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Abstract
The electrochemical formation of macropores in porous silicon is briefly
reviewed. Various morphologies are obtained as a function of the substrate
type and etching conditions. On n-Si, macropores are generally growing along
preferential crystallographic directions. On p-Si, in aqueous conditions far
from electropolishing, the growth direction is rather determined by the current
lines in the space-charge region. A summary of macropore characteristics is
given as a function of the preparation conditions. Various models have been
developed in order to account for the morphologies and characteristic sizes.
These joint experimental and theoretical works have provided a good
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understanding of macropore growth, opening the way to many applications,
and the most significant ones are mentioned. An impressive level of control
has eventually been achieved for the fabrication of regular macropore arrays of
high aspect ratio, including the incorporation of intentional defects or pore-
wall shaping.

Keywords
Crystallography · Electrolyte resistivity · Lehmann’s model · Macropore
formation · Macroporous silicon

Introduction

According to the IUPAC standard, macropores correspond to pores exhibiting
characteristic sizes (pore diameter and average distance between pores) larger than
50 nm. The term “macropore” is usually associated with smooth cylindrical pores
with characteristic sizes on the order of 1 μm.

This kind of pore can be obtained under a variety of conditions and with differing
morphologies (see chapter ▶ “Routes of Formation for Porous Silicon”). In this
review, we focus on electrochemically etched macropores. The key parameters are
the electrolyte type [aqueous (aqu), organic (org), oxidant (ox)] the HF concentra-
tion, the surfactant, the Si doping type and level (n, n+, p, p+), and in some cases the
illumination [backside illumination (bsi) or frontside illumination (fsi)]. Detailed
reviews regarding their formation are available (Föll et al. 2002; Lehmann 2005;
Chazalviel and Ozanam 2005; Lehmann 2002; and handbook chapter ▶ “Porous
Silicon Formation by Anodization”).

Current-Line- and Crystallography-Driven Macropores

Two distinct classes of macropores are observed, as summarized in Table 1. Macro-
pores obtained from n-Si always exhibit a strong growth dependence on crystallo-
graphic orientation. On p-Si, this dependency is lower (Lehmann and Rönnebeck
1999), and in aqueous conditions at low enough current density and/or high enough
HF concentration, the growth turned to be determined by the direction of the current
lines in the space-charge region (Media et al. 2011).

Macropore Formation

Table 2 summarizes the main characteristics of the electrochemically grown macro-
pores on Si, as a function of the formation conditions.

Figure 1 illustrates the variety of pores obtained for p-Si under different
conditions.
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Table 1 Macropores classes and their main characteristics

Class of
macropores

Macropore
morphology

Macropore
orientation Remarks References

Current-line-
driven pores

Rounded
bottoms

Normal to
the surface

Filled with
microporous
silicon

p-Si, aqu (Wehrspohn
et al. 1998)

Crystallography-
driven pores

(111) Facets at
their bottoms
and (110)
oriented walls

(100)
Preferred
growth
direction

Empty n-Si, aqu, bsi: (Lehmann
and Föll 1990)

n-Si, aqu, fsi: (Lévy-
Clément et al. 1994)

p-Si, org: (Propst and
Kohl 1994; Ponomarev
and Lévy-Clément 1998;
Christophersen et al.
2000a)

p-Si, aqu: (Lehmann and
Rönnebeck 1999)

Table 2 General conditions for macropore formation

Formation
conditions Specificity of obtained macropores References

n-Si (aqu)/
bsi

Grow exclusively in <100> direction,
dependence of the pore morphology on
the sample orientation

Lehmann (1993, 1995), Rönnebeck
et al. (1999), Kleimann et al. (2000),
and Laffite et al. (2011)

SCR limits distances; max. depth >
600 μm achieved obtained for J< JPSL;
arrays with pore diameters
100 μm–250 nm can be obtained

n-Si (aqu)/
fsi

Well-developed macropores oriented
<100>

Lévy-Clément et al. (1994) and
Outemzabet et al. (2005)

Not much investigated

n-Si (org)/
bsi

Prone to pore branching and strange
morphologies, but regular macropores
arrays can be obtained

Christophersen et al. (2000a, b, 2001)
and Izuo et al. (2002)

Not much investigated

p-Si (aqu) Obtained at current densities <JPSL and
for low-to-medium HF concentration.
Easy to make; arrays of high aspect
ratio can be obtained

Lehmann and Rönnebeck (1999), Chao
et al. (2000), Chazalviel et al. (2002),
and Urata et al. (2012)

p-Si (org) Large macropore observed; decisive
parameters are electrolyte resistivity,
oxidizing power, and “passivation
power”

Ponomarev and Lévy-Clément (2000),
Christophersen et al. (2001), and Lust
and Lévy-Clément (2002)

n+-Si (aqu
+ oxidant)

Small diameter (60–100 nm), high-
aspect-ratio macropores

Christophersen et al. (2000c) and Ge
et al. (2010)

“Passivation power” denotes the degree to which a given electrolyte can remove interface states in
the bandgap of Si by covering a freshly etched surface with hydrogen
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Fig. 1 Morphologies for (100) p-Si in 0.05 M HF, 0.05 M NH4F, and 0.9 M NH4Cl, pH= 3, V=
0.15 V for 48 h: (a) Plan view and (b) cross section (After Slimani et al. 2009). (c) Macropores on
p-Si (aqu), view after cleavage, for samples prepared from p-Si (400 Ω cm, (100)-oriented),
100 mA/cm2, 6 min, 15% ethanolic HF (After Chazalviel et al. 2002). Macropores on (100) n-Si
etched in ethanolic hydrofluoric solution with frontside illumination and with an anodization
current J = 20 mA/cm2 for t = 45 min. (d) Cross-section and (e) plan view (After Outemzabet
et al. 2005). (f) Macropore on p-Si (org) prepared from p-Si (100 Ω cm, 20 mA/cm2, 40 min,
HF/ethylene glycol 50/50 by vol)
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Macropore Formation Models

Porous silicon formation models have been reviewed (Smith and Collins 1992;
Allongue 1997; Zhang 2001). A conceptual analysis has been attempted (Zhang
2004). Major theoretical contributions applying to macropore formation are listed in
Table 3.

Principal Application of Macropores

Macropore arrays found applications in various fields, some of which are listed in
Table 4.

Design of Regular Macropore Arrays

The fabrication of regular macropore arrays requires prestructuring of the Si sub-
strate using lithography and alkaline etching (Chao et al. 2000; van den Meerakker
et al. 2000; Starkov 2003). The pitch of the prestructured hole array has to match the
average spacing of random macropore arrays grown on the same substrate under
similar electrochemical conditions. The width of the walls of the porous structure
(which depends on the pitch structure and the pore lateral size) is mostly determined
by the width of the space-charge layer (i.e., mostly dependent on substrate doping
level) and the pore diameter by the etching conditions. Figures 2 and 3 give some
design rules in the case of p-Si. In the case of n-Si, the pore diameter is mostly
determined by the current density, i.e., the illumination level, according to
Lehmann’s model (Lehmann 1993). However, diffusion effects in the liquid phase,

Table 3 Major theoretical contributions to macropore formation analysis

Pore
formation
models Basis of model General review

Hole
focusing at
pore tips

Hole transport across space charge Lehmann and Föll (1990), Lehmann
(1993), and Lehmann and Rönnebeck
(1999)

Surface
chemical
reactions

Pore initiation through limited
diffusion of reaction intermediates

Kooij and Vanmaekelbergh (1997)
and Vyatkin et al. (2002)

Linear
stability
analysis

Quantitative assessment of the effect
of transport across space charge and
reaction kinetics on interface stability

Kang and Jorné (1993, 1997), Valance
(1997), Wehrspohn et al. (1999), and
Chazalviel et al. (2000, 2002)

The Current
Burst Model
(CBM)

Spatial and temporal inhomogeneity of
current, hydrogen surface passivation

Carstensen et al. (2000) and Föll et al.
(2002)

Macroporous Silicon 125



as theoretically modeled (Barillaro and Pieri 2005), must be taken into account in
order to keep the fluoride concentration stationary at the pore tips. Figure 4 gives the
typical pore-density range accessible on n-Si under usual backside illumination
conditions or p-Si in the dark.

Conclusions

Since the first report of Theunissen (1972) and the pioneering work of Lehmann in the
1990s, many efforts have been devoted to macropore fabrication by electrochemical
etching. Impressive macropore arrays have been achieved, with high aspect ratios and
smooth or patterned vertical walls. Examples are shown in Fig. 5. Alternative tech-
niques have been proposed such as galvanic etching (Xia et al. 2000), stain etching
(Mills et al. 2005), and metal-assisted (electro)chemical etching (Li et al. 2013). These
techniques are separately reviewed in this handbook (see chapters ▶ “Porous Silicon
Formation by Galvanic Etching,”▶ “Porous Silicon Formation by Stain Etching,” and
▶ “Porous Silicon Formation by Metal Nanoparticle-Assisted Etching”).

Table 4 Main application domains of macropore arrays

Specific design Applications area References

Densely spaced regular
macropore arrays

“Brownian motor” or
pumps

Schilling et al. (2000a)

Macropores with a sawtooth-
like cross section

Membrane (pump of
particles)

Kettner et al. (2000) and Schilling
et al. (2000b)

Macropores filled with lead,
scintillating guide

X-ray imaging Lehmann and Rönnebeck (2001) and
Kleimann et al. (2000)

Macropores coated with
(immobilized) biomolecules

Detection of specific
biomolecules, DNA,
etc.

Bengtsson et al. (2000) and Yoo et al.
(2013)

Macropores coated with a
catalyst

Chemical reactor Lehmann et al. (1999)

Macropores coated with
high-quality dielectrics

Capacitors Lehmann et al. (1996)

Macropores on
multicrystalline Si

Solar cell –
antireflection layer

Föll et al. (1983), Lipiński et al.
(2003), and Ao et al. (2012)

Macropores filled with a
succession of different
metals

Metallic barcodes Nicewarner-Pena et al. (2001)

Optimized macropore
lattices

Photonic bandgap
(PBG) materials for
optics and sensing

Grüning et al. (1996), Birner et al.
(2000), Müller et al. (2000), and
Wehrspohn et al. (2013)

Matrix-embedded Si
nanowires or particles made
from macroporous Si

Lithium-ion batteries Föll (2010) and Thakur et al. (2012)

Sacrificial or template
macroporous Si layer

Micromachining or
microelectronics

Steiner and Lang (1995) and Defforge
et al. (2013)
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Fig. 2 Comparison of
characteristic macropore sizes
on p-Si in the current-line-
driven regime, when changing
current density for a substrate
resistivity of 100Ω cm (a) and
silicon doping for an applied
current density of 10 mA/cm2

(b) (After Chazalviel et al.
2002). Triangles refer to the
wall width and diamonds to
the pore diameter; the closed
(open) symbols refer to the
data obtained in 35% (25%)
ethanolic HF. The solid lines
refer to the theoretical
prediction (Chazalviel et al.
2002) for the pore diameter,
and the dotted line is two times
the space-charge width λ
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Fig. 3 Effect of changing
electrolyte resistivity on
average macropore diameter
on p-Si 1,500 Ω cm, for J0 =
10 mA/cm2 in an electrolyte
made of 50% aqueous HF
mixed with ethylene glycol in
variable proportions (After
Chazalviel et al. 2002)
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Fig. 4 Pore density versus silicon electrode doping density for porous silicon layers of different
geometries. Notice that macropores are essentially obtained on low to moderately doped substrates.
The dashed line shows the pore density of a triangular pore pattern with a pore pitch equal to two
times the SCR width for a 3 V applied bias. Note that only macropores on n-type substrates may
show a pore spacing significantly exceeding this limit. The regime of stable macropore array
formation on n-Si is indicated by a dot pattern. Doping type and etching current density
(in mA/cm2) are indicated in the legend (After Lehmann 1993)

Fig. 5 Examples of regular and ordered macropore arrays. (a) Two-dimensional macropore array
with an intentional line defect (From Grüning et al. 1996); (b) array of pores grown on n-Si (1015

cm�3); the pore initiation pattern shown in the inset has been produced by photolithography and
alkaline etching (From Lehmann et al. 2000)
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