ2)((y1, y2)). Thus, (σ1 ◦ σ2,μ1 ◦ μ2) is a partial fuzzy subgraph
of G1[G2].

In the previous example, (σ1 × σ2,μ1μ2) satisfies the conditions in Theorem
2.11.2. Hence, (σ1 × σ2,μ1μ2) is the Cartesian product of partial fuzzy subgraphs
(τi , νi ) of Gi , i = 1, 2. In fact, τi and νi , i = 1, 2, are constant functions with value
1/2.

Consider the union G = G1 ∪ G2 of two graphs G1 = (V1, X1) and G2 =
(V2, X2). Let μi be a fuzzy subset of vi and ρi a fuzzy subset of Xi , i = 1, 2.
Define the fuzzy subsets σ1 ∪ σ2 of V1 ∪ V2 and μ1 ∪ μ2 of X1 ∪ X2 as follows:

(σ1 ∪ σ2)(u) =
⎧
⎨

⎩

σ1(u) if u ∈ V1\V2,

σ2(u) if u ∈ V2\V1,

σ1(u) ∨ σ2(u) if u ∈ V1 ∩ V2,

(μ1 ∪ μ2)(uv) =
⎧
⎨

⎩

μ1(uv) if uv ∈ X1\X2,

μ2(uv) if uv ∈ X2\X1,

μ1(uv) ∨ μ2(uv) if uv ∈ X1 ∩ X2.

Proposition 2.11.8 Let G be the union of the graphs G1 and G2. Let (σi ,μi ) be
a partial fuzzy subgraph of Gi , i = 1, 2. Then (σ1 ∪ σ2,μ1 ∪ μ2) is a partial fuzzy
subgraph of G.
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Proof Suppose that uv ∈ X1\X2.We have three different cases to consider.

(i) Suppose u, v ∈ V1\V2. Then (μ1 ◦ μ2)(uv) = μ1(uv) ≤ σ1(u) ∧ σ1(v) =
(σ1 ∪ σ2)(u) ∧ (σ1 ∪ σ2)(v).

(ii) Suppose u ∈ V1\V2 and v ∈ V1 ∩ V2. Then (μ1 ∪ μ2)(uv) ≤ (σ1 ∪ σ2)(u) ∧
(σ1(v) ∨ σ2(v) = (σ1 ∪ σ2)(u) ∧ (σ1 ∪ σ2)(v).

(iii) Suppose u, v ∈ V1 ∩ V2. Then

(μ1 ∪ μ2)(uv) ≤ (σ1(u) ∨ σ2(u)) ∧ (σ1(v) ∨ σ2(v))

= (σ1 ∪ σ2)(u) ∧ (σ1 ∪ σ2)(v).

Similarly, if uv ∈ X2\X1.Then (μ1 ∪ μ2)(uv) ≤ (σ1 ∪ σ2)(u) ∧ (σ1 ∪ σ2)(v). Sup-
pose that uv ∈ X1 ∩ X2. Then

(μ1 ∪ μ2)(uv) = μ1(uv) ∨ μ2(uv)

≤ (σ1(u) ∧ σ1(v)) ∨ σ2(u) ∧ σ2(v)

≤ (σ1(u) ∨ σ2(u)) ∧ σ1(v) ∨ σ2(v)

= (σ1 ∪ σ2)(u) ∧ (σ1 ∪ σ2)(v).

�

The fuzzy subgraph (σ1 ∪ σ2,μ1 ∪ μ2) of Proposition 2.11.8 is called the union
of (σ1,μ1) and (σ1,μ2).

Theorem 2.11.9 If G is a union of two fuzzy subgraphs G1 and G2, then every
partial fuzzy subgraph (σ,μ) is a union of a partial fuzzy subgraph of G1 and a
partial fuzzy subgraph of G2.

Proof Define the fuzzy subsets σ1,σ2,μ1, andμ2 of V1, V2, X1 and X2, respectively,
as follows:

σi (u) = σ(u) if u ∈ Vi and μi (uv) = μ(uv) if uv ∈ Xi , i = 1, 2.

Then μi (uv) = μ(uv) ≤ σ(u) ∧ σ(v) = σi (u) ∧ σi (v) if uv ∈ Xi , i = 1, 2. Thus,
(σi ,μi ) is a partial fuzzy subgraph of Gi , i = 1, 2. Clearly, σ = σ1 ∪ σ2 and μ =
μ1 ∪ μ2. �

Consider the join G = G1 + G2 = (V1 ∪ V2, X1 ∪ X2 ∪ X ′) of graphs G1 =
(V1, X2) and G2 = (V2, X2), where X ′ is the set of all edges joining the vertices
of V1 and V2 and where we assume V1 ∩ V2 = ∅. Let σi be a fuzzy subset of Vi

a fuzzy subset of Xi , i = 1, 2. Define the fuzzy subsets σ1 + σ2 of V1 ∪ V2 and
μ1 + μ2 of X1 ∪ X2 ∪ X ′ as follows:

(σ1 + σ2)(u) = (σ1 ∪ σ2)(u) for all u ∈ V1 ∪ V2,
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(μ1 + μ2)(uv) =
{
(μ1 ∪ μ2)(uv) if uv ∈ X1 ∪ X2,

σ1(u) ∧ σ2(v) if uv ∈ X ′, u ∈ V1, v ∈ V2.

Proposition 2.11.10 Let G be the join of two graphs G1 and G2. Let (σ1,μi ) be
a partial fuzzy subgraph of Gi , i = 1, 2. Then (σ1 + σ2,μ1 + μ2) is a partial fuzzy
subgraph of G.

Proof Suppose that uv ∈ X1 ∪ X2. Then the desired result follows from Proposition
2.11.8. Suppose that uv ∈ X ′. Then

(μ1 + μ2)(uv) = σ1(u) ∧ σ2(v)

= (σ1 ∪ σ2)(u) ∧ (σ1 ∪ σ2)(v)

= (σ1 + σ2)(u) ∧ (σ1 + σ2)(v).

�
The fuzzy subgraph (σ1 + σ2,μ1 + μ2) of Proposition 2.11.10 is called the join

of (σ1,μ1) and (σ2,μ2).

Definition 2.11.11 Let (σ,μ) be a partial fuzzy subgraph of a graph G = (V, X).
Then (σ,μ) is called a strong partial fuzzy subgraph of G if μ(uv) = σ(u) ∧ σ(v)
for all uv ∈ X.

Theorem 2.11.12 If G is the join of two subgraphs G1 and G2, then every strong
partial fuzzy subgraph (σ,μ) of G is a join of a strong partial fuzzy subgraph of G1

and a strong partial fuzzy subgraph of G2.

Proof Define the fuzzy subsetsσ1,σ2,μ1, andμ2 of V1, V2, X1 and X2, respectively,
as follows: σi (u) = σ(u) if u ∈ Vi and μi (uv) = μ(uv) if uv ∈ Xi , i = 1, 2. Then
(σi ,μi ) is a fuzzy partial subgraph of Gi , i = 1, 2, and σ = σ1 + σ2 as in the proof
of Theorem 2.11.9. If uv ∈ X1 ∪ X2, then μ(uv) = (μ1 + μ2)(uv) as in the proof
of Theorem 2.11.9. Suppose that uv ∈ X ′, where u ∈ V1 and v ∈ V2. Then (μ1 +
μ2)(uv) = σ1(u) ∧ σ2(v) = σ(u) ∧ σ(v) = μ(uv), where the latter equality holds
because (σ,μ) is strong. �
Example 2.11.13 Let G1 = (V1, X1) and G2 = (V2, X2) be graphs and let σ1,σ2,

μ1,μ2 be fuzzy subsets of V1, V2, X1, X2, respectively. Then (σ1 ∪ σ2,μ1 ∪ μ2) is
a partial fuzzy subgraph of G1 ∪ G2, but (σi ,μi ) is not a partial fuzzy subgraph
of Gi , i = 1, 2 : Let V1 = V2 = {u, v} and X1 = X2 = {uv}. Define the fuzzy
subsets σ1,σ2,μ1,μ2 be fuzzy subsets of V1, V2, X1, X2, respectively, as follows:
σ1(u) = 1 = σ2(v),σ1(v) = 1/4 = σ2(u),μ1(uv) = 1/2 = μ2(uv). Then (σi ,μi )

is not a partial fuzzy subgraph of Gi , i = 1, 2. Now, (μ1 ∪ μ2)(uv) = μ1(uv) ∨
μ2(uv)=1/2 < 1 = (σ1(u) ∨ σ2(u)) ∧ (σ1(v) ∨ σ2(v))=(σ1 ∪ σ2)(u) ∧ (σ1 ∪ σ2)(v).
Thus, (σ1 ∪ σ2,μ1 ∪ μ2) is a partial fuzzy subgraph of G1 ∪ G2.

The above example can be extended to the casewhereV1 � V2, V2 � V1 and X1 �
X2, X2 � X1 as follows: Let V1 = {u, v, w}, V2 = {u, v, z} and X1 = {uv, uw},
X2 = {uv, vz} and σ1(w) = σ2(z) = 1 = μ1(uw) = μ2(uz).
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Theorem 2.11.14 Let G1 = (V1, X1) and G2 = (V2, X1) be graphs. Suppose that
V1 ∩ V2 = ∅. Let σ1,σ2,μ1, and μ2 be fuzzy subsets of V1, V2, X1 and X2, respec-
tively. Then (σ1 ∪ σ2,μ1 ∪ μ2) is a partial fuzzy subgraph of G1 ∪ G2 if and only if
(σ1,μ1) and (σ2,μ2) are partial fuzzy subgraphs of G1 and G2, respectively.

Proof Suppose that (σ1 ∪ σ2,μ1 ∪ μ2) is a partial fuzzy subgraph of G1 ∪ G2. Let
uv ∈ X1.Then uv /∈ X2 and u, v ∈ V1\V2.Hence,μ1(uv) = (μ1 ∪ μ2)(uv) ≤ (σ1 ∪
σ2)(u) ∧ (σ1 ∪ σ2)(v) = σ1(u) ∧ σ1(v). Thus, (σ1,μ1) is partial fuzzy subgraph of
G1. Similarly, (σ2,μ2) is partial fuzzy subgraph of G2. The converse is Proposition
2.11.8. �

The following result follows from the proof of Theorem 2.11.12 and Proposition
2.11.10.

Theorem 2.11.15 Let G1 = (V1, X1) and G2 = (V2, X1) be graphs. Suppose that
V1 ∩ V2 = ∅. Let σ1,σ2,μ1, and μ2 be fuzzy subsets of V1, V2, X1 and X2, respec-
tively. Then (σ1 + σ2,μ1 + μ2) is a partial fuzzy subgraph of G1 + G2 if and only
if (σ1,μ1) and (σ2,μ2) are partial fuzzy subgraphs of G1 and G2, respectively.

Definition 2.11.16 Let (σ,μ) be a partial fuzzy subgraph of (V, T ), where T ⊆ V .
Define the fuzzy subsets σ′ of V and μ′ of T as follows: σ′ = σ and for all uv ∈
T,μ′(uv) = 0 if μ(uv) > 0 and μ′(uv) = σ(u) ∧ σ(v) if μ(uv) = 0.

Clearly, G ′ = (σ′,μ′) is a fuzzy graph.

Definition 2.11.17 Let (σ,μ) be a partial fuzzy subgraph of G = (V, X), Then
(σ,μ) is said to be complete if X = T and for all uv ∈ X,μ(uv) = σ(u) ∧ σ(v).

We use the notation Cm(σ,μ) for a complete fuzzy graph, where |V | = m.

Definition 2.11.18 (σ,μ) is called a fuzzy bigraph if and only if there exist
partial fuzzy subgraphs (σi ,μi ), i = 1, 2, of (σ,μ) such that (σ,μ) is the join
(σ1,μ1) + (σ2,μ2), where V1 ∩ V2 = ∅ and X1 ∩ X2 = ∅. A fuzzy bigraph is said
to be complete if μ(uv) > 0 for all uv ∈ X ′.

We use the notationCm,n(σ,μ) for a complete fuzzy bigraph, where |V | = m and
|V2| = n.

Proposition 2.11.19 Cm,n(σ,μ) = Cm(σ,μ)
′ + Cn(σ,μ)

′.



Chapter 3
Connectivity in Fuzzy Graphs

In graph theory, edge analysis is not very necessary because all edges have the same
weight one. But in fuzzy graphs, the strength of an edge is a real number in [0, 1] and
hence the properties of edges and paths may vary significantly from that of graphs.
So it is important to identify and study the nature of edges of fuzzy graphs. In Chap. 2,
we have discussed the strength of connectedness between two vertices x and y in a
fuzzy graph G. In this chapter, a detailed analysis of the structure of fuzzy graphs
based on the strength of connectedness will be made.

3.1 Strong Edges in Fuzzy Graphs

In 2002, Bhutani and Rosenfeld introduced the concept of strong edges in fuzzy
graphs. In a series of papers, they have discussed strong edges, fuzzy end vertices
and geodesics in fuzzy graphs. The discussions in this section are from [42–44]. We
shall use the notationCONNG(x, y) for the strength of connectedness μ∞(x, y). Note
that a fuzzy graph G = (σ,μ) is connected if CONNG(x, y) > 0 for every pair of
vertices x, y ∈ σ∗. In the following definitions, G − xy is the fuzzy graph obtained
from G by replacing μ(xy) by 0.

Definition 3.1.1 Let G = (σ,μ) be a fuzzy graph. An edge xy is said to be strong
in G if μ(xy) > 0 and μ(xy) ≥ CONNG−xy(x, y). A path ρ : x = x0, x1, . . . , xn = y
from x to y is called a strong path if xi−1xi is strong for all 1 ≤ i ≤ n.

In any fuzzy graph, an edge of maximum weight is always strong. But the con-
verse is not true. For example, consider a fuzzy graph G = (σ,μ) with G∗ is K3.
Let σ∗ = {a, b, c} and σ(a) = σ(b) = σ(c) = 1, 0 < μ(ab) = μ(ac) < μ(bc) ≤ 1.
Then every edge of G is strong, including the weakest ones.
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Fig. 3.1 A strong cycle
without fuzzy bridges

Proposition 3.1.2 In a fuzzy graph G, every fuzzy bridge is strong.

Proof Let G = (σ,μ) be a fuzzy graph and xy be a fuzzy bridge of G. Suppose xy is
not strong. Then μ(xy) < CONNG−xy(x, y). Let ρ be a strongest path from x to y in
G − xy. The strength of this path is CONNG−xy(x, y). If we adjoin xy to ρ to obtain
a cycle, xy becomes the weakest edge of this cycle. Hence, by Theorem 2.2.1, xy is
not a fuzzy bridge of G. This proves that a fuzzy bridge must be strong. �

The converse of Proposition 3.1.2 is not generally true, as seen from the example
of a triangle in which all the edges have the same weight (Fig. 3.1).

Proposition 3.1.3 An edge xy in a fuzzy graph G is strong if and only if μ(xy) =
CONNG(x, y).

Proof Assume xy is strong.ThenCONNG(x, y) ≥ μ(xy). If a path from x to y contains
xy, its strength is less than or equal to μ(xy). If it doesn’t contain xy, it is in G − xy,
so its strength is less than or equal to CONNG−xy(x, y), which is less than or equal
to μ(xy) because xy is strong. Hence, in either case, the strength of a path from x to
y is at most μ(xy), so that CONNG(x, y) ≤ μ(xy).

Conversely, suppose that for xy ∈ μ∗,μ(xy) = CONNG(x, y), then we must have
μ(xy) ≥ CONNG−xy(x, y). So xy is strong. �

Proposition 3.1.4 Let G = (σ,μ) be connected, and let x, y be any two vertices in
σ∗. Then there exists a strong path from x to y.

Proof Because G is connected, there exists a path ρ : x = x0, x1, . . . , xn = y from
x to y such that μ(xi−1xi) > 0 for all 1 ≤ i ≤ n. If xj−1xj is not strong, we must
have μ(xj−1xj) < CONNG−xj−1xj (xj−1, xj). Hence, there exists a path ρj from xj−1 to
xj whose strength is greater than μ(xj−1xj), so that all its edges have weights greater
than μ(xj−1xj). If some edge on ρj is not strong, then this argument can be repeated.
Evidently, the argument cannot be repeated arbitrarily often. Hence, eventually we
can find a path from x to y on which all the edges are strong. �

Now, consider a fuzzy tree G = (σ,μ). By definition of a fuzzy tree, there exists
a unique maximum spanning tree F = (σ, ν) such that for all edges xy not in F,
μ(xy) < CONNG(x, y). The strong edges of G are precisely the strong edges of F as
seen from the following theorem.
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Proposition 3.1.5 If G is a fuzzy tree, an edge of G is strong if and only if it is an
edge of its unique maximum spanning tree.

Proof Let G = (σ,μ) be a fuzzy tree with F its unique maximum spanning tree. If
xy is not an edge of F, we must have μ(xy) < CONNF(x, y). Because xy is strong
we have μ(xy) ≥ CONNG−xy(x, y) ≥ CONNF(x, y). Because xy is not an edge of F,
we get a contradiction.

Conversely, suppose that xy is an edge of F, but not a strong edge of G. Then
μ(xy) < CONNG−xy(x, y). Letρbe a path ofmaximumstrength from x to y inG − xy.
The strength of ρ is CONNG−xy(x, y). So xy is the weakest edge of the cycle formed
by adjoining xy to ρ. Clearly, xy is a bridge of G. So by Theorem 2.2.1, xy cannot be
the weakest edge of a cycle; a contradiction. �

Corollary 3.1.6 If G is a fuzzy tree, F is uniquely determined.

Proof The edges of F are just the strong edges of G. �

Corollary 3.1.7 An edge of a fuzzy tree is strong if and only if it is a fuzzy bridge.

Proof A strong edge of G must be an edge of F and hence must be a fuzzy bridge
of G. �

The converse is true even if G is not a fuzzy tree.

Proposition 3.1.8 G is a fuzzy tree if and only if there is a unique strong path in G
between any two vertices of G.

Proof ByProposition 3.1.4, there exists a strong pathρ inG between any twovertices
x and y. By Corollary 3.1.6, ρ lies entirely in F, where F is the unique spanning tree
associated with G. Because F∗ is a tree, there is a unique path in F from x to y;
hence ρ is unique. To prove the converse, note first that a connected fuzzy graph
G is a fuzzy tree if and only if, in any cycle of G, there is an edge xy such that
μ(xy) < CONNG−xy(x, y) (Theorem 2.3.1). Hence, if G is not a fuzzy tree, there is
a cycle ρ in G such that μ(xy) ≥ CONNG−xy(x, y) for every edge xy of ρ, such that
every edge of ρ is strong. Thus, for any two vertices u and v on ρ, there are two
strong paths between u and v, a contradiction. �

Proposition 3.1.9 In a fuzzy tree G, a strong path between any two vertices u, v is
a path of maximum strength between u and v.

Proof Let ρ be the unique strong path between u an v. Because every edge of ρ
is strong, it is in the unique maximum spanning tree F of G. Suppose ρ is not a
path of maximum strength from u to v. Let ρ′ be such a path; then ρ′ is not same
as ρ, so ρ and the reversal of ρ′ form a cycle. Because F∗ is a tree, it cannot have a
cycle; hence some edge u′v′ of ρ′ must fail to be in F. By definition of F, we have
μ(u′v′) < CONNF(u′, v′). Hence, there is a path from u′ to v′ in F, so we can replace
every edge u′v′ of ρ′ that fail to be in F by a path in F. This yields a path ρ∗ in F from
u to v. Because it was constructed by replacing edge u′v′ of ρ′ by paths stronger than

http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
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these edges, ρ∗ is at least as strong as ρ′. Thus, ρ∗ too can’t be the same as ρ, so ρ and
the reversal of ρ∗ form a cycle, and thus we have a cycle in F, which is impossible.

�

If xy is a strong edge, we say that x and y are strong neighbors. Hence, we have
the following proposition.

Proposition 3.1.10 If G = (σ,μ) is a connected fuzzy graph and σ∗ is not a single-
ton, then every vertex of G has at least one strong neighbor.

The proof of Proposition 3.1.10 follows directly from Proposition 3.1.4.
A vertex x in a fuzzy graph G is called a fuzzy end vertex if x has exactly one

strong neighbor. Evidently an end vertex (a vertex that has only one neighbor in the
support) is a fuzzy end vertex.

Theorem 3.1.11 A fuzzy cutvertex has at least two strong neighbors.

Proof Let G = (σ,μ) be a fuzzy graph and let z be a fuzzy cutvertex of G. Deleting
z reduces CONNG(x, y) for some x, y ∈ σ∗. Thus, there was a strongest path π from
x to y that passed through z, say x, . . . , u, z, v, . . . , y. If uz is not strong, we have
μ(uz) < CONNG(u, z), when uz is deleted. Thus, there is a path ρ from u to z, not
involving uz, which is stronger than μ(uz). Let u′ be the vertex just preceding z on
ρ. Because the strength of ρ is at most μ(u′z), we must have μ(u′z) > μ(uz). If u′z
is not strong, we can repeat this argument. Because it cannot be repeated infinitely,
we eventually find a u∗ such that u∗z is strong. Similarly, we eventually find a v∗
such that zv∗ is strong. If u∗ = v∗, we would have a path from x to u∗ = v∗ to y that
is stronger than π, so that deleting z would not reduce CONNG(x, y), contradiction.
Hence, z has at least two strong neighbors. �

Corollary 3.1.12 No vertex can be both a fuzzy cutvertex and a fuzzy end vertex.

Definition 3.1.13 A fuzzy graph G such that G∗ is a cycle is called multimin if G
has more than one weakest edge. Recall that G is called locamin if every vertex of
G lies on a weakest edge.

Because a cycle has at least three vertices, locamin implies multimin. We shall
call a fuzzy graph whose support is a cycle as an F-cycle.

Theorem 3.1.14 A fuzzy cycle is multimin if and only if it is not a fuzzy tree.

Theorem 3.1.15 A fuzzy cycle is multimin if and only if it has no fuzzy end vertices.

Proof In a multimin fuzzy cycle, every edge is strong. Thus, for any vertex z, both of
the edges on which z lies are strong, so z cannot be a fuzzy end vertex. Conversely, if
a fuzzy cycle has only one weakest edge xy, it is not hard to see that y is not a strong
neighbor of x or vice versa. Hence, only the other neighbors of x and y are strong,
so that x and y are fuzzy end vertices. �

Theorem 3.1.16 A multimin fuzzy cycle is locamin if and only if it has no fuzzy
cutvertices.
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Proof It is not hard to see that if xy is a weakest edge of a fuzzy cycle G, then x
and y cannot be cutvertices of G. Hence, if G is locamin, so that every vertex of G
lies on a weakest edge, no vertex of G can be a cutvertex. Conversely, if G is not
locamin, then let x, y, z be three consecutive vertices of G such that neither xy nor
yz is a weakest edge. It follows easily that deleting y reduces CONNG(x, z), so that
y is a fuzzy cutvertex. �

Theorem 3.1.17 A nontrivial fuzzy tree G has at least two fuzzy end vertices.

Proof Let F be the unique maximum spanning tree of G. Because the support of F
is a nontrivial tree, it has at least two end vertices. We will prove that these vertices
are fuzzy end vertices of G. Indeed, suppose z is an end vertex of F and not a
fuzzy end vertex of G. Then z has at least two strong neighbors x, y so that μ(zx) ≥
CONNG−zx(z, x) and μ(zy) ≥ CONNG−zy(z, y). Because z is an end vertex of F, at
most one of zx and zy can be edges in F. Suppose zx is not an edge of F. By definition
of a fuzzy tree, this implies that μ(zx) < CONNF(z, x). Hence, CONNH−zx(z, x) ≤
μ(zx) < CONNF(z, x). But F is a fuzzy subgraph of G, and because zx is not an
edge of F, F is also a fuzzy subgraph of H − zx. This implies that CONNF(z, x) ≤
CONNH−zx(z, x), contradiction. �

Theorem 3.1.18 A fuzzy cycle G is multimin if and only if it has at least one vertex
which is neither a fuzzy cutvertex nor a fuzzy end vertex.

Proof By Theorem 3.1.15, if G is multimin, it has no fuzzy end vertices, and it
follows that a vertex that lies on a weakest edge of G, cannot be a fuzzy cutvertex.
This proves ‘only if’. Conversely, if G is not multimin it has a unique weakest edge.
We have seen that the vertices that lie on this edge must be fuzzy end vertices. Thus,
all the other vertices of G must be fuzzy cutvertices. Hence, every vertex of G is
either a fuzzy end vertex or a fuzzy cutvertex, which proves ‘if’. �

Corollary 3.1.19 A fuzzy cycle G is a fuzzy tree if and only if every vertex of G is
either a fuzzy cutvertex or a fuzzy end vertex.

Proof The proof follows from Theorems 3.1.14 and 3.1.18. �

In any fuzzy tree G, every vertex is either a fuzzy cutvertex or a fuzzy end vertex;
indeed, the end vertices of the spanning tree F of G must be fuzzy end vertices, and
the other vertices must be fuzzy cutvertices. The converse is not true, i.e., even if
every vertex of G is either a fuzzy cutvertex or a fuzzy endvertex, G need not be a
fuzzy tree. Consider the following example.

Example 3.1.20 Let G = (σ,μ) be the triangle xyz with branches xu, yv and zw
attached to its vertices. Assign unit weight to all edges and vertices (Fig. 3.2). Evi-
dently x, y, z are cutvertices and hence fuzzy cutvertices. Also, u, v and w are end
vertices, but G is not a fuzzy tree.

Proposition 3.1.21 If G is a fuzzy tree, every vertex of G is either a fuzzy cutvertex
or a fuzzy end vertex.
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Fig. 3.2 Fuzzy graph with 3
cutvertices and 3 end vertices

Fig. 3.3 A fuzzy graph with
all edges strong

Proposition 3.1.22 If μ(uv) = σ(u) ∧ σ(v), then uv is strong.

Proof Any path ρ from u to v in G − uv must contain edges ux and yv for
some x 	= v and y 	= u. Hence, the strength of ρ is at most μ(ux) ∧ μ(yv) ≤
∧{σ(u),σ(x),σ(y),σ(v)} ≤ σ(u) ∧ σ(v) = μ(u, v). �

The converse of Proposition 3.1.22 is not true. Consider the following example.

Example 3.1.23 Suppose G has three vertices x, y, z such that σ(x) = σ(y) =
σ(z) = 1 and μ(xy) = μ(yz) = μ(zx) = 0.9. Then all the edges of G are strong,
but the μ values are less than the minimum of corresponding σ values (Fig. 3.3).

It was shown in Proposition 3.1.4 that if G is connected, there is a strong path
between any two vertices of G. Hence, we have the following definition.

Definition 3.1.24 A strong path ρ from x to y is called a geodesic if there is no
shorter strong path from x to y. The length of a geodesic from x to y will be called
the geodesic distance from x to y, denoted by dg(x, y).

It is not hard to see that geodesic distance is a metric.

Definition 3.1.25 Let G = (σ,μ) be a connected fuzzy graph and S be a subset of
σ∗. The geodesic closure (S) of S is defined as the set of all vertices that lie on
geodesics between vertices of S. S is said to be a geodesic cover of G if (S) = σ∗.
A minimal cover of G will be called a geodesic basis for G.

Evidently,G has a basis consisting of a single vertex if and only ifG is a singleton.
If G has a basis consisting of two vertices u, v, then every vertex of G must lie
on a geodesic between u and v. Hence, for any two vertices x, y of G, we have
dg(x, y) ≤ dg(u, v). We have an easy proposition.
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Proposition 3.1.26 A fuzzy end vertex cannot be on a strong path between any two
other vertices.

Corollary 3.1.27 If G is connected, it remains connected when any end vertex is
removed from it.

Proposition 3.1.28 Acover of a fuzzy graphG must contain all the fuzzy end vertices
of G.

Proof If the end vertex x was not in the cover S, it would have to be on a geodesic
between two vertices of S, contradicting Proposition 3.1.26. �

Theorem 3.1.29 If G is a fuzzy tree, it has a unique basis consisting of its end
vertices.

Proof Let z be a non fuzzy end vertex of a fuzzy graph G. Then z has at least two
strong neighbors x0 and y0. If x0 is not an end vertex, then it has another strong
neighbor x1 (different from z). If x1 is not an end vertex, then it has another strong
neighbor x2 (different from x1), and so on. Because G has no cycles, the xi’s must
be distinct and because G is finite, this process must stop, so that some xi must be
an end vertex. Similarly, some yj must be an end vertex. Thus, z is on a geodesic
between the end vertices xi and yj. Hence, the end vertices form a cover of G, so that
by Proposition 3.1.28, they must form a unique basis of G. �

The converse of Theorem 3.1.29 is false; G need not be a fuzzy tree even if its
end vertices cover it. See the example given below.

Example 3.1.30 Let G = (σ,μ) be the fuzzy graph with σ∗ = {a, b, c, d, e, f },
σ(s) = 1 for all s ∈ σ∗. Let μ(ab) = μ(bc) = μ(cd) = μ(da) = 0.9 and μ(ae) =
μ(cf ) = 1 (Fig. 3.4). Clearly, {e, f } is a basis for G, because all edges are strong. But
G is not a fuzzy tree.

Fig. 3.4 A non fuzzy tree
with a basis of end vertices
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Fig. 3.5 Fuzzy graph with
all type of edges

3.2 Types of Edges in Fuzzy Graphs

This section is based on the work by Mathew and Sunitha [116] in 2009. Based
on the strength of connectedness between the end vertices of edges in a fuzzy
graph G = (σ,μ), the edges of G are divided into three different classes. Note
that CONNG−xy(x, y) is the strength of connectedness between x and y in the fuzzy
graph obtained from G by deleting the edge xy.

Definition 3.2.1 An edge xy in a fuzzy graph G = (σ,μ) is called α-strong if
μ(xy) > CONNG−xy(x, y), β-strong if μ(xy) = CONNG−xy(x, y) and a δ-edge if
μ(xy) < CONNG−xy(x, y).

Remark 3.2.2 The nature of strong edges varies from fuzzy graph to fuzzy graph.
For example, a fuzzy tree consists only α-strong edges, whereas most of the edges in
a complete fuzzy graph are β-strong. Thus, the division of strong edges into α and
β will help in understanding the structure of a fuzzy graph properly.

Definition 3.2.3 A δ-edge xy is called a δ∗-edge if μ(xy) > μ(uv), where uv is a
weakest edge of G.

Definition 3.2.4 A path in a fuzzy graph G = (σ,μ) is called an α-strong path if
all its edges are α-strong and is called a β-strong path if all its edges are β-strong.

Example 3.2.5 Let G = (σ,μ) with σ∗ = {u, v, w, x},σ(s) = 1 for all s ∈ σ∗,
μ(uv) = 0.4 = μ(xu),μ(vw) = 0.9 = μ(wx) and μ(vx) = 0.5. Here, vw and wx
are α-strong edges, uv and xu are β-strong edges and vx is a δ-edge. Also, vx is a
δ∗-edge because μ(vx) > μ(uv), where uv is a weakest edge of G. Here P1 : x, w, v

is an α-strong x − v path whereas P2 : x, u, v is a β-strong x − v path (Fig. 3.5.)

It is interesting to see that, the types of edges cannot be determined by simply
examining the edge weights in a fuzzy graph; for, the membership value of a δ-edge
can exceed membership values of α-strong and β-strong edges. Also, membership
value of a β-strong edge can exceed that of an α-strong edge as can be seen from the
following examples.
(a) The membership value of a δ-edge exceeds the membership value of a β-strong
edge.
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Fig. 3.6 A fuzzy graph with
α and δ edges

Fig. 3.7 Membership value-
β-strong exceeds α-strong

Consider the fuzzy graph in Example 3.2.5. μ(vx) = 0.5 > 0.4 = μ(uv). Here,
vx is a δ-edge whereas uv is β-strong.
(b) The membership value of a δ-edge exceeds the membership value of an α-strong
edge. See Example 3.2.6.

Example 3.2.6 Let G = (σ,μ) with σ∗ = {u, v, w, x},σ(s) = 1 for all s ∈ σ∗,
μ(uv) = 0.8 = μ(vw),μ(uw) = 0.6, μ(wx) = 0.4 andμ(xu)= 0.2 (Fig. 3.6).Here,
uv, vw and wx are α-strong edges, whereas uw and xu are δ-edges with μ(uw) =
0.6 > 0.4 = μ(wx).

(c) Membership value of a β-edge exceeds membership value of an α-strong edge.

Example 3.2.7 Let G = (σ,μ) be such that σ∗ = {u, v, w, x}, σ(s) = 1 for all
s ∈ σ∗,μ(uv) = μ(uw) = μ(vw) = 0.9,μ(wx) = 0.6 and μ(xu) = 0.3 (Fig. 3.7).
Here, uv,vw, uw are β-strong edges, whereas wx is α-strong and xu is a δ-edge
with μ(uw) = μ(uv) = μ(vw) = 0.9 > 0.6 = μ(wx).

In a connected graph G, CONNG(x, y) = 1 for all pairs of vertices x and y. Also,
each x − y path in G is strong as well as strongest. In this section, the type of edges
in strongest paths of fuzzy graphs are studied and conditions under which a strong
path becomes a strongest path are discussed.

Clearly a strongest path may contain all types of edges. In Example 3.2.5, the
strength of the path P : u, v, x, w is 0.4, which is a strongest path from u to w and it
contains all types of edges, namely uv is β-strong, xw is α-strong and vx is a δ-edge.

In a graph G, each path is strong as well as strongest. But in a fuzzy graph a
strongest path need not be a strong path and a strong path need not be a strongest
path. In Example 3.2.5, P1 : u, v, x, w is a strongest u − w path, but not a strong
u − w path. Note that P2 : u, v, w and P3 : u, x, w are strong u − w paths.
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Conversely, P4 : v, u, x is a strong v − x path which is not a strongest v − x path
and P5 : v,w, x is the strongest v − x path.

A strongest path without δ-edges is a strong path; for, it contains only α-strong
and β-strong edges.

Proposition 3.2.8 ([116]) A strong path P from x to y is a strongest x − y path in
the following cases.

(i) P contains only α-strong edges.
(ii) P is the unique strong x − y path.
(iii) All x − y paths in G are of equal strength.

Proof (i) Let G = (σ,μ) be a fuzzy graph. Let P be a strong x − y path in G
containing only α-strong edges. Suppose that P is not a strongest x − y path. Let Q
be a strongest x − y path inG. Then P ∪ Qwill contain at least one cycleC, in which
every edge of C − P will have strength greater than strength of P. Thus, a weakest
edge of C is an edge of P. Let uv be such an edge of C. Let C′ be the u − v path
in C, not containing the edge uv. Then μ(uv) ≤ strength of C′ ≤ CONNG−uv(u, v),

which implies that uv is not α-strong, a contradiction. Thus, P is a strongest x − y
path.

(ii) Let G = (σ,μ) be a fuzzy graph. Let P be the unique strong x − y path in G.
Suppose that P is not a strongest x − y path. Let Q be a strongest x − y path in G.
Then strength ofQ> strength of P. That is, for every edge uv inQ, μ(uv) > μ(x′y′),
where x′y′ is a weakest edge of P.

Claim: Q is a strong x − y path.
For otherwise, if there exists an edge uv in Q which is a δ-edge, then

μ(uv) < CONNG−uv(u, v) ≤ CONNG(u, v)

and hence μ(uv) < CONNG(u, v). Thus, there exists a path from u to v in G whose
strength is greater than μ(uv). Let it be P′. Let w be the last vertex after u, common
toQ and P′ in the u − w sub path of P′ andw′ be the first vertex before v, common to
Q and P′ in thew′ − v sub path of P′ (If P′ andQ are disjoint u − v paths thenw = u
and w′ = v). Then the path P′′ consisting of the x − w path ofQ, the w − w′ path of
P′, and thew′ − y path ofQ is an x − y path inG such that Strength of P′′ > Strength
of Q, contradiction to the assumption that Q is a strongest x − y path in G. Thus, uv
cannot be a δ-edge and hence Q is a strong x − y path in G. Thus, we have another
strong path from x to y, other than P, which is a contradiction to the assumption that
P is the unique strong x − y path in G. Hence, P should be a strongest x − y path in
G.

(iii) If every path from x to y have the same strength, then each such path is a
strongest x − y path. In particular, a strong x − y path is a strongest x − y path. �

We observe that if all edges of a fuzzy graph G are β-strong, as in graphs without
bridges, then each strongest path is a strong path but the converse need not be true.
For consider the fuzzy graph G = (σ,μ) with σ∗ = {u, v, w, x, y},σ(s) = 1 for all
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Fig. 3.8 Fuzzy graph with
all strong edges

s ∈ σ∗ and μ(uv) = μ(vw) = μ(wx) = μ(xu) = 0.9,μ(uy) = μ(yw) = 0.5. Here
all edges are β-strong and P = u, y, w is a strong u − w path but it is not a strongest
u − w path (Fig. 3.8.)

Next we characterize fuzzy bridges of a fuzzy graph using the concept of α-
strong edges. Note that in a fuzzy graph, a fuzzy bridge is strong but not conversely
(Proposition 3.1.2).

Theorem 3.2.9 (Characterization of fuzzy bridges in a fuzzy graph) Let G = (σ,μ)

be a fuzzy graph. Then an edge xy of G is a fuzzy bridge if and only if it is α-strong.

Proof Let G = (σ,μ) be a fuzzy graph. Let xy be a fuzzy bridge in G. Then by
Theorem 2.2.1, μ(xy) > CONNG−xy(x, y), which shows that xy is α-strong.

Conversely, suppose that xy is α-strong. Then by definition, it follows that xy is
the unique strongest path from x to y and the removal of xy will reduce the strength
of connectedness between x and y. Thus, xy is a fuzzy bridge. �

Recall that if an edge xy of G is a fuzzy bridge, then CONNG(x, y) = μ(xy)
(Theorem 2.2.14). The converse need not be true. In Example 3.2.5, edges uv and
xu are β-strong and are not fuzzy bridges.

One of the characterizations for a fuzzy bridge is that it is in every maximum
spanning tree (MST) of G (Corollary 2.2.4). So we have the following corollary.

Corollary 3.2.10 An edge xy of a connected fuzzy graph G is α-strong if and only
if xy is in every MST of G.

Corollary 3.2.11 Let G = (σ,μ) be a fuzzy graph with |σ∗| = n, then the number
of α-strong edges in G is at most n − 1.

If G is a fuzzy tree, then the removal of an α-strong edge reduces the strength of
connectedness between its end vertices and also between some other pair of vertices.
Also, note that the internal vertices of F are the fuzzy cutvertices of G and hence
w is a fuzzy cutvertex if and only if w is a common vertex of at least two α-strong
edges.

Also, if w is a common vertex of at least two fuzzy bridges, then w is a fuzzy
cutvertex. Hence, it follows that, if w is a common vertex of at least two α-strong
edges in a fuzzy graph G, then w is a fuzzy cutvertex. But the converse is not true.
See Examples 3.2.12 and 3.2.13.

http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Fig. 3.9 w is not a common
vertex of two α-strong edges

Fig. 3.10 Fuzzy graph with
a fuzzy cutvertex and no α
strong edges

Example 3.2.12 Let G = (σ,μ) with σ∗ = {u, v, w, x},σ(s) = 1 for all s ∈ σ∗ and
μ(uv) = μ(vw) = μ(uw) = 0.5,μ(xu) = 0.4 andμ(wx) = 0.9. Thenwx is the only
α-strong edge, xu is a δ-edge, uv, vw and uw are β-strong edges. Also, w is a fuzzy
cutvertex, but it is not a common vertex of two or more α-strong edges (Fig. 3.9).

Example 3.2.13 Let G = (σ,μ) with σ∗ = {u, v, w, x, y},σ(s) = 1 for all s ∈ σ∗
and μ(uv) = 0.5 = μ(xy), μ(ux) = μ(vy) = μ(vw) = μ(uw) = μ(xw) =
μ(yw) = 0.8. Here G has no α-strong edges. xy and uv are δ-edges and all other
edges are β-strong. w is a fuzzy cutvertex and there are no α-strong edges incident
on w (Fig. 3.10)

Now, we present a condition under which an edge of a fuzzy tree becomes α-
strong. In a fuzzy tree G, an edge of G is strong if and only if it is an edge of F,
where F is the associated unique maximum spanning tree of G (Proposition 3.1.5).
Actually these strong edges are α-strong and there are no β-strong edges in a fuzzy
tree. The characterization of fuzzy trees using β-strong edges is given. We know that
a loop less graph is a tree if and only if there exists a unique path between any two
vertices in it. Analogues to this, it is shown that G is a fuzzy tree if and only if there
exists a unique α-strong path between any two vertices in G.

Theorem 3.2.14 A connected fuzzy graph G is a fuzzy tree if and only if it has no
β-strong edges.

Proof Let G = (σ,μ) be a fuzzy tree and let F = (σ, ν) be its maximum spanning
tree.Now, all edges inF areα-strong (Proposition 2.3.4 andTheorem3.2.9). Suppose
xy is a β-strong edge in G. Then xy is not in F and by definition of a fuzzy tree,

μ(xy) < CONNF(x, y) (3.1)

http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Fig. 3.11 A fuzzy tree with
δ∗ edge

Also, because F is a subgraph of G,

CONNF(x, y) ≤ CONNG−xy(x, y). (3.2)

From (3.1) and (3.2),μ(xy) < CONNG−xy(x, y),which implies that xy is a δ-edge,
which is a contradiction. Thus, G contains no β-strong edges.

Conversely, suppose that G is connected and has no β-strong edges. If G has no
cycles, then G is a fuzzy tree. Now, assume that G has cycles. Let C be a cycle in G.
Then C will contain only α-strong edges and δ-edges. Also, all edges of C cannot be
α-strong because otherwise it will contradict the definition of α-strong edges. Thus,
there exists at least one δ-edge in C. Then by Theorem 2.3.1, it follows that G is a
fuzzy tree. �

Thus, all strong edges of a fuzzy tree are α-strong and hence Proposition 3.1.5
can be restated as follows.

Theorem 3.2.15 An edge xy in a fuzzy tree G = (σ,μ) is α-strong if and only if xy
is an edge of the spanning tree F = (σ, ν) of G.

A fuzzy tree can have δ∗-edges as seen from the following example.

Example 3.2.16 Let G = (σ,μ) with σ∗ = {u, v, w, x},σ(s) = 1 for all s ∈ σ∗ and
μ(uv) = 0.2,μ(xu) = 0.7, μ(vw) = 0.9 = μ(wx), μ(vx) = 0.5. Then G is a fuzzy
tree with vw,wx and xu as α-strong and vx and uv as δ-edges. Also, vx is a δ∗-edge
because μ(vx) > μ(uv), where uv is a weakest edge of G (Fig. 3.11.)

Theorem 3.2.17 G is a fuzzy tree if and only if there exists a unique α-strong path
between any two vertices in G.

Proof The proof follows from Proposition 3.1.8 and Theorem 3.2.14. �

G is a fuzzy tree if and only if G has a unique MST and all edges in the MST are
α-strong edges. In general, we have the following theorem.

Theorem 3.2.18 Let T be any spanning tree of a fuzzy graph G. Then T is an MST
of G if and only if T contains no δ-edges. Further, an MST T is unique for G if and
only if T contains no β-strong edges.

http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Proof The first part follows from the definitions of δ edge and MST and the sec-
ond part follows from the definition of β-strong edge, Theorem 3.2.15 above and
Theorem 2.3.19. �

Note that the strength of the unique x-y path in anyMST ofG givesCONNG(x, y)
and it follows from Theorem 3.2.18 that there exists strong x-y path between any two
vertices x and y of G.

Next the types of edges in fuzzy cycles are discussed. It is observed that there
are no δ-edges in a fuzzy cycle G. For, if uv is a δ-edge in G, then it becomes the
unique weakest edge of G, which contradicts that G is a fuzzy cycle. Also, a fuzzy
cycle cannot have all its edges α-strong because the weakest edges in the fuzzy cycle
cannot beα-strong and note that these weakest edges are β-strong edges and all other
edges are α-strong. This leads to the following theorem.

Theorem 3.2.19 Let G be a fuzzy graph such that G∗ is a cycle. Then G is a fuzzy
cycle if and only if G has at least two β-strong edges.

Note that in a fuzzy graph G such that G∗ is a cycle, w is a fuzzy cutvertex if and
only if it is a common vertex of at least two fuzzy bridges and using Theorem 3.2.9
we have the following theorem.

Theorem 3.2.20 Let G be a fuzzy graph such that G∗ is a cycle. If G contains at
most one α-strong edge, then G has no fuzzy cutvertices.

Converse of Theorem 3.2.20 is not true. The condition for the converse to be true
is given in the following theorem whose proof is obvious.

Theorem 3.2.21 If there exists a unique strongest path between any two vertices x,
and y in a fuzzy graph G, then it is a strong x − y path.

Now, we discuss types of edges in a complete fuzzy graph (CFG). In the following
results, the number of β-strong edges in a CFG is calculated and the existence of a
β-strong path between any two vertices of a CFG is proved. In a complete graph,
there are no bridges, but a CFG may contain fuzzy bridges. Hence, we have the
following two lemmas.

Lemma 3.2.22 A complete fuzzy graph has no δ-edges.

Proof Let G be a complete fuzzy graph. If possible assume that G contains a δ-edge
uv (say). Then

μ(uv) < CONNG−uv(u, v).

That is, there exists a stronger path P other than the edge uv from u to v in G. Let
μ(uv) = p and the strength of the path P be q. Then p < q. Let w be the first vertex
in P after u. Then

μ(uw) > p. (3.3)

http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Similarly, let x be the last vertex in P before v. Then

μ(xv) > p. (3.4)

Because μ(uv) = p, at least one of σ(u) or σ(v) should be p. Now, G being a CFG,
(3.3) gives a contradiction if σ(u) = p and (3.4) gives a contradiction if σ(v) = p;
which completes the proof. �

The following result is obvious.

Lemma 3.2.23 There exists at most one α-strong edge in a CFG.

Using Lemmas 3.2.22 and 3.2.23 we have the following two theorems.

Theorem 3.2.24 Let G = (σ,μ) be a CFG with |σ∗| = n. Then the number of β-
strong edges in G is nC2 or nC2 − 1, where nC2 denotes the number of combinations
of n things taken two at a time given by the formula nC2 = n!

2!(n−2)! .

Theorem 3.2.25 Let G = (σ,μ) be a CFG. Then there exists a β-strong path
between any two vertices of G.

3.3 Vertex Connectivity and Edge Connectivity of Fuzzy
Graphs

As mentioned before, along with Rosenfeld [154], Yeh and Bang [186] also intro-
duced fuzzy graphs independently in 1975. They emphasized on the connectivity of
fuzzy graphs and provided several results related to it. There are a large number of
papers on connectivity of fuzzy graphs, available in the literature. But, this section
is based on [114], which generalizes the Yeh and Bang parameters of connectivity.

Definition 3.3.1 Let G = (σ,μ) be a fuzzy graph. The strong degree of a vertex
v ∈ σ∗ is defined as the sum of membership values of all strong edges incident at
v. It is denoted by ds(v). Also, if Ns(v) denotes the set of all strong neighbors of v,
then ds(v) =

∑

u∈Ns(v)

μ(uv).

Example 3.3.2 Let G = (σ,μ) be a fuzzy graph with σ∗ = {u, v, w},σ(s) = 1 for
all s ∈ σ∗, μ(uv) = 0.4,μ(vw) = 0.5 and μ(wu) = 0.6 (Fig. 3.12). Here, ds(u) =
0.6, ds(v) = 0.5, ds(w) = 1.1.

The existence of a strong path between any two vertices of a fuzzy graph was
shown in Proposition 3.1.4. As a consequence, we can find at least one strong edge
incident at each vertex of a nontrivial connected fuzzy graph.

Proposition 3.3.3 In a non trivial connected fuzzy graph G = (σ,μ), 0 < ds(v) ≤
d(v) for all vertices v ∈ σ∗.
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Fig. 3.12 Fuzzy graph in
Example 3.3.2

Fig. 3.13 Fuzzy graph in
Example 3.3.5

As in graphs, we can define minimum and maximum strong degree of a fuzzy
graph as given below.

Definition 3.3.4 The minimum strong degree of G is δs(G) = ∧{ds(v) | v ∈ σ∗}
and maximum strong degree of G is �s(G) = ∨{ds(v), v ∈ σ∗}.
Example 3.3.5 Let G = (σ,μ) with σ∗ = {u, v, w, x},σ(s) = 1 for all s ∈ σ∗ and
μ(uv) = 0.2 = μ(xu),μ(vw) = 0.8 = μ(uw),μ(wx) = 0.6. In G (Fig. 3.13), all
edges except uv and ux are strong. Thus, ds(u) = 0.8 = ds(v), ds(w) = 2.2 and
ds(x) = 0.6. Hence, δs(G) = 0.6 and �s(G) = 2.2.

As in the case of graphs, δs(G) ≤ ds(v) ≤ �s(G), for all v ∈ σ∗. Also, d(v) =
ds(v) for every vertex v in a graph. The next result, similar to the handshaking lemma
in graphs is trivial.

Proposition 3.3.6 The sum of strong degrees of all vertices in an fuzzy graph is
equal to twice the sum of membership values of all strong edges in G.

In a complete fuzzy graph, all edges are strong and hence ds(v) = d(v) for all v ∈
σ∗.Also, strong degree of a vertex v in a CFG is given by ds(v) =

∑

u 	=v

∧{σ(u),σ(v)},
where u ∈ σ∗.

Proposition 3.3.7 In a CFG there exists at least one pair of vertices u and v such
that ds(u) = ds(v).

The next lemma is related to the minimum and maximum degrees of a CFG.
Because μ(uv) = σ(u) ∧ σ(v) for every edge uv in a CFG G, the minimum and
maximum degrees of vertices of G can be evaluated in terms of the membership
values of its vertices.
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Lemma 3.3.8 Let G = (σ,μ) be a CFG with σ∗ = {u1, u2, . . . , un} such that
σ(u1) ≤ σ(u2) ≤ σ(u3) ≤ · · · ≤ σ(un). Then u1uj is an edge of minimum weight
at uj for 2 ≤ j ≤ n and uiun is an edge of maximum weight at ui for 1 ≤ i ≤ n − 1.
Also,

d(u1) = δs(G) = (n − 1)σ(u1)

and

d(un) = �s(G) =
n−1∑

i=1

σ(ui).

Proof Throughout the proof, we suppose that σ(u1) < σ(u2) ≤ σ(u3) ≤ · · · ≤
σ(un−1) < σ(un). If there are more than one vertex with minimum vertex strength
or maximum vertex strength, the proof will be similar. First we prove that for
2 ≤ j ≤ n, u1uj is an edge ofminimumweight atuj . If possible, suppose thatu1ul, 2 ≤
l ≤ n is not an edge of minimum weight at ul. Also, let ukul, 2 ≤ k ≤ n, k 	= l
be an edge of minimum weight at ul. Being a CFG, μ(u1ul) = σ(u1) ∧ σ(ul) and
μ(ukul) = σ(uk) ∧ σ(ul).

Because μ(ukul) < μ(u1ul), we have, σ(uk) ∧ σ(ul) < σ(u1) ∧ σ(ul) = σ(u1).
That is, either σ(uk) < σ(u1) or σ(ul) < σ(u1). Because l, k 	= 1, this is a contra-
diction to our assumption that σ(u1) is the unique minimum vertex degree. Thus, for
2 ≤ j ≤ n, u1uj is an edge of minimum weight at uj.

Next we prove that uiun is an edge of maximum weight at ui for 1 ≤ i ≤ n −
1. On the contrary suppose that ukun, 1 ≤ k ≤ n − 1 is not an edge of maximum
weight at uk and let ukur, 1 ≤ r ≤ n − 1, k 	= r be an edge of maximum weight
at uk . Then μ(ukur) > μ(ukun) and hence σ(uk) ∧ σ(ur) > σ(uk) ∧ σ(un) = σ(uk),
which implies that σ(ur) > σ(uk). Therefore, μ(ukur) = σ(uk) = μ(ukun), which is
a contradiction to our assumption. Thus, ukun is an edge of maximum weight at uk .

Now, we have,

ds(u1) =
n∑

i=2

μ(u1ui) =
n∑

i=2

(σ(u1) ∧ σ(ui)) =
n∑

i=2

σ(u1) = (n − 1)σ(u1).

If possible suppose that ds(u1) 	= δs(G) and let uk, k 	= 1 be a vertex in G with
minimum strong degree.

Now, ds(u1) > ds(uk) implies
n∑

i=2

μ(u1ui) >
∑

k 	=1,j 	=k

μ(ukuj).

That is,
n∑

i=2

(σ(u1) ∧ σ(ui)) >
∑

k 	=1,j 	=k

(σ(uk) ∧ σ(uj)).

Because σ(u1) ∧ σ(ui) = σ(u1) for i = 2, 3, . . . , n, σ(uk) ∧ σ(u1) = σ(u1) and
for all other indices j,σ(uk) ∧ σ(uj) > σ(u1), it follows that

(n − 1)σ(u1) >
∑

k 	=1,j 	=k

(σ(uk) ∧ σ(uj)) > (n − 1)σ(u1).
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That is, ds(u1) > ds(u1), a contradiction. Thus, ds(u1) = δs(G) = (n − 1)σ(u1).

Finally we show that ds(un) = �s(G) =
n−1∑

i=1

σ(ui). Because σ(un) > σ(ui) for

i = 1, 2, . . . , n − 1 and G is a CFG, μ(unui) = σ(un) ∧ σ(ui) = σ(ui).

Therefore, ds(un) =
n−1∑

i=1

μ(unui) =
n−1∑

i=1

σ(ui).

If possible suppose that ds(un) 	= �s(G). Let ul, 1 ≤ l ≤ n − 1 be a vertex in G
such that ds(ul) = �s(G) and ds(un) < ds(ul).

Now,

ds(ul) =
l−1∑

i=1

μ(uiul) +
n−1∑

i=l+1

μ(uiul) + μ(unul)

≤
l−1∑

i=1

σ(ui) + (n − l)σ(ul) + σ(ul) ≤
n−1∑

i=1

σ(ui) = ds(un).

That is, ds(ul) ≤ ds(un), a contradiction to our assumption. Thus, the proposition
is proved. �

In graphs, all vertices are assumed to have the same membership value 1, whereas
in fuzzy graphs themembership value of a vertex is always a real number in (0, 1]. So
to each fuzzy graph, we can associate a sequence of real numbers namely the vertex
strength sequence or node strength sequence abbreviated as n-s sequence which is
given below.

Definition 3.3.9 Let G = (σ,μ) be a fuzzy graph with |σ∗| = n. Then the vertex-
strength sequence or node-strength sequence (n-s sequence) of G is defined to
be (p1, p2, . . . , pn) with p1 ≤ p2 ≤ · · · ≤ pn, where pi, 0 < pi ≤ 1 is the strength
of vertex i when vertices are arranged so that their strengths are non decreasing. In
particular, p1 is the smallest vertex strength and pn is the largest vertex strength.

Example 3.3.10 illustrates Definition 3.3.9.

Example 3.3.10 Let G = (σ,μ) with σ∗ = {a, b, c, d} and σ(a) = σ(c) =
σ(d) = 0.3, σ(b) = 0.4. Then the vertex-strength sequence of G is (0.3, 0.3, 0.3,
0.4) or (0.33, 0.4).

By observing the n-s sequence, one can determine the number of vertices of mini-
mum strong degree and maximum strong degree in a CFG as in the next proposition.

Proposition 3.3.11 Let G = (σ,μ) be a CFG with |σ∗| = n. Then the following
conditions hold.

(i) If the n-s sequence of G is of the form (pn−1
1 , p2), then δs(G) = �s(G) =

(n − 1)p1 = ds(ui), i = 1, 2, . . . ., n.



3.3 Vertex Connectivity and Edge Connectivity of Fuzzy Graphs 103

(ii) If the n-s sequence of G is of the form (pr11 , pn−r1
2 ) with 0 < r1 ≤ n − 2, then

there exist exactly r1 vertices with degree δs(G) and n − r1 vertices with degree
�s(G).

(iii) If the n-s sequence of G is of the form (pr11 , pr22 , . . . , prkk ) with rk > 1 and
k > 2, then there exist exactly r1 vertices with degree δs(G) and exactly rk vertices
with degree �s(G).

(iv) If the n-s sequence of G is of the form (pr11 , pr22 , . . . , prk−1

k−1, pk) with k > 2,
then there exist exactly 1 + rk−1 vertices with degree �s(G).

Proof The proofs of (i) and (ii) are obvious.We present proofs for (iii) and (iv). (iii)
Let v(j)

i , j = 1, 2, . . . , ri be the set of vertices in G with ds(v
(j)
i ) = pi, 1 ≤ i ≤ k. By

Lemma 3.3.8, we have, ds(v
(j)
1 ) = δs(G) = (n − 1)p1 for j = 1, 2, . . . , r1. No vertex

with strength more than p1 can have degree δs(G) because μ(v
(j)
i v

(l)
i+1) = σ(v

(j)
i ) >

p1 for 2 ≤ i ≤ k, j = 1, 2, . . . , ri, l = 1, 2, . . . , ri+1. Thus, there exists exactly r1
vertices with strong degree δs(G).

Next we prove that ds(vt
k) = �s(G), t = 1, 2, . . . , rk .

Because σ(vt
k) is the maximum vertex strength, we have μ(vt

kv
j
k) = pk, t 	= j;

t, j = 1, 2, . . . , rk and μ(vt
kv

j
i) = σ(vt

k) ∧ σ(v
j
i) = σ(v

j
i) for t = 1, 2, . . . , rk; j =

1, 2, . . . , ri; i = 1, 2, . . . , k − 1. Thus, for t = 1, 2, . . . , rk,

ds(v
t
k) =

k−1∑

i=1

ri∑

j=1

σ(v
j
i) + (rk − 1)pk

=
n−1∑

i=1

σ(ui) = �s(G), by Lemma 3.3.8

Now, if u is a vertex such that σ(u) = pk−1, we have,

ds(u) =
k−2∑

i=1

ri∑

j=1

μ(uvj
i) + (rk−1 − 1 + rk)pk−1

=
k−2∑

i=1

ri∑

j=1

σ(v
j
i) +

rk−1∑

j=1

σ(v
j
k−1) + (rk − 1)pk−1

<

k−2∑

i=1

ri∑

j=1

σ(v
j
i) +

rk−1∑

j=1

σ(v
j
k−1) + (rk − 1)pk = �s(G).

Thus, there exists exactly rk vertices with degree �s(G).
(iv) Let v(1)

k = vk be the vertex inG such that ds(vk) = pk . Then by Lemma 3.3.8,

ds(vk) = �s(G) =
n−1∑

i=1

σ(ui). Now, let vt
k−1, t = 1, 2, . . . , rk−1 be the vertices in G

with ds(vt
k−1) = pk−1. Then for t = 1, 2, . . . , rk−1,
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ds(v
t
k−1) =

k−2∑

i=1

ri∑

j=1

μ(v
j
iv

t
k−1) +

∑

l 	=m

μ(vl
k−1v

m
k−1) + μ(vl

k−1vk).

But, μ(v
j
iv

t
k−1) = σ(v

j
i) for i = 1, 2, . . . , k − 2 and j = 1, 2, . . . , ri.

μ(vl
k−1v

m
k−1) = pk−1 and μ(vl

k−1vk) = pk−1.

Thus,

ds(v
t
k−1) =

k−2∑

i=1

ri∑

j=1

σ(v
j
i) + (rk−1 − 1)pk−1 + pk−1

=
k−2∑

i=1

ri∑

j=1

σ(v
j
i) + rk−1pk−1

=
n−1∑

i=1

σ(ui) = �s(G).

Thus, there exist rk−1 + 1 vertices with strong degree �s(G).
Now, if u is a vertex such that σ(u) < pk−1, as in the proof of (iii), we can show

that ds(u) < �s(G). Thus, there exist exactly rk−1 + 1 vertices with strong degree
�s(G) and the proof is complete. �

Yeh and Bang [186] introduced two connectivity parameters for fuzzy graphs
namely vertex connectivity and edge connectivity. In this section, we generalize
these definitions using the concepts of strong edges. Both vertex connectivity and
edge connectivity are related with sets disconnecting the fuzzy graph. But in a fuzzy
set up, we need only the reduction of strength of connectedness between some pair
of vertices. The definitions of disconnection and vertex connectivity are given below.

Definition 3.3.12 A disconnection of a fuzzy graph G = (σ,μ) is a vertex set D
whose removal results in a disconnected or a single vertex fuzzy graph. The weight
of D is defined to be

∑

v∈D
∧{μ(vu) | μ(vu) 	= 0}.

Definition 3.3.13 The vertex connectivity of a fuzzy graph G, denoted by �(G),
is defined to be the minimum weight of a disconnection in G.
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Fig. 3.14 Fuzzy graphs in
Examples 3.3.15 and 3.3.16

The generalized definitions from [114] are given below.

Definition 3.3.14 Let G = (σ,μ) be a connected fuzzy graph. A set of vertices
X = {v1, v2, . . . , vm} ⊂ σ∗ is said to be a fuzzy vertex cut or fuzzy node cut (FNC)

if either, CONNG−X(x, y) < CONNG(x, y) for some pair of vertices x, y ∈ σ∗ such
that both x, y 	= vi for i = 1, 2, . . . ,m or G − X is trivial.

If there are n vertices in X, then X is called an n-FNC. Clearly a 1-FNC is a
singleton set X = {u}, where u is a fuzzy cutvertex.

Example 3.3.15 Let G = (σ,μ) with σ∗ = {a, b, c, d},σ(s) = 1 for all s ∈ σ∗ and
μ(ab) = μ(cd) = 0.5,μ(ad) = μ(bc) = 0.4,μ(ac) = 0.2. Then S = {b, d} is a 2-
FNC for, CONNG−S(a, c) = 0.2 < 0.4 = CONNG(a, c) (Fig. 3.14).

Example 3.3.16 Let G = (σ,μ) with σ∗ = {a, b, c},σ(s) = 1 for all s ∈ σ∗ with
μ(a, b) = μ(ca) = 0.2,μ(bc) = 0.3. G has no fuzzy cutvertices, but all the three
pairs of vertices are fuzzy vertex cuts because the removal of any pair of vertices
results in a trivial fuzzy graph.

By Proposition 3.1.4, there exists at least one strong edge incident on every vertex
of a nontrivial connected fuzzy graph. The following definition is based on this result.

Definition 3.3.17 LetX be a fuzzy vertex cut inG. The strongweight ofX, denoted
by s(X) is defined as s(X) =

∑

x∈X
μ(xy), where μ(xy) is the minimum of the weights

of strong edges incident at x.

Definition 3.3.18 The fuzzy vertex connectivity of a connected fuzzy graph G is
defined as the minimum strong weight of fuzzy vertex cuts of G. It is denoted by
κ(G).

Example 3.3.19 Let G = (σ,μ) with σ∗ = {a, b, c, d} and μ(ab) = 0.2,
μ(bc) = 0.5,μ(cd) = 0.4,μ(da) = μ(ac) = 0.3 (Fig. 3.15). Then X1 = {c} is the
only 1-FNC (i.e., c is a fuzzy cutvertex) with s(X1) = 0.3. The only 2-FNC in G
is X2 = {a, c} and s(X2) = 0.6. Also, any three vertices of G form a 3-FNC with
s({a, b, c}) = s({a, b, d}) = s({b, c, d}) = 1.1 and s({a, c, d}) = 0.9. Thus, κ(G) =
0.3.
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Fig. 3.15 Fuzzy graph with
different FNCs

In [186], the notion of edge connectivity of a fuzzy graph is defined. Asmentioned
before, this definition is more close to a graph rather than a fuzzy graph. But in a
fuzzy graph the reduction of flow is more important than the total disruption of the
flow.

The following definitions of a cut-set and edge connectivity are due to Yeh and
Bang [186].

Definition 3.3.20 Let G be a fuzzy graph and {V1, V2} be a partition of its vertex
set. The set of edges joining vertices of V1 and vertices of V2 is called a cut-set of
G, denoted by (V1, V2) relative to the partition {V1, V2}. The weight of the cut-set
(V1, V2) is defined as

∑

u∈V1,v∈V2

μ(uv).

Definition 3.3.21 Let G be a fuzzy graph. The edge connectivity of G denoted by
λ(G) is defined to be the minimum weight of cut-sets of G.

A generalized definition of fuzzy edge cuts is given below. The edges which are
not strong need not be considered because such edges do not contribute towards the
strength of connectedness between any pair of vertices.

Definition 3.3.22 Let G = (σ,μ) be a fuzzy graph. A set of strong edges E =
{e1, e2, . . . , en}with ei = uivi, i = 1, 2, . . . , n is said to be a fuzzy edge cut or fuzzy
arc cut (FAC) if either CONNG−E(x, y) < CONNG(x, y) for some pair of vertices
x, y ∈ σ∗ with at least one of x or y different from both ui and vi, i = 1, 2, . . . , n, or
G − E is disconnected.

If there are n edges in E of Definition 3.3.22, then it is called an n-FAC. Among
all fuzzy edge cuts, an edge cut with one edge (1-FAC) is a special type of fuzzy
bridge and we have the following definition.

Definition 3.3.23 A 1-FAC is called a fuzzy bond (f-bond).

Note that f-bonds are special type of fuzzy bridges. Not all fuzzy bridges are
f-bonds. For example, by Theorem 2.3.19, fuzzy bridges of a fuzzy tree are f-bonds.
Also, all bridges in a graph different from K2 are bonds.

Example 3.3.24 Let G = (σ,μ) with σ∗ = {a, b, c, d, e},σ(x) = 1 for all x ∈ σ∗
with μ(ab) = 0.5, μ(ac) = 0.2, μ(bc) = 0.6, μ(cd) = 0.9, μ(da) = 1,

http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Fig. 3.16 Fuzzy tree with 4
bonds

Fig. 3.17 A non fuzzy tree
with all bridges being bonds

μ(ae) = μ(be) = 0.9 (Fig. 3.16). There are 4 fuzzy bonds (1-FAC) in this fuzzy
graph namely edges ad, ae, dc and eb. Also, E = {ab, dc} is a 2-FAC because
0.6 = CONNG−E(e, c) < CONNG(e, c) = 0.9.

As noted, all fuzzy bridges of a fuzzy tree are f-bonds. But there are other examples
of non fuzzy trees with this property as seen from the following example.

Example 3.3.25 Let G = (σ,μ) with σ∗ = {a, b, c, d, },σ(x) = 1 for all x ∈ σ∗
with μ(ab) = 0.9, μ(bc) = 0.0.8, μ(cd) = μ(da) = μ(ac) = μ(bd) = 0.6
(Fig. 3.17). Here G is not a fuzzy tree and there are two fuzzy bridges namely edge
ab and edge bc which are f-bonds because deletion of each of these edges from G
reduces the strength of connectedness between a and c from 0.8 to 0.6.

In graphs, if uv is a bridge, then at least one of u or v must be a cutvertex. But in
fuzzy graphs, if uv is a fuzzy bridge, it is not necessary that at least one of u or v is a
fuzzy cutvertex. Note that blocks in fuzzy graphs and CFG can contain fuzzy bridges
but no fuzzy cutvertices. But for a fuzzy bond, we have the following proposition.

Proposition 3.3.26 At least one of the end vertices of a fuzzy bond is a fuzzy cutver-
tex.

Proof Let G = (σ,μ) be a fuzzy graph and e = uv be an f-bond in G. Being an
f-bond, the deletion of e from G reduces the strength of connectedness between x
and y with at least one of them different from u and v. If both x and y are different
from u and v, then u as well as v will be fuzzy cutvertices. If one of x or y coincides
with u or v, then u or v which is neither x nor y will be a fuzzy cutvertex. �

Because blocks and complete fuzzy graphs contain no fuzzy cutvertices, from
Proposition 3.3.26, it follows that no fuzzy bridge in a CFG or in a block can be a
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Fig. 3.18 Fuzzy graph G
with κ(G) = 0.4 and
κ

′
(G) = 0.8

fuzzy bond. Also, in a fuzzy tree, if a fuzzy bond has exactly one of its end vertices
as a fuzzy cutvertex, then the other end vertex must be a fuzzy end vertex.

Strong weight of a FAC and the fuzzy edge connectivity of a fuzzy graph are given
in the following definitions.

Definition 3.3.27 The strong weight of a fuzzy edge cut E is defined as s′(E) =∑

ei∈E
μ(ei).

Definition 3.3.28 The fuzzy edge connectivity κ′(G) of a connected fuzzy graph
G is defined to be the minimum strong weight of fuzzy edge cuts of G.

Example 3.3.29 Let G = (σ,μ) with σ∗ = {a, b, c, d}, σ(x) = 1 for all x ∈ σ∗
withμ(ab) = 0.2, μ(bc) = 0.9, μ(cd) = 0.8, μ(da) = 0.4,μ(ac) = 0.4 (Fig. 3.18).
Then E1 = {bc} and E2 = {cd} are the only 1-FACs (fuzzy bonds)ofG with s′(E1) =
0.9 and s′(E2) = 0.8. But E3 = {ad, ac} is a 2-FAC in G with weight s′(E3) = 0.8.
Among all fuzzy edge cuts of G, E3 has the minimum strong weight and hence
κ′(G) = 0.8. Also, note that κ(G) = 0.4.

In a tree with at least three vertices, κ(G) = κ′(G) = 1. This is due to the fact that
all edges in a tree are strong with strength one and so we have the fuzzy analogue
given by the following theorem.

Theorem 3.3.30 In a fuzzy tree G = (σ,μ), κ(G) = κ′(G) = ∧{μ(xy) | xy is a
strong edge in G.

Proof Let G = (σ,μ) be a fuzzy tree. Consider the unique maximum spanning tree
F of G. An edge xy in G = (σ,μ) is a fuzzy bridge if and only if xy is an edge of the
maximum spanning tree F = (σ, ν) of G. All these fuzzy bridges are fuzzy bonds.
Also, all edges in F are strong. Thus, each strong edge in F is a 1-FAC of G. Clearly
the strongweight of each such 1-FAC isμ(xy). Hence, fuzzy edge connectivity κ′(G)

of G is the minimum weight of all edges in F and hence the minimum weight of all
strong edges in G.

Now, every internal vertex of F is a fuzzy cutvertex of G and hence are 1-fuzzy
vertex cuts ofG. Hence, fuzzy vertex connectivity κ(G) ofG is the minimumweight
of all edges in F and hence the minimum weight of all strong edges in G. �

The next example shows that, Theorem 3.3.30 does not hold in a fuzzy graph
generally.
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Fig. 3.19 Fuzzy graph in
Example 3.3.31

Example 3.3.31 Let G = (σ,μ) with σ∗ = {a, b, c, d} with μ(ab) = 0.9, μ(bc) =
0.8, μ(cd) = 0.15, μ(da) = 0.25, μ(ac) = 0.2, μ(bd) = 0.25 (Fig. 3.19). Here G
is not a fuzzy tree. Edges ab and bc are the only fuzzy bridges in G. Clearly these
are f-bonds (1-FACs). Now, s′({ab}) = 1 and s′({bc}) = 0.6. But the fuzzy edge
connectivity of G is 0.5 as E = {da, db} is a 2-FAC with minimum strong weight.
Note that removal of E from G reduces the strength of connectedness between d and
c from 0.25 to 0.15.

Next we present the fuzzy analogue of a famous result regarding vertex connec-
tivity, edge connectivity and minimum degree of a graph due to Hassler Whitney.

Theorem 3.3.32 ([114]) In a connected fuzzy graph G = (σ,μ), κ(G) ≤ κ′(G) ≤
δs(G).

Proof First we prove the second inequality. Let G = (σ,μ) be a connected fuzzy
graph. Let v be a vertex inG such that ds(v) = δs(G). LetE be the set of strong edges
incident at v. If these are the only edges incident at v, then G − E is disconnected. If
not, let vu be a edgewhich is not strong incident at v. Then u is a vertex different from
the end vertices of edges inE. By definition of a strong edge,μ(uv) < CONNG(u, v),
which implies that there exists a strongest u − v path say P in G which should
definitely pass through one of the strong edges at v. Thus, the removal of E from G
will reduce the strength of connectedness between v and u. Thus, in both cases, E
is a fuzzy edge cut. The strong weight of this FAC is δs(G). Hence, it follows that
κ′(G) ≤ δs(G).

Next we prove κ(G) ≤ κ′(G). Let E be a FAC with strong weight κ′. We have
the following cases.

Case 1: Every edge in E has one vertex in common v (say).
In this case,E = {ei = vvi, i = 1, 2, . . . , n}. LetX = {v1, v2, . . . , vn}. Then clearly

X is a fuzzy vertex cut. Now, ∧u∈σ∗μ(viu) ≤ μ(vvi). Therefore,

∑

i

( ∧
u∈σ∗

μ(viu)) ≤ μ(v1v) + μ(v2v) + · · · + μ(vnv).

That is, κ(G) ≤ κ′(G).
Case 2: Not all edges in E have a vertex in common.
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Let E = {ei = uivi | i = 1, 2, . . . , n} for some n. Let X1 = {u1, u2, . . . , un} and
X2 = {v1, v2, . . . , vn}. By assumption,

CONNG−E(x, y) < CONNG(x, y)

for some pair of vertices x, y ∈ σ∗ with at least one of x or y different from both ui
and vi for i = 1, 2, . . . , n.

Sub Case 1: x and y are not members of X1 ∪ X2

In this case, take X = X1 or X = X2. Then clearly, X is a fuzzy vertex cut because
its deletion from G reduces the strength of connectedness between x and y and,

κ(G) ≤ strong weight of X ≤ strong weight of E = κ′(G).

Sub Case 2: Either x or y is in X1 ∪ X2

Without loss of generality suppose that x is in X1 ∪ X2. Let x ∈ X1. Then take
X = X2. Clearly X is a fuzzy vertex cut, for; the deletion of X from G will reduce
the strength of connectedness between x and y. Thus,

κ(G) ≤ strong weight of X ≤ strong weight of E = κ′(G).

Thus, in all cases, κ(G) ≤ κ′(G) ≤ δs(G). �

The generalized parameters coincide with Yeh and Bang parameters in a CFG
and their values are equal to the minimum strong degree of the fuzzy graph as given
in the next corollary.

Corollary 3.3.33 In a CFG, G = (σ,μ), κ(G) = κ′(G) = δs(G).

Proof Let G = (σ,μ) be a CFG such that |σ∗| = n. Because G is complete, the
deletion of any set E of n − 2 edges from G will not reduce the strength of con-
nectedness between any pair of vertices in G different from the vertices adjacent to
the edges in E. Any set of n − 1 edges incident at a vertex u in G is a FAC with
strong weight ds(u) = d(u). Let v be a vertex in G such that ds(v) = δs(G). Clearly
the set of edges incident at v is a FAC with minimum strong weight. Therefore,
κ′(G) = ds(v) = δs(G).

Now, we prove that κ(G) = δs(G).
If possible suppose that κ(G) 	= δs(G). By Theorem 3.3.32, κ(G) ≤ κ′(G) ≤

δs(G). Hence, κ(G) < δs(G).
But because the deletion of i vertices 1 ≤ i ≤ n − 2 results again in a nontrivial

CFG, any FNC should contain at least n − 1 vertices. Among such fuzzy vertex cuts,
the one which does not contain a vertex v such that ds(v) = δs(G) say S1 will have
the minimum strong weight because the set of edges adjacent with vertices in S1
with one of its end at v are the edges with minimum weights at vertices of S1. Thus,
κ(G) = s(S1) < δs(G). Now, let E1 be the set of all edges incident with the vertex v.
Then E1 is a FAC such that s′(E1) = s(S1) < δs(G), which contradicts the fact that
κ′(G) = δs(G). Hence, κ(G) = κ′(G) = δs(G). �
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Even if the values of these parameters coincide on a fuzzy graph, it is not necessary
that the given fuzzy graph is a CFG as seen from the following example.

Example 3.3.34 Let G = (σ,μ) be a fuzzy graph with σ∗ = {a, b, c} with σ(a) =
0.9, σ(b) = 1, σ(c) = 0.8, μ(a, b) = 0.2, μ(bc) = 0.1, μ(ac) = 0.1. Then κ(G) =
κ′(G) = δs(G) = 0.2, but G is not a CFG.

Now, we discuss relationships between strong connectivity parameters and Yeh
and Bang parameters. The strong parameters always produce smaller values than
Yeh and Bang parameters as seen from Theorem 3.3.37.

Theorem 3.3.35 ([186]) Let G be a fuzzy graph, then �(G) ≤ λ(G) ≤ δ(G).

For given real numbers a,b and c, there exists a fuzzy graph with vertex connec-
tivity a, edge connectivity b and the minimum degree c.

Theorem 3.3.36 ([186]) For any real numbers a, b and c such that 0 < a ≤ b ≤ c,
there exists a fuzzy graph G with �(G) = a, λ(G) = b and δ(G) = c.

Theorem 3.3.37 Let G = (σ,μ) be a connected fuzzy graph. Then κ′(G) ≤ λ(G).

Proof Let G = (σ,μ) be a connected fuzzy graph with edge connectivity λ(G).
Let E = (V1, V2) be a cut-set in G with minimum weight. That is, the weight of
E = λ(G). Because E partitions the vertex set into two sets namely V1 and V2, the
removal of E from G disconnects G. Let G1 = (σ1,μ1) and G2 = (σ2,μ2) be the
fuzzy subgraphs of G induced by V1 and V2 respectively. Let x ∈ σ∗

1 and y ∈ σ∗
2 .

Then CONNG−E(x, y) = 0 < CONNG(x, y). Hence, E is a FAC in G. Now, κ′ being
the minimum strong weight of all FACs, it follows that κ′(G) ≤ weight(E) = λ(G),
which completes the proof. �

In a fuzzy tree, edge connectivity and minimum degree are upper bounds for both
κ(G) and κ′(G) as seen from the following theorem.

Theorem 3.3.38 Let G = (σ,μ) be a fuzzy tree. Then κ(G) = κ′(G) ≤ λ(G) ≤
δ(G).

The proof of Theorem 3.3.38 follows from the above theorems. Note that when
the fuzzy graph is complete, all these four parameters coincide with value equal to
minimum strong degree of the fuzzy graph.

Theorem 3.3.39 Let G = (σ,μ) be a CFG. Then κ(G) = κ′(G) = �(G) =
λ(G) = δs(G).

Proof First we prove that in a CFG, λ(G) = δs(G). Let G = (σ,μ) be a CFG with
|σ∗| = n. Because G is complete the deletion of n − 2 edges will not disconnect the
graph. So any cut-set in G will contain at least n − 1 edges. Let v be a vertex in G
such that ds(v) = δs(G). Then because uv, u ∈ σ∗, u 	= v is an edge with minimum
weight at u, the cut-set (V1, V2) with V1 = {v} and V2 = σ∗ − {v} will have the
minimum weight and by Lemma 3.3.8, it is equal to ds(v) = δs(G). So
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λ(G) = δs(G). (3.5)

Next we prove that �(G) = δs(G). Because G is complete, the deletion of i
vertices, 1 ≤ i ≤ n − 2 results again in a CFG. Therefore, any disconnection D will
contain at least n − 1 vertices and the removal of D will results in a trivial fuzzy
graph. Among such disconnections D, the one, not containing the vertex v will have
the minimum weight. Thus,

�(G) = δs(G). (3.6)

By Corollary 3.3.33,
κ(G) = κ′(G) = δs(G). (3.7)

Now, from (3.5)–(3.7), κ(G) = κ′(G) = �(G) = λ(G) = δs(G). �

The condition in Theorem 3.3.39 is not sufficient for a fuzzy graph to be a CFG as
seen from Example 3.3.34 above. G is not a CFG even if κ(G) = κ′(G) = �(G) =
λ(G) = δs(G) = 0.2.

The word clustering means the classification of observations into groups such
that the degree of ‘association’ is high among the members of a group and is less
among the members of different groups. Graph theoretically clustering is a parti-
tioning of the graph based on qualitative aspects. Both the introductory articles on
fuzzy graph theory by Rosenfeld and Yeh and Bang were intended to present clus-
tering techniques. Rosenfeld introduced distance based clustering while Yeh and
Bang introduced connectivity based clustering. Yeh and Bang presented a series of
processes like single linkage, k-linkage, k-edge connectivity, k-vertex connectivity
and complete linkage to extract fuzzy graph clusters. In [114], k-edge connectivity
procedure is modified using the newly defined parameters of connectivity.

If λ(G) denotes the edge connectivity of a fuzzy graph G, then G is called τ -
edge connected if G is connected and λ(G) ≥ τ and a τ -edge component of G is a
maximal τ -edge connected subgraph of G. Analogues to this using the concept of
fuzzy edge connectivity κ′, we have the following definitions.

Definition 3.3.40 A fuzzy graph G = (σ,μ) is called t-fuzzy edge connected if G
is connected and κ′(G) ≥ t for some t ∈ (0,∞).

Thus, if κ′(G) = t′, then G is t-fuzzy edge connected for all t such that t ≤ t′.

Definition 3.3.41 A t-fuzzy edge component of G = (σ,μ) is a maximal t-fuzzy
edge connected fuzzy subgraph of G = (σ,μ).

Note that by a maximal t-fuzzy edge connected subgraph, we mean a fuzzy sub-
graph H of G, induced by a set of vertices in G such that κ′(H) = t. The above
concepts are illustrated in the following example.

Example 3.3.42 LetG = (σ,μ) be a fuzzy graphwithσ∗ = {a, b, c, d}withσ(a) =
σ(b) = σ(c) = σ(d) = 1andμ(ab) = μ(ac) = 0.2,μ(bc) = 0.3,μ(bd) = 0.1,μ(cd)

= 0.4.
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Here κ′(G) = 0.3. Hence, G is t-fuzzy edge connected for all t such that t ≤ 0.3.
Thus, G itself is a t-fuzzy edge component for all t such that 0 < t ≤ 0.3. Next let
t = 0.4. Then the 0.4-fuzzy edge components of G are H1 = 〈{a, b, c}〉 and H2 =
〈{d}〉. Here κ′(H1) = 0.4.

Now, using the definition of t-fuzzy edge components, we have the definition of
a fuzzy cluster of level t as follows.

Definition 3.3.43 Let G = (σ,μ) be a fuzzy graph. A collection C of vertices in
G is called a fuzzy cluster of level t if the fuzzy subgraph of G induced by C is a
t-fuzzy edge component of G.

Weuse cohesivematrixM [186] to find themaximal t-edge connected components
of a fuzzy graph G.

Definition 3.3.44 ([186]) Let G = (σ,μ) be a fuzzy graph. An element of G is
defined to be either a vertex or an edge. The cohesiveness of an element denoted by
h(e), is the maximum value of edge connectivity of the subgraphs of G containing e.

Definition 3.3.45 ([186]) Let G = (σ,μ) be a fuzzy graph. The cohesive matrix
M of G is defined as M = (mi,j), where mi,j = the cohesiveness of the edge vivj if
i 	= j and the cohesiveness of the vertex vi if i = j.

Note that a vertex v ∈ σ∗ is said to be in a cluster of level t if v belongs to a t-fuzzy
edge component of G. Thus, finding the t-fuzzy edge components of G is equivalent
to the extraction of clusters fromG. This process of finding t-fuzzy edge components
and thus finding the fuzzy clusters inG based on fuzzy edge connectivity κ′ is termed
t-fuzzy edge connectivity procedure.

t-fuzzy edge connectivity procedure:

Step-1: Obtain the Cohesive matrix M of the fuzzy graph G = (σ,μ).
Step-2: Obtain the t-threshold graph Gt of M.
Step-3: The maximal complete subgraphs of Gt are the t-fuzzy edge components.

Illustration: Cancer detection problem

Based on the location of the cells in the low magnification image of a tissue sample,
surgically removed from a human patient, it is possible to construct a graph G with
vertices as cells, called cell graph [187]. By analyzing the physical features of the
cells, for example color and size, we can assign a membership value to the vertices
of G. This value will range over (0, 1] depending on the nature of the cell; that
is healthy, inflammatory or cancerous. Also, edges of G can assign a membership
value based on the distance between the cells. Thus, the cell graph can be converted
to a fuzzy graph in this manner. By applying the above clustering procedure to such
a fuzzy graph, the cancerous cell clusters can be detected at the cellular level in
principle. This process classifies cell clusters in a tissue into different phases of
cancer depending on the distribution, density and the fuzzy connectivity of the cell
clusters within the tissue. Moreover, this process helps in examining the dynamics
and progress of cancer qualitatively.
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Consider the fuzzy graph G given by the following fuzzy matrix representing
a fuzzy cell graph consisting of ten cells. Assume that the vertices with weights
more than 0.5 represent cancerous cells, vertices with weights between 0.2 and 0.5
inflammatory cells and between 0 and 0.2, healthy cells. Let the vertices of G be
{a, b, c, d, e, f , g, h, i, j} and let,

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 0.13 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00
0.13 0.00 0.30 0.00 0.00 0.00 0.15 0.00 0.00 0.00
0.00 0.30 0.00 0.50 0.00 0.00 0.00 0.40 0.00 0.00
0.00 0.00 0.50 0.00 0.90 0.00 0.00 0.00 0.70 0.00
0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 1.00
0.10 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00
0.00 0.15 0.00 0.00 0.00 0.14 0.00 0.20 0.00 0.00
0.00 0.00 0.40 0.00 0.00 0.00 0.20 0.00 0.60 0.00
0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.60 0.00 0.80
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.80 0.00

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The cohesive matrixM of G is given below.

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
0.13 0.00 0.30 0.30 0.30 0.14 0.20 0.30 0.30 0.30
0.13 0.30 0.00 0.50 0.50 0.14 0.20 0.50 0.50 0.50
0.13 0.30 0.50 0.00 0.90 0.14 0.20 0.60 0.80 0.90
0.13 0.30 0.50 0.90 0.00 0.14 0.20 0.60 0.80 1.00
0.13 0.14 0.14 0.14 0.14 0.00 0.14 0.14 0.14 0.14
0.13 0.20 0.20 0.20 0.20 0.14 0.00 0.20 0.20 0.20
0.13 0.30 0.50 0.60 0.60 0.14 0.20 0.00 0.60 0.60
0.13 0.30 0.50 0.80 0.80 0.14 0.20 0.60 0.00 0.80
0.13 0.30 0.50 0.90 1.00 0.14 0.20 0.60 0.80 0.00

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For any value t ∈ (0, ∞), we can find the threshold graphGt fromM. The t-fuzzy
edge components are the maximal complete subgraphs of Gt . The corresponding
vertices in these components form clusters of level t. For example, the threshold
graph for t = 0.5 is given below.

G0.5 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 1 1
0 0 1 0 1 0 0 1 1 1
0 0 1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 1 1
0 0 1 1 1 0 0 1 0 1
0 0 1 1 1 0 0 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The different fuzzy clusters of level 0.5 obtained from G0.5 are {c, d, e, h, i, j},
{a}, {b}, {f } and {g}.

The fuzzy clusters of all levels are given below.

Level Fuzzy Clusters
(1,∞) {a}, {b}, {c}, {d}, {e}, {f }, {g}, {h}, {i}, {j}
(0.9, 1] {e, j}, {a}, {b}, {c}, {d}, {f }, {g}, {h}, {i}
(0.8, 0.9] {d, e, j}, {a}, {b}, {c}, {f }, {g}, {h}, {i}
(0.6, 0.8] {d, e, i, j}, {a}, {b}, {c}, {f }, {g}, {h}
(0.5, 0.6] {d, e, h, i, j}, {a}, {b}, {c}, {f }, {g}
(0.3, 0.5] {c, d, e, h, i, j}, {a}, {b}, {f }, {g}
(0.2, 0.3] {b, c, d, e, h, i, j}, {a}, {f }, {g}
(0.14, 0.2] {b, c, d, e, g, h, i, j}, {a}, {f }
(0.13, 0.14] {b, c, d, e, f , g, h, i, j}, {a}
(0, 0.13] {a, b, c, d, e, f , g, h, i, j}

From the above fuzzy clusters corresponding to t = 0.5 (which is the threshold
for cancerous cells), it is observed that {d, e, h, i, j} is a cell cluster which is affected
seriously by cancer whereas its neighboring area containing the cells b, c and g can
be found inflammatory. Note that the cells a and f are healthy.

Comparison Between New and Old Methods:

As mentioned above, the t-fuzzy edge connectivity procedure is more powerful than
the τ -edge connectivity procedure. It can be seen from the following example.

Consider the fuzzy graph in Example 3.3.42. The clusters using τ -edge connec-
tivity procedure and fuzzy clusters using t-fuzzy edge connectivity procedure are as
follows.

τ -Edge Connectivity Procedure:

The edge connectivity of the fuzzy graph G in Example 3.3.42 is λ = 0.4.
Using the Yeh and Bang procedure, we obtain the τ -edge components of G as

given below.

Level Maximal τ -e.c subgraphs Clusters
(0, 0.4] 〈{a, b, c, d}〉 C1 = {a, b, c, d}
(0.4, 1] 〈{a}〉, 〈{b}〉, 〈{c}〉, 〈{d}〉 C2 = {a},C3 = {b},C4 = {c},

C5 = {d}

By this, we get only two types of clusters corresponding to all possible levels
namely the full set of vertices and the clusters of singletons. We will find more
clusters if we apply the t-fuzzy edge connectivity procedure as seen below.

t-Fuzzy Edge Connectivity Procedure:

The fuzzy edge connectivity κ′ of the fuzzy graph G in Example 3.3.42 is 0.3. The
clusters of level t are obtained as follows.
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Level Maximal t-f.e.c. subgraphs Fuzzy Clusters
(0, 0.3] 〈{a, b, c, d}〉 C1 = {a, b, c, d}
(0.3, 0.4] 〈{a, b, c}〉, 〈{d}〉 C2 = {a, b, c, },C3 = {d}
(0.4, 1] 〈{a}〉, 〈{b}〉, 〈{c}〉, 〈{d}〉 C4 = {a},C5 = {b},C6 = {c},

C7 = {d}

Thus, we get three types of clusters corresponding to different levels. When we
deal with qualitative data, this will definitely produce more clusters. If the parameter
in the above procedure represents the degree of interaction among four research
students, Then by the existing method we may observe that there is a minimum
interaction between all the students and there are no groups of high interaction. But
using the proposed method, we can find a group with more positive interaction and
can identify that there is a student who is less active in the whole group.

3.4 Menger’s Theorem for Fuzzy Graphs

Menger’s Theorem is one of the important results in graph theory. It finds the number
of internally disjoint paths between a pair of vertices of a graph, in terms of connec-
tivity. The concept of an internally disjoint path in graphs can be replaced by that
of a strongest path in fuzzy graphs, as every path in a graph has strength one and
is strongest. Mathew and Sunitha [113] generalized Menger’s theorem in 2013 and
introduced t-connected fuzzy graphs. The contents of this section are from [113].

Strength Reducing Sets

In graph theory, a u − v separating set S of vertices is a collection of vertices
in G whose removal disconnects the graph G and, u and v belonging to different
components of G − S [83]. Similarly, a u − v separating set of edges is defined.
Because the reduction in strength is more important and frequent in graph networks,
strength reducing sets of vertices and edges are defined as follows.

Definition 3.4.1 Let u and v be any two vertices in a fuzzy graph G = (σ,μ) such
that the edge uv is not strong. A set S ⊆ σ∗ of vertices is said to be a u − v strength
reducing set (srs) of vertices if CONNG−S(u, v) < CONNG(u, v), where G − S is
the fuzzy subgraph of G obtained by removing all vertices in S.

Definition 3.4.2 A set of edges E ⊆ μ∗ is said to be a u − v strength reducing set
of edges if CONNG−E(u, v) < CONNG(u, v), where G − E is the fuzzy subgraph
of G obtained by removing all edges in E.

Definition 3.4.3 A u − v strength reducing set of vertices(edges) with n elements
is said to be a minimum u − v strength reducing set of vertices (edges) if there
exist no u − v strength reducing set of vertices(edges) with less than n elements.
A minimum u − v strength reducing set of vertices is denoted by SG(u, v) and a
minimum u − v strength reducing set of edges is denoted by EG(u, v).
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Fig. 3.20 Strength reducing
sets of vertices and edges

Fig. 3.21 Srs S of vertices.
All strongest paths pass
through S

Example 3.4.4 (Figure3.20) Let G = (σ,μ) be a fuzzy graph with σ∗ = {u, v, w,

x, y}, σ(s) = 1 for all s ∈ σ∗, μ(uv) = 0.8, μ(vw) = 0.9, μ(uy) = 0.3, μ(yx) =
0.4, μ(xw) = 0.1, μ(uw) = 1. Because edge uw is strong, there are no u − w

strength reducing set of vertices in G. E = {uw} is a u − w strength reducing set of
edges. S = {w} is a u − v strength reducing set of vertices and E = {uw} is a u − v

strength reducing set of edges.

Note that any u − v separating set of vertices or edges in the underlying graph
G∗ = (σ∗,μ∗) is a strength reducing set. The following are the characterizations for
vertex and edge strength reducing sets.

Theorem 3.4.5 Let G = (σ,μ) be a connected fuzzy graph and u, v be any two
vertices in G such that uv is not strong. Then a set S of vertices in G is a u − v

strength reducing set if and only if every strongest path from u to v contains at least
one vertex of S.

Proof Suppose that S is a u − v strength reducing set of vertices in G and let P be
a strongest u − v path in G. If P contains no vertex of S, the removal of S keeps P
intact and hence G − S contains P. Thus, CONNG−S(u, v) = CONNG(u, v), which
contradicts the fact that S is a u − v strength reducing set of vertices. Thus, P must
contains at least one member of S. It is obvious that this result is not true when edge
uv is strong. Any strong edge uv is a strongest u − v path containing no vertex from
S.

Conversely, suppose that every strongest path from u to v contains at least one
vertex of S, where S ⊆ σ∗ and u, v not in S (see Fig. 3.21). The dashed lines represent
paths which are not strongest). Then the removal of S destroys all strongest u − v
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paths in G and hence CONNG−S(u, v) < CONNG(u, v). Hence, it follows that S is
a u − v strength reducing set of vertices in G. �

Theorem 3.4.6 Let G = (σ,μ) be a connected fuzzy graph and u,v any two vertices
in G. Then a set E of edges in G is a u-v strength reducing set if and only if every
strongest path from u to v contains at least one edge of E.

The proof is similar to that of Theorem 3.4.5.
Next we present a generalization of one of the celebrated results in Graph theory

due to Karl. Menger (1927).

Theorem 3.4.7 [113] (Generalization of the vertex version of Menger’s Theorem)
Let G = (σ,μ) be a fuzzy graph. For any two vertices u, v ∈ σ∗ such that uv is not
strong, the maximum number of internally disjoint strongest u-v paths in G is equal
to the number of vertices in a minimal u-v strength reducing set.

Proof We shall prove the result by induction on the strong size ss(G) (number of
strong edges) of G. When ss(G) = 0,G = (σ,μ) is such that μ∗ = φ and the result
is trivially true for any pair of vertices u, v ∈ σ∗.

Assume that the theorem is true for all fuzzy graphs G = (σ,μ) with strong size
less than m, where m ≥ 1. Let G be a fuzzy graph of strong size m. Let u, v ∈ σ∗
such that uv is not strong. If u and v are in different components of G = (σ,μ), the
theorem is obviously true. So assume that u and v belongs to the same component
of G = (σ,μ). Then either uv is not in μ∗ or uv is a δ-edge. In both cases, u − v

strength reducing sets of vertices exist in G. (If uv is strong, then reduction of any
number of vertices will not reduce the strength of connectivity between u and v and
hence no strength reducing set of vertices exists.)

Now, suppose that SG(u, v) is a minimum strength reducing set of vertices in G
with |SG(u, v)| = k ≥ 1. By Theorem 3.4.5, each strongest u − v path must contain
at least one member from SG(u, v). Hence, any u − v strength reducing set must
contain at least as many vertices as the number of internally disjoint strongest u − v

paths. In other words, there exists at most k internally disjoint strongest u − v paths.
We show that G contains exactly k internally disjoint strongest u − v paths.

If k = 1, then |SG(u, v)| = 1. Let SG(u, v) = {w}. Then CONNG−{w}(u, v) <

CONNG(u, v). That is, w is a fuzzy cutvertex of G. So every strongest u − v path
must pass throughw. Hence, the number of internally disjoint u − v paths is one and
the result is true. So assume that k ≥ 2.

Case 1: (Figure3.22) G has a minimum u − v strength reducing set of vertices
containing a vertex x such that both ux and xv are α-strong edges.

LetSG(u, v)be theminimumu − v strength reducing set of verticeswith the above
mentioned property. Then SG(u, v) − {x} is a minimum u − v strength reducing set
inG − {x} having k − 1 vertices. Because both ux and xv areα-strong edges, they are
clearly strong and hence ss(G − {x}) < ss(G). By induction, it follows that G − {x}
contains k − 1 internally disjoint strongest u − v paths. Because ux and xv are α-
strong,P is a strongest u − v path. Thus, we have k internally disjoint strongest u − v

paths in G.
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Fig. 3.22 Case I of the proof

Fig. 3.23 Case 2 of the
proof

Case 2: (Figure3.23) For every minimum u − v strength reducing set SG(u, v) in
G, either every vertex in SG(u, v) is an α-strong neighbor of u (i.e., if w is a vertex
in SG(u, v), then uw is an edge which is the unique strongest u − w path.) but not of
v or every vertex in SG(u, v) is an α-strong neighbor of v but not of u.

Suppose that every vertex in SG(u, v) is an α-strong neighbor of u, but not of v.
Consider a strongest u − v path P in G. Let x be the first vertex of P which is in
SG(u, v). Then ux is α-strong and because xv is not α-strong, there exist at least one
vertex say y other than u and v such that xy is β-strong. Denote the edge xy by e.

Claim: Every u − v strength reducing set in G − {e} has exactly k vertices.
On the contrary assume that there exist a minimum u − v strength reducing set in

G − {e} with k − 1 vertices say Z = {z1, z2, . . . , zk−1}. Then Z ∪ {x} is a minimum
u − v strength reducing set in G. Note that every zi, i = 1, 2, . . . , k − 1 and x are α-
strong neighbors of u. Because Z ∪ {y} also is aminimum u − v strength reducing set
inG, it follows that y is anα-strong neighbor of u contradicting the fact that edge xy is
β-strong (The edges ux, uy and xy forms a triangle with edge xy as the weakest edge.
The unique weakest edge of a cycle is a δ-edge). Thus, k is the minimum number of
vertices in a u − v strength reducing set in G − {e}. Because ss(G − {e}) < ss(G),
it follows by induction that there are k internally disjoint u − v paths in G − {e} and
hence in G.
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Fig. 3.24 Strongest paths
passing through an srs of
vertices

Fig. 3.25 Construction of
Gu′

Case 3: (Figure3.24) There exist a u − v strength reducing set W in G such that
no member of W is an α-strong neighbor of both u and v and W contains at least
one vertex which is not an α-strong neighbor of u and at least one vertex which is
not an α-strong neighbor of v.

Let W be a minimum u − v strength reducing set with k elements having the
above properties. Let W = {w1, w2, . . . , wk}. Consider all strongest paths from u to
v. Then becauseW is minimum, wi, i = 1, 2, . . . , k must belong to at least one such
path. Let Gu be the fuzzy subgraph of G consisting of all u − wi sub paths of all
strongest u − v paths in which wi ∈ W is the only vertex of the path belonging to
W . Note that if CONNG(u, v) = t, then μ(xy) ≥ t for all edge xy in these paths.

Let G ′
u be the fuzzy graph constructed from Gu by adding a new vertex v′ and

joining v′ to each vertex wi for i = 1, 2, . . . , k (see Fig. 3.25). Let σ(v′) = 1 and
μ(wiv

′) = σ(wi) for all i = 1, 2, . . . , k. The fuzzy graphs Gv and G ′
v are defined

similarly (see Fig. 3.26).
BecauseW contains a vertex that is not anα-strong neighbor of u and a vertex that

is not an α-strong neighbor of v (Note that all newly introduced edges are strong),
we have ss(G ′

u) < ss(G) and ss(G ′
v) < ss(G).



3.4 Menger’s Theorem for Fuzzy Graphs 121

Fig. 3.26 Construction of
Gv′

Fig. 3.27 Illustration to
generalization of Menger’s
theorem

Clearly SG ′
u
(u, v′) = k and SG ′

v
(u′, v) = k. So by induction G ′

u contains k inter-
nally disjoint u − v′ paths say Ai, i = 1, 2, . . . , k, where Ai contains wi. Also, G ′

v

contains k internally disjoint u′ − v paths say Bi, i = 1, 2, . . . , k, where Bi contains
wi. Let A′

i be the u − wi sub paths of Ai and B′
i be the wi − v sub path of Bi for

1 ≤ i ≤ k. Now, k internally disjoint strongest u − v paths can be formed by joining
Ai and Bi for i = 1, 2, . . . , k and the theorem is proved by induction. �

Next we state the edge version of Theorem 3.4.7. The proof is very similar.

Theorem 3.4.8 [113] (Generalization of the edge version of Menger’s Theorem)
Let G = (σ,μ)be a connected fuzzy graph and let u, v ∈ σ∗. Then the maximum
number of edge disjoint strongest u–v paths in G is equal to the number of edges in
a minimum (with respect to the number of edges) u–v strength reducing set.

Illustration to Theorems 3.4.7 and 3.4.8 Consider the following fuzzy graph G on
7 vertices (Fig. 3.27).

Consider the vertices u and x in the fuzzy graph G = (σ,μ). The edge ux is not
strong because CONNG(u, x) > μ(ux). Hence, the statement of the theorem can be
checked for u and x. Note that for a pair {x, y} such that edge xy is strong, there
do not exist an x − y srs of vertices. In G, there are 3 u − x strongest paths with
strength equal to 0.6 (which are shown in thick lines). According to Theorem 3.4.7,
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Fig. 3.28 A 0.3-connected
fuzzy graph

anyminimum srs of verticesmust contain 3 vertices. It can be easily verified. {w, t, z}
is a minimum u − x srs of vertices (shown in circles).

Also, the number of edges in any minimum u − x srs of edges is 3, which is same
as the number of edge disjoint strongest u − x paths.

Definition 3.4.9 Let G be a connected fuzzy graph and t ∈ (0,∞). G is called
t-connected if κ(G) ≥ t and G is called t-edge connected if κ′(G) ≥ t.

In other words a fuzzy graph G is t-connected if there exist no fuzzy vertex cut
with strong weight less than t and is t-edge connected if there exist no fuzzy edge
cut with strong weight less than t.

Example 3.4.10 (Figure3.28) Let G = (σ,μ) be a fuzzy graph with σ∗ = {u, v, w,

x, y}, μ(uv) = μ(xw) = 1, μ(yw) = 0.8, μ(xu) = μ(xy) = μ(uy) = μ(yv) =
μ(vw) = 0.4. There are many fuzzy vertex cuts in G. Vertex w is a fuzzy vertex
cut with strong weight 0.4. {w, x} and {w, v} are 2-FNCs with strong weight 0.8
each. {u, v, w} is a 3-FNCwith strong weight 1.2. {u, v, w, y} is a 4-FNCwith strong
weight 1.6. Theminimum strong weight of all fuzzy vertex cuts inG is 0.4 and hence
κ(G) = 0.4. Thus, G is t-connected for all t such that t ∈ (0, 0.4]. Also, xw, xy and
uv are fuzzy bridges and hence are fuzzy edge cuts with strong weights 1, 0.8, and
1 respectively. There are many fuzzy edge cuts in G with strong weight more than
1. Thus, κ

′
(G) = 0.8 and G is t-edge connected for all t such that t ∈ (0, 0.8].

The concept of 2-connected graphs have been generalized in fuzzy graph theory
in a different form. A graph is 2-connected if and only if it has no cutvertices. That is,
if and only if it is a block. According to Whitney’s theorem, a graph is 2-connected
if and only if any two vertices of G are connected by at least two internally disjoint
paths. This is true in fuzzy graphs also. As a consequence of Theorem 2.7.4, we have
the following result.

http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Fig. 3.29 Internally disjoint
strongest paths

Theorem 3.4.11 Let G be a connected fuzzy graph. G is a block if and only if sum
of strengths of all internally disjoint strongest paths is at least 2CONNG(u, v) for
every pair of vertices u, v ∈ G.

Now, we give characterizations of t-connected fuzzy graphs and t-edge connected
fuzzy graphs as follows.

Theorem 3.4.12 Let G be a connected fuzzy graph. Then G is t-connected if and
only if mCONNG(u, v) ≥ t for every pair of vertices u and v in G, where m is the
number of internally disjoint strongest u − v paths in G.

Proof First assume that G is t-connected. Then κ(G) ≥ t. We prove that for every
pair of vertices u, v ∈ σ∗, the sum of strengths of all internally disjoint strongest
paths is at least t. On the contrary assume that there exists a pair of vertices u, v ∈ σ∗
such thatmCONNG(u, v) < t,wherem is the number of internally disjoint strongest
u − v paths.

Let S be a minimal u − v strength reducing set of vertices in G with minimum
strong weight (See Fig. 3.29). By Menger’s theorem, |S| = m. If P1,P2, . . . ,Pm

denote the internally disjoint u − v paths, each Pi must contain at least one of the
vertices from S (by Theorem 3.4.5) and no vertex can appear in more than one Pi,

i = 1, 2, . . . ,m. Thus, each path Pi contains exactly one vertex vi(say) from S. Also,
if there exists a strongest u − v pathQ other thanPi, i = 1, 2, . . . ,m,Q has to share a
vertex of S with Pi for some i. Because S is a u − v strength reducing set, it is a fuzzy
vertex cut. Also, because S is a strength reducing set of minimum strong weight, one
of the edges incident at vi in Pi must have strength equal toCONNG(u, v). Therefore,
strong weight of S = |S|CONNG(u, v) = mCONNG(u, v) < t. Thus, there exist a
fuzzy vertex cut with strong weight less than t and hence κ(G) < t, a contradiction
to our assumption. Thus, the sum of strengths of all internally disjoint strongest u − v

paths is at least t.
Conversely, suppose that the sum of strengths of all internally disjoint strongest

paths is at least t. To show that κ(G) ≥ t. If possible suppose that κ(G) < t. Then
there exist a fuzzy vertex cut S such that strong weight of S is less than t. Also,
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Fig. 3.30 Illustration to
Theorem 3.4.12

for some pair of vertices u, v ∈ G, CONNG−S(u, v) < CONNG(u, v) and hence S
is a u − v strength reducing set of vertices. By Menger’s theorem, m = number
of vertices in a minimal strength reducing set ≤ |S|. Therefore, mCONNG(u, v) ≤
|S|CONNG(u, v) ≤ strong weight of S < t. That is, the sum of strengths of all inter-
nally disjoint strongest u − v paths is less than t, which is a contradiction. �

Illustration to Theorem 3.4.12. Consider the following fuzzy graph G = (σ,μ) on
3 vertices (Fig. 3.30).

G has no fuzzy cutvertices. All pairs of vertices in G are 2-FNCs with strong
weight 0.8. Thus, κ(G) = 0.8. There are two internally disjoint strongest paths each,
between a and b and between a and c. Thus, by Theorem 3.4.11, 2CONNG(a, b) =
2(0.4) = 0.8 = κ(G) and the result holds. Also, we have a unique strongest path
between b and c with strength 1. Hence, CONNG(b, c) = 1 > t, where t ∈ (0, 0.8]
and the result holds.

Theorem 3.4.13 Let G be a connected fuzzy graph. Then G is t-edge connected if
and only if mCONNG(u, v) ≥ t for every pair of vertices u and v in G, where m is
the number of edge disjoint strongest u − v paths in G.

Proof First assume that G is t-edge connected. Then κ′(G) ≥ t. To prove that for
every pair of vertices u, v ∈ σ∗, the sum of strengths of all edge disjoint strongest
paths is at least t. On the contrary assume that there exists a pair of vertices u, v ∈ σ∗
such that mCONNG(u, v) < t, where m is the number of edge disjoint strongest
u − v paths.

Let E be a minimum u − v strength reducing set of edges in G with mini-
mum strong weight (This is when any edge xy in E has strength CONNG(x, y)).
By Menger’s theorem, |E| = m. If P1,P2, . . . ,Pm denote the edge disjoint u − v

paths, each Pi must contain at least one of the edges from E and no edge can appear
in more than one path. Thus, each path Pi contains exactly one edge from E. Also, if
there exists a strongest u − v pathQ other than Pi, i = 1, 2, . . . ,m, it has to share an
edge of E with Pi for some i. Because E is a u − v strength reducing set of edges, it
is fuzzy edge cut of G and hence strong weight of E = mCONNG(u, v) < t and thus
there exist a FACwith strong weight less than t and hence κ′(G) < t, a contradiction
to our assumption (Fig. 3.31).
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Fig. 3.31 Edge disjoint
paths in Theorem 3.4.13

Conversely, suppose that the sum of strengths of all edge disjoint strongest paths
is at least t for every pair of vertices u and v in G. To show that κ′(G) ≥ t. If
κ′(G) < t, then there exist a fuzzy edge cut say E with strong weight less than t.
Also, by definition of a FAC, CONNG−E(u, v) < CONNG(u, v) for some pair of
vertices u and v in G. Thus, E is a u − v strength reducing set of edges. ByMenger’s
theorem, m = number of edges in a minimal u − v strength reducing set of edges.
Hence,m ≤ |E|. Therefore,mCONNG(u, v) ≤ |E|CONNG(u, v) ≤ strongweight of
E < t, which is a contradiction to our assumption. �



Chapter 4
More on Blocks in Fuzzy Graphs

As defined in Chap.2, a fuzzy graph without fuzzy cutvertices is called a block
(nonseparable). Rosenfeld introduced this concept in 1975. In contrast to the classical
concept of blocks in graphs, the study of blocks in fuzzy graphs is challenging due
to the complexity of cutvertices. Note that cutvertices of a fuzzy graph are those
vertices which reduce the strength of connectedness between some pair of vertices
on its removal from the fuzzy graph rather than the total disconnection of the fuzzy
graph. In this chapter, we concentrate on blocks of fuzzy graphs. This work is from
[28–30].

4.1 Blocks of a Fuzzy Graph

Blocks of a graph are maximal connected induced subgraphs without cutvertices.
Hence, a maximal connected fuzzy subgraph without fuzzy cutvertices induced by a
subset of vertices is the natural definition for a block of a fuzzy graph. The properties
of blocks of a fuzzy graph are very much different from that of blocks of a graph.
Two blocks of a graph share at most one vertex, and it is a cutvertex of the graph.
But, two blocks of a fuzzy graph may share one or more vertices and they need not
be fuzzy cutvertices of the fuzzy graph. For the fuzzy graph in Fig. 4.1, blocks B1

and B2 (Fig. 4.2a, b) share two vertices, v and w. v is a fuzzy cutvertex of G while
w is not. In the examples, σ may be chosen in any way satisfying the definition of a
fuzzy graph.

Definition 4.1.1 A maximal connected fuzzy subgraph of G = (σ,μ), which is a
block and induced by a subset of V is called a block of G. If G is a block, then G
itself is a block of G.

Example 4.1.2 Consider the fuzzy graph G = (σ,μ) with σ∗ = {u, v, w, x , y},
σ(s) = 1 for all s ∈ σ∗, μ(uv) = 0.6, μ(vy) = 1, μ(vx) = 0.7, μ(xw) = μ(uw) =
0.5 and μ(vw) = 0.5 (Fig. 4.1). G is not a block because v is a fuzzy cutvertex. The
blocks of G are B1, B2 and B3 (Fig. 4.2a–c).
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Fig. 4.1 A fuzzy graph G with three blocks
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Fig. 4.2 B1, B2, B3

Fig. 4.3 A K2 block graph
and its blocks

The support of a block G = (σ,μ) is always a block because a cutvertex in G∗
is always a fuzzy cutvertex of G, independent of σ and μ. In certain fuzzy graphs,
support of every block will be K2. Such fuzzy graphs have some common properties
and we discuss them separately.

Definition 4.1.3 A fuzzy graph G = (σ,μ) is a K2 block graph if the support of
every block of G is K2.

A fuzzy graph whose support is a tree is always a K2 block graph.

Example 4.1.4 Let G = (σ,μ) be the fuzzy graph given in Fig. 4.3, with σ∗ =
{u, v, w, x},σ(s) = 1 for all s ∈ σ∗,μ(wx) = 0.5,μ(uv) = μ(uw) = 0.8,μ(ux) =
μ(vx) = 0.9. G is a K2 block graph.

Stars are a special type of trees in graphs. A star has exactly one internal vertex.
We denote a star by Sn, where n is the number of leaves. Analogous to star graphs,
a fuzzy star is defined as follows.
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Fig. 4.4 A fuzzy star FS5
and its MST

Fig. 4.5 Locamin cycle
which is not an SSC

Definition 4.1.5 A fuzzy star is a fuzzy tree whose unique maximum spanning tree
is a star. A fuzzy star G = (σ,μ) with |σ∗| = n + 1 is denoted by FSn.

Example 4.1.6 A fuzzy star FS5 and itsmaximum spanning tree are given in Fig. 4.4.

The following are some results on strongest strong cycles, blocks and fuzzy stars.

Lemma 4.1.7 A strongest strong cycle C in G = (σ,μ) is locamin.

Proof Suppose C is not locamin. Then there exists a vertex u in C such that weights
of both the edges (say,w1u andw2u) incident with it are greater than the weight of a
weakest edge in C . Thus, the strength of w1 − u − w2 path is greater than the other
w1 − w2 path in C , which is not possible. �

But, the converse of Lemma 4.1.7 is not true. A locamin cycle need not be a
strongest strong cycle as seen from Fig. 4.5.

In Fig. 4.5, the cycle C : w, u, v, x, w is locamin but not strongest strong.

Lemma 4.1.8 Let G = (σ,μ) be a fuzzy graph. If C is a strongest strong cycle in
G, then there exists a block of G containing C.

Proof Let C be a strongest strong cycle in G = (σ,μ). Let H = 〈P〉, where P is
the set of vertices constituting C . Every pair of vertices in H except those joined by
α-strong edges are joined by two internally disjoint strongest paths. Hence, H is a
block according to Theorem 2.7.4. Therefore, either H itself is a block of G or it is
properly contained in a block of G. �

In Fig. 4.1, two cycles C1 : w, u, v, w and C2 : w, x, v, w are both strongest
strong cycles in G. Each of them constitutes a block of G.

http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Fig. 4.6 Blocks of the fuzzy
graph in Fig. 4.4

Corollary 4.1.9 A connected fuzzy graph G = (σ,μ) without fuzzy bridges has a
nontrivial block whose support is different from K2.

Proof G is not a fuzzy tree because all the edges in the maximum spanning tree of
a fuzzy tree are fuzzy bridges by Proposition 2.3.4. The maximum weight edge in
G (say, uv) is β-strong. Hence, there exists a strongest u − v path P different from
uv in G whose strength is μ(uv). Because uv is the maximum weight edge in G, all
the edges in P have weight μ(uv). Thus, uv ∪ P forms a strongest strong cycle. By
Lemma 4.1.8, G has a nontrivial block whose support is different from K2. �

Proposition 4.1.10 A fuzzy star FSn−1 has at least n − 1 blocks.

Proof FSn−1 is a fuzzy star with n vertices. Its maximum spanning tree is a star,
say F . Let u be the vertex of degree n − 1 in F∗ and ui , i = 1, 2, . . . , n − 1 be the
remainingn−1vertices. Let B be a block containinguui for some i = 1, 2, . . . , n−1.
Suppose B contains a vertex u j , j �= i . Because u is incidentwith twoα-strong edges
uui and uu j , it is a fuzzy cutvertex of B according to Theorem 2.2.11. This is not
possible because B is a block. Therefore, uui is a block of FSn−1. Hence, FSn−1 has
at least n − 1 blocks. �

The blocks of the fuzzy graph in Fig. 4.4 are given in Fig. 4.6. G is a fuzzy star
with five vertices and has five blocks.

Proposition 4.1.11 Let G = (σ,μ) be a fuzzy graph. If all the edges incident with
a vertex u in G are α-strong, then each of these edges forms a block of G.

Proof Let degG∗(u) = k. Suppose ui , i = 1, 2, . . . , k are the neighbors of u and
B is a block to which uui belongs. degB∗(u) = 1, otherwise u becomes a common
vertex of at least two α-strong edges and by Theorems 2.2.11 and 3.2.9, becomes a
fuzzy cutvertex of B, which is not possible. We prove degB∗(ui ) = 1. Assume ui is
adjacent to a vertex v different from u in B∗. Then u − ui − v is the only u − v path
in B making ui , a fuzzy cutvertex of B which is not possible. That is, B does not
contain any vertex other than u and ui . Hence, uui , i = 1, 2, . . . , k form k blocks
of G. �

In Fig. 4.4, all the edges xu, yu, zu and wu incident with u are α-strong. Each
of them forms a block as seen in Fig. 4.6.

http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
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According to Lemma 4.1.8, associated with a strongest strong cycle, there is a
nontrivial block whose support is different from K2. The following lemma proves
the existence of a strongest strong cycle in every nontrivial block with at least three
vertices. This lemma is then used to characterize a K2 block graph.

Lemma 4.1.12 ([29]) A nontrivial block G = (σ,μ) with |σ∗| ≥ 3 contains a
strongest strong cycle.

Proof Let G = (σ,μ) be a nontrivial block with |σ∗| ≥ 3. Let a, b be two vertices
in G not joined by an α-strong edge such that CONNG(a, b) = ∨{CONNG(x, y) |
x, y ∈ σ∗ not joined by an α-strong edge}. In other words, if x and y are two vertices
in σ∗ not joined by an α-strong edge and P is an x − y path, then

s(P) ≤ CONNG(x, y) ≤ CONNG(a, b). (4.1)

Because G is a block, there are two internally-disjoint strongest a − b paths say,
P1 and P2. Let C = P1 ∪ P2. A weakest edge in C has weight, CONNG(a, b).

Claim: C is a strongest strong cycle.

Let x and y be two vertices inC not joined by an α-strong edge. Because strength
of an x − y path cannot exceed CONNG(a, b), an x − y path whose strength is
CONNG(a, b) is a strongest x − y path. We prove the strength of the two x − y paths
in C is CONNG(a, b).

Case 1: x and y are adjacent in C.

This implies, μ(xy) = CONNG(a, b). The path C − xy also has strength,
CONNG(a, b). Thus, it follows that xy is β-strong.

Case 2: x and y are not adjacent in C.

Let P and P ′ be the two x − y paths in C . Suppose the weights of all the edges
in one path, say P is greater than CONNG(a, b). Then the strength of P is greater
than CONNG(a, b) which is not possible according to Eq. (4.1). Therefore, both P1
and P2 contain an edge whose weight is CONNG(a, b). It follows that both P1 and
P2 are strongest x − y paths.

The weakest edges inC are β-strong as proved in Case 1 and the remaining edges
are α-strong. Therefore, C is a strongest strong cycle in G. �

In Fig. 4.7, G is a block. C : w, u, v, w is a strongest strong cycle in G.

Fig. 4.7 A block and its
strongest strong cycle
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Theorem 4.1.13 Let G = (σ,μ) be a fuzzy graph on n vertices without isolated
vertices. Then G is a K2 block graph if and only if no fuzzy subgraph of G induced
by a subset of V has a strongest strong cycle.

Proof Suppose a fuzzy subgraph, say H of G induced by a subset of V , has a
strongest strong cycle C : u1, u2, . . . , uk, u1, k ≤ n. Then H ′ = 〈{u1, u2, . . . , uk}〉
is a block. Because H ′ is a fuzzy subgraph of G induced by {u1, u2, . . . , uk}, either
H ′ itself is a block of G or there is a block of G properly containing it. It follows
that G has a nontrivial block whose support is different from K2.

Assume no fuzzy subgraph of G induced by a subset of V has a strongest strong
cycle. By Lemma 4.1.12, the support of every block of G is K2. This implies that G
is a K2 block graph. �

In Example 4.1.4 (Fig. 4.3), G is a K2 block graph. Its fuzzy subgraphs induced
by three vertices whose supports are not trees are namely H1 = < {w, u, x} > and
H2 = < {u, x, v} >. H1 and H2 are not strongest strong because wx is a δ-edge in
H1 and uv is a δ-edge in H2.

Corollary 4.1.14 If G is a fuzzy graph without isolated vertices and has no locamin
cycles, then G is a K2 block graph.

Corollary 4.1.15 Let G = (σ,μ) be an edge-disjoint fuzzy graph without isolated
vertices. G is a K2 block graph if and only if no cycle is strongest strong in G.

Proof Cycles in G are fuzzy subgraphs induced by the vertices constituting the
cycle because G is edge-disjoint. Suppose G = (σ,μ) is a K2 block graph. From
Theorem 4.1.13, no cycle inG is strongest strong as a fuzzy subgraph induced by the
vertices constituting the cycle and the same holds in G. Out of the fuzzy subgraphs
induced by subsets of V different from K2, the supports of cycles alone do not
contain cutvertices. If the cycles are not strongest strong in G, then they are not
strongest strong in any fuzzy subgraph induced by a subset of V . It follows from
Theorem 4.1.13 that G is a K2 block graph. Therefore, the number of nontrivial
blocks whose supports are different from K2 for an edge-disjoint fuzzy graph is
equal to the number of strongest strong cycles. �

Corollary 4.1.16 Let G = (σ,μ) be an edge-disjoint connected fuzzy graph. If G
is a fuzzy tree, then G is a K2 block graph.

Proof For a treeG, the corollary is true. SupposeG = (σ,μ) is a fuzzy tree which is
not a tree. Let C be a cycle in G. For a pair of vertices x, y in C the two x − y paths
in C are the only x − y paths in G. If C has more than one weakest edge, then G has
at least two maximum spanning trees which is a contradiction to Theorem 2.3.19.
Therefore,C has a uniqueweakest edge and is not strongest strong fromLemma4.1.7.
By Corollary 4.1.15, G is a K2 block graph. �

The converse of Corollary 4.1.15 is not true. An edge-disjoint fuzzy graph which
is a K2 block graph need not be a fuzzy tree. The fuzzy graph G in Fig. 4.8 is an
edge-disjoint K2 block graph, but it is not a fuzzy tree.

http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Fig. 4.8 A K2 block graph
but not a fuzzy tree
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An Application: Consider an undirected network of roads connecting certain cities.
It can be represented by a weighted graph, where vertices, edges and weights of
edges denote the cities, roads and capacities respectively. By the capacity of a road,
we refer to the maximum number of vehicles that can pass through it per hour. On
normalization, we obtain a fuzzy graph. For simplicity, consider a network of four
cities given in Fig. 4.9.

Assume that the flow through an edge is equal to its capacity. Consider traffic flow
from b to d inG. Themaximumflow is 0.8 and it occurs through the path bad. During
certain occasions like festivals, traffic flowmay be restricted through a. This reduces
the traffic flow from b to d to a great extent. A similar problem cannot occur in case
of the flow between a and c because not all of the maximum flow paths pass through
a common city. So, it is always desirable to have two independent maximum flow
paths between every pair of cities. In graph-theoretic terms,G should be a block. The
model of a large road network need not be a block. There may be instances when no
flow or two independent paths of same flow (even if, low) is better than a higher flow
through two intersecting paths. Blocks of a fuzzy graph are small networks-satisfying
the above mentioned property-contained in a large network modelled using a fuzzy
graph. For example, G is not a block and the blocks of G are given in Fig. 4.10. In
the blocks of G, there is no flow between b and d in comparison, with the single
maximum flow path in G.
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4.2 Critical Blocks and Block Graph of a Fuzzy Graph

Critical graphs have been extensively studied in graph literature in different contexts
like coloring, connectivity, etc. In this section, we discuss critical blocks in fuzzy
graphs. This work is based on [28]

Definition 4.2.1 A fuzzy graph G = (σ,μ) is called a critical block if G is a block
and G − v is not a block for all v ∈ σ∗. Otherwise, G is noncritical.

In this section, a block refers to a block in fuzzy graph. In the examples, we
assume σ(x) = 1, for all x ∈ V for convenience. Clearly, blocks on two and three
vertices are not critical. Some critical blocks are given in Example 4.2.2.

Example 4.2.2 Both fuzzy graphs in Fig. 4.11 are critical blocks.

According to Lemma 4.1.12, every block G = (σ,μ) on at least three vertices
contains a strongest strong cycle, C . Let

c = ∨{CONNG(x, y) | x, y ∈ σ∗, x and y are not

joined by an α-strong edge.}

C is formed by the union of two internally-disjoint paths of strength c. Also, the
strength of connectedness between every pair of vertices lying on C and not joined
by an α-strong edge is c. In C , an edge with weight c is β-strong and an edge with
weight greater than c is α-strong.

Proposition 4.2.3 Let G = (σ,μ) be a block on at least four vertices. Let C be a
strongest strong cycle in G. If C is spanning and the only strongest strong cycle in
G, then G is critical.

Proof Let x, y be two vertices in G, not joined by an α-strong edge. Let Q1 and Q2

be the two x − y strongest paths in C . Because C is unique, there is no other pair of
internally-disjoint x − y strongest paths. Hence, x and y are joined by exactly two
internally disjoint strongest paths in G.

We next prove that G − v is not a block, v ∈ σ∗.

Fig. 4.11 G1 and
G2-Examples of critical
blocks
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Suppose v is different from both x and y. Removal of v results in exactly one
internally disjoint strongest path between x and y. According to Theorem 2.7.4,
G − v is not a block. Suppose, v = x . Let v1 and v2 be the neighbors of x in C .

Claim: v1 and v2 are not joined by an α-strong edge.
Assume on the contrary that v1 and v2 are joined by an α-strong edge.

Case 1: Both v1x and xv2 are β -strong
The triangle x, v1, v2, x is a strongest strong cycle, which is a contradiction to the

uniqueness of C .

Case 2: Exactly one of v1x and xv2 is α-strong
Suppose xv1 is α-strong. If so, v1 is incident with two α-strong edges which is

not possible according to Theorems 2.2.11 and 3.2.9. Thus, it follows that v1 and v2
are not joined by an α-strong edge. So, removal of x results in exactly one internally
disjoint strongest v1 − v2 path. According to Theorem 2.7.4, G − x is not a block.
The same argument holds for v = y. Therefore, G is a critical block. �

In graphs, all cycles are critical blocks. Proposition 4.2.3 is a generalization of
this result. G1 in Fig. 4.11 has a unique and spanning strongest strong cycle. It is a
critical block. But, the converse is not true as seen from G2. G2 is a critical block,
but all the three cycles are strongest strong. The uniqueness as well as the spanning
property of C are required for a block to be critical. Consider the fuzzy graphs G1

andG2 in Fig. 4.12.G1 has a spanning strongest strong cycle satisfying conditions in
Lemma 4.1.12. It is spanning but not unique while G2 has a unique strongest strong
cycle satisfying the conditions in Lemma 4.1.12 but it is not spanning. Neither G1

nor G2 is critical.

Lemma 4.2.4 Let G = (σ,μ) be a connected fuzzy graph. If uv is an α-strong
edge in G which is not a fuzzy bond, then CONNG(u, x) = CONNG(v, x) for all
x �= u, v.

Proof Assume, there exists a vertex y �= u, v such that CONNG(u, y) �= CONNG

(v, y). Without loss of generality, let CONNG(u, y) > CONNG(v, y). Because uv
is not a fuzzy bond, removal of uv does not reduce the strength of connectedness
between any pair of vertices other than u and v. That is, for every pair of vertices
exceptu, v, there is a strongest path not containinguv. Let P1 and P2 be strongestu−y
and v−y paths, respectivelywhich do not contain uv. By assumption, s(P1) > s(P2).
So, P1 cannot contain v. The following argument assumes that P2 does not contain u.

Fig. 4.12 Non critical fuzzy
blocks

0.5

0.5

0.5

0.5 0.7

a b

d c

0.2

0.5

0.2

0.3 0.2

a b

d c

0.3

0.6

e

http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_3
http://dx.doi.org/10.1007/978-3-319-71407-3_2


136 4 More on Blocks in Fuzzy Graphs

Fig. 4.13 Graph in
Lemma 4.2.4
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Let w be the first common vertex of P1 and P2, as one moves along P1 starting
from u. Therefore, u − w subpath of P1 (P ′

1), w − v subpath of P2 (P ′
2) and uv

constitute a cycle (Fig. 4.13). Because uv is not a weakest edge in this cycle,

μ(uv) > s(P ′
1) ∧ s(P ′

2) ≥ s(P1) ∧ s(P2) = s(P2).

If P2 contains u, then w coincides with u and P ′
1 vanishes. uv together with P ′

2 form
a cycle. Hence, μ(uv) > s(P ′

2). Therefore, the strength of the v − y path P1 ∪ uv
is greater than s(P2). This is not possible because P2 is a strongest v − y path.
Therefore, CONNG(u, x) = CONNG(v, x) for all x �= u, v. �

Proposition 4.2.5 LetG = (σ,μ)beablockwith at least four vertices. IfC = (τ , υ)
is a strongest strong cycle in G as mentioned in Lemma 4.1.12 and x ∈ σ∗, then
CONNG(x, y1) = CONNG(x, y2), where y1, y2 ∈ τ ∗ not joined to x by an α-strong
edge and are different from x.

Proof Let x ∈ σ∗ and y1, y2 ∈ τ ∗ not joined to x by an α-strong edge and different
from x . For x ∈ τ ∗, clearly CONNG(x, y1) = CONNG(x, y2). Suppose x /∈ τ ∗.

Case 1: x is joined to C by an α-strong edge, xy (say).

Because a block does not contain fuzzy bonds, xy is not a fuzzy bond. Accord-
ing to Lemma 4.2.4, CONNG(x, y1) = CONNG(y, y1) and CONNG(x, y2) =
CONNG(y, y2). Because xy is α-strong, neither y, y1 nor y, y2 is joined by an
α-strong edge. Hence, CONNG(y, y1) = CONNG(y, y2). So, CONNG(x, y1) =
CONNG(x, y2).

Case 2: x is not joined to C by an α-strong edge.

Assume for some y1, y2 not joined to x by α-strong edge, CONNG(x, y1) <

CONNG(x, y2). Let P be an x − y2 strongest path and Q be a y2 − y1 strongest path
in C . P ∪ Q gives an x − y1 walk.

s(P) > CONNG(x, y1). (4.2)

Subcase 1: y1 and y2 are not joined by an α-strong edge.

s(Q) = c ≥ CONNG(x, y2) > CONNG(x, y1). (4.3)
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Subcase 2: y1 and y2 are joined by an α-strong edge. Then Q = y1y2.

s(Q) > c ≥ CONNG(x, y2) > CONNG(x, y1). (4.4)

From (4.2)–(4.4), it can be seen that the strength of every edge in P ∪ Q is strictly
greater than CONNG(x, y1), which is not possible.

Therefore, CONNG(x, y1) = CONN (x, y2), for all y1, y2 ∈ τ ∗ not joined to x
by an α-strong edge for all x �= y1, y2 ∈ σ∗. �

Lemma 4.2.6 In a critical block, G = (σ,μ) the following conditions hold.
(i) Every vertex z ∈ σ∗ is an internal vertex of an x − y strongest path.
(i i) There exists a pair of vertices, not joined by an α-strong edge which is joined

by at most two internally-disjoint strongest paths.

Proof (i) Suppose there exists a vertex z ∈ σ∗ which is not an internal vertex of
any x − y strongest path. So, the removal of z does not remove any x − y strongest
path. In G − z, every pair of vertices except those joined by α-strong edges are still
joined by two internally- disjoint strongest paths and hence, G − z is also a block,
which is not possible. Therefore, every vertex z ∈ σ∗ is an internal vertex of an x − y
strongest path.
(i i) Suppose every pair of vertices in G except those joined by α-strong edges are
joined by at least three internally-disjoint strongest paths. Let z ∈ σ∗. Removal of z
removes at most one internally-disjoint strongest path between x and y, x, y �= z.
This implies, G− z is still a block which is not possible. Hence, there exists a pair of
vertices, not joined by an α-strong edge which is joined by at most two internally-
disjoint strongest paths. �

The converse is not true as seen from G2 in Fig. 4.12. a and d are joined by only
two internally-disjoint strongest paths. But, G2 is noncritical. Also, every vertex in
G2 is an internal vertex of some strongest path.

The block-graph of a graph G = (V, E) is a graph whose vertex set is the set of
blocks of G and two vertices are adjacent if the corresponding blocks of G share a
vertex [83]. The block-graph of a fuzzy graph is defined below.

Definition 4.2.7 Let G = (σ,μ) be a fuzzy graph. The block-graph of G is a fuzzy
graph B f (G) = (V ′,σ′,μ′),where V ′ is the set of blocks of G. σ′ and μ′ are defined
as follows. Let b, b1, b2 ∈ V ′ :

σ′(b) =
{

σ(u) if b is a trivial block, {u}
∨{CONNb(x, y) | x, y ∈ V (b)} if b is a nontrivial block

μ′(b1b2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if b1 and b2 do not share a vertex of G.

∨{CONNb1(a1, x) ∧ CONNb2(x, a2) | a1 ∈ V (b∗
1)\V (b∗

2),

a2 ∈ V (b∗
2)\V (b∗

1), x ∈ V (b∗
1) ∩ V (b∗

2)}
if b1 and b2 share a vertex of G.
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Fig. 4.14 Fuzzy graph G and its blocks

Fig. 4.15 Block graph of the
fuzzy graph in Example 4.2.8
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A complete fuzzy graph G is a block, and so its block-graph is an isolated vertex
whose weight is the maximum weight of edges in G. From the definition, it is clear
that if b is a nontrivial block, there exists a path of strength σ′(b) in b and the strength
of every path in b is less than or equal to σ′(b). There exists a path in G with strength
μ′(b1b2) joining a vertex b1 to a vertex b2. The strength of every path in G which
is a union of a path in b1 and a path in b2, is less than or equal to μ′(b1b2). The
block-graph should satisfy two conditions.

(i) B f (G) should give maximum information about G.
(i i) B f (G) must be a fuzzy graph.

Example 4.2.8 Let the fuzzy graph G = (σ,μ) with σ∗ = {a, b, c, d, e} be given
by σ(a) = σ(b) = σ(c) = σ(d) = σ(e) = 1,μ(ab) = μ(ad) = μ(ac) =
0.1,μ(cd) = 0.2,μ(bd) = 0.3 and μ(xy) = 0 for all other x, y ∈ σ∗. G and its
blocks are given in Fig. 4.14 and its block graph is given in Fig. 4.15.

For graphs, if H is a block-graph, then the blocks of H are complete [83]. But,
this is not true for fuzzy graphs. Consider the fuzzy graph in Fig. 4.16.

The blocks and block graph of the fuzzy graph in Fig. 4.16 are given in Fig. 4.17.
The cycle b1, b2, b3, b4, b1 is a block of B f (G) and is not complete.

But, the result holds for trees as seen from the following lemma.

Lemma 4.2.9 If G = (σ,μ) is a tree, then the blocks of B f (G) are complete.

Proof Let B be a block of B f (G). G is K2 block-graph. By definition of B f (G), the
weight of an edge in B f (G) is the minimum of the weights of the vertices incident
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Fig. 4.18 A fuzzy tree and its block graph

with it. This is true for every edge in B. In order to prove B is complete, it is enough
to prove B∗ is complete. It is true for blocks on two and three vertices. Suppose B
has at least four vertices and assume, B∗ is not complete. Then there exists a pair
of vertices u and v which are not adjacent. Because B∗ is a block, u and v lie on a
cycle of length at least four [83]. u and v correspond to edges in G. It follows that
there are two paths joining a vertex incident with u and a vertex incident with v, in
G. This is not possible because G is a tree. Therefore, our assumption is wrong and
B∗ is complete. �

A fuzzy tree G and its block graph B f (G) are shown in Fig. 4.18.

4.3 More on Blocks in Fuzzy Graphs

In [110], four conditions which are true and equivalent in blocks on at least three
vertices without fuzzy bridges, has been given. But, it is observed that the result
is correct for all fuzzy blocks on at least three vertices, leading to the following
characterization.

Theorem 4.3.1 ([109]) In a fuzzy graph G = (σ,μ) with |σ∗| ≥ 3, the following
conditions are equivalent.

(i) G is a block.
(i i) Every pair of vertices except those joined by α-strong edges are joined by

two internally-disjoint strongest strong paths.
(i i i) There is a cycle containing a vertex u and a strong edge xy formed by two

strongest strong u − x or u − y paths for every vertex-strong edge pair except for
the pairs where the strong edge is α-strong and is incident with the vertex.
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(iv) There is a cycle containing two strong edges uv and xy formed by two
strongest strong u − x paths or u − y paths for every pair of strong edges uv and
xy.

(v) There is a strongest strong path joining two vertices, not containing the third
for every three distinct vertices x, y and z.

Proof (i) ⇒ (i i): Outline- Let G ′ be the fuzzy graph obtained from G by removing
all δ-edges. G ′ consists of only the strong edges in G. Instead of proving that every
pair of vertices except those joined by an α-strong edge is joined by two internally-
disjoint strongest strong paths in G, it is enough to prove the following for G ′.

(1) CONNG ′(x, y) = CONNG(x, y) for all distinct x, y in G. (2) G ′ is a block.
Because every pair of vertices in a fuzzy graph is joined by a strongest strong

path, CONNG ′(x, y) = CONNG(x, y) for all distinct x, y in G. Let w be a vertex
in G ′. Next we prove that w is not a fuzzy cutvertex of G ′. Suppose that x and y
are two distinct vertices in G ′ different from w. If xy is strong, then the removal of
w cannot reduce the strength of connectedness between x and y. If x and y are not
joined by an α-strong edge, then there is a strongest strong x − y path in G ′ not
containing w. Suppose not. Then every strongest strong x − y path in G ′ contains
w. Therefore, every strongest strong x − y path in G containsw. So,w is an internal
vertex of every maximum spanning tree of G and hence an f-cutvertex of G. This is
not possible. Therefore, there is an x − y strongest path in G ′ which does not contain
w. Becausew is arbitrary, G ′ is a block. So, every pair of vertices in G ′ not joined by
an α-strong edge is joined by two internally disjoint strongest paths in G ′ and hence
joined by two internally disjoint strongest strong paths in G.

(i i) ⇒ (i i i): A fuzzy graph satisfying condition (i i) is a block. It does not contain
α-strong paths of length greater than or equal to two because a common vertex of
two α-strong edges is a fuzzy cutvertex (Theorem 2.2.11).

Case 1: xy is a β-strong edge.
In any fuzzy graph, for a β-strong edge xy there exists a strongest strong path P

joining x and y, different from xy. So, xy together with P constitute the required
cycle.

Case 2: u is not incident with xy.

Subcase 1: Exactly one of u, x and u, y is joined by an α-strong edge.
Let ux be anα-strong edge.Because uy is notα-strong, there exists two internally-

disjoint strongest strong u− y paths and at least one of them, say P does not intersect
with the u − x − y path. μ(ux) > μ(xy)∧CONNG(u, y) because an α-strong edge
cannot be a weakest edge in any cycle (Fig. 4.19).

Claim: μ(xy) = CONNG(u, y)

Suppose that μ(xy) �= CONNG(u, y). If μ(xy) < CONNG(u, y), then the x − y
path given by xu ∪ P has strength greater than μ(xy), which is not possible because
xy is strong. If μ(xy) > CONNG(u, y), then the path u − x − y has strength greater
than CONNG(u, y), which is not possible. So, μ(xy) = CONNG(u, y).

http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Fig. 4.19 Theorem 4.3.1
((i i) ⇒ (i i i)) - Case 2,
Subcase 1
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Fig. 4.20 Theorem 4.3.1
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Because the strength of the path u − x − y is μ(xy), path u − x − y is a strongest
u − y path. Hence, P together with u − x − y path, gives the required cycle.

Subcase 2: Neither ux nor uy is α-strong.
Both u, x and u, y are joined by two internally disjoint strongest strong paths.

Suppose thatCONNG(u, x) ≤ CONNG(u, y). Let P and Q be two internally disjoint
strongest strong u − x paths and R be a strongest strong u − y path. Let w be the
last vertex in R which either lies on P or Q, moving from u to y. Let w lies on Q.
u −w subpath of Q, w− y subpath of R together with edge yx gives a strong u − x
path, say S internally-disjoint with P (Fig. 4.20).

Claim: S is a strongest u − x path.
The strengths of u −w subpath of Q and w − y subpath of R are greater than or

equal to CONNG(u, x). The strength of an x − y path, in particular, x − w subpath
of Q together with w − y subpath of R is greater than or equal to CONNG(u, x).
Because xy is strong, μ(xy) ≥ CONNG(u, x). The strength of each of the three
subpaths, constituting S is greater than or equal to CONNG(u, x). Hence, S is a
strongest u − x path. P ∪ S is the required cycle.

(i i i) ⇒ (iv)

Case 1: uv and xy are adjacent, Fig. 4.21.
Let u be different from both x and y. There exists a cycle C containing u and xy,

formed by two strongest strong u − x paths or u − y paths. If u is adjacent to x in
C , C is the required cycle. If not, remove the u − x path in C not containing y and
add ux to obtain a new cycle, C ′. Replacing subpath of a path by another path whose
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Fig. 4.21 Theorem 4.3.1
((i i i) =⇒ (iv)) - Case 1

u

x y

C
C’

Fig. 4.22 Theorem 4.3.1
((i i i) ⇒ (v)) - Case 2
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strength is greater than or equal to the original subpath, gives a new path whose
strength is greater than or equal to the original path. Hence, C

′
is the required cycle.

Case 2: uv and xy are not adjacent.
Let Cu be a cycle mentioned in (i i i), containing u and xy and Cv be one con-

taining v and xy. If either Cu contains v or Cv contains u, there is nothing to prove.
Suppose not. Let cu and cv be the strengths of the strongest strong paths in Cu and
Cv respectively. Assume that cu ≤ cv . Let Cu be formed by two strongest strong
u − x paths, P1 and P2. Let P be the v − y path in Cv , not containing xy. Assume
thatw is the last vertex at which P intersects Cu , moving from y to v and let it lie on
P2. Strength of every path in Cu and every subpath of P is greater than or equal to
CONNG(u, x). A cycle containing uv and xy is constructed using paths in Cu and
subpaths of P . Strengths of both the u − x paths in this cycle are greater than or
equal to CONNG(u, x). Hence, the cycle is formed by two strongest strong u − x
paths (Fig. 4.22).

The paths P1, edge xy, y − w subpath of P2, w − v subpath of P and edge vu
together give the required cycle. uv does not lie on Cu or Cv . But, there is a u − v

path with strength greater than or equal toCONNG(u, x), namely, the union of u−w

subpath of P2 and w − v subpath of P . Hence, μ(uv) ≥ CONNG(u, x).
(iv) ⇒ (v)

Suppose that (iv) is true and (v) is not true.
In this case, there exists three distinct vertices w1, w2 and x such that x lies on

every w1 − w2 strongest strong path. Let P be a strongest strong w1 − w2 path
and u and y be the two neighbors of x in P . Let C be the cycle mentioned in (iv),
containing ux and xy and Q be the u− y path in it, which is different from u− x− y.
Let a be the last vertex at which Q intersects y − w1 subpath of P and b, the first
vertex at which Q intersects u − w2 subpath of P moving from y to u, along Q.
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Q

Fig. 4.23 Theorem 4.3.1 ((iv) ⇒ (v))

Consider the w1 − w2 path S given by the union of w1 − a subpath of P , a − b
subpath of Q and b−w2 subpath of P . The strengths ofw1−a subpath and (b−w2)

subpath of P are clearly greater than or equal to CONNG(w1, w2) because P is a
strongest strong path. The strengths of the two strongest strong paths constituting C
is μ(ux)∧μ(xy). Because the membership values of both the edges are greater than
or equal to CONNG(w1, w2), s(Q) ≥ CONNG(w1, w2) and so is the strength of the
a − b subpath of Q. Hence, s(S) ≥ CONNG(w1, w2). So, S is a strongest strong
w1 −w2 path, a contradiction as it does not contain x . It follows that our assumption
is wrong. Therefore, for any three distinct vertices w1, w2 and x there is a strongest
strong w1 − w2 path which does not contain x (Fig. 4.23).

(v) ⇒ (i)
Let x be a vertex in G. Because there is a strongest w1 − w2 path which does

not contain x for all w1, w2 ∈ G, x is not a fuzzy cutvertex. It follows that G is a
block. �

In graph theory, there are six equivalent conditions for blocks [83] which are given
in the following theorem.

Theorem 4.3.2 Let G be a connected graph of order at least three. The following
conditions are equivalent.

(i) G is a block.
(i i) Every two vertices lie on a common cycle.
(i i i) Every vertex and edge lie on a common cycle.
(iv) Every two edges lie on a common cycle.
(v) For any two vertices and an edge, there is a path joining the two vertices

containing the edge.
(vi) For any three distinct vertices, there is a path joining any two vertices con-

taining the third.
(vi i) For three distinct vertices, there is a path joining any two vertices not

containing the third.

Of these six characterizations for blocks, four of them namely, (i i), (i i i), (iv),
and (vi i) are generalized by Theorem 4.3.1. The remaining two does not hold for all
blocks in fuzzy graphs. All paths in graphs are strongest strong. Now, consider the
following theorem.
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Theorem 4.3.3 Let G = (σ,μ) be a fuzzy graph on at least three vertices. G is a
block if and only if for any three distinct vertices x, y and z in σ∗, the following
properties are equivalent.

(i) There is an x − y strongest path containing z.
(i i) CONNG(x, y) = CONNG(x, z) ∧ CONNG(z, y).

Proof First suppose that G = (σ,μ) is a block. We prove that the given conditions
are equivalent.
(i) ⇒ (i i)

For three distinct vertices x , y and z in σ∗,

CONNG(x, y) ≥ CONNG(x, z) ∧ CONNG(z, y).

If there exists a strongest x − y path containing z (clearly, x and y are not joined by
an α-strong edge), then

CONNG(x, y) ≤ CONNG(x, z) ∧ CONNG(z, y).

It follows that,

CONNG(x, y) = CONNG(x, z) ∧ CONNG(z, y).

Thus, if (i) is true, then (i i) also is true in G.
(i i) ⇒ (i)

In a block, (i i) does not hold for any α-strong edge. If x and y are joined by an
α-strong edge in a block, then CONNG(x, y) > CONNG(x, z) ∧ CONNG(z, y) for
all z �= x, y. Hence, if (i i) is true for a pair of vertices x and y, then x and y are not
joined by an α-strong edge.

Case 1: One of x, z or z, y is joined by an α-strong edge.
Suppose that xz is α-strong. So,

CONNG(x, z) > CONNG(x, y) ∧ CONNG(y, z),

which is equal to CONNG(x, y). It follows that CONNG(x, y) = CONNG(z, y).
Because z and y are not joined by an α-strong edge, z and y are joined by two
internally disjoint strongest paths, say P1 and P2. At least one of P1 and P2 (say, P1)
does not contain xz. xz ∪ P1 constitute an x − y strongest path containing z.

Case 2: Neither x, z nor z, y is joined by an α-strong edge.
Let CONNG(x, y) = CONNG(x, z). Let P be a strongest x − z path. If at least

one of P1 and P2 (say, P1) does not intersect P , then P ∪ P1 form an x − y path with
strength, CONNG(x, z) and hence, a strongest x − y path containing z.

Suppose that both P1 and P2 intersect P . Let w be the first vertex in P which is
common to either P1 or P2 (say, P1). The x −w subpath of P (vertices except w are
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Fig. 4.24 Theorem 4.3.3 -
Case 2 - P1 and P2
intersecting P x

w2

z
y

Q

P
P2

neither in P1 nor in P2)–(w − z) subpath of P1–P2 constitute an x − y path, Q con-
taining z and all of whose edges have weight, greater than or equal to CONNG(x, z)
and hence, is a strongest x − y path containing z. Figure4.24.

To prove the converse, assume that G is not a block. Let w be a fuzzy cutvertex
in G and let it lie on every strongest path between vertices u and v. Clearly,

CONNG(u, v) = CONNG(u, w) ∧ CONNG(w, v). (4.5)

Assume,

CONNG(w, v) = CONNG(w, u) ∧ CONNG(u, v). (4.6)

We prove that (i) is not true, i.e., no w − v strongest path contains u.
From (4.5) and (4.6), it follows that

CONNG(w, v) = CONNG(u, v). (4.7)

Ifw and v are joined by an α-strong edge, there is nothing to prove. Suppose that
w and v are not joined by an α-strong edge. If there is no w − v path containing u,
there is nothing to prove. Suppose that Q is a w − v path containing u. We prove
that Q is not a strongest w − v path. The u − v subpath of Q, say Q′ does not
containw. Hence, Q′ is not a strongest u − v path. So, the strength of Q′ is less than
CONNG(u, v) and so, is the strength of Q. From (4.7), Q is not a strongest w − v

path. Because Q is an arbitrary w − v path containing u, no w − v strongest path
contains u. Hence, the proof. �

‘Strongest strong’ path, in place of ‘strongest’ path in Theorem 4.3.3 gives a
stronger characterization.

Theorem 4.3.4 Let G = (σ,μ) be a fuzzy graph on at least three vertices. G is
a block if and only if for any three distinct vertices x, y and z in G, the following
properties are equivalent.

(i) There is an x − y strongest strong path containing z.
(i i) CONNG(x, y) = CONNG(x, z) ∧ CONNG(z, y).

Let G be a block on at least three vertices. Then G contains a strongest strong
cycle C . For every three distinct vertices x, y and z in C , where x and y are not
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Fig. 4.25 Connectivity
transitive
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joined by an α-strong edge, either (i) or (i i) is true. So, in every block on at least
three vertices, there exists at least three distinct vertices x, y and z, for which (i) or
(i i) is true. Hence, one can think of blocks in which for all x, y and z, where x and
y are not joined by an α-strong edge, condition (i) or (i i) is true. Such blocks are
termed as connectivity-transitive blocks.

Example 4.3.5 The block in Fig. 4.25 is a connectivity-transitive block while the
block in Fig. 4.26 is not connectivity-transitive because CONNG(c, e) = 0.3 while
CONNG(c, b) = 0.2.

Similarly, cyclically-transitive blocks can be defined using cycle-connectivity.
To have a better understanding of connectivity (cyclically)-transitive blocks, we first
discuss connectivity (cyclically)-transitive graphs and study some of their properties.

4.4 Connectivity-Transitive and Cyclically-Transitive
Fuzzy Graphs

In this section, two important subcategories of blocks in fuzzy graphs are discussed.
We start with a lemma.

Lemma 4.4.1 Let G = (σ,μ) be a fuzzy graph with |σ∗| ≥ 3. The following condi-
tions are equivalent.

(i)CONNG(x, y) = CONNG(x, z)∧CONNG(z, y) for all x, y, z ∈ σ∗ such that
xy is not α-strong.

(i i) CONNG(x, y) is equal for every distinct pair x, y ∈ σ∗ such that x and y
are not joined by an α-strong edge.
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Proof Suppose that (i) is true. Let CONNG(x, y) = a for some x and y, not joined
by an α-strong edge. We prove that the strength of connectedness between every pair
of vertices except those joined by an α-strong edge is a. If z is a vertex not joined
by an α-strong edge to x , then

CONNG(x, z) = CONNG(x, y) ∧ CONNG(y, z).

Therefore, CONNG(x, z) ≤ a.
If CONNG(x, z) < a, then CONNG(x, y) < a from the relation

CONNG(x, y) = CONNG(x, z) ∧ CONNG(z, y),

which is not possible. Hence,

CONNG(x, z) = a = CONNG(x, y). (4.8)

Similarly, CONNG(y, z′) = a, where z′ is a vertex not joined to y by an α-strong
edge.

Let u and v be two distinct vertices, not joined by an α-strong edge and both
different from x and y.

Scenario in Fig. 4.27 is not possible because the weakest edge of a cycle cannot
be α-strong. So, at least one of the pairs of vertices joined by an α-strong edge in
Fig. 4.27 is not α-strong. Without loss of generality, let x and u be not joined by an
α-strong edge.

Therefore, CONNG(u, v) = CONNG(u, x) = a from (4.8).
Now, assume that (i i) is true. That is, CONNG(x, y) = a for every distinct pair

of vertices x and y, not joined by an α-strong edge.
To prove: CONNG(u, v) = CONNG(u, w) ∧ CONNG(w, v) for all distinct u, v

not joined by an α-strong edge and w, is any vertex different from u and v.

Case 1: Neither uw nor vw is α-strong.
CONNG(u, v) = CONNG(u, w) = CONNG(w, v) = a. Clearly,

CONNG(u, v) = CONNG(u, w) ∧ CONNG(w, v).

Fig. 4.27 An impossible
situation

x u

vy

α

α

α

α
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Case 2: Both uw and vw are α-strong.
u − w − v is strongest u − v path and hence,

CONNG(u, v) = CONNG(u, w) ∧ CONNG(w, v).

Case 3: Exactly one of u, w and v,w is joined by an α-strong edge.
Let uw be an α-strong edge. Because CONNG(u, v) = CONNG(v,w) = a, it

is enough to prove CONNG(u, w) ≥ a. For any three distinct vertices x, y, z in a
fuzzy graph G,

CONNG(x, y) ≥ CONNG(x, z) ∧ CONNG(z, y).

So, CONNG(u, w) ≥ CONNG(u, v) ∧ CONNG(v,w) = a. Hence,

CONNG(u, v) = CONNG(u, w) ∧ CONNG(w, v).

�
Definition 4.4.2 A fuzzy graph G in which

CONNG(x, y) = CONNG(x, z) ∧ CONNG(z, y)

for every three distinct vertices x, y and z, where x and y are not joined by an α-
strong edge is called a connectivity-transitive fuzzy graph. Equivalently, a fuzzy
graph G in which CONNG(x, y) is same for every pair of vertices except for those
joined by an α-strong edge is called a connectivity-transitive fuzzy graph (Fig. 4.28).

If a connectivity-transitive fuzzy graph is disconnected, then it is totally disconnected.
Also, in a connectivity-transitive fuzzy graph, all the β-strong edges have the same
weight. The converse is not true as seen from Fig. 4.31.

Lemma 4.4.3 A connected fuzzy graph G is connectivity-transitive if and only if all
the strong paths, except α-strong edges have the same strength.

Fig. 4.28 A connectivity
transitive fuzzy graph c d
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Proof In any fuzzy graph G, every pair of vertices is joined by a strongest strong
path. If all strong paths except α-strong edges in G have the same strength, then
clearly G is connectivity-transitive.

Conversely, assume that G is a connectivity-transitive fuzzy graph with CONNG

(x, y) = a for all distinct x, y, not joined by an α-strong edge. Suppose that P is
a strong path in G. If G has only two vertices, then there is nothing to prove. So,
assume it has at least three vertices. If P is β-strong, s(P) = a. If P is an α-strong
path of length at least two, then P is a strongest path and hence, s(P) = a. Let xy
be an α-strong edge in G. Then there exists a vertex u which is not joined by an
α-strong edge to at least one of x and y. Let u and y be not joined by an α-strong
edge. Then

CONNG(u, y) = CONNG(u, x) ∧ CONNG(x, y).

Because CONNG(u, y) = a, CONNG(x, y) ≥ a. If P of length greater than or
equal to two is not an α-strong path, then β-strong edges are weakest edges in P .
So, s(P) = a. �

Corollary 4.4.4 A connectivity-transitive fuzzy graph is a θ-fuzzy graph.

Lemma 4.4.5 In any fuzzy graph on at least three vertices, the following conditions
are equivalent.

(i) CG
x,y = CG

x,z ∧ CG
y,z .

(i i) CG
x,y is equal for every three distinct vertices x, y and z, where x and y are

not joined by an α-strong edge and CG
x,y is the cycle connectivity between x and y

in G.

Proof (i) ⇒ (i i) can be proved using the technique used in Lemma 4.4.1.
To prove: (i i) ⇒ (i)
Let CG

x,y = c for all x �= y not joined by an α-strong edge. If uv is an α-strong
edge, then

CG
u,v ≤ c. (4.9)

Case 1: c = 0.
CG

x,y = 0 for every pair of distinct vertices in G and hence (i) is true.

Case 2: c > 0.

Subcase 1: Neither x, z nor z, y is joined by an α-strong edge. CG
x,y = c = CG

x,z =
CG

z,y .

Subcase 2: Both xz and zy are α-strong.
Clearly, x and y are not joined by an α-strong edge. Hence, x and y lie on a

common strong cycle, C of strength c. At least one of the x − y paths, say P in C ,
does not intersect the α-strong x − y path, x − z − y. P ∪ (x − z − y) constitute a
strong cycle containing xz whose strength is greater than or equal to c. Therefore,
CG

x,z ≥ c. From (4.9), CG
x,z = c. Similarly, CG

z,y = c (Figs. 4.29 and 4.30).
Hence, CG

x,y = c = CG
x,z = CG

z,y .
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Fig. 4.29 Lemma 4.4.5 –
Case 2, Subcase 2
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Subcase 3: Exactly one of x, z or z, y is joined by an α-strong edge.
Let xz be an α-strong edge. xy lies on a strong cycle C of strength c. At most

one of the two x − y paths in C contains xz. Let P1 be the x − y path which does
not contain xz. Similarly, let P2 be a y − z path which does not contain xz. Let
w be the first common vertex of P1 and P2, as one moves from z to y along P2.
Therefore, z −w subpath of P2, w − x subpath of P1 together with xz constitute an
x − z strong cycle with strength greater than or equal to c. Therefore,CG

x,z ≥ c. From
(4.9), CG

x,z = c. Hence, CG
x,y = c = CG

x,z = CG
z,y . Therefore, C

G
x,y = CG

x,z ∧ CG
z,y for

all distinct x, y not joined by an α-strong edge and any vertex z different from both
x and y. �

Lemma 4.4.6 In any fuzzy graphwith at least three vertices, the following conditions
are equivalent.

(i) CG
x,y = CG

x,z ∧ CG
y,z .

(i i) CG
x,y is equal for every three distinct vertices x, y and z.

The proof of Lemma 4.4.6 is trivial.
Condition (i i) in Lemma 4.4.5 and condition (i i) in Lemma 4.4.6 are equivalent.

An outline of the proof is as follows.
Let CG

x,y = c for all distinct x and y not joined by an α-strong edge. In the proof
of Lemma 4.4.5, CG

u,v = c, where uv is an α-strong edge incident with at least one
of x and y. Now, it is enough to prove, CG

u,v = c, where uv is an α-strong edge with
both u and v different from x and y. Clearly, both the pairs u, x and v, x cannot be
joined by an α-strong edge. Suppose that u and x are not joined by an α-strong edge.
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Fig. 4.31 A cyclically
transitive fuzzy graph
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Then

CG
u,x = CG

u,v ∧ CG
v,x .

Because CG
u,x = c, CG

u,v ≥ c. Using (4.9), CG
u,v = c.

So, CG
x,y = c, for all distinct x and y. Hence, the collections of fuzzy graphs

satisfying the conditions in Lemmas 4.4.5 and 4.4.6, respectively, are the same.

Definition 4.4.7 A fuzzy graph G in which CG
x,y = CG

x,z ∧ CG
y,z for every three

distinct vertices x, y and z is called a cyclically-transitive fuzzy graph.

A connectivity-transitive fuzzy graph need not be cyclically-transitive (Fig. 4.28)
and vice versa (Fig. 4.31).

Lemma 4.4.8 A fuzzy graph G is cyclically-transitive if and only if all the strong
cycles in G have the same strength.

Proof If all strong cycles inG have the same strength, thenG is cyclically-transitive.
Conversely, to prove that all the strong cycles will have same strength in a

cyclically-transitive graph, consider a β-strong edge e in G. By definition, μ(e) =
CONNG(x, y) = CG

x,y . So, in a cyclically-transitive fuzzy graph G, all β-strong
edges have the same weight. Because the strength of a strong cycle is the weight of
some β-strong edge, all strong cycles will have the same strength. �

Corollary 4.4.9 All cyclically-transitive fuzzy graphs are θ-fuzzy graphs.

Even though, both connectivity-transitive fuzzy graphs and cyclically-transitive
graphs are θ-fuzzy graphs, a θ-fuzzy graph need not be connectivity-transitive or
cyclically-transitive.

Theorem 4.4.10 In blocks, connectivity-transitive, cyclically-transitive and θ-fuzzy
graphs are equivalent.

Proof In blocks with less than three vertices, there are either no edges or exactly one
edge and hence the theorem is trivial. Let G be a connectivity-transitive block on
at least three vertices. In a connectivity-transitive fuzzy graph, all strong paths have
the same strength. Because every two vertices in a block on at least three vertices lie
on a common strong cycle, all the strong cycles have the same strength. Hence, G is
cyclically-transitive.
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Fig. 4.32 Theorem
4.4.10-Case I

x

z

y
Cw

'P2
'P1

If G is cyclically-transitive, then all the strong cycles have the same strength and
soG is a θ-fuzzy graph. Assume thatG is a θ-fuzzy block.We prove,G is cyclically-
transitive. If x , y and z are three distinct vertices in G, we prove they either lie on a
common cycle or there are at least two vertices which lie on a common x − y, y − z
and z − x strong cycle.

Let C be an x − y strong cycle and C ′ be a y − z strong cycle constituted by two
y − z paths, P ′

1 and P ′
2. C

′ intersects C at y. C ′ may or may not intersect C at any
other vertex. Cases 1 and 2 give all the different cases when C ′ intersects C , at a
point different from y while case 3 is the case where C ′ intersects C only at y.

Case 1: Exactly one of P ′
1 and P ′

2 intersects C .
Suppose that P ′

1 intersects C and w is the first vertex common to both P ′
1 and C ,

moving from z to y along P ′
1 (Fig. 4.32). The z − w subpath of P ′

1–(w − y) path in
C containing x–P ′

2, form a strong cycle C ′′ containing x , y and z. Hence,

CG
x,y = CG

y,z = CG
x,z = s(C ′′).

Case 2: Both P ′
1 and P ′

2 intersects C .
Let wi be the first vertex common to P ′

i and C , moving from z to y along P ′
i ,

i = 1, 2.

Subcase 1: w1 and w2 lie on the same x − y path in C (Fig. 4.33).
Suppose that w1 is closer to x than w2. The z − w1 subpath of P ′

1, w1 − y path
of C containing x , y − w2 path of C not containing x and w2 − z subpath of P ′

2
constitute a strong cycle C ′′ containing x , y and z. So, CG

x,y = CG
y,z = CG

x,z = s(C ′′).

Subcase 2: w1 and w2 lie on different x − y paths in C .
Clearly, w1 and w2 lie on C and C ′. z − w1 subpath of P ′

1, w1 − w2 path of C
containing x and w2 − z subpath of P ′

2 form a common strong cycle containing w1

and w2. Therefore,
CG

x,y = CG
y,z = CG

x,z = CG
w1,w2

.
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Fig. 4.33 Theorem
4.4.10-Case2, Subcase1
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Case 3: C ′ intersects C only at y.
There exists an x − z strong path P which does not contain y. Let w1 be the last

vertex in P intersecting C and w2 be the first vertex in P , intersecting C ′, moving
from x to z along P . Assume that w1 precedes w2 moving from x to z along P .
x − w1 path of C not containing y, w1 − w2 subpath of P , w2 − z path of C ′ not
containing y, z − y path of C ′ not containing w2 and y − x path of C not containing
w1, together constitute a strong cycle say C ′′ containing x , y and z. It follows that

CG
x,y = CG

y,z = CG
x,z = s(C ′′).

Because x, y and z are distinct arbitrary vertices in G, CG
x,y is same for all distinct

vertices x, y in G. Hence, G is cyclically-transitive.
In a block with at least three vertices, CG

x,y = CONNG(x, y) for all x, y not
joined by an α-strong edge. Therefore, a cyclically-transitive block is connectivity-
transitive. �



Chapter 5
More on Connectivity and Distances

In this chapter, we discuss more connectivity concepts and distances in fuzzy graphs.
The first three sections deal with connectivity and the rest distances. Starting with the
first paper of Rosenfeld [154], connectivity was an intense area of research in fuzzy
graph theory. Several other authors including Bhattacharya [37], Mordeson [125–
128], Bhutani [42–44], Sunitha and Vijayakumar [166–169], Mathew and Sunitha
[110–117] also have contributed much to the study of connectivity in fuzzy graphs.
A variety of distances also has been considered in fuzzy graphs in recent years [101,
102, 106, 171].

5.1 Connectedness and Acyclic Level of Fuzzy Graphs

The concepts of connectivity and acyclicity are considered in this section. This work
is from [62]. Connectedness of different fuzzy graph structures by levels were dis-
cussed in Sect. 2.6. This is a continuation of Sect. 2.6.

Definition 5.1.1 Let G = (σ,μ) be a fuzzy graph. Then the connectedness level of
G is the value C(G) = ∧{μ∞(x, y) | x, y ∈ V, x �= y}

Obviously, G is connected if and only if C(G) > 0. Moreover, if C(G) > 0, then
for all t ∈ (0, 1] such that t ≤ C(G), Gt is connected.

Remark 5.1.2 From Definition 2.6.24, a fuzzy graph G is weakly connected if there
is some t-cut of G which is connected. Also, we see that a fuzzy graph is weakly
connected if and only if ∃t ∈ [0, 1] such that ∧{μ∞(x, y) | x, y ∈ σt} ≥ t.

By Proposition 2.6.27, connectedness implies weak connectedness, but not con-
versely. We see that weak connectedness is meaningful only if σ(x) < 1 for some
x ∈ V because in this situation the set of vertices changes with the variations of
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Fig. 5.1 Fuzzy tree given in Example 5.1.3

membership degree. A fuzzy graph G = (σ,μ) is called an acyclic fuzzy graph if
there is a fuzzy subgraph F = (σ, τ ) ofG such that F is a forest and for all x, y ∈ σ∗,
μ(xy) > 0 and τ (xy) = 0 implies τ∞(x, y) > μ(xy).

The concept of an acyclic fuzzy graph plays a vital role in general fuzzy graph
theory, as it is related to connectedness problems. Further, it is closely related to
the concept of a tree. For example, one may define a fuzzy tree as an acyclic and
connected fuzzy graph. The following example will lead us to a new notion of an
acyclic graph.

Example 5.1.3 LetG = (σ,μ) be the fuzzy graph given by σ∗ = {x, y, z, t}, σ(s) =
1 for all s ∈ σ∗, μ(xy) = μ(yz) = 0.9, μ(xz) = 0.7 and μ(zt) = 0.1. Then G is a
fuzzy tree. Both G and its maximum spanning tree are given in Fig. 5.1 The impor-
tance of this fuzzy tree is that there is no t-cut ofG, which is connected in the classical
sense.

Given a graph G, the cyclomatic number of G is defined as m − n + p, where
n, m and p denote the number of vertices, edges and connected components of G,
respectively.

Definition 5.1.4 Let G = (σ,μ) be a fuzzy graph with |σ∗| = n. We call h(G, .) :
[0, 1] −→ N ∪ {0} defined by h(G, t) = the cyclomatic number of Gt , the cyclo-
matic function of G.

If G is a fuzzy graph and t ∈ [0, 1], we let nt, mt and pt denote the number
of vertices, edges and connected components of Gt , respectively. Then h(G, t) =
mt − nt + pt .

The following properties of h(G, .) are important for further definitions and devel-
opments.

Proposition 5.1.5 For every t ∈ [0, 1], h(G, t) ≥ 0.

Proposition 5.1.6 h(G, .) is a piecewise constant function with finite jumps.

These two propositions follow directly from the definition of h(G, .).

Let G = (σ,μ) be a fuzzy graph. If we remove an edge from G to obtain a
fuzzy graph G ′, then m′ = m − 1, n′ = n and p′ ≤ p + 1, where n′, m′ and p′ are
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the number of vertices, edges and connected components of G ′, respectively. Hence,
h(G ′, .) = m′ − n′ + p′ ≤ (m − 1) − n + (p + 1) = h(G, .). Now, suppose a vertex
v and edges connected to v are removed from G. Suppose the number of such
edges is k. If we remove the edges one at a time, but not v, then the resulting
graph has less than or equal to p + k connected components. Finally, removing v,
the resulting graph G ′ has less than or equal to p + k − 1 connected components.
Hence, h(G ′, .) = m′ − n′ + p′ ≤ (m − k) − (n − 1) + (p + k − 1). This reasoning
leads to the following.

Proposition 5.1.7 ([62]) h(G, .) is non increasing in t, i.e., for all t, t′ ∈ [0, 1],
t ≤ t′ =⇒ h(G, t) ≤ h(G, t′).

Proof By the properties of t-cuts, mt ≤ nt =⇒ mt′ − k1, k1 ∈ Z, k1 ≥ 0 and nt ≤
nt

′ =⇒ nt = nt
′ − k2, k2 ∈ Z, k2 ≥ 0.

We cannot conclude anything about the variation of pt with t, because the number
of connected components ofGt may increase, decrease or remain the same as t ranges
in [0, 1]. Thus, for t ≥ t′, pt = pt′ − k3 for some k3 ∈ Z. In this situation,

h(G, t) = (mt′ − k1) − (nt
′ − k2) + (pt

′ − k3)

= h(G, t′) + (k2 − k1 − k3)

= h(G, t′).

We will prove that k > 0 is impossible. Two possibilities must be considered:
(i) k2 = 0. This assumption implies that the vertex set does not change from Gt′

to Gt . Thus, k3 ≤ 0, because connected components cannot decrease by a possible
edge suppression. Moreover, because a new connected component appears only by
edge suppression, −k3 ≤ k1 =⇒ k ≤ 0.

(ii) k2 > 0. If we denote h to be the number of eliminated connected components
of Gt′ , obviously k3 ≤ h and k2 ≥ h. Let us write h = k2 − s; s ∈ {0, . . . , k2}. From
the definition of s, we can derive k1 ≥ s and thus k = k2 − k3 − k1 ≤ k2 − k2 + s −
k1 =⇒ k ≤ s − k1 ≤ 0. �

LetH = {t ∈ [0, 1] | h(G, t) = 0}. By Propositions 5.1.6 and 5.1.7, we can assure
only two possibilities for H: (i) H = ∅ (ii) H = (0, 1]. So we have the following
definition.

Definition 5.1.8 The acyclic level of a fuzzy graph G is S(G) = ∧{t | t ∈ H} and
S(G) = ∞ if H = ∅.

The following result can be easily proved from the definition and properties of
cyclomatic function.

Proposition 5.1.9 There are no cycles in Gt if and only if S(G) < ∞ and t > S(G).

Two variants of acyclic fuzzy graphs can be formulated by means of S(G).
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Definition 5.1.10 The fuzzy graph G = (σ,μ) is said to be fully acyclic if
S(G) = 0.

A fully acyclic fuzzy graph is a forest and conversely. Because S(G) = 0, it is
equivalent to say the graph formed by the edges with nonzero membership degree
must be acyclic. However, this nomenclature emphasizes the acyclic situation under-
lying in such a fuzzy graph.

Definition 5.1.11 A fuzzy graph G = (σ,μ) is said to be acyclic by t-cuts if there
exists a t ∈ [0, 1] such that Gt has no cycles.

Obviously, G will be acyclic by t-cuts if and only if S(G) �= ∞.

Proposition 5.1.12 Every acyclic fuzzy graph is acyclic by t-cuts.

Proof Let us assume that G is an acyclic fuzzy graph such that S(G) = ∞. This
implies there is a cycle L in G such that μ(xy) = 1 for every edge xy belonging to
L. Let x̄ȳ be an edge of L. Let ζ denotes the membership function of the fuzzy set
of edges in the fuzzy subgraph of G which appears when x̄ȳ is suppressed. Then
ζ∞(x̄ȳ) = 1 =⇒ ζ∞(x̄ȳ) = μ(x̄ȳ). Hence, G cannot be an acyclic fuzzy graph and
thus we conclude that S(G) �= ∞. �

The converse of Proposition 5.1.12 does not hold. Consider the fuzzy graph G in
Example 5.1.13.

Example 5.1.13 Let G = (σ,μ) be the fuzzy graph defined by σ∗ = {a, b, c, d},
σ(x) = 1 for all x ∈ σ∗, μ(ab) = μ(cd) = 0.9, μ(ad) = μ(bc) = 0.6. Obviously,
G0.75 is an acyclic graph, but the definition of an acyclic fuzzy graph never holds for
the edges ad and bc.

We now consider several definitions for a fuzzy tree. By using the concepts of
connectedness and acyclicity, some fuzzy tree definitions can be introduced. Recall
the definitions of Sect. 2.6, we shall make a comparison of results in these sections
very soon (Fig. 5.2).

Definition 5.1.14 The fuzzy graphG = (σ,μ) is called a full fuzzy tree if it satisfies
the conditions C(G) > 0 and S(G) = 0.

Definition 5.1.15 The fuzzy graph G = (σ,μ) is a complete fuzzy tree if there
exits t ∈ [0, 1] such that Gt is a tree and σt = V .

Fig. 5.2 A fuzzy graph
which is acyclic by t-cuts
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cd
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Lemma 5.1.16 G = (σ,μ) is a complete fuzzy tree if and only if it satisfies the
conditions C(G) > 0 and S(G) < C(G).

Proof Let Gt̄ be the tree which appears in Definition 5.1.15. It is a connected acyclic
graph so that C(G) > t̄ and S(G) < t̄. Therefore, S(G) < t̄ < C(G). Let us assume
the above conditions hold forG. For every t̄ ∈ (S(G),C(G)] ,Gt̄ is a tree. Therefore,
to prove it is a complete fuzzy tree, it suffices to prove σ t̄ = V, that is, σ(x) ≥ t̄,
for all x ∈ V . Let x ∈ V . By the definition of C(G), we have for all y ∈ V, x �=
y =⇒ μ∞(x, y) ≥ C(G). Because μ∞(x, y) is the strength of the strongest chain
joining x and y, we can assure that ∃z ∈ V such that μ(xz) ≥ μ∞(x, y). Moreover,
μ(xz) ≤ σ(x) ∧ σ(z) and thus σ(x) ≥ μ(xz) ≥ μ∞(x, y) ≥ C(G) ≥ t̄. �

Proposition 5.1.17 If G is a complete fuzzy tree, then for all t, t′ ∈ (S(G), C(G)],
Gt = Gt′ .

Proof By Lemma 5.1.16, σt = σt′ = V . Therefore, n = nt
′ = |σ∗|. Moreover, Gt

andGt′ are trees and so
∣
∣μt

∣
∣ = ∣

∣μt′
∣
∣ = |σ∗| − 1, i.e., both trees have the same number

of edges. Now, if t ≤ t′, then σt ⊇ σt′ and μt ⊇ μt′ . Hence, σt = σt′ and μt ⊇ μt′ .
Thus, Gt = Gt′ . �

By Definition 2.6.8(iii), G = (σ,μ) is called a weak fuzzy tree if there is t′ ∈
(0, 1] such that Gt′ is a tree.

Theorem 5.1.18 G is a week fuzzy tree if and only (i) G is weekly connected and
(ii) S(G) < t̄, t̄ being some level such that Gt̄ is connected.

The proof of this theorem is similar to that of Lemma 5.1.16. Obviously all these
definitions are related as seen in the next proposition.

Proposition 5.1.19 The following implications hold.

(i) If G is a full fuzzy tree, then G is a complete fuzzy tree.

(ii) If G is a complete fuzzy tree, then G is a fuzzy tree and in fact, G is a weak
fuzzy tree.

Proof (i) This statement follows from Definition 5.1.14 and Lemma 5.1.16.

(ii) Let G be a complete fuzzy tree. From Lemma 5.1.16, C(G) > 0 and S(G) <

C(G). For every t ∈ (S(G),C(G)] we can define the fuzzy subgraph of G, F =
(σ, ν), where

ν(xy) =
{

t if xy ∈ μt

0 otherwise

Because Gt is a tree, obviously F is a full fuzzy tree. Moreover, ν∞(x, y) = t if
x �= y. Thus, F is acyclic and G is connected. Therefore, G is a fuzzy tree. Thus, G
is a complete fuzzy tree implies G is a weak fuzzy tree follows from Lemma 5.1.16
and Definition 2.6.8 with t̄ = C(G). �

http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Fig. 5.3 A complete, but not
full fuzzy tree
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The converse of (i) in Proposition 5.1.19 is not true as seen from the fuzzy graph
given in Fig. 5.3.

In Fig. 5.3, S(G) = 0.4,C(G) = 0.5 and V 0.5 = V . Hence,G is a complete fuzzy
tree, but not a full fuzzy tree. Also, the fuzzy graph in Example 5.1.3 shows that a
fuzzy tree need not be complete.

A crisp graph is acyclic if and only if it’s cyclomatic number is 0.Hence, it follows
easily that the definitions of a full fuzzy forest given in this section and in Sect. 2.6
agree. However, the following example shows that this is not the case for full fuzzy
trees.

Example 5.1.20 Let V = {x, y, z}. Let σ be the fuzzy subset of V and μ be the fuzzy
subset of E = {xy, yz} defined as follows: σ(x) = σ(y) = σ(z) = 1 and μ(xy) = 0.9
and μ(yz) = 0.5. Then C(G) > 0 and S(G) = 0. So G is a full fuzzy tree as per the
definition in this section. However, G is not a full fuzzy tree in the sense of Sect. 2.6
because Gt is not a tree for 0.5 < t ≤ 0.9, and in fact G is not a partial fuzzy tree;
it is a full fuzzy forest.

If a fuzzy graph G is a full fuzzy tree as per this section, then G is a weak fuzzy
tree in the sense of Definition 2.6.8, but the converse does not hold. Let G be the
second fuzzy graph given in Fig. 5.4. ThenG is not a full fuzzy tree as per this section
because S(G) �= 0. However, G is a weak fuzzy tree in the sense of Definition 2.6.8
because Gt is a tree for 0.4 < t ≤ 0.5. In fact, G is a fuzzy tree in the sense of
Definition 2.6.8.

http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
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5.2 Cycle Connectivity of Fuzzy Graphs

The contents of this section are from [112]. Recall the definition of cycle connectivity
(Definition 2.8.12) between a pair of vertices in a fuzzy graph discussed in Chap.2.
Cycle connectivity is a measure of connectedness of a fuzzy graph and it is always
less than or equal to the strength of connectedness between any two vertices u and v.
In a graph, the cycle connectivity of any two vertices u and v is 1 if u and v belongs
to a common cycle and 0, otherwise. We define cycle connectivity of a fuzzy graph
as follows.

Definition 5.2.1 Let G = (σ,μ) be a fuzzy graph. The cycle connectivity of G is
defined as CC(G) = ∨{CG

u,v | u, v ∈ σ∗}. That is, the cycle connectivity of a fuzzy
graph G is defined as the maximum cycle connectivity of different pairs of vertices
in G.

Note that for a graph G, CC(G) = 1 if G is cyclic and CC(G) = 0 if G is a tree.

Example 5.2.2 Let G = (σ,μ) be such that σ∗ = {a, b, c, d}, σ(x) = 1 for all x ∈
σ∗ and μ(ab) = μ(bc) = 0.1, μ(db) = 0.3, μ(ac) = 1, μ(cd) = 0.3, μ(ad) = 0.4.
Then CG

a,b = 0.1, CG
a,c = 0.3, CG

a,d = 0.3, CG
b,c = 0.1 = CG

b,d . Thus, CC(G) = 0.3.

In fact, the cycle connectivity of a fuzzy graph is the maximum of strengths of
the cycles in G. We have two results whose proofs are obvious.

Theorem 5.2.3 A fuzzy graph G is a fuzzy tree if and only if CC(G) = 0.

Proposition 5.2.4 The cycle connectivity of a fuzzy cycle G is the strength of G.

Thus, all locamine cycles and multimin cycles have cycle connectivity equal to
their strength. Now, we shall find the cyclic connectivity of a complete fuzzy graph.

Theorem 5.2.5 Let G be a complete fuzzy graph with vertices v1, v2, . . . , vn such
that σ(vi) = ti and t1 ≤ t2 ≤ · · · ≤ tn−2 ≤ tn−1 ≤ tn. Then CC(G) = tn−2.

Proof Assume the conditions of the Theorem. Because any three vertices of G are
adjacent, any three vertices are on a 3-cycle. Also, all edges in a CFG are strong.
Thus, to find the strength of all cycles in G, it is sufficient to find the strength of
all 3-cycles of G. Among all such 3-cycles, the 3-cycle formed by the vertices of
largest vertex strengths will have the maximum strength. Clearly, the cycle C =
vn−2vn−1vnvn−2 is of maximum strength in G with strength tn−2 ∧ tn−1 ∧ tn = tn−2.
Thus, CC(G) = tn−2. �

Now, we discuss the concepts of cyclic cutvertices and cyclic bridges. As cutver-
tices and bridges affect the connectivity of a fuzzy graph on their removal from the
graph, cyclic cutvertices and cyclic bridges affect the cycle connectivity of a fuzzy
graph on their removal from the fuzzy graph.

http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Fig. 5.5 Cyclic cutvertices
and bridges
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Definition 5.2.6 A vertexw in a fuzzy graph is called a cyclic cutvertex ifCC(G −
w) < CC(G) and an edge uv of a fuzzy graph is called a cyclic bridge if CC[G −
uv] < CC(G).

Example 5.2.7 Let G = (σ,μ) with σ∗ = {u, v, w, x} and μ(uv) = μ(vw) = 0.2,
μ(wx) = μ(xu) = 0.9,μ(uw) = 0.6 (Fig. 5.5). InG,w, x andu are cyclic cutvertices
and edges uw,wx and ux are cyclic bridges.

Definition 5.2.8 A fuzzy graph G is said to be cyclically balanced if G has no
cyclic cutvertices and cyclic bridges.

For example, a fuzzy graph containing two disjoint cycles with the same strength
is cyclically balanced. Even edge disjoint graphs are not cyclically balanced as it
always contains a cyclic cutvertex (vertex common to the cycles).We have an obvious
proposition.

Proposition 5.2.9 In a fuzzy graph G, if an edge uv is a cyclic bridge, then both u
and v are cyclic cutvertices.

Proposition 5.2.10 Let G be a fuzzy graph such that G∗ is a cycle. Then
(i) G has neither cyclic cutvertices nor cyclic bridges if G is a fuzzy tree.

(ii) All edges in G are cyclic bridges and all vertices in G are cyclic cutvertices
if G is a strong cycle.

Proof (i) follows from the fact that a fuzzy tree has no strong cycles.

(ii) If G is a strong cycle, then CC(G) = strength of G. The removal of any edge
or vertex will reduce its cycle connectivity to 0. �

From Proposition 5.2.10(ii), it follows that every fuzzy bridge of a fuzzy cycle is
a cyclic bridge and every fuzzy cutvertex of a fuzzy cycle is a cyclic cutvertex. This
result can be generalized as follows.

Proposition 5.2.11 Let G be a fuzzy graph containing at most one fuzzy cycle. Then
every fuzzy bridge of G is a cyclic bridge and every fuzzy cutvertex of G is a cyclic
cutvertex.
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Proposition 5.2.12 Let G be a fuzzy graph such that G has a unique fuzzy cycle C
such that strength of C = CC(G). Then every fuzzy bridge in C is a cyclic bridge
and every fuzzy cutvertex in C is a cyclic cutvertex.

From Proposition 5.2.10(ii) it follows that every edge of a CFGwith exactly three
vertices are cyclic cutvertices and all its edges are cyclic bridges. But when a CFG
contains more number of vertices it is not true as seen from the following theorem.

Theorem 5.2.13 Let G = (σ,μ) be a CFG with |σ∗| ≥ 4. Let v1, v2, . . . , vn ∈
σ∗,σ(vi) = ci for i = 1, 2, . . . , n and c1 ≤ c2 ≤ · · · ≤ cn. Then G has a cyclic
cutvertex (or cyclic bridge) if and only if cn−3 < cn−2. Further, there will be exactly
three cyclic cutvertices (or cyclic bridges) in a CFG (if they exist).

Proof Let v1, v2, . . . , vn ∈ σ∗,σ(vi) = ci for i = 1, 2, . . . , n and c1 ≤ c2 ≤ · · · ≤
cn. Suppose that G has a cyclic cutvertex u (say). Then CC(G − u) < CC(G). That
is, u belongs to a unique cycle C with α = strength of C > strength of C′ for any
other cycle C′ in G. Because c1 ≤ c2 ≤ · · · ≤ cn, it follows that the strength of the
cycle vn−2vn−1vn is α. Hence,

u ∈ {vn−2, vn−1, vn}. (5.1)

To prove cn−3 < cn−2. Suppose not, i.e., cn−3 = cn−2. Then C1 = vnvn−1vn−2 and
C2 = vnvn−1vn−3 have the same strength and hence the removal of vn−2, vn−1 or vn
will not reduce CC(G), which is a contradiction to (5.1). Hence, cn−3 < cn−2.

Conversely, suppose that cn−3 < cn−2. To proveG has a cyclic cutvertex. Because
cn ≥ cn−1 ≥ cn−2 and cn−2 > cn−3, all cycles ofG have strength less than the strength
of vnvn−1vn−2. Thus, the deletion of any vertex in {vn, vn−1, vn−2} will reduce the
cycle connectivity of G. Hence, vn, vn−1 and vn−2 are cyclic cutvertices of G. Also,
from the proof, it follows that there is three cyclic cutvertices if they exist.

The case of cyclic bridges is similar. �

Now, we have a theorem whose proof is obvious.

Theorem 5.2.14 LetG beanedgedisjoint fuzzy graphwhich is not a tree.A cutvertex
of G is a cyclic cutvertex if it is the common vertex of all cycles of G or it is a vertex
of a unique cycle having maximum strength.

Definition 5.2.15 Let G = (σ,μ) be a fuzzy graph. A cyclic vertex cut or a cyclic
node cut (CNC) of G is a set of vertices X ⊆ σ∗ such that CC(G − X) < CC(G),
provided CC(G) > 0, where CC(G) is the cycle connectivity of G.

Example 5.2.16 Let G = (σ,μ) be a fuzzy graph (Fig. 5.6) with σ∗ = {a, b, c, d},
σ(s) = 1 for all s ∈ σ∗ and μ(ab) = μ(ad) = 0.9 and μ(bc) = μ(cd) = μ(da) =
μ(ca) = μ(bd) = 0.5. Here, abcda and acda are cycles of strength 0.5. Also,
CC(G) = 0.5. Set X = {{a, c}} is a 2 − CNC of G.
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Definition 5.2.17 Let X be a cyclic vertex cut of G. The strong weight of X is
defined as Sc(X) = ∑

x∈X
μ(xy), where μ(xy) is the minimum of weights of strong

edges incident on x. Cyclic vertex connectivity of a fuzzy graph G, denoted by
κc(G), is the minimum of strong weights of cyclic vertex cuts in G.

In Example 5.2.16, C1 = {{a, c}},C2 = {{a, d}},C3 = {{b, c}},C4 = {{b, d}},
C5 = {{a, b}} andC6 = {{c, d}} are 2-CNCswith S(C1) = 1, S(C2) = 1, S(C3) = 1,
S(C4) = 1, S(C5) = 1, S(C6) = 1. Thus, the cyclic vertex connectivity is 1.

Definition 5.2.18 LetG = (σ,μ) be a fuzzy graph. A cyclic edge cut or a cyclic arc
cut (CAC) of G is a set of edges Y ⊆ μ∗ such that CC(G − Y) < CC(G), provided
CC(G) > 0, where CC(G) is the cyclic connectivity of G.

Example 5.2.19 In Fig. 5.6, all cycles are of strength 0.5. Also,CC(G) = 0.5. Thus,
Y = {ab, cd, ad} is a 3-CAC of G.

Definition 5.2.20 Let G = (σ,μ) be a fuzzy graph. The strong weight of a cyclic
edge cut Y of G is defined as S

′
c(Y) = ∑

ei∈μ∗
μ(ei), where ei is a strong edge of Y . The

cyclic edge connectivity of G, denoted by κ′
c(G), is the minimum of strong weights

of cyclic edge cuts in G.

For the fuzzy graph in Fig. 5.6, cyclic edge connectivity is μ(ab) + μ(cd) +
μ(ad) = 0.6 + 0.6 + 0.5 = 1.7.

Next we discuss relationship between cyclic vertex connectivity and vertex con-
nectivity of a complete fuzzy graph.

Theorem 5.2.21 For a complete fuzzy graph G, κc(G) ≤ κ(G).

Proof Let G be a complete fuzzy graph and let the vertices of G be labeled as
v1, v2, . . . , vn such that d(v1) ≤ d(v2) ≤ · · · ≤ d(vn). Let v1 be a vertex such that
d(v1) = δs(G) (Fig. 5.7).
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Fig. 5.7 Minimum strong
degree of a vertex
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Case 1: v1 is a cyclic cutvertex.

In this case, {v1} is a cyclic cutset and therefore,

Sc{v1} = ∧
vi∈μ∗μ(v1vi), for i = {2, . . . , n} ≤

∑

vi∈μ∗
μ(v1vi) = δs(G).

Now, because κc(G) = ∨{Sc(V )}, where V is a cyclic cutset of G, we have,
κc(G) ≤ Sc{v1} = δs(G) = κ(G).

Case 2: {v1} is not a cyclic cutvertex.
Let F = {u1, u2, . . . , ut} be a cyclic cutset such that Sc(F) = κc(G). Now,

κc(G) = Sc(F) =
t∑

i=1
∧{μ(uiuj) | uiuj ∈ μ∗, j �= i, j = 1, 2, . . . , n}. Clearly,

κc(G) =
t∑

i=1
μ(uiv1) ≤ d(v1) = δs(G) = κ(G). �

Corollary 5.2.22 For a fuzzy tree G = (σ,μ), κc(G) ≤ κ(G).

Proof follows from the fact that there are no strong cycles in a fuzzy tree and
hence κc(G) = 0.

Theorem 5.2.23 A vertex in a fuzzy graph is a cyclic cutvertex if and only if it is a
common vertex of all strong cycles with maximum strength.

Proof LetG be a fuzzy graph. Letw be a cyclic cutvertex ofG. ThenCC(G − w) <

CC(G). That is, ∨{s(C), where C is a strong cycle in G − w} < ∨{Sc(C′), where C′
is a strong cycle in G}. Therefore, all strong cycles in G having maximum strength
will be removed by the deletion of w. Hence, w is a common vertex of all strong
cycles with maximum strength.

Conversely, letw be a common vertex of all strong cycleswithmaximum strength.
Then the removal of w results in the deletion of all strong cycles with maximum
strength. Hence, it will results in the reduction of cycle connectivity of G. Thus, w
is a cyclic cutvertex of G. �
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Fig. 5.8 Cyclic endvertex of
a graph
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Definition 5.2.24 A vertex w ∈ σ∗ of a fuzzy graph G is said to be a cyclic fuzzy
endvertex, if it lies on a strong cycle, but which is not a cyclic cutvertex.

Example 5.2.25 Let G = (σ,μ) with σ∗ = {a, b, c, d},σ(s) = 1 for all s ∈ σ∗ and
μ(ab) = μ(ad) = 0.3,μ(bc) = μ(cd) = 0.5andμ(bd) = 0.4 (Fig. 5.8).Here,abcda
is a strong cycle. Also, CC(G) = 0.4. a is a cyclic fuzzy endvertex of G.

Theorem 5.2.26 Let G = (σ,μ) be a fuzzy graph. Then no cyclic cutvertex is a
fuzzy endvertex of G.

Proof Let G = (σ,μ) be a fuzzy graph. Let w be a cyclic cutvertex of G, then w

lies on a strong cycle with maximum strength in G. Clearly,w has at least two strong
neighbors in G. Hence, w cannot be a fuzzy endvertex of G.

Conversely, if w is a fuzzy endvertex of G with |Ns(w)| = 1, then w cannot lie
on a strong cycle in G, which implies that w is not a cyclic cutvertex. �

Corollary 5.2.27 No cyclic cutvertex is a cyclic fuzzy endvertex of G.

Theorem 5.2.28 Let G = (σ,μ) be a complete fuzzy graph with |σ∗| ≥ 4. Let
v1, v2, . . . , vn ∈ σ∗ and σ(vi) = ci for i = 1, 2, . . . , n and c1 ≤ c2 ≤ · · · ≤ cn. Then
G is cyclically balanced if and only if cn−3 = cn−2.

Proof Let v1, v2, . . . , vn ∈ σ∗andσ(vi) = ci for i = 1, 2, . . . , n and c1 ≤ c2 ≤ · · · ≤
cn. If possible suppose that G is cyclically balanced. To prove that cn−3 = cn−2.
Suppose not, that is cn−3 < cn−2. Because cn−2 ≤ cn−1 ≤ cn and cn−3 < cn−2, all
cycles of G have strengths less than that of strength of vnvn−1vn−2vn. Hence, the
deletion of any of the vertices in {vn, vn−1, vn−2} reduce the cycle connectivity of G.
Hence, vn, vn−1 and vn−2 are cyclic cutvertices of G, which is a contradiction to the
fact that G is cyclically balanced.

Conversely, suppose that cn−3 = cn−2. Then C1 = vnvn−1vn−2 and C2 = vnvn−1

vn−3 have the same strength and hence the removal of vn−2, vn−1 or vn will not reduce
the cyclic connectivity of G. That is, there does not exist any cyclic cutvertex in G.
Hence, the fuzzy graph G = (σ,μ) is cyclically balanced. �
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Theorem 5.2.29 Let G be a complete fuzzy graph. G is cyclically balanced if there
exists a K4 as a sub graph of G in which every cycle is of equal maximum strength.

Proof Let G be a complete fuzzy graph with |σ∗| ≥ 4. Let v1, v2, . . . , vn ∈ σ∗,
σ(vi) = ci for i = 1, 2, . . . , n and c1 ≤ c2 ≤ · · · ≤ cn. Let K4 be a fuzzy subgraph of
G∗ with vertex set {vn−3, vn−2, vn−1, vn} such that cn−3 ≤ cn−2 ≤ cn−1 ≤ cn. Suppose
all the strong cycles in the fuzzy graph induced by the vertices of this K4 are of equal
maximum strength. This happens only when cn−3 = cn−2. Thus, by Theorem 5.2.28,
G is cyclically balanced. �

Theorem 5.2.30 Let G = (σ,μ) be a complete fuzzy graph and v ∈ σ∗ such that
ds(v) = �s(G). Then v lies on a strong cycle C such that CC(G) is the strength of
C.

Proof Let G = (σ,μ) be a complete fuzzy graph and v ∈ σ∗ be a vertex such
that ds(v) = �s(G). Let v1, v2, . . . , vn ∈ σ∗,σ(vi) = ci for i = 1, 2, . . . , n and c1 ≤
c2 ≤ · · · ≤ cn. Because cn−2 ≤ cn−1 ≤ cn and cn−3 < cn−2, all cycles of G have
strength less than that of the strength of vnvn−1vn−2vn. First to prove that for all
vi, d(vi) < d(vn).

d(vi) =
n−1
∑

j=1,j �=i

(

ci ∧ cj
) = c1 + c2 + · · · + (n − i)cn <

∑

ci = d(vn).

Also,

d(vn) = (cn ∧ cn) +
n−2
∑

j=1

(cn ∧ ci) = (cn−1 ∧ cn) +
n−2
∑

j=1

(cn−1 ∧ ci)

= d(vn−1) =
n−1
∑

i=1

ci = �s(G).

Therefore, vn belongs to the strong cycle C : cn−2cn−1cncn−2, where strength of
this cycle C is equal to the cycle connectivity of the fuzzy graph G. �

Next we give a result analogous to the Whitney’s theorem in fuzzy graphs.

Theorem 5.2.31 For a complete fuzzy graph, κc(G) ≤ κ
′
c(G) ≤ �s(G).

Proof Consider all cycles, C1,C2, . . . ,Cn having strengths equal to cycle connec-
tivity of G = (σ,μ). Let X = {e1, e2, . . . , en}, where ei = uivi be one of the edges
from each Ci. Then X form a cyclic edge cut of G. Let Sc(X) be the strong weight
of X. Then by the definition of cyclic edge connectivity,

κ
′
c(G) ≤ Sc(X). (5.2)
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Let Y = {v1, v2, . . . , vn} be the collection of one of the endvertices of each edge
in the cyclic edge cut X of G. Then Y form a cyclic vertex cut of G. Let Sc(Y) be the
strong weight of Y . Then

Sc(Y) ≤ κ
′
c(G), (5.3)

by the definition of cyclic vertex connectivity of G. Hence,

κc(G) ≤ Sc(Y). (5.4)

From Eqs. (5.3) and (5.4), κc(G) ≤ Sc(Y) ≤ κ
′
c(G) ≤ �s(G). �

Theorem 5.2.32 A fuzzy graph G = (σ,μ)with n ≥ 6 is cyclically balanced if there
exist two disjoint cycles C1 and C2 such that Strength of C1 = Strength of C2 =
CC(G).

Proof Let G = (σ,μ) be a fuzzy graph with n ≥ 6 and cycle connectivity of G is
equal to CC(G). Let C1 and C2 be two disjoint cycles in G such that Strength of
C1 = Strength of C2 = CC(G).

Suppose u is a vertex not in (C1 ∪ C2). Then the cycle connectivity of G − {u}
remains the same. If the vertex u is inC1 and if u is deleted, then the cycle connectivity
remains the same, because there exists another cycle C2, with strength equal to the
cycle connectivity of the fuzzy graph. (The proof is similar if u is in C2). Thus, u is
not a cyclic cutvertex.

Suppose uv ∈ E, but uv is not in C1 ∪ C2. Then the deletion of uv will not reduce
the cycle connectivity of the fuzzy graph. If uv is an edge either on C1 or on C2,
then also, the removal of uv from any one of these cycles will not affect the cycle
connectivity of G. Hence, uv is not a cyclic bridge. �

A fuzzy graph with n = 4, 5 is cyclically balanced if and only if there exist at
least 4 cycles having equal maximum strength as seen from Fig. 5.9.

Next we will construct cyclically balanced fuzzy graphs on more than 5 vertices.

Theorem 5.2.33 For any n ≥ 4, there is a connected cyclically balanced fuzzy graph
G = (σ,μ) with |σ∗| = n.

Fig. 5.9 Cyclically balanced
fuzzy graphs on 4 and 5
vertices
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Proof For |σ∗| = 4 and 5, we have the examples in Fig. 5.9. For n ≥ 6,we obtain the
fuzzy graphs by induction. For |σ∗| = 6, let v1, v2, . . . , v6 be the 6 vertices. Construct
two disjoint cycles (say)C1 = v1v2v3v1 andC2 = v4v5v6v4 with maximum strength.

Join each pair of vertices from the two cycles and make the graph complete. Then
the removal of an edge or a vertex will not reduce the cycle connectivity of G. So,
the newly obtained fuzzy graph is cyclically balanced.

Assume that the result is true for |σ∗| = k. Let Gk be a cyclically balanced fuzzy
graph with k vertices. Then there exist two disjoint cycles of maximum strength in
Gk .

Let Gk+1 be the fuzzy graph obtained from Gk by adding one more vertex u.
Make the fuzzy graph complete by connecting all vertices of Gk with u. Also, assign
a membership value to all newly joined edges, which is less than or equal to the cycle
connectivity of Gk .

In this case, if we remove the vertex u, then the cycle connectivity of Gk remains
the same. In a similar way the removal of any edge incident on k + 1th vertex u will
not change the cycle connectivity of G. Therefore, the cycle connectivity of Gk+1

remains the same. Hence, Gk+1 is cyclically balanced. �

5.3 Bonds and Cutbonds in Fuzzy Graphs

In this section, two different types of bridges, namely bonds and cutbonds in fuzzy
graphs are discussed. Bonds in fuzzy graphs were introduced in [114]. As noted
before, the behavior of fuzzy bridges is different in various fuzzy graph structures.
Thus, a detailed discussion on special bridges is made in this section. The concept of
critical cutvertices in fuzzy graphs are also discussed, and their relations with fuzzy
bonds and fuzzy cutbonds are provided. This section is based on [111].

According to Definition 3.3.23, an edge xy in a fuzzy graph G is said to be a fuzzy
bond if CONNG−xy(u, v) < CONNG(u, v) for some pair of vertices u and v with at
least one of them different from x and y.

Example 5.3.1 Let G = (σ,μ) with σ∗ = {a, b, c, d, e}, σ(s) = 1 for all s ∈ σ∗
and μ(ab) = 0.3, μ(ac) = 0.1, μ(bc) = 0.4, μ(cd) = 0.5, μ(da) = 0.6, μ(ae) =
μ(be) = 0.5. There are 4 fuzzy bonds (1-FAC) in this fuzzy graph namely edges
az, ae, dc and eb. Also, E = {ab, dc} is a 2-FAC because 0.4 = CONNG−E(e, c) <

CONNG(e, c) = 0.5.

In graph theory, a minimal cut is a bond. Hence, all bridges are bonds. But in
fuzzy graphs this is not true. For example, a complete fuzzy graph can contain a
fuzzy bridge and because it has no fuzzy cutvertices, this fuzzy bridge, cannot be a
fuzzy bond.

As stated in Proposition 3.3.26, at least one of the end vertices of a fuzzy bond is
a fuzzy cutvertex.

http://dx.doi.org/10.1007/978-3-319-71407-3_3
http://dx.doi.org/10.1007/978-3-319-71407-3_3
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Fig. 5.10 Fuzzy graph with
bond and cutbond
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Definition 5.3.2 An edge uv in a fuzzy graph G is called a fuzzy cutbond (f-
cutbond) if CONNG−uv(x, y) < CONNG(x, y) for some pair of vertices x, y in G
such that x �= u �= v �= y.

Consequently, we can define cutbonds in a graph. Let G be a graph. Then an edge
uv is said to be a cutbond if G − uv has at least two nontrivial components.

All fuzzy cutbonds are fuzzy bonds and hence are fuzzy bridges. An edge is a
fuzzy bridge if and only if it is α-strong. Thus, both fuzzy bonds and fuzzy cutbonds
are special type of α-strong edges and we some times refer them by α∗-edges and
α∗∗-edges, respectively.

Example 5.3.3 LetG = (σ,μ)be such thatσ∗ = {a, b, c, d, e, f , g},σ(s) = 1 for all
s ∈ σ∗ andμ(ab) = μ(ag) = μ(bf ) = μ(gf ) = 0.3,μ(bc) = μ(cd) = μ(ce) = 0.2,
μ(de) = μ(ef ) = 0.8 (Fig. 5.10). In this fuzzy graph, de is a fuzzy bond as 0.2 =
CONNG−de(g, d) < CONNG(g, d) = 0.3. Also, the bridge ef is a fuzzy cutbond
because 0.2 = CONNG−ef (g, d) < CONNG(g, d) = 0.3. g and d are different from
both e and f .

Now, we shall discuss about bonds and cutbonds in fuzzy trees. The bonds of a
fuzzy tree can be identified from the following theorem.

Theorem 5.3.4 ([111]) Let G = (σ,μ) be a fuzzy tree with |σ∗| ≥ 3. An edge xy in
G is a fuzzy bond if and only if xy is an edge of the unique maximum spanning tree
F = (σ, ν) of G.

Proof Let G = (σ,μ) be a fuzzy tree with |σ∗| ≥ 3 and having its unique maxi-
mum spanning tree F = (σ, ν). First suppose that xy is a fuzzy bond in G. Then
CONNG−xy(u, v) < CONNG(u, v), for two vertices u and v such that at least one of
u or v is different from both x and y. Thus, all strongest u − v paths in G passes
through xy. Because G is a fuzzy tree, there exists a unique strongest path between
each pair of vertices in G. Precisely it is the unique path in F. Hence, all strongest
u − v paths in G are in F. Because all such paths contain xy, it follows that xy is an
edge in F.

Conversely suppose that xy ∈ F. Because |σ∗| ≥ 3, both x and y cannot be fuzzy
end vertices of G. Thus, one of them say x is a fuzzy cutvertex. Being a fuzzy tree,
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there exists a unique strongest path between any two vertices of G and it belongs to
F. Let w be a strong neighbor of x other than y. Then there exists a unique strongest
path between y andw in F and hence in G. Clearly, this path passes through the edge
xy and hence it follows that CONNG−xy(y, w) < CONNG(y, w). Thus, xy is a fuzzy
bond of G. �

From the last theorem, it follows that every strong edge of a fuzzy tree are fuzzy
bonds as all strong edges of G belongs to its unique maximum spanning tree (MST)
F. Also, an edge in a fuzzy graph is a fuzzy bridge if and only if it is an edge in
every MST of G. But this result is not true in the case of fuzzy bonds. That is, an
edge which is in every maximum spanning tree need not be a fuzzy bond. For, if a
complete fuzzy graph contains a fuzzy bridge, then it belongs to all MST’s, but a
CFG has no fuzzy cutvertices. Thus, it follows that a CFG has no fuzzy bonds.

In view of the above, we have the following result.

Theorem 5.3.5 Let G be a fuzzy graph. Then G is a fuzzy tree if and only if every
strong edge of G is a fuzzy bond of G.

Next we characterize cutbonds in a fuzzy tree.

Theorem 5.3.6 (Characterization of cutbonds in a fuzzy tree) Let G = (σ,μ) be
a fuzzy tree. An edge uv of G is a fuzzy cutbond if and only if u and v are fuzzy
cutvertices of G.

Proof Let G = (σ,μ) be a fuzzy tree and uv be a fuzzy cutbond of G. Then
CONNG−uv(x, y) < CONNG(x, y), for some x, y ∈ σ∗ such that x �= u �= v �= y.
Thus, every strongest x − y path in G passes through uv. Because the deletion of u
or v annihilates all such paths, it follows that both u and v are fuzzy cutvertices of
G.

Conversely suppose that uv is an edge of G such that u and v are fuzzy cutver-
tices of G. We have to show that uv is a fuzzy cutbond. Clearly, uv is an inter-
nal edge. (An edge such that d(u) > 1 and d(v) > 1) of F, the unique maximum
spanning tree of G. Also, uv is the unique strongest u − v path in F and hence
in G with strength μ(uv). Now, let x1, x2, y1, y2 ∈ σ∗ be vertices of G such that
CONNG−u(x1, x2) < CONNG(x1, x2) and CONNG−v(y1, y2) < CONNG(y1, y2). Let
P1 be the unique strongest x1 − x2 path passing through u and P2 be the unique
strongest y1 − y2 path passing through v. Let u′ be a vertex in P1 adjacent to u and
v′ be a vertex in P2 adjacent to v. Then CONNG−uv(x′, y′) < CONNG(x′, y′), where
u �= x′ �= y′ �= v. Thus, it follows that uv is a fuzzy cutbond of G. �

Corollary 5.3.7 A CFG has no fuzzy cutbonds.

The proof follows from the fact that a CFG has no fuzzy bonds.

Corollary 5.3.8 If G be a block, then no fuzzy bridge of G is a fuzzy bond of G.

The converse of Corollary 5.3.8 is not true.
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Fig. 5.11 Fuzzy Graph in
Example 5.3.9
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Example 5.3.9 Let G = (σ,μ) be a fuzzy graph with σ∗ = {u, v, w, x, y}, σ(s) = 1
for all s ∈ σ∗ with μ(uv) = 0.9 = μ(xw), μ(uy) = μ(vy) = μ(wy) = μ(xy) = 0.2
(Fig. 5.11). In this fuzzy graph, edges uv and wx are fuzzy bridges, which are not
fuzzy bonds. But vertex y is a fuzzy cutvertex of G.

Using the property of fuzzy cutvertices in a fuzzy tree, we have another easy
result.

Theorem 5.3.10 Let G be a fuzzy tree. Then an edge xy of G is a fuzzy cutbond if
and only if ds(u) > 1 and ds(v) > 1.

The above theorem is not true in general as seen from the following example.

Example 5.3.11 Let G = (σ,μ) be a fuzzy graph with σ∗ = {u, v, w, x, y}, σ(s) =
1 for all s ∈ σ∗ with μ(uv) = 0.2, μ(uy) = μ(uw) = μ(vw) = μ(vx) = 0.3,
μ(wx) = μ(xy) = 1.0 (Fig. 5.12). Clearly, u and v are vertices with the property,
ds(u) > 1 and ds(v) > 1. But the edge uv is not even a strong edge.

Corollary 5.3.12 Let G be a fuzzy tree and F its unique MST. An edge uv is a fuzzy
cutbond of G if and only if xy is a cutbond of F.

Proof Let G be a fuzzy tree and let uv be a fuzzy cutbond of G. Then by Theorem
5.3.10, u and v are vertices in G such that ds(u) > 1 and ds(v) > 1. Thus, it follows
that uv is an internal edge of F and that it is a cutbond of F. �

Let G = (V,E) be a graph and uv be an edge in G. Then uv is said to be a
pendant edge if either degG(u) = 1 or degG(v) = 1.

Corollary 5.3.13 Let G = (σ,μ) be a fuzzy tree with |σ∗| = n and F its unique
MST. Then the number of fuzzy cutbonds of G is (n − 1) − l, where l is the number
of pendent edges of F.
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When the given fuzzy graph G is a fuzzy cycle, we can determine the upper
bounds for the number of fuzzy bonds and fuzzy cutbonds in G. Note that any fuzzy
cycle contain at least two β-strong edges. Thus, a 3-fuzzy cycle will not have fuzzy
bonds or cutbonds. The maximum number of fuzzy bonds occurs when all β-strong
edges of G form a path. If there are s, β-strong edges which form a β-strong path
of length s, the remaining n − s edges are α-strong and clearly they are all fuzzy
bonds. Excluding the pendent edges from the α-strong path formed by these n − s
fuzzy bonds, we get n − s − 2 fuzzy cutbonds. These idea can be summarized in the
following theorem.

Theorem 5.3.14 Let G = (σ,μ) be a fuzzy cycle with |σ∗| = n, where n ≥ 4. Then
G has at most n − s fuzzy bonds and n − s − 2 fuzzy cutbonds, where s is the number
of β-strong edges of G.

It is known that the common vertex of two α-strong edges is a fuzzy cutvertex.
Thus, the common vertex of two bonds also is a fuzzy cutvertex. Further when these
bonds are cutbonds, we will have fuzzy cutvertices with a nice property.

Definition 5.3.15 In a fuzzy graph, a vertex common to two or more fuzzy cutbonds
is defined to a critical fuzzy cutvertex (c-fuzzy cutvertex).

Clearly any c-fuzzy cutvertex is a fuzzy cutvertex.

Definition 5.3.16 Let G be a fuzzy graph. Let x be a vertex in G. The strong
components of G − x are the maximal strong edge (in G) induced subgraphs of
G − x.

Example 5.3.17 Let G = (σ,μ) be a fuzzy graph such that σ∗ = {u, v, w, x, y, z}
with μ(uv) = 1, μ(vw) = 0.5, μ(wx) = 0.3, μ(xy) = 0.2, μ(yz) = 0.1, μ(zu) =
0.6, μ(wz) = 0.4. The strong components of G − w are the fuzzy subgraph
〈{u, v, z}〉 and edge xy (Fig. 5.13).

Theorem 5.3.18 Let G = (σ,μ) be a fuzzy tree and letw be a critical fuzzy cutvertex
of G. Then G − w will have at least two strong components.
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Fig. 5.13 A fuzzy graph G and strong components of G − w
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Proof Because w is a c-fuzzy cutvertex, it must be a common vertex of at least two
fuzzy cutbonds of G. By Corollary 5.3.12, c must be the common vertex of at least
two cutbonds of F, the unique MST of G. Hence, w is a c-cutvertex of F. Thus,
F − w will have at least two non trivial components. Note that all edges in F are
strong. Also, edges which are not in F are not strong. Hence, the non trivial compo-
nents of F − w are precisely the strong components of G − w and the conclusion
follows. �

5.4 Metrics in Fuzzy Graphs

Rosenfeld [154] introduced the first metric in fuzzy graphs as given in the following
definition.

Definition 5.4.1 The μ-distance δ(u, v) is the smallest μ length of any u − v path,
where the μ length of a path ρ : u0, u1, . . . , un is

l(ρ) =
n

∑

i=1

1

μ(ui−1ui)
.

If n = 0, then define l(ρ) = 0.

If n ≥ 1, then clearly l(ρ) ≥ 1.

Theorem 5.4.2 In a connected fuzzy graph G, δ(u, v) is a metric.

Proof (i) δ(x, y) = 0 if and only if x = y because l(ρ) = 0 if and only if ρ has length
0.

(ii) δ(x, y) = δ(y, x) because the reversal of a path is a path and μ is symmetric.

(iii) δ(x, z) ≤ δ(x, y) + δ(y, z) because the concatenation of a path from x to y
and a path from y to z is a path from x to z and, l is additive for concatenation of
paths. �

Based on this metric, Bhattacharya [37] introduced the concepts of eccen-
tricity and center in fuzzy graphs. The eccentricity of a vertex v is defined as
e(v) = ∨uδ(u, v). A central vertex of a connected fuzzy graph is a vertex whose
eccentricity is the minimum. The result in graphs r(G) ≤ d(G) ≤ 2r(G) can be
easily extended to fuzzy graphs, where radius r(G) = ∧{e(v) | v ∈ σ∗} and diam-
eter d(G) = ∨{e(v) | v ∈ σ∗}. The center of a fuzzy graph G = (σ,μ) is the fuzzy
subgraph 〈C(G)〉 = (τ , ν), induced by the central vertices of G. Also, a connected
fuzzy graph is said to be self centered if each vertex is a central vertex.

Sunitha andVijayakumar studied thismetric further in [171]. The following results
in this section are from [171].
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Theorem 5.4.3 A connected fuzzy graph G = (σ,μ) is self centered if

CONNG(u, v) = μ(uv)

for all u, v ∈ σ∗ and r(G) = 1
μ(uv)

, where μ(uv) is the least.

Proof CONNG(u, v) = μ(uv) for all u, v ∈ σ∗ implies that G∗ = (σ∗,μ∗) is com-
plete. Also, each edge uv is a strongest u − v path. It follows that weight of the
weakest edge in any other strongest u − v path is μ(uv) and hence μ-length of a
strongest u − v path is at least 1

μ(uv)
. Now, let ρ : u = u0, u1, . . . , un = v be any

u − v path which is not strongest. Then strength of ρ is strictly less than μ(uv).
Thus, μ-length of ρ is strictly greater than 1

μ(uv)
and hence δ(u, v) = 1

μ(uv)
. Now,

e(u) = ∨vδ(u, v) = ∨v
1

μ(uv)
= 1

∧vμ(uv)
.

Claim: e(vi) = e(vj) for all vi �= vj
If not, let

e(vi) < e(vj) (5.5)

and let ui and uj be such that e(vi) = 1
μ(viui)

and e(vj) = 1
μ(vjuj)

. (Note that ui may or
may not be equal to uj.) Consider the path ρ : vj, vi, uj. Then μ(vjvi) ≥ μ(viui) and
μ(viuj) ≥ μ(viui). Thus, μ(vjvi) ∧ μ(viuj) > μ(vjuj) by (5.5). That is, strength of
ρ > μ(vjuj). Thus, the strength of a vj − uj path exceeds μ(vjuj), which contradicts
our assumption that every edge is a strongest path. Interchanging i and j, a similar
argument holds and thus e(vi) = e(vj) for all vi �= vj. Hence, G is self centered. �

Corollary 5.4.4 A complete fuzzy graph is self centered and r(G) = 1
σ(u) , where

σ(u) is least.

The condition in Theorem 5.4.3 is not necessary for a fuzzy graph to be self
centered as seen from the following example.

Example 5.4.5 LetG = (σ,μ) be the fuzzy graph given byσ∗ = {a, b, c, d},σ(s) =
1 for all s ∈ σ∗, μ(ab) = 1, μ(bc) = 0.2, μ(cd) = 1 and μ(ad) = 0.2 (Fig. 5.14).
The eccentricity of each vertex is 6. Hence, it is self centered. But, CONNG(a, c) =
CONNG(b, d) = 0.2 and μ(ac) = μ(bd) = 0.

For any real number c > 0, there exist self centered fuzzy graphs of diameter c.
Also, for any two real numbers a, b such that a ≤ b ≤ 2a, there exists a fuzzy graph

Fig. 5.14 A self centered
fuzzy graph a b

cd

1

0.2

1

0.2
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Fig. 5.15 Fuzzy graph in
Example 5.4.7 a b

cd

1

0.2

0.2

1

G such that r(G) = 1 and d(G) = b. Also, an obvious necessary condition for a
fuzzy graph to be self centered can be obtained in terms of eccentric vertices. Note
that an eccentric vertex of a vertex v is a vertex v∗ such that e(v) = δ(v, v∗).

Theorem 5.4.6 If G = (σ,μ) is a self centered fuzzy graph, then each vertex of G
is eccentric.

The condition in Theorem 5.4.6 is not sufficient as seen from the following
example.

Example 5.4.7 LetG = (σ,μ) be the fuzzy graph given byσ∗ = {a, b, c, d},σ(s) =
1 for all s ∈ σ∗, μ(ab) = μ(ad) = 1 and μ(bc) = μ(cd) = 0.2 (Fig. 5.15). Then
clearly, e(a) = e(c) = 6, e(b) = e(d) = 2, a∗ = c, b∗ = d, c, c∗ = a, d∗ = b, c.
Each vertex is eccentric, but G is not self centered.

It is well known that for a given connected graphH, there exists a connected super
subgraph of G such that 〈C(G)〉 ∼= H (Embedding Theorem). A generalization of
this result to a fuzzy set up is given in the following theorem.

Theorem 5.4.8 [171] (Embedding Theorem) Let H = (σ′,μ′) be a connected fuzzy
graph with diameter d. Then there exists a connected fuzzy graph G = (σ,μ) such
that 〈C(G)〉 ∼= H. Also, r(G) = d and d(G) = 2d.

Proof Construct G = (σ,μ) from H as follows. Take two vertices u and v such that
σ(u) = σ(v) = 1

d and join all vertices ofH to both u and vwithμ(uw) = μ(vw) = 1
d

for all w in H. Put σ = σ
′
for all vertices in H and μ = μ

′
for all edges in H.

Claim: G = (σ,μ) is a fuzzy graph.

First note that σ(u) ≤ σ(w) for all w ∈ H. If possible let σ(u) > σ(w) for at
least one vertex w in H. Then 1

d > σ(w), That is, d < 1
σ(w)

≤ 1
μ(ww′) , where the last

inequality holds for all w′ ∈ H because H is a fuzzy graph. That is, 1
μ(ww′) > d for

all w′ ∈ H, which contradicts that d(H) = d. Therefore, σ(u) ≤ σ(w) for all w ∈ H
and μ(uw) = σ(u) ∧ σ(w) = σ(u) = 1

d . Similarly, μ(vw) = σ(v) ∧ σ(w) = 1
d for

all w ∈ H. Thus, G = (σ,μ) is a fuzzy graph.

Also, e(w) = d for al w ∈ H and e(u) = e(v) = 1
μ(uw)

+ 1
μ(wv)

= 2d. Thus,
r(G) = d, d(G) = 2d and 〈C(G)〉 ∼= H. �
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Fig. 5.16 A fuzzy tree G
and its center 〈C(G)〉
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Fig. 5.17 A self centered
fuzzy tree
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We know that the center of a tree is either K1 or K2. But this is not true for fuzzy
trees as seen from the following example.

Example 5.4.9 Let G = (σ,μ) be the fuzzy graph given by σ∗ = {a, b, c, d,
e}, σ(s) = 1 for all s ∈ σ∗, μ(ab) = 1/3, μ(ac) = 1/2, μ(ad) = 1, μ(ae) = 1/4,
μ(bc) = 1/2, μ(bd) = 1/2, μ(be) = 1, μ(cd) = 1, μ(de) = 1. Then G is a fuzzy
tree, but its center is different from K1 and K2 (See Fig. 5.16).

Next examples shows a self centered fuzzy tree.

Example 5.4.10 LetG = (σ,μ) be the fuzzy graph with σ∗ = {a, b, c, d}, σ(s) = 1
for all s ∈ σ∗,μ(ab) = μ(bc) = 1/5,μ(ac) = μ(bd) = 1/3,μ(cd) = 1/6,μ(ad) =
1/2 (Fig. 5.17). This fuzzy graph is a fuzzy tree and is self centered. Note that
e(a) = e(b) = e(c) = e(d) = 5.

Next we have a result concerning the center of fuzzy trees.

Theorem 5.4.11 Let H = (σ′,μ′) be a fuzzy tree with diameter d. Then there exists
a fuzzy tree G = (σ,μ) such that 〈C(G)〉 is isomorphic to H.

Proof Put t = ∨{σ′(w) | w ∈ σ′∗}. Construct G = (σ,μ) from H = (σ′,μ′) as fol-
lows.

Take two vertices u and v with σ(u) = σ(v) = 1
d and join all vertices inH to both

u and v. Let w and w
′
be any two vertices in H. Put μ(uw) = 1

d ;μ(wv) = 1/d + 1
t ;

μ(uw′) = 1/d + 1
t ; μ(w′v) = 1

d and put 1/d + 1
t as the strength of all the other new

edges. Also, put σ = σ′ for all new vertices in H and μ = μ′ for all edges in H.
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Fig. 5.18 Fuzzy trees H and G with H as the center of G

Claim 1. G = (σ,μ) is a fuzzy graph.
As in the proof of Theorem 5.4.8, σ(u) ≤ σ(w) and σ(v) ≤ σ(w) for all vertices

w ∈ H. Soμ(uw) = σ(u) ∧ σ(w) andμ(w′v) = σ(w′) ∧ σ(v). Also, because 1/d +
1
t < 1

dμ(wv) < σ(w) ∧ σ(v), μ(uw′) < σ(u) ∧ σ(w′) and the inequality holds for
all the other new edges. Hence, G = (σ,μ) is a fuzzy graph.

Claim 2. C(G) is isomorphic to H.
Note that μ(wiwj) ≤ t for every edge wiwj in H. That is,

1

t
≤ 1

μ(wiwj)
. (5.6)

Now, u∗ = v, v∗ = u and e(v) = e(u) = 1/ 1
d + 1/1/d + 1

t = 2d + 1
t .

Also, w∗ = v and w′∗ = u, e(w) = e(w′) = 1/1/d + 1
t = d + 1

t and all other
vertices in H have eccentricity equal to d + 1

t by Eq. (5.6), with u and v as their
eccentric vertices. Thus, each vertex inH is a central vertex ofG with r(G) = d + 1

t ,

d(G) = 2d + 1
t and C(G) ∼= H.

Finally, we claim that G = (σ,μ) is a fuzzy tree; for H being a fuzzy tree, it
has a spanning subgraph FH , which is a tree, satisfying the requirements. Now, FH

together with the edges uw and w′v is the required spanning subgraph of G. �

A fuzzy graph H on three vertices and the graph G whose center is isomorphic to
H are given in Fig. 5.18.

In Fig. 5.18, d(H) = 4, t = 1/2, e(u) = e(v) = 10, e(a) = e(b) = e(c) = 6. It
is not hard to see that the center of a fuzzy tree need not be a fuzzy tree.

Other than the μ distance of Rosenfeld, several other distances in fuzzy graphs
were proposed by different authors in the past. They include geodesic distance of
Bhutani and Rosenfeld (Definition 3.1.24), strong sum distance [175], δ-distance,
detour distance [101, 102], detour μ-distance [136], and so on. The strong geodesic
distance, known as g-distance is a direct generalization of distance in graphs.Mathew
and Mathew introduced α-strong distance as follows.

http://dx.doi.org/10.1007/978-3-319-71407-3_3
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Definition 5.4.12 Let G = (σ,μ) be a fuzzy graph. Let u and v be any two vertices
in σ∗. Then the α-distance between u and v is defined and denoted by dα(u, v) =
∧p

∑

e∈P
μ(e), where P is an α-strong path between u and v, 0 if u = v, ∞ if there

exists no α-strong u − v path.

dα satisfies the properties of a metric and hence (σ∗, dα) qualifies as metric space.
Using this distance in fuzzy graphs, α-eccentricity, α-center, α-diametral vertices,
α-periphery, and so on, can be similarly defined as in crisp graphs. A vertex u ∈ σ∗
is called α-isolated if there is no α-strong edge incident on u. An α strong edge
e = uv is called α-isolated, if there exists no other α strong edge adjacent with e.
Note that this function is not a metric if α-strong edges are replaced by β strong or
simply strong edges.

Proposition 5.4.13 Let (G = σ,μ) be a fuzzy graph. If e = uv is anα-isolated edge
of G, then eα(u) − eα(v) = 0

Proof Because e = uv is α-isolated, e is adjacent with no α-strong edges. That is,
e is the only α-strong edge, which is incident at u and v. By calculating the α-
eccentricity of u, we see that the farthest vertex from u is v and vice-versa. Thus,
eα(u) = eα(v) = μ(e) and hence eα(u) − eα(v) = 0. �

If G = (σ,μ) is a connected fuzzy graph, then the result rα(G) ≤ dα(G) ≤
2rα(G) is trivial as in case of any distance. Recall that a fuzzy graph G is called
α-self centered if G is isomorphic with its α-center. Thus, we have the following
result.

Proposition 5.4.14 Let G = (σ,μ) be a connected fuzzy graph such that there exists
exactly one α-strong edge incident at every vertex and that all the α-strong edges
are of equal weight. Then G is α-self centered.

Proof Given that all vertices of G are incident with exactly one α-strong edge each,
and all theα-strong edges are of equal weight. This means if e = uv isα-strong, then
therewill be no otherα-strong edges incident at u or v. Hence, eα(u) = μ(e) = eα(v).
Thus, eα(u) = μ(e) for every vertex u inσ∗.This proves thatG isα-self centered. �

Proposition 5.4.15 A connected fuzzy graph G = (σ,μ) isα-self centered if for any
two vertices u and v such that u is an α-eccentric vertex of v, v should be one of the
α-eccentric vertices of u.

Proof First assume that G is α-self centered. Also, assume that u is an α-eccentric
vertex of v. That is, eα(v) = dα(v, u). Because G is α-self centered, all vertices
will have the same α-eccentricity. Therefore, eα(v) = eα(u). Thus, we get, eα(u) =
dα(v, u) = dα(u, v). Thus, eα(u) = dα(u, v). That is, v is an α-eccentric vertex of u.
Next assume that u is an α-eccentric vertex of v. Then v is an α-eccentric vertex of u.
Thus, eα(u) = dα(u, v), and eα(v) = dα(v, u). But dα(u, v) = dα(v, u). Therefore,
eα(v) = eα(u), where u and v are two arbitrary vertices of G. Thus, all vertices of
G have the same α-eccentricity, and hence G is α-self centered. �
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Fig. 5.19 α-distance
matrix-example

a b

cd
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We have an easy check for a fuzzy graph G to find whether it is α-self centered
or not. Consider the following definition.

Definition 5.4.16 Let G = (σ,μ) be a connected fuzzy graph with |σ∗| = n. The
α-distancematrixDα = (di,j) is a square matrix of order n and is defined by (di,j) =
dα(vi, vj). Note that the α-distance matrix is a symmetric matrix.

Consider the following example.

Example 5.4.17 Let G = (σ,μ) be the fuzzy graph given in Fig. 5.19, with σ∗ =
{a, b, c, d}, σ(s) = 1 for all s ∈ σ∗ and μ(ab) = 0.9, μ(bc) = μ(cd) = 0.4,
μ(da) = 0.5, μ(bd) = 0.8.

The α-distance matrix of the fuzzy graph in Fig. 5.19, is given by,

Dα =

⎡

⎢
⎢
⎣

0 0.9 ∞ 1.7
0.9 0 ∞ 0.8
∞ ∞ 0 ∞
1.7 0.8 ∞ 0

⎤

⎥
⎥
⎦

.

Next we have a theorem for finding the eccentricities of vertices using the max-
max composition of the distance matrix.

Theorem 5.4.18 Let G = (σ,μ) be a connected fuzzy graph. The diagonal elements
of the max-max composition of the α-distance matrix of G with itself are the α-
eccentricities of the vertices.

Proof Let Dα = (di,j) be the α-distance matrix of G. Then (di,j) = dα(vi, vj). In the
max-max composition, Dα ◦ Dα, the ith diagonal entry,

di,i = ∨{di,1 ∨ d1,i, di,2 ∨ d2,i, di,3 ∨ d3,i, . . . , di,n ∨ dn,i}
= ∨{di,1, di,2, di,3, . . . , di,n}
= ∨{dα(vi, v1), dα(vi, v2), dα(vi, v3), . . . , dα(vi, vn)}
= eα(vi).

�
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Fig. 5.20 Max–Max
composition a b

cd
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Theorem 5.4.19 Aconnected fuzzy graphG = (σ,μ) isα-self centered if and only if
all the entries in the principal diagonal of themax-max composition of theα-distance
matrix with itself are the same.

Proof As proved in Theorem 5.4.18, the principal diagonal entries in the max-max
composition of the α-distance matrix with itself are the α-eccentricities of the ver-
tices. If they are the same, then eα(u) is the same for all u in G. Then G is α-self
centered. �

We illustrate the above theorem in the following examples.

Example 5.4.20 Consider the fuzzy graph G = (σ,μ) given in Fig. 5.20.
The α-distance matrix and the max-max composition are given below.

Dα =

⎡

⎢
⎢
⎣

0 ∞ ∞ 0.5
∞ 0 0.5 ∞
∞ 0.5 0 ∞
0.5 ∞ ∞ 0

⎤

⎥
⎥
⎦

,

Dα ◦ Dα =

⎡

⎢
⎢
⎣

0.5 ∞ ∞ 0.5
∞ 0.5 0.5 ∞
∞ 0.5 0.5 ∞
0.5 ∞ ∞ 0.5

⎤

⎥
⎥
⎦

.

The fuzzy graph is α-self centered.

Now, consider another example.

Example 5.4.21 Consider the fuzzy graph shown in Fig. 5.21.
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The α-distance matrix and the max-max composition are given below.

Dα =
⎡

⎣

0 ∞ ∞
∞ 0 0.5
∞ 0.5 0

⎤

⎦ , Dα ◦ Dα =
⎡

⎣

∞ ∞ ∞
∞ 0.5 0.5
∞ 0.5 0.5

⎤

⎦ .

Clearly, all diagonal elements in the composition are not the same and hence the
fuzzy graph is not α-self centered.

From the above two examples, it is clear that a block may or may not be α-self
centered.

Now, we discuss about the central vertices of fuzzy trees and blocks. In the fol-
lowing theorem, α-central vertices of fuzzy trees are characterized.

Theorem 5.4.22 ([106]) If a vertex of a fuzzy tree is α-central, then it is a common
vertex of at least two α-strong edges.

Proof Let G = (σ,μ) be a fuzzy tree. Then G has no β-strong edges. We know that
between any two vertices of a connected fuzzy graphG, there exists a strong path. As
G is independent of β-strong edges, there exists an α-strong path between any two
vertices of G. Let u be an α-central vertex of G. We want to prove that two or more
α-strong edges are incident at u. If possible suppose the contrary. Let there be exactly
one α-strong edge, namely e incident at u. Therefore, any α-strong path between u
and any other vertex of G will contain the edge e. This proves that eα(u) > rα(G),
which is a contradiction to the fact that u is α-central. Therefore, our assumption is
wrong. Thus, the proof of the theorem is completed. �

If u is a common vertex of at least two α-strong edges, then u is a fuzzy cutvertex
of G. So from the above theorem it is clear that, if a vertex u of a fuzzy tree G is
α-central, then it is a fuzzy cutvertex of G.

Theorem 5.4.23 The α-center of a block G contains all α-strong edges with mini-
mum weight.

Proof Suppose that G = (σ,μ) is a block. Then G has no fuzzy cutvertices. We
know that, if a vertex u in a connected fuzzy graph is common to more than one
α-strong edge, then it is a fuzzy cutvertex. As G is free from fuzzy cutvertices, at
most oneα-strong edge can be incident at every vertex ofG. Thus, theα-eccentricity,
eα of a vertex u is the weight of the α-strong edge incident at u.

So the α-radius of G, rα(G) is the weight of the smallest α-strong edge. Hence,
the α-center of G, 〈Cα(G)〉 contains all α-strong edges of G with minimum weight.
This completes the proof of the theorem. �

The next theorem helps us to find the number of connected components in the
α-center of a block.

Theorem 5.4.24 Let G = (σ,μ) be a block. If there exists a path containing all
α-strong edges of G with minimum weight alternatively, then 〈Cα(G)〉 is connected.
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Proof By the previous theorem, 〈Cα(G)〉 consists of all α-strong edges of G with
minimum weight. Also, in a block, not more than one α-strong edge can be incident
at any vertex. So if there are k number of α-strong edges present in G with minimum
weight, then all these edges will be in 〈Cα(G)〉 .Moreover, they are not adjacent also.
Hence, if we can find a path containing all α-strong edges with minimum weight
alternatively, then it follows that 〈Cα(G)〉 is connected. �

Theorem 5.4.25 If a connected fuzzy graph G = (σ,μ) is a block with k α-strong
edges, then k ≤ (|σ∗|)/2.
Proof Suppose thatG = (σ,μ) is a block. ThenG has no fuzzy cutvertices. Let k be
the number of α-strong edges in G. We have to prove that k ≤ (|σ∗|)/2. If possible
suppose the contrary. Let k > (|σ∗|)/2. Then there will be at least �k − (|σ∗|)/2�
vertices with more than one α-strong edge incident on them. Clearly, these vertices
are fuzzy cutvertices of G, a contradiction to the fact that G is free from fuzzy
cutvertices. So our assumption is wrong and the proof is complete. �

5.5 Detour Distance in Fuzzy Graphs

The detour distance between two vertices u and v in a connected graph G is the
length of the longest u − v path in G [83]. The detour g-distance in fuzzy graphs
was studied by Linda and Sunitha [101]. The detour μ-distance in fuzzy graphs is
discussed in [136]. We discuss some detour g-distance parameters in this section.

Definition 5.5.1 The length of the longest strong u − v path between two vertices
u and v in a connected fuzzy graph G is called the fuzzy detour g-distance from
u to v, denoted by Dg(u, v). Any u − v strong path of length Dg(u, v) is called a
u − v fuzzy g-detour. A fuzzy graph G = (σ,μ) is called a fuzzy g-detour graph
if Dg(u, v) = dg(u, v) for every pair u and v of vertices of G.

A fuzzy graph is said to be a fuzzy g-detour graph if the standard g-distance and
fuzzy detour g-distance coincide.

Example 5.5.2 Let G = (σ,μ) be the fuzzy graph with σ∗ = {a, b, c}, σ(a) =
σ(b) = σ(c) = 1, μ(ab) = 0.6, μ(bc) = 0.7, μ(ac) = 0.8 (Fig. 5.22). In G,

Fig. 5.22 A fuzzy g-detour
graph

0.6 0.8

0.7

a

bc
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dg(u1, u2) = 2 = Dg(u1, u2), dg(u1, u3) = 1 = Dg(u1, u3), dg(u2, u3) = 1 = Dg

(u2, u3). Here, Dg(u, v) = dg(u, v) for every pair u and v of vertices of G. Hence,
G is a fuzzy g-detour graph.

We have two easy propositions.

Proposition 5.5.3 If u and v are any two vertices in a connected fuzzy graph G =
(σ,μ), then 0 ≤ dg(x, y) ≤ Dg(u, v) < ∞.

Proposition 5.5.4 If u and v are any two vertices in a connected fuzzy graph G =
(σ,μ), then Dg(u, v) = 0 if and only if dg(u, v) = 0.

Theorem 5.5.5 The fuzzy detour g-distance is a metric on the vertex set of every
connected fuzzy graph.

Proof Let G = (σ,μ) be a connected fuzzy graph. Note that (i) Dg(u, v) ≥ 0, (ii)
Dg(u, v) = 0 if and only if u = v and (iii) Dg(u, v) = Dg(v, u) for every pair u, v of
vertices of G. It remains only to show that the fuzzy detour g-distance satisfies the
triangle inequality. Let u, v and w be any three vertices of G. Because the inequality
Dg(u, w) ≤ Dg(u, v) + Dg(v,w) holds if any two of the three vertices are the same,
we assume that u, v and w are distinct. Let P be a u − w fuzzy g-detour in G of
length Dg(u, w) = k. Then there exists two cases.

Case 1. v lies on P.

Let P1 be the u − v sub path of P and P2 be the v − w sub path of P. Suppose that
the length of P1 is s and the length of P2 is t. Then s + t = k. Therefore,Dg(u, w) =
k = s + t ≤ Dg(u, v) + Dg(v,w).

Case 2. v does not lie on P.

Because there exists a strong path between every pair of vertices, there is a shortest
strong path Q from v to a vertex of P. Let x be any vertex on P and Q be the v − x
geodesic such that no other vertex ofQ lies onP. Let r be the length ofQ. Then r > 0.
Let the u − x sub path P′ of P has length a and the x − w sub path P′′ of P has length
b. Then a ≥ 0 and b ≥ 0. Therefore, Dg(u, v) ≥ a + r and Dg(v,w) ≥ b + r. Thus,
Dg(u, w) = k = a + b < (a + r) + (b + r) ≤ Dg(u, v) + Dg(v,w). So the triangle
inequality holds. �

The fuzzy detour g-eccentricity, eDg
(u) of a vertex u is the fuzzy detour g-distance

from u to a vertex farthest from u. Let u∗
Dg

denote set of all fuzzy detour g-eccentric
vertices of u. The fuzzy detour g-radius of G, radDg

(G) is the minimum fuzzy
detour g-eccentricity among the vertices of G. A vertex u in G is a fuzzy detour g-
central vertex if, eDg

(u) = radDg
(G). The fuzzy detour g-diameter of G, diamDg

(G)

is the maximum fuzzy detour g-eccentricity among the vertices of G. A vertex u in
a connected fuzzy graph G is called fuzzy detour g-peripheral vertex if eDg

(u) =
diamDg

(G).

Definition 5.5.6 The fuzzy subgraph of G induced by the fuzzy detour g-central
vertices is called the fuzzy detour g-centre of G, denoted by CDg

(G). If every
vertex of G is fuzzy detour g-central vertex, then CDg

(G) = G, and G is called
fuzzy detour g-self centered.
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Fig. 5.23 A fuzzy detour
g-self centered fuzzy graph
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Note that if G is a fuzzy detour g-self centered graph, then radDg
(G) =

diamDg
(G).

Example 5.5.7 Let G = (σ,μ) be the fuzzy graph with σ∗ = {a, b, c, d}, σ(a) =
σ(b) = σ(c) = 1, μ(ab) = 0.5, μ(bc) = 0.6, μ(cd) = 0.7, μ(ad) = 0.5, and
μ(bd) = 0.6 (Fig. 5.23).

Note that all edges in G are strong and the fuzzy detour g-distance between two
vertices are as follows.

Dg(u1, u2) = 3,Dg(u1, u3) = 3,Dg(u1, u4) = 3,Dg(u2, u3) = 3,Dg(u2, u4) = 2,
Dg(u3, u4) = 3. eDg

(u1) = 3, eDg
(u2) = 3, eDg

(u3) = 3, eDg
(u4) = 3.

Thus, radDg
(G) = diamDg

(G) = 3. Therefore, CDg
(G) = G, and G is a fuzzy

detour g-self centered fuzzy graph.

Theorem 5.5.8 For every non-trivial connected fuzzy graph G = (σ,μ), radDg
(G)

≤ diamDg
(G) ≤ 2radDg

(G).

Proof The inequality radDg
(G)≤ diamDg

(G) follows from definition. Let u, v be two
vertices such that Dg(u, v) = diamDg

(G). Let w be a fuzzy detour g-central vertex
of G. Then the fuzzy detour g-distance between w and any other vertex of G is at
most fuzzy detour g-radius of G. By the triangle inequality, diamDg

(G) = Dg(u, v)

≤ Dg(u, w) + Dg(w, v) ≤ radDg
(G) + radDg

(G) = 2radDg
(G). �

Theorem 5.5.9 The fuzzy detour g-centre, CDg
(G) of every connected fuzzy graph

G = (σ,μ) lies in a single block of G∗.

Proof Assume to the contrary, that G = (σ,μ) is a connected fuzzy graph whose
fuzzy detour g-centre CDg

(G) is not a subgraph of a single block of G. Then there is
a cutvertex v of G∗ such that G∗ − v contains two components G1 and G2 each of
which contains vertices ofCDg

(G). Let u be a vertex ofG such thatDg(u, v) = eDg
(v)

and let P1 be a u − v fuzzy g-detour inG. At least one ofG1 orG2 contains no vertex
of P1, say G2 contains no vertex of P1. Let w be a fuzzy detour g-central vertex of
G that belong to G2 and let P2 be a v − w fuzzy g-detour. Then P1 followed by
P2 produces a u − w fuzzy g-detour whose length is greater than that of P1. Hence,
eDg

(w) > eDg
(v), which contradicts the fact that w is a fuzzy detour g-central vertex

of G. �
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Theorem 5.5.10 Every fuzzy graph is the fuzzy detour g-centre of some fuzzy graph.

Proof Let G = (V,σ,μ) be a fuzzy graph with n vertices, where σ∗ = {u1, u2, . . . ,
un}, and let H = (V ′,σ′,μ′) be the fuzzy graph obtained by adding n + 1 vertices
{w1, . . . , wn, wn+1} to G as follows. V ′ = V ∪ {w1, . . . , wn, wn+1}. σ′ = σ for all
ui ∈ G, i = 1, . . . , n.μ′ = μ for alluiuj ∈G. Let c = ∧σ(ui), i = 1, . . . , n.σ

′
(wj) =

t, 0 < t ≤ c, j = 1, . . . , n + 1. Then μ′(wjui) = t for all ui and wj, i = 1, . . . , n,
j = 1, . . . , n + 1. Thus, all edges wjui are strong. Here, for all ui ∈ G, eDg

(ui) =
2n − 1 and for all wj, eDg

(wj) = 2n. Therefore, radDg
(G) = 2n − 1. Hence, H =

(V ′,σ′,μ′) is a fuzzy graph with G = (V,σ,μ) as its fuzzy detour g-centre. �

Theorem 5.5.11 For each pair a, b of positive real numbers with a ≤ b ≤ 2a, there
exists a connected fuzzy graph G with radDg

(G) = a and diamDg
(G) = b.

Proof For a = b = k ≥ 1 the complete fuzzy graph on k + 1 vertices has the desired
property. For a < b ≤ 2a, let H1 and H2 be any two fuzzy graphs such that H1 is of
order a + 1 and H2 is of order b − a + 1 and also such that H∗

1 and H∗
2 are complete

and all edges inH1 andH2 are strong.Now,G be a fuzzy graph of order b + 1 obtained
by identifying a vertex v of H1 and a vertex of H2. Because b ≤ 2a, it follows that
b − a + 1 ≤ a + 1. Thus, eDg

(v) = a. Because there is a strong path in G which
passes through every other vertices of G with initial vertex x, where x ∈ G − v, it
follows that eDg

(x) = b. Hence, radDg
(G) = a and diamDg

(G) = b. �

With respect to standard g-distance note that a necessary condition for a g-self
centered fuzzy graph is that each vertex is g-eccentric, but it is not sufficient. But
with respect to fuzzy detour g-distance it is sufficient also, as discussed in the next
theorem.

Theorem 5.5.12 ([101]) A fuzzy graph G = (σ,μ) is fuzzy detour g-self centered if
and only if each vertex of G is fuzzy detour g-eccentric.

Proof Assume G = (σ,μ) is a fuzzy detour g-self centered fuzzy graph and let v

be any vertex of G. Let u ∈ v∗
Dg

. Then eDg
(v) = Dg(u, v) and G being fuzzy detour

g-self centered fuzzy graph eDg
(u) = eDg

(v) = Dg(u, v), which shows that v ∈ u∗
Dg
,

and v is fuzzy detour g-eccentric.
Conversely, assume that each vertex of G is fuzzy detour g-eccentric. To prove G

is fuzzy detour g-self centered. Assume to the contrary, that G is not fuzzy detour g-
self centered, i.e., radDg

(G) �= diamDg
(G). Let y be a vertex in G such that eDg

(y) =
diamDg

(G) and let z ∈ y∗
Dg
. Let P be a y − z fuzzy g-detour in G. Then there must

exists a vertexw on P such thatw is not fuzzy detour g-eccentric vertex of any vertex
of P. Also, w is not a fuzzy detour g-eccentric vertex of any other vertex. Otherwise
if w is a fuzzy detour g-eccentric vertex of a vertex u (say), i.e., w ∈ u∗

Dg
, then we

can extend u − w fuzzy g-detour to a longer path (to y or to z or to both), which is a
contradiction to w ∈ u∗

Dg
. Therefore, radDg

(G) = diamDg
(G) and G is fuzzy detour

g-self centered. �

Proposition 5.5.13 For a fuzzy detour g-self centered fuzzy graph G = (σ,μ),

radD(G) = diamD(G) = n − 1.
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Fig. 5.24 Counter example
for the converse of Theorem
5.5.14
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Proof Assume G = (σ,μ) is fuzzy detour g-self centered. To prove diamD (G)

= n − 1. Assume to the contrary that diamD(G) = k < n − 1.
Claim: There exists a vertex x inG which is common to all fuzzy detour peripheral

paths.
If not let P1 and P2 be two fuzzy detour peripheral paths such that P1 and P2 share

no common vertices. Let y ∈ P1 and z ∈ P2. Because G is connected, there exists
a strong path from z to y. Thus, there exist vertices on P1 and P2 with eccentricity
greater than k, which is not possible. Hence, the claim.

Because x is on every fuzzy detour peripheral path, eDg
(x) < k, which is a con-

tradiction to our assumption that G is fuzzy detour g-self centered. �

Theorem 5.5.14 A connected fuzzy graph G = (σ,μ) with |σ∗| = n such that G∗
is complete is fuzzy detour g-self centered if each edge is strong. Furthermore,
radDg

(G) = n − 1.

Proof Let σ∗ = {v1, v2, v3, . . . , vn}. Because G∗ is complete, each vertex vi is inci-
dent with exactly n − 1 edges and all edges are strong. Hence, eDg

(vi) = n − 1,
for all i = 1, 2, . . . , n and G is a fuzzy detour g-self centered fuzzy graph with
radDg

(G) = n − 1. �

The condition in Theorem 5.5.14 is not necessary as seen from next example.

Example 5.5.15 Let G = (σ,μ) be the fuzzy graph with σ∗ = {a, b, c, d}, σ(x) =
1 for all x ∈ σ∗, μ(ab) = 0.5, μ(bc) = 0.6, μ(cd) = 0.7, μ(ad) = 0.5, μ(ac) =
0.4, μ (bd) = 0.6, (Fig. 5.24). Here, eDg

(u1) = 3, eDg
(u2) = 3, eDg

(u3) = 3, eDg

(u4) = 3 and G is a fuzzy detour g-self centered fuzzy graph with G∗ complete, but
the edge ac is not strong.

Corollary 5.5.16 Acomplete fuzzy graph on n vertices is fuzzy detour g-self centered
and radDg

(G) = n − 1.

Theorem 5.5.17 Let G = (σ,μ) be a fuzzy graph and let u ∈ v∗
Dg
. Then G is fuzzy

detour g-self centered if and only if v ∈ u∗
Dg
.

Proof Let G = (σ,μ) be a fuzzy graph and u and v be any two vertices of G. Let
u ∈ v∗

Dg
. Assume G is fuzzy detour g-self centered. We need to prove that v ∈ u∗

Dg
.

Now, eDg
(u) = eDg

(v),
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u �= v (5.7)

and
Dg(v, u) = eDg

(v). (5.8)

From (5.7) and (5.8), eDg
(u) = Dg(v, u) and thus v ∈ u∗

Dg
.

Conversely, let G be a fuzzy graph and u, v be any two vertices of G such that
u ∈ v∗

Dg
and by assumption v ∈ u∗

Dg
. Then eDg

(u) = eDg
(v), u �= v. Therefore, G is

fuzzy detour g-self centered. �

Because there exists a unique strong path between every pair of vertices in a fuzzy
tree, we can see that g-distance and fuzzy detour g-distance coincide in a fuzzy tree
as seen from the following theorem.

Theorem 5.5.18 A connected fuzzy graph G = (σ,μ) is a fuzzy g-detour graph if
and only if G is a fuzzy tree.

Proof Assume G is a fuzzy tree. Then there exists unique strong path between every
pair of vertices in G. Hence, Dg(u, v) = dg(u, v) for every pair u and v of vertices
of G. Therefore, G is a fuzzy g-detour graph.

Conversely, assume G is a fuzzy g-detour graph on n vertices. That is,Dg(u, v) =
dg(u, v) for every pair of vertices u and v of G. When n = 2, the result is trivial and
G is a fuzzy tree. So let n ≥ 3. Assume on the contrary that G is not a fuzzy tree.
Then there exists at least one pair of vertices u1, v1 having more than one strong path
from u1 to v1. Let P1 and P2 be two u1 − v1 strong paths. Then union of P1 and P2

contains at least one cycle (say) C in G. Let u and v be two adjacent vertices in C.
Then dg(u, v) = 1 and Dg(u, v) > 1, which is a contradiction to the assumption that
Dg(u, v) = dg(u, v), and hence, G is a fuzzy tree. �

Definition 5.5.19 The fuzzy subgraph of G = (σ,μ) induced by the fuzzy detour
g-peripheral vertices is called the fuzzy detour g-periphery of G, denoted by
PerDg

(G).

Definition 5.5.20 A connected fuzzy graph G = (σ,μ) is called a fuzzy detour
g-eccentric if every vertex of G is fuzzy detour g-eccentric. The fuzzy subgraph of
G induced by the set of fuzzy detour g-eccentric vertices is called the fuzzy detour
g-eccentric fuzzy graph of G, denoted by EccDg

(G).

Let G be a non trivial fuzzy graph on n vertices. Then PerDg
(G) = G if and only

if every vertex of G has fuzzy detour g-eccentricity n − 1. With respect to standard
geodesic distance every peripheral vertex is an eccentric vertex, but not conversely.
But in fuzzy detour g-distance, we observe that the converse is also true.

Theorem 5.5.21 Let G = (σ,μ) be a connected fuzzy graph. Then v is a fuzzy
detour g-eccentric vertex if and only if v is a fuzzy detour g-peripheral vertex.
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Proof Let v be a fuzzy detour g-eccentric vertex ofG = (σ,μ) and let v ∈ u∗
Dg
. Let y

and z be two fuzzy detour g-peripheral vertices. That is, Dg(y, z) = k = diamDg
(G).

Let P be a y − z fuzzy g-detour and Q be a u − v fuzzy g-detour in G. We prove that
eDg

(u) = diamDg
(G). Assume on the contrary that eDg

(u) = l < diamDg
(G). Then

we have two cases.

Case 1. v is an internal vertex (deg(v) > 1) of G.

Because G is connected, there exists at least one path between every pair of
vertices. Therefore, there exists connection between v to y and v to z also. So we
can extend u − v fuzzy g-detour to y or z, which contradicts that v is a fuzzy detour
g-eccentric vertex of u. Hence, eDg

(u) = diamDg
(G). Thus, v is a fuzzy detour g-

peripheral vertex.

Case 2. v is not an internal vertex of G.

Let w be the only vertex adjacent to v. Then w should belong to Q. Now, G
being connected, let w be connected to some vertex, say w′ of P. Then either w′ is
not in Q or w′ is a common vertex of both P and Q. In both cases the path from u
to z or to y through w and w

′
is longer than Q, which contradicts that v is a fuzzy

detour g-eccentric vertex of u. Hence, eDg
(u) = diamDg

(G). Thus, v is a fuzzy detour
g-peripheral vertex.

Conversely, assume v is a fuzzy detour g-peripheral vertex ofG. Then there exists
at least one more fuzzy detour g-peripheral vertex say u. Thus, v is a fuzzy detour
g-eccentric vertex of u. �

Definition 5.5.22 A vertex v of a connected fuzzy graph G = (σ,μ) is called a
fuzzy detour g-boundary vertex of a vertex u if Dg(u, v) ≥ Dg(u, w) for each
neighbor w of v, while a vertex is a fuzzy detour g-boundary vertex of a fuzzy graph
G if v is a fuzzy detour g-boundary vertex of some vertex of G. We denote by ubDg

the set of all fuzzy detour g-boundary vertices of u.

Example 5.5.23 Consider the fuzzy graph G in Fig. 5.25. Here, ubDg
= {t, z, v, x},

ybDg
= {t, v, z}, wb

Dg
= {t, z, v}, xbDg

= {t, v, z}. Hence, the fuzzy detour g-boundary
vertices of G are t, z, x and v.

Fig. 5.25 Fuzzy detour
g-boundary vertices of G

t

v
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w x y z

0.8

0.7 0.6
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Definition 5.5.24 A vertex v in a fuzzy graph G = (σ,μ) is called a complete
vertex if the fuzzy subgraph induced by its strong neighbors form a complete fuzzy
graph [172].

Theorem 5.5.25 Let G = (V,σ,μ) be a complete fuzzy graph. A vertex v of G is
a fuzzy detour g-boundary vertex of a vertex distinct from v if and only if v is a
complete vertex of G.

Proof First, let v be a complete vertex of a connected fuzzy graph G = (V,σ,μ).

Then by Definition 5.5.24, the fuzzy subgraph induced by its strong neighbors form
a complete fuzzy graph. Let u be a vertex different from v. Because G is complete,
all edges in G are strong and hence Dg(u, v) = n − 1 = Dg(u, w) for all w ∈ N(v).
Hence, v is a fuzzy detour g-boundary vertex of u.

Conversely, assume that v is a fuzzy detour g-boundary vertex of each vertex
distinct from v. Because G is complete, all edges in G are strong and Dg(u, v) =
n − 1 for all u, v ∈ σ∗. Hence, the fuzzy subgraph induced by its strong neighbors
form a complete fuzzy graph. Therefore, v is a complete vertex. �

In general, only one implication holds as seen from the result below.

Theorem 5.5.26 Let G = (V,σ,μ) be a connected fuzzy graph on n vertices and v

be a complete vertex of G. Then v is a fuzzy detour g-boundary vertex of each vertex
distinct from v.

Proof First let v be a complete vertex of a connected fuzzy graph G = (σ,μ)

and let u be a vertex distinct from v. Also, let u = v0, v1, . . . , vk = v be a u − v

fuzzy g-detour and let w be a strong neighbor of v. Then we have two cases. If
w = vk−1, then Dg(u, w) ≤ Dg(u, v). Therefore, v is a fuzzy detour g-boundary
vertex of u. If w �= vk−1, then because u = v0, v1, . . . , vk = v is a u-v fuzzy g-
detour, w is a strong neighbor of v, the edge wvk−1 is strong and w �= vk−1. So,
u = v0, v1, . . . , vk−1, w, vk = v is a longer strong path than u = v0, v1, . . . , vk = v.

Therefore, Dg(u, w) ≤ Dg(u, v). Hence, v is a fuzzy detour g-boundary vertex of u.
�

The converse of above theorem need not be true. That is, if v is a fuzzy detour g-
boundary vertex of all other vertices in a fuzzy graphG, then v need not be complete.
Consider fuzzy graph in Fig. 5.26. v is a fuzzy detour g-boundary vertex of all other
vertices. But v is not complete.

Theorem 5.5.27 A connected fuzzy graph G = (σ,μ) is a fuzzy g-detour graph if
and only if G is a fuzzy tree.

Proof Assume G = (σ,μ) is a fuzzy tree. Then there exists a unique strong path
between every pair of vertices in G. Hence, Dg(u, v) = dg(u, v) for every pair of
vertices u and v of G. Therefore, G is a fuzzy g-detour graph.

Conversely, assume G is a fuzzy g-detour graph on n vertices. That is,Dg(u, v) =
dg(u, v) for every pair u and v of vertices of G. When n = 2, the result is trivial and
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Fig. 5.26 Counter example
for the converse of Theorem
5.5.26
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G is a fuzzy tree. So let n ≥ 3. Assume on the contrary that G is not a fuzzy tree.
Then there exists at least one pair of vertices u1 and v1 such that there exists more
than one strong path from u1 to v1. Let P1 and P2 be two u1-v1 strong paths. Then
union of P1 and P2 contains at least one cycle (say) C in G. Let u and v be two
adjacent vertices in C. Then dg(u, v) = 1 andDg(u, v) > 1, which is a contradiction
to the assumption that Dg(u, v) = dg(u, v), and hence G is a fuzzy tree. �
Theorem 5.5.28 A vertex v in a fuzzy tree G = (σ,μ) is a fuzzy detour g-boundary
vertex if and only if v is not a fuzzy cutvertex of G.

Proof Assume, to the contrary, that there exists a fuzzy tree G = (σ,μ) and a fuzzy
cutvertex v of G such that v is a fuzzy detour g-boundary vertex of some vertex
u in G. Let F be the unique maximum spanning tree of G. Because v is a fuzzy
cutvertex, it is an internal vertex of F. Then let w ∈ NS(v) be such that it is not on
the u − v fuzzy detour in F. Because G is a fuzzy tree, G is a fuzzy g-detour graph
and hence fuzzy detour g-distance between any two vertices in G is same as the
fuzzy detour g-distance between any two vertices in F. Hence, we have Dg(u, w) =
Dg(u, v) + Dg(v,w) > Dg(u, v), which is a contradiction to our assumption that v

is a fuzzy detour g-boundary vertex of u. Hence, v is not a fuzzy cutvertex.
Conversely, let v be any vertex which is not a fuzzy cutvertex. Then v is an end

vertex of unique maximum spanning tree. This means v is fuzzy endvertex and has
unique strong neighbor. So any fuzzy g-detour from a vertex to v cannot be extended
beyond v. Hence, v is a fuzzy detour g-boundary vertex. �
Theorem 5.5.29 A vertex is a fuzzy detour g-boundary vertex of a fuzzy tree if and
only if it is a fuzzy endvertex.

Proof Let G = (σ,μ) be a fuzzy tree and v is a fuzzy detour g-boundary vertex of
some vertex u in G. Let F be the unique maximum spanning tree of G. Because
in fuzzy trees every vertex is either a fuzzy cutvertex or a fuzzy endvertex and no
fuzzy cutvertex is a fuzzy detour g-boundary vertex, by Theorem 5.5.28, v is a fuzzy
endvertex of G.

Conversely, assume that v is a fuzzy end vertex of G. We prove that v is a fuzzy
detour g-boundary vertex of G. Let F be the unique maximum spanning tree of G.
Then v is an endvertex of F and v cannot be a fuzzy cutvertex of G. Therefore, by
Theorem 5.5.28, v is a fuzzy detour g-boundary vertex. �
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Fig. 5.27 IntDg (G) of
Example 5.5.23
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Definition 5.5.30 Any vertex y in a connected fuzzy graph G = (σ,μ) is said to lie
between two other vertices say x and z (both different from y) with respect to fuzzy
detour g-distance if Dg(x, z) = Dg(x, y) + Dg(y, z)

Definition 5.5.31 A vertex v is a fuzzy detour g-interior vertex of a connected
fuzzy graph G = (σ,μ) if for every vertex u distinct from v, there exists a vertex w

such that v lies between u and w.

Definition 5.5.32 The fuzzy detour g-interior ofG = (σ,μ), IntDg
(G) is the fuzzy

subgraph of G induced by its fuzzy detour g-interior vertices.

For the fuzzy graph in Example 5.5.23, the g-interior vertices are u,w and y. The
IntDg

(G) is given in Fig. 5.27.

Theorem 5.5.33 Let G = (σ,μ) be a connected fuzzy graph. A vertex v is a fuzzy
detour g-boundary vertex of G if and only if v is not a fuzzy detour g-interior vertex
of G.

Proof Let v be a fuzzy detour g-boundary vertex of a connected fuzzy graph G, and
let v is a fuzzy detour g-boundary vertex of some vertex u. Assume to the contrary
that v is a fuzzy detour g-interior vertex of G. Because v is a fuzzy detour g-interior
vertex of G, there exists a vertex w distinct from u and v such that v lies between
u and w. Let P : u = v1, v2, v3, . . . , v = vj, vj+1, . . . , vk = w be a u − w fuzzy g-
detour, where 1 < j < k. However, vj+1 ∈ NS(v) andDg(u, vj+1) > Dg(u, v), which
contradicts that v is a fuzzy detour g-boundary vertex of u.

For the converse, let v be a vertex that is not a fuzzy detour g-interior vertex of G.
Hence, there exists at least one vertexu such that for every vertexw distinct fromu and
v, the vertex v does not lie between u andw. Let x ∈ N(v). ThenDg(u, x) ≤ Dg(u, v).
That is, v is a fuzzy detour g-boundary vertex of u. �

Theorem 5.5.34 Let G = (σ,μ) be a connected fuzzy graph. If v is a fuzzy end
vertex of G, then v is not a fuzzy detour g-interior vertex.

Proof Suppose v is fuzzy end vertex of a fuzzy graphG = (σ,μ). Then v has exactly
one strong neighbor. Then there does not exist a strong fuzzy g-detour such that v lies
between two other vertices. Hence, v cannot be fuzzy detour g-interior vertex. �
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Fig. 5.28 Fuzzy graph in
Example 5.5.35 x u
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The converse of Theorem 5.5.34 need not be true as seen from Example 5.5.35.

Example 5.5.35 Let G = (σ,μ) be the fuzzy graph with σ∗ = {x, u, v, w}, σ(s) =
1 for all s ∈ σ∗ and μ(xu) = μ(uv) = 0.8, μ(vw) = μ(wx) = 0.9, μ(uw) = 0.4
(Fig. 5.28). Then w is neither fuzzy detour g-interior vertex nor fuzzy endvertex.
Also, note that w is a fuzzy detour g-boundary vertex of v and x. Also, w is a fuzzy
cutvertex.

Theorem 5.5.36 If u is a fuzzy detour g-interior vertex of a connected fuzzy graph
G = (σ,μ), then u is an internal vertex of every maximum spanning tree of G.

Proof Assume that v is fuzzy detour g-interior vertex of a connected fuzzy graph
G = (σ,μ). Then for every vertex u distinct from v, there exists a vertex w such that
v lies between u and w. Thus, the u − w fuzzy g-detour contains v and this strong
path will be in every maximum spanning tree of G. �

The converse of Theorem 5.5.36 need not be true. For the fuzzy graph in Example
5.5.35, w is an internal vertex of every maximum spanning tree of G. But w is not a
fuzzy detour g-interior vertex of G.

Theorem 5.5.37 A vertex u is a fuzzy detour g-interior vertex of a fuzzy tree G =
(σ,μ) if and only if u is an internal vertex of the unique maximum spanning tree of
G.

Proof First part follows from Theorem 5.5.36. Conversely assume u is an internal
vertex of the unique maximum spanning tree of G = (σ,μ). Then u is fuzzy cutver-
tex of G. Hence, u is not fuzzy detour g-boundary vertex of G (Theorem 5.5.28).
Therefore, u is fuzzy detour g-interior vertex of G. �

Theorem 5.5.38 If u is an endvertex of at least one maximum spanning tree of a
connected fuzzy graph G = (σ,μ), then u is fuzzy detour g-boundary vertex of G.

Proof Suppose u is an endvertex of at least one maximum spanning tree of a con-
nected fuzzy graph G = (σ,μ). Then u cannot be an internal vertex of every max-
imum spanning tree of G. Therefore, u is not fuzzy detour g-interior vertex of G
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(Theorem 5.5.36). Thus, by Theorem 5.5.33, u is a fuzzy detour g-boundary vertex
of G. �

Generally, the converse of Theorem 5.5.38 need not be true. But it is true for fuzzy
trees. For the fuzzy graph in Example 5.5.35, w is a fuzzy detour g-boundary vertex
of G. But there does not exist a maximum spanning tree with w as an endvertex.



Chapter 6
Sequences, Saturation, Intervals and Gates
in Fuzzy Graphs

In this chapter, we discuss three different concepts in fuzzy graphs. The first concept
is that of sequences of fuzzy graphs, which allow us to connect a fuzzy graph to a
sequence space. Most of the fuzzy graph structures are characterized using different
types of sequences. In the second part of this chapter, we discuss saturation in fuzzy
graphs and the third part deals with strong intervals and strong gates in fuzzy graphs.

6.1 Special Sequences in Fuzzy Graphs

The problem of determining the structure of a fuzzy graph is a challenging one. In
[116], an algorithm for the identification of different types of edges of a fuzzy graph is
provided. This algorithm is very useful even for fuzzy graphs with a large number of
vertices. It divides the edges to the three different types discussed in Chap. 3, namely
α, β and δ edges. The contents of this section are from [107], in which Mathew and
Mathew introduced three different sequences based on the categorization of edges,
which will very effectively determine the nature and structure of certain types of
fuzzy graphs. We only consider undirected fuzzy graphs without loops and multiple
edges in this section.

Definition 6.1.1 Let G = (σ,μ) be a fuzzy graph with σ∗ = {v1, v2, . . . , vp} in
some order. Then a finite sequence αs(G) = (n1, n2, n3, . . . , np) is called the α-
sequence of G if ni represents the number of α-strong edges incident at vi. ni is
equal to zero if there are no α-strong edges incident at vi.

Remark 6.1.2 Similar toDefinition 6.1.1,we can have the definition of aβ-sequence.
IfG = (σ,μ) is a fuzzy graphwith vertex set σ∗ = {v1, v2, . . . , vp}, a finite sequence
βs(G) = (n1, n2, n3, . . . , np) is called the β-sequence of G if ni is the number of β-
strong edges incident at vi and equals to zero, if there are no β-strong edges incident
at vi.

© Springer International Publishing AG 2018
S. Mathew et al., Fuzzy Graph Theory, Studies in Fuzziness
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Fig. 6.1 Fuzzy graph G
with all types of edges

Definition 6.1.3 Let G = (σ,μ) be a fuzzy graph with σ∗ = {v1, v2, . . . , vp}. Then
a finite sequence Ss = (n1, n2, n3, . . . , np) is called the strong sequence of G if ni
is the number of α and β strong edges incident at vi and equals to zero, if there are
no α or β strong edges incident at vi.

If there is no confusion regarding the fuzzy graph G, we use the notation αs, βs

and Ss instead of αs(G), βs(G) and Ss(G). In the following example (Fig. 6.1), we
find these sequences.

Example 6.1.4 LetG = (σ,μ)withσ∗ = {a, b, c, d},σ(a) = σ(b) = σ(c) = σ(d) =
1, μ(ab) = 0.9, μ(bc) = μ(cd) = 0.4, μ(da) = 0.5 and μ(bd) = 0.8
(Fig. 6.1). Clearly, G contains all types of edges. In G, α, β and strong sequences
are αs = (1, 2, 0, 1), βs = (0, 1, 2, 1) and ss = (1, 3, 2, 2), respectively.

As discussed before, blocks of graphs and fuzzy graphs play important roles in
several structural problems in chemistry [182]. Characterization of blocks of fuzzy
graphs is a challenging problem. In this section, we present a necessary condition,
which must be satisfied by a block and two necessary and sufficient conditions for a
block. In the second characterization, we use the notion of strong sequences. These
characterizations are comparatively less time consuming than other methods in the
literature.

Definition 6.1.5 A sequence of integers is called a binary sequence if it contains
only 0’s and 1’s.

Theorem 6.1.6 Let G = (σ,μ) be a connected fuzzy graph. If G is a block, then
αs(G) is a binary sequence.

Proof Suppose that G = (σ,μ) is a block. We have to prove that αs(G) is binary.
That is, we need to prove that αs(G) contains only 0’s and 1’s. If possible, suppose
the contrary. Suppose that there exists an entry which is at least 2 in αs(G). Let
ni = 2. That is, there are 2 different α-strong edges incident at the vertex vi. Now, an
edge in μ∗ ofG is a fuzzy bridge if and only if it is anα-strong edge (Theorem 3.2.9).
Also, if a vertex is common tomore than one fuzzy bridge, then it is a fuzzy cutvertex
(Theorem 2.2.11). Therefore, we see that vi is a fuzzy cutvertex of G, which is a
contradiction to our assumption that the fuzzy graph G is free from fuzzy cutvertices
because it is a block. So our assumption is wrong. Hence, ni < 2. That is, ni = 0 or
1. Thus, αs(G) is binary. �

http://dx.doi.org/10.1007/978-3-319-71407-3_3
http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Fig. 6.2 A fuzzy graph with
a cutvertex

Note that the above condition is only necessary. It is not sufficient as seen from
the following example.

Example 6.1.7 Let G = (σ,μ) be the fuzzy graph given in Fig. 6.2. Here, σ∗ =
{a, b, c, d, e},σ(s) = 1 for all s ∈ σ∗ andμ(ae) = μ(ad) = 0.2 andμ(bd) = μ(bc) =
μ(ed) = μ(dc) = 0.4. Note that the α-sequence of G is, αs(G) = (1, 0, 0,
0, 1). It is a binary sequence. But the fuzzy graph is not a block because the vertex
d is a cutvertex and hence is a fuzzy cutvertex.

The converse of Theorem 6.1.6 is true for a subcategory of fuzzy graphs only. In
the next characterization, the underlying graph G∗ of G is restricted to be a block.
This means that G∗ has no cutvertices.

Theorem 6.1.8 Let G = (σ,μ) be a connected fuzzy graph such that the underlying
graph G∗ has no cutvertices. Then G is a block if and only if αs(G) is a binary.

Proof Let G = (σ,μ) be a connected fuzzy graph such that the underlying graph
G∗ is a block. If G is also a block, then by Theorem 6.1.6, αs(G) is binary.

Conversely, suppose that, αs(G) is a binary sequence. We have to prove that G
is a block. That is, we have to prove that G has no fuzzy cutvertices. If possible, let
G has a fuzzy cutvertex, say, vi. Then there exists two vertices u and w in G such
that u �= vi �= w and CONNG−vi(u, w) < CONNG(u, w). Because G∗ is a block,
it has no cutvertices, and hence vi is not a cutvertex. Therefore, we can consider
many possible u − w paths not passing through the vertex vi. Now, from the above
inequality, clearly the weights of all edges in the u − vi − w path are strictly greater
than weights of all edges in the possible u − w paths, which are not passing through
the vertex vi. This means, all edges in the u − vi − w path are α-strong, and hence vi
is incident with at least 2 different α-strong edges. Therefore, ni = 2, which shows
that αs(G) is not binary. This is a contradiction. So our assumption is wrong. Hence,
G is a block. �

Next we have a characterization of blocks using α strong sequences.

Theorem 6.1.9 ([107]) Let G = (σ,μ) be a connected fuzzy graph. Then G is a
block if and only if the following conditions are satisfied.

(i) αs(G) is a binary sequence.
(ii) For any given pair of vertices u v in σ∗, there exists a cycle C, containing u

and v such that Ss(C) contains only entries which are at the least 2.
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Proof Let G = (σ,μ) be a connected fuzzy graph. First suppose that G is a block.
We have to prove conditions (i) and (ii). The proof of condition (i) is the same as that
of Theorem 6.1.6. Now, we prove condition (ii) as follows. Let u and v be any two
vertices of G. We have to prove that u and v lie on a common cycle C such that all
entries in Ss(C) are at least 2. That is, we need to prove that u and v lie on a common
strong cycle C. If possible, suppose the contrary. Let there be no common strong
cycles containing both u and v. There are two cases arise.

Case 1: uv is a strong edge.
Because u and v are not on any strong cycle and edge uv is strong, the edge uv

lies on every MST of G. Now, by Corollary 2.2.4 an edge belonging to every MST
is a fuzzy bridge. Hence, uv is a fuzzy bridge.

If u is an end vertex of all maximum spanning trees, then clearly v is the common
vertex of at least 2 fuzzy bridges, and hence it will be a fuzzy cutvertex of G, which
is a contradiction to our assumption that G is free from fuzzy cutvertices as it is a
block. On the other hand, if v is an end vertex of all MST ′s, then u will be a fuzzy
cutvertex of G, contradiction to our assumption.

Now, suppose that u is an end vertex of MST , T1 and v is an end vertex of MST ,
T2. Because T1 is a spanning tree, v will be an internal vertex of T1. Letw be a strong
neighbor of u in T2. Clearly, there appears a strong path P in T1 from u to w through
v. This path P together with the strong edge uw forms a strong cycle C in G, which
is also a contradiction.

Case 2: uv is a δ-edge.
If uv is a δ-edge, then there exists a strong path between u and v. Because there

is a unique strong u − v path P in G, it belongs to allMST ′s and all internal vertices
of P are fuzzy cutvertices of G, which is a contradiction.

So in all cases, our assumption is wrong. Hence, there exists a common strong
cycle C, containing any given pair of vertices u and v. Because C is strong, Ss(C)
contains entries which are at least 2 only.

Conversely, suppose conditions (i) and (ii) hold. We have to prove that G is a
block. That is, we need to prove that G has no fuzzy cutvertices. By condition (i), it
is clear that at most one α-strong edge is incident at every vertex. By condition (ii),
any given pair of vertices u and v lies on a common strong cycle. So if we delete
a vertex from G, then the strength of connectedness between every pair of vertices
remains the same. Thus, no vertex of G can be a fuzzy cutvertex and hence G is a
block. �

There are several methods and algorithms for the identification of a fuzzy tree in
the literature. In this section, we provide different characterizations for fuzzy trees.
We use the concepts of sequences, maximum spanning trees, and sequence sums in
these results. As explained before, these results can be used to determine the complete
structure of certain types of fuzzy graphs. Also, these results link fuzzy graphs to
sequence spaces and hence to functional analysis.

Theorem 6.1.10 If G = (σ,μ) is a fuzzy tree and |σ∗| = p, then αs(G) ∈ (Z+)p.

http://dx.doi.org/10.1007/978-3-319-71407-3_2
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Fig. 6.3 A fuzzy graph with
2 cutvertices

Proof By the definition of αs(G), it is trivial that all of its elements are greater
than or equal to zero. Here, we want to prove that all elements in αs(G) are at least
unity. Suppose the contrary. Let the ith element in αs(G), say, ni be zero. Because
ni = 0, the corresponding vertex vi will not be incident with any α-strong edge.
This will result in the disconnection of the maximum spanning tree F of G, which
is a contradiction to the definition of F. So our assumption is wrong and hence all
elements of αs(G) are at least unity. �

The condition in Theorem 6.1.10 is not sufficient as seen from the following
example.

Example 6.1.11 Consider the fuzzy graph G = (σ,μ) with σ∗ = {a, b, c, d, e, f },
μ(ab) = μ(cf ) = μ(de) = 0.4 and μ(bc) = μ(cd) = μ(ad) = 0.3 (Fig. 6.3). In this
fuzzy graph, αs(G) = (1, 1, 1, 1, 1, 1). But the fuzzy graph is not a fuzzy tree. Here
vertices c and d are cutvertices of the fuzzy graph.

The next result helps us to obtain the number of fuzzy cutvertices of a fuzzy tree
by looking at the α-sequence of G.

Theorem 6.1.12 Let G = (σ,μ) be a connected fuzzy graph such that |σ∗| = p. Let
t be a positive integer such that t ≤ p. If αs(G) contains t elements which are at least
2, then G has exactly t fuzzy cutvertices.

Proof Let G = (σ,μ) be a fuzzy tree. Let F be the spanning tree of G with the
property given in the definition of a fuzzy tree. Then by Theorem 2.3.16, the internal
vertices ofF are the fuzzy cutvertices ofG. Also, we know that, if a vertex is common
to more than one α-strong edges, then it is a fuzzy cutvertex (Theorems 2.2.11 and
3.2.9). So the vertex of G corresponding to an entry in αs(G)which is at least 2 must
be a fuzzy cutvertex. �

If the condition in the above theorem were also sufficient, then we would be able
to identify the fuzzy cutvertices of G with the information about the α-sequence of
G. But due to its nonsufficiency, we can get the number of fuzzy cutvertices of G
only. We illustrate this fact in the following example.

http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_3
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Example 6.1.13 Consider the fuzzy graph given in Example 6.1.7 (Fig. 6.2). Here,
the vertex d is a cutvertex and hence a fuzzy cutvertex. But the entry in theα-sequence
corresponding to vertex d is 0.

If we restrict the underlying graph G∗ of G to be a block, then the non sufficiency
of Theorem 6.1.12 can be avoided.

Theorem 6.1.14 Let G = (σ,μ) be a connected fuzzy graph such that |V | = p and
the underlying graph G∗ is a block. Then the fuzzy cutvertices of G are exactly those
vertices whose entry in αs(G) is at least 2.

Definition 6.1.15 A zero sequence is a real sequence having all entries 0. It is
denoted by (0).

The following theorem is a characterization of fuzzy trees, using the concept of
β-sequence of a fuzzy graph.

Theorem 6.1.16 Aconnected fuzzy graphG is a fuzzy tree if and only ifβs(G) = (0).

Proof Let G = (σ,μ) be a connected fuzzy graph. Suppose that G is a fuzzy tree.
Then all the strong edges of G are fuzzy bridges. Now, an edge e = uv in G is a
fuzzy bridge if and only if it is α-strong (Theorem 3.2.9). Thus, all the strong edges
of G are α-strong. Therefore, G has no β strong edges and hence βs(G) = (0).

If G is a tree, there is nothing to prove. If G is not a tree, then G has a cycle,
say, C. Because G is a fuzzy tree, by Theorem 2.3.1, there exists an edge e = uv
such that w(e) < CONNG−e(u, v), where G − e is the subgraph of G obtained by
deleting the edge e fromG. Thismeans that e is a δ-edge. IfG − e is a fuzzy spanning
tree of G, then all the edges in G − e are α. Hence, βs(G) = (0). If G − e is not
a fuzzy spanning tree of G, then continue the above procedure of deleting δ edges
from G − e until we get spanning tree.

Conversely, suppose that βs(G) = (0). We have to prove that G is a fuzzy tree.
If G has no fuzzy cycles, then G is a tree and hence a fuzzy tree. Suppose that G
has a cycle, say, C. Then C contains only α-strong and δ-edges. Also, note that all
the edges of C cannot be α-strong because otherwise it will contradict the definition
of α-strong edges. Thus, there exists at least one δ-edge say e in C. If we delete e
from C, we get a maximum spanning tree of G. Similarly, remove one δ edge each
from the existing cycles of G. Finally, we get a unique maximum spanning tree of
G. Thus, it follows that G is a fuzzy tree. �

We know that, if G is a fuzzy tree and F, the spanning tree in the definition, then
the edges of F are the fuzzy bridges of G. That is, edges of F are the α-strong edges
of G. Thus, F has no β strong edges and hence βs(F) contains only zeros. Also,
because F is a spanning tree of G, βs(G) = βs(F).

http://dx.doi.org/10.1007/978-3-319-71407-3_3
http://dx.doi.org/10.1007/978-3-319-71407-3_2
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In the following theorem, we present another necessary and sufficient condition
for a fuzzy graph G to be a fuzzy tree.

Theorem 6.1.17 A connected fuzzy graph G = (σ,μ) is a fuzzy tree if and only if
αs(G) = αs(F), where F is a maximum spanning tree of G.

Proof Suppose that G = (σ,μ) is a fuzzy tree. If G itself is a tree, then F and
G are isomorphic and hence αs(G) = αs(F). If G is not a tree, then G contains
a cycle C. Because G is a fuzzy tree, there exists an edge e = uv in C such that
w(e) < CONNG−e(u, v), where G − e is the fuzzy subgraph obtained by deleting
the edge e from G. If G − e is a fuzzy tree, then G − e and F are isomorphic
and because e is a δ-edge, we get αs(G) = αs(F.) If not, then continue the above
procedure of deleting δ-edges from cycles inG − e until we get amaximum spanning
tree F of G such that αs(G) = αs(F).

Conversely, assume that αs(G) = αs(F), where F is a maximum spanning tree of
G. We want to prove thatG is a fuzzy tree. If possible, letG be not a fuzzy tree. Then
there exists at least one β-strong edge in G. Let uv be a β-strong edge in G. Then
there exists at least one another u − v path, say, P in G such that μ(xy) ≥ μ(uv) for
every edge xy in P. Now, the union of P and edge uv is a cycle in G. Suppose that the
number of α-strong edges incident at u in G is t. Now, to get F, delete the edge uv
fromG, which has the least weight inC. Then the number ofα-strong edges incident
at u in F is t + 1, which is a contradiction to our assumption that αs(G) = αs(F).
Hence, our assumption is wrong. Thus, G is a fuzzy tree. �

If a connected fuzzy graph G is a tree (not a fuzzy tree), then G has no cycles and
every edge in it is an α-strong edge. Therefore, the sum of the elements in αs(G) is
equal to twice the number of edges of G. The next theorem is another necessary and
sufficient condition for a connected fuzzy graphG to be a fuzzy tree. The uniqueness
of the maximum spanning tree F of G is used in the proof.

Theorem 6.1.18 A connected fuzzy graph G = (σ,μ) is a fuzzy tree if and only if
αs(F) is the same for all maximum spanning trees F of G.

Proof We know by Theorem 2.3.19 that a connected fuzzy graph is a fuzzy tree if
and only if it has a unique maximum spanning tree. Moreover the spanning tree F in
the definition of fuzzy tree, is a maximum spanning tree. �

In the next theorem,we characterize fuzzy trees by usingα-sequences and number
of disjoint cycles.

Theorem 6.1.19 Let G = (σ,μ) be a connected fuzzy graph with exactly k-edge
disjoint cycles. Then G is a fuzzy tree if and only if

∑
ni∈αs(G) ni = 2(e − k), where

e is the total number of edges of G.

Proof LetG = (σ,μ)be a connected fuzzygraphwith exactly k-edge disjoint cycles.
Suppose that G is a fuzzy tree. Then it has no β-strong edges. This means all edges
present in G are either α-strong or δ edges. Now, given that G has k-edge disjoint

http://dx.doi.org/10.1007/978-3-319-71407-3_2
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cycles. Consider an arbitrary cycle, say, C. Let the minimum of the weights of all
edges in C be w and let it be assigned to the edge uv. That is, μ(uv) = w. Now, all
the edges of C have weights strictly greater than w. For if, let there be another edge
ab in C with membership w. Then CONNG−uv(u, v) = w = μ(uv), which implies
that uv is a β-strong edge. Hence, our assumption is wrong. So the minimum weight
in a cycle is assigned to exactly one edge in C. So the edge uv is the only δ-edge
in C and all other edges are α-strong. This situation is same in all the k cycles in
G, which are disjoint. Thus, the total number of δ-edges of G = k, and hence total
number of α-strong edges of G = e − k. Therefore,

∑
ni∈αs(G) ni = 2(e − k).

Conversely, assume that
∑

ni∈αs(G) ni = 2(e − k), where e is the total number of
edges of G. We have to prove that G is a fuzzy tree. It is enough if we prove that
G has no β-strong edges. Suppose the contrary. Let there be a β-strong edge, say,
e exists in G. Then clearly e lies on a cycle, say, C. Then there will be at least one
edge, say e′ in C, which is different from e such that μ(e) = μ(e′). This means that
e′ is also a β-strong edge. Thus, there will be at most e − k − 1 number of α-strong
edges in G. It is a contradiction to our assumption

∑
ni∈αs(G) ni = 2(e − k). So G is

a fuzzy tree. �
If G = (σ,μ) is a simple connected fuzzy graph such that the number of edges

is at most number of vertices, then all cycles of G will be edge disjoint. So we have
the following results.

Corollary 6.1.20 LetG = (σ,μ)bea simple connected fuzzy graph such that |μ∗| ≤
|σ∗| and have exactly k-cycles. Then G is a fuzzy tree if and only if

∑
ni∈αs(G) ni =

2(e − k), where e is the total number of edges of G.

Corollary 6.1.21 A connected fuzzy graph G = (σ,μ) is a tree, not a fuzzy tree if
and only if

∑
ni∈αs(G) ni = 2e, where e = |μ∗| .

6.2 Saturation in Fuzzy Graphs

This section is based on [108]. Here, we discuss the concepts of vertex and edge
saturation counts of fuzzy graphs. The vertex saturation count of a fuzzy graph gives
a measure of the average strong degree of the fuzzy graph and the edge saturation
count, the percentage of strong edges in the fuzzy graph. The following definitions
are valid for different unweighted graph structures also. We consider fuzzy graphs
G = (σ,μ)with σ(u) = 1 for all u ∈ σ∗ for convenience, unless otherwise specified.

Definition 6.2.1 LetG = (σ,μ)be a connected fuzzygraph.Then the strongvertex
count of G is defined and denoted by

SV (G) = number of strong edges of G

number of vertices of G

= number of α or β strong edges

|σ∗| ,
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Fig. 6.4 A graph with
strong saturation count

and the strong edge count of G is defined and denoted by

SE(G) = number of strong edges of G

number of edges of G

= number of α or β strong edges

|μ∗| .

Remark 6.2.2 If we restrict the numerator in Definition 6.2.1 to the number of α-
strong edges only, then we get α-vertex count αV (G) and α-edge count αE(G),

respectively. Similarly, replacing the numerator by β strong edges, we get the β-
vertex count βV (G) and the β-edge count βE(G), respectively.

Example 6.2.3 Let G = (σ,μ) be the fuzzy graph with σ∗ = {a, b, c, d}, μ(ab) =
μ(cd) = 0.4, μ(bc) = 0.5 and μ(ad) = 0.3 (Fig. 6.4). Note that σ(x) = 1 for all
x ∈ σ∗. The vertex counts and edge counts of G, are given in the following table.

αV (G) = 3
4 , αE(G) = 3

5 ,

βV (G) = 0
4 = 0, βE(G) = 0

5 = 0,

SV (G) = 3
4 , SE(G) = 3

5 .

Example 6.2.4 Let G = (σ,μ) be the fuzzy graph whose underlying graph is com-
pletewithσ∗ = {a, b, c, d, e},μ(ab) = μ(ac) = μ(ad) = μ(be) = μ(cd) = 0.5,μ(ae) =
μ(bd) = 0.6, μ(cd) = μ(ce) = 0.8 and μ(bc) = 0.9 (Fig. 6.5). The edge classifica-
tion of G is given in the following table.

ab ac ad ae bc bd be cd ce de
δ δ β α α δ δ α α δ

The saturation counts in G are given below.

αV (G) = 4
5 , αE(G) = 4

10 ,

βV (G) = 1
5 , βE(G) = 1

10 ,

SV (G) = 5
5 = 1, SE(G) = 5

10 = 1
2 .
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Fig. 6.5 A graph with
nonzero beta saturation count

As all the strong edges of a fuzzy tree G are α-strong, αV (G) = n−1
n and

αE(G) = n−1
n−1 = 1. For any simple fuzzy graph structure, the number of α-strong

edges never exceed the number of vertices. In a complete fuzzy graph, by assigning
equal membership values to all the vertices, we can make all the edges β-strong. For
such a fuzzy graph G, βV (G) = nC2

n and βE(G) = nC2
nC2

= 1.
Based on all these observations, we have the following proposition.

Proposition 6.2.5 Let G = (σ,μ) be a connected fuzzy graph with |σ∗| = n. Then
we have the following inequalities.

(i) 0 ≤ αV (G) ≤ n−1
n ,

(ii) 0 ≤ βV (G) ≤ nC2
n ,

(iii) 0 ≤ SV (G) ≤ nC2
n ,

(iv) 0 ≤ αE(G) ≤ 1,
(v) 0 ≤ βE(G) ≤ 1,
(vi) 0 ≤ SE(G) ≤ 1.

As the strong saturation count is simply the sum of α and β saturation counts, the
proofs of all the above inequalities are immediate and omitted.

In the following proposition, we make a comparison between the edge count and
vertex count of a fuzzy graph.

Proposition 6.2.6 Let G = (σ,μ) be a connected fuzzy graph with |σ∗| = n. Then
we have the following inequalities.

(i) 0 ≤ βE(G) ≤ βV (G).

(ii) 0 ≤ SE(G) ≤ SV (G).

Furthermore, if G is any fuzzy graph other than a fuzzy tree, then
(iii) 0 ≤ αE(G) ≤ αV (G).

Proposition 6.2.7 Let G = (σ,μ) be a fuzzy tree, then 0 ≤ αV (G) < αE(G).
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For a fuzzy tree, it is obvious that, αV (G) = n−1
n and αE(G) = n−1

n−1 = 1.
In this section, saturation counts of fuzzy structures like fuzzy trees, cycles and

blocks are discussed. Some useful characterizations for these structures are also
provided. In the following theorem, a characterization for fuzzy trees whose support
are trees is given in terms of its α-vertex and α-edge counts.

Theorem 6.2.8 Let G = (σ,μ) be a connected fuzzy graph with |σ∗| = n, where
n ≥ 2. Then the following statements are equivalent.

(i) G is a tree.
(ii) αV (G) = n−1

n and αE(G) = 1.
(iii) n αV (G) = (n − 1) αE(G).

Proof (i)⇒ (ii).
Suppose that G = (σ,μ) is a fuzzy tree with |σ∗| = n, where n ≥ 2. If G is a

tree, then the unique maximum spanning tree F of G is itself. Then G is connected
and has exactly (n − 1) strong edges. Note that any edge e = uv in G is the unique
strong path between u and v in G. Hence, e is α-strong. Thus, all the (n − 1) edges
of G are α-strong. Hence, αV (G) = n−1

n and αE(G) = 1.
(ii)⇒ (iii).
Suppose that αV (G) = n−1

n and αE(G) = 1. Then nαV (G) = (n − 1) = (n −
1)1 = (n − 1)αE(G) because αE(G) = 1.

(iii)⇒ (i).
Suppose that nαV (G) = (n − 1) αE(G), i.e., αV (G) = n−1

n αE(G). We have to
prove that G is a tree. We have, αV (G)

αE(G)
= (n−1)

n = αV (G), which implies αE(G) = 1.
Thus, all edges in G are α-strong edges, which is possible only if G is connected
and acyclic and hence G is a tree. �

In the following theorem, we present another characterization for fuzzy trees.

Theorem 6.2.9 Let G = (σ,μ) be a connected fuzzy graph. Then G is a fuzzy tree
if and only if αV (G) = SV (G) and αE(G) = SE(G).

Proof Let G = (σ,μ) be a connected fuzzy graph. Suppose that G is a fuzzy tree.
Then by Proposition 2.3.4 and Theorem 3.2.15, it follows that all the edges of G
which are in F are α-strong. Other edges of G will be δ-edges by definition of a
fuzzy tree. Therefore, G has no β strong edges and hence βV (G) = 0

|V | = 0 and

βE(G) = 0
|E| = 0. Consequently, αV (G) = SV (G) and αE(G) = SE(G).

Conversely, suppose thatαV (G) = SV (G) andαE(G) = SE(G).We have to prove
that G is a fuzzy tree. If G has no cycles, then G is a tree and hence is a fuzzy tree.
Suppose thatG has a cycle, say,C. ThenC contains onlyα-strong and δ-edges. Also,
note that all the edges of C cannot be α-strong because otherwise it will contradict
the definition of α-strong edges. Thus, there exists at least one δ-edge in C. When
we delete e from C, if we get a unique maximum spanning tree of G, we are done. If
not, remove δ edges from the existing cycles of G one by one until we get a unique
maximum spanning tree of G proving that G is a fuzzy tree. �

http://dx.doi.org/10.1007/978-3-319-71407-3_2
http://dx.doi.org/10.1007/978-3-319-71407-3_3


206 6 Sequences, Saturation, Intervals and Gates in Fuzzy Graphs

Next result shows that the α vertex counts of a fuzzy tree and its corresponding
maximum spanning tree are the same.

Theorem 6.2.10 A connected fuzzy graph G = (σ,μ) is a fuzzy tree if and only
if αV (G) = αV (F), where F is the corresponding unique maximum spanning tree
of G.

Proof Suppose that G = (σ,μ) is a fuzzy tree. If G is itself a tree, then F and G are
isomorphic and,

αV (G) = number of α strong edges in G

|V |
= number of α strong edges in F

|V | = αV (F).

If G is not a tree, then G contains a cycle C. Because G is a fuzzy tree, there exists
an edge e = uv in C such that w(e) < CONNG−e(u, v), where G − e is the fuzzy
subgraph obtained by deleting the edge e from G. If G − e is a tree, then G − e
and F are isomorphic and because e is a δ edge, we get αV (G) = αV (F). If not,
continue the above procedure of deleting δ edges from cycles in G − e until we get
a maximum spanning tree F of G such that αV (G) = αV (F).

Conversely, assume that αV (G) = αV (F), where F is the corresponding maxi-
mum spanning tree of G. We want to prove G is a fuzzy tree. If possible, suppose
G is not a fuzzy tree. Then there exists at least one β-strong edge in G. Let uv be
a β-strong edge in G. Then there exists at least one another u − v path, say, P in G
such that μ(xy) ≥ μ(uv) for every edge xy in P. Now, the union of P and edge uv
is a cycle in G. Suppose that the number of α-strong edges incident at u in G is t.
Now, to get F, delete the edge uv from G, which has the least weight in C. Then
the number of α-strong edges incident at u in F is t + 1. Let t′ be the remaining
number of α-strong edges of G. Then αV (G) = t+t′

|V | and αV (F) = t+1+t′
|V | , which

is a contradiction to our assumption that αV (G) = αV (F). Thus, our assumption is
wrong. Hence, G is a fuzzy tree. �

Next theorem also is a characterization of fuzzy trees.

Theorem 6.2.11 ([108]) Let G = (σ,μ) be a connected fuzzy graph with |σ∗| =
n, (n > 2) and |μ∗| = q. Then the following statements are equivalent.

(i) G is a fuzzy tree.
(ii) nαV (G) = qαE(G).

Proof (i) ⇒ (ii).
Suppose G is a fuzzy tree. Then

αV (G) = number of α strong edges

|V | = n − 1

n
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and

αE(G) = number of α strong edges

|E| = n − 1

q
.

(ii) ⇒ (i).
Suppose that n αV (G) = q αE(G). We have to prove that G is a fuzzy tree. If

possible suppose the contrary. Let G be not a fuzzy tree. We know that a fuzzy graph
G is a fuzzy tree if and only if it has no β-strong edges. Now, becauseG is not a fuzzy
tree, there exists at least one β-strong edge in G. Let uv be a β-strong edge in G.
Then there exists at least one another u − v path, say,P inG such that μ(xy) ≥ μ(uv)
for every edge xy in P. Now, the union of P and edge uv is a cycle in G. Suppose
that the number of α-strong edges incident at u in G is t. Now, to get F (the MST in
the definition of fuzzy trees), delete the edge uv from G, which has the least weight
in C. Then the number of α-strong edges incident at u in F is t + 1. Let t′ be the
remaining number of α-strong edges of G. Then αV (G) = t+t′

|V | and αV (F) = t+1+t′
|V | .

Also, αE(G) = t+t′
q and αE(F) = t+t′+1

n−1 .Now, the assumption, n αV (G) = q αE(G)

becomes n(αE(F) − 1
n ) = (n − 1)(αE(F) − 1), where αV (F) = (n−1)

n and αE(F) =
1. Therefore, we get n = 2, a contradiction to the given condition. So our assumption
is wrong. Hence, G is a fuzzy tree. �

We know that the strong degree of a vertex in a fuzzy graph is greater than or equal
to one. Because the strong edges are further classified into two, we can consider for
further investigation how dense is the distribution of different types of strong edges
in a fuzzy graph.

Definition 6.2.12 Let G = (σ,μ) be a fuzzy graph. G is said to be α-saturated, if=
at least oneα-strong edge is incident at every vertex v ∈ σ∗.G is called β-saturated,
if at least one β-strong edge is incident at every vertex.

As noted above, all fuzzy graphs are trivially strong saturated.

Definition 6.2.13 Let G = (σ,μ) be a fuzzy graph. Then G is called saturated if
it is both α-saturated and β-saturated. That is, at least one α-strong edge and one
β-strong edge is incident on every vertex v ∈ σ∗. Also, a fuzzy graph which is not
saturated is called unsaturated.

Example 6.2.14 Consider the fuzzy graph G = (σ,μ) such that σ∗ = {a, b, c, d},
σ(a) = σ(b) = σ(c) = σ(d) = 1, μ(ab) = μ(cd) = 0.4, μ(ad) = μ(bc) = 0.3 and
μ(ac) = 0.2 (Fig. 6.6). Now, G is both α-saturated and β-saturated, and hence it is
saturated.

Example 6.2.15 Consider the fuzzy graph G = (σ,μ) given in Fig. 6.7 with 8 ver-
tices and 12 edges. Even though the fuzzy graph is α-saturated, it is unsaturated.
Every vertex except a is incident with both α and β strong edges.
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Fig. 6.6 A saturated fuzzy
graph

Fig. 6.7 An unsaturated
fuzzy graph

In the previous section, we have seen that a finite sequence of real numbers
αs(G) = (n1, n2, n3, . . . , np) is called the α-sequence of G = (σ,μ) if ni = number
of α strong edges incident on vi and 0, if no α-strong edges are incident at vi, where
G is a fuzzy graph with |σ∗| = p. Similarly, β sequences were also defined. Note
that ∑

ni∈αS(G)

ni +
∑

ni∈βS(G)

ni =
∑

ni∈SS(G)

ni.

In the next theorem,wediscuss relationships between the sequences and saturation
of a fuzzy graph.

Theorem 6.2.16 Let G = (σ,μ) be a fuzzy graph with |σ∗| = p vertices. Then G is
(i) α-saturated if and only if the least entry in αS(G) is unity. That is,

∑
ni∈αS(G) ni

is at the least p;
(ii) β-saturated if and only if the least entry in βS(G) is unity. That is,

∑
ni∈βS(G) ni

is at the least p;
(iii) Saturated, only if the least entry in SS(G) is two. That is, if

∑
ni∈SS(G) ni is at

the least 2p.
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Fig. 6.8 An unsaturated
fuzzy graph

Proof Let G = (σ,μ) be a fuzzy graph with order |σ∗| = p. Let αS(G), βS(G) and
SS(G) be the α, β and strong sequences of G, respectively.

Suppose that G is α-saturated. Then all the vertices are incident with at least one
α-strong edge. This means unity is the least entry in αS(G). Thus,

∑

ni∈αS(G)

ni ≥ 1 + 1 + 1 + · · · + 1︸ ︷︷ ︸
p times

= p.

Conversely, assume that the least entry in αS(G) is unity. This means all the p
vertices of G are incident with at least one α strong edge and hence G is α-saturated.

In a similar manner, we can prove the result for β-saturated fuzzy graphs.
Now, we have to prove the result for saturated fuzzy graphs. Suppose that G is

saturated. That is, G is both α-saturated and β-saturated. That is, each vertex of G is
incident with at least one α-strong edge and with at least one β-strong edge. Thus,
the least entry in SS(G) is at least two. �

Note that the condition for saturated graphs is only necessary. There can be a
situation in which a given vertex can be incident with 2 or more α-strong edges only
(no β-strong edges). In that case also, the least entry in SS(G) will be at least two,
but the graph need not be saturated. This is clear from the following example.

Example 6.2.17 Consider the fuzzy graph G = (σ,μ) in Fig. 6.8, whose underlying
graph is C4. σ∗ = {a, b, c, d}, μ(ab) = μ(ad) = 0.6 and μ(bc) = μ(cd) = 0.5. The
strong sequence of G is Ss(G) = (2, 2, 2, 2), but G is unsaturated.

In the following theorem, upper bounds for saturation counts are provided.

Theorem 6.2.18 Let G = (σ,μ) be a fuzzy graph with |σ∗| = n. If G is
(i) α-saturated, then αV (G) ≥ 0.5;
(ii) β-saturated, then βV (G) ≥ 0.5;
(iii) Saturated, then SV (G) ≥ 1.

Proof Suppose that G is α-saturated. Then each vertex is incident with at least one
α-strong edge. This means G contains at least n

2 , α-strong edges. Hence, αV (G)

≥ n/2
n = 0.5. In the same manner, we can prove the result for β saturated graphs.

Now, we have to prove the result for saturated graphs. Suppose that G is a saturated
fuzzy graph. Then G is both α-saturated and β-saturated. That is, each vertex of G



210 6 Sequences, Saturation, Intervals and Gates in Fuzzy Graphs

is incident with at least one α-strong edge and with at least one β-strong edge. Thus,
the number of strong edges of G = (number of α-strong edges of G + number of
β-strong edges of G) ≥ n

2 + n
2 = n. Hence, SV (G) ≥ n

n = 1. �

Note that condition (i) in Theorem 6.2.18 is not sufficient, as it is clear from
Example 6.2.17.

In the following theorem, we characterize saturated fuzzy cycles. We denote by
Cn, a fuzzy cycle C = (τ , ν) with |τ ∗| = n.

Theorem 6.2.19 Let Cn be a fuzzy cycle. Then it is saturated if and only if the
following two conditions are satisfied.

(i) n = 2k, where k is an integer;
(ii) α-strong and β-strong edges appears alternatively on Cn.

Proof LetCn be a fuzzy cycle. Then it has no δ edges. That is, all the edges appearing
on Cn are either α strong or β strong. Suppose that Cn is saturated. Then it is both
α-saturated and β-saturated. That is, each of its vertices are incident with at least one
α-strong edge and with at least one β-strong edge. This implies that the number of
α-strong edges = the number of β-strong edges = k, where k is a positive integer
and k + k = n. Thus, n = 2k. Also, each vertex is incident with both α-strong and
β-strong edges, which happens only when they appear alternatively on Cn.

Conversely, suppose that Cn is an even cycle and α-strong and β-strong edges
appear alternatively in Cn. This means all the vertices are incident with exactly one
α-strong and exactly with one β-strong edges. Then Cn is both α-saturated and
β-saturated. Hence, Cn is saturated. �

Example 6.2.20 Consider fuzzy graphs G1 in Fig. 6.9 and G2 in Fig. 6.10. All the
edgeswithmembership value 0.5 areα-strong, and edgeswith value 0.2 areβ-strong.
In Fig. 6.9, the fuzzy cycle is a saturated cycle. Note that the number of vertices is
even. In Fig. 6.10, there are odd number of vertices, and hence one vertex is incident
with two α-strong edges and no β-strong edges. Thus, the fuzzy cycle is α-saturated,
but not β-saturated. Hence, it is not saturated.

Fig. 6.9 F-cycle on 10
vertices
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Fig. 6.10 F-cycle on 11
vertices

Recall the definitions of strongest strong cycle and locamin cycle. In the following
theorem, we present another characterization for saturated fuzzy cycles.

Theorem 6.2.21 Let G = (σ,μ) be a fuzzy cycle. Then the following are equivalent.
(i) G is either saturated or β-saturated.
(ii) G is a block.
(iii) G is a strongest strong cycle (SSC).
(iv) G is a locamin cycle.

Proof The equivalence of conditions (ii), (iii) and (iv) are proved in Theorem 2.8.4.
Now, we give only the equivalence between (i) and (ii).

(i) ⇒ (ii).
Suppose that the fuzzy cycle G is saturated. Then it is both α-saturated and β-

saturated. That is, each vertex of G is incident with at least one α-strong edge and at
least one β-strong edge. Because G is a cycle, each vertex is incident with exactly
two edges. Thus, exactly oneα-strong edge and exactly one β-strong edge is incident
on every vertex. Hence, removal of any vertex from G will not reduce the strength
of connectedness between any other vertices. This implies that no vertex of G is a
fuzzy cutvertex, and hence G is a block.

Also, suppose that the fuzzy cycle G is β-saturated. That is, each vertex of G is
incident with at least one β-strong edge. We prove that G is a block. We claim that
G has no fuzzy cutvertices. Suppose the contrary. Let x be a fuzzy cutvertex of G.
Then there exists two vertices u and v where u �= x �= v such that u − x − v path
has more strength than x − v path. This means all the edges in the u − x − v path
have weights more than the strength of the x − y path. That is, all the edges in the
u − x − y path are α-strong. Thus, both the edges, which are incident on x will be
α-strong. It is a contradiction to our assumption that G is β-saturated. Hence, our
assumption is wrong and the claim is true. G has no fuzzy cutvertices and G is a
block.
(ii) ⇒ (i).

Suppose that the fuzzy cycle G is a block. We claim that G has no δ-edges.
Suppose the contrary. Let e = uv be a δ-edge in G. Then all other edges in G will

http://dx.doi.org/10.1007/978-3-319-71407-3_2
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be α-strong and thereby G will have exactly n − 2 fuzzy cutvertices, which is a
contradiction to our assumption that G is a block. So our assumption is wrong and
the claim is true. Thus, only α-strong and β-strong edges are in G.

If G contains both α-strong and β-strong edges, then they must be appeared
alternatively; otherwise the block structure will be lost. If the number of α-strong
edges = number of β-strong edges = n

2 , then G is both α-saturated and β-saturated,
and hence saturated. If the number ofα-strong edges< the number ofβ-strong edges,
then G will be β-saturated only. The case where the number of α-strong edges >
the number of β-strong edges, will not happen, as it looses the block structure. If all
the edges in G are β-strong, then it is β-saturated. Thus, in all the cases, G is either
saturated or β-saturated. �

LetG = (σ,μ) be a saturated cycle or aβ-saturated cycle. ThenwehaveαV (G) =
0.5 and βV (G) = 0.5 or 0.5 ≤ βV (G) ≤ 1. Thus, Theorem 6.2.21 may be rewritten
as follows.

Theorem 6.2.22 Let G = (σ,μ) be fuzzy cycle. Then the following are equivalent.
(i) αV (G) = 0.5 and βV (G) = 0.5 or 0.5 ≤ βV (G) ≤ 1.
(ii) G is either saturated or β-saturated.
(iii) G is a block.
(iv) G is a strongest strong cycle (SSC).
(v) G is a locamin cycle.

In the following example, it is shown that all blocks in fuzzy graphs are not
saturated and all saturated graphs are not blocks.

Example 6.2.23 The fuzzy graph G = (σ,μ) given in Fig. 6.11 is an unsaturated
fuzzy graph which is a block. Here σ(s) = 1 for all s ∈ σ∗ and μ(xy) = 0.5 for every
edge other than two edges of μ value 0.1. In G, edges with membership value 0.1
are δ, and with 0.5 are β-strong. The graph is unsaturated and it is a block.

Now, we compute the vertex and edge saturation counts for a complete fuzzy
graph (CFG).

Fig. 6.11 Unsaturated block
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By Lemma 3.2.22, a CFG has no δ edges and at most one α-strong edge. All
CFG’s are blocks in fuzzy graphs. Based on these observations,we have the following
theorem.

Theorem 6.2.24 Let G = (σ,μ) be a CFG with |σ∗| = n. Then we have the follow-
ing inequalities.

(i) 0 ≤ αV (G) ≤ 1
n .

(ii) n2−n−2
2n ≤ βV (G) ≤ n−1

2 .

Proof Let G = (σ,μ) be a CFG with |σ∗| = n. Then G has at most one α-strong
edge. Hence, 0 ≤ αV (G) ≤ 1

n . Because G has no δ edges, the minimum number of
β-strong edges in G is

nC2 − 1 = n(n − 1)

2
− 1.

Thus,

βV (G) ≥
n(n−1)

2 − 1

n
= n2 − n − 2

2n
.

Hence, n2−n−2
2n ≤ βV (G) ≤ n−1

2 . �

From the definition of CFG’s, it is clear that all CFG’s are unsaturated.
In the following theorem, an upper bound for α-vertex count of a block is given.

Theorem 6.2.25 Let G = (σ,μ) be a block, then αV (G) ≤ 1
2 .

Proof Let G = (σ,μ) be a block on n vertices. We also know that if a vertex w is
common for more than one α-strong edges, then w is a fuzzy cutvertex, and hence
G cannot be a block. Now,

αV (G) = number of α-strong edges in G

|V | ≤ n/2

n
= 1

2
.

�

As a consequence of the above theorem, we have the following two corollaries.

Corollary 6.2.26 A block is α-saturated if and only if αV (G) = 0.5.

Proof Let G = (σ,μ) be a block. Let G be α-saturated. Then each vertex of G is
incident with at least oneα-strong edge. Also, as blocks in fuzzy graphs are free from
fuzzy cutvertices, exactly one α-strong edge is incident with each vertex. Therefore,
αV (G) = n/2

n = 0.5. �

Corollary 6.2.27 There exists no α-saturated blocks of odd order.

From the following example, one can see that only blocks with even order can be
α-saturated. Only the underlying graphs are given.

Example 6.2.28 See Fig. 6.12.

http://dx.doi.org/10.1007/978-3-319-71407-3_3
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Fig. 6.12 Saturated and unsaturated blocks in fuzzy graphs

6.3 Intervals in Fuzzy Graphs

The concept of distance and convexity are important in almost all branches of math-
ematics. We can view a fuzzy graph together with a metric as a metric space, and
hence the concepts like convexity can be easily extended to fuzzy graphs. It was
Mulder [132] who introduced the concept of an interval in graph theory. Several
concepts like transit functions [55, 56] and median graphs were brought into the
literature after that. These concepts have applications in the architecture and design
of interconnection networks. Because these systems are fuzzy to some degree, it is
necessary to extend these ideas to fuzzy graphs. The contents of this section are from
[67]. We have the definition of interval by Mulder as follows.

LetG(V,E) be a finite, connected, simple, loop less graphwith a distance function
d, where d(u, v) is the length of the shortest u − v path. The interval function I on
G is defined as

I(u, v) = {w | d(u, v) = d(u, w) + d(w, v)},

for all u, v ∈ V . The set I(u, v) is the interval between u and v.
In a fuzzy graph there exists a strong path between any two vertices. Recall

Definition 3.1.24. The geodesic distance or g-distance between vertices u, v ∈ σ∗,
denoted by dg(u, v), is defined as the length of the shortest u − v strong path. If u
and v are not connected by a path, then dg(u, v) = ∞. Hence, we have the following
definition.

Definition 6.3.1 Let G = (σ,μ) be a fuzzy graph. The interval between u and v

with respect to the geodesic distance dg is defined as

http://dx.doi.org/10.1007/978-3-319-71407-3_3
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Fig. 6.13 Intervals in a
fuzzy graph G

Ig(u, v) = {(x,σ(x)) ∈ σ∗ × [0, 1] | dg(u, v) = dg(u, x) + dg(x, v)}.

The support of the interval Ig(u, v) is defined as

I∗g (u, v) = {x ∈ σ∗ | (x,σ(x)) ∈ Ig(u, v),σ(x) > 0}.

Example 6.3.2 Consider the fuzzy graphG = (σ,μ) in Fig. 6.13.σ∗ = {a, b, c, d, e},
σ(a) = σ(e) = 0.9, σ(d) = σ(c) = 0.8, σ(b) = 0.9, μ(ab) = 0.6, μ(bc) =
μ(ce) = 0.7, μ(ae) = 0.8, μ(ad) = μ(dc) = 0.6. Here, all edges except ab are
strong, because μ(ab) < CONNG−ab(a, b) and for all other edges uv, μ(uv) ≥
CONNG−uv(u, v). So Ig(a, b) = {(a, 0.9), (b, 0.7), (c, 0.8), (d, 0.8), (e, 0.9)}, Ig(a, c) =
{(a, 0.9), (c, 0.8), (d, 0.8), (e, 0.9)}, Ig(a, d) = {(a, 0.9), (d, 0.8)},
Ig(a, e) = {(a, 0.9), (e, 0.9)}.

If H = (τ , ν) is a partial fuzzy subgraph of G = (σ,μ), then for all a, b ∈ τ ∗,
Ig(H)(a, b) ⊆ Ig(G)(a, b). Here, Ig(H)(a, b) and Ig(G)(a, b) denote intervals in H and
G, respectively.

Consider a cycle G = (σ,μ). If G is a fuzzy tree, then for all x, y ∈ σ∗ there
exists a unique strong path in G. So I∗g (u, v) is the set of all vertices in the unique
strong u − v path. Moreover I∗g (u, v) = σ∗ if and only if uv is the unique weakest
edge in G. If G is a fuzzy cycle with n vertices in σ∗, then for all x, y ∈ σ∗, I∗g (x, y)
is the set of all vertices on shortest x − y paths. If n is even, then there exist n

2 pairs
of diametrically opposite vertices x, y in σ∗ such that I∗g (x, y) = σ∗ and for all other
pair of vertices u, v, I∗g (u, v) ⊂ σ∗. If n is odd, then there does not exist any pair of
vertices x, y in σ∗ such that I∗g (x, y) = σ∗. If the edge xy ∈ μ∗ is either α-strong or
β-strong, then I∗g (x, y) = {x, y}. Otherwise, i.e., if xy is a δ-edge, then I∗g (x, y) = σ∗.

Some of the properties of intervals in fuzzy graphs are given in the following
theorem.

Theorem 6.3.3 Let G = (σ,μ) be a fuzzy graph. Then the following properties hold.
Let u, v, w, x ∈ σ∗.

(i) Ig(u, v) = {(u,σ(u)), (v,σ(v))} if and only if uv is a strong edge.
(ii) Ig(u, v) = Ig(v, u).
(iii) If (w,σ(w)) ∈ Ig(u, v), then Ig(u, w) ⊆ Ig(u, v) and Ig(w, v) ⊆ Ig(u, v).
(iv) If (w,σ(w)) ∈ Ig(u, v) and (x,σ(x)) ∈ Ig(w, v), then (x,σ(x)) ∈ Ig(u, v)

and (w,σ(w)) ∈ Ig(u, x).
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Fig. 6.14 Fuzzy graph in
Example 6.3.4

(v) If (x,σ(x)) ∈ Ig(u, v), then Ig(u, x) ∩ Ig(x, v) = {(x,σ(x))} and hence∣
∣Ig(u, x) ∩ Ig(x, v)

∣
∣ = 1.

(vi) If (x,σ(x)) ∈ Ig(u, v), then Ig(u, x) ∪ Ig(x, v) ⊆ Ig(u, v).
(vii) If

∣
∣Ig(u, v)

∣
∣ = 2 = ∣

∣Ig(x, y)
∣
∣, v ∈ I∗g (u, x)andu ∈ I∗g (v, y), then x ∈ I∗g (v, y).

Proof The proof of (i) to (v) are obvious.
(vi) Let (x,σ(x)) ∈ Ig(u, v). Then x is on a geodesic joining u and v. Thus, every

geodesic P joining u to x followed by a geodesic Q joining x to v is again a geodesic
joining u to v. So every vertex onP∪Q is in I∗g (u, v). Therefore, Ig(u, x) ∪ Ig(x, v) ⊆
Ig(u, v).

(viii) Let the assumption holds. Then dg(v, y) ≤ dg(v, x) + dg(x, y) =
dg(v, x) + 1 because

∣
∣Ig(x, y)

∣
∣ = 2. Thus, dg(v, y) = dg(v, x) (because v ∈ Ig

(u, x)) ≤ dg(u, y) + dg(y, x) = dg(u, y) + 1 (because
∣
∣Ig(x, y)

∣
∣ = 2) = dg(v, y)

(because u ∈ Ig(v, y)) and hence
∣
∣Ig(u, v)

∣
∣ = 2. Thus, x ∈ Ig(v, y). �

Equality does not hold always in Theorem 6.3.3(vi). For consider the fuzzy graph
G in Fig. 6.14.

Example 6.3.4 Consider the fuzzy cycle G, given in Fig. 6.14. In G, Ig(u, v) =
{(x,σ(x)) | for all x ∈ σ∗}. So (a, 0.6) ∈ Ig(u, v). But Ig(u, a) ∪ Ig(a, v) = {(u, 1),
(a, 0.6), (b, 0.7), (v, 1)} �= Ig(u, v).

If u and v are joined by a unique strong path, then for any (a,σ(a)) ∈ Ig(u, v),
Ig(u, a) ∪ Ig(a, v) = Ig(u, v). Because there exists a unique strong path between any
two vertices in a fuzzy tree, we have the following theorem.

Theorem 6.3.5 In a fuzzy tree G = (σ,μ), Ig(u, v) = Ig(u, x) ∪ Ig(x, v) for all
x, u, v ∈ σ∗ such that (x,σ(x)) ∈ Ig(u, v).

Proof In a fuzzy tree G = (σ,μ), there exists a unique strong u − v path between
any two vertices u, v ∈ σ∗. Thus, (x,σ(x)) ∈ Ig(u, v), which implies Ig(u, v) =
Ig(u, x) ∪ Ig(x, v). �

Theorem 6.3.6 If x is a cutvertex, then there exists a pair of vertices u, v in σ∗ such
that Ig(u, v) = Ig(u, x) ∪ Ig(x, v).
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Fig. 6.15 Fuzzy graph with
a unique weak edge

Fig. 6.16 A fuzzy graph
with unique fuzzy cutvertex

Proof Because x is a cutvertex, there exists a pair of vertices u, v in σ∗ such that
removal of x fromG deletes all u − v paths. This is because every u − v path contains
x. So every strong u − v path contains x. Therefore, vertices on u − v paths can be
partitioned into two sets such that vertices before x and after x. This gives Ig(u, v) =
Ig(u, x) ∪ Ig(x, v). �

The converse of Theorem 6.3.6 is not true. That is, the equation Ig(u, v) =
Ig(u, x) ∪ Ig(x, v) does not imply that x is a cutvertex ofG, as seen from the following
example.

Example 6.3.7 Consider the fuzzy graph G = (σ,μ), σ∗ = {u, v, x, y}, σ(x) =
σ(v) = 0.4, σ(u) = 0.5, σ(y) = 0.6, μ(uy) = μ(ux) = μ(xv) = 0.4 and μ(vy) =
0.3 (Fig. 6.15). Clearly, vy is the unique weak edge of G. Also, Ig(u, v) = Ig(u, x) ∪
Ig(x, v). However, x is not a cutvertex of G.

If x is a fuzzy cutvertex, then Theorem 6.3.6 need not be true. For example,
consider the fuzzy graph in Fig. 6.16.

Example 6.3.8 Consider the fuzzy graphG = (σ,μ),σ∗ = {u, v, x, y}, σ(x) = 0.6,
σ(u) = σ(v) = 0.5, σ(y) = 0.4, μ(ux) = 0.5 = μ(xv) and μ(vy) = μ(uy) = 0.4
(Fig. 6.16). Clearly, x is a fuzzy cutvertex of G. Now, x is a fuzzy cutvertex, but
there does not exist any pair u, v in σ∗ such that Ig(u, v) = Ig(u, x) ∪ Ig(x, v). This
is because every edge of G is strong.

Theorem 6.3.9 In a complete fuzzy graph G, I∗g (u, v) = {u, v} for all u, v ∈ σ∗.

Proof In a complete fuzzy graph, by Lemma 3.2.22, there are no δ edges and
hence every two vertices are joined by a strong edge. So I∗g (u, v) = {u, v} for all u,
v ∈ σ∗. �

http://dx.doi.org/10.1007/978-3-319-71407-3_3
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Fig. 6.17 A non complete
cycle

Fig. 6.18 A fuzzy tree

Converse of the Theorem 6.3.9 is not true. Consider the following example.

Example 6.3.10 Consider a cycleG = (σ,μ)with three vertices.σ(u) = 0.6,σ(v) =
0.7, σ(w) = 0.8 and μ(uv) = μ(vw) = μ(uw) = 0.5 (Fig. 6.17). In G, every edge
is strong. So I∗g (a, b) = {a, b}, for all a, b ∈ σ∗.ButG is not a complete fuzzy graph.

Theorem 6.3.11 If a fuzzy tree G = (σ,μ) is a path or cycle, then there exists two
vertices u and v such that I∗g (u, v) = σ∗.

Proof Consider the fuzzy treeG. IfG∗ is a path. Then take u and v as the end vertices
of G. Then I∗g (u, v) = σ∗. If G∗ is a cycle, then because G is a fuzzy tree, G has
exactly one weak edge (say) uv. Then I∗g (u, v) = σ∗. �

The converse of Theorem 6.3.11 is not true as seen from Example 6.3.12.

Example 6.3.12 Consider the fuzzy graph G = (σ,μ) with σ∗ = {u, v, w, x},
σ(u) = 0.5, σ(v) = 0.6, σ(w) = 0.7, σ(x) = 0.8. μ(uv) = 0.6,μ(vw) = 0.7,
μ(wx) = 0.8, μ(vx) = 0.5 and μ(uw) = 0.4 (Fig. 6.18). It is easy to see that G
is a fuzzy tree and I∗g (u, x) = σ∗. However, it is neither a path nor a cycle.

Theorem 6.3.13 Let G be a connected fuzzy graph and u, v, x, y ∈ σ∗. Then
I∗g (u, x) ∪ I∗g (x, v) = I∗g (u, v) if and only if x is on every u − v geodesic.

Proof If x is on every u − v geodesic, then every u − v geodesic can be considered
as the union of a u − x strong geodesic and a strong x − v geodesic. Thus,

I∗g (u, x) ∪ I∗g (x, v) = I∗g (u, v). (6.1)
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Now, consider the converse. Assume that equation in the statement of the theorem
is true. We want to prove that x is on every u − v geodesic. Suppose this is not true.
Then there exists at least one u − v geodesic P which does not contain x. Let P be
y0y1y2 · · · yn−1yn, where y0 = u and yn = v. Because u ∈ I∗g (u, x) and v ∈ I∗g (x, v),
there exist i ∈ {1, 2, 3, . . . , n − 1} such that yi ∈ I∗g (u, x) and yi+1 ∈ I∗g (x, v) and
yiyi+1 is a strong edge (because it is an edge of the strong path P).Now, yi ∈ I∗g (u, x)
implies

dg(u, yi) + dg(yi, x) = dg(u, x). So we get dg(u, yi) + 1 ≤ dg(u, x). (6.2)

Also, yi+1 ∈ I∗g (x, v) gives,

dg(x, yi+1) + dg(yi+1, v) = dg(x, v). So we get 1 + dg(yi+1, v) ≤ dg(x, v). (6.3)

Equation (6.1) and x ∈ I∗g (u, v) together gives

dg(u, x) + dg(x, v) = dg(u, v). (6.4)

LetP1 be the u − x geodesic containing yi andP2, the x − v geodesic containing yi+1.
Now, consider the strong u − v path; u − yi part of P1 followed by the strong edge
yiyi+1 along with yi+1 − v part of P2, which has length dg(u, yi) + dg(yi, yi+1) +
dg(yi+1, v) ≤ dg(u, x) − 1 + 1 + dg(x, v) − 1 = dg(u, v) − 1,

From (6.2)–(6.4), we get a contradiction. That is, x is on every strong u − v

geodesic. �

Because intervals and their supports in a fuzzy graph G = (σ,μ) are subsets
of σ∗ × [0, 1] and σ∗ respectively, their unions and intersections can be defined in
terms of the usual union and usual intersection. Let Ig(u, v) and Ig(x, y) be two strong
intervals in a fuzzy graph G. Then their union is defined as

Ig(u, v) ∪ Ig(x, y) = {(a,σ(a)) | (a,σ(a)) ∈ Ig(u, v) or (a,σ(a)) ∈ Ig(x, y)}.

Similarly, their intersection is defined as

Ig(u, v) ∩ Ig(x, y) = {(a,σ(a)) | (a,σ(a)) ∈ Ig(u, v) and (a,σ(a)) ∈ Ig(x, y)}.

The union of two or more strong intervals need not be a strong interval as seen
from the following example.

Example 6.3.14 Consider the fuzzy graph G in Fig. 6.19. Here, σ(a) = 1, for
all a ∈ {u, x, v, y} and μ(ux) = μ(xv) = μ(xy) = 1. Also, I∗g (u, v) = {u, x, v} and
I∗g (u, y) = {u, y, x}. But I∗g (u, v) ∪ I∗g (u, y) = {u, x, v} ∪ {u, y, x} = {u, v, x, y} �=
I∗g (a, b), for all a, b ∈ σ∗.

Theorem 6.3.15 If x, y ∈ I∗g (u, v), then I∗g (u, v) ∪ I∗g (x, y) = I∗g (u, v).
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Fig. 6.19 A fuzzy graph
which is a tree

Fig. 6.20 Fuzzy graph G

Proof x, y ∈ I∗g (u, v) implies I∗g (x, y) ⊂ I∗g (u, v). So I∗g (x, y) ∪ I∗g (u, v) =
I∗g (u, v). �

But If I∗g (u, v) ∩ I∗g (x, y) = ∅, then Ig(u, v) ∪ Ig(x, y) need not be a strong interval
as is clear from the following example.

Example 6.3.16 Consider the fuzzy graph G = (σ,μ) such that |σ∗| = 5, given
in Fig. 6.20. Here because G∗ is a tree, G is a fuzzy tree irrespective of the μ
values. Here, I∗g (u, v) = {u, v}, I∗g (x, y) = {x, z, y} and I∗g (u, v) ∩ I∗g (x, y) = ∅. But
Ig(u, v) ∪ Ig(x, y) is not a strong interval.

Theorem 6.3.17 Every nonempty intersection of intervals is again an interval.

Proof Consider two intervals Ig(u, v) and Ig(x, y) such that Ig(u, v) ∩ Ig(x, y) �= ∅.
We want to prove that Ig(u, v) ∩ Ig(x, y) is again an interval. There are two cases.

Case 1: I∗g (u, v) ∩ I∗g (x, y) = {a} for some a ∈ σ∗.
Because I∗g (a, a) = {a} for any vertex a ∈ σ∗,we get I∗g (u, v) ∩ I∗g (x, y) = {a} =

I∗g (a, a). Thus, Ig(u, v) ∩ Ig(x, y) is again a strong interval.
Case 2: I∗g (u, v) ∩ I∗g (x, y) contains at least 2 vertices.
In this case, for any two vertices a, b ∈ I∗g (u, v) ∩ I∗g (x, y), I∗g (a, b) ⊂ I∗g (u, v) ∩

I∗g (x, y). Now, choose m, n ∈ I∗g (u, v) ∩ I∗g (x, y) such that
dg(m, n) = ∨

p,q∈I∗g (u,v)∩I∗g (x,y)
dg(p, q). We have I∗g (u, v) ∩ I∗g (x, y) = I∗g (m, n). That

is, Ig(u, v) ∩ Ig(x, y) = Ig(m, n). Hence, Ig(u, v) ∩ Ig(x, y) is again an interval. Thus,
every nonempty intersection of strong intervals is again a strong
interval. �

Theorem 6.3.18 In a fuzzy tree G = (σ,μ), if the union of two disjoint intervals
Ig(u, v) and Ig(x, y) is again an interval, then all the four vertices u, v, x, y lie on a
geodesic.
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Fig. 6.21 Uniqueness in
Conjecture 6.3.19

Proof Given that Ig(u, v) ∪ Ig(x, y) is an interval. Let Ig(u, v) ∪ Ig(x, y)= Ig(a, b).
Then clearly u, v, x, y ∈ I∗g (a, b). If possible assume that the vertices u, v, x, y do
not lie together on any a − b geodesic. Consider two verticesm, n ∈ {u, v, x, y} such
that m and n lie on different a − b geodesics, say P1 and P2 respectively. Then P1

and P2 together gives a fuzzy cycle. This is a contradiction because G is a fuzzy tree.
�

Next we have a conjecture.

Conjecture 6.3.19 If Ig(u, v) ∩ Ig(x, y) = ∅ and Ig(u, v) ∪ Ig(x, y) is an interval,
then Ig(u, v) ∪ Ig(x, y) = Ig(a, b), where a, b ∈ {u, v, x, y} such that dg(a, b) =

∨
m,n∈{u,v,x,y}dg(m, n). Moreover, if pair a, b is unique, then vertex m ∈ {u, v, x, y} such
that m �= a and m �= b is on every a − b geodesic.

In Conjecture 6.3.19, if a, b is not unique, then vertex m ∈ {u, v, x, y} such that
m �= a and m �= b need not be on every a − b geodesic.

This is clear from the following example.

Example 6.3.20 Consider the fuzzy graph H given in Fig. 6.21. Clearly, in H,
Ig(u, v) ∪ Ig(x, y) = Ig(u, x) = Ig(v, y). But none of the vertices in H is a fuzzy
cutvertex.

6.4 Gates and Gated Sets in Fuzzy Graphs

This section is based on the work by Dhanymol and Mathew [66]. Interval functions
are useful to study the properties of graphs which depend only on distances between
vertices. Goldman and Witzgall first introduced the idea of gated sets in [80].

Definition 6.4.1 For a subset W of vertex set V of a graph G and a vertex z ∈ V ,
a vertex x ∈ W is an R-gate for z if x lies in R(z, w) for any w in W . The set W is
called R-gated, if every vertex z ∈ V has a unique R-gate in W .
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Recall that the length of a geodesic between u and v is called the g-distance
dg(u, v) and a geodesic is a shortest strong path between u and v. In graphs, g-
distance coincides with usual distance. So in graphs, Ig(u, v) is the collection of all
u − v interior vertices.

Definition 6.4.2 An induced fuzzy subgraphH = (τ , ν) of G = (σ,μ) is said to be
gated with respect to a metric d, if for all v ∈ σ∗ \ τ ∗ and for all u ∈ τ ∗, ∃ a vertex
x ∈ τ ∗ such that d(u, v) = d(u, x) + d(x, v). Also, x is known as a gate of H in G
and τ ∗ is known as a gated set in σ∗.

Here, by an induced fuzzy subgraphH = (τ , ν) ofG = (σ,μ), wemeanmaximal
fuzzy subgraph induced by τ ∗. That is, τ (x) = σ(x), for all x ∈ τ ∗ and ν(xy) = μ(xy),
for all x, y ∈ τ ∗.Moreover, a fuzzy subgraph ofG = (σ,μ) is called an induced fuzzy
subgraph of G if it is a maximal fuzzy subgraph induced by some subsets of σ∗.

Definition 6.4.3 A nontrivial induced fuzzy subgraph H = (τ , ν) of G = (σ,μ) is
said to be gated with respect to an interval function I , if for all v ∈ σ∗ \ τ ∗ and for
all u ∈ τ ∗, ∃ a vertex x ∈ τ ∗ such that x ∈ I(u, v). Also, x ∈ H is called a gate of H
in G if and only if x ∈ ∩u∈τ ∗ I(u, v), for all v ∈ σ∗ \ τ ∗.

If a nontrivial induced fuzzy subgraph H of G is gated with respect to the g-
distance dg (or strong interval function Ig), then H is known as strongly gated and
if x is a gate of H in G with respect to the g-distance dg (or strong interval function
Ig), then x is known as a strong gate of H in G.

All internal vertices of a path are strong gates for a path P: u0, u1, . . . , un, where
each vertex and each edge hasmembership value 1.Let, u1, u2, . . . , un−1 be the inter-
nal vertices of P. Then for the fuzzy subgraph P induced by {u0, u1, u2, . . . , ui}, ui
is a strong gate, where i ∈ {1, 2, 3, . . . , n − 1}.
Definition 6.4.4 A vertex x is known as a gate of a fuzzy graph G if it is a gate of
some nontrivial induced fuzzy subgraphH of G. Also, it is clear that only connected
graphs can have strong gates.

Proposition 6.4.5 A nontrivial induced fuzzy subgraph H of a fuzzy graph G has at
most one strong gate in G.

Proof Suppose x and y are strong gates of an induced fuzzy subgraph H = (τ , ν)
in G = (σ,μ). Then x is a strong gate of H implies x ∈ Ig(y, v) for all v ∈ σ∗ \ τ ∗.
This gives,

dg(y, v) = dg(y, x) + dg(x, v). (6.5)

Similarly, y is a strong gate of H implies, y ∈ Ig(x, v) for all v ∈ σ∗ \ τ ∗. Therefore,

dg(x, v) = dg(x, y) + dg(y, v). (6.6)



6.4 Gates and Gated Sets in Fuzzy Graphs 223

Fig. 6.22 A cycle with two
strong gates

Fig. 6.23 A fuzzy graph
with a strong gate

Equations (6.5) and (6.6) together gives dg(x, y) = 0, which implies x = y, because
dg is a metric. �

Example 6.4.6 Consider the fuzzy graph G = (σ,μ)with σ∗ = {a, b, c, d}, σ(a) =
1,σ(b) = 0.9,σ(c) = 0.8,σ(d) = 0.9,μ(ab) = 0.4,μ(bc) = 0.5,μ(cd) = 0.7 and
μ(ad) = 0.4. c and d are strong gates. Here, ab is the only weak edge. For the
subgraph induced by {a, d}, d is a strong gate in G and for the subgraph induced by
{b, c}, c is a strong gate in G (Fig. 6.22).

Theorem 6.4.7 Let G be a connected fuzzy graph and H = (τ , ν) be a nontrivial
induced fuzzy subgraph of G = (σ,μ). Then x is a strong gate of H in G if and only
if every strong path from τ ∗ to σ∗ \ τ ∗ passes through x.

The proof is obvious. It can be obtained by contradiction.
x is a strong gate of H in G does not imply that, all strongest paths from τ ∗ to

σ∗ \ τ ∗ pass through x. Consider the following example.

Example 6.4.8 Consider the fuzzy graph given in Fig. 6.23.
InFig. 6.23,bc is the only δ-edgeofG and f is a stronggate of the subgraph induced

by {a, b, f } in G because (∩u∈{a,b,f } ∩v∈{c,d,e} Ig(u, v)) ∩ {a, b, f } = {f }. Here, abcd
is a strongest a − d path not containing f . The same case for e also. e is a strong gate
of the fuzzy subgraph induced by {c, d, e} because (∩v∈{a,b,f } ∩u∈{c,d,e} Ig(u, v)) ∩
{c, d, e} = {e}. But, dcba is a strongest path from d to a and it does not pass through
e.

Next theorem is about the number of strong gates of a fuzzy graph whose support
is a cycle.
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Theorem 6.4.9 Let G be a fuzzy graph such that G∗ is a cycle with |σ∗| = n. Then

ζ(G) =
{
0 if G is a fuzzy cycle
n − 2 otherwise,

where ζ(G) denotes number of strong gates in G.

Proof Disconnected subgraphs ofG have no strong gates. So, it is enough to consider
connected subgraphs. Consider a fuzzy cycle G = (σ,μ) and a nontrivial connected
induced subgraph H = (τ , ν) of G. Then H∗ has at least two vertices. Clearly, no
interior vertex of H∗ can be a strong gate of H in G. Let u and v be pendent vertices
of H∗ and let w1 be the vertex in σ∗ \ τ ∗ which is adjacent to u. Then v /∈ Ig(u, w1)

and Ig(u, w1) = {u, w1}. Also, let w2 be the vertex in σ∗ \ τ ∗ which is adjacent to v.
Then u /∈ Ig(v,w2) and Ig(v,w2) = {v,w2}. SoH has no strong gates in G. Because
H is arbitrary, it leads to the conclusion that G has no strong gates.

Now, consider the case where G is not a fuzzy cycle. Then G has exactly one
weakest edge. Let it be xy. Then any nontrivial connected induced fuzzy subgraph
H of G containing xy has no strong gates. Also, any nontrivial connected induced
fuzzy subgraph, not containing both x and y, has no strong gates. Now, consider a
nontrivial connected fuzzy subgraphH in G containing either x or y (not both). Then
that vertex will be one of the pendent vertices of H∗. Let w be the other pendent
vertex of H∗, different from x and y. Then w is a strong gate of H in G. Also, x and
y cannot be strong gates. That is, all vertices of G∗, except x and y, are strong gates
of G. Therefore, ζ(G) = n − 2. �

Corollary 6.4.10 No endvertex of a fuzzy tree is a strong gate.

Definition 6.4.11 A fuzzy subgraph is called I-gate free (d-gate free) if it has no
I-gates (d-gates). Here I-gates means gates with respect to the interval function I .
Similarly, d-gates means gates with respect to the metric d.

Definition 6.4.12 A fuzzy graph G is said to be partially strong gated if some
connected induced fuzzy subgraphs of G are gated. G is said to be fully strong
gated if every nontrivial connected induced fuzzy subgraphs of G has a gate. G is
said to be strongly restricted if no connected induced fuzzy subgraph of G is gated.

Every complete fuzzy graph is strongly restricted.

Theorem 6.4.13 Let G = (σ,μ) be any fuzzy graph and H = (τ , ν) an induced
connected fuzzy subgraph of G, which is strongly gated in G. Then the following
properties hold.

(i) If x is a strong gate of H in G, then for any nontrivial connected induced fuzzy
subgraph K = (τ

′
, ν

′
) of H containing x, having a strong gate in G, x is a strong

gate of K in G.
(ii) If x ∈ τ ∗ is not a strong gate of H in G, then there does not exist any nontrivial

induced fuzzy subgraphM of G such that H is a fuzzy subgraph ofM and x is a strong
gate of M in G.
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Proof (i)Assume that y is a strong gate of K . Consider the vertices u and v such that
u ∈ (τ

′
)∗ and v ∈ σ∗ \ τ ∗. Then

dg(u, v) = dg(u, x) + dg(x, v), because x is the strong gate of H. (6.7)

dg(u, v) = dg(u, y) + dg(y, v), because y is the strong gate of K . (6.8)

Equation (6.7) implies

dg(u, v) = dg(u, x) + dg(x, y) + dg(y, v). (6.9)

This is because y is a strong gate of K and x ∈ K . Thus,

dg(u, v) = dg(u, y) + dg(y, x) + dg(x, v), by Eq. (6.8). (6.10)

Equations (6.9) and (6.10)

dg(u, x) + dg(y, v) = dg(u, y) + dg(x, v). (6.11)

By Eqs. (6.7) and (6.8)

dg(u, x) + dg(x, v) = dg(u, y) + dg(y, v). (6.12)

Equations (6.11) and (6.12) imply

dg(u, x) = dg(u, y) and dg(y, v) = dg(x, v). (6.13)

Let u be any vertex in K∗. Also, x ∈ τ ∗. So put u = x in (6.13). Then x = y because
dg is a metric.

(ii) This is clear from the first part. �

x ∈ H∗ is necessary in Theorem 6.4.13 as seen from Example 6.4.14.

Example 6.4.14 Let G be the fuzzy graph in Fig. 6.24. Then b is a strong gate of
the subgraph H induced by {u, a, b} and the subgraph K induced by {u, a} is also
strongly gated. But, b is not a strong gate of K .

For the second part of Theorem 6.4.13 to be valid, H should be strongly gated in
G. That is, even if x ∈ H is not a strong gate of H, there exist subgraphs M of G
such that M contains H and x is a strong gate of M. It is clear from Fig. 6.25.

Fig. 6.24 A gated path
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Fig. 6.25 Fuzzy graph G and its subgraphs H and M

Example 6.4.15 Let G be the fuzzy graph, in Fig. 6.25, such that each edge and
each vertex have membership value 1. Let H andM be fuzzy subgraphs of G. Then
x ∈ V (H∗) is not a strong gate of H. But x is a strong gate of M and M contains H
as a subgraph.

Theorem 6.4.16 Every strong internal vertex (vertex whose strong degree greater
than or equal to 2) of a fuzzy tree is a strong gate.

Proof Between any two vertices, there exists a unique strong path and every interior
vertex lies in the strong path joining any pair of its strong neighbors. So every strong
interior vertex is a strong gate. �

Theorem 6.4.17 Every strong gate in a fuzzy graph G is a fuzzy cutvertex.

Proof Assume that x is a strong gate in G. We want to prove that x is a fuzzy
cutvertex. Consider thatH is a nontrivial connected induced fuzzy subgraph ofG for
which x is a strong gate in G. Also, consider u ∈ V (H∗) and v ∈ V (G∗) \ V (H∗)
such that u, v has the maximum strength of connectedness among all pair of vertices
m, n ∈ V (H∗) × (V (G∗) \ V (H∗)). Assume thatCONNG(u, v) = m. Suppose there
exists a strongest u − v path P which does not pass through x. Then strength of P,
s(P) = m.

Claim: P is not a strong path.
Assume, P : a1a2a3 · · · ak is a strong path, where a1 = u and ak = v. Because

u ∈ V (H∗) and v ∈ V (G∗) \ V (H∗), there exists i ∈ {1, 2, 3, . . . , k − 1} such that
ai ∈ V (H∗) and ai+1 ∈ V (G∗) \ V (H∗). Because aiai+1 is an edge in the strong path
P, aiai+1 is a strong edge. Therefore, Is(ai, ai+1) = {ai, ai+1}. That is, x /∈ Is(ai, ai+1).
This is a contradiction to the assumption that x is a strong gate ofH in G. Therefore,
P is not a strong path.

Because aiai+1 is a weak edge, CONNG(ai, ai+1) > μ(aiai+1). Because aiai+1 ∈
P, we getm ≤ μ(aiai+1). Both these equations together gives, CONNG(u, v) = m <

CONNG(ai, ai+1). This is a contradiction to the assumption that u, v has the maxi-
mum strength of connectivity among all pair of vertices m, n ∈ V (H∗) × (V (G∗) \
V (H∗)). That is, every strongest u − v path is passing through x. So, the deletion of
x makes a reduction in the strength of connectedness between u and v. Therefore, x
is a fuzzy cutvertex. �
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Fig. 6.26 A strong cycle
with a fuzzy cutvertex

Example 6.4.18 Let G be the fuzzy graph in Fig. 6.26. Now, c is a partial cutvertex,
but it is not a strong gate. Hence, the converse of Theorem 6.4.17 is not true.

Because fuzzy blocks have no fuzzy cutvertices, we have the following corollary.

Corollary 6.4.19 Every fuzzy block is strong gate free.

Next we discuss sufficient conditions for a partial cutvertex to be a strong gate.

Theorem 6.4.20 Let G be a fuzzy graph. A fuzzy cutvertex w of G is a strong gate
if either one of the following statement is true.

(i) w is a cutvertex of G
(ii) w do not lie on any strong cycle.

Proof (i) Consider a fuzzy cutvertexw of G. Consider the case wherew is a cutver-
tex. w is a cutvertex of G implies G − w is disconnected. Let H be any component
of G − w. Then w is a strong gate of the fuzzy subgraph induced by (H∗) ∪ {w}
in G.

(ii)Assume thatw do not lie on any strong cycle. Becausew is a fuzzy cutvertex,
we can find two vertices u and v such that, u and v are strongly adjacent to w and
CONNG−w(u, v) < CONNG(u, v). Also, G does not have a strong uv edge. So, w
do not lie on any strong cycle. Now, consider two sets Gu and Gv such that

Gu = {x ∈ V (G∗) | x is strongly connected to u in G − w}

and
Gv = {y ∈ V (G∗) | y is strongly connected to v in G − w}.

Here, twovertices are strongly connectedmeans, there exists a strongpath between
them.

Then clearly Gu ∩ Gv = ∅. If not; that is, if a ∈ Gu ∩ Gv , there exists a strong
u − a path P1 (say) and a strong a − v path P2 (say). Then the strong walk P1

followed by P2 contains a strong u − v path P (say) which does not contain the
vertex w. P followed by the strong path vwu is a strong cycle which contains w.
This gives a contradiction to our assumption that w do not lie on any strong cycle.
So, Gu ∩ Gv = ∅. That is, every strong path from Gu to G \ Gu passes through w.
So w is a strong gate in G. �
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Fig. 6.27 Fuzzy graph G

Definition 6.4.21 A fuzzy graph G = (σ,μ) is said to be strongly connected if
there is a strong path between any two vertices in σ∗. Maximal strongly connected
fuzzy subgraphs of G are called strong components of G. A fuzzy graph is known
as strongly disconnected if it has at least two strong components. ωs(G) denotes
the number of strong components of G.

Theorem 6.4.22 In a connected fuzzy graph G, a vertex x is a strong gate in G if
and only if G − x is strongly disconnected.

Proof Let x be a strong gate of H in G. This implies every strong path from H to
G \ H passes through x. Thus, G \ H is strongly disconnected.

Now, consider the case where G is strongly connected and G − x is strongly
disconnected. Let H be any strong component of G − x and let K be the fuzzy
subgraph of G induced by H∗ and x. Then x is a strong gate of K in G. �

In a fuzzy tree all vertices of strong degree more than 1 are strong gates. However,
this is not the case in a general fuzzy graph. That is, vertices of strong degree more
than 1 cannot be strong gates.

Example 6.4.23 Consider the fuzzy graph G in Fig. 6.27. In G, both x and y have
strong degree 2, but they are not strong gates inG. If we takeH as the fuzzy subgraph
induced by {x, y}, then a2 ∈ ∩u∈V (G∗)\V (H∗) ∩v∈V (H∗) Is(u, v). However, a2 is not a
strong gate of H because a2 /∈ V (H∗).

Let G = (V,E) be a graph. A vertex u of G is said to be a pendant vertex
if degG(u) = 1. A vertex u of a fuzzy graph is called a strong pendant vertex if
ds(u) = 1.

Theorem 6.4.24 ([66]) A nonempty connected fuzzy graph is strongly restricted if
and only if any two vertices lie on a strong cycle.

Proof Consider a nonempty connected fuzzy graph G = (σ,μ) such that G is
strongly restricted. Now,wewant to prove that any 2 vertices lie on a strong cycle.We
will prove this result by mathematical induction on dg(u, v), where u and v are any
two vertices in V (G∗). Let dg(u, v) = 1. That is, uv is a strong edge in G. Because
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G is strongly restricted it has no strong gates. Thus, it has no strong pendent vertices.
Therefore, strong degree of u as well as v, greater than or equal to 2. So, consider a
vertexw �= u such thatw is strongly adjacent to v. Then uvw is a strong u − w path.

Claim: There exists a strong u − w path P such that P is internally disjoint from
uvw.

Assume that all strong u − w paths pass through v. Then G − v is strongly dis-
connected. Let {Vu, Vw, V

′ } be a partition of V ((G − v)∗), defined as follows.

Vu = {x ∈ V ((G − v)∗) | x is strongly connected to u},

Vw = {x ∈ V ((G − v)∗) | x is strongly connected to w}

and
V

′ = V ((G − v)∗) \ (Vu ∪ Vw).

Then u ∈ Vu and w ∈ Vw. From the construction, it is clear that Vu, Vw and V ′ are
pairwise disjoint and their union is V ((G − v)∗). Now, consider the fuzzy subgraph
H of G, induced by Vu ∪ v. Then v is a strong gate of H in G. It is a contradiction,
because G is strongly restricted. So, there exists a strong u − w path P such that P
is internally disjoint to uvw. Then P followed by wvu is a strong cycle containing u
and v.

Now, assume that for all u, vwith dg(u, v) ≤ n, u and v lie on a strong cycle, where
n ≥ 2. Now, consider two vertices x, y ofG such that dg(x, y) = n + 1. Consider any
x − y strong geodesic. Let it be u0, u1, u2, . . . , un, un+1, where u0 = x and un+1 =
y. Because dg(x, un) = n, by assumption there exist two internally disjoint x − un
strong paths, say P1 and P2. Let w be the last vertex in P1, strongly adjacent to un.
Clearly dg(w, y) ≤ 2. Because un is not a strong gate, there exists a strong w − y
path internally disjoint from wuny. Let it be P3. P3 can have common vertices with
P1 and P2. Let a be the last such vertex in P3. Then there are two cases.

Case 1: a lies on P1. x − a part of P1 followed by a − y part of P3 is a strong x − y
path. This is internally disjoint from the strong x − y path formed by P2 followed
by the strong edge uny. Now, we get two internally disjoint x − y strong paths. They
together form a strong cycle containing x and y.

Case 2: a lies on P2. P1 followed by the strong edge uny is a strong x − y path.
Another x − y strong path can be constructed as x − a part of P2 followed by a − y
part of P3. These two strong paths are internally disjoint and they together form a
strong cycle containing x and y. By mathematical induction, we proved that any two
vertices lie on a strong cycle if the graph is strongly restricted. Now, consider the
converse. That is, we want to prove that G is strongly restricted, if any two vertices
lie on a strong cycle. Now, consider a graph G, which has the property that any two
vertices lie on a strong cycle. To prove that G is strongly restricted, it is enough to
prove that G has no strong gates. Because any two vertices lie on a strong cycle, for
any vertex x and for any pair of vertices u, v, there is a strong u − v path not passing
through x. So x can not be a strong gate of G. Because x is arbitrary vertex of G∗, it
cannot have any strong gates. Hence, G is strongly restricted. �
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Fig. 6.28 A fuzzy cycle
with a unique weak edge

Let G be a connected fuzzy graph and x be a strong pendant vertex of G. Then
the vertex y, which is strongly adjacent to x is a strong gate of H in G, where H is
the fuzzy subgraph of G, induced by x and y.

Now, we check whether all strong gates are cutvertices in a fuzzy graphs. The
answer is no. Consider the following example.

Example 6.4.25 Consider the fuzzy graph in Fig. 6.28. In Fig. 6.28, a2, a3 and a4 are
strong gates, but they are not cutvertices. Thus, in a fuzzy graph G, set of cutvertices
of G ⊆ set of strong gates of G ⊆ set of fuzzy cutvertices of G.

A fuzzy cycle has no strong gates. Thus, the minimum number of strong gates in
a fuzzy graph is zero. Also, in any fuzzy graph, there exists at least 2 vertices which
are not partial cutvertices. Moreover, in a path all internal vertices are strong gates.
So, we have the following result.

Proposition 6.4.26 If ζ(G) represents the number of strong gates in a graph G,
then 0 ≤ ζ(G) ≤ n − 2.



Chapter 7
Interval-Valued Fuzzy Graphs

The results in this chapter are based mostly on the works in [5, 14, 19, 23]. In 1975,
Zadeh [194] introduced the notion of interval-valued fuzzy sets as an extension
of fuzzy sets [190] in which the values of the memberships degrees are intervals
in [0, 1] instead of elements in [0, 1]. Interval-valued fuzzy sets provide a more
adequate description of uncertainty than traditional fuzzy sets in some cases. It can
therefore be important to use interval-valued fuzzy sets in applications, e.g., in fuzzy
control. One of the most intensive parts of fuzzy control is defuzzification [121].
Interval-valued fuzzy sets have been widely studied and used, for example, in the
work of Gorzalczany on approximate reasoning [81, 82], Roy and Biswas onmedical
diagnosis [155], Turksenonmultivalued logic [177], andMendel in intelligent control
[121].

We define the operations of Cartesian product, composition, union, and join on
interval-valued fuzzy graphs and investigate some of their properties. The work is
based on [130].We study isomorphisms (resp. weak isomorphism) between interval-
valued fuzzy graphs in an equivalence relation (resp. partial order). We introduce
the notion of interval-valued fuzzy complete graphs and present some properties of
self-complementary and self-weak complementary interval-valued fuzzy complete
graphs.

Other results and applications can be found in [1, 5, 8, 14, 18, 24, 26, 34, 37,
40, 41, 44, 50, 57, 76, 77, 83, 86, 103, 114, 122, 125, 128, 146, 151, 157, 164,
167, 186].

7.1 Interval-Valued Fuzzy Sets

Recall that a simple graph is a graph that has no loops and no more than one edge
between two different vertices. A complete graph is a simple graph in which every
pair of distinct vertices is connected by an edge. The complete graph on n vertices
has n(n − 1)/2 edges. We consider only simple graphs.

© Springer International Publishing AG 2018
S. Mathew et al., Fuzzy Graph Theory, Studies in Fuzziness
and Soft Computing 363, https://doi.org/10.1007/978-3-319-71407-3_7
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Let G∗ = (V, E) denote a graph. By a complementary graph G∗ of a simple
graph, we mean a graph having the same vertices as G∗ and such that two vertices
are adjacent in G∗ if and only if they are not adjacent in G∗.

Recall an isomorphism of the graphs G∗
1 and G∗

2 is a bijection f between the
vertex sets of G∗

1 and G∗
2 such that any two vertices v1 and v2 of G∗

1 are adjacent if
and only if f (v1) and f (v2) are adjacent in G∗

2. Isomorphic graphs are denoted by
G∗

1 � G∗
2. An automorphism of a graph is a graph isomorphism with itself.

Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two simple graphs. We can construct
several new graphs. The Cartesian product of G∗

1 and G∗
2 is the graph G∗

1 × G∗
2 =

(V, E) with V = V1 × V2 and

E = {(x, x2)(y, y2) | x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2, x1y1 ∈ E1}.

The composition of graphsG∗
1 withG

∗
2 is the graphG

∗
1[G∗

2] = (V1×V2, E0),where

E0 = E ∪ {(x1, x2)(y1, y2) | x1y1 ∈ E1, x2 �= y2}.

Note that G∗
1[G∗

2] �= G∗
2[G∗

1].
The union of graphs G∗

1 and G∗
2 is defined as G∗

1 ∪ G∗
2 = (V1 ∪ V2, E1 ∪ E2).

The join of graphsG∗
1 andG

∗
2 is the simple graphG∗

1 +G∗
2 = (V1∪V2, E1∪E2∪

E ′), where E ′ is the set of all edges joining the nodes of V1 and V2; it is assumed
that V1 ∩ V2 = ∅.

An interval number D is an interval [a−, a+] with 0 ≤ a− ≤ a+ ≤ 1. The
interval [a, a] is identified with the number a ∈ [0, 1]. D[0, 1] denotes the set of all
interval numbers.

For interval numbers D1 =[a−
1 , b

+
1 ] and D2 =[a−

2 , b
+
2 ], we define

D1 ∧ D2 = [a−
1 ∧ a−

2 , b
+
1 ∧ b+

2 ],
D1 ∨ D2 = [a−

1 ∨ a−
2 , b

+
1 ,∨b+

2 ],
D1 + D2 = [a−

1 + a−
2 − a−

1 · a−
2 , b

+
1 + b+

2 − b+
1 · b+

2 ],
D1 ≤ D2 ⇐⇒ a−

1 ≤ a−
2 and b+

1 ≤ b+
2 ,

D1 = D2 ⇐⇒ a−
1 = a−

2 and b+
1 = b+

2 ,

D1 < D2 ⇐⇒ D1 ≤ D2 and D1 �= D2,

kD1 = k[a−
1 , b

+
1 ] = [ka−

1 , kb
+
1 ], where 0 ≤ k ≤ 1.

It follows that (D[0, 1], ≤, ∨, ∧) is a complete lattice with [0, 0] as the least
element and [1, 1] as the greatest.

The interval-valued fuzzy set A in V is defined by

A = {(x,μ−
A(x),μ

+
A(x)) | x ∈ V },

where μ−
A and μ+

A are fuzzy subsets of V such that μ−
A(x) ≤ μ+

A(x) for all x ∈ V . For
any two interval-valued fuzzy sets A = [μ−

A(x),μ
+
A(x)] and B = [μ−

B (x),μ
+
B (x)] in

V we define:
A ∪ B = {(x,μ−

A(x) ∨ μ−
B (x),μ

+
A(x) ∨ μ+

B (x)) | x ∈ V },
A ∩ B = {(x,μ−

A(x) ∧ μ−
B (x),μ

+
A(x) ∧ μ+

B (x)) | x ∈ V }.
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If G∗ = (V, E) is a graph, then by an interval-valued fuzzy relation B on a set
E , we mean an interval-valued fuzzy set such that

μ−
B (xy) ≤ μ−

A(x) ∧ μ−
A(y),

μ+
B (xy) ≤ μ+

A(x) ∧ μ+
A(y)

for all xy ∈ E .

7.2 Operations on Interval-Valued Fuzzy Graphs

Throughout this section, G∗ is a crisp graph and G is an interval-valued fuzzy graph.

Definition 7.2.1 By an interval-valued fuzzy graph of a graph G∗ = (V, E), we
mean a pair G = (A, B), where A = [μ−

A,μ
+
A] is an interval-valued fuzzy set on V

and B = [μ−
B ,μ

+
B ] is an interval-valued fuzzy relation on E .

Let μ be a fuzzy subset of a set X. Suppose that μ(x) = a. We sometimes write
x
a for μ(x) = a when μ is understood.

Example 7.2.2 Consider a graph G∗ = (V, E) such that V = {x, y, z} and E =
{xy, yz, zx}. Let A be an interval-valued fuzzy set of V and let B be an interval-
valued fuzzy set of E ⊆ V × V defined by

A =
〈( x

0.1
,

y

0.3
,

z

0.5

)
,
( x

0.4
,

y

0.6
,

z

0.5

〉
,

B =
〈( xy

0.1
,
yz

0.2
,
zx

0.1

)
,
( xy

0.3
,
yz

0.4
,
zx

0.4

)〉
.

It is follows easily that G = (A, B) is an interval-valued fuzzy graph of G∗.

Definition 7.2.3 The Cartesian product G1 × G2 of two interval-valued fuzzy
graphs G1 = (A1, B1) and G2 = (A2, B2) of the graphs G∗

1 = (V1, E1) and G∗
2 =

(V2, E2) is defined to be the pair (A1 × A2, B1 × B2) such that

(μ−
A1

× μ−
A2
)(x1, x2) = μ−

A1
(x1) ∧ μ−

A2
(x2),

(μ+
A1

× μ+
A2
)(x1, x2) = μ+

A1
(x1) ∧ μ+

A2
(x2),

for all (x1, x2) ∈ V,

(μ−
B1

× μ−
B2
)(x, x2)(x, y2) = μ−

A1
(x) ∧ μ−

B2
(x2y2),

(μ+
B1

× μ+
B2
)(x, x2)(x, y2) = μ+

A1
(x) ∧ μ+

B2
(x2y2),
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for all x ∈ V1 and x2y2 ∈ E2,

(μ−
B1

× μ−
B2
)(x1, z)(y1, z) = μ−

B1
(x1y1) ∧ μ−

A2
(z),

(μ+
B1

× μ+
B2
)(x1, z)(y1, z) = μ+

B1
(x1y1) ∧ μ+

A2
(z),

for all z ∈ V2 and x1y1 ∈ E1.

Example 7.2.4 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be graphs such that V1 =
{a, b}, V2 = {c, d}, E1 = {ab}, E2 = {cd}. Consider two interval-valued fuzzy
graphs G1 = (A1, B1) and G2 = (A2, B2), where

A1 =
〈(

a

0.2
,
b

0.3

)
,

(
a

0.4
,
b

0.5

)〉
, B1 =

〈
ab

0.1
,
ab

0.2

〉
,

A2 =
〈(

c

0.1
,
d

0.2

)
,

(
c

0.4
,
d

0.6

)〉
, B2 =

〈
cd

0.1
,
cd

0.3

〉
.

Then it follows that

(μ−
B1

× μ−
B2
)(a, c)(a, d) = 0.1, (μ+

B1
× μ+

B2
)(a, c)(a, d) = 0.3,

(μ−
B1

× μ−
B2
)(a, c)(b, c) = 0.1, (μ+

B1
× μ+

B2
)(a, c)(b, c) = 0.2,

(μ−
B1

× μ−
B2
)(a, d)(b, d) = 0.1, (μ+

B1
× μ+

B2
)(a, d)(b, d) = 0.2,

(μ−
B1

× μ−
B2
)(b, c)(b, d) = 0.1, (μ+

B1
× μ+

B2
)(b, c)(b, d) = 0.3.

It follows that G1 × G2 is an interval-valued fuzzy graph of G∗
1 × G∗

2.

Proposition 7.2.5 The Cartesian product G1 × G2 = (A1 × A2, B1 × B2) of two
interval-valued fuzzy graph of G∗

1 and G
∗
2 is an interval-valued fuzzy graph of G

∗
1 ×

G∗
2.

Proof Let x1, x2 ∈ V . Then (μ−
A1

× μ−
A2
)(x1, x2) = μ−

A1
(x1) ∧ μ−

A2
(x2) ≤ μ+

A1
(x1) ∧

μ+
A2
(x2) = (μ+

A1
× μ+

A2
)(x1, x2).

Let x ∈ V1 and x2y2 ∈ E2. Then

(μ−
B1

× μ−
B2
)(x, x2)(x, y2) = μ−

A1
(x) ∧ μ−

B2
(x2y2)

≤ μ−
A1
(x) ∧ (μ−

A2
(x2) ∧ μ−

A2
(y2))

= (μ−
A1
(x) ∧ μ−

A2
(x2)) ∧ (μ−

A1
(x) ∧ μ−

A2
(y2)

= (μ−
A1

× μ−
A2
)(x, x2) ∧ (μ−

A1
× μ−

A2
)(x, y2),
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(μ+
B1

× μ+
B2
)(x, x2)(x, y2) = μ+

A1
(x) ∧ μ+

B2
(x2y2)

≤ μ+
A1
(x) ∧ (μ+

A2
(x2) ∧ μ+

A2
(y2))

= (μ+
A1
(x) ∧ μ+

A2
(x2)) ∧ (μ+

A1
(x) ∧ μ+

A2
(y2))

= (μ+
A1

× μ+
A2
)(x, x2) ∧ (μ+

A1
× μ+

A2
)(x, y2).

Similarly, for z ∈ V2 and x1y1 ∈ E1, we have

(μ−
B1

× μ−
B2
)(x1, z)(y1, z) = μ−

B1
(x1y1) ∧ μ−

A2
(z)

≤ (μ−
A1
(x1) ∧ μ−

A1
(y1)) ∧ μ−

A2
(z)

= (μ−
A1
(x1) ∧ μ−

A2
(z)) ∧ (μ−

A1
(y1) ∧ μ−

A2
(z))

= (μ−
A1

× μ−
A2
)(x1, z) ∧ (μ−

A1
× μ−

A2
)(y1, z),

(μ+
B1

× μ+
B2
)(x1, z)(y1, z) = μ+

B1
(x1y1) ∧ μ+

A2
(z)

≤ (μ+
A1
(x1) ∧ μ+

A1
(y1)) ∧ μ+

A2
(z)

= (μ+
A1
(x1) ∧ μ+

A2
(z)) ∧ (μ+

A1
(y1) ∧ μ+

A2
(z)

= (μ+
A1

× μ+
A2
)(x1, z) ∧ (μ+

A1
× μ+

A2
)(y1, z).

�

Definition 7.2.6 The composition G1[G2] = (A1 ◦ A2, B1 ◦ B1) of two interval-
valued fuzzy graphs G1 and G2 of the graphs G∗

1 and G∗
2 is defined as follows:

(μ−
A1

◦ μ−
A2
)(x1, x2) = μ−

A1
(x1) ∧ μ−

A2
(x2),

(μ+
A1

◦ μ+
A2
)(x1, x2) = μ+

A1
(x1) ∧ μ+

A2
(x2),

for all (x1, x2) ∈ V,

(μ−
B1

◦ μ−
B2
)(x, x2)(x, y2) = μ−

A1
(x) ∧ μ−

B2
(x2y2),

(μ+
B1

◦ μ+
B2
)(x, x2)(x, y2) = μ+

A1
(x) ∧ μ+

B2
(x2y2),

for all x ∈ V1 and x2y2 ∈ E2,

(μ−
B1

◦ μ−
B2
)(x1, z)(y1, z) = μ−

B1
(x1y1) ∧ μ−

A2
(z),

(μ+
B1

◦ μ+
B2
)(x1, z)(y1, z) = μ+

B1
(x1y1) ∧ μ+

A2
(z),
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for all z ∈ V2 and x1y1 ∈ E1,

(μ−
B1

◦ μ−
B2
)(x1, x2)(y1, y2) = μ−

A2
(x2) ∧ μ−

A2
(y2) ∧ μ−

B1
(x1y1),

(μ+
B1

◦ μ+
B2
)(x1, x2)(y1, y2) = μ+

A2
(x2) ∧ μ+

A2
(y2) ∧ μ+

B1
(x1y1),

for all (x1, x2)(y1, y2) ∈ E0 − E .

Example 7.2.7 Let G∗
1 and G

∗
2 be as in Example 7.2.4. Consider two interval-valued

fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2), where

A1 =
〈(

a

0.2
,
b

0.3

)
,

(
a

0.5
,
b

0.5

)〉
, B1 =

〈
ab

0.2
,
ab

0.4

〉
,

A2 =
〈(

c

0.1
,
d

0.3

)
,

(
c

0.4
,
d

0.6

)〉
, B2 =

〈
cd

0.1
,
cd

0.3

〉
.

It follows that

(μ−
B1

◦ μ−
B2
)(a, c)(a, d) = 0.1, (μ+

B1
◦ μ+

B2
)(a, c)(a, d) = 0.3,

(μ−
B1

◦ μ−
B2
)(b, c)(b, d) = 0.1, (μ+

B1
◦ μ+

B2
)(b, c)(b, d) = 0.3,

(μ−
B1

◦ μ−
B2
)(a, c)(b, c) = 0.1, (μ+

B1
◦ μ+

B2
)(a, c)(b, c) = 0.4,

(μ−
B1

◦ μ−
B2
)(a, d)(b, d) = 0.2, (μ+

B1
◦ μ+

B2
)(a, d)(b, d) = 0.4,

(μ−
B1

◦ μ−
B2
)(a, c)(b, d) = 0.1, (μ+

B1
◦ μ+

B2
)(a, c)(b, d) = 0.4,

(μ−
B1

◦ μ−
B2
)(b, c)(a, d) = 0.1, (μ+

B1
◦ μ+

B2
)(b, c)(a, d) = 0.4.

It follows easily that G1[G2] = (A1 ◦ A2, B1 ◦ B1) is an interval-valued fuzzy graph
of G∗

1[G∗
2].

Proposition 7.2.8 The composition G1[G2] of two interval-valued fuzzy graphs G1

and G2 of the graphs G∗
1 and G∗

2 is an interval-valued fuzzy graph of G∗
1[G∗

2].
Proof We verify the result only for B1 ◦ B2. For x ∈ V1 and x2y2 ∈ E2, we have
from Definition 7.2.6 that

(μ−
B1

◦ μ−
B2
)(x, x2)(x, y2) = μ−

A1
(x) ∧ μ−

B2
(x2y2)

≤ μ−
A1
(x) ∧ ((μ−

A2
(x2) ∧ μ−

A2
(y2))

= (μ−
A1
(x) ∧ μ−

A2
(x2)) ∧ (μ−

A1
(x) ∧ μ−

A2
(y2)

= μ−
A1

◦ μ−
A2
(x, x2) ∧ μ−

A1
◦ μ−

A2
(x, y2),
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(μ+
B1

◦ μ+
B2
)(x, x2)(x, y2) = μ+

A1
(x) ∧ μ+

B2
(x2y2)

≤ μ+
A1
(x) ∧ (μ+

A2
(x2) ∧ μ+

A2
(y2))

= (μ+
A1
(x) ∧ μ+

A2
(x2)) ∧ (μ+

A1
(x) ∧ μ+

A2
(y2))

= (μ+
A1

◦ μ+
A2
)(x, x2) ∧ (μ+

A1
◦ μ+

A2
)(x, y2).

The proof is similar for the case, z ∈ V2 and x1y1 ∈ E1.

Suppose (x1, x2)(y1, y2) ∈ E0\E . Then

(μ−
B1

◦ μ−
B2
)(x1, x2)(y1, y2) = μ−

A2
(x2) ∧ μ−

A2
(y2) ∧ μ−

B1
(x1y1)

≤ μ−
A2
(x2) ∧ μ−

A2
(y2) ∧ μ−

A1
(x1) ∧ μ−

A1
(y1)

= (μ−
A1
(x1) ∧ μ−

A2
(x2)) ∧ (μ−

A1
(y1) ∧ μ−

A2
(y2))

= (μ−
A1

◦ μ−
A2
)(x1, x2) ∧ (μ−

A1
◦ μ−

A2
)(y1, y2),

(μ+
B1

◦ μ+
B2
)(x1, x2)(y1, y2) = μ+

A2
(x2) ∧ μ+

A2
(y2) ∧ μ+

B1
(x1y1)

≤ μ+
A2
(x2) ∧ μ+

A2
(y2) ∧ μ+

A1
(x1) ∧ μ+

A1
(y1)

= (μ+
A1
(x1) ∧ μ+

A2
(x2)) ∧ (μ+

A1
(y1) ∧ μ+

A2
(y2))

= (μ+
A1

◦ μ+
A2
)(x1, x2) ∧ (μ+

A1
◦ μ+

A2
)(y1, y2).

�

Definition 7.2.9 The union G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2) of two interval-valued
fuzzy graphs G1 and G2 of the graphs G∗

1 and G∗
2 is defined as follows:

(μ−
A1

∪ μ−
A2
)(x) = μ−

A1
(x), if x ∈ V1 and x /∈ V2,

(μ−
A1

∪ μ−
A2
)(x) = μ−

A2
(x), if x ∈ V2 and x /∈ V1,

(μ−
A1

∪ μ−
A2
)(x) = μ−

A1
(x) ∨ μ−

A2
(x), if x ∈ V1 ∩ V2,

(μ+
A1

∪ μ+
A2
)(x) = μ+

A1
(x), if x ∈ V1 and x /∈ V2,

(μ+
A1

∪ μ+
A2
)(x) = μ+

A1
(x), if x ∈ V2 and x /∈ V1,

(μ+
A1

∪ μ+
A2
)(x) = μ+

A1
(x) ∨ μ+

A2
(x), if x ∈ V1 ∩ V2,

(μ−
B1

∪ μ−
B2
)(xy) = μ−

B1
(xy), if xy ∈ E1 and xy /∈ E2,

(μ−
B1

∪ μ−
B2
)(xy) = μ−

B2
(xy), if xy ∈ E2 and xy /∈ E1,

(μ−
B1

∪ μ−
B2
)(xy) = μ−

B1
(xy) ∨ μ−

B2
(xy) , if xy ∈ E1 ∩ E2,
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(μ+
B1

∪ μ+
B2
)(xy) = μ+

B1
(xy), if xy ∈ E1 and xy /∈ E2,

(μ+
B1

∪ μ+
B2
)(xy) = μ+

B2
(xy), if xy ∈ E2 and xy /∈ E1,

(μ+
B1

∪ μ+
B2
)(xy) = μ+

B1
(xy) ∨ μ+

B2
(xy) , if xy ∈ E1 ∩ E2.

Example 7.2.10 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be graphs such that
V1 = {a, b, c, d, e}, E1 = {ab, bc, be, ce, ad, ed}, V2 = {a, b, c, d, f }, E2 =
{ab, bc, c f, b f, bd}. Consider two interval-valued fuzzy graphs G1 = (A1, B1) and
G2 = (A2, B2), where

A1 =
〈(

a

0.2
,
b

0.4
,

c

0.3
,
d

0.3
,

e

0.2

)
,

(
a

0.4
,
b

0.5
,

c

0.6
,
d

0.7
,

e

0.6

)〉
,

B1 =
〈(

ab

0.1
,
bc

0.2
,
ce

0.1
,
be

0.2
,
ad

0.1
,
de

0.1

)
,

(
ab

0.3
,
bc

0.4
,
ce

0.5
,
be

0.5
,
ad

0.3
,
de

0.6

)〉
,

A2 =
〈(

a

0.2
,
b

0.2
,

c

0.3
,
d

0.2
,

f

0.4

)
,

(
a

0.4
,
b

0.5
,

c

0.6
,
d

0.6
,

f

0.6

)〉
,

B2 =
〈(

ab

0.1
,
bc

0.2
,
c f

0.1
,
b f

0.1
,
bd

0.2

)
,

(
ab

0.2
,
bc

0.4
,
c f

0.5
,
b f

0.2
,
bd

0.5

)〉
.

Then according to the above definition:

(μ−
A1

∪ μ−
A2
)(a) = 0.2, (μ+

A1
∪ μ+

A2
)(a) = 0.4,

(μ−
A1

∪ μ−
A2
)(b) = 0.4, (μ+

A1
∪ μ+

A2
)(b) = 0.5,

(μ−
A1

∪ μ−
A2
)(c) = 0.3, (μ+

A1
∪ μ+

A2
)(c) = 0.6,

(μ−
A1

∪ μ−
A2
)(d) = 0.3, (μ+

A1
∪ μ+

A2
)(d) = 0.7,

(μ−
A1

∪ μ−
A2
)(e) = 0.2, (μ+

A1
∪ μ+

A2
)(e) = 0.6,

(μ−
A1

∪ μ−
A2
)( f ) = 0.4, (μ+

A1
∪ μ+

A2
)( f ) = 0.6,

(μ−
B1

∪ μ−
B2
)(ab) = 0.1, (μ+

B1
∪ μ+

B2
)(ab) = 0.3,

(μ−
B1

∪ μ−
B2
)(bc) = 0.2, (μ+

B1
∪ μ+

B2
)(bc) = 0.4,

(μ−
B1

∪ μ−
B2
)(ce) = 0.1, (μ+

B1
∪ μ+

B2
)(ce) = 0.5,

(μ−
B1

∪ μ−
B2
)(be) = 0.2, (μ+

B1
∪ μ+

B2
)(be) = 0.5,

(μ−
B1

∪ μ−
B2
)(ad) = 0.1, (μ+

B1
∪ μ+

B2
)(ad) = 0.3,

(μ−
B1

∪ μ−
B2
)(de) = 0.1, (μ+

B1
∪ μ+

B2
)(de) = 0.6,

(μ−
B1

∪ μ−
B2
)(bd) = 0.2, (μ+

B1
∪ μ+

B2
)(bd) = 0.5,

(μ−
B1

∪ μ−
B2
)(b f ) = 0.1, (μ+

B1
∪ μ+

B2
)(b f ) = 0.2.

Clearly, G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2) is interval-valued fuzzy graph of the graph
G∗

1 ∪ G∗
2.
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Proposition 7.2.11 The union of two interval-valued fuzzy graphs is an interval-
valued fuzzy graph.

Proof Let G1 = (A1, B1) and G2 = (A2, B2) be interval-valued fuzzy graphs of
G∗

1 and G∗
2, respectively. We prove that G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2) is interval-

valued fuzzy graphs of the graphs G∗
1 ∪ G∗

2. Because all conditions of A1 ∪ A2 are
automatically satisfied, we verify only the conditions of B1 ∪ B2.

Suppose that xy ∈ E1 ∩ E2. Then

(μ−
B1

∪ μ−
B2
)(xy) = μ−

B1
(xy) ∨ μ−

B2
(xy)

≤ (μ−
A1
(x) ∧ μ−

A1
(y)) ∨ (μ−

A2
(x) ∧ μ−

A2
(y))

= (μ−
A1
(x) ∨ μ−

A2
(x)) ∧ (μ−

A1
(y) ∨ μ−

A2
(y))

= (μ−
A1

∪ μ−
A2
)(x) ∧ (μ−

A1
∪ μ−

A2
)(y),

(μ+
B1

∪ μ+
B2
)(xy) = μ+

B1
(xy) ∨ μ+

B2
(xy)

≤ (μ+
A1
(x) ∧ μ+

A1
(y)) ∧ (μ+

A2
(x) ∧ μ+

A2
(y))

= (μ+
A1
(x) ∨ μ+

A2
(x) ∧ (μ+

A1
(y) ∨ μ+

A2
(y))

= (μ+
A1

∪ μ+
A2
)(x) ∧ (μ+

A1
∪ μ+

A2
)(y).

If xy ∈ E1 and xy /∈ E2, then

(μ−
B1

∪ μ−
B2
)(xy) = μ−

B1
(xy) ≤ μ−

A1
(x) ∧ μ−

A1
(y)

≤ (μ−
A1

∪ μ−
A2
)(x) ∧ (μ−

A1
∪ μ−

A2
)(y)

and similarly

(μ+
B1

∪ μ+
B2
)(xy) ≤ (μ+

A1
∪ μ+

A2
)(x) ∧ (μ+

A1
∪ μ+

A2
)(y).

If xy ∈ E2 and xy /∈ E1, then

(μ−
B1

∪ μ−
B2
)(xy) = μ−

B2
(xy) ≤ μ−

A2
(x) ∧ μ−

A2
(y)

≤ (μ−
A1

∪ μ−
A2
)(x) ∧ (μ−

A1
∪ μ−

A2
)(y)

and similarly

(μ+
B1

∪ μ+
B2
)(xy) ≤ (μ+

A1
∪ μ+

A2
)(x) ∧ (μ+

A1
∪ μ+

A2
)(y).

�

Definition 7.2.12 The join G1 + G2 = (A1 + A2, B1 + B1) of two interval-valued
fuzzy graphs G1 and G2 of the graphs G∗

1 and G∗
2 is defined as follows:
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(μ−
A1

+ μ−
A2
)(x) = (μ−

A1
∪ μ−

A2
)(x)

(μ+
A1

+ μ+
A2
)(x) = (μ+

A1
∪ μ+

A2
)(x)

if x ∈ V1 ∪ V2,

(μ−
B1

+ μ−
B2
)(xy) = (μ−

B1
∪ μ−

B2
)(xy)

(μ+
B1

+ μ+
B2
)(xy) = (μ+

B1
∪ μ+

B2
)(xy)

if xy ∈ E1 ∩ E2,

(μ−
B1

+ μ−
B2
)(xy) = μ−

A1
(x) ∧ μ−

A2
(y)

(μ+
B1

+ μ+
B2
)(xy) = μ+

A1
(x) ∧ μ+

A2
(y)

if xy ∈ E ′,

where E ′ is the set of all edges joining the nodes of V1 and V2.

Proposition 7.2.13 The join of two interval-valued fuzzy graphs is an interval-
valued fuzzy graphs.

Proof Let G1 = (A1, B1) and G2 = (A2, B2) be interval-valued fuzzy graphs of
G∗

1 and G∗
2, respectively. We prove that G1 + G2 = (A1 + A2, B1 + B2) is an

interval-valued fuzzy graph of the graph G∗
1 + G∗

2. In view of Proposition 7.2.11, it
is sufficient to verify the case when xy ∈ E ′. In this case, we have

(μ−
B1

+ μ−
B2
)(xy) = μ−

A1
(x) ∧ μ−

A2
(y)

≤ (μ−
A1

∪ μ−
A2
(x)) ∧ (μ−

A1
∪ μ−

A2
)(y)

= (μ−
A1

+ μ−
A2
)(x) ∧ (μ−

A1
+ μ−

A2
)(y),

(μ+
B1

+ μ+
B2
)(xy) = μ+

A1
(x) ∧ μ+

A2
(y)

≤ (μ+
A1

∪ μ+
A2
)(x) ∧ (μ+

A1
∪ μ+

A2
)(y)

= (μ+
A1

+ μ+
A2
)(x) ∧ (μ+

A1
+ μ+

A2
)(y).

�

Proposition 7.2.14 Let G∗
1 = (V1, E1) andG∗

2 = (V2, E2) be crisp graphs such that
V1 ∩ V2 = ∅. Let A1, A2, B1, B2 be interval-valued fuzzy subsets of V1, V2, E1, E2,

respectively. Then G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2) is an interval-valued fuzzy graph
of G∗

1 ∪ G∗
2 if and only if G1 = (A1, B1) and G2 = (A2, B2) are interval-valued

fuzzy graphs of G∗
1 and G∗

2, respectively.

Proof Suppose that G1 ∪G2 = (A1 ∪ A2, B1 ∪ B2) is an interval-valued fuzzy graph
of G∗

1 ∪ G∗
2. Let xy ∈ E1. Then xy /∈ E2 and x, y ∈ V1\V2. Thus,

μ−
B1
(xy) = (μ−

B1
∪ μ−

B2
)(xy)

≤ (μ−
A1

∪ μ−
A2
(x)) ∧ (μ−

A1
∪ μ−

A2
)(y)

= μ−
A1
(x) ∧ μ−

A1
(y),
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μ+
B1
(xy) = (μ+

B1
∪ μ+

B2
)(xy)

≤ (μ+
A1

∪ μ+
A2
)(x) ∧ (μ+

A1
∪ μ+

A2
)(y)

= μ+
A1
(x) ∧ μ+

A1
(y).

This shows that G1 = (A1, B1) is an interval-valued fuzzy graph. Similarly, we can
show that G2 = (A2, B2) is an interval-valued fuzzy graph.

The converse statement is given by Proposition 7.2.11. �

As a consequence of Propositions 7.2.13 and 7.2.14, we obtain the following
proposition.

Proposition 7.2.15 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be crisp graphs and let
V1 ∩ V2 = ∅. Let A1, A2, B1, B2 be interval-valued fuzzy subsets of V1, V2, E1, E2,

respectively. Then G1 +G2 = (A1 + A2, B1 + B2) is an interval-valued fuzzy graph
of G∗

1 ∪ G∗
2 if and only if G1 = (A1, B1) and G2 = (A2, B2) are interval-valued

fuzzy graphs of G∗
1 and G∗

2, respectively.

7.3 Isomorphisms of Interval-Valued Fuzzy Graphs

In this section, we consider various types of (weak) isomorphisms of interval-valued
fuzzy graphs.

Definition 7.3.1 Let G1 = (A1, B1) and G2 = (A2, B2) be two interval-valued
fuzzy graphs. A homomorphism f : G1 → G2 is a mapping f : V1 → V2 such
that for all x1 ∈ V1, x1y1 ∈ E1,

(i) μ−
A1
(x1) ≤ μ−

A2
( f (x1)),μ

+
A1
(x1) ≤ μ+

A2
( f (x1)),

(i i) μ−
B1
(x1y1) ≤ μ−

B2
( f (x1) f (y1)),μ

+
B1
(x1y1) ≤ μ+

B2
( f (x1) f (y1)).

A bijective homomorphism with the property
(i i i) μ−

A1
(x1) = μ−

A2
( f (x1)),μ

+
A1
(x1) = μ+

A2
( f (x1))

is called a weak isomorphism and a weak co-isomorphism if
(iv) μ−

B1
(x1y1) = μ−

B2
( f (x1) f (y1)),μ

+
B1
(x1y1) = μ+

B2
( f (x1) f (y1)) for all

x1, y1 ∈ V1.

A bijective mapping f : G1 → G2 satisfying (i i i) and (iv) is called an isomor-
phism.

Example 7.3.2 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be graphs such that V1 =
{a1, b1}, V2 = {a2, b2}, E1 = {a1b1}, E2 = {a2b2}. Let A1, A2, B1, and B2 be
interval-valued fuzzy subsets defined by

A1 =
〈(

a1
0.2

,
b1
0.3

)
,

(
a1
0.5

,
b1
0.6

)〉
, B1 =

〈
a1b1
0.1

,
a1b1
0.3

〉
,

A2 =
〈(

a2
0.3

,
b2
0.2

)
,

(
a2
0.6

,
b2
0.5

)〉
, B2 =

〈
a2b2
0.1

,
a2b2
0.4

〉
.
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Then it follows that G1 = (A1, B1) and G2 = (A2, B2) are interval-valued fuzzy
graphs of G∗

1 and G∗
2, respectively. The map f : V1 → V2 defined by f (a1) = b2

and f (b1) = a2 is a weak isomorphism, but it is not an isomorphism.

Example 7.3.3 Let G∗
1 and G

∗
2 be as in Example 7.3.2 and let A1, A2, B1, and B2 be

interval-valued fuzzy subsets defined by

A1 =
〈( a1

0.2

) b1
0.3

),

(
a1
0.4

,
b1
0.5

)〉
, B1 =

〈
a1b1
0.1

,
a1b1
0.3

〉
,

A2 =
〈(

a2
0.4

,
b2
0.3

)
,

(
a2
0.5

,
b2
0.6

)〉
, B2 =

〈
a2b2
0.1

,
a2b2
0.3

〉
.

Then G1 = (A1, B1) and G2 = (A2, B2) are interval-valued fuzzy graphs of G∗
1 and

G∗
2, respectively. The map f : V1 → V2 defined by f (a1) = b2 and f (b1) = a2 is a

weak co-isomorphism, but it is not an isomorphism.

7.4 Strong Interval-Valued Fuzzy Graphs

In this section, we consider strong interval-valued fuzzy graphs.

Definition 7.4.1 An interval-valued fuzzy graph G = (A, B) is called strong if

μ−
B1
(xy) = μ−

A1
(x) ∧ μ−

A1
(y), μ+

B1
(xy) = μ+

A1
(x) ∧ μ+

A1
(y)

for all xy ∈ E .

Example 7.4.2 Consider a graph G∗ = (V, E) such that V = {x, y, z} and E =
{xy, yz, zx}. If A and B are interval-valued fuzzy subsets defined by

A =
〈( x

0.2
,

y

0.3
,

z

0.4

)
,
( x

0.4
,

y

0.5
,

z

0.5

)〉
,

B =
〈( xy

0.2
,
yz

0.3
,
zx

0.2

)
,
( xy

0.4
,
yz

0.5
,
zx

0.4

)〉
,

then G = (A, B) is a interval-valued complete fuzzy graph of G∗.

Definition 7.4.3 The complement of an interval-valued fuzzy graph G = (A, B)
of G∗ = (V, E) is an interval-valued fuzzy graph G = (A, B) on G∗ = (V, E),

where A = A = [
μ−
A, μ+

A

]
and B =

[
μ−

B, μ+
B

]
is defined by

μ−
B(xy) =

{
0 if μ−

B (xy) > 0,
μ−
A(x) ∧ μ−

A(y) if μ−
B (xy) = 0.
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μ+
B(xy) =

{
0 if μ+

B (xy) > 0,
μ+
A(x) ∧ μ+

A(y) if μ+
B (xy) = 0.

Definition 7.4.4 An interval-valued fuzzy graph G = (A, B) is called self-
complementary if G � G.

Example 7.4.5 Consider a graph G∗ = (V, E) such that V = {a, b, c, d} and E =
{ab, bc, cd}. Let G = (A, B) be the interval-valued fuzzy graph such that

A =
〈(

a

0.2
,

b

0.2
,

c

0.1
,
d

0.1

)
,

(
a

0.4
,
b

0.4
,

c

0.3
,
d

0.3

)〉
,

B =
〈(

ab

0.1
,
bc

0.1
,
cd

0.1

)
,

(
ab

0.3
,
bc

0.3
,
cd

0.3

)〉
.

Then G = (A, B) is as follows:

A =
〈(

a

0.2
,

b

0.2
,

c

0.1
,
d

0.1

)
,

(
a

0.4
,
b

0.4
,

c

0.3
,
d

0.3

)〉
,

B =
〈(

ad

0.1
,
ac

0.1
,
bd

0.1

)
,

(
ad

0.3
,
ac

0.3
,
bd

0.3

)〉
.

It follows that the function f : V → V defined by f (a) = c, f (b) = a, f (c) =
d, f (d) = b yields an isomorphism of G onto G.

Proposition 7.4.6 Suppose G = (A, B) is a strong self-complementary interval-
valued fuzzy graph. Then the following properties hold.

(i)
∑

x �=y μ−
B (xy) = ∑

x �=y μ−
A(x) ∧ μ−

A(y),
(i i)

∑
x �=y μ+

B (xy) = ∑
x �=y μ+

A(x) ∧ μ+
A(y).

Proof Let G = (A, B) be a strong self-complementary interval-valued fuzzy graph.
Then there exists an isomorphism f : V → V such that μ−

A( f (x)) = μ−
A(x),

μ+
A( f (x)) = μ+

A(x), μ−
B ( f (x) f (y)) = μ−

B (xy) and μ+
B ( f (x) f (y)) = μ+

B (xy) for
all x, y ∈ V . Thus, for all x, y ∈ V, we have that

μ−
B (xy) = μ−

B ( f (x) f (y)) = μ−
A( f (x)) ∧ μ−

A( f (y)) = μ−
A(x) ∧ μ−

A(y).

Thus, (i) holds. The proof of (i i) follows in a similar manner. �

Proposition 7.4.7 Let G1 = (A1, B1) and G2 = (A2, B2) be interval-valued fuzzy
strong graphs. Then G1 � G2 if and only if G1 � G2.

Proof Assume that G1 and G2 are isomorphic. Then there exists a bijective map
f : V1 → V2 satisfying
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μ−
A1
(x) = μ−

A2
( f (x)), μ+

A1
(x) = μ+

A2
( f (x)) for all x ∈ V1,

μ−
B1
(xy) = μ−

B2
( f (x) f (y)), μ+

B (xy) = μ+
B2
( f (x) f (y)) for all xy ∈ E1.

By the definition of complement, we have

μ−
B1
(xy) = μ−

A1
(x) ∧ μ−

A1
(y) = μ−

A2
( f (x)) ∧ μ−

A2
( f (y)) = μ−

B2
( f (x) f (y)),

μ+
B1
(xy) = μ+

A1
(x) ∧ μ+

A1
(y) = μ+

A2
( f (x)) ∧ μ+

A2
( f (y)) = μ+

B2
( f (x) f (y))

for all xy /∈ E1. Hence, G1 � G2.

The proof of the converse follows immediately because G1 and G2 are strong.
�

7.5 Interval-Valued Fuzzy Line Graphs

In this section, we present the work of [9]. The work is based on [125]. We prove a
necessary and sufficient condition for an interval-valued fuzzy graph to be isomorphic
to its corresponding interval-valued fuzzy line graph.We determine when an isomor-
phism between two interval-valued fuzzy graphs follows from an isomorphism of
their corresponding fuzzy line graphs.

Recall isomorphic graphs are denoted by G∗
1 � G∗

2. In graph theory, the line
graph L(G∗) of a simple graph is a graph that represents the adjacencies between
edges of G∗.Given a graph G∗, its line graph L(G∗) is a graph such that each vertex
of L(G∗) represents and edge of G∗; and two vertices of L(G∗) are adjacent if and
only if there corresponding edges share a common endpoint in G∗.

Let G∗ = (V, E) be an undirected graph, where V = {v1, v2, . . . , vn}. Let
Si = {vi , xi1, xi2, . . . , xiqi }, where xi j ∈ E has vertex vi , i = 1, 2, . . . , n, j = 1,
2, . . . , qi . Let S = {S1, S2, . . . , Sn}. Let T = {Si S j | Si , Sj ∈ S, Si ∩ Sj �= ∅,
i �= j}. Then P(S) = (S, T ) is an intersection graph and P(S) � G∗. The line
graph L(G∗) of a simple graph G∗ is by definition the intersection graph P(E). That
is, L(G∗) = (Z ,W ), where Z = {{x} ∪ {ux , vx } | x ∈ E, ux , vx ∈ V, x = uxvx }
andW = {Sx Sy | Sx ∩ Sy �= ∅, x , y ∈ E, x �= y}, and Sx = {{x}∪{ux , vx }}, x ∈ E .

Throughout this section, G∗ is a crisp simple graph, and G is an interval-valued
fuzzy graph.

Definition 7.5.1 Let P(S) = (S, T ) be an intersection graph of a simple graph
G∗ = (V, E). Let G = (A1, B1) be an interval-valued fuzzy graph of G∗.We define
an interval-valued fuzzy intersection graph P(G) = (A2, B2) of P(S) as follows:

(i) A2, B2 are interval-valued fuzzy subsets of S and T , respectively,
(i i) μ−

A2
(Si ) = μ−

B1
(vi ), μ+

A2
(Si ) = μ+

B1
(vi ),

(i i i) μ−
B2
(Si S j ) = μ−

B1
(viv j ), μ+

B2
(Si S j ) = μ+

B1
(viv j )



7.5 Interval-Valued Fuzzy Line Graphs 245

for all Si , Sj ∈ S, Si S j ∈ T . That is, any interval-valued fuzzy graph of P(S) is
called an interval-valued fuzzy intersection graph.

The following proposition is clear.

Proposition 7.5.2 Let G = (A1, B1) be an interval-valued fuzzy graph of G∗. Then
P(G) = (A2, B2) is an interval-valued fuzzy graph of P(S) and G � P(G).

This proposition shows that any interval-valued fuzzy graph is isomorphic to an
interval-valued fuzzy intersection graph.

Definition 7.5.3 Let L(G∗) = (Z ,W ) be a line graph of a simple graph G∗ =
(V, E). Let G = (A1, B1) be an interval-valued fuzzy graph of G∗. We define an
interval-valued fuzzy line graph L(G) = (A2, B2) of G as follows:

(i) A2 and B2 are interval-valued fuzzy subsets of Z and W , respectively,
(i i) μ−

A2
(Sx ) = μ−

B1
(x) = μ−

B1
(uxvx ),

(i i i) μ+
A2
(Sx ) = μ+

B1
(x) = μ+

B1
(uxvx ),

(iv) μ−
B2
(Sx Sy) = μ−

B1
(x) ∧ μ−

B1
(y)),

(v) μ+
B2
(Sx Sy) = μ+

B1
(x) ∧ μ+

B1
(y),

for all Sx , Sy ∈ Z , Sx Sy ∈ W.

Example 7.5.4 Consider a graph G∗ = (V, E) such that V = {v1, v2, v3, v4} and
E = {x1 = v1v2, x2 = v2v3, x3 = v3v4, x4 = v4v1}. Let A1 be an interval-valued
fuzzy subset of V and let B1 be an interval-valued fuzzy subset of E defined by

v1 v2 v3 v4
μ−
A1

0.2 0.3 0.4 0.2
μ+
A1

0.5 0.4 0.5 0.3

v1v2 v2v3 v3v4 v4v1
μ−
B1

0.1 0.2 0.1 0.1
μ+
B1

0.2 0.3 0.2 0.2

It is easily shown that G is an interval-valued fuzzy graph. Consider a line graph
L(G∗) = (Z ,W ) such that

Z = {Sx1 , Sx2 , Sx3 , Sx4}

and
W = {Sx1 Sx2 , Sx2 Sx3 , Sx3 Sx4 , Sx4 Sx1}.

Let A2 = [μ−
A2
,μ+

A2
] and B2 = [ μ−

B2
,μ+

B2
] be interval-valued fuzzy sets of Z andW ,

respectively. Then it follows that
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μ−
A2
(Sx1) = 0.1 μ+

A2
(Sx1) = 0.2

μ−
A2
(Sx2) = 0.2 μ+

A2
(Sx2) = 0.3

μ−
A2
(Sx3) = 0.1 μ+

A2
(Sx3) = 0.2

μ−
A2
(Sx4) = 0.1 μ+

A2
(Sx4) = 0.2

μ−
B2
(Sx1 Sx2) = 0.1 μ+

B2
(Sx1 Sx2) = 0.2

μ−
B2
(Sx2 Sx3) = 0.1 μ+

B2
(Sx2 Sx3) = 0.2

μ−
B2
(Sx3 Sx4) = 0.1 μ+

B2
(Sx3 Sx4) = 0.2

μ−
B2
(Sx4 Sx1) = 0.1 μ+

B2
(Sx4 Sx1) = 0.2.

Clearly, L(G) is an interval-valued fuzzy line graph.

The following proposition is immediate.

Proposition 7.5.5 L(G) is an interval-valued fuzzy line graph corresponding to an
interval-valued fuzzy graph.

Proposition 7.5.6 If L(G) is an interval-valued fuzzy line graph of an interval-
valued fuzzy graph, then L(G∗) is the line graph of G∗.

Proof Because G = (A1, B1) is an interval-valued fuzzy graph of G∗ and L(G) =
(A2, B2) is an interval-valued fuzzy line graph of L(G∗).

μ−
A2
(Sx ) = μ−

B1
(x), μ+

A2
(Sx ) = μ+

B1
(x) for all x ∈ E,

Thus, Sx ∈ Z ⇔ x ∈ E . Also,

μ−
B2
(Sx Sy) = μ−

B1
(x) ∧ μ−

B1
(y)

μ+
B2
(Sx Sy) = μ+

B1
(x) ∧ μ+

B1
(y)

for all Sx Sy ∈ W. Hence,

W = {Sx Sy | Sx ∩ Sy �= ∅, x, y ∈ E, x �= y}.

�

Proposition 7.5.7 Let L(G) = (A2, B2) is an interval-valued fuzzy line graph of
L(G∗). Then L(G) is an interval-valued fuzzy line graph of some interval-valued
fuzzy line graph G if and only if

μ−
B2
(Sx Sy) = μ−

A2
(Sx ) ∧ μ−

A2
(Sy) for all Sx Sy ∈ W,

μ+
B2
(Sx Sy) = μ+

A2
(Sx ) ∧ μ+

A2
(Sy) for all Sx Sy ∈ W.

Proof Suppose thatμ−
B2
(Sx Sy) = μ−

A2
(Sx )∧μ−

A2
(Sy) for all Sx Sy ∈ W.For all x ∈ E,

define μ−
A1
(x) = μ−

A2
(Sx ). Then
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μ−
B2
(Sx Sy) = μ−

A2
(Sx ) ∧ μ−

A2
(Sy) = μ−

A1
(x) ∧ μ−

A1
(y),

μ+
B2
(Sx Sy) = μ+

A2
(Sx ) ∧ μ+

A2
(Sy) = μ+

A1
(x) ∧ μ+

A1
(y).

An interval-valued fuzzy set A1 = [μ−
A1
,μ+

A1
] that yields the property

μ−
B1
(xy) ≤ μ−

A1
(x) ∧ μ−

A1
(y),

μ+
B1
(xy) ≤ μ+

A1
(x) ∧ μ+

A1
(y)

will suffice.
The converse follows easily. �

Proposition 7.5.8 L(G) is an interval-valued fuzzy line graph if and only if L(G∗)
is a line graph and

μ−
B2
(uv) ≤ μ−

A2
(u) ∧ μ−

A2
(v),

μ+
B2
(uv) ≤ μ+

A2
(u) ∧ μ+

A2
(v)

for all uv ∈ W.

Proof The proof follows from Propositions 7.5.6 and 7.5.7. �

Proposition 7.5.9 Let G1 and G2 be interval-valued fuzzy graphs. If f is a weak
isomorphism of G1 onto G2, then f is an isomorphism of G∗

1 onto G∗
2.

Proof v ∈ V1 ⇔ f (v) ∈ V2 and uv ∈ E1 ⇔ f (u) f (v) ∈ E2. �

Theorem 7.5.10 ([9]) Let L(G) = (A2, B2) be the interval-valued fuzzy line graph
corresponding to interval-valued fuzzy graph G = (A1, B1). Suppose that G∗ =
(V, E) is connected. Then the following properties hold.

(i) There exists a weak isomorphism of G onto L(G) if and only if G∗ is a cycle
and for all v ∈ V, x ∈ E, μ−

A1
(v) = μ−

B1
(x), μ+

A1
(v) = μ+

B1
(x), i.e., A1 = [

μ−
A1
,μ+

A1

]
and B1 = [

μ−
B1
,μ+

B1

]
are constant functions on V and E, respectively, taking on the

same value.
(i i) If f is a weak isomorphism of G onto L(G), then f is an isomorphism.

Proof Assume that f is a weak isomorphism of L(G) onto G. From Proposition
7.5.8, it follows that G∗ = (V, E) is a cycle.

Let V = {v1, v2, . . . , vn} and E = {x1 = v1v2, x2 = v2v3, . . . , xn = vnv1},
where v1v2v3 · · · vn is a cycle. Define interval-valued fuzzy sets

μ−
A1
(xi ) = si , μ+

A1
(xi ) = s ′

i

and
μ−
B1
(vivi+1) = ri , μ+

B1
(vivi+1) = r ′

i , i = 1, 2, . . . , n, vn+1 = v1.
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Then sn+1 = s1, s ′
n+1 = s ′

1.

{
ri ≤ si ∧ si+1

r ′
i ≤ s ′

i ∧ s ′
i+1, i = 1, 2, . . . , n.

(7.1)

Now, Z = {Sx1 , Sx2 , . . . , Sxn } and W = {Sx1 Sx2 , Sx2 Sx3 , . . . , Sxn Sx1}. Also, for
r ′
n+1 = r ′

1,

μ−
A2
(Sxi ) = μ−

A1
(xi ) = μ−

A1
(vivi+1) = ri ,

μ+
A2
(Sxi ) = μ+

A1
(xi ) = μ+

A1
(vivi+1) = r ′

i ,

μ−
B2
(Sxi Sxi+1) = μ−

B1
(xi ) ∧ μ−

B1
(xi+1) =

μ−
B1
(vivi+1) ∧ μ−

B1
(vi+1vi+2) = ri ∧ ri+1,

μ+
B2
(Sxi Sxi+1) = μ+

B1
(xi ) ∧ μ+

B1
(xi+1) =

μ+
B1
(vivi+1) ∧ μ+

B1
(vi+1vi+2) = r ′

i ∧ r ′
i+1

for i = 1, 2, . . . , n, vn+1 = v1, vn+2 = v2. Because f is an isomorphism of G∗ onto
L(G∗), f maps V one-to-one and onto Z . Also, f preserves adjacency. Hence, f
induces a permutation π of {1, 2, . . . , n} such that

f (vi ) = Sxπ(i) = Sxπ(i) Sxπ(i+1)

and

xi = vivi+1 → f (vi ) f (vi+1) = Svπ(i) Svπ(i+1) Svπ(i+2) , i = 1, 2, . . . , n − 1.

Now,

si = μ−
A1
(vi ) ≤ μ−

A2
( f (vi )) = μ−

A2
(Svπ(i) Svπ(i+1) ) = rπ(i),

s ′
i = μ+

A1
(vi ) ≤ μ+

A2
( f (vi )) = μ+

A2
(Svπ(i) Svπ(i+1) ) = r ′

π(i),

ri = μ−
B1
(vivi+1) ≤ μ−

B2
( f (vi ) f (vi+1)) = μ−

B2
(Svπ(i) Svπ(i+1) Svπ(i+)+1)

= rπ(i) ∧ rπ(i+1),

r ′
i = μ+

B1
(vivi+1) ≤ μ+

B2
( f (vi ) f (vi+1)) = μ+

B2
(Svπ(i) Svπ(i+1) Svπ(i+)+1)

= r ′
π(i) ∧ r ′

π(i+1)

for i = 1, 2, . . . , n. That is,
si ≤ rπ(i), s

′
i ≤ r ′

π(i)

and {
ri ≤ rπ(i) ∧ rπ(i+1)

r ′
i ≤ r ′

π(i) ∧ r ′
π(i+1).

(7.2)
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By (7.2) we have ri ≤ rπ(i), r ′
i ≤ r ′

π(i) for i = 1, 2, . . . , n and so rπ(i) ≤ rπ(π(i)),
r ′
π(i) ≤ r ′

π(π(i)) for i = 1, 2, . . . , n. Continuing, we have

ri ≤ rπ(i) ≤ rπ(π(i)) ≤ · · · ≤ rπ j (i) ≤ ri ,

r ′
i ≤ r ′

π(i) ≤ r ′
π(π(i)) ≤ · · · ≤ r ′

π j (i) ≤ r ′
i

and so ri = rπ(i), r ′
i = r ′

π(i) for i = 1, 2, . . . , n, where π j+1 is the identity map.
Again, by (7.2), we have

ri ≤ rπ(i+1) = ri+1, i = 1, 2, . . . , n, rn+1 = r1,

r ′
i ≤ r ′

π(i+1) = r ′
i+1, i = 1, 2, . . . , n, rn+1 = r1.

Hence, by (7.1) and (7.2),

r1 = · · · = rn = s1 = · · · = sn,

r ′
1 = · · · = r ′

n = s ′
1 = · · · = s ′

n.

Thus, we have not only proved the conclusion about A1 and B1 being constant
functions, but we have also shown that (ii) holds.

The converse follows easily. �

We state the following theorem without proof.

Theorem 7.5.11 LetG and H be interval-valued fuzzy graphs ofG∗ and H∗, respec-
tively, such that G∗ and H∗ are connected. Let L(G) and L(H) be the interval-valued
fuzzy line graphs corresponding to G and H, respectively. Suppose that it is not the
case that one of G∗ and H∗ is complete graph K3 and the other is bipartite complete
graph K1,3. If L(G) and L(H) are isomorphic, then G and H are line-isomorphic.

Example 7.5.12 Consider an interval-valued fuzzy line graphgiven inExample 7.5.4.
By routine calculations, it is easy to see that L(G) is a strong interval-valued fuzzy
graph.

The proof of the following proposition follows easily.

Proposition 7.5.13 An interval-valued fuzzy line graph is a strong interval-valued
fuzzy graph.

7.6 Balanced Interval-Valued Fuzzy Graphs

We next consider certain types of interval-valued fuzzy graphs including balanced
interval-valued fuzzy graphs, neighborly irregular interval-valued fuzzy graphs,
neighborly total irregular interval-valued fuzzy graphs, highly irregular interval-
valued fuzzy graphs, and highly total irregular interval-valued fuzzy graphs. The
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work is due to [19]. We present necessary and sufficient conditions under which
neighborly irregular and highly irregular interval-valued fuzzy graphs are equiva-
lent.

In [169], the definition of complement of a fuzzy graph was modified so that the
complement of the complement is the original fuzzy graph, which agrees with the
crisp graph case. Ju and Wang gave the definition of interval-valued fuzzy graph in
[88]. Akram et al. [5, 6, 9, 13, 14] introduced many new concepts including bipolar
fuzzy graphs, interval-valued fuzzy line graphs, strong intuitionistic fuzzy graphs.
Wepropose certain types of interval-valued fuzzy graphs including balanced interval-
valued fuzzy graphs, neighborly irregular interval-valued fuzzy graphs, neighborly
total irregular interval-valued fuzzy graphs, highly irregular interval-valued fuzzy
graphs, and highly total irregular interval-valued fuzzy graphs. Some properties
associated with these new interval-valued fuzzy graphs are investigated, and nec-
essary and sufficient conditions under which neighborly irregular and highly irreg-
ular interval-valued fuzzy graphs are equivalent are obtained. We also describe the
relationship between intuitionistic fuzzy graphs and interval-valued fuzzy graphs.

Recall that a regular graph is a graph where each vertex has the same number
of neighbors, that is, all the vertices have the same closed neighborhood degree. A
connected graph is highly irregular if each of its vertices is adjacent only to vertices
with distinct degrees. Equivalently, a graphG∗ is highly irregular if every two vertices
of G∗ connected by a path of length 2 have distinct degrees. A connected graph is
said to be neighborly irregular if no two adjacent vertices of G∗ have the same
degree. Equivalently, a connected graph G∗ is called neighborly irregular if every
two adjacent vertices of G∗ have distinct degree.

One of the best known classes of graphs is the class of regular graphs. These
graphs have been studied extensively in various contexts. Regular graphs of degree r
and order n exist with only limited, but natural, restrictions. Indeed, for integers r and
n with 0 ≤ r ≤ n − 1, an r -regular graph of order n exists if and only if nr is even.
A graph that is not regular is called irregular. It is well known that all nontrivial
graphs, regular or irregular, must contain at least vertices of the same degree [90].
In a regular graph, every vertex is adjacent only to vertices having the same degree.
On the other hand, it is possible for a vertex in an irregular graph to be adjacent only
to vertices with distinct degrees. We consider graphs that are opposite, in a certain
sense, to regular graphs.

Definition 7.6.1 Let G be an interval-valued fuzzy graph. The neighborhood
degree of a vertex x in G is defined by deg(x) = [degμ−(x), degμ+(x)], where
degμ−(x) = ∑

y∈N (x) μ
−
A(y) and degμ+(x) = ∑

y∈N (x) μ
+
A(y).

In Definition 7.6.1, μ−
B (xy) > 0 and μ+

B (xy) > 0 for xy ∈ E, and μ−
B (xy) =

μ+
B (xy) = 0 for xy /∈ E .

Definition 7.6.2 Let G = (A, B) be an interval-valued fuzzy graph on G∗. If all
the vertices have the same open neighborhood degree n, then G is called an n-
regular interval-valued fuzzy graph. The open neighborhood degree of x in G is
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defined by deg(x) = [degμ−(x), degμ+(x)], where degμ−(x) = ∑
y∈N (x) μ

−
A(y) and

degμ+(x) = ∑
y∈N (x) μ

+
A(y).

Definition 7.6.3 LetG be an interval-valued fuzzygraph.The closedneighborhood
degree of x in G is defined by deg[x] = [degμ−[x], degμ+[x]], where

degμ−[x] = degμ−(x) + μ−
A(x)

degμ+[x] = degμ+(x) + μ+
A(x).

If all the vertices have the same closed neighborhood degree m, then m is called
a m-totally regular interval-valued fuzzy graph.

Example 7.6.4 Consider a graph G∗ such that V = {a, b, c, d}, E = {ab, bc, cd,
ad}, and

a b c d
μ−
A 0.3 0.3 0.3 0.3

μ+
A 0.5 0.5 0.5 0.5

ab bc cd ad
μ−
B 0.1 0.1 0.1 0.1

μ+
B 0.2 0.4 0.2 0.4

It is easily shown that the interval-valued fuzzy graph G is both regular and totally
regular.

Example 7.6.5 Consider a graph G∗ such that V = {v1, v2, v3}, E = {v1v2, v1v3}.
Let A be an interval-valued fuzzy subset of V and let B be an interval-valued fuzzy
subset of E defined by

v1 v2 v3
μ−
A 0.4 0.7 0.6

μ+
A 0.4 0.8 0.7

v1v2 v1v3
μ−
B 0.2 0.2

μ+
B 0.3 0.4

It is easily shown that the interval-valued fuzzy graph G is neither regular nor totally
regular.

Definition 7.6.6 We define the order O(G) and the size of S(G) of an interval-
valued fuzzy graph G = (A, B) by

O(G) = ∑
x∈V

1+μ+
A (x)−μ−

A (x)
2

Z(G) = ∑
xy∈E

1+μ+
B (xy)−μ−

B (xy)
2

Example 7.6.7 Consider a graph G∗ such that V = {x, y, z}, E = {xy, yz, zx}.
Let A be an interval-valued fuzzy subset of V and let B be an interval-valued fuzzy
subset of E defined by

x y z
μ−
A 0.3 0.4 0.5

μ+
A 0.5 0.7 0.6

xy yz zx
μ−
B 0.3 0.4 0.3

μ+
B 0.5 0.6 0.5
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It is easy to show that G is both strong and totally regular interval-valued fuzzy
graph, but G is not regular because deg(x) �= deg(z) �= deg(y).

Theorem 7.6.8 Every complete interval-valued fuzzy graph is totally regular.

Theorem 7.6.9 Let G = (A, B) be an interval-valued fuzzy graph of a graph G∗.
Then A = [μ−

A,μ
+
A] is a constant function if and only if the following statements are

equivalent.
(i) G is a regular interval-valued fuzzy graph.
(i i) G is a totally regular interval-valued fuzzy graph.

Proof Suppose that A = [μ−
A,μ

+
A] is a constant function. Let μ−

A(x) = c1 and
μ+
A(x) = c2 for all x ∈ V .
(i) ⇒ (i i) : Assume that G is an n-regular interval-valued fuzzy graph. Then

degμ−(x) = n1 and degμ+(x) = n2 for all x ∈ V . So

degμ−[x] = degμ−(x) + μ−
A(x)

degμ+[x] = degμ+(x) + μ+
A(x)

for all x ∈ V . Thus,

degμ−[x] = degμ−(x) + μ−
A(x) = n1 + c1

degμ+[x] = degμ+(x) + μ+
A(x) = n2 + c2

for all x ∈ V . Hence, G is a totally regular interval-valued fuzzy graph.
(i i) ⇒ (i) : Suppose that G is a totally regular interval-valued fuzzy graph. Then

degμ−[x] = k1 and degμ+[x] = k2 for all x ∈ V,

or
degμ−(x) + μ−

A(x) = k1
degμ+(x) + μ+

A(x) = k2

for all x ∈ V, or
degμ−(x) + c1 = k1
degμ+(x) + c2 = k2

for all x ∈ V, or
degμ−(x) = k1 − c1
degμ+(x) = k2 − c2

for all x ∈ V . Thus, G is a regular interval-valued fuzzy graph. Hence, (i) and (i i)
are equivalent.

The converse follows easily. �
Theorem 7.6.10 ([19]) Let G be an interval-valued fuzzy graph, where the crisp
graph G∗ is an odd cycle. Then G is a regular interval-valued fuzzy graph if and
only if B is a constant function.
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Proof If B = [μ−
B ,μ

+
B ] is a constant function, say μ−

B (xy) = c1 and μ+
B (xy) = c2

for all xy ∈ E, then degμ−(x) = 2c1 and degμ+(x) = 2c2 for all x ∈ V . Hence, G
is a regular interval-valued fuzzy graph.

Conversely, suppose that G is a (k1, k2)-regular interval-valued fuzzy graph. Let
e1, e2, . . . , e2n+1 be the edges of G in that order. Let μ−

B (e1) = c1, μ
−
B (e2) = k1−c1,

μ−
B (e3) = k1 − (k1 − c1) = c1, μ−

B (e4) = k1 − c1, and so on. Then

μ−
B (ei ) =

{
c1 if i is odd
k1 − c1 if i is even.

Thus, μ−
B (e1) = μ−

B (e2n+1) = c1. So if e1 and e2n+1 are incident at a vertex v1, then
degμ−(v1) = k1, degμ−(e1) + degμ−(e2n+1) = k1, c1 + c1 = k1, i.e., 2c1 = k1, and
so c1 = k1/2. This shows that μ

−
B is a constant function.

Similarly, let μ+
B (e1) = c2, μ+

B (e2) = k2 − c2, μ+
B (e3) = k2 − (k2 − c2) = c2,

μ+
B (e4) = k2 − c2, and so on. Therefore,

μ+
B (ei ) =

{
c2 if i is odd
k2 − c2 if i is even.

Hence, μ+
B (e1) = μ+

B (e2n+1) = c2. So if e1 and e2n+1 are incident at a vertex v1, then
degμ+(v1) = k1, degμ+(e1) + degμ+(e2n+1) = k2, c2 + c2 = k2, i.e., 2c2 = k2, and
so c2 = k2/2. This shows that μ+

B is a constant function. Thus, B = [μ−
B ,μ

+
B ] is a

constant function. �

The following result also holds.

Theorem 7.6.11 Let G be an interval-valued fuzzy graph, where the crisp graph
G∗ is an even cycle. Then G is a regular interval-valued fuzzy graph if and only if
either B = [μ−

B ,μ
+
B ] is a constant function or the alternate edges have the same

membership values. �

Definition 7.6.12 The density of an interval-valued fuzzy graph D is D(G) =
(D−(G), D+(G)), where

D−(G) = 2
∑

x,y∈V μ−
B (xy)∑

x,y∈V (μ
−
A(x) ∧ μ−

A(y))

for x, y ∈ V and

D+(G) = 2
∑

x,y∈V μ+
B (xy)∑

x,y∈V (μ
+
A(x) ∧ μ+

A(y))
.

An interval-valued fuzzy graph G is balanced if D(H) ≤ D(G), i.e., D−(H) ≤
D−(G) and D+(H) ≤ D+(G) for all subgraphs H of G. An interval-valued fuzzy
graph is strictly balanced if for all x, y ∈ V, D(H) = D(G) for all nonempty
subgraphs H.
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Example 7.6.13 Consider the regular interval-valued fuzzy graph G given in
Example 7.6.4. It follows that D−(G) = 0.67 and D+(G) = 1.2. Thus, D(G) =
(0.67, 1.2).Consider that H1 = {a, b, c}, H2 = {a, c}, H3 = {a, d} and H4 = {b, c}
are nonempty subgraphs of G. Then D(H1) = (0.67, 1.2), D(H2) = (0, 0),
D(H3) = (0.67, 1.6), D(H4) = (0.67, 1.6). It is easy to see that regular interval-
valued fuzzy graph is not balanced.

It’s worth noting that every regular interval-valued graph may not be balanced.

Example 7.6.14 Consider the regular interval-valued fuzzy graph G given in Exam-
ple 7.6.7. It follows that D−(G) = 2 and D+(G) = 2. Thus, D(G) = (2, 2).
Consider that H1 = {x, y}, H2 = {x, z} and H3 = {y, z} are nonempty subgraphs
of G. Then D(H1) = (2, 2), D(H2) = (2, 2), and D(H3) = (2, 2). It is easy to see
that regular interval-valued fuzzy graph is balanced and also strictly balanced.

Proposition 7.6.15 Any strong interval-valued fuzzy graph is balanced.

Proposition 7.6.16 Let G be a self-complementary interval-valued fuzzy graph.
Then D(G) = (1, 1).

Proposition 7.6.17 Let G1 and G2 be two balanced interval-valued fuzzy graphs.
Then G1 × G2 is balanced if and only if D(G1) = D(G2) = D(G1 × G2).

Theorem 7.6.18 Let G be a strictly balanced interval-valued fuzzy graph and let G
be its complement. Then D(G) + D(G) = (2n2, 2n2), where |V | = n.

Proof Let G be a strictly balanced interval-valued fuzzy graph and G be its com-
plement. Let H be a nonempty subgraph of G. Because G is strictly balanced,
D(G) = D(H) for all H ⊆ G and x, y ∈ V . In G,

μ−
B (xy) = μ−

A(x) ∧ μ−
A(y) − μ−

B (xy). (7.3)

μ+
B (xy) = μ+

A(x) ∧ μ+
A(y) − μ+

B (xy). (7.4)

for all x, y ∈ V . Dividing (7.3) by μ−
A(x) ∧ μ−

A(y), we get

μ−
B (xy)

μ−
A(x) ∧ μ−

A(y)
= 1 − μ−

B (xy)

μ−
A(x) ∧ μ−

A(y)

for all x, y ∈ V . Dividing (7.4) by μ+
A(x) ∧ μ+

A(y), we get

μ+
B (xy)

μ+
A(x) ∧ μ+

A(y)
= 1 − μ+

B (xy)

μ+
A(x) ∧ μ+

A(x)
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for all x, y ∈ V . Thus,

∑
x,y∈V

μ−
B (xy)

μ−
A(x) ∧ μ−

A(y)
= n2 −

∑
x,y∈V

μ−
B (xy)

μ−
A(x) ∧ μ−

A(y)
, (7.5)

and
∑
x,y∈V

μ+
B (xy)

μ+
A(x) ∧ μ+

A(y)
= n2 −

∑
x,y∈V

μ+
B (xy)

μ+
A(x) ∧ μ+

A(y)
. (7.6)

Multiplying both sides of (7.5) and (7.6) by 2, we obtain

2
∑
x,y∈V

μ−
B (xy)

μ−
A(x) ∧ μ−

A(y)
= 2n2 − 2

∑
x,y∈V

μ−
B (xy)

μ−
A(x) ∧ μ−

A(y)

2
∑
x,y∈V

μ+
B (xy)

μ+
A(x) ∧ μ+

A(y)
= 2n2 − 2

∑
x,y∈V

μ+
B (xy)

μ+
A(x) ∧ μ+

A(y)
.

Hence, D−(G) = 2n2 − D−(G) and D+(G) = 2n2 − D+(G).

Now,

D(G) + D(G) = (D−(G), D+(G)) + (D−(G), D+(G))

= (D−(G) + D−(G), D+(G) + D+(G))

= (2n2, 2n2).

�

Corollary 7.6.19 The complement of a strictly balanced interval-valued fuzzy graph
is strictly balanced.

Theorem 7.6.20 Let G1 and G2 be isomorphic interval-valued fuzzy graphs. If G2

is balanced, the G1 is balanced.

7.7 Irregularity in Interval-Valued Fuzzy Graphs

Definition 7.7.1 Let G be an interval-valued fuzzy graph on G∗. If there is a vertex
which is adjacent to vertices with distinct neighborhood degrees, then G is called an
irregular interval-valued fuzzy graph.

Example 7.7.2 Consider a graph G∗ such that

V = {v1, v2, v3}, E = {v1v2, v2v3, v1v3}.
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Let A be an interval-valued fuzzy subset of V and let B be an interval-valued fuzzy
subset of E ⊆ V × V defined by

v1 v2 v3
μ−
A 0.2 0.2 0.3

μ+
A 0.6 0.7 0.4

v1v2 v1v3 v2v3
μ−
B 0.1 0.1 0.2

μ+
B 0.2 0.2 0.3

It is easily shown that deg(v1) = [0.5, 1.1], deg(v2) = [0.5, 1.0], and deg(v3) =
[0.4, 1.3]. Clearly G is an irregular interval-valued fuzzy graph.

Definition 7.7.3 Let G be an interval-valued fuzzy graph. If there is a vertex which
is adjacent to vertices with distinct closed neighborhood degrees, then G is called a
totally irregular interval-valued fuzzy graph.

Example 7.7.4 Let G be an interval-valued fuzzy graph G such that

V = {v1, v2, v3, v4, v5}, E = {v1v2, v2v3, v2v4, v3v1, v3v4, v4v1, v4v5}.

and
v1 v2 v3 v4 v5

μ−
A 0.4 0.3 0.3 0.4 0.2

μ+
A 0.6 0.5 0.7 0.6 0.2

v1v2 v2v3 v2v4 v3v1 v3v4 v4v1 v4v5
μ−
B 0.2 0.2 0.2 0.1 0.3 0.1 0.1

μ+
B 0.3 0.2 0.4 0.4 0.5 0.3 0.2

Clearly, deg[v1] = [1.4, 2.4], deg[v2] = [1.4, 2.4], deg[v3] = [1.4, 2.4], deg[v4] =
[1.6, 2.6], deg[v5] = [0.6, 0.8]. It is also clear that G is a totally irregular interval-
valued fuzzy graph.

Definition 7.7.5 Aconnected interval-valued fuzzy graphG is said to beneighborly
irregular if every two adjacent vertices ofG have distinct open neighborhood degree.

Example 7.7.6 Let G be an interval-valued fuzzy graph G such that

V = {v1, v2, v3, v4}, E = {v1v2, v2v3, v3v4, v4v1}

and
v1 v2 v3 v4

μ−
A 0.2 0.3 0.4 0.5

μ+
A 0.6 0.7 0.4 0.5

v1v2 v2v3 v3v4 v4v1
μ−
B 0.1 0.1 0.1 0.1

μ+
B 0.2 0.4 0.2 0.4

It follows that deg(v1) = [0.8, 1.2], deg(v2) = [0.6, 1.0], deg(v3) = [0.8, 1.2], and
deg(v4) = [0.6, 1.0]. Hence, G is neighborly irregular.
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Definition 7.7.7 A connected interval-valued fuzzy graph G is said to be neigh-
borly totally irregular if every two adjacent vertices of G have distinct closed
neighborhood degree.

Example 7.7.8 Let G be an interval-valued fuzzy graph G such that

V = {v1, v2, v3, v4}, E = {v1v2, v2v3, v3v4, v4v1}

and
v1 v2 v3 v4

μ−
A 0.3 0.4 0.2 0.4

μ+
A 0.6 0.5 0.7 0.5

v1v2 v2v3 v3v4 v4v1
μ−
B 0.1 0.1 0.1 0.1

μ+
B 0.2 0.4 0.2 0.4

It is easily shown that deg[v1] = [1.1, 1.6], deg[v2] = [0.9, 1.8], deg[v3] =
[1.0, 1.7], and deg[v4] = [0.9, 1.8]. Hence, G is neighborly totally irregular.

Definition 7.7.9 Let G be a connected interval-valued fuzzy graph. G is called
highly irregular if every vertex of G is adjacent to vertices with distinct neighbor-
hood degrees.

Example 7.7.10 Let G be an interval-valued fuzzy graph G such that

V = {v1, v2, v3, v4, v5, v6},
E = {v1v2, v2v3, v2v6, v3v4, v3v5, v4v5, v5v1}

and
v1 v2 v3 v4 v5 v6

μ−
A 0.2 0.1 0.3 0.5 0.3 0.1

μ+
A 0.6 0.4 0.7 0.5 0.4 0.4

v1v2 v2v3 v2v6 v3v4 v3v5 v4v5 v5v1
μ−
B 0.2 0.2 0.1 0.2 0.2 0.2 0.1

μ+
B 0.2 0.2 0.4 0.4 0.3 0.4 0.3

It follows that deg(v1) = [0.4, 0.8], deg(v2) = [0.6, 1.7], deg(v3) = [0.9, 1.3],
deg(v4) = [0.6, 1.1], deg(v5) = [1.0, 1.8] and deg(v6) = [0.1, 0.4]. Clearly, G is a
highly irregular.

Example 7.7.11 Let G be an interval-valued fuzzy graph G such that

V = {v1, v2, v3, v4}, E = {v1v2, v2v3, v3v4, v4v1}

and
v1 v2 v3 v4

μ−
A 0.3 0.2 0.5 0.4

μ+
A 0.4 0.5 0.5 0.5

v1v2 v2v3 v3v4 v4v1
μ−
B 0.1 0.1 0.1 0.1

μ+
B 0.2 0.4 0.2 0.4
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By routine computations, we have deg(v1) = [0.6, 1.0], deg(v2) = [0.8, 0.9],
deg(v3) = [0.6, 1.0], and deg(v4) = [0.8, 0.9]. Clearly, G is a neighborly irreg-
ular, but not highly irregular.

We note that a neighborly irregular interval-valued fuzzy graph may not be highly
irregular.

Theorem 7.7.12 An interval-valued fuzzy graph G is highly irregular and neigh-
borly irregular interval-valued fuzzy graph if and only if the neighborhood degrees
of all the vertices of G are distinct.

Proof Let G be an interval-valued fuzzy graph with n vertices v1, v2, . . . , vn.

Assume that G is highly irregular and neighborly irregular. Let deg(vi ) = [ki , li ],
i = 1, 2, . . . , n. Let the adjacent vertices of v1 be v2, v3, . . . , vn with neighborhood
degrees [k2, l2], [k3, l3], . . . , [kn, ln], respectively. Then k2 �= k3 �= · · · �= kn and
l2 �= l3 �= · · · �= ln becauseG is highly irregular. Also, k1 �= k2 �= k3 �= · · · �= kn and
l1 �= l2 �= l3 �= · · · �= ln because G is neighborly irregular. Hence, the neighborhood
degree of all the vertices of G is distinct.

Conversely, assume that the neighborhooddegree of all the vertices ofG is distinct.
Let deg(vi ) = [ki , li ], i = 1, 2, . . . , n. Given that k1 �= k2 �= k3 �= · · · �= kn and
l1 �= l2 �= l3 �= · · · �= ln, which implies that every two adjacent vertices have
distinct neighborhood degrees and to every vertex, the adjacent vertices have distinct
neighborhood degrees. Thus, G is highly irregular and neighborly irregular interval-
valued fuzzy graph. �

Theorem 7.7.13 An interval-valued fuzzy graph G of G∗, where G∗ is a cycle with
3 vertices that is neighborly irregular and highly irregular if and only if the lower
and upper membership values of the vertices between every pair of vertices are all
distinct.

Proof Assume that the lower and upper membership values of the vertices are all
distinct.

Let vi , v j , vk ∈ V . Given that μ−
A(vi ) �= μ−

A(v j ) �= μ−
A(vk) and μ+

A(vi ) �=
μ+
A(v j ) �= μ+

A(vk), which implies that
∑

x∈N (x) μ
−
A(vi ) �= ∑

x∈N (x) μ
−
A(v j ) �=∑

x∈N (x) μ
−
A(vk) and

∑
x∈N (x) μ

+
A(vi ) �= ∑

x∈N (x) μ
+
A(v j ) �= ∑

x∈N (x) μ
+
A(vk). That

is, deg(vi ) �= deg(v j ) �= deg(vk). Hence, G is neighborly irregular and highly irreg-
ular.

Conversely, assume that G is neighborly irregular and highly irregular. Let
deg(vi ) = [ki , li ], i = 1, 2, . . . , n. Suppose that lower and upper membership
values of any two vertices are the same. Let v1, v2 ∈ V . Let μ−

A(v1) = μ−
A(v2) and

μ+
A(v1) = μ+

A(v2). Then deg(v1) = deg(v2) because G∗ is a cycle, which is a contra-
diction to the fact that G is neighborly irregular and highly irregular interval-valued
fuzzy graphs Hence, the lower and upper membership values of the vertices are all
distinct. �
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Example 7.7.14 Consider an interval-valued fuzzy graph G such that

V = {v1, v2, v3}, E = {v1v2, v2v3, v1v3}.

Let A be an interval-valued fuzzy subset of V and let B be an interval-valued fuzzy
subset of E ⊆ V × V defined by

v1 v2 v3
μ−
A 0.4 0.4 0.2

μ+
A 0.6 0.6 0.7

v1v2 v1v3 v2v3
μ−
B 0.4 0.2 0.2

μ+
B 0.6 0.6 0.6

It follows that deg(v1) = [0.6, 1.3], deg(v2) = [0.6, 1.3], and deg(v3) = [0.8, 1.2].
We see that neighborhood degree of v1 and v2 are not distinct. Hence, G is not
neighborly irregular, but it is complete.

Note that a neighborly total irregular interval-valued fuzzy graph may not be
neighborly irregular.

Example 7.7.15 Let G be an interval-valued fuzzy graph G such that

V = {v1, v2, v3, v4}, E = {v1v2, v2v3, v3v4, v4v1}.

and
v1 v2 v3 v4

μ−
A 0.4 0.3 0.4 0.4

μ+
A 0.6 0.4 0.5 0.5

v1v2 v2v3 v3v4 v4v1
μ−
B 0.1 0.1 0.1 0.1

μ+
B 0.2 0.4 0.2 0.4

We have that deg(v1) = [0.7, 0.9], deg(v2) = [0.8, 1.1], deg(v3) = [0.7, 0.9],
deg(v4) = [0.8, 1.1], deg[v1] = [1.1, 1.5], deg[v2] = [1.1, 1.5], deg[v3] =
[1.1, 1.4], and deg[v4] = [1.2, 1.6]. We see that deg[v1] = deg[v2]. Thus, G is
neighborly irregular, but not neighborly total irregular.

Proposition 7.7.16 If an interval-valued fuzzy graph G is neighborly irregular and
A = [μ−

A,μ
+
A] is a constant function, then it is neighborly totally irregular.

Proof Assume that G is a neighborly irregular interval-valued fuzzy graph. Then
the open neighborhood degrees of every two adjacent vertices are distinct. Let
vi , v j ∈ V be adjacent vertices with distinct open neighborhood degrees deg(vi ) =
[k1, l1] and deg(v j ) = [k2, l2], where k1 �= k2 and l1 �= l2. Let us assume
that (μ1(vi ), ν1(vi )) = (μ1(v j ), ν1(v j )) = [c1, c2], where c1 and c2 are con-
stants and c1, c2 ∈ [0, 1]. Therefore, degμ−[vi ] = degμ−(vi ) + μ1(vi ) = k1 + c1,
degμ+[vi ] = degμ+(vi )+ν1(vi ) = l1+c2,degμ−[v j ] = degμ−(v j )+μ1(v j ) = k2+c1,
degμ+[v j ] = degμ+(v j ) + ν1(v j ) = l2 + c2.

We show that degμ−[vi ] �= degμ−[v j ] and degμ+[vi ] �= degμ+[v j ]. Suppose that
degμ−[vi ] = degμ−[v j ] and degμ+[vi ] = degμ+[v j ]. Suppose that
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degμ−[vi ] = degμ−[v j ] so
k1 + c1 = k2 + c1
k1 − k2 = c1 − c1 = 0,

Then k1 = k2, which contradicts that k1 �= k2. Therefore, degμ−[vi ] �= degμ−[v j ].
Suppose that

degμ+[vi ] = degμ+[v j ] so
l1 + c2 = l2 + c2
l1 − l2 = c2 − c2 = 0.

Then l1 = l2, which contradicts l1 �= l2. Therefore, degμ+[vi ] �= degμ+[v j ].
Hence, G is a neighborly totally irregular interval-valued fuzzy graph. �

Theorem 7.7.17 If an interval-valued fuzzy graph G is neighborly totally irregular
and A = [μ−

A,μ
+
A] is a constant function, then it is a neighborly irregular interval-

valued fuzzy graph.

Proof Assume that G is a neighborly totally irregular interval-valued fuzzy graph.
Then the closed neighborhood degree of every two adjacent vertices is distinct. Let
vi , v j ∈ V and deg(vi ) = [k1, l1] and deg(v j ) = [k2, l2], where k1 �= k2and l1 �= l2.
Assume that (μ1(vi ), ν1(vi )) = (μ1(v j ), ν1(v j )) = [c1, c2], where c1 and c2 are
constants and c1, c2 ∈ [0, 1] and deg[vi ] �= deg[v j ].

Suppose that deg(vi ) �= deg(v j ). Then deg[vi ] �= deg[v j ]. Thus, degμ−[vi ] �=
degμ−[v j ] and degμ+[vi ] �= degμ+[v j ]. Now,

degμ−[vi ] �= degμ−[v j ]
k1 + c1 �= k2 + c1
k1 �= k2

and
degμ+[vi ] �= degμ+[v j ]
l1 + c2 �= l2 + c2
l1 �= l2.

That is, the neighborhood degrees of adjacent vertices of G are distinct. Hence,
neighborhood degree of every pair of adjacent vertices is distinct in G. �

Proposition 7.7.18 If an interval-valued fuzzy graph G is neighborly irregular and
neighborly totally irregular, then [μ−

A,μ
+
A] need not be a constant function. �

Note that if G is a neighborly irregular interval-valued fuzzy graph, then interval-
valued subgraph H = (A′, B ′) if G may not be neighborly irregular.

Note also that if G is totally irregular interval-valued fuzzy graph, then interval-
valued fuzzy subgraph H = (A′, B ′) of G may not be totally irregular.
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7.8 Self-centered Interval-Valued Fuzzy Graphs

The work in this section is due to [23]. We present some metric-aspects of interval-
valued graphs.We also discuss some properties of self centered interval-valued fuzzy
graphs.

A complete graph is a simple graph in which every pair of distinct vertices is
connected by an edge. The complete graph on n vertices has n vertices and n(n−1)/2
edges. For a pair of vertices u, v in a connected graph G∗, the distance d(u, v)
between u and v is the length of a shortest path connecting u and v. The eccentricity
e(v) if a vertex v in a graph G∗ is the distance from v to a vertex furthest from v,
that is e(v) = ∨{d(u, v) | u ∈ V }. The radius of a connected graph (or weighted
graph) G∗ is defined as rad(G∗) = ∧{e(v) | v ∈ V }. The diameter of a connected
graph (or weighted graph) G∗ is defined as diam(G∗) = ∨{e(v) | v ∈ V }. The
eccentric set S of a graph is the set of eccentricities. The center C(G∗) of a graph
G∗ is the set of vertices with minimum eccentricity. A graph is self-centered if all
its vertices lie in the center. Thus, the eccentricity of a self-centered graph contains
only one element, that is, all the vertices have the same eccentricity. Equivalently, a
self-centered graph is a graph whose diameter equals its radius.

Definition 7.8.1 An interval-valued graph G is called complete if

μ−
2 (xy) = μ−

1 (x) ∧ μ−
1 (y) and μ+

2 (xy) = μ+
1 (x) ∧ μ+

1 (y)

for each x, y ∈ V .

Definition 7.8.2 A path P in an interval-valued fuzzy graph G is a sequence of
distinct vertices v1, v2, . . . , vn such that either one of the following conditions is
satisfied:

(i) μ−
2i j > 0 and μ+

2i j = 0 for some i, j.
(i i) μ−

2i j = 0 and μ+
2i j > 0 for some i, j.

A path P : v1v2 · · · vn+1 in G is called a cycle if v1 = vn+1 and n ≥ 3.

Definition 7.8.3 Let P : v0, v1, v2, . . . , vn be a path in an interval-valued fuzzy
graphG.Theμ−-strength of thepaths connecting twovertices vi and v j is defined as
∨(μ−

2 (vi , v j )) and is denoted by (μ
−
2i j )

∞. The μ+-strength of the paths connecting
two vertices vi and v j is defined as ∨(μ+

2 (vi , v j )) and is denoted by (μ+
2i j )

∞. If
some edge possesses both the μ−-strength and μ+-strength values, then it is the
strength of the strongest path P and it is denoted by SP = [(μ−

2i j )
∞, (μ+

2i j )
∞] for all

i, j = 1, 2, . . . , n.

Definition 7.8.4 An interval-valued fuzzy graph G is connected if any two vertices
are joined by a path. That is, an interval-valued fuzzy graph is connected if (μ−

2i j )
∞ >

0 and (μ+
2i j )

∞ > 0.
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Example 7.8.5 Consider an interval-valued fuzzy connected graph such that V =
{a, b, c, d}, E = {(a, b), (a, d), (b, d), (b, c), (c, d)}.

a b c d
μ−
1 0.1 0.3 0.2 0.1

μ+
1 0.4 0.5 0.5 0.4

(a, b) (a, d) (b, d) (b, c) (c, d)
μ−
2 0.1 0.1 0.1 0.2 0.2

μ+
2 0.3 0.4 0.4 0.4 0.3

It follows easily that ad is a path of length 1 and the strength is [0.1, 0.4], abd is a
path of length 2 and the strength is [0.1, 0.4], and abcd is a path of length 3 and the
strength is [0.2, 0.4].
Definition 7.8.6 Let G be a connected interval-valued fuzzy graph. The μ−-length
of a path P : v1v2 · · · vn in G, lμ−(P), is defined as

lμ−(P) =
n−1∑
i=1

μ−
2 (vi , vi+1).

The μ+-length of a path P : v1v2 · · · vn in G, lμ+(P), is defined as

lμ+(P) =
n−1∑
i=1

μ+
2 (vi , vi+1).

The μ−μ+-length of a path P : v1v2 · · · vn in G, lμ−μ+(P), is defined as

lμ−μ+(P) = [lμ−(P), lμ+(P)].

Definition 7.8.7 LetG be a connected interval-valued fuzzygraph.Theμ−-distance,
δμ−(vi , v j ), is the smallest μ−-length of any vi − v j path P in G, where vi , v j ∈ V .
That is, δμ−(vi , v j ) = ∧(lμ−(P)). The μ+-distance, δμ+(vi , v j ), is the largest μ+-
length of any vi−v j path P inG, where vi , v j ∈ V .That is, δμ+(vi , v j ) = ∨(lμ+(P)).
The distance δ(vi , v j ), is defined as δ(vi , v j ) = [δμ−(vi , v j ), δμ+(vi , v j )].
Definition 7.8.8 LetG be a connected interval-valued fuzzy graph. For each vi ∈ V,
theμ−-eccentricity ofvi , denoted by eμ−(vi ), is defined as, eμ−(vi ) = ∨{δμ−(vi , v j ) |
v j ∈ V, vi �= v j }. For each vi ∈ V, the μ+-eccentricity of vi , denoted by eμ+(vi ),

is defined as, eμ+(vi ) = ∨{δμ+(vi , v j ) | v j ∈ V, vi �= v j }. For each vi ∈ V, the
eccentricity of vi , denoted by e(vi ), is defined as e(vi ) = [eμ−(vi ), eμ+(vi )].
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Definition 7.8.9 Let G be a connected interval-valued fuzzy graph. The μ−-radius
of G, denoted by rμ−(G), is defined as, rμ−(G) = ∧{eμ−(vi ) | vi ∈ V }. The μ+-
radius of G, denoted by rμ+(G), is defined as, rμ+(G) = ∧{eμ+(vi ) | vi ∈ V }. The
radius of G, denoted by r(G), is defined as r(G) = [rμ−(G), rμ+(G)].
Definition 7.8.10 Let G be a connected interval-valued fuzzy graph. The μ−-
diameter of G, denoted by dμ−(G), is defined as, dμ−(G) = ∨{eμ−(vi ) | vi ∈ V }.
The μ+-diameter of G, denoted by dμ+(G), is defined as, dμ+(G) = ∨{eμ+(vi ) |
vi ∈ V }. The diameter of G, denoted by d(G), is defined as d(G) = [dμ−(G),

dμ+(G)].
Example 7.8.11 Consider the interval-valued fuzzy connected graph such that V =
{a, b, c, d}, E = {(a, b), (a, c), (a, d), (b, c), (c, d)}.

a b c d
μ−
1 0.1 0.3 0.2 0.1

μ+
1 0.3 0.5 0.5 0.3

(a, b) (a, c) (a, d) (b, c) (c, d)
μ−
2 0.1 0.1 0.1 0.1 0.1

μ+
2 0.2 0.2 0.2 0.2 0.2

It follows easily that
(i)

δμ−(a, b) = 0.1, δμ−(a, c) = 0.1, δμ−(a, d) = 0.1,
δμ−(b, c) = 0.1, δμ−(b, d) = 0.19, δμ−(c, d) = 0.1,

δμ+(a, b) = 0.2, δμ+(a, c) = 0.2, δμ+(a, d) = 0.2,

δμ+(b, c) = 0.2, δμ+(b, d) = 0.36, δμ+(c, d) = 0.2.

The distance δ(vi , v j ) is

δ(a, b) = [0.1, 0.2], δ(a, c) = [0.1, 0.2], δ(a, d) = [0.1, 0.2].
δ(b, c) = [0.1, 0.2], δ(b, d) = [0.19, 0.36]. δ(c, d) = [0.1, 0.2].

(i i) The t-eccentricity and f -eccentricity of each vertex is

eμ−(a) = 0.1, eμ−(b) = 0.19, eμ−(c) = 0.1, eμ−(d) = 0.1,

eμ+(a) = 0.2, eμ+(b) = 0.36, eμ+(c) = 0.2, eμ+(d) = 0.2.

The eccentricity of each vertex is

e(a) = [0.1, 0.2], e(b) = [0.19, 0.36], e(c) = [0.1, 0.2], e(d) = [0.1, 0.2].

(i i i) The radius of G is [0.1, 0.2] and the diameter of G is [0.19, 0.36].
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Definition 7.8.12 Avertex vi ∈ V is called a central vertex of a connected interval-
valued fuzzy graph G if rμ−(G) = eμ−(vi ) and rμ+(G) = eμ+(vi ) and the set of all
central vertices of an interval-valued fuzzy graph is denoted by C(G).

Definition 7.8.13 A connected interval-valued fuzzy graph G is self-centered, if
every vertex of G is a central vertex, that is, rμ−(G) = eμ−(vi ) and rμ+(G) = eμ+(vi )

for all vi ∈ V .

Example 7.8.14 Consider a connected interval-valued fuzzy graph G such that V =
{a, b, c} and E = {ab, bc, ca}.

a b c
μ−
1 0.3 0.4 0.2

μ+
1 0.5 0.7 0.76

(a, b) (b, c) (c, a)
μ−
2 0.1 0.1 0.1

μ+
2 0.5 0.5 0.5

By routine computations, it is easy to see that the following properties hold.
(i) The distance is

δ(a, b) = [0.1, 0.5], δ(a, c) = [0.1, 0.5], δ(b, c) = [0.1, 0.5].

(i i) The eccentricity of each vertex is [0.1, 0.5].
(i i i) The radius of G is [0.1, 0.5]. Hence, G is a self-centered interval-valued

fuzzy graph.

Definition 7.8.15 A path cover of an interval-valued fuzzy graph G is a set P of
paths such that every vertex G is incident with some path in P.

Definition 7.8.16 An edge cover of an interval-valued fuzzy graph G is a set L of
edges such that every vertex G is incident to some edge in L .

Definition 7.8.17 An interval-valued fuzzy graph G is said to be bipartite if the
vertex set V can be partitioned into two nonempty subsets V1 and V2 such that the
following properties hold.

(i) μ−
2 (vi , v j ) = 0 and μ+

2 (vi , v j ) = 0 if vi , v j ∈ V1 or vi , v j ∈ V2.

(i i) μ−
2 (vi , v j ) > 0 and μ+

2 (vi , v j ) > 0 if vi ∈ V1 or v j ∈ V2 for some i and j ,
(or)

μ−
2 (vi , v j ) = 0 and μ+

2 (vi , v j ) > 0 if vi ∈ V1 or v j ∈ V2 for some i and j ,
(or)

μ−
2 (vi , v j ) > 0 and μ+

2 (vi , v j ) = 0 if vi ∈ V1 or v j ∈ V2 for some i and j.

Theorem 7.8.18 In an interval-valued fuzzy graph G for which A = [μ−
2 ,μ

+
2 ] :

V × V → D[0, 1] is not constant map, an edge (vi , v j ) for which μ−
2i j is minimum

and μ+
2i j is maximum. Therefore, it is a bridge of G.

Theorem 7.8.19 If G is an interval-valued fuzzy bipartite graph then it has no strong
cycle of odd length.
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Proof Let G be an interval-valued fuzzy bipartite graph with interval-valued fuzzy
bipartition V1 and V2. Suppose that is contains a string cycle of length, say
v1, v2, . . . , vn, v1 for some odd n. Without loss of generality, let v1 ∈ V1. Because
(vi , vi+1) is strong for i = 1, 2, . . . , n − 1 and the nodes appear alternatively in V1

and V2, we have vn, v1 ∈ V1. But this implies that (vn, v1) is an edge in V1, which
contradicts the assumption that G is an interval-valued fuzzy bipartite graph. Hence,
an interval-valued fuzzy bipartite graph has no strong cycle of odd length. �

Theorem 7.8.20 ([23]) Every complete interval-valued fuzzy graph G is a self cen-
tered interval-valued fuzzy graph and rμ−(G) = 1

μ−
1i
and rμ+(G) = 1

μ+
1i
, where is the

μ−
1i least and μ+

1i is the greatest.

Proof LetG be a complete interval-valued fuzzy graph. To proveG is a self centered
interval-valued fuzzy graph,we have to show that every vertex is a central vertex. First
we claim that G is a μ−-self centered interval-valued fuzzy graph and rμ−(G) = 1

μ−
1i

is the least. Now, fix a vertex vi ∈ V such that μ−
1i is the least vertex membership

of G.

Case 1: Consider all the vi − v j paths P of length n in G, for all v j ∈ V .

(i) If n = 1, then μ−-length of P = lμ−(P) = 1
μ−
1i
.

(i i) If n > 1, then one of edges of P possesses the μ−-strength μ−
1i and hence,

μ−-length of a vi − v j path will exceed 1
μ−
1i
. That is μ−-length of P = lμ−(P) > 1

μ−
1i
.

Hence,

δ−
μ (vi , v j ) = ∧(lμ−(P)) = 1

μ−
1i

, for all v j ∈ V . (7.7)

Case 2: Let vk �= vi ∈ V .Consider all vk −v j path Q of length n inG for all v j ∈ V .

(i) If n = 1, then μ−
2 (vk, v j ) = μ−

1k ∧ μ−
1 j ≥ μ−

1i because μ−
1i is the least. Hence,

then μ−-length of Q = lμ−(Q) = 1
μ−
2 (vk ,v j )

≤ 1
μ−
1i
.

(i i) If n = 2, then lμ−(Q) = 1
μ−
2 (vk ,vk+1)

+ 1
μ−
2 (vk+1,v j )

≤ 2
μ−
1i
because μ−

1i is the least.

(i i i) If n > 2, then lμ−(Q) ≤ n
μ−
1i
because μ−

1i is the least. Thus,

δ−
μ (vk, v j ) = ∧(lμ−(Q)) ≤ 1

μ−
1i

for all vk, v j ∈ V . (7.8)

From Eqs. (7.7) and (7.8), we have

eμ−(vi ) = ∧(δ−
μ (vi , v j )) = 1

μ−
1i

for all vi ∈ V . (7.9)

Hence, G is μ−-self centered interval-valued fuzzy graph.
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Now, rμ−(G) = ∧(eμ−(vi )) = 1
μ−
1i
because by (7.9) rμ−(G) = 1

μ−
1i
, μ−

1i is the least.

Next we claim that G is a μ+-self centered interval-valued fuzzy graph and
rμ+(G) = 1

μ+
1i

is the greatest. Choose some vertex vi ∈ V such that μ+
1i is the

greatest vertex membership of G.

First, consider all the vi − v j paths P of length n in G, for all v j ∈ V .
(i) If n = 1, then μ+

2i j = μ+
1i ∧μ+

1 j = μ+
1i . Therefore, μ

+-length of P = lμ+(P) =
1

μ+
1i
.

(i i) If n > 1, then one of the edges of P possesses the μ+ -strength μ+
1i and hence,

μ=-length of P will exceed 1
μ+
1i
. That is, μ+-length of P = lμ+(P) > 1

μ+
1i
. Thus,

δ+
μ (vi , v j ) = ∧(lμ+(P)) = 1

μ+
1i

for all v j ∈ V . (7.10)

Second, let vk �= vi ∈ V . Consider all vk − v j path Q of length n in G for all
v j ∈ V .

(i) If n = 1, then μ+
2 (vk, v j ) = μ+

1k ∧ μ+
1 j ≤ μ+

1i because μ+
1i is the greatest.

Hence, then μ+-length of Q = lμ+(Q) = 1
μ+
2 (vk ,v j )

≥ 1
μ+
1i
.

(i i) If n = 2, then lμ+(Q) = 1
μ+
2 (vk ,vk+1)

+ 1
μ+
2 (vk+1,v j )

≥ 2
μ−
1i
because μ+

1i is the
greatest.

(i i i) If n > 2, then lμ+(Q) ≥ n
μ+
1i
because μ+

1i is the greatest. Hence,

δ+
μ (vk, v j ) = ∧(lμ+(Q)) ≥ 1

μ+
1i

, for all vk, v j ∈ V . (7.11)

From Eqs. (7.10) and (7.11), we have

eμ+(vi ) = ∧(δ+
μ (vi , v j )) = 1

μ+
1i

, for all vi ∈ V . (7.12)

Hence, G is μ+-self centered interval-valued fuzzy graph.
Now, rμ+(G) = ∧(eμ+(vi )) = 1

μ+
1i
because by (7.10) rμ+(G) = 1

μ+
1i
, μ+

1i is the
greatest.

From Eqs. (7.9) and (7.12), every vertex of G is a central vertex. Thus, G is a self
centered interval-valued fuzzy graph. �

Lemma 7.8.21 An interval-valued fuzzy graph G is a self centered interval-valued
fuzzy graph if and only if rμ−(G) = Dμ−(G) and rμ+(G) = dμ+(G).

Theorem 7.8.22 If G is a complete interval-valued fuzzy graph, then for at least
one edge (μ−

2 )
∞(vi , v j ) = μ−

2 (vi , v j ) and (μ+
2 )

∞(vi , v j ) = μ+
2 (vi , v j ).

Proof Let G be a complete interval-valued fuzzy graph. Consider a vertex vi ,whose
membership value is μ−

1i and non-membership value is μ+
1i .
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Let μ−
1i be the least and μ+

1i be the greatest in the vertex vi ∈ V . Let vi , v j ∈ V .
Then (μ−

2i j ,μ
+
2i j ) = (μ−

1i ,μ
+
1i ) and ((μ−

2i j )
∞, (μ+

2 )
∞) = (μ−

1i ,μ
+
1i ). The strength of

all the edges which are incident on the vertex vi is (μ
−
1i ,μ

+
1i ) because G is a complete

interval-valued fuzzy graph.
Now, letμ−

1i be the least andμ+
1k be the greatest,wherevi �= vk .Then (μ

−
2ik,μ

+
2ik) =

(μ−
1i ,μ

+
1k).Because it is a complete interval-valued fuzzy graph, there will be an edge

between vi and vk . Therefore, (μ
−
2ik)

∞ = μ−
1i and (μ+

2ik)
∞ = μ+

1k . �

Theorem 7.8.23 Let G be a complete interval-valued fuzzy graph with path covers
P1 and P2 of G. Then a necessary and sufficient condition for an interval-valued
fuzzy graph to be self centered interval-valued fuzzy graph is

δ−
μ (vi , v j ) = dμ−(G) for all (vi , v j ) ∈ P1 and (7.13)

δ+
μ (vi , v j ) = rμ+(G) for all (vi , v j ) ∈ P2. (7.14)

Proof Assume that G is a self-centered interval-valued fuzzy graph. Then we must
prove that Eqs. (7.13) and (7.14) hold. Suppose Eqs. (7.13) and (7.14) do not hold.
Then we have δ−

μ (vi , v j ) �= dμ−(G) for some (vi , v j ) ∈ P1 and δ+
μ (vi , v j ) �= rμ+(G)

for some (vi , v j ) ∈ P2.
By Lemma 7.8.21, the above inequality becomes δ−

μ (vi , v j ) �= rμ−(G) for some
(vi , v j ) ∈ P1 and δ+

μ (vi , v j ) �= rμ+(G) for some (vi , v j ) ∈ P2. Thus, eμ−(vi ) �=
rμ−(G), eμ+(vi ) �= rμ+(G) for some vi ∈ V, which implies that G is not a self-
centered interval-valued fuzzy graph, a contradiction. Hence, δ−

μ (vi , v j ) = dμ−(G)

for all (vi , v j ) ∈ P1 and δ+
μ (vi , v j ) = rμ+(G) for all (vi , v j ) ∈ P2.

Conversely, assume that Eqs. (7.13) and (7.14) hold. Then we must prove that G
is a self-centered interval-valued fuzzy graph. By Eqs. (7.13) and (7.14), we have
that eμ−(vi ) = δ−

μ (vi , v j ) for all (vi , v j ) ∈ P1 and eμ+(vi ) = δ+
μ (vi , v j ) for all

(vi , v j ) ∈ P2. Thus, eμ−(vi ) = rμ−(G), eμ+(vi ) = rμ+(G) for all vi ∈ V . Hence, is
a self-centered interval-valued fuzzy graph. �

Corollary 7.8.24 If G is connected complete interval-valued fuzzy graph with an
edge cover L of G, then a necessary and sufficient condition for an interval-valued
fuzzy graph to be self-centered is

δμ−(vi , v j ) = dμ−(G) for all (vi , v j ) ∈ L and

δμ+(vi , v j ) = rμ+(G) for all (vi , v j ) ∈ L .

Theorem 7.8.25 Let H be a connected μ−μ+-self centered interval-valued fuzzy
graph. Then there exists a connected interval-valued fuzzy graph G such that 〈C(G)〉
is isomorphic to H. Also, dμ−(G) = 2rμ−(G) and dμ+(G) = 2rμ+(G).

Proof Let dμ−(H) = l and dμ+(H) = m.We construct G from H as follows:
Take two vertices vi , v j ∈ V withμ−

1 (vi ) = μ−
1 (v j ) = 1

l ,μ
+
1 (vi ) = μ+

1 (v j ) = 1
2m

and join all the vertices of H to both vi and v j with μ−
2 (vi , vk) = μ−

2 (v j , vk) = 1
l ,
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μ+
2 (vi , vk) = μ+

2 (v j , vk) = 1
2m for all vk ∈ V ′. Put μ−

1 = (μ−)′1 and μ+
1 = (μ+)′1 for

all vertices in H and μ−
2 = (μ−)′2 and μ+

2 = (μ+)′2 for all edges in H.

We first show that G is an interval-valued fuzzy graph. First note that μ−
1 (vi ) ≤

μ−
1 (vk) for all vk ∈ H. If possible, letμ−

1 (vi ) > μ−
1 (vk) for at least one vertex vk ∈ H.

Then 1
l > μ−

1 (vk), i.e., l < 1
μ−
1 (vk )

≤ 1
μ−
2 (vk ,vi )

, where the last inequality holds for

all vi ∈ V ′ because H is an interval-valued fuzzy graph. That is, 1
μ−
2 (vk ,vi )

> l for all

vk ∈ H, which is a contradicts that dμ−(H) = l. Therefore, μ−
1 (vi ) ≤ μ−

1 (vk) for all
vk ∈ V ′ and μ−

2 (vi , vk) ≤ μ−
1i ∧ μ−

1k = 1
l . Similarly, μ−

2 (v j , vk) ≤ μ−
1 j ∨ μ−

1k = 1
l for

all vk ∈ V ′. Note that μ+
1 (vi ) ≤ μ+

1 (vk), μ+
1 (v j ) ≤ μ+

1 (vk) for all vk ∈ V ′ because
dμ+(H) = m. Therefore, μ+

2 (vi , vk) ≤ μ+
1i ∧ μ+

1k = 1
2m . Similarly, μ+

2 (v j , vk) ≤
μ+
1 j ∧ μ+

1k = 1
2m . Hence, G is an interval-valued fuzzy graph.

Also, eμ−(vk) = l for all vk ∈ V ′ and eμ−(vi ) = eμ−(v j ) = 1
μ+
2 (vi ,vk )

+ 1
μ+
2 (vk ,v j )

=
2l, rμ−(G) = l, dμ−(G) = 2l. Next eμ+(vk) = m for all vk ∈ V ′ and eμ+(vi ) =
eμ+(v j ) = 1

μ+
2 (v j ,vk )

= 2m for all vk ∈ V ′. Therefore, rμ+(G) = m, dμ+(G) = 2m.

Hence, 〈C(G)〉 is isomorphic to H. �

Theorem 7.8.26 An interval-valued fuzzy graph G is self-centered if and only if
δμ−(vi , v j ) ≤ rμ−(G), δμ+(vi , v j ) ≥ rμ−(G) for all vi , v j ∈ G.

Proof Assume that G is a self-centered interval-valued fuzzy graph. That is,
eμ−(vi ) = eμ−(v j ) and eμ+(vi ) = eμ+(v j ) for all vi , v j ∈ V, rμ−(G) = eμ−(vi ),

rμ+(G) = eμ+(vi ) for all vi ∈ V . Now, we wish to show that δμ−(vi , v j ) ≤ rμ−(G)

and δμ+(vi , v j ) ≥ rμ+(G) for all vi , v j ∈ V . By the definition of the eccentricity, we
obtain δμ−(vi , v j ) ≤ eμ−(vi ), δμ+(vi , v j ) ≥ eμ+(vi ) for all vi , v j ∈ V . This is possi-
ble only when eμ−(vi ) = eμ−(v j ) and eμ+(vi ) = eμ+(v j ) for all vi , v j ∈ V . Because
G is a self-centered interval-valued fuzzy graph, the above inequality becomes
δμ−(vi , v j ) ≤ rμ−(G), δμ+(vi , v j ) ≥ rμ−(G) for all vi , v j ∈ G.

Conversely, suppose that δμ−(vi , v j ) ≤ rμ−(G), δμ+(vi , v j ) ≥ rμ−(G) for all
vi , v j ∈ G.Thenwemust prove thatG is a self-centered interval-valued fuzzy graph.
Suppose that G is not a self-centered interval-valued fuzzy graph. Then eμ−(vi ) �=
rμ−(G) and eμ+(vi ) �= rμ+(G) for some vi ∈ V . Assume that eμ−(vi ) and eμ+(vi ) are
the least values among all other eccentricities. That is,

rμ−(G) = eμ−(vi ) and rμ+(G) = eμ+(vi ), (7.15)

where eμ−(vi ) < eμ−(v j ) and eμ+(vi ) < eμ+(v j ) for some vi , v j ∈ V and

δμ−(vi , v j ) = eμ−(v j ) > eμ−(vi ), (7.16)

δμ+(vi , v j ) = eμ+(v j ) > eμ+(vi ), (7.17)

for some vi , v j ∈ V .
Hence, from Eqs. (7.15)–(7.17), we have δμ−(vi , v j ) > rμ−(G), δμ+(vi , v j ) <

rμ+(G) for some vi , v j ∈ V, which is a contradiction to the fact that δμ−(vi , v j ) ≤
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rμ−(G), δμ+(vi , v j ) ≥ rμ+(G) for all vi , v j ∈ V .Hence,G is a self-centered interval-
valued fuzzy graph. �

Theorem 7.8.27 Let G be an interval-valued fuzzy graph. If the graph G is a com-
plete bipartite interval-valued fuzzy graph, then the complement of G is a self-
centered interval-valued fuzzy graph.

Proof A bipartite interval-valued fuzzy graph G is said to be complete if

μ−
2 (vi , v j ) = μ−

1 (vi ) ∧ μ−
1 (v j )

μ+
2 (vi , v j ) = μ+

1 (vi ) ∧ μ+
1 (v j )

for all vi ∈ V1 and v j ∈ V2, and

μ−
2 (vi , v j ) = 0, μ+

2 (vi , v j ) = 0 (7.18)

for all vi , v j ∈ V1 or vi , v j ∈ V2.

Now,
μ−
2 (vi , v j ) = μ−

1 (vi ) ∧ μ−
1 (v j ) − μ−

2i j ,

μ+
2 (vi , v j ) = μ+

1 (vi ) ∧ μ+
1 (v j ) − μ+

2i j .

By (7.18), we have that

μ−
2 (vi , v j ) = μ−

1 (vi ) ∧ μ−
1 (v j ) (7.19)

μ+
2 (vi , v j ) = μ+

1 (vi ) ∧ μ+
1 (v j ) (7.20)

for all vi , v j ∈ V1 or vi , v j ∈ V2.

Thus, fromEqs. (7.18)–(7.20), the complement ofG has two components and each
component is a complete interval-valued fuzzy graph and is clearly a self-centered
interval-valued fuzzy graph. �

An interval-valued fuzzy set is a generalization of the notion of a fuzzy set.
Because interval-valued fuzzy models give more precision, flexibility and compati-
bility to the system as compared to the fuzzy models, we have introduced the concept
of self centered interval-valued fuzzy graphs in this paper. The concept of interval-
valued graph can be applied in various domains of engineering and computer science.



Chapter 8
Bipolar Fuzzy Graphs

8.1 Bipolar Fuzzy Sets

In 1994, Zhang [195, 196] introduced the concept of bipolar fuzzy sets as a gener-
alization of the notion of Zadeh’s fuzzy sets. A bipolar fuzzy subset of a set is a pair
of functions one from the set into the interval [0, 1] and the other into the interval
[−1, 0]. In a bipolar fuzzy set, the membership degree 0 of an element can be inter-
preted that the element is irrelevant to the corresponding property, the membership
degree in (0, 1] of an element indicates the intensity that the element satisfies the
property, and the membership degree in [−1, 0) of an element indicates the element
does not satisfy the property. Fuzzy and possibilistic formalisms for bipolar informa-
tion have been proposed in [71] because bipolarity exists when dealing with spatial
information in image processing or in spatial reasoning applications.

The positive degree membership μP
B is used to denote the satisfaction degree of

an element x to the property corresponding to a bipolar fuzzy set B, and the negative
degree membership μN

B is used to denote the satisfaction degree of an element x to
some implicit counter-property corresponding to a bipolar fuzzy set B. If μP

B (x) �= 0
andμN

B (x) = 0, it is the situation that x is regarded as havingonly positive satisfaction
for B. If μP

B (x) = 0 and μN
B (x) �= 0, it is the situation that x does not satisfy the

property of B, but somewhat satisfies the counter-property of B. If μP
B (x) �= 0 and

μN
B (x) �= 0, then there is both a positive intensity for which x satisfies the property

and negative intensity with which it doesn’t.

We note that results involvingμN
B are analogous to those ofμP

B .Define the function
f : [−1, 0] → [0, 1] by for all x ∈ [−1, 0], f (x) = −x . Then clearly f is a one-
to-one function of [−1, 0] onto [0, 1]. Now, for all x, y ∈ [−1, 0], f (x ∧ y) =
−(x ∧ y) = −x ∨ −y = f (x) ∨ f (y) and f (x ∨ y) = −(x ∨ y) = −x ∧ −y =
f (x) ∧ f (y). Thus, the algebraic structures ([−1, 0],∧,∨) and ([0, 1],∨,∧) are
isomorphic. However, we supply full proofs at times for the sake of completeness
and due to the fact that applications involve different interpretations of μP

B and μN
B

at times.

© Springer International Publishing AG 2018
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Definition 8.1.1 Let X be a non-empty set. A bipolar fuzzy set B in X is a set of
triples

B = {(x,μP
B (x),μ

N
B (x)) | x ∈ X},

where μP
B : X → [0, 1] and μN

B : X → [−1, 0].
We often write B = (μP

B , μ
N
B ) for the bipolar fuzzy set B = {(x, μP

B (x), μ
N
B (x)) |

x ∈ X}. We also use the notation B = {(x, m+(x), m−(x)) | x ∈ X} or B = (m+,
m−) for a bipolar fuzzy set.

Definition 8.1.2 Let B = {(x, m+(x), m−(x) | x ∈ X} be a bipolar set on a non-
empty set X.The height of B, written h(B), is defined by h(B) = ∨{m+(x) | x ∈ X}
and the depth of B, written d(B), is defined as d(B) = ∧{m−(x) | x ∈ X}.
Definition 8.1.3 Let B1 = {(x, m+

1 (x), m
−
1 (x) | x ∈ X} and B2 = {(x, m+

2 (x),
m−

2 (x) | x ∈ X} be bipolar fuzzy sets in X. Then B1 ⊆ B2 if m
+
1 (x) ≤ m+

2 (x) for
all x ∈ X and m−

1 (x) ≥ m−
2 (x) for all x ∈ X.

Definition 8.1.4 Let B = {(x,m+(x),m−(x) | x ∈ X} be a bipolar set on a non-
empty set X. The support of B, written Supp(B), is defined by Supp(B) = {x ∈
X | m+(x) �= 0 or m−(x) �= 0}. The upper core of B, written c(B), is defined by
c(B) = {x ∈ X | m+(x) = 1} and the lower core of B, written c(B), is defined by
c(B) = {x ∈ X | m−(x) = −1}.
Definition 8.1.5 Let B = (m+,m−) be a bipolar fuzzy set. Let t1 ∈ (0, 1] and
t2 ∈ [−1, 0).Define the {t1, t2} cut level set of B to be the set Bt1

t2 = {x ∈ Supp(B) |
m+(x) ≥ t1 and m−(x) ≤ t2}.
Theorem 8.1.6 Let A and B be bipolar fuzzy sets. Then A ⊆ B if and only if
At
k ⊆ Bt

k for all t ∈ (0, 1], k ∈ [−1, 0).

Proof Let A = (m+
1 ,m

−
1 ) and B = (m+

2 ,m
−
2 ). Suppose A ⊆ B. Then m+

1 (x) ≤
m+

2 (x) for all x ∈ X and m−
1 (x) ≥ m−

2 (x) for all x ∈ X. Thus, m+
1 (x) ≥ t implies

m+
2 (x) ≥ t and m−

1 (x) ≤ k implies m−
2 (x) ≤ k for all x ∈ X and for all t ∈ (0, 1]

and for all k ∈ [−1, 0). Hence, At
k ⊆ Bt

k for all t ∈ (0, 1], k ∈ [−1, 0).

Conversely, suppose At
k ⊆ Bt

k for all t ∈ (0, 1], k ∈ [−1, 0). Then to show
A ⊆ B, it suffices to show m+

1 (x) ≤ m+
2 (x) for all x ∈ X and m−

1 (x) ≥ m−
2 (x) for

all x ∈ X. If x ∈ X is such that m+
1 (x) = t and m−

1 (x) = k, then x ∈ At
k and so

x ∈ Bt
k . Hence, m

+
2 (x) ≥ t and m−

2 (x) ≤ k. �

Definition 8.1.7 Let A = (μP
A,μ

N
A ) and B = (μP

B ,μ
N
B ) be bipolar fuzzy sets in X.

We define the bipolar fuzzy sets A ∩ B and A ∪ B as follows: for all x ∈ X,

(A ∩ B)(x) = (μP
A(x) ∧ μP

B (x),μ
N
A (x) ∨ μN

B (x)),

(A ∪ B)(x) = (μP
A(x) ∨ μP

B (x),μ
N
A (x) ∧ μN

B (x)).
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Theorem 8.1.8 Let B1 and B2 be bipolar fuzzy sets. Then (B1 ∩ B2)
t1
t2 = (B1)

t1
t2 ∩

(B2)
t1
t2 for all t1 ∈ (0, 1] and for all t2 ∈ [−1, 0).

Proof Let B1 = (m+
1 ,m

−
1 ) and B2 = (m+

2 ,m
−
2 ). Then B1 ∩ B2 is a bipolar fuzzy

set on X. Let B1 ∩ B2 = (m+,m−), where m+ = m+
1 ∩ m+

2 and m− = m−
1 ∪ m−

2 .

Then x ∈ (B1 ∩ B2)
t1
t2 ⇔ m+(x) ≥ t1 and m−(x) ≤ t2 ⇔ (m+

1 ∩ m+
2 )(x) ≥ t1 and

(m−
1 ∪ m−

2 )(x) ≤ t2 ⇔ (m+
1 )(x) ≥ t1 and (m+

2 )(x) ≥ t1 and (m−
1 )(x) ≤ t2 and

(m−
2 )(x) ≤ t2 ⇔ x ∈ (B1)

t1
t2 ∩ (B2)

t1
t2 . �

Example 8.1.9 Let X = {x}. Let B1 = (m+
1 ,m

−
1 ) and B2 = (m+

2 ,m
−
2 ) be bipolar

sets defined on X as follows:

m+
1 (x) = 3/4,m−

1 (x) = −1/4,m+
2 (x) = 1/4,m−

2 (x) = −3/4.

Let t1 = 1/2 and t2 = −1/2. Then m+
1 (x) � 1/2 and m−

2 (x) � −1/2. Thus,
(B1)

1/2
−1/2 = ∅ and (B2)

1/2
−1/2 = ∅. However, m+

1 (x) ≥ 1/2 or m+
2 (x) ≥ 1/2 and

m−
1 (x) ≤ −1/2 or m−

2 (x) ≤ −1/2. That is, m+
1 (x) ∨ m+

2 (x) ≥ 1/2 and m−
1 (x) ∧

m−
2 (x) ≤ −1/2. Thus, (B1 ∪ B2)

1/2
−1/2 = {x}. Hence, (B1)

1/2
−1/2 ∪ (B2)

1/2
−1/2 ⊂ (B1 ∪

B2)
1/2
−1/2.

Theorem 8.1.10 Let B1 and B2 be bipolar fuzzy sets. Then (B1)
t1
t2 ∪ (B2)

t1
t2 ⊆ (B1 ∪

B2)
t1
t2 for all t1 ∈ (0, 1] and for all t2 ∈ [−1, 0).

Proof The result is immediate from the fact that Bi ⊆ B1 ∪ B2, i = 1, 2. �

8.2 Bipolar Fuzzy Graphs

In this section, we introduce the notion of bipolar fuzzy graphs. Most of the results
in the next few sections are due to Akram [5]. We also include the work of [184].
We describe various methods of their constructions and introduce the concept of
isomorphism of bipolar fuzzy graphs. We introduce the notion of strong bipolar
fuzzy graphs. We also examine the notions of self-complimentary and self weak
complementary strong bipolar fuzzy graphs.

Results and applications not mentioned here can be found in [1, 7, 10, 14, 24,
33, 71, 98, 125].

Definition 8.2.1 A bipolar fuzzy graph with an underlying set V is defined to be
a pair G = (A, B), where A = (μP

A ,μ
N
A ) is a bipolar fuzzy set in V and B = (μP

B ,

μN
B ) is a bipolar fuzzy set in E such that

μP
B (xy) ≤ μP

A(x) ∧ μP
A(y) and μN

B (xy) ≥ μN
A (x) ∨ μN

A (y) for all xy ∈ E,

μP(xy) = μN
B (xy) = 0 for all xy ∈ E\E .
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We call A the bipolar fuzzy vertex set of V and B the bipolar fuzzy edge set of
E , respectively.

The requirement that μP(xy) = μN
B (xy) = 0 for all xy ∈ E\E in Definition 8.2.1

is needed when we introduce the notion of the complement of G.

Example 8.2.2 Consider a graph G∗ = (V, E), where V = {a, b, c}, E =
{ab, bc, ca}. Let A = (μP

A ,μ
N
A ) is a bipolar fuzzy subset of V and B = (μP

B ,μ
N
B ) is

a bipolar fuzzy subset of E defined by

a b c
μP
A 0.5 0.6 0.4

μN
A −0.7 −0.5 −0.7

ab bc ca
μP
B 0.4 0.3 0.3

μN
B −0.3 −0.2 −0.1

It follows easily that G = (A, B) is a bipolar fuzzy graph of G∗.

We next define certain operations of bipolar fuzzy graphs. Let G∗
1 = (V1, E1) and

G∗
2 = (V2, E2) be graphs in this section.

Definition 8.2.3 Let A1 = (μP
A1
,μN

A1
) and A2 = (μP

A2
,μN

A2
) be bipolar fuzzy subsets

of V1 and V2 and B1 = (μP
B1
,μN

B1
) and B2 = (μP

B2
,μN

B2
) be bipolar fuzzy subsets

of E1 and E2, respectively. Then we denote the Cartesian product of two bipolar
fuzzy graphs G1 and G2 of the graphs G∗

1 and G
∗
2 by G1 ×G2 = (A1 × A2, B1 × B2)

and defined by

(i)
(μP

A1
× μP

A2
)(x1, x2) = μP

A1
(x1) ∧ μP

A2
(x2)

and
(μN

A1
× μN

A2
)(x1, x2) = μN

A1
(x1) ∨ μN

A2
(x2)

for all (x1, x2) ∈ V × V .

(i i)
(μP

B1
× μP

B2
)((x, x2)(x, y2)) = μP

A1
(x) ∧ μP

B2
(x2y2)

and
(μN

B1
× μN

B2
)((x, x2)(x, y2)) = μN

A1
(x) ∨ μN

B2
(x2y2)

for all x ∈ V1, for all x2y2 ∈ E2.

(i i i)
(μP

B1
× μP

B2
)((x1, z)(y1, z)) = μP

B1
(x1y1) ∧ μP

A2
(z)

and
(μN

B1
× μN

B2
)((x1, z)(y1, z)) = μN

B1
(x1y1) ∨ μN

A2
(z)

for all z ∈ V2, for all x1y1 ∈ E1.
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In the previous definition, the set of edges ofG1×G2 is the set E = {(x, x2)(x, y2)
| x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2, x1y1 ∈ E1}.
Proposition 8.2.4 If G1 and G2 are bipolar fuzzy graphs, then G1 ×G2 is a bipolar
fuzzy graph.

Proof Let x ∈ V1 and x2y2 ∈ E2. Then

(μP
B1

× μP
B2
)((x, x2)(x, y2)) = μP

A1
(x) ∧ μP

B2
(x2y2)

≤ ∧{μP
A1
(x),μP

A2
(x2) ∧ μP

A2
(y2)}

= ∧{(μP
A1
(x) ∧ μP

A2
(x2)),μ

P
A1
(x) ∧ μP

A2
(y2)}

= (μP
A1

× μP
A2
)(x, x2) ∧ (μP

A1
× μP

A2
)(x, y2),

(μN
B1

× μN
B2
)((x, x2)(x, y2)) = μN

A1
(x) ∨ μN

B2
(x2y2)

≥ ∨{μN
A1
(x), (μN

A2
(x2) ∨ μN

A2
(y2)}

= ∨{μN
A1
(x) ∨ μN

A2
(x2),μ

N
A1
(x) ∨ μN

A2
(y2)}

= (μN
A1

× μN
A2
)(x, x2) ∨ (μN

A1
× μN

A2
)(x, y2).

Let z ∈ V2, and x1y1 ∈ E1. Then

(μP
B1

× μP
B2
)((x1, z)(y1, z))

= μP
B1
(x1y1) ∧ μP

A2
(z)

≤ ∧{(μP
A1
(x1) ∧ μP

A1
(y1)),μ

P
A2
(z)}

= ∧{μP
A1
(x1) ∧ μP

A2
(z),μP

A1
(y1) ∧ μP

A2
(z)}

= (μP
A1

× μP
A2
)(x1, z) ∧ (μP

A1
× μP

A2
(y1, z)),

(μN
B1

× μN
B2
)((x1, z)(y1, z)) = μN

B1
(x1y1) ∨ μN

A2
(z)

≥ ∨{μN
A1
(x1) ∨ μN

A1
(y1),μ

N
A2
(z)}

= ∨{μN
A1
(x1) ∨ μN

A2
(z),μN

A1
(y1) ∨ μN

A2
(z)}

= (μN
A1

× μN
A2
)(x1, z) ∨ (μN

A1
× μN

A2
)(y1, z).

�

Let E = {(x, x2)(x, y2) | x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2, x1y1 ∈
E1} and let E (0) = E ∪ (x1, x2)(y1, y2) | x1y1 ∈ E1 and x2, y2 ∈ V2, x2 �= y2}.

Let E bedefinedas followingDefinition8.2.3 and let E (0) = E∪{(x1, x2)(y1, y2) |
x1y1 ∈ E1, x2 �= y2}.

Definition 8.2.5 Let A1 = (μP
A1
,μN

A1
) and A2 = (μP

A2
,μN

A2
) be bipolar fuzzy subsets

of V1 and V2 and B1 = (μP
B1
,μN

B1
) and B2 = (μP

B2
,μN

B2
) be bipolar fuzzy subsets of
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E1 and E2, respectively. We denote the composition of two bipolar fuzzy graphs G1

and G2 of the graphs G∗
1 and G∗

2 by G1[G2] = (A1 ◦ A2, B1 ◦ B2) and defined by

(i)
(μP

A1
◦ μP

A2
)(x1, x2) = μP

A1
(x1) ∧ μP

A2
(x2)

and
(μN

A1
◦ μN

A2
)(x1, x2) = μN

A1
(x1) ∨ μN

A2
(x2)

for all (x1, x2) ∈ V .

(i i)
(μP

B1
◦ μP

B2
)((x, x2)(x, y2)) = μP

A1
(x) ∧ μP

B2
(x2y2)

and
(μN

B1
◦ μN

B2
)((x, x2)(x, y2)) = μN

A1
(x) ∨ μN

B2
(x2y2)

for all x ∈ V1, for all x2y2 ∈ E2.

(i i i)
(μP

B1
◦ μP

B2
)((x1, z)(y1, z)) = μP

B1
(x1y1) ∧ μP

A2
(z)

and
(μN

B1
◦ μN

B2
)((x1, z)(y1, z)) = μN

B1
(x1y1) ∨ μN

A2
(z)

for all z ∈ V2, for all x1y1 ∈ E1.

(iv)

(μP
B1

◦ μP
B2
)((x1, x2)(y1, y2)) = ∧{μP

A2
(x2), μP

A2
(y2),μ

P
B1
(x1y1)}

and
(μN

B1
◦ μN

B2
)((x1, x2)(y1, y2)) = ∨{μN

A2
(x2), μN

A2
(y2), μN

B1
(x1y1)}

for all (x1, x2)(y1, y2) ∈ E0\E .
Proposition 8.2.6 If G1 and G2 are bipolar fuzzy graphs, then G1[G2] is a bipolar
fuzzy graph.

Proof Let x ∈ V1 and x2y2 ∈ E2. Then

(μP
B1

◦ μP
B2
)((x, x2)(x, y2))

= μP
A1
(x) ∧ μP

B2
(x2y2)

≤ ∧{μP
A1
(x),μP

A2
(x2) ∧ μP

A2
(y2)}

= ∧{μP
A1
(x) ∧ μP

A2
(x2),μ

P
A1
(x) ∧ μP

A2
(y2)}

= (μP
A1

◦ μP
A2
)(x, x2) ∧ (μP

A1
◦ μP

A2
(x, y2)),
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(μN
B1

◦ μN
B2
)((x, x2)(x, y2)) = μN

A1
(x) ∨ μN

B2
(x2y2)

≥ ∨{μN
A1
(x),μN

A2
(x2) ∨ μN

A2
(y2)}

= ∨{μN
A1
(x) ∨ μN

A2
(x2),μ

N
A1
(x) ∨ μN

A2
(y2)}

= (μN
A1

◦ μN
A2
)(x, x2) ∨ (μN

A1
◦ μN

A2
)(x, y2).

Let z ∈ V2, and x1y1 ∈ E1. Then

(μP
B1

◦ μP
B2
)((x1, z)(y1, z))

= μP
B1
(x1y1) ∧ μP

A2
(z)

≤ ∧{μP
A1
(x1), μP

A1
(y1),μ

P
A2
(z)}

= ∧{μP
A1
(x1) ∧ μP

A2
(z),μP

A1
(y1) ∧ μP

A2
(z)}

= (μP
A1

◦ μP
A2
(x1, z)) ∧ (μP

A1
◦ μP

A2
(y1, z)),

(μN
B1

◦ μN
B2
)((x1, z)(y1, z)) = μN

B1
(x1y1) ∨ μN

A2
(z)

≥ ∨{(μN
A1
(x1), μN

A1
(y1)),μ

N
A2
(z)}

= ∨{μN
A1
(x1) ∨ μN

A2
(z),μN

A1
(y1) ∨ μN

A2
(z)}

= (μN
A1

◦ μN
A2
)(x1, z) ∨ (μN

A1
◦ μN

A2
)(y1, z).

Let (x1, x2)(y1, y2) ∈ E0\E . Then x1y1 ∈ E1, x2 �= y2. Thus,

(μP
B1

◦ μP
B2
)((x1, x2)(y1, y2))

= ∧{μP
A2
(x2), μP

A2
(y2), μP

B1
(x1y1)}

≤ ∧{μP
A2
(x2), μP

A2
(y2), μP

A1
(x1) ∧ μP

A1
(y1)}

= ∧{μP
A1
(x1) ∧ μP

A2
(x2), μP

A1
(y1) ∧ μP

A2
(y2)}

= (μP
A1

◦ μP
A2
)(x1, x2) ∧ (μP

A1
◦ μP

A2
)(y1, y2).

�

Definition 8.2.7 Let A1 = (μP
A1
,μN

A1
) and A2 = (μP

A2
,μN

A2
) be bipolar fuzzy subsets

of V1 and V2, respectively, and let B1 = (μP
B1
,μN

B1
) and B2 = (μP

B2
,μN

B2
) be bipolar

fuzzy subsets of E1 and E2, respectively. Then we denote the union of two bipolar
fuzzy graphs G1 and G2 of the graphs G∗

1 and G
∗
2 by G1 ∪G2 = (A1 ∪ A2, B1 ∪ B2)

and defined as follows:

(μP
A1

∪ μP
A2
)(x) =

⎧
⎪⎨

⎪⎩

μP
A1
(x) if x ∈ V1 ∩ V2

μP
A2
(x) if x ∈ V2 ∩ V1

μP
A1
(x) ∨ μP

A2
(x) if x ∈ V1 ∩ V2
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(μN
A1

∪ μN
A2
)(x) =

⎧
⎪⎨

⎪⎩

μN
A1
(x) if x ∈ V1 ∩ V2

μN
A2
(x) if x ∈ V2 ∩ V1

μN
A1
(x) ∧ μN

A2
(x) if x ∈ V1 ∩ V2

(μP
B1

∪ μP
B2
)(xy) =

⎧
⎪⎨

⎪⎩

μP
B1
(xy) if xy ∈ E1 ∩ E2

μP
B2
(xy) if xy ∈ E2 ∩ E1

μP
B1
(xy) ∨ μP

B2
(xy) if xy ∈ E1 ∩ E2

(μN
B1

∪ μN
B2
)(xy) =

⎧
⎪⎨

⎪⎩

μN
B1
(xy) if xy ∈ E1 ∩ E2

μN
B2
(xy) if xy ∈ E2 ∩ E1

μN
B1
(xy) ∧ μN

B2
(xy) if xy ∈ E1 ∩ E2.

Example 8.2.8 Consider the bipolar fuzzy graphs G1 and G2,where V1 = {a, b, c},
E1 = {ab, ac, bd} and V2 = {a, b, d}, E2 = {ab, ad, bd} such that

a b c
μP
A1

0.3 0.5 0.4
μN
A1

−0.4 −0.6 −0.5

a b d
μP
A2

0.4 0.4 0.3
μN
A2

−0.5 −0.3 −0.2

and
ab ac bc

μP
B1

0.2 0.3 0.4
μN
B1

−0.4 −0.4 −0.5

ab ad bd
μP
B2

0.4 0.3 0.3
μN
B2

−0.3 −0.2 −0.2

Then the following tables yield G1 ∪ G2.

a b c d
μP
A1

∪ μP
A2

0.4 0.5 0.4 0.3
μN
A1

∪ μN
A2

−0.5 −0.6 −0.5 −0.2

ab ac ad bc bd
μP
B1

∪ μP
B2

0.4 0.3 0.3 0.4 0.3
μN
B1

∪ μN
B2

−0.4 −0.4 −0.2 −0.5 −0.2

Proposition 8.2.9 If G1 and G2 are bipolar fuzzy graphs, then G1 ∪G2 is a bipolar
fuzzy graph.

Proof Let xy ∈ E1 ∩ E2. Then

(μP
B1

∪ μP
B2
)(xy) = μP

B1
(xy) ∨ μP

B2
(xy)

≤ ∨{μP
A1
(x) ∧ μP

A1
(y),μP

A2
(x) ∧ μP

A2
(y)}

= ∧{μP
A1
(x) ∨ μP

A2
(x),μP

A1
(y) ∨ μP

A2
(y)}

= (μP
A1

∪ μP
A2
)(x) ∧ (μP

A1
∪ μP

A2
)(y).
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(μN
B1

∪ μN
B2
)(xy) = μN

B1
(xy) ∧ μN

B2
(xy)

≥ ∧{μN
A1
(x) ∨ μN

A1
(y),μN

A2
(x) ∨ μN

A2
(y)}

= ∨{μN
A1
(x) ∧ μN

A2
(x),μN

A1
(y) ∧ μN

A2
(y)}

= (μN
A1

∪ μN
A2
(x)) ∨ (μN

A1
∪ μN

A2
)(y).

Similarly, for xy ∈ E1 ∩ E2, we have

(μP
B1

∪ μP
B2
)(xy) ≤ (μP

A1
∪ μP

A2
(x)) ∧ (μP

A1
∪ μP

A2
)(y)

(μN
B1

∪ μN
B2
)(xy) ≥ (μN

A1
∪ μN

A2
)(x) ∨ (μN

A1
∪ μN

A2
)(y).

If xy ∈ E2 ∩ E1, then

(μP
B1

∪ μP
B2
)(xy) ≤ (μP

A1
∪ μP

A2
)(x) ∧ (μP

A1
∪ μP

A2
)(y)

(μN
B1

∪ μN
B2
)(xy) ≥ (μN

A1
∪ μN

A2
)(x) ∨ (μN

A1
∪ μN

A2
)(y).

Thus, G1 ∪ G2 is a bipolar fuzzy graph �

Proposition 8.2.10 Let {Gi | i ∈ I } be a family of bipolar fuzzy graphs with the
underlying set V . Then ∩i∈I Gi is a bipolar fuzzy graph.

Proof For any x, y ∈ V, we have that

∩i∈IμP
B (xy) = ∧i∈IμP

Bi
(xy) ≤ ∧i∈I {μP

Ai
(x) ∧ μP

Ai
(y)}

= (∧i∈IμP
Ai
(x)) ∧ (∧i∈IμP

Ai
(y))

= (∩i∈IμP
Ai
(x)) ∧ (∩i∈IμP

Ai
(y)),

∩i∈IμN
B (xy) = ∨i∈IμN

Bi
(xy) ≥ ∨i∈I (μN

Ai
(x) ∨ μN

Ai
(y))

= (∨i∈IμN
Ai
(x)) ∨ (∨i∈IμN

Ai
(y))

= ∩i∈IμN
Ai
(x) ∨ ∩i∈IμN

Ai
(y).

Hence, ∩i∈I Gi is a bipolar fuzzy graph. �

Definition 8.2.11 Let A1 = (μP
A1
,μN

A1
) and A2 = (μP

A2
,μN

A2
) be bipolar fuzzy sub-

sets of V1 and V2 and let B1 = (μP
B1
,μN

B1
) and B2 = (μP

B2
,μN

B2
) be bipolar fuzzy

subsets of E1 and E2, respectively. We denote the join of two bipolar fuzzy graphs
G1 = (A1, B1) andG2 = (A2, B2) of the graphsG∗

1 = (V1, E1) andG∗
2 = (V2, E2),

respectively, by G1 + G2 = (A1 + A2, B1 + B2) and defined as follows:

(i) (μP
A1

+ μP
A2
)(x) = (μP

A1
∪ μP

A2
)(x) and (μN

A1
+ μN

A2
)(x) = (μN

A1
∩ μN

A2
)(x) if

x ∈ V1 ∪ V2;
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(i i) (μP
B1

+ μP
B2
)(xy) = (μP

B1
∪ μP

B2
)(xy) = μP

B1
(xy) and (μN

B1
+ μN

B2
)(xy) =

(μN
B1

∩ μN
B2
)(xy) = μN

B1
(xy) if xy ∈ E1 ∩ E2;

(i i i) (μP
B1

+μP
B2
)(xy) = μP

A1
(x)∨μP

A2
(y) and (μN

B1
+μN

B2
)(xy) = μN

A1
(x)∧μN

A2
(y)

if xy ∈ E, where E is the set of all edges joining the vertices V1 and V2.

Proposition 8.2.12 If G1 and G2 are bipolar fuzzy graphs, then G1+G2 is a bipolar
fuzzy graph.

Proof Let xy ∈ E ′. Then

(μP
B1

+ μP
B2
)(xy) = μP

A1
(x) ∨ μP

A2
(y)

≤ (μP
A1

∪ μP
A2
)(x) ∨ (μP

A1
∪ μP

A2
)(y)

= (μP
A1

+ μP
A2
)(x) ∨ (μP

A1
+ μP

A2
)(y)

and

(μN
B1

+ μN
B2
)(xy) = μN

A1
(x) ∧ μN

A2
(y)

≥ (μN
A1

∩ μN
A2
)(x) ∧ (μN

A1
∩ μN

A2
)(y)

= (μN
A1

+ μN
A2
)(x) ∧ (μN

A1
+ μN

A2
)(y).

If xy ∈ E1 ∪ E2, then the result follows from Proposition 8.2.9. �

Proposition 8.2.13 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be crisp graphs and let
V1 ∩ V2 = ∅. Let A1, A2, B1, and B2 be bipolar fuzzy subsets of V1, V2, E1, and
E2, respectively. Then G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2) is a bipolar fuzzy graph of
G∗ = G∗

1 ∪ G∗
2 if and only if G1 = (A1, B1) and G2 = (A2, B2) are bipolar fuzzy

graphs of G∗
1 and G∗

2, respectively.

Proof Suppose that G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2) is a bipolar fuzzy graph. Let
xy ∈ E1. Then xy /∈ E2 and x, y ∈ V1\V2. Thus,

μP
B1
(xy) = (μP

B1
∪ μP

B2
)(xy) ≤ (μP

A1
∪ μP

A2
)(x) ∧ (μP

A1
∪ μP

A2
)(y)

= μP
A1
(x) ∧ μP

A1
(y),

μN
B1
(xy) = (μN

B1
∪ μN

B2
)(xy) ≥ (μN

A1
∩ μN

A2
)(x) ∨ (μN

A1
∩ μN

A2
)(y)

= μN
A1
(x) ∨ μN

A1
(y).

Hence, G1 = (A1, B1) is a bipolar fuzzy graph. Similarly, we can show that G2 =
(A2, B2) is a bipolar fuzzy graph.

The converse follows by Proposition 8.2.9. �

As a consequence of Propositions 8.2.12 and 8.2.13, we have the following.
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Proposition 8.2.14 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be crisp graphs and let
V1 ∩ V2 = ∅. Let A1, A2, B1, and B2 be bipolar fuzzy subsets of V1, V2, E1, and
E2, respectively. Then G1 + G2 = (A1 + A2, B1 + B2) is a bipolar fuzzy graph of
G∗ = G∗

1 + G∗
2 if and only if G1 = (A1, B1) and G2 = (A2, B2) are bipolar fuzzy

graphs of G∗
1 and G∗

2, respectively.

8.3 Isomorphisms of Bipolar Fuzzy Graphs

In this section, we consider the concept of an isomorphism of bipolar fuzzy graphs.

Definition 8.3.1 Let G1 and G2 be bipolar fuzzy graphs. A homomorphism f :
G1 → G2 is a bijective mapping f : V1 → V2 which satisfies the following
conditions:

(i) μP
A1
(x1) ≤ μP

A2
( f (x1)), μN

A1
(x1) ≥ μN

A2
( f (x1)) for all x1 ∈ V1.

(i i) μP
B1
(x1y1) ≤ μP

B2
( f (x1) f (y1)), μN

B1
(x1y1) ≥ μN

B2
( f (x1) f (y1)) for all x1 ∈

V1 and x1y1 ∈ E1.

Definition 8.3.2 Let G1 and G2 be bipolar fuzzy graphs. An isomorphism f :
G1 → G2 is a bijective mapping f : V1 → V2 which satisfies the following
conditions:

(i) μP
A1
(x1) = μP

A2
( f (x1)),μN

A1
(x1) = μN

A2
( f (x1)).

(i i) μP
B1
(x1y1) = μP

B2
( f (x1) f (y1)),μN

B1
(x1y1) = μN

B2
( f (x1) f (y1)) for all x1 ∈

V1 and x1y1 ∈ E1.
Definition 8.3.3 Let G1 and G2 be bipolar fuzzy graphs. A weak isomorphism
f : G1 → G2 is a bijective mapping f : V1 → V2 which satisfies the following
conditions:

(i) f is a homomorphism,

(i i) μP
A1
(x1) = μP

A2
( f (x1)),μN

A1
(x1) = μN

A2
( f (x1)) for all x1 ∈ V1.

It follows that a weak isomorphism preserves the weights of the vertices, but not
necessarily the weights of the edges.

Example 8.3.4 Let V1 = {a1, b1}, V2 = {a2, b2}, E1 = {a1b1}, and E2 = {a2b2}.
Consider bipolar fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2) of G∗

1 = (V1, E1)

and G∗
2 = (V2, E2), respectively, defined as follows:

μP
A1
(a1) = 0.2, μN

A1
(a1) = −0.5, μP

A1
(b1) = 0.3, μN

A1
(b1) = −0.6, μP

B1
(a1b1)

= 0.1, μN
B1
(a1b1) = −0.4; μP

A2
(a2) = 0.3B1 , μN

A2
(a2) = −0.6, μP

A2
(b2) = 0.2,

μN
A2
(b2) = −0.5, μP

B2
(a2b2) = 0.2, μN

B2
(a2, b2) = −0.4.

Define the function f : V1 → V2 by f (a1) = b2 and f (b1) = a2. Then we have:
μP
A1
(a1) = μP

A2
(b2), μN

A1
(a1) = μN

A2
(b2), μP

A1
(b1) = μP

A2
(a2), μN

A1
(b1) = μN

A2
(a2),

and
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μN
B1
(a1b1) = μN

B2
(a2b2), but μP

B1
(a1b1) �= μP

B2
( f (a1) f (b1)) = μP

B2
(a2b2).

Hence, the map is weak isomorphism, but not an isomorphism.

Definition 8.3.5 Let G1 and G2 be bipolar fuzzy graphs. A co-weak isomorphism
f : G1 → G2 is a bijective mapping f : V1 → V2 which satisfies the following
conditions:

(i) f is a homomorphism,

(i i) μP
B1
(x1y1) = μP

B2
( f (x1) f (y1)),μN

B1
(x1y1) = μN

B2
( f (x1) f (y1)) for all

x1, y1 ∈ V1.

We see that a weak isomorphism preserves the weights of the edges, but not
necessarily the weights of the vertices.

Example 8.3.6 Let V1 = {a1, b1}, V2 = {a2, b2}, E1 = {a1b1}, and E2 = {a2b2}.
Consider bipolar fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2) of G∗

1 = (V1, E1)

and G∗
2 = (V2, E2), respectively, defined as follows:

μP
A1
(a1) = 0.2, μN

A1
(a1) = −0.4, μP

A1
(b1) = 0.3, μN

A1
(b1) = −0.5, μP

B1
(a1b1) =

0.1, μN
B1
(a1b1) = −0.3; μP

A2
(a2) = 0.4B1 , μN

A2
(a2) = −0.5, μP

A2
(b2) = 0.3,

μN
A2
(b2) = −0.6, μP

B2
(a2b2) = 0.1, μN

B2
(a2, b2) = −0.3.

The function f : V1 → V2 defined by f (a1) = a2 and f (b1) = b2 can be
shown to be a co-weak isomorphism, but not an isomorphism because μP

A1
(a1) �=

μP
A2
(b2), μN

A1
(a1) �= μN

A2
(b2).

We next make some definitions and observations.

(1) If G1 = G2 = G, then the homomorphism f of G into G itself is called an
endomorphism. An isomorphism f over G is called an automorphism.

(2) Let A = (μP
A ,μ

N
A ) be a bipolar fuzzy graph with an underlying set V . Let

Aut (G) be the set of all bipolar automorphism of G. Let e : G → G be a map
defined by e(x) = x for all x ∈ V . Clearly, e ∈ Aut (G).

(3) If G1 = G2, then the weak and co-weak isomorphisms actually becomes
isomorphic.

Definition 8.3.7 A bipolar fuzzy set A = (μP
A ,μ

N
A ) in a semigroup S is called a

bipolar subsemigroup of S it satisfies: μP
A(xy) ≥ μP

A(x) ∧ μP
A(y) and μN

A (xy) ≤
μN
A (x) ∨ μN

A (y) for all x, y ∈ S.

A bipolar fuzzy set A = (μP
A ,μ

N
A ) in a group G is called a bipolar subgroup of

G if it is a bipolar fuzzy subsemigroup of G and satisfies: μP
A(x

−1) = μP
A(x) and

μN
A (x

−1) = μN
A (x) for all x ∈ G.

We now show how to associate a bipolar fuzzy group with a bipolar fuzzy graph.

Proposition 8.3.8 Let G = (A, B) be a bipolar fuzzy graph and let Aut (G) be the
set of all automorphisms of G. Then (Aut (G), ◦) forms a group.
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Proof Let φ,ψ ∈ Aut (G) and let x, y ∈ V . Then

μP
B ((φ ◦ ψ)(x)(φ ◦ ψ)(y)) = μP

B ((φ(ψ(x))φ(ψ(y)) = μP
B (ψ(x)ψ(y)) = μP

B (xy),

μN
B ((φ ◦ ψ)(x)(φ ◦ ψ)(y)) = μN

B ((φ(ψ(x))φ(ψ(y)) = μN
B (ψ(x)ψ(y)) = μN

B (xy),

μP
B ((φ ◦ ψ)(x)) = μP

B ((φ(ψ(x))) = μP
B ((ψ(x)) = μP

B (x),

μN
B ((φ ◦ ψ)(x)) = μN

B ((φ(ψ(x))) = μN
B ((ψ(x)) = μN

B (x).

Thus, φ ◦ ψ ∈ Aut (G). Clearly Aut (G) satisfies associativity under the operation
◦, φ ◦ e = φ = e ◦ φ, μP

A(φ
−1) = μP

A(φ), μN
A (φ

−1) = μN
A (φ) for all φ ∈ Aut (G).

Hence, (Aut (G), ◦) forms a group. �

We state the two propositions without proofs.

Proposition 8.3.9 Let G = (A, B) be a bipolar fuzzy graph and let Aut (G) be the
set of all automorphisms of G. Let g = (

μP
g ,μ

N
g

)
be a bipolar fuzzy set in Aut (G)

defined by

μP
g (φ) = ∨ {

μP
B (φ(x),φ(y)) | (x, y) ∈ V × V

}
,

μN
g (φ) = ∧{μN

B (φ(x),φ(y)) | (x, y) ∈ V × V }

for all φ ∈ Aut (G). Then g = (
μP

g ,μ
N
g

)
is a bipolar fuzzy group on Aut (G).

Proposition 8.3.10 Every bipolar fuzzy group has an embedding into the bipolar
fuzzy group of the group of automorphisms of some bipolar fuzzy group.

Proposition 8.3.11 Let G1,G2, and G3 be bipolar fuzzy graphs. Then the following
properties hold.

(i) If f is an isomorphism of G1 onto G2, then f −1 is an isomorphism of G2 onto
G1.

(i i) If f is an isomorphism of G1 onto G2 and g is an isomorphism of G2 onto
G3, then g ◦ f is an isomorphism of G1 onto G3.

Proof (i) Now, f : V1 → V2. Let x1 ∈ V1. Then we have μP
A1
(x1) = μP

A2
( f (x1)),

μN
A1
(x1) = μN

A2
( f (x1)) for all x1 ∈ V1 and μP

B1
(x1y1) = μP

B2
( f (x1) f (y1)),

μN
B1
(x1y1) = μN

B2
( f (x1) f (y1)) for all x1, y1 ∈ E1.

Because f is bijective, it follows that f −1(x2) = x1, where f (x1) = x2 ∈ V2.

Thus, μP
A1

(
f −1(x2)

) = μP
A2
(x2) , μN

A1

(
f −1(x2)

) = μN
A2
(x2) for all x2 ∈ V2 and

μP
B1
( f −1(x2y2)) = μP

B2
(x2y2), μN

B1
( f −1(x2y2)) = μN

B2
(x2y2) for all x2, y2 ∈ E2.

Hence, the bijective map f −1 : V2 → V1 is an isomorphism from G2 onto G1.
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(i i) We have f : V1 → V2 and g : V2 → V3. Then g ◦ f : V1 → V3 is bijective
map from V1 onto V3,where (g◦ f )(x1) = g( f (x1)) for all x1 ∈ V1. Let x2 = f (x1).
Thus,

μP
A1
(x1) = μP

A2
( f (x1)) = μP

A2
(x2), (8.1)

μN
A1
(x1) = μN

A2
( f (x1)) = μN

A2
(x2) (8.2)

for all x1 ∈ V1.

μP
B1
(x1y1) = μP

B2
( f (x1) f (y1)) = μP

B2
(x2y2), (8.3)

μN
B1
(x1y1) = μN

B2
( f (x1) f (y1)) = μN

B2
(x2y2) (8.4)

for all x1y1 ∈ E1.

Let x3 = g(x2) = x3. Then

μP
A2
(x2) = μP

A3
(g(x2)) = μP

A3
(x3), (8.5)

μN
A2
(x2) = μN

A3
(g(x2)) = μN

A3
(x3) (8.6)

for all x2 ∈ V1.

μP
B2
(x2y2) = μP

B3
(g(x2)g(y2)) = μP

B3
(x3y3), (8.7)

μN
B2
(x2y2) = μN

B3
(g(x2)g(y2)) = μN

B3
(x3y3) (8.8)

for all x2y2 ∈ E3.

From (8.1), (8.2), (8.5), (8.6), and f (x1) = x2, x1 ∈ V1, we have

μP
A1
(x1) = μP

A2
( f (x1)) = μP

A2
(x2) = μP

A2
(g(x2)) = μP

A2
(g( f (x1))),

μN
A1
(x1) = μN

A2
( f (x1)) = μN

A2
(x2) = μN

A2
(g(x2)) = μN

A2
(g( f (x1)))

for all x1 ∈ V1.

From (8.3), (8.4), (8.7), (8.8), we have

μP
B1
(x1y1) = μP

B2
( f (x1) f (y1)) = μP

B2
(x2y2)

= μP
B3
(g(x2)g(y2)) = μP

B3
(g( f (x1))g( f (y1))),

and

μN
B1
(x1y1) = μN

B2
( f (x1) f (y1)) = μN

B2
(x2y2)

= μN
B3
(g(x2)g(y2)) = μN

B3
(g( f (x1))g( f (y1)))

for all x1y1 ∈ E . Therefore, g ◦ f is an isomorphism between G1 and G3. �
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Let f : V1 → V2 be a weak isomorphism of G1 onto G2. Let x1 ∈ V1. Then
μP
A1
(x1) = μP

A2
( f (x1)), μN

A1
(x1) = μN

A2
( f (x1)),

μP
B1
(x1y1) ≤ μP

B2
( f (x1) f (y1)), μN

B1
(x1y1) ≥ μN

B2
( f (x1) f (y1)) (8.9)

for all x1, y1 ∈ E1.

Let g : V2 → V1 be a weak isomorphism of G2 onto G1. Then g is a bijective
map defined by g(x2) = x1, x2 ∈ V2, satisfying μP

A2
(x2) = μP

A1
(g(x2)), μN

A2
(x2) =

μN
A1
(g(x2)) for all x2 ∈ V2 and

μP
B2
(x2y2) ≤ μP

B1
(g(x2)g(y2)), μN

B2
(x2y2) ≥ μN

B1
(g(x2)g(y2)) (8.10)

for all x2y2 ∈ E2.

The inequalities (8.9) and (8.10) hold on the finite sets V1 and V2 only when G1

and G2 have the same number of edges and the corresponding edges have the same
weights. Hence, G1 and G2 are identical.

Proposition 8.3.12 Let G1,G2, and G3 be bipolar fuzzy graphs. If f is a weak
isomorphism of G1 onto G2 and g is a weak isomorphism of G2 onto G3, then g ◦ f
is a weak isomorphism of G1 onto G3.

Proof Let f : V1 → V2 and g : V2 → V3 be weak isomorphisms of G1 onto G2 and
G2 onto G3, respectively. Then g ◦ f : V1 → V3 is bijective map from V1 onto V3,

where (g ◦ f )(x1) = g( f (x1)) for all x1 ∈ V1.

Let x1 ∈ V1 and x2 = f (x1). Then

μP
A1
(x1) = μP

A2
( f (x1)) = μP

A2
(x2), (8.11)

μN
A1
(x1) = μN

A2
( f (x1)) = μN

A2
(x2) (8.12)

for all x1 ∈ V1.

μP
B1
(x1y1) ≤ μP

B2
( f (x1) f (y1)) = μP

B2
(x2y2)μ

N
B1
(x1y1)

≥ μN
B2
( f (x1) f (y1)) = μN

B2
(x2y2) (8.13)

for all x1y1 ∈ E1.

Let x3 = g(x2). Then we have,

μP
A2
(x2) = μP

A3
(g(x2)) = μP

A3
(x3), (8.14)

μN
A2
(x2) = μN

A3
(g(x2)) = μN

A3
(x3) (8.15)

for all x2 ∈ V1.
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μP
B2
(x2y2) ≤ μP

B3
(g(x2)g(y2)) = μP

B3
(x3y3), (8.16)

μN
B2
(x2y2) ≥ μN

B3
(g(x2)g(y2)) = μN

B3
(x3y3) (8.17)

for all x2y2 ∈ E3.

From (8.11), (8.12), (8.14), (8.15), and f (x1) = x2, x1 ∈ V1, we have μP
A1
(x1) =

μP
A2
( f (x1)) = μP

A2
(x2) = μP

A2
(g(x2)) = μP

A2
(g( f (x1))), μN

A1
(x1) = μN

A2
( f (x1)) =

μN
A2
(x2) = μN

A2
(g(x2)) = μN

A2
(g( f (x1))) for all x1 ∈ V1.

From (8.13), (8.16), and (8.17), we have, μP
B1
(x1y1) ≤ μP

B2
( f (x1) f (y1)) =

μP
B2
(x2y2) = μP

B3
(g(x2)g(y2)) = μP

B3
(g( f (x1))g( f (y1))) and μN

B1
(x1y1) ≥ μN

B2

( f (x1) f (y1)) = μN
B2
(x2y2) = μN

B3
(g(x2)g(y2)) = μN

B3
(g( f (x1))g( f (y1))) for all

x1, y1 ∈ E . Therefore, g ◦ f is an isomorphism between G1 and G3. �

8.4 Strong Bipolar Fuzzy Graphs

Definition 8.4.1 A bipolar fuzzy graph G = (A, B) is called strong if μP
B (xy) =

μP
A(x) ∧ μP

A(y) and μN
B (xy) = μN

A (x) ∨ μN
A (y) for all xy ∈ E .

Example 8.4.2 Consider a graph G∗ such that V = {x, y, z} and E = {xy, yz, zx}.
Let A be a bipolar fuzzy subset of V and B be a bipolar fuzzy subset of E defined
by

x y z
μP
A 0.2 0.3 0.4

μN
A −0.4 −0.5 −0.5

xy yz zx
μP
B 0.2 0.3 0.2

μN
B −0.4 −0.5 −0.4

It follows easily that G = (A, B) is a strong bipolar fuzzy graph of G∗.

Proposition 8.4.3 If G1 and G2 are strong bipolar fuzzy graphs, then G1 × G2,

G1[G2], and G1 + G2 are strong bipolar fuzzy graphs.

Proof The proof follows from Propositions 8.2.4, 8.2.6, and 8.2.12. �

We next show that the union of two strong bipolar fuzzy graphs is not necessarily
a strong bipolar fuzzy graph.

Example 8.4.4 Let V1 = {a, b, c} = V2, E1 = {ab, bc}, and E2 = {bc, ac}. Let
G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs defined as follows:

μP
A1
(a) = 0.6, μN

A1
(a) = −0.5, μP

A1
(b) = 0.4, μN

A1
(b) = −0.7, μP

A1
(c) = 0.5,

μN
A1
(c) = −0.6,μP

B1
(ab) = 0.4,μN

B1
(ab) = −0.5,μP

B1
(bc) = 0.4,μN

B1
(bc) = −0.6;

μP
A2
(a) = 0.2, μN

A2
(a) = −0.5, μP

A2
(b) = 0.3, μN

A2
(b) = −0.4, μP

A2
(c) = 0.7,

μN
A2
(c) = −0.6, μP

B2
(bc) = 0.3, μN

B2
(bc) = −0.4, μP

B2
(ac) = 0.2, μN

B2
(ac) = −0.5.
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Then we have that (μP
A1

∪ μP
A2
(a)) ∨ (μP

A1
∪ μP

A2
(c)) = 0.7 > 0.2 = (μP

B1
∪

μP
B2
)(ac).

Proposition 8.4.5 If G1 × G2 is a strong bipolar fuzzy graph, then at least one of
G1 or G2 must be strong.

Proof SupposeG1 andG2 are not strong. Then there exists x1y1 ∈ E1 and x2y2 ∈ E2

such thatμP
B1
(x1y1) < μP

A1
(x1)∧μP

A1
(y),μP

B2
(x1y1) < μP

A2
(x1)∧μP

A2
(y)μN

B1
(x1y1) >

μN
A1
(x1) ∨ μN

A1
(y), μN

B2
(x1y1) > μN

A2
(x1) ∨ μN

A2
(y).

Suppose that μP
B2
(x2y2) ≤ μP

B1
(x1y1) < μP

A1
(x1) ∧ μP

A1
(y) ≤ μP

A1
(x1). Let E =

{(x, x2)(x, y2) | x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2, x1y1 ∈ E1}. Let
(x, x2)(x, y2) ∈ E . Then we have that (μP

B1
× μP

B2
)((x, x2)(x, y2)) = μP

A1
(x) ∧

μP
B2
(x2y2) < ∧{μP

A1
(x),μP

A2
(x2) ∧ μP

A2
(y2)} and (μP

A1
× μP

A2
)(x, x2) = μP

A1
(x) ∧

μP
A2
(x2), (μP

A1
× μP

A2
)(x, y2) = μP

A1
(x) ∧ μP

A2
(y2).

Thus, (μP
A1

× μP
A2
)(x, x2) ∧ (μP

A1
× μP

A2
)(x, y2) = ∧{μP

A1
(x),μP

A2
(x2),μP

A2
(y2)}

and hence, (μP
B1

× μP
B2
)((x, x2)(x, y2)) < (μP

A1
× μP

A2
)(x, x2)∧ (μP

A1
× μP

A2
)(x, y2).

Similarly, it follows that (μN
B1

×μN
B2
)((x, x2)(x, y2)) < (μN

A1
×μN

A2
)(x, x2)∧(μN

A1
×

μN
A2
)(x, y2). That is, G1 × G2 is not a strong bipolar fuzzy graph, a contradiction.

Hence, if G1 × G2 is a strong bipolar fuzzy graph, then at least G1 or G2 must be a
strong bipolar fuzzy graph. �

The following result is immediate.

Proposition 8.4.6 If G1[G2] is a strong bipolar fuzzy graph, then at least one of G1

or G2 must be strong.

Proposition 8.4.7 Let G = (A, B) be a strong bipolar fuzzy graph of a graph

G∗ = (V, E). If G = (A, B) satisfies A = A and B = (μP
B ,μ

N
B ) defined by for all

xy ∈ E,
μP
B (xy) =

{
0 if 0 < μP

B (xy) ≤ 1,
μP
A(x) ∧ μP

A(y) if μ
N
B (xy) = 0,

μN
B (xy) =

{
0 if − 1 ≤ μN

B (xy) < 0,
μP
A(x) ∨ μP

A(y) if μB(xy) = 0.

Then G is a strong bipolar fuzzy graph of G = (V, E\E).
Proof Clearly, the bipolar sets A and B satisfy μN

B (xy ≤ μP
A(x) ∧ μP

A(y) and

μN
B (xy) ≥ μN

A (x) ∨ μN
A (y) for all xy ∈ E . Let xy ∈ E\(E\E) = E . Then μN

B (xy =
μP
A(x) ∧ μP

A(y) because G is strong. If μP
B (xy) = 0, then by Definition 8.2.1, we

have μP
B (xy) = μP

A(x) ∧ μP
A(y) = μP

B (xy) = 0. Suppose 0 < μP
B (xy) ≤ 1. Then

we have μP
B (xy) = 0. Thus, for all xy ∈ E\(E\E) = E,μP

B (xy) = 0. Similarly, we
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can show that for all xy ∈ E\(E\E) = E,μN
B (xy) = 0. Hence, G is a bipolar fuzzy

graph of G∗ = (V, E\E).
WenowshowG is strong.By definition,μP

B (xy) = μN
B (xy) = 0 for all xy ∈ E\E .

Then μP
B (xy) = μP

A(x)∧μP
A(y) = μP

A(x)∧μP
A(y) and μN

B (xy) = μN
A (x)∨μN

A (y) =
μN
A (x) ∨ μN

A (y). Hence, G is a strong bipolar fuzzy graph of G∗ = (V, E\E). �

Definition 8.4.8 The complement of a strong bipolar fuzzy graph G = (A, B)
of G∗ = (V, E) is a strong bipolar fuzzy graph G = (A, B) on G∗, where A =
(μP

A,μ
N
A ) and B = (μP

B ,μ
N
B ) are defined by

(i) V = V,

(i i) μP
A(x) = μP

A(x), μN
A (x) = μN

A (x) for all x ∈ V,
(i i i)

μP
B (xy) =

{
0 if μP

B (xy) > 0
μP
A(x) ∧ μP

A(y) if μP
B (xy) = 0

μN
B (xy) =

{
0 if μN

B (xy) > 0
μN
A (x) ∨ μN

A (y) if μN
B (xy) = 0.

Definition 8.4.9 A strong bipolar fuzzy graph G is called self complementary if
G and G are isomorphic.

We next give an example of a self complementary strong bipolar fuzzy graph.

Example 8.4.10 Let G∗ = (V, E) be a graph, where V = {a, b, c, d} and
E = {ab, ac, cd}. Let G = (A, B) the strong bipolar graph fuzzy graph defined
as follows:

μP
A(a) = μP

A(b) = μP
A(c) = μP

A(d) = 0.1,

μN
A (a) = μN

A (b) = μN
A (c) = μN

A (d) = −0.2.

μP
B (ab) = μP

B (ac) = μP
B (cd) = 0.1,μP

B (ad) = μP
B (bc) = μP

B (bd) = 0,

μN
B (ab) = μN

B (ac) = μN
B (cd) = −0.2,μN

B (ad) = μN
B (bc) = μN

B (bd) = 0.

Then the complement G = (A, B) of G is given as follows: A = A and

μP
B (bc) = μP

B (ad) = μP
B (bd) = 0.1,μP

B (cd) = μP
B (ac) = μP

B (ab) = 0,

μN
B (bc) = μN

B (ad) = μN
B (bd) = −0.2,μN

B (cd) = μN
B (ac) = μN

B (ab) = 0.

Define the function f : V → V by f (a) = b, f (b) = c, f (c) = d, f (d) = a.
Then f is bijective and satisfies the following properties:

μP
B (ab) = 0.1 = μP

B (bc) = μP
B ( f (a) f (b)), μN

B (ab) = −0.2 = μN
B (bc) =

μN
B ( f (a) f (b)), μP

B (cd) = 0.1 = μP
B (ad) = μP

B ( f (c) f (d)), μN
B (cd) = −0.2 =
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μN
B (ad) = μN

B ( f (c) f (d)), μP
B (ac) = 0.1 = μP

B (bd) = μP
B ( f (a) f (c)), μN

B (ac) =
−0.2 = μN

B (bd) = μN
B ( f (a) f (c)), μP

B (bc) = 0 = μP
B (cd) = μP

B ( f (b) f (c)),

μN
B (bc) = 0 = μN

B (cd) = μN
B ( f (b) f (c)), μP

B (bd) = 0 = μP
B (ac) = μP

B ( f (b)

f (d)), μN
B (bd) = 0 = μN

B (ac) = μN
B ( f (b) f (d)), μP

B (ad) = 0 = μP
B (ab) =

μP
B ( f (a) f (d)), μN

B (ad) = 0 = μN
B (ab) = μN

B ( f (a) f (d)). Thus, G and G are
isomorphic.

Proposition 8.4.11 Let G = (A, B) be a strong bipolar graph of G∗ = (V, E) and
G = (A, B) be the complement of G. Then

μP
B (xy) = μP

A(x) ∧ μP
A(y) − μP

B (xy) for all xy ∈ E,
μN
B (xy) = μN

A (x) ∨ μN
A (y) − μN

B (xy) for all xy ∈ E .

Proof Let xy ∈ E . If 0 < μP
B (xy) ≤ 1, then xy ∈ E . Because G is strong, it

follows that μP
A(x) ∧ μP

A(y) − μP
B (xy) = 0 = μP

B (xy). Suppose that μP
B (xy) = 0.

Then μP
A(x)∧ μP

A(y)− μP
B (xy) = μP

A(x)∧ μP
A(y) = μP

B (xy). Therefore, μ
P
B (xy) =

μP
A(x) ∧ μP

A(y) − μP
B (xy) for all xy ∈ E .

It follows analogously that μN
B (xy) = μN

A (x) ∨ μN
A (y) − μN

B (xy) for all
xy ∈ E . �

Definition 8.4.12 ([45]) The complement of a fuzzy graph G = (σ,μ) is a fuzzy
graph G = (σ,μ), where σ = σ and μ(xy) = ∧{σ(x) ∧ σ(y) − μ(xy) | xy ∈ E}.
Proposition 8.4.13 Let G be a self complementary strong bipolar fuzzy graph. Then

(i)
∑

μP
B (xy) = 1

2

∑
x �=y μP

A(x) ∧ μP
B (y),

(i i)
∑

μN
B (xy) = 1

2

∑
x �=y μN

A (x) ∨ μN
B (y).

Proof Because G is a self complementary strong fuzzy bipolar graph, μP
B (xy) =

μP
A(x) ∧ μP

A(y) and μN
B (xy) = μN

A (x) ∨ μN
A (y) for all xy ∈ E . Also, there exists an

isomorphism f of G to G such that μP
A(x) = μP

A( f (x)) and μN
A (x) = μN

A ( f (x))

for all x ∈ V and μP
B (xy) = μP

B ( f (x) f (y)) and μN
B (xy) = μN

B ( f (x) f (y)) for all
xy ∈ E .

(i) For all xy ∈ E, we have that μP
B ( f (x) f (y)) = μP

A( f (x)) ∧ μP
A( f (y)) −

μP
B ( f (x) f (y)). Hence, μ

P
B (xy) = μP

A( f (x))∧ μP
A( f (y))− μP

B ( f (x) f (y)). Thus,

∑

x �=y

μP
B (xy) +

∑

x �=y

μP
B ( f (x) f (y)) =

∑

x �=y

μP
A( f (x)) ∧ μP

A( f (y)

=
∑

x �=y

μP
A(x) ∧ μP

A(y).

Hence, 2
∑

x �=y μP
B (xy) = ∑

x �=y μP
A(x) ∧ μP

A(y) and so the desired result is
immediate.
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(i i) For all xy ∈ E, we have that μN
B ( f (x) f (y)) = μN

A ( f (x)) ∨ μN
A ( f (y)) −

μN
B ( f (x) f (y)). Hence, μ

N
B (xy) = μN

A ( f (x)) ∨ μN
A ( f (y)) − μN

B (xy). Thus,

∑

x �=y

μN
B (xy) +

∑

x �=y

μN
B ( f (x) f (y)) =

∑

x �=y

μN
A ( f (x)) ∨ μN

A ( f (y)

=
∑

x �=y

μN
A (x) ∨ μN

A (y).

Hence, 2
∑

x �=y μN
B (xy) = ∑

x �=y μN
A (x) ∨ μN

A (y) and so the desired result is
immediate. �

Proposition 8.4.14 Suppose G = (A, B) is a strong bipolar fuzzy graph of G∗ =
(V, E). If μP

B (xy) = 1
2 (μ

P
A(x) ∧ μP

A(y)) and μN
B (xy) = 1

2 (μ
N
A (x) ∨ μN

A (y)) for all
xy ∈ E, then G is self complementary.

Proof Clearly, the identity map I : V → V is an isomorphism from G to G. In fact
by Proposition 8.4.11, we have for all xy ∈ E,

μP
B (I (x)I (y)) = μP

B (xy)

= μP
A(x) ∧ μP

A(y) − μP
B (xy)

= μP
A(x) ∧ μP

A(y) − 1

2
(μP

A(x) ∧ μP
A(y))

= 1

2
(μP

A(x) ∧ μP
A(y))

= μP
B (xy).

Similarly, μP
B (I (x)I (y)) = μP

B (xy). Thus, G and G are isomorphic. �

Corollary 8.4.15 Suppose G = (A, B) is a strong bipolar fuzzy graph of G∗ =
(V, E). Then G is self complementary if and only if μP

B (xy) = 1
2 (μ

P
A(x) ∧ μP

A(y))
and μN

B (xy) = 1
2 (μ

N
A (x) ∨ μN

A (y)) for all xy ∈ E .
Proposition 8.4.16 Let G1 and G2 be strong bipolar fuzzy graphs. Then G1 and G2

are isomorphic if and only if G1 and G2 are isomorphic.

Proof Suppose G1 and G2 are isomorphic. Then there exists a bijective function
f : V1 → V2 satisfying

μP
A1
(x) = μP

A2
( f (x)) and μN

A1
(x) = μN

A2
( f (x)) for all x ∈ V1,

μP
B1
(xy) = μP

B2
( f (x) f (y)) and μP

B1
(xy) = μP

B2
( f (x) f (y)) for all xy ∈ E1.
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Let xy ∈ E1. IfμP
B1
(xy) = 0, thenμP

B2
( f (x) f (y)) = 0.Now,μP

B1
(xy) =μP

A1
(x)∧

μP
A1
(y) = μP

A2
( f (x)) ∧ μP

A2
( f (y)) = μP

B2
( f (x) f (y)). Suppose 0 < μP

B1
(xy) ≤ 1.

Then 0 < μP
B2
( f (x) f (y)) ≤ 1.Thus,μP

B1
(xy) = 0 = μP

B2
( f (x) f (y)).Analogously,

μN
B1
(xy) = μN

B2
( f (x) f (y)) for all xy ∈ E1. Hence, G1 and G2 are isomorphic.

Conversely, suppose G1 and G2 are isomorphic. Then there exists a bijective
function f : V1 → V2 satisfying

μP
A1
(x) = μP

A2
( f (x)) and μN

A1
(x) = μN

A2
( f (x)) for all x ∈ V1,

μP
B1
(xy) = μP

B2
( f (x) f (y)) and μN

B1
(xy) = μN

B2
( f (x) f (y)) for all xy ∈ E1.

Let xy ∈ E1. Suppose that μP
B1
(xy) = 0. Then

μP
B2
( f (x) f (y)) = μP

B1
(xy)

= μP
A1
(x) ∧ μP

A1
(y)

= μP
A1
(x) ∧ μP

A1
(y)

= μP
A2
( f (x)) ∧ μP

A2
( f (y)

= μP
A2
( f (x)) ∧ μP

A2
( f (y)).

Thus, μP
B2
( f (x) f (y)) = 0 = μP

B1
(xy). Suppose that 0 < μP

B1
(xy) ≤ 1. Then

μP
B2
( f (x) f (y)) = μP

B1
(xy) = 0. Hence,

μP
B2
( f (x) f (y)) = μP

A2
( f (x)) ∧ μP

A2
( f (y))

= μP
A2
( f (x)) ∧ μP

A2
( f (y)

= μP
A1
(x) ∧ μP

A1
(y)

= μP
B1
(xy).

It follows analogously that μN
B1
(xy) = μN

B2
( f (x) f (y)). Therefore, G1 and G2 are

isomorphic. �

The following result is immediate.

Proposition 8.4.17 Let G1 and G2 be strong bipolar fuzzy graphs. If there is a
co-weak isomorphism between G1 and G2, then there is a co-weak isomorphism
between G1 and G2.



292 8 Bipolar Fuzzy Graphs

8.5 Regular Bipolar Fuzzy Graphs

The results in this section are due to those in [16]. We present the concepts of
regular and totally regular bipolar fuzzy graphs. We prove necessary and sufficient
conditions for which regular bipolar fuzzy graphs and totally bipolar fuzzy line
graphs are equivalent. We introduce the notion of bipolar fuzzy line graphs and
present some of their properties. We give a necessary and sufficient condition for a
bipolar fuzzy graph to be isomorphic to its corresponding bipolar fuzzy line graph.
We examinewhen an isomorphismbetween two bipolar fuzzy graphs follows froman
isomorphism of their corresponding bipolar fuzzy line graphs. Sufficient conditions
for a bipolar fuzzy graph to be isomorphic to its corresponding bipolar fuzzy line
graph are provided.

Recall that for given a graph G∗ = (V, E), two vertices x, y ∈ V are said to
be neighbors, or adjacent vertices, if xy ∈ E . The neighborhood of a vertex v

in a graph G∗ is the induced subgraph of G∗ consisting of all vertices adjacent to v

and all edges connecting two such vertices. The neighborhood is denoted by N (v).

The degree deg(v) of vertex v is the number of edges incident on v or equivalently,
deg(v) = |N (v)| .The set of neighbors, called an open neighborhood N (v) for a
vertex v in a graph G∗ consists of all vertices adjacent two v but not including v,
that is N (v) = {u ∈ V | vu ∈ E}. When v is also included, it is called a closed
neighborhood N [v], that is, N [v] = N (v)∪{v}.A regular graph is a graph where
each vertex has the same number of neighbors, i.e., all the vertices have the same
closed neighborhood degree. A complete graph is a simple graph in which every
pair of distinct vertices is connected by an edge.

An isomorphism of graphs G∗
1 and G∗

2 is a bijection between the vertex sets of
G∗

1 and G∗
2 such that any two vertices v1 and v2 of G

∗
1 are adjacent in G

∗
1 if and only

if f (v1) and f (v2) are adjacent in G∗
2. Isomorphic graphs are denoted by G∗

1 � G∗
2.

In graph theory, the line graph L(G∗) of a simple graph G∗ is a graph that repre-
sents the adjacencies between edges of G∗. Given a graph G∗, its line graph L(G∗)
is a graph such that each vertex of L(G∗) represents an edge of G∗; and two ver-
tices of L(G∗) are adjacent if and only if their corresponding edges share a common
endpoint in G∗.

Let G∗ = (V, E) be an undirected graph, where V = {v1, v2, . . . , vn−1, vn}. Let
Si = {vi , xi1, . . . , xiqi }, where xi j = viv j ∈ E, i = 1, 2, . . . , n, j = 1, 2, . . . ,
qi . Let S = {S1, S2, . . . , Sn}. Let T = {Si S j | Si , Sj ∈ S, Si ∩ Sj �= ∅, i �= j}.
Then P(S) = (S, T ) is an intersection graph and P(S) = G∗. The line graph L(G∗)
is by definition the intersection graph P(E). That is, L(G∗) = (Z ,W ), where
Z = {{x}∪ {ux , vx } | x ∈ E, ux , vx ∈ V, x = uxvx } andW = {Sx Sy | Sx ∩ Sy �= ∅,
x, y ∈ E, x �= y}, and Sx = {x} ∪ {ux , vx }, x ∈ E .

Recall that a graph is called regular if all vertices have the same degree.

Proposition 8.5.1 If G is regular of degree k, then the line graph L(G) is regular
of degree 2k − 2.
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Definition 8.5.2 Let G = (A, B) be a bipolar fuzzy graph on G∗ = (V, E). The
open neighborhood degree of a vertex x in G is denoted by

deg(x) = (degP(x), degN (x)),

where
degP(x) =

∑

y∈N (x)

μP
A(y)

and
degN (x) =

∑

y∈N (x)

μN
A (y).

If all the vertices have the same open neighborhood degree n, then G is called an
n-regular bipolar fuzzy graph.

Definition 8.5.3 Let G = (A, B) be a regular bipolar fuzzy graph. If each vertex of
G has the same closed neighborhood degree m, then G is called a totally regular
bipolar fuzzy graph. The closed neighborhood degree of a vertex x is defined by
deg[x] = degP [x] + degN [x], where

degP [x] = degP(x) + μP
A(x),

degN [x] = degN (x) + μN
A (x).

The following examples show that there is no relationship between n-regular
bipolar fuzzy graphs and m-totally regular bipolar fuzzy graphs.

Example 8.5.4 Consider a graph G∗ such that V = {a, b, c, d} and E = {ab, bc,
cd, ad}. Let A be a bipolar fuzzy subset of A and let B be a bipolar fuzzy subset of
E defined by

a b c d
μP
A 0.5 0.5 0.5 0.5

μN
A −0.3 −0.3 −0.3 −0.3

ab bc cd ad
μP
B 0.2 0.4 0.2 0.4

μN
B −0.1 −0.1 −0.1 −0.1

It is easily shown that the bipolar fuzzy graphG is both regular and totally regular.

Example 8.5.5 Consider a G∗ such that V = {v1, v2, v3} and E = {v1v2, v1v3}. Let
A be a bipolar fuzzy subset of V and let B be a bipolar fuzzy subset of E defined by

v1 v2 v3
μP
A 0.4 0.8 0.7

μN
A −0.4 −0.7 −0.6

v1v2 v1v3
μP
B 0.3 0.4

μN
B −0.2 −0.2

It follows easily that the bipolar fuzzy graph G is neither totally regular nor regular.
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Definition 8.5.6 A bipolar fuzzy graph G = (A, B) is called complete if

μP
B (xy) = μP

A(x) ∧ μP
A(y) and μN

B (xy) = μN
A (x) ∨ μN

A (y)

for all x, y ∈ V .

Example 8.5.7 Consider a G∗ such that V = {x, y, z} and E = {xy, yz, zx}. Let A
be a bipolar fuzzy subset of V and let B be a bipolar fuzzy subset of E defined by

x y z
μP
A 0.5 0.7 0.6

μN
A −0.3 −0.4 −0.5

xy yz zx
μP
B 0.5 0.6 0.5

μN
B −0.3 −0.4 −0.3

It is easily shown thatG is a both complete and totally regular bipolar fuzzy graph,
but G is not regular because deg(x) �= deg(z) �= deg(y).

Theorem 8.5.8 Every complete bipolar fuzzy graph is a totally regular bipolar fuzzy
graph.

Let G = (A, B) be a bipolar fuzzy graph of a graph G∗. Then A = (μP
A,μ

N
A ) is

a constant function if ∃c1 ∈ [0, 1] such that for all x ∈ V,μP
A(x) = c1 and ∃c2 ∈ V

such that for all x ∈ V,μN
A (x) = c1.

Theorem 8.5.9 ([14]) Let G = (A, B) be a bipolar fuzzy graph of a graph G∗.
Then A = (μP

A ,μ
N
A ) is a constant function if and only if the following conditions are

equivalent:

(i) G is a regular bipolar fuzzy graph.

(i i) G is a totally regular bipolar fuzzy graph.

Proof Suppose that A = (μP
A ,μ

N
A ) is a constant function. Let μP

A(x) = c1 and
μN
A (x) = c2 for all x ∈ V .

(i) ⇒ (i i): Assume that G is n-regular bipolar fuzzy graph. Then degP(x) = n1
and degN (x) = n2 for all x ∈ V . So degP [x] = degP(x) + μP

A(x) and degN [x] =
degN (x) + μN

A (x) for all x ∈ V . Thus, degP [x] = n1 + c1 and degN [x] = n2 + c2
for all x ∈ V . Hence, G is a totally regular bipolar fuzzy graph.

(i) ⇒ (i i): Suppose that G is a totally regular bipolar fuzzy graph. Then
degP [x] = n1 and degN [x] = n2 for all x ∈ V or degP(x) + μP

A(x) = k1 and
degN [x] + μN

A (x) = k2 for all x ∈ V or degP(x) + c1 = k1 and degN [x] + c2 = k2
for all x ∈ V or degP(x) = k1 − c1 and degN [x] = k2 − c2 for all x ∈ V . Thus, G
is a regular bipolar fuzzy graph. The converse is immediate. �

Proposition 8.5.10 If a bipolar fuzzy graph is both regular and totally regular, then
A = (μP

A ,μ
N
A ) is a constant function.
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Proof Let G be a regular and totally regular fuzzy graph. Then

degP(x) = n1, degN (x) = n2 for all x ∈ V,

degP [x] = k1 and degN [x] = k2 for all x ∈ V .

Now, degP [x] = k1 ⇔ degP(x) + μP
A(x) = k1 ⇔ n1 + μP

A(x) = k1 ⇔ μP
A(x) =

k1−n1 for all x ∈ V . Similarly,μN
A (x) = k2−n2 for all x ∈ V .Hence, A = (μP

A ,μ
N
A )

is a constant function. �

The converse of Proposition 8.5.10 is not true, in general.

We state the following theorem without proof.

Theorem 8.5.11 Let G be a bipolar fuzzy graph, where the crisp graph G∗ is an
odd cycle. Then G is a regular bipolar fuzzy graph if and only if B is a constant
function.

8.6 Bipolar Fuzzy Line Graphs

We consider bipolar fuzzy line graphs in this section.

Definition 8.6.1 Let P(S) = (S, T ) be an intersection graph of a simple graph
G∗ = (V, E). Let G = (A1, B1) be a bipolar fuzzy graph of G∗.We define a bipolar
fuzzy intersection graph P(G) = (A2, B2) of P(S) as follows:

(i) A2 and B2 are bipolar fuzzy subsets of S and T , respectively.

(i i) μP
A2
(Si ) = μP

B1
(vi ),μ

N
A2
(Si ) = μN

B1
(vi ).

(i i i)μP
B2
(Si S j ) = μP

B1
(viv j ),μ

N
A2
(Si S j ) = μN

B1
(viv j ) for all Si , Sj ∈ S, Si S j ∈ T .

A bipolar fuzzy graph of P(S) is called a bipolar fuzzy intersection graph.

The following proposition is immediate.

Proposition 8.6.2 Let G = (A1, B1) be a bipolar fuzzy graph of G∗. Then P(G) =
(A2, B2) is a bipolar fuzzy graph of P(S) and G � P(G).

This proposition shows that any bipolar fuzzy graph is isomorphic to a bipolar
fuzzy intersection graph.

Definition 8.6.3 Let L(G∗) = (Z ,W ) be a line graph of a simple graph G∗ =
(V, E). Let G = (A1, B1) be a bipolar fuzzy graph of G∗. We define a bipolar
fuzzy line graph L(G) = (A2, B2) of G as follows:

(i) A2 and B2 are bipolar fuzzy subsets of Z and W , respectively.
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(i i) μP
A2
(Sx ) = μP

B1
(x) = μP

B1
(uxvx ).

(i i i) μN
A2
(Sx ) = μN

B1
(x) = μN

B1
(uxvx ).

(iv) μP
B2
(Sx Sy) = μP

B1
(x) ∧ μP

B1
(y).

(v) μP
B2
(Sx Sy) = μN

B1
(x) ∨ μN

B1
(y) for all Sx , Sy ∈ Z , Sx Sy ∈ W.

Example 8.6.4 Consider a graph G∗ = (V, E) such that V = {v1, v2, v3, v4} and
E = {x1 = v1v2 x2 = v2v3, x3 = v3v4, x4 = v4v1}. Let A1 be a bipolar fuzzy subset
of V and let B1 be a bipolar fuzzy subset of E defined by

v1 v2 v3 v4
μP
A1

0.2 0.3 0.4 0.1
μN
A1

−0.5 −0.4 −0.5 −0.3

x1 x2 x3 x4
μP
B1

0.1 0.2 0.1 0.1
μN
B1

−0.2 −0.3 −0.2 −0.2

It follows easily that G is a bipolar fuzzy graph.

Consider a line graph L(G∗) = (Z ,W ), where Z = {Sx1 , Sx2 , Sx3 , Sx4} and
W = {Sx1 Sx2 , Sx2 Sx3 , Sx3 Sx4 , Sx4 Sx1}. Let A2 = (μP

A2
, μN

A2
) and B2 = (μP

B2
, μN

B2
) be

bipolar fuzzy subsets of Z and W , respectively. Then it follows that,

μP
A2
(Sx1) = 0.1, μP

A2
(Sx2) = 0.2, μP

A2
(Sx3) = 0.1, μP

A2
(Sx4) = 0.1, μN

A2
(Sx1) =

−0.2, μN
A2
(Sx2) = −0.3, μN

A2
(Sx3) = −0.2, μN

A2
(Sx4) = −0.2, μP

B2
(Sx1 Sx2) = 0.1,

μP
B2
(Sx2 Sx3) = 0.1, μP

B2
(Sx3 Sx4) = 0.1, μP

B2
(Sx4 Sx1) = 0.1, μN

B2
(Sx1 Sx2) = −0.2,

μN
B2
(Sx2 Sx3) = −0.2, μN

B2
(Sx3 Sx4) = −0.2, μN

B2
(Sx4 Sx1) = −0.2.

It follows easily that L(G) is a bipolar fuzzy line graph. It is neither a regular
bipolar fuzzy line graph nor a totally regular bipolar fuzzy line graph.

Proposition 8.6.5 If L(G) is a bipolar fuzzy line graph of G, then L(G∗) is a line
graph of G∗.

Proof Because G = (A1, B1) be a bipolar fuzzy graph and L(G) is a bipolar fuzzy
line graph, μP

A1
(Sx ) = μP

B1
(x), μN

A1
(Sx ) = μN

B1
(x) for all x ∈ E . Thus, Sx ∈ Z ⇔

x ∈ E . Also, μN
B2
(Sx Sy) = μN

B1
(x)∨ μN

B1
(y) for all Sx , Sy ∈ Z . Hence,W = {Sx Sy |

Sx ∩ Sy �= ∅, x, y ∈ E, x �= y}. �

Proposition 8.6.6 L(G) is a bipolar fuzzy line graph of some bipolar fuzzy graph
G if and only if μP

B2
(Sx Sy) = μP

A2
(Sx )∧μP

A2
(Sy) for all Sx Sy ∈ W and μN

B2
(Sx Sy) =

μN
A2
(Sx ) ∨ μN

A2
(Sy) for all Sx Sy ∈ W.

Proof Assume that μP
B2
(Sx Sy) = μP

A2
(Sx ) ∧ μP

A2
(Sy) for all Sx Sy ∈ W. Define

μP
A1
(x) = μP

A2
(Sx ) for all x ∈ V . Then μP

B2
(Sx Sy) = μP

A2
(Sx )∧ μP

A2
(Sy) = μP

A1
(x)∧

μP
A1
(y) and μN

B2
(Sx Sy) = μN

A2
(Sx ) ∨ μN

A2
(Sy) = μN

A1
(x) ∨ μn

A1
(y). A bipolar fuzzy
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set A1 = (μP
A1
,μN

A1
) that yields that the property μP

B1
(xy) = μP

A1
(x) ∧ μP

A1
(y), and

μN
B1
(xy) = μN

A1
(x) ∨ μN

A1
(y) will suffice.

The converse follows easily. �

Proposition 8.6.7 L(G) is a bipolar fuzzy line graph if and only if L(G∗) is a
line graph and (i) μP

B2
(uv) ≤ μP

A2
(u) ∧ μP

A2
(v) for all uv ∈ W (i i) μN

B2
(uv) ≥

μN
A2
(u) ∨ μN

A2
(v) for all uv ∈ W.

Proof The result follows from Propositions 8.6.5 and 8.6.6. �

Let G1 and G2 be two bipolar fuzzy graphs. Recall that a homomorphism of
f : G1 → G2 is a mapping f : V1 → V2 such that,

(i) μP
A1
(x1) ≤ μP

A2
( f (x1)), μN

A1
(x1) ≥ μN

A2
( f (x1)),

(i i) μP
B1
(x1y1) ≤ μP

B2
( f (x1) f (y1)), μN

B1
(x1y1) ≤ μN

B2
( f (x1) f (y1)) for all x1 ∈

V1, x1y1 ∈ E1.

A bijective homomorphism with the property μP
A1
(x1) = μP

A2
( f (x1)), μN

A1
(x1) =

μN
A2
( f (x1)) is called a (weak) vertex-isomorphism.

If f is a (weak) vertex-isomorphism and a (weak) line-isomorphism of G1 onto
G2, then f is called a (weak) isomorphism of G1 and G2.

Proposition 8.6.8 Let G1 and G2 be bipolar fuzzy graphs. If f is a weak isomor-
phism of G1 and G2, then f is an isomorphism of G∗

1 and G∗
2.

Theorem 8.6.9 Let L(G) = (A2, B2) be the bipolar fuzzy line graph corresponding
to bipolar fuzzy graph G1 = (A1, B1). Suppose that G∗ = (V, E) is connected. Then

the following properties hold.
(i) There exists a weak isomorphism of G onto L(G) if and only if G∗ is a cycle

and if for all v ∈ V, x ∈ E, μP
A1
(v) = μP

B1
(x), μN

A1
(v) = μN

B1
(x), i.e., A1 = (μP

A1
,

μN
A1
) and B1 = (μP

B1
, μN

B1
) are constant functions on V and E, respectively, taking

on the same value.

(i i) If f is a weak isomorphism of G onto L(G), then f is an isomorphism.

Proof Assume that f is a weak isomorphism of G onto L(G). It follows that G∗ =
(V, E) is a cycle.

Let V = {v1, v2, . . . , vn−1, vn} and E = {x1 = v1v2, x2 = v2v3, . . . , xn = vnv1},
where v1v2 · · · vnv1 is a cycle. Define the bipolar fuzzy subsets

μP
A1
(vi ) = si , μN

A1
(vi ) = s ′

i

and
μP
B1
(vivi+1) = ri , μN

B1
(vivi+1) = r ′

i , , i = 1, 2, . . . , n, vn+1 = v1.
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Then for sn+1 = s1, s ′
n+1 = s ′

1, we have that

ri ≤ si ∧ si+1, r ′
i ≥ s ′

i ∨ s ′
i+1, i = 1, 2, . . . , n. (8.18)

Now, Z = {Sx1 , Sx2 , . . . , Sxn } and W = {Sx1 Sx2 , Sx2 Sx3 , . . . , Sxn Sx1}.
Also, for rn+1 = r1, we have that

μP
A2
(Sxi ) = μP

A1
(xi ) = μP

A1
(vivi+1) = ri ,

μN
A2
(Sxi ) = μN

A1
(xi ) = μN

A1
(vivi+1) = r ′

i ,

μP
B2
(Sxi Sxi+1) = μP

B1
(xi ) ∧ μP

B1
(xi+1)

= μP
B1
(vivi+1) ∧ μP

B1
(vi+1vi+2)

= ri ∧ ri+1,

μN
B2
(Sxi Sxi+1) = μN

B1
(xi ) ∨ μN

B1
(xi+1)

= μN
B1
(vivi+1) ∨ μN

B1
(vi+1vi+2)

= r ′
i ∨ r ′

i+1

for i = 1, 2, . . . , n, vn+1 = v1, vi+2 = v2. Because f is an isomorphism of G∗ onto
L(G∗), f maps V one-to-one and onto Z . Also, f preserves adjacency. Hence, f
induces a permutation π of {1, 2, . . . , n} such that

f (vi ) = Sxπ(i) = Sxπ(i) Sxπ(i+1)

and

xi = vivi+1 → f (vi ) f (vi+1) = Svπ(i) Svπ(i+1) Svπ(i+2) , i = 1, 2, . . . , n − 1.

Now,
si = μP

A1
(vi ) ≤ μP

A2
( f (vi )) = μP

A2
(Svπ(i) Svπ(i+1) ) = rπ(i),

s ′
i = μN

A1
(vi ) ≥ μP

A2
( f (vi )) = μN

A2
(Svπ(i) Svπ(i+1) ) = r ′

π(i),

ri = μP
B1
(vivi+1) ≤ μP

B2
( f (vi ) f (vi+1))

= μP
B2
(Svπ(i) Svπ(i)+1 Svπ(i+1)+1)

= μP
B1
(vπ(i)vπ(i)+1 ∧ μP

B1
(vπ(i)+1vπ(i+1)+1)

= rπ(i) ∧ rπ(i+1),
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r ′
i = μN

B1
(vivi+1) ≥ μN

B2
( f (vi ) f (vi+1))

= μN
B2
(Svπ(i) Svπ(i)+1 Svπ(i+1)+1)

= μN
B1
(vπ(i)vπ(i)+1 ∨ μN

B1
(vπ(i)+1vπ(i+1)+1)

= r ′
π(i) ∨ r ′

π(i+1)

for i = 1, 2, . . . , n, That is,

si ≤ rπ(i), s ′
i ≥ r ′

π(i)

and
ri ≤ rπ(i) ∧ rπ(i+1), r ′

i ≥ r ′
π(i) ∨ r ′

π(i+1) (8.19)

By (8.19), we have ri ≤ rπ(i), r ′
i ≥ r ′

π(i) for i = 1, 2, . . . , n and so rπ(i) ≤ rπ(π(i)),
r ′
π(i) ≥ r ′

π(π(i)) for i = 1, 2, . . . , n. Continuing, we have

ri ≤ rπ(i) ≤ · · · ≤ rπ j (i) ≤ ri

r ′
i ≥ r ′

π(i) ≥ · · · ≥ r ′
π j (i) ≥ r ′

i

and so ri = rπ(i), i = 1, 2, . . . , n, where π j+1 is the identity map. Again, by (8.19),
we have

ri ≤ rπ(i+1) = ri+1, i = 1, 2, . . . , n, rn+1 = r1,

r ′
i ≥ r ′

π(i+1) = r ′
i+1, i = 1, 2, . . . , n, r ′

n+1 = r ′
1.

Hence, by (8.18) and (8.19),

r1 = · · · = rn = s1 = · · · = sn

r ′
1 = · · · = r ′

n = s ′
1 = · · · = s ′

n.

Thus, A1 and B1 are constant functions. Thus, (i i) holds.
The converse follows easily. �

Theorem 8.6.10 Let G and H be bipolar fuzzy graphs of G∗ and H∗, respectively,
such that G∗ and H∗ are connected. Let L(G) and L(H) be the bipolar fuzzy line
graphs corresponding to G and H, respectively. Suppose that it is not the case that
one of G∗ and H∗ is complete K3 and other is bipartite K1,3. If L(G) and L(H) are
isomorphic, then G and H are line-isomorphic.
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8.7 Connectivity in Bipolar Fuzzy Graphs

In this section, we introduce some connectivity concepts in bipolar fuzzy graphs. The
work is based primarily on that by Mathew, Sunitha, and Anjali [117]. Analogous to
fuzzy cutvertices and fuzzy bridges in fuzzy graphs, bipolar fuzzy cut vertices and
bipolar fuzzy bridges are introduced and characterized. Also, the concepts of gain
and loss for paths between pairs of vertices and connectivity in complete bipolar
fuzzy graphs are discussed.

This definition of a bipolar fuzzy graph given in this section is slightly different
formDefinition 8.2.1, where “bipolar fuzzy graph of a graphG = (V, E)” is defined.
Because bipolar fuzzy graph is a generalization of a fuzzy graph, and hence that of
a graph, definition independent of a graph is more appropriate.

V may be called the underlying set of G = (A, B). A is said to be a bipolar fuzzy
vertex set of G and B, bipolar fuzzy edge set of G. Let us denote {x, y} by xy.

Definition 8.7.1 ([158]) The underlying crisp graph of a bipolar fuzzy graph G =
(A, B), is the graph G = (V ′, E ′), where V ′ = {v ∈ V | μP

A(v) > 0 or μN
A (v) < 0}

and E ′ = {{x, y} | μP
B (x, y) > 0 or μN

B (x, y) < 0}. V ′ is called the vertex set and E ′
is called the edge set. A bipolar fuzzy graph may be also denoted as G = (V ′, E ′).

Definition 8.7.2 ([158]) A bipolar fuzzy graph G = (A, B) is connected if the
underlying crisp graph G = (V ′, E ′) is connected.

Definition 8.7.3 A partial bipolar fuzzy subgraph of a bipolar fuzzy graph G =
(A, B) is a bipolar fuzzy graph H = (A′, B ′) such that μP

A′(vi ) ≤ μP
A(vi ) and

μN
A′(vi ) ≥ μN

A (vi ) for all vi ∈ V and μP
B ′(viv j ) ≤ μP

B (viv j ) and μN
B ′(viv j ) ≥

μP
B (viv j ) for all vi , v j ∈ V .

Definition 8.7.4 A bipolar fuzzy subgraph of a bipolar fuzzy graphG = (A, B) is
a bipolar fuzzy graph H = (A′, B ′) such thatμP

A′(vi ) = μP
A(vi ) andμN

A′(vi ) = μN
A (vi )

for allvi ∈ V andμP
B ′(viv j ) = μP

B (viv j ) andμP
B ′(viv j ) = μP

B (viv j ) for allvi , v j ∈ V .

Example 8.7.5 In Fig. 8.1, the first graph G is a bipolar fuzzy graph. The second is
a partial bipolar fuzzy subgraph and the third, a bipolar fuzzy subgraph of G.

Notation 8.7.6 We use the following notations to denote the conditions in the Def-
inition 8.2.1.

μP
2i j = μP

2 (viv j ) ≤ μP
1i ∧ μ+

1 j ,

μN
2i j = μN

2 (viv j ) ≥ μN
1i ∨ μN

1 j .
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Fig. 8.1 A bipolar fuzzy graph and two types of subgraphs

Fig. 8.2 A bipolar fuzzy
graph which is not a path

Definition 8.7.7 ([17]) A path P in a bipolar fuzzy graph is a sequence of distinct
vertices v1, v2, . . . , vn such that either one of the following conditions is satisfied.

(i) μP
2i j > 0 and μN

2i j = 0 for some i and j.

(i i) μP
2i j = 0 and μN

2i j < 0 for some i and j.

According to the above definition of path, the bipolar fuzzy graph in Fig. 8.2 is
not a path. So, we define a b-path.

Definition 8.7.8 A sequence of distinct vertices v1, v2, . . . , vn is called a bipolar
path or b-path if at least one of μP

2i(i+1) or μN
2i(i+1)is different from zero for i =

1, 2, . . . , n − 1.

Clearly, a bipolar fuzzy graph is connected if and only if every pair of vertices is
joined by a b-path.

Definition 8.7.9 A sequence of vertices v1, v2, . . . , vn , not necessarily distinct is
called a bipolar walk or b-walk if at least one of μP

2i(i+1) or μN
2i(i+1)is different from

zero for i = 1, 2, . . . , n − 1. As in graphs, where every walk contains a path, every
b-walk also contains a b-path. Hereafter, by a path we refer to a b-path and by a
walk, we refer to a b-walk.

The concept of loss and gain are very important in several problems in economics,
operations research and computer organization. We associate these concepts to a
bipolar fuzzy graph in the following definitions.

Definition 8.7.10 Let G = (V ′, E ′) be a bipolar fuzzy graph. For a u − v path P :
u = u1, u2, . . . , un = v in G, we define {μP

2 (u1u2)∧μP
2 (u2u3)∧· · ·∧μP

2 (un−1un)}
as the gain of P , denoted by g(P) and

∣
∣μN

2 (u1u2)
∣
∣∨∣

∣μN
2 (u2u3)

∣
∣∨· · ·∨∣

∣μN
2 (un−1un)

∣
∣

as the loss of P , denoted by l(P).
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Fig. 8.3 Gain paths and loss
paths

In Fig. 8.2, the gain of the path P : abc = g(P) = 0.1 ∧ 0.3 = 0.1 and the loss
of the path P : abc = l(P) = 0.2 ∨ 0.4 = 0.4.

Note that if e = uv is an edge, then its gain, denoted by g(e) = μP
2 (uv) and loss

of e, denoted by l(e) = ∣
∣μN

2 (uv)
∣
∣ . In Fig. 8.2, g(ab) = 0.1, l(ab) = 0.2.

Definition 8.7.11 A path P is said to be a gain path if g(P) > l(P) and a loss
path, otherwise.

Similarly, gain edges and loss edges can be defined. In Fig. 8.2, path P : abc is a
loss path because l(P) = 0.4 > 0.1 = g(P).

Definition 8.7.12 Let u, v be any two vertices in a connected bipolar fuzzy graph.
Among all u − v paths in G, a path whose gain is greater than or equal to that of any
other u−v path inG, is said to be amaximumu−v gain path (max(u−v)g-path).
Similarly, a u−v path whose loss is less than or equal to that of any other u−v path
in G is said to be a minimum u − v loss path (min(u − v) l-path).

That is, a path is a max(u − v) g-path if g(P) > g(P ′) and is a min(u − v) l-path
if l(P) < l(P ′), where P ′ is any u − v path in G.

Note that, a max(u − v) g-path need not be a gain path and a min(u − v) l-path
need not be a loss path.

Example 8.7.13 Consider the following example of a bipolar fuzzy graph G with
four vertices given in Fig. 8.3. The gain and loss of different paths are given in the
table.

Vertices Max-gain Max g-path Min-loss Min l-path
a − b 0.1 Any path 0.1 ab
a − c 0.1 Any path 0.3 adc
a − d 0.1 Any path 0.1 ad
b − c 0.3 bc, bdc 0.3 badc
b − d 0.3 bd, bcd 0.1 bad
c − d 0.4 cd 0.3 cd
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Note that, P1 : abc is a loss path (a − c loss path) because l(P) = 0.5 > 0.1 =
g(P) and edge cd is a c − d gain path because g(cd) = 0.4 > 0.3 = l(cd).

Definition 8.7.14 A u − v path P in a bipolar fuzzy graph is said to be balanced
if g(P) = l(P). Also, P is said to be optimal if it is a max (u − v) g-path and
min (u − v) l-path.

In the Example 8.7.13 (Fig. 8.3), edge cd is an optimal c − d path. adc is an
optimal a − c path. Also, there are many balanced paths in G. For example, bad is
a balanced b − d path.

Definition 8.7.15 Let G = (V ′, E ′) be a bipolar fuzzy graph and let u, v ∈ V ′. The
gain of u and v, denoted by G(u, v) is defined as the gain of a max(u − v) g-path
and the loss of u and v, denoted by L(u, v) is the loss of a min(u − v) l-path. If
H is a bipolar fuzzy subgraph of G, then the gain of u and v in H is the gain of a
max(u−v) g-path strictly belonging to H and is denoted by GH (u, v). The loss of u
and v in H is similarly defined. If there exists no max(u − v) g-path (or min(u − v)

l-path) completely in H , we define GH (u, v) = 0 (or LH (u, v) = 0).

Next we have a trivial proposition.

Proposition 8.7.16 If H be a subgraph of a bipolar fuzzy graph G = (V ′, E ′), then
GH (u, v) ≤ G(u, v) and LH (u, v) ≤ L(u, v) for all pairs of vertices u and v.

Next we introduce an important concept called the Gain-Loss Matrix (GLM) in
bipolar fuzzy graphs.

Definition 8.7.17 Let G = (V ′, E ′) be a bipolar fuzzy graph with vertices
{a1, a2, . . . , an}. The Gain-Loss Matrix (GLM) of G is defined as M = [(Gi j , Li j )],
where Gi j = G(ai , a j ) and Li j = L(ai , a j ) for i �= j, (μP

1 (ai ),
∣
∣μN

1 (ai )
∣
∣) = 0 if

i = j.

Consider the following example.

Example 8.7.18 The GLM of the bipolar fuzzy graph in Example 8.7.5 (Fig. 8.1) is
given below.

GLM(G1) =
⎡

⎣
(0.3, 0.5) (0.3, 0.3) (0.3, 0.3)
(0.3, 0.3) (0.7, 0.5) (0.4, 0.3)
(0.3, 0.3) (0.4, 0.3) (0.5, 0.5)

⎤

⎦

Clearly, GLM of a bipolar is a symmetric matrix.

Theorem 8.7.19 In a complete bipolar fuzzy graph G = (V ′, E ′), G(u, v) =
μP
2 (u, v) for all u, v ∈ V .
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Fig. 8.4 A complete bipolar
fuzzy graph

Proof Consider a complete bipolar fuzzy graph G = (V ′, E ′) with vertices
v1, v2, . . . , vn . By definition, for all vi , v j ∈ V, we have

μP
2 (viv j ) = μP

1 (vi ) ∧ μP
1 (v j ).

Let u, v ∈ V and let P : u = u1, u2, . . . , um = v be a u − v path in G. Then

g(P) = μP
2 (u1u2) ∧ μP

2 (u2u3) ∧ · · · ∧ μP
2 (um−1um)

≤ μP
2 (u1u2) ∧ μP

2 (um−1um)

= ∧{μP
1 (u1) ∧ μP

1 (u2),μ
P
1 (um−1) ∧ μP

1 (um)}
≤ μP

1 (u1) ∧ μP
1 (um)

= μP
1 (u) ∧ μP

1 (v)

= μP
2 (uv).

Thus, g(P) ≤ μP
2 (uv) for any u − v path P. In particular, the gain of edge uv is

μP
2 (uv) and hence, G(u, v) = μP

2 (uv). �

Note In a complete bipolar fuzzy graph, L(u, v) need not be equal to
∣
∣μN

2 (uv)
∣
∣ for

all u, v ∈ V . For example, Consider the complete BPFG G in Fig. 8.4. Here,
L(b, c) = 0.3 and

∣
∣μ−

2 (bc)
∣
∣ = 0.4.

Now, we introduce bipolar fuzzy cutvertices and bridges. Three types of cutver-
tices are possible in a bipolar fuzzy graph, which are given below.

Definition 8.7.20 LetG = (V ′, E ′) be a bipolar fuzzy graph with bipolar functions,
μ1 and μ2.A vertex u ∈ V ′ is said to be a bipolar fuzzy cutvertex (bf-cutvertex) if
there exist two vertices x, y ∈ V ′, x �= u �= v such thatGG−u(x, y) < GG(x, y) and
LG−u(x, y) > LG(x, y).A vertex in a bipolar fuzzy graph is called a gain cutvertex
if thefirst condition is satisfied and a loss cutvertex if the second condition is satisfied.

Now, we characterize bipolar fuzzy cutvertices in the following theorem.
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Theorem 8.7.21 ([117]) A vertex u in a bipolar fuzzy graph G = (V ′, E ′) is a
bipolar fuzzy cutvertex if and only if u is a vertex in everymax(x − y) gain path and
is in every min(x − y) loss path for some x, y ∈ V ′.

Proof Let G = (V ′, E ′) be a bipolar fuzzy graph with bipolar functions, μ1 and μ2.

Suppose that u is a bipolar fuzzy cutvertex. By definition, there exist vertices x, y in
G such that

(i) GG−u(x, y) < GG(x, y),

(i i) LG−u(x, y) > LG(x, y).

(i) implies that the removal of u from G removes all max(x − y) gain paths and
(i i) implies that the removal of u removes all min(x − y) loss paths. Thus, u is in
every max(x − y) gain path and is in every min(x − y) loss path.

Conversely, suppose that u is in every max(x − y) gain path and is in every
min(x − y) loss path. Then the removal of u from G results in the removal of all
max(x − y) gain paths and min(x − y) loss paths. Hence, the gain will decrease and
losswill increase between x and y.Thus,GG−u(x, y) < GG(x, y) and LG−u(x, y) >
LG(x, y). That is, u is a bipolar fuzzy cutvertex. �

Now, we give a characterization theorem for the other two types of cutvertices.

Theorem 8.7.22 Let G = (V ′, E ′) be a bipolar fuzzy graph. A vertex u is a gain
cutvertex (g-cutvertex) if and only if u is in every max(x − y) gain path for some
vertices x and y such that x �= y �= u and is a loss cutvertex (l-cutvertex) if and only
if u is in every min(s − t) loss path for some vertices s and t such that s �= t �= u.

Definition 8.7.23 LetG = (V ′, E ′) be a bipolar fuzzy graph with bipolar functions,
μ1 and μ2. Let e = xy be an edge in G. e is said to be a bipolar fuzzy bridge
(bf-bridge) if GG−e(x ′, y′) < GG(x ′, y′) and LG−e(x ′, y′) > LG(x ′, y′) for some
x ′, y′ ∈ V ′. If at least one of x ′ or y′ is different from x and y, e is said to be a bipolar
fuzzy bond and a bipolar fuzzy cutbond if both x ′ and y′ is different from x and y.

Also, we can define gain bridges and loss bridges similar to their counterparts in
vertices.

Similar to bipolar fuzzy cutvertices, we have a characterization for bipolar fuzzy
bridges, which is stated below without proof.

Theorem 8.7.24 An edge e ∈ E of a bipolar fuzzy graph G = (V ′, E ′) is a bf-
bridge if and only if it is in everymax(u − v) gain path and in everymin(u − v) loss
path for some vertices u, v in V ′.

Next we have an easy theorem to verify whether a particular edge is a bf-bridge
or not.

Theorem 8.7.25 An edge xy is a bf-bridge if and only if GG−xy(x, y) < μP
2 (xy)

and LG−xy(x, y) >
∣
∣μN

2 (xy)
∣
∣ .
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Proof Suppose G = (V ′, E ′) is a bipolar fuzzy graph and xy is an edge in G in
such that GG−xy(x, y) < μP

2 (xy) and LG−xy(x, y) >
∣
∣μN

2 (xy)
∣
∣ . Because μP

2 (xy) ≤
G(x, y) and

∣
∣μN

2 (xy)
∣
∣ > L(x, y), we have

GG−xy(x, y) < G(x, y),

LG−xy(x, y) > L(x, y).

It follows that xy is a bipolar fuzzy bridge.

Assume, xy is a bipolar fuzzy bridge. By Theorem 8.7.24, there exists a pair of
vertices s and t in V ′ such that xy is present on every max(s − t) g-path and every
min(s − t) l-path.

Suppose, GG−xy(x, y) ≥ μP
2 (xy), Then GG−xy(x, y) = G(x, y). It follows that

there is a max(x − y) g-path in G (say, P) which is different from xy. Let Q be a
max(s − t) g-path in G. Replace xy in Q by P to obtain an s − t walk. This walk
contains an s− t path. The gain of this path is greater than or equal toGG(s, t)which
is not possible. Therefore, GG−xy(x, y) < μP

2 (xy).

Assume, LG−xy(x, y) ≤ ∣
∣μN

2 (xy)
∣
∣ . LG−xy(x, y) = L(x, y). It follows that there

is amin(x− y) l-path inG (say, P ′) which is different from xy.Let Q′ be amin(s−t)
l-path in G. Replace xy in Q′ by P ′ to obtain an s − t walk. This walk contains an
s− t path. The loss of this path is less than or equal to LG(s, t)which is not possible.
Therefore, LG−xy(x, y) >

∣
∣μN

2 (xy)
∣
∣. �

Theorem 8.7.26 An edge e = xy of a bipolar fuzzy graph G = (V ′, E ′), which
is a cycle is a bf-bridge if and only if there exists edges st , s ′t ′ ∈ E ′ such that
μP
2 (st) < μP

2 (xy) and
∣
∣μN

2 (s
′t ′)

∣
∣ >

∣
∣μN

2 (xy)
∣
∣ .

Proof Let e = xy be a bipolar fuzzy bridge. By definition, there exist two distinct
vertices x ′ and y′ such that xy lies on every max(x ′ − y′) g-path and on every
min(x ′ − y′) l-path. Because G is a cycle, exactly one of the two x ′ − y′ paths (say,
P) in G contains xy and is both the max(x ′ − y′) g-path and min(x ′ − y′) l-path.
Let the other x ′ − y′ path be Q. Then

g(Q) < g(P) ≤ μP
2 (xy),

l(Q) > l(P) ≥ ∣
∣μN

2 (xy)
∣
∣ .

Assume that, xy is not a bipolar fuzzybridge.Then at least one of the belowconditions
holds according to Theorem 8.7.25.

(i) GG−xy(x, y) ≥ μP
2 (xy)

(i i) LG−xy(x, y) ≤ ∣
∣μN

2 (xy)
∣
∣ .

If (i) is true, then the path P in G from x to y other than edge xy has gain greater
than or equal to μP

2 (xy). It follows that for each edge e ∈ E ′, μP
2 (e) ≥ μP

2 (xy).

If (i i) is true, then the path P inG from x to y other than edge xy has loss less than
or equal to

∣
∣μN

2 (xy)
∣
∣ . It follows that for each edge e ∈ E ′,

∣
∣μN

2 (e)
∣
∣ ≤ ∣

∣μN
2 (xy)

∣
∣ . �
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Index

A
Acyclic, 20
Acyclic by t-cuts, 158
Acyclic fuzzy graph, 156
Acyclic level, 157
Adjacent vertices, 292
α-distance, 179
α-distance matrix, 180
α-isolated, 179
α-saturated, 207
α-sequence, 195
α-strong, 92
α-strong path, 92
Automorphism, 232, 282

B
Balanced u − v path, 303
β-saturated, 207
β-sequence, 195
β-strong, 92
β-strong path, 92
b f -bridge, 305
b f -cutvertex, 304
Binary sequence, 196
Bipartite, 264
Bipolar fuzzy bond, 305
Bipolar fuzzy bridge, 305
Bipolar fuzzy edge set, 274
Bipolar fuzzy graph, 273

automorphism, 282
Cartesian product of, 274
co-weak isomorphism, 282
composition, 276
connected, 300
endomorphism, 282
homomorphism, 281

isomorphism, 281
join of, 279
n-regular , 293
strong, 286
totally regular, 293
union of, 277
weak isomorphism, 281

Bipolar fuzzy intersection graph, 295
Bipolar fuzzy line graph, 295
Bipolar fuzzy set, 272
Bipolar fuzzy subgraph, 300
Bipolar fuzzy vertex set, 274
Bipolar path, 301
Bipolar set

cut level set of, 272
height of, 272
lower core of, 272
support of, 272
upper core of, 272

Bipolar subgroup, 282
Bipolar subsemigroup, 282
Bipolar walk, 301
Block, 16, 32, 41, 127
Block-graph, 137
Boundary operator, 25
b-path, 301
Bridge, 27, 28
b-walk, 301

C
Cartesian product, 232, 233, 274
Center, 261
Center of a fuzzy graph, 174
Central

eccentricity, 174
Central vertex, 174, 264
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c-fuzzy cutvertex, 173
Chord, 26, 68
Chordal, 68, 69
Chordal fuzzy graph, 69
Closed neighborhood, 292
Closed neighborhood degree, 251
Coboundary, 26
Coboundary operator, 25
Cocycle, 26

basis, 26
space, 26

Cohesive matrix, 113
Cohesiveness, 113
Complement, 242, 288, 289
Complement of a set, 2
Complete, 83, 261
Complete fuzzy bigraph, 83
Complete Fuzzy Graph (CFG), 17
Complete fuzzy tree, 158
Complete graph, 261, 292
Complete vertex, 190
Compliment of a fuzzy relation, 6
Composition, 79, 232, 235, 276
Connected, 15, 38, 261
Connected bipolar fuzzy graph, 300
Connected components, 15
Connected interval-valued fuzzy graph

diameter, 263, 264
distance, 262
eccentricity, 262
highly irregular, 257
μ+-diameter, 263
μ+-distance, 262
μ+-eccentricity, 262
μ+-length, 262
μ+-radius, 263
μ−-eccentricity, 262
μ−-diameter, 263
μ−-distance, 262
μ−-length, 262
μ−-radius, 263
μ−μ+-length, 262
neighborly irregular, 256
neighborly totally irregular, 257
radius, 263
self-centered, 264

Connectedness level, 155
Connectivity-transitive fuzzy graph, 148
Consistently ordered, 70
Convex fuzzy subset, 3
Cotree, 26
Cover of a set, 11
Co-weak isomorphism, 282

Critical block, 134
Critical fuzzy cutvertex, 173
Cut level consistent, 70
Cut set, 27, 106
Cutvertex, 31
Cycle, 15, 22, 34

connectivity, 55, 161
length n, 69
locamin, 50
rank, 26
space, 26
strength of, 50
strong, 45
strongest strong, 50
vector, 26

Cyclically balanced, 162
Cyclically-transitive, 151
Cyclic arc cut, 164
Cyclic cutvertex, 162
Cyclic edge connectivity, 164
Cyclic edge cut, 164
Cyclic fuzzy endvertex, 166
Cyclic node cut, 163
Cyclic vertex connectivity, 164
Cyclic vertex cut, 163
Cyclomatic function, 156
Cyclomatic number, 156

D
δ-edge, 92
δ∗-edge, 92
Depth, 28
Detour distance, 183
Detour g-distance, 183
d-gate free, 224
d-gates, 224
Diameter, 15, 261, 263
Diameter of a graph, 174
Disconnection of a fuzzy graph, 104
Distance, 261, 262

E
Eccentricity, 174, 261, 262
Edge connectivity, 106
Edge cover, 264
Edge disjoint, 52
Element, 113
Endomorphism, 282
ε-complete, 10
ε-determinate, 11
ε-function, 11
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ε-productive, 11
ε-reflexive fuzzy relation, 9

F
F-bond, 106
F-cutbond, 170
Firm, 33
Forest, 20, 35
Full fuzzy block, 32
Full fuzzy bridge, 29
Full fuzzy cutvertex, 31
Full fuzzy cycle, 34
Full fuzzy forest, 35
Full fuzzy tree, 35, 158
Fully acyclic, 158
Fully fuzzy connected, 38
Fully strong gated, 224
Fuzzy Arc Cut (FAC), 106
Fuzzy bigraph, 83

complete, 83
Fuzzy block, 32

full, 32
partial, 32
weak, 32

Fuzzy bond, 106
Fuzzy bridge, 15, 27, 28

full, 29
partial, 29
weak, 28

Fuzzy clique, 66
Fuzzy cluster, 113
Fuzzy complement, 4

involutive, 4
Fuzzy connected, 38

fully, 38
partially, 38
weakly, 38

Fuzzy cutbond, 170, 305
Fuzzy cut set, 27
Fuzzy cutvertex, 16, 31

full, 31
partial, 31
weak, 31

Fuzzy cycle, 22, 34
full, 34
partial, 34
weak, 34

Fuzzy detour
g-boundary vertex, 189
g-centre, 184
g-distance, 183
g-eccentric, 188

g-interior, 192
g-interior vertex, 192
g-periphery, 188
g-self centered, 184

Fuzzy detour g-eccentric fuzzy graph, 188
Fuzzy edge connectivity, 108
Fuzzy edge cut, 106
Fuzzy edge set, 14
Fuzzy end vertex, 88
Fuzzy equivalence relation, 9
Fuzzy forest, 20, 35

full, 35
partial, 35
weak, 35

Fuzzy g-detour graph, 183
Fuzzy graph, 14

block of, 127
center of , 174
chordal, 69
complement, 289
composition, 79
cyclically-transitive, 151
disconnection, 104
edge disjoint, 52
element, 113
join, 82
locamin, 88
multimin, 88
orientation of, 69
partial, 14
self centered, 174
transitively orientable, 69

Fuzzy intersection graph, 58, 63
Fuzzy interval, 64
Fuzzy interval graph, 64
Fuzzy line graph, 59
Fuzzy Node Cut (FNC), 105
Fuzzy number, 64
Fuzzy power set, 2
Fuzzy relation, 5

compliment, 6
ε-determinate, 11
ε-function, 11
ε-productive, 11
ε-reflexive, 9
inverse, 7
irreflexive, 9
reflexive, 7
strongest, 5
symmetric, 8
transitive, 8
weakly reflexive, 9

Fuzzy set, 2
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normal, 2
subnormal, 2

Fuzzy singleton, 27
Fuzzy star, 129
Fuzzy subgraph, 14

induced by, 14
Fuzzy subset, 2

cardinality of a, 3
convex, 3
weakest, 6

Fuzzy tree, 22, 35
complete, 158
full, 35, 158
partial, 35
weak, 35, 159

Fuzzy vertex connectivity, 105
Fuzzy vertex cut, 105
Fuzzy vertex set, 14

G
Gain, 301
Gain cutvertex, 304
Gain path, 302
Gate, 222
Gate of a fuzzy graph, 222
Gated, 222
g-detour graph, 183
Geodesic, 90

basis, 90
closure, 90
cover, 90
distance, 90

Geodesic basis
cover, 90

H
Height, 28, 63
Highly irregular, 250, 257
Homomorphism, 241, 281

I
I -gate free, 224
I -gates, 224
Interval, 214
Interval number, 232
Interval-valued fuzzy graph, 233

balanced, 253
bipartite, 264
Cartesian product, 233
complement, 242
complete, 261

composition, 235
connected, 261
density, 253
edge cover, 264
homomorphism, 241
irregular, 255
isomorphism, 241
join, 239
μ+-strength of the paths, 261
μ−-strength of the paths, 261
order, 251
path, 261
path cover, 264
self-complementary, 243
size, 251
strictly balanced, 253
strong, 242
totally irregular, 256
union, 237
weak co-isomorphism, 241
weak isomorphism, 241

Interval-valued fuzzy intersection graph,
244

Interval-valued fuzzy line graph, 245
Interval-valued fuzzy relation, 233
Interval-valued fuzzy set, 232
Inverse of a fuzzy relation, 7
Ipolar fuzzy cutvertex, 304
Irreflexive fuzzy relation, 9
Irregular interval-valued fuzzy graph, 255
Isomorphism, 58, 241, 281, 292, 297

weak, 58

J
Join, 82, 232, 239, 279

K
K2 block graph, 128

L
Length, 15
Line-isomorphism, 58

weak, 58
Locamin cycle, 50
Locamin fuzzy graph, 88
Loss, 301
Loss cutvertex, 304
Loss path, 302

M
Maximal ε-complete, 10
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Maximum spanning tree, 16
Maximum strong degree, 100
Maximum u − v gain path, 302
Max–min composition, 6
min(u − v) l-path, 302
Minimum strong degree, 100
Minimum u − v loss path, 302
Minimum u − v strength reducing set, 116
m-totally regular interval-valued fuzzy

graph, 251
μ+-diameter, 263
μ−-diameter, 263
μ-distance, 174
μ+-distance, 262
μ−-distance, 262
μ+-eccentricity, 262
μ−-eccentricity, 262
μ−-length, 262
Multimin fuzzy graph, 88
μ+-radius, 263
μ−-radius, 263
μ+-strength of the paths, 261, 262
μ−-strength of the paths, 261
μ−μ+-strength of the paths, 262

N
Neighbor, 292
Neighborhood, 292
Neighborhood degree, 250
Neighborly irregular, 250, 256
Neighborly totally irregular, 257
Node-strength sequence, 102
Nonseparable, 16, 41
Normal fuzzy set, 2
n-regular bipolar fuzzy graph, 293
n-regular interval-valued fuzzy graph, 250
n-s sequence, 102

O
1-chain, 25
Open neighborhood, 292
Open neighborhood degree, 250
Optimal u − v path, 303
Orientation, 68, 69

P
Partial bipolar fuzzy subgraph, 300
Partial fuzzy block, 32
Partial fuzzy bridge, 29
Partial fuzzy cutvertex, 29
Partial fuzzy cycle, 31

Partial fuzzy forest, 33
Partial fuzzy graph, 14
Partial fuzzy subgraph, 76
Partial fuzzy tree, 35
Partially fuzzy connected, 38
Partially strong gated, 224
Path, 15, 261, 301

edges of, 15
length of, 15
strength of, 15
strong, 85

Path cover, 264
Pendant edge, 172
Pendant vertex, 228

R
Radius, 261, 263
Radius of a graph, 174
Reflexive fuzzy relation, 7
Regular graph, 292
Relation

similarity, 12
R-gate, 221
R-gated, 221

S
Saturated, 207

α, 207
β, 207

Self-centered, 264
Self centered fuzzy graph, 174
Self complementary, 243, 288
Sequence

α, 195
β, 195
binary, 196
strong, 196
zero, 200

Similarity relation, 12
Span, 14
Spanning fuzzy subgraph, 14
Spanning tree

chord, 26
Standard intersection, 3
Strength, 15
Strength of a cycle, 50
Strong, 242, 286
Strong component, 173, 228
Strong cycle, 45
Strong degree of a vertex, 99

strong degree of, 99
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Strong edge, 85
Strong edge count, 203
Strongest fuzzy relation, 5
Strongest Strong Cycle (SSC), 50
Strongly connected, 228
Strongly disconnected, 228
Strongly restricted, 224
Strong partial fuzzy subgraph, 82
Strong path, 85
Strong pendant vertex, 228
Strong sequence, 196
strong t-cut, 2
Strong vertex count, 202
Strong weight, 105, 108, 164
Subnormal fuzzy set, 2
Symmetric fuzzy relation, 8

T
t-connected, 122
t-conorm, 4
t-cut, 2
t-edge connected, 122
t-fuzzy edge component, 112
t-fuzzy edge connected, 112
θ-evaluation, 55
θ-fuzzy graph, 56
Threshold graph

partial, 15
t-level set, 2
t-norm, 3
Totally irregular interval-valued fuzzy

graphs, 256
Totally regular bipolar fuzzy graph, 293
Transitive fuzzy relation, 8
Transitively orientable, 68, 69
Tree, 20, 22
Triangulated, 68
Twigs, 26

U
Union, 232, 237, 277
Unsaturated, 207
u − v fuzzy g-detour, 183
u − v strength reducing set of edges, 116

V
Vertex

eccentricity, 174
Vertex clique incidence matrix, 66
Vertex connectivity, 104
Vertex-isomorphism, 58, 297

weak, 58
Vertex-strength sequence, 102

W
Weak co-isomorphism, 241
Weakest fuzzy subset, 6
Weak fuzzy block, 32
Weak fuzzy bridge, 28
Weak fuzzy cutvertex, 31
Weak fuzzy cycle, 34
Weak fuzzy forest, 35
Weak fuzzy tree, 35, 159
Weak isomorphism, 241, 281, 297
Weak line-isomorphism, 58
Weakly fuzzy connected, 38
Weakly reflexive fuzzy relation, 9
Weak vertex-isomorphism, 58, 297
Weight, 104

Z
0-chain, 25
Zero sequence, 200
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