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Abstract
This updated literature review concerns the photoetching technique of preparing
photoluminescent mesoporous silicon films using hydrofluoric acid-based elec-
trolytes, alkaline electrolytes, and aqueous alkali salt solutions. The photoetching
mechanisms and types of porous silicon layers created are discussed. The benefits
of using an incoherent light source and specific oxidizing agents are highlighted.
The technique is particularly useful for creating thin porous regions in n-type Si
wafers, SOI wafers, micromachined wafers, or those that contain electronic
circuitry. Photoetching has also recently been developed for nanostructuring
inexpensive silicon powder feedstocks.
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Introduction

Visible photoluminescence (PL) from porous silicon (PS) observed at room temper-
ature has inspired sustained research into its potential application in Si-based
optoelectronic devices and its theoretical basis (Canham 1990). This property is
reviewed in the handbook chapter “Photoluminescence of Porous Silicon.”Most PS
layers are prepared by anodic etching on p-type Si substrates, a technique in which
metal is often deposited on the rear surface of the Si substrate in order for it to be
used as an ohmic back contact (see handbook chapter ▶ “Porous Silicon Formation
by Anodization”). However, the requirement for a back contact electrode is a
limitation of this method; for example, it is difficult to form a PS layer on a silicon-
on-insulator (SOI) structure or on Si integrated circuits. A photoetching method, on
the other hand, requires no electrodes and allows the formation of a visible lumi-
nescence layer on not only single-crystalline Si substrates but also SOI structures.

Photoetching Setup

An experimental setup used for the formation of PS by photoetching is shown in
Fig. 1 (Xu and Adachi 2006). The sample surface is illuminated by a Xe lamp
through an optical filter that blocks wavelengths shorter than 600 nm. The use of an
optical filter is to block the heat rays from the Xe lamp. A laser, a W lamp, or another
light source may be used instead of a Xe lamp. The use of an incoherent light source
such as a Xe or W lamp enables the formation of a large and homogeneous PS layer.
Typically, an n-type Si wafer is immersed in an etchant solution of HF. The addition
of an oxidant (e.g., H2O2 or I2) to the HF solution results in the stable formation of
PS layers in a short time period.

n-Si/Electrolyte Interface and Photoetching Reaction

Figure 2 shows the energy band diagrams for n-Si electrodes in pure HF (pH = 2.3)
and HF/oxidant solutions without and with light illumination (Xu and Adachi 2006).
The electron affinity (χs) of Si is�4.05 eV. At zero pH, the redox coupling is defined
as the normal hydrogen electrode with a potential of �4.5 eV with respect to
vacuum. This potential shifts toward more positive values with the increase in pH
(+0.059 eV/pH). Thus, the electron energy of the pure HF solution with respect to
vacuum is �4.36 eV (χl). The Fermi levels (E F and E F,redox) on both sides of the n-
Si/electrolyte interface are brought to the same energy level by a transfer of electrons
from the Si substrate to the electrolyte (Fig. 2a).

The half reaction for the oxidizing agent KIO3 is

IO�
3 þ 6Hþ þ 6e� ¼ I� þ 3H2O Eo ¼ 1:085 eVð Þ

where e� represents the electron and Eo is the standard reduction potential with
respect to the standard hydrogen electrode. The redox potential (Eabs) with respect to
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Fig. 1 Experimental setup
used for porous silicon
formation by photoetching in
an HF/oxidant solution

Fig. 2 Energy band diagram for n-Si immersed in pure HF solution (a, b) and those in HF/KIO3

solution (c, d). In (b), porous silicon (PS) is formed stably on the back side in opposition to the
illuminated surface. In (d), PS is formed only on the illuminated surface
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vacuum for the HF/KIO3 redox system is then given by Eabs = �4.5 � Eo =
�5.6 eV (Fig. 2c). It is to be noted that the larger the Eo value is in the positive
(negative) scale, the stronger is the oxidation (reduction) agent (Adachi and Kubota
2007; Xu and Adachi 2007; Tomioka et al. 2007).

The absorption of photons results in the generation of electron-hole pairs. The
holes at the n-Si/electrolyte interface can participate in PS formation. In the case of
the pure HF solution (Fig. 2b), the photoexcited holes are hard to drift toward the
surface by the very small downward band bending or possibly by the almost-flat
band. Thus, efficient PS formation cannot be expected in pure HF solution. When the
Si wafer is dipped in the HF/oxidant solution (Fig. 2d), on the other hand, many
photoexcited holes move toward the n-Si/electrolyte interface at the front surface,
resulting in the formation of PS with good reproducibility (Xu and Adachi 2006,
2007; Adachi and Kubota 2007; Tomioka et al. 2007).

Reproducibility has been observed to be problematic in the formation of PS by
photoetching, as with stain etching (see handbook chapter “▶Porous Silicon For-
mation by Stain Etching”). In an extreme case, no PS layer was formed on the front
surface, although surprisingly PS was formed on the surface of the sample that was
not exposed to illumination (i.e., on the back surface) (Andersen et al. 1995). The
effectiveness of surface cleaning by sulfuric peroxide mixture (SPM) treatment or by
KOH etching before PS formation has been reported in Tomioka et al. (2007) and
Andersen et al. (1995).

The photo-illuminated n-Si/aqueous NH4F interface has been shown to form a
hydrogenated amorphous Si overlayer which builds up progressively as photoetching
proceeds with disproportionation of Si2+ species in solution (Peter et al. 1989). It is
known that a galvanic cell is formed when a p-type Si is contacted with a noble metal in
a HF/oxidant solution (Kobayashi and Adachi 2010). This galvanic cell leads to metal-
assisted etching of p-Si, resulting in the formation of Si nanowire arrays. PS layers
prepared by two routes, metal-assisted etching and laser-induced etching, have been
studied by comparing surface morphologies using scanning electron microscopy
(Kobayashi and Adachi 2010; Saxena et al. 2015). A PL peak at ~1.8 – 2.0 eV
corresponding to red emission at room temperature was observed from such p-Si
samples. The fact suggests that the PS layers can be formed not only on the laser-
etched surfaces but also on the Si nanowire arrays formed by metal-assisted electroless
etching. In p-Si prepared by laser etching, wider pores with some variation in pore size
as compared to metal-assisted etching technique were observed because a HeNe laser
having Gaussian profile of intensity was used for porosification (Saxena et al. 2015).

PS Layers Formed by Photoetching

A summary of PS formation by photoetching is presented in Tables 1 and 2 (Noguchi
and Suemune 1993; Zhang et al. 1993; Cheah and Choy 1994; Andersen et al. 1995;
Jones et al. 1996; Kolasinski et al. 2000; Yamamoto and Takai 2000, 2001; Mavi
et al. 2001, 2006; Koker et al. 2002; Marotti et al. 2003; Zheng et al. 2005;
Tomioka and Adachi 2005; Adachi and Tomioka 2005; Cho et al. 2006; Xu and
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Adachi 2006, 2007, 2008; Adachi and Kubota 2007; Adachi and Oi 2007; Tomioka
et al. 2007; Adachi et al. 2007; Ramizy et al. 2011; Matsui and Adachi 2012).

To the best of our knowledge, there has not been reported any good plan-view
high-resolution scanning electron microscopy images of the photosynthesized PS
layers showing the morphology of their typical structures. In Xu and Adachi (2007),
the atomic force microscopy images were reported to show many irregularly shaped
hillocks and voids distributed randomly over the entire PS surface. The observed
root-mean-squares roughnesses were a few nanometers.

Lateral patterning of PS layers has been performed using photoassisted electro-
chemical etching rather than pure photoetching (Baranauskas et al. 1995; Diesinger
et al. 2003). Lateral modification of the porosity has also been obtained by photo-
chemical dissolution of the anodic PS layers under illumination with a beam made of
interference fringes (Ferrand et al. 2001).

A metal-insulator-semiconductor-type electroluminescent (EL) device has been
fabricated from PS layers synthesized by photoetching in an HF/I2 solution (Adachi
and Kubota 2008). An insulating layer was formed on the PS layer by chemical
oxidation in an acidic solution. Spectral output of the EL device was in the
red-yellow region peaking at 2 eV.

Photoetching of Silicon Powders

The enhanced etching of bulk silicon in hydrofluoric acid via continuous photoex-
citation has been known for a long time and has been used to pattern wafers (Lim
et al. 1992). Recently, the technique has received some development for nano-
structuring of inexpensive silicon powders (Matsumoto et al. 2014, Lee et al.
2016) in addition to silicon wafers. Although TEM and XRD data demonstrated
the presence of silicon nanoparticles (Matsumoto et al. 2014, Lee et al. 2016), it
would be interesting to explore with gas adsorption analysis (see handbook chapter

Table 2 Photoetching for porous silicon formation in alkaline electrolytes and aqueous alkali salt
solutions

Type
(Ω cm) Solution Light source

PL peak
energy (eV) Comments References

25% TMAH Nd:YAG laser
(1064 nm)

No PL study Macroporous
structure

Zheng et al.
(2005)

n
(13–20)

1 M KF HeNe laser ~3.3 eV An HF-free
technique

Tomioka and
Adachi (2005)

n
(13–20)

Spa water
(pH ~ 10.5)

HeNe laser ~2.0 An HF-free
technique

Adachi and
Tomioka
(2005)

n
(10–20)

1 M NaF
1 M KF

HeNe laser ~2.7–2.8 eV
and ~3.3 eV

An HF-free
technique

Adachi et al.
(2007)

TMAH tetramethyl ammonium hydroxide
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▶ “Gas Adsorption Analysis of Porous Silicon”) whether significant mesoporosity
can be engineered in such processed powders.

Conclusions

Photoetching enables the formation of a visible light-emitting PS layer on n-type Si
wafers. The use of an incoherent light source and the addition of an oxidizing agent
in the HF solution also facilitate the formation of a thicker homogeneous PS layer
with good reproducibility. The thickness of the porous layer is still usually less than
1 μm. The PL and EL peak energies were observed to be in the range 1.7–2.3 eV. The
photoetching technique can be applied to Si wafers with embedded circuitry, SOI
wafers, and silicon powders.
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