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Abstract. The accelerated advancement of Industrial Control Systems
(ICS) transformed the traditional and completely isolated systems view
into a networked and inter-connected “system of systems” perspective.
This has brought significant economical and operational benefits, but it
also provided new opportunities for malicious actors targeting critical
ICS. In this work we adopt a Cyber Attack Impact Assessment (CAIA)
technique to develop a systematic methodology for evaluating the risk
levels of ICS assets. The outcome of the risk assessment is integrated into
an optimal control network design methodology. Experiments comprising
the Tennessee Eastman chemical plant, the IEEE 14-bus electricity grid
and the IEEE 300-bus New England electricity grid show the applicabil-
ity and effectiveness of the developed methodology.
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1 Introduction

The pervasive adoption of commodity, off-the-shelf Information and Communi-
cation Technologies (ICT) reformed the architecture of ICS. This has brought
numerous benefits including the reduction of costs, greater flexibility, efficiency
and interoperability between components. However, the massive penetration of
ICT hardware and software into the heart of modern ICS also created new
opportunities for malicious actors and facilitated the adoption of traditional
cyber attack vectors for the implementation of a new breed of cyber-physical
attacks. These represent a more sophisticated class of attacks where the charac-
teristics of the cyber and the physical dimensions are exploited by the adversary
in order to cause significant damages to the underlying physical process. Stuxnet
[4], Flame [5] and Dragonfly [18] represent only a fraction from the number of
threats showcasing the impact of exploiting ICT vulnerabilities in ICS.

As a response to these events, a significant body of research focused on
the identification of critical ICS assets and on improving the security of these
kind infrastructures [13,15–17]. However, previous studies do not address the
dynamic behavior of ICS, the complexity of ICS, the existing inter-dependencies
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between ICT and the physical process. Furthermore, the output of risk assess-
ment methodologies is not integrated into a network design framework. There-
fore, in this work we extend our solutions given in [12] by developing a frame-
work for assessing the impact of cyber attacks on ICS and for the optimal design
of ICS networks. The framework adopts a Cyber Attack Impact Assessment
(CAIA) methodology in order to evaluate the risk levels associated to each ICS
asset. The output of this approach is then used in an Integer Linear Program-
ming (ILP) problem for optimally designing control networks. The aim of the
optimization is to minimize the distance between concentrator nodes and end
devices, as well as to maintain link capacity and security level constraints. As a
result, the ICS designed according to the proposed framework ensures the pro-
tection of critical devices as well as their low installation and operational costs.
The proposed framework is evaluated by means of extensive experiments includ-
ing the Tennessee Eastman chemical plant (TEP) [6], the IEEE 14-bus electrical
grid, the IEEE 300-bus electrical grid and various attack scenarios.

The remaining of this paper is structured as follows. Section 2 provides a
brief overview of the related research. The description of the risk assessment
technique is given in Sect. 3, which is followed by the network design technique
in Sect. 4, experimental assessment in Sect. 5, and conclusions in Sect. 6.

2 Related Work

First, we investigate related cyber attack impact assessment techniques, such
as the work of Kundur et al. [13]. Here, the authors proposed a graph-based
model to evaluate the influence of control loops on a physical process. Differ-
ently, in [16], Sgouras et al. evaluated the impact of cyber attacks on a simulated
smart metering infrastructure. The experiments implemented disruptive Denial
of Service attacks against smart meters and utility servers, which caused severe
communication interruptions. In a different work, Sridhar and Govindarasu [17]
showed that cyber attacks may significantly impact power system stability by
causing severe decline of system frequency. Bilis et al. in [2] proposed a complex
network theory-based assessment methodology to show the individual impor-
tance of electric buses in power systems. Next, we briefly mention the related
network design techniques. Carro-Calvo et al. [3] developed a genetic algorithm-
based optimal industrial network partitioning, which maximized intra-network
communications and minimized inter-network data transfers. Zhang et al. [19,20]
elaborated a network design problem, which reduces network delays. In [9] Genge
and Siaterlis revealed that the impact of local actuation strategies to other con-
trollers should also be considered in network design procedures. Another work
of Genge et al. in [8] proposed a Linear Programming-based network design
optimization problem that accounts for the presence of primary and secondary
networks, as well as for the capacity of links and devices, the security and real-
time traffic requirements.

In contrast with the aforementioned techniques, the primary contribution of
this work is that it delivers a complete framework for assessing the impact of
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cyber attacks on ICS, for establishing concrete risk levels and for designing ICS.
This represents a significant contribution over the state of the art since it closes
the gap between risk assessment and security-aware network design.

3 Asset Risk Assessment in ICS

The architecture of modern ICS is structured according to two different layers:
(i) the physical layer, which encompasses a variety of sensor, actuator, and hard-
ware devices that physically perform the actions on the system; (ii) and the cyber
layer, which encompasses all the ICT hardware and software needed to monitor
the physical process and to implement complex control loops. From an opera-
tional point of view, hardware controllers, i.e., Programmable Logical Controllers
(PLC), receive data from sensors, elaborate local actuation strategies, and send
commands to the actuators. These hardware controllers also provide the data
received from sensors to Supervisory Control and Data Acquisition (SCADA)
servers and eventually execute the commands that they receive. Hereinafter, the
devices that acquire and transmit data from multiple sources are referred to as
Concentrator Nodes (CN).

3.1 Overview of the CAIA Approach

The cyber attack impact assessment (CAIA) technique proposed in our previous
work [10] adopts a procedure inspired from the field of System Dynamics [7].
According to [7], a change in the systems’ behavior is the result of interventions
induced by control variables. In CAIA this effectively translates to the reduction
of the state-space and more specifically of the number of variables and attacks
that need to be evaluated. At the core of CAIA is a technique that records the
behavior of complex physical processes in the presence of accidental or deliber-
ate interventions, e.g., faults, events, and cyber attacks. Essentially, the cyber
attack impact assessment procedure calculates the cross co-variance of observed
variables before and after the execution of a specific intervention. Accordingly,
an instance of CAIA results in an impact matrix denoted by C which columns
correspond to observed variables and the rows to control variables. Therefore,
the C impact matrix enables a detailed impact assessment in various scenarios by
providing answers to research questions such as measuring how the intervention
on the i-th control variable affects the j-th observed variable. The next section
employs the impact matrix as the input to the risk assessment procedure. More
details about the CAIA procedure are given in [10].

3.2 Risk Assessment Based on the Impact Measures

The CAIA procedure delivers relative impact values for one specific type of attack.
Therefore, the risk assessment expands the CAIA approach and combines the out-
put of multiple executions of CAIA for different attacks. First we define A =
{1, 2, ..., ι, ...α} as the set of attack types. We use Cι

ij to denote the impact matrix
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values such that Cij is the calculated impact for the ι-th attack type (ι ∈ A). Next,
as a pre-processing step, a PCA (Principal Component Analysis) based weighting
technique [14] is used to combine the results of impact assessments of multiple
attack types and to construct a severity matrix Ω used later in the calculation of
risk values. The values of this matrix denoted by ωiι, represent the severity of the
intervention of type ι on the i-th variable, i.e., end device. The final outcome of
risk assessment is given in Eq. (1) and is a vector of risk values for each attacked
variable.

�i =
∑

ι∈A

ωiι · pι,∀i ∈ I, (1)

where pι|
∑
ι∈A

pι = 1, is a vector containing the predefined probabilities for each

type of cyber attack. Following, we provide the mathematical description for
determining the severity matrix Ω. First, we compute the co-variance matrix
Σι,∀ι ∈ A, as indicated in Eq. (2). Then, according to Eq. (3) we compute the
factor loadings Zι by using the eigenvectors of Σ denoted by U . As stated in
[14], the square of factor loadings represents “the proportion of the total unit
variance of the indicator which is explained by the factor”. Accordingly, Eq. (4)
defines the variance ϑι

i for each factor, where vι
i ,∀i ∈ I are the eigenvalues

of Σι. Next, using the above formulations, the severity matrix is defined by
Eq. (5). For further convenient usage the severity matrix is normalized in the
[0, 1] interval. Finally, by a priori knowing the vector of probabilities pι, the
application of Eq. (1) to determine the risk values �i for each attacked device
becomes straightforward.

Σι =
1
n

Cι · CιT ,∀ι ∈ A. (2)

Zι = U ιT · CιT ,∀ι ∈ A. (3)

ϑι
i =

vι
i∑

l∈I

vι
l

,∀i ∈ I,∀ι ∈ A, (4)

ωiι =
∑

i∈I

Zι
il · ϑι

l ,∀i, l ∈ I,∀ι ∈ A. (5)

4 Optimal Control Network Design

In this section we employ the risk values to define a finite set of security levels.
These serve as security level requirements for vulnerable variables, hereinafter
referred to as end devices (ED). Then, a single linkage hierarchical clustering
technique is applied to the risk values to develop a predefined number of ED
groups. Each group corresponds to a security level requirement. As a constraint,
an ED can connect to one of the concentrator nodes (CN) in order to maintain
communication with supervisory and control stations. Therefore, the optimiza-
tion problem discussed in this paper seeks the optimal connection of ED to CN
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by minimizing the overall distance between ED and CN, but taking into account
the maximum link capacity of CN and the security level requirement of ED.

In the description of the optimization problem we use the following nota-
tions: we define C = {1, 2, ..., ı, ..., c} to denote the set of concentrator nodes,
D = {1, 2, ..., j, ..., d} the set of end devices and S = {1, 2, ..., κ, ..., s} as the set
of available/predefined security levels. Furthermore, the optimization problem
needs to account for other network parameters, such as link capacity, traffic
demands and security levels. Let sC

ıκ be a binary parameter to denote if the
ı-th CN supports the κ-th security level. Then, let sD

jκ be a binary parameter
to denote if the risk assessment procedure has assigned the κ-th security level
requirement to the j-th ED. Next, we define a set of parameters to identify the
geographical positioning of CN and of ED. In this respect the optimization prob-
lem uses two-dimensional coordinates involving (xC

ı , yC
ı ) for CN and (xD

j , yD
j ) for

ED. Furthermore, since each CN has a limited processing capability, we define
the link capacity parameter as ζC

ı and ξD
j as the traffic demand of the connected

ED. Depending on the values of ξD
j , the parameter ζC

ı indirectly defines the num-
ber of ED that can be connected to the ı-th CN. Lastly, we define the variables
for the connection of each ED to a CN. More precisely, we define the binary vari-
able νıj with value 1 if ED j connects to CN ı. Essentially, the network design
problem will identify the values for this variable such as to minimize the objec-
tive function. In practice, the objective of network design is to efficiently connect
the ED to the CN, while taking into account the security requirements and the
traffic demands. The overall installation cost and later on the operational costs
depend on the distance between nodes and the required security levels. Further-
more, shorter distances can also reduce the communication delays. Therefore,
the objective of the ILP problem is to minimize the Euclidean distances in such
a way to connect each ED to the closest CN:

min

(
∑

ı∈C

∑

j∈D

[
(xC

ı − xD
j )2 + (yC

ı − yD
j )2

] · νıj

)
, (6)

which is subject to the following constraints:
∑

ı∈C
νıj = 1,∀j ∈ D, (7)

sD
jκ · νıj ≤ sC

ıκ,∀ı ∈ C, j ∈ D, κ ∈ S, (8)
∑

j∈D
ξD
j · νıj ≤ ζC

ı ,∀ı ∈ C, (9)

where Eq. (7) enforces that each ED is connected to a single CN. Constraint (8)
enforces the connection of end devices to the concentrator nodes that support
the required security level. Finally, constraint (9) ensures that the CN processing
capacity is not exceeded.
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5 Experimental Results

In this section we first apply the risk assessment technique to identify the risk
levels of cyber assets. The risk levels are then applied in the evaluation of the net-
work optimization problem, which is implemented and tested in AIMMS [1] by
using the CPLEX solver. In the first instance we adopt the Tennessee Eastman
chemical process (TEP) model [6]. Then, we validate the developed method-
ology by using the IEEE 14-bus electricity grid model enriched with control
loops specific to real-world power systems, e.g., Power System Stabilizer (PSS),
Automatic Voltage Regulators (AVR), Turbine Governors (TG), secondary volt-
age regulators including Cluster Controllers (CC), and Central Area Controllers
(CAC). To demonstrate the scalability of the proposed techniques we perform
the risk assessment and the network design on the IEEE 300-bus test system.
The attack scenarios employed in the following experiments include bias injection
and replay.

5.1 Results on the TEP

This case study considers four attack types and an attack probability defined by
pι = [0.4, 0.3, 0.1, 0.2]. In detail, the first attack type involves a 15% bias injection
on control variables, with a duration interval of 0.1 h. In contrast, the second
attack scenario injects a 60% bias value to each variable. The last two attack
types are replay attacks, one with a duration of 4 h (ε = 4 h) and the second on
with a duration of ε = 3 h. By knowing the probability values and the severity
matrix resulted from the CAIA technique, we determine the final risk values
for each investigated control variable or end device. For the case of the TEP,
the risk values for devices are given in Fig. 1(a). Additionally, Fig. 1(b) presents
the results of grouping the pure risk values using hierarchical clustering in 3
groups of security levels. Here, the usage of single linkage hierarchical clustering
is needed to effectively categorize the end devices in a predefined number of
security level groups. As the figure shows, the devices denoted by 1 and 8 have
been assigned a higher security level, meaning that these devices require the
most secure communication channels. In contrast, devices 4, 6, 7, 9, 10, 11 and 12
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Fig. 1. Risk assessment outcome: (a) Pure risk values; and (b) Risk values enforced in
3 security level groups.
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have been associated with low security level requirements, meaning that short-
term cyber attacks performed on these devices won’t critically affect the normal
operation of TEP. Finally, in the network design phase the security requirement
parameter of sD

jκ is initialized based on device groups, as depicted in Fig. 1(b).
In the following, we use the proposed network design approach in accor-

dance with the above resulted risk values of the end devices. For network design
experiments we assume five CN in five different locations of the plant. The end
devices corresponding to control variables and the end devices corresponding to
observed variables will connect to these five CN. However, in practice, CN are
placed by considering the physical areas delimited by the experts or by the need
of CN to cover the security and performance requirements of ED. Later on in
this section multiple experiments with various CN are performed to identify the
optimal number of CN in the case of the TEP. Let us first analyze the connection
layout in Fig. 2(a). Security levels are illustrated with simple, double and triple
symbol outlines in the case of CN, and simple outlined circle, double outlined
circles and septagons in the case of ED, respectively. Furthermore, each node
is placed as specified by the position parameters. As it is shown in Fig. 2(a)
the overall connection distance is minimized in the presence of security and link
capacity constraints. Subsequently, by refining the security level parameters of
CN, and rerunning the network design framework, a different connection graph is

Fig. 2. Resulted network layout: (a) with initial parameters; (b) with C3’s security
level changed to 1 and (c) objective function’s optimal values for different number
of CN.
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obtained in Fig. 2(b). The changing of C3’s security level from 2 (mid-level) to a
low level, radically changes the optimal connection layout as well. Therefore, the
placement of CN heavily influences the network topology. This fact is illustrated
through a series of experiments performed for different number of CN, while the
rest of the parameters remained unchanged. Accordingly, the results shown in
Fig. 2(c) express the final value of the objective function in contrast with the
number of CN. Finally, we notice in Fig. 2(c) the steep decrease of the objective
function’s value, which indicates that 6 should be the optimal number of CN
used for the network design (after 6 the cost function decreases slowly). In con-
trast with these results, practical situations may include additional restrictions
in placing CN in some special areas, e.g., hazardous areas.

5.2 Results on the IEEE 14-Bus Electricity Grid

Making a step further, we show the application of the developed risk assessment
technique on the 14-bus electricity grid model. Even though the grid comprises
a slightly different architecture from that of the TEP’s, the application of CAIA
and of risk assessment remains mostly the same. First, we identify the assessed
devices corresponding to each substation of the power grid. In this study it is
considered that each substation is represented by a cyber device, which is part of
the grid’s SCADA network. Overall, four attack scenarios have been defined for
the risk assessment. These are aimed to represent the main cyber security threats
for the cyber realm. The first scenario implements cyber attacks that ultimately
cause faults at substation levels. Assuming that proper load measurements and
load control are key requirements in the stable operation of power grids, the
second attack scenario induces load compensation disturbances. Considering the
architecture of control loops, i.e., voltage controller modules localized at the
substations including generator components, the third attack scenario launches
integrity attacks against the IEC61850 protocol, which ensures the communica-
tion between AVR and other high level controllers, i.e., CC and CAC. Finally,
the fourth attack scenario compromises remotely controlled line breaker devices
to cause severe disruptions in the grid’s structural stability. Figure 3 illustrates
the changes in the output of risk assessment based on different attack scenarios
and parameters. These results underline that different cyber attack vectors may
yield different impact values and a different behavior of the physical process.
Therefore, it is imperative that risk assessment to be conducted on multiple
attack scenarios embracing a wide palette of parameters. Lastly, the final risk
values for each end device are presented in Fig. 4(a). It is shown that substations
1, 2, 3 and 8 exhibit high risk values in the case of the four attack types. As
a result, the hierarchical clustering approach (Fig. 4(c)) allocates to each avail-
able security level the appropriate device group. Since three security groups are
expected, Fig. 4(b) illustrates the final security level of groups as an outcome of
the risk assessment.

Lastly, we evaluate the developed methodology in the context of the IEEE
14-bus power grid. We assume a total of 14 ED, which need to be optimally
connected to 5 CN. The results of the optimal security-aware configuration are
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Fig. 3. Changes in risk assessment results by different attack scenarios.
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Fig. 4. Risk assessment outcome on the IEEE 14-bus grid model: (a) Pure risk
values; (b) Risk values enforced in 3 groups with different security levels; and (c)
Risk assessment dendrogram.

presented in Fig. 5(a). By changing the capacity of CN 5 in Fig. 5(b) we depict
the changes in the output of the optimization problem.

5.3 Results on the IEEE 300-Bus Electricity Grid Model

Finally, we show the scalability of the elaborated risk assessment procedure. The
results in this section demonstrate its successful and representative application
in the case of the large-scale IEEE 300-bus electricity grid model. To repre-
sent a wide variety of cyber attacks, the following experiments use two attack
vectors, i.e., load disturbance attack and substation compromise. In the case of
large-scale infrastructures we measure the isolation phenomenon, that is, attacks
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Fig. 5. Optimal network layout for the IEEE 14-bus electricity grid model: (a) uncon-
strained, and (b) constrained by the link capacity of C5.

impacting a certain region of the grid. The calculated risk values are presented
in Fig. 6, where we assume the same attack probability. However, depending on
the expert’s judgments the risk assessment can be changed to include different
probabilities for each attack type. Figure 6(a) illustrates the peaks in risk values
in the proximity of substations 100 and 250. This means that these devices have
a greater impact on the overall operational stability of the grid. Accordingly,
Fig. 6(b) groups the substations in three security level groups.

Fig. 6. Risk assessment outcome on the IEEE 300-bus grid model: (a) Pure risk values;
and (b) Risk values enforced in 3 security groups.

In accordance with the size of the model, the network design problem assumes
the presence of 300 ED. In the first step the security levels of the CN are assigned
proportionally according to the risk assessment results and the designated secu-
rity requirements of ED (see Sect. 5.3). For illustration purposes we assume a
scenario comprising of 50 CN. The connection diagram of Fig. 7(b) includes 36
low-level security CN, 10 mid-level security CN and 4 high-level security CN.
Figure 7(a) represents the electrical topology, while Fig. 7(b) shows the final con-
nection of ED to CN. The network layout accounts for the geographical distances
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Fig. 7. Optimal network layout for the IEEE 300-bus power grid model: (a) electrical
topology [11], and (b) communication infrastructure with 50 CN.

between the nodes, but also embraces their security requirements, as delivered
by the risk assessment methodology.

6 Conclusions

We developed a methodology for the optimal design of industrial networks. The
approach embraces a risk assessment technique and an optimization problem
to minimize connection distances, while enforcing security and capacity require-
ments. The experimental results revealed the importance of security-aware net-
work design. As future work we intend to build a specialized software to assist
engineers in designing optimal ICS networks.

Acknowledgment. This work was supported by a Marie Curie FP7 Integration Grant
within the 7th European Union Framework Programme (Grant no. PCIG14-GA-2013-
631128).

References

1. AIMMS: Advanced Interactive Multidimensional Modeling System (2015). http://
www.aimms.com/aimms/. Accessed May 2016

2. Bilis, E., Kroger, W., Nan, C.: Performance of electric power systems under physical
malicious attacks. IEEE Syst. J. 7(4), 854–865 (2013)

3. Carro-Calvo, L., Salcedo-Sanz, S., Portilla-Figueras, J.A., Ortiz-Garca, E.: A
genetic algorithm with switch-device encoding for optimal partition of switched
industrial Ethernet networks. J. Netw. Comput. Appl. 33(4), 375–382 (2010)

4. Chen, T., Abu-Nimeh, S.: Lessons from Stuxnet. Computer 44(4), 91–93 (2011)
5. CrySiS Lab: sKyWIper (a.k.a. flame a.k.a. flamer): a complex malware for targeted

attacks, May 2012

http://www.aimms.com/aimms/
http://www.aimms.com/aimms/


122 I. Kiss and B. Genge

6. Downs, J.J., Vogel, E.F.: A plant-wide industrial process control problem. Comput.
Chem. Eng. 17(3), 245–255 (1993)

7. Ford, D.N.: A behavioral approach to feedback loop dominance analysis. Syst. Dyn.
Rev. 15(1), 3–36 (1999)

8. Genge, B., Haller, P., Kiss, I.: Cyber-security-aware network design of industrial
control systems. IEEE Syst. J. 11(3), 1373–1384 (2015)

9. Genge, B., Siaterlis, C.: Physical process resilience-aware network design for
SCADA systems. Comput. Electr. Eng. 40(1), 142–157 (2014)

10. Genge, B., Kiss, I., Haller, P.: A system dynamics approach for assessing the impact
of cyber attacks on critical infrastructures. IJCIP 10, 3–17 (2015)

11. Hines, P., Blumsack, S., Cotilla Sanchez, E., Barrows, C.: The topological and
electrical structure of power grids. In: 2010 43rd Hawaii International Conference
on System Sciences (HICSS), pp. 1–10, January 2010

12. Kiss, I., Genge, B., Haller, P.: Behavior-based critical cyber asset identification
in Process Control Systems under Cyber Attacks. In: 16th Carpathian Control
Conference (ICCC), pp. 196–201, May 2015

13. Kundur, D., Feng, X., Liu, S., Zourntos, T., Butler-Purry, K.: Towards a framework
for cyber attack impact analysis of the electric smart grid. In: First SmartGrid-
Comm, pp. 244–249, October 2010

14. Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., Giovannini, E.:
Handbook on Constructing Composite Indicators. OECD Publishing, Paris (2005)

15. Sandberg, H., Amin, S., Johansson, K.: Cyberphysical security in networked control
systems: an introduction to the issue. IEEE Control Syst. 35(1), 20–23 (2015)

16. Sgouras, K., Birda, A., Labridis, D.: Cyber attack impact on critical smart grid
infrastructures. In: 2014 IEEE PES Innovative Smart Grid Technologies Conference
(ISGT), pp. 1–5, February 2014

17. Sridhar, S., Govindarasu, M.: Model-based attack detection and mitigation for
automatic generation control. IEEE Trans. Smart Grid 5(2), 580–591 (2014)

18. Symantec: Dragonfly: cyberespionage attacks against energy suppliers. Technical
report (2014)

19. Zhang, L., Lampe, M., Wang, Z.: A hybrid genetic algorithm to optimize device
allocation in industrial ethernet networks with real-time constraints. J. Zhejiang
Univ. Sci. C 12(12), 965–975 (2011)

20. Zhang, L., Lampe, M., Wang, Z.: Multi-objective topology design of industrial
ethernet networks. Frequenz 66(5–6), 159–165 (2012)


	A Methodology for Monitoring and Control Network Design
	1 Introduction
	2 Related Work
	3 Asset Risk Assessment in ICS
	3.1 Overview of the CAIA Approach
	3.2 Risk Assessment Based on the Impact Measures

	4 Optimal Control Network Design
	5 Experimental Results
	5.1 Results on the TEP
	5.2 Results on the IEEE 14-Bus Electricity Grid
	5.3 Results on the IEEE 300-Bus Electricity Grid Model

	6 Conclusions
	References


