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Abstract The coastal waters of southern and south-western Australia are home to
almost 30,000 km? of seagrass, dominated by temperate endemic species of the
genera Posidonia and Amphibolis. In this region, seagrasses are common in estu-
aries and sheltered coastal areas including bays, lees of islands, headlands, and
fringing coastal reefs. Additionally, extensive meadows exist in the inverse estu-
aries of the Gulfs in South Australia, and in Shark Bay in Western Australia. This
chapter explores (i) how geological time has shaped the coastline and influenced
seagrasses, (ii) present day habitats and drivers, (iii) how biogeography patterns
previously reported have been altered due to anthropogenic and climate impacts,
and (iv) emerging threats and management issues for this region. Species diversity
in this region rivals those of tropical environments, and many species have been
found more than 30 km offshore and at depths greater than 40 m. Seagrasses in this
region face a future of risk from multiple stressors at the ecosystem scale with
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coastal development, eutrophication, extreme climate events and global warming.
However, our recent improved understanding of seagrass recruitment, restoration
and resilience provides hope for the future management of these extraordinary
underwater habitats.

3.1 Introduction

The diverse and expansive seagrass meadows of southern and south-western
Australia create stunning underwater landscapes. Seagrasses in this region are
recognised as a temperate biodiversity hotspot, with species diversity rivalling those
of tropical environments (Carruthers et al. 2007). From Shark Bay to the western
edge of the Great Australian Bight, seagrasses occupy an estimated 20,000 km*
(Walker 1991). The coastal waters of South Australia are home to an additional
9,612 km* with more than 80% of this seagrass found within the Spencer Gulf
(5,520 km?) and the Gulf of St Vincent (2,440 km?) (Edyvane 1999). These tem-
perate meadows are often dominated by endemic Posidonia and Amphibolis species
with high biomass (Fig. 3.1).

Species distributions are broadly known in South Australia (see Chap. 1 and the
Appendix of this volume for genus distributions, plus Shepherd and Robertson
1989; Kirkman 1997). Posidonia is the dominant genus in terms of spatial cover-
age, with P. angustifolia, P. australis, and P. sinuosa being the most abundant
species within the genus. The upper parts of both Spencer Gulf and Gulf St Vincent

Fig. 3.1 Southern Fiddler ray within a Posidonia sinuosa meadow at Rottnest Island, Western
Australia
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have extensive tidal flats that are dominated by P. australis and Zostera/
Heterozostera species (for current status of Heterozostera see the Appendix of this
volume). Within the gulfs and bays around South Australia, seagrasses are gener-
ally restricted to depths of <20 m (Shepherd and Robertson 1989; Edyvane 1999).
However, in the clearer waters of Investigator Strait, some offshore islands, and at
the base of cliffs on the west coast of Eyre Peninsula, seagrasses grow to depths of
30 m or more (Shepherd and Robertson 1989).

In temperate Western Australia, seagrasses occupy shallow coastal habitat
(Walker 1991), in water depths ranging from the intertidal to >50 m. Seagrasses
occur in a range of habitats from wave-exposed sandbanks to sheltered bays,
lagoons and estuaries (Carruthers et al. 2007). They grow predominantly on sand
from 1 to 35 m depth (Cambridge and Kuo 1979), but also on deep rock to over
50 m deep (e.g. Thalassodendron pachyrhizum), and shallow estuarine mud and
sand flats. Across southern temperate Australia, Halophila australis is endemic and
is likely the only Halophila species occurring across the region immediately to the
east of the Great Australian Bight, to Tasmania.

Along the southwest coast of Australia, seagrass habitats are heavily influenced
by exposure to ocean swells and large-scale sand movement. Amphibolis griffithii
has higher water baffling capacity than Posidonia australis, P. sinuosa or mixed
Posidonia meadows (van Keulen and Borowitzka 2002). Amphibolis antarctica
meadows have been shown to reduce water flows from 50 to 2-5 cm s~ (Verduin
and Backhaus 2000). The P. ostenfeldii group of species typically form patchy
meadows with mixed species in open-ocean or rough water sublittoral habitats
(Campey et al. 2000). They are characterised by their long, thick, leathery leaves
and long leaf sheaths that are deeply buried. Their ability to withstand ocean swell
is because, unlike the Posidonia australis group, their rhizomes grow vertically
instead of horizontally. These characters appear to be associated with strong wave
movement and mobile sand substratum typical of the environments in which they
are found (Kuo and Cambridge 1984).

The distribution of seagrasses around Australia was described in Larkum et al.
(1989). Rather than revisit this earlier work on biogeography, which has remained
relatively unchanged for this region, we explore aspects of new knowledge which
now shape our understanding of seagrasses of southern and south-western
Australia.

Specifically this chapter will describe:

(i) how geological time has shaped the coastline and influenced seagrasses,
(i) present day seagrass habitats and drivers,
(iii) anthropogenic and climate change pressures which have altered biogeogra-
phy patterns previously reported, and
(iv) emerging threats and management issues for this region.

Several case studies are discussed within this chapter, and Fig. 3.2 provides a
map of seagrass in each of these locations.
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Fig. 3.2 Map of region and case-study areas. a Potential areas in southern and south-western
where water depth is likely to be suitable for seagrass habitat, and seagrass distribution in b Shark
Bay, ¢ Owen Anchorage and Cockburn Sound, d Albany harbours, e Recherche Archipelago and,
f Gulf of St Vincent and Spencer Gulf
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3.2 The Forces Shaping Seagrasses and the Coastline
over Geological Time

Modern day lineages of seagrasses evolved some 60 + million years ago (Waycott
et al. 2018, Chap. 5, this volume). Since this time, global sea level has fluctuated
significantly, however seagrasses have been able to adapt to the rate of change in
sea level (Orth et al. 2006). The modern day coastline of southern and
south-western Australia became stable approximately 5,000 years ago (Fig. 3.3).

Rottnest Island, approximately 10 nautical miles offshore from Fremantle in
Western Australia provides an excellent example of how the changing coastline has
created habitats for seagrass. Rottnest Island is comprised of coastal Quaternary
carbonate Aeolian dune complex and was joined to the mainland some 7,000 years
ago. There are multiple drowned shorelines creating shoreline parallel ridges and
reefs between Rottnest and the present-day Western Australian coast, and these
sedimentary successions are very sensitive to erosion and sediment reworking
(Richardson et al. 2005; Brooke et al. 2014). Sheltered waters provided by these
reefal systems have favoured seagrasses with Posidonia and Amphibolis species
forming patchy to continuous meadows, while seagrasses with reinforced fibres in
their leaves (P. ostenfeldii complex) or wiry stems (Amphibolis species) dominate
in more exposed waters (Carruthers et al. 2007). The high endemism of seagrasses
in this region perhaps reflects the tectonic and geological stability of the region over
the last 50 million years or so, allowing specialisation of seagrasses to occur.

The local Aboriginals, the Nyoongar people, have cultural narratives which
describe the sea level rise which occurred separating Rottnest (or Wadjemup) from
the mainland (Robertson et al. 2016). Similar stories exist in South Australia for the
Jaralde people regarding Kangaroo Island and the Narrangga people regarding
Spencer Gulf, likely to be associated with sea level rises between 10 and
12,000 years ago (Reid et al. 2014).

Fig. 3.3 Coastline of south-west Australia approximately 27,000 years ago (left) and coastline
stabilised approximately 5,000 years ago to current position (right) (Images from http://sahultime.
monash.edu.au)
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Seagrasses have themselves altered this coastline by the in situ generation and
trapping of carbonate sediments, derived in part from the calcareous algal epiphytes
living on seagrass blades. This is one aspect which have earned seagrasses the title
of ‘ecosystem engineers’—sensu Jones et al. (1997). A study of the coast in
Geraldton, Western Australia revealed fine modern skeletal sands within 2 km of
shore were dominated by modern bioclasts (Fig. 3.4) living in association with
seagrass meadows (Tecchiato et al. 2016). The Australian coast was divided into
three major sediment provinces by Short (2010), with the south and west coast
described as carbonated-dominated. Carbonate sediment makes up approximately
70% of the beach sand in this region, with the exception of the south-western tip
from Augusta to Bremer Bay, where carbonate sediments were approximately 30%
(Short 2010). Calcareous sediments, made up of skeletal remains of bivalves,
benthic foraminifera, bryozoans, coralline algae and echinoids, also dominate
within Spencer Gulf in South Australia (O’Connell et al. 2016).
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| | 2
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Fig. 3.4 Sediment grains from Western Australia viewed by scanning electron microscopy at
111 x magnification clearly showing skeletal makeup of the coastal sands
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3.3 Present Day Seagrass Habitats and Drivers

Seagrasses in southern and south-western Australian waters play important roles
providing habitat for many fish and crustaceans, including commercially and
recreationally important species such as King George whiting (Connolly 1994;
Connolly and Jones 1996; Connolly et al. 1999; Hyndes et al. 1999; Bryars 2003;
Bloomfield and Gillanders 2005). They support a large range of biodiversity,
including molluscs, and epiphytic plants and algae (Keough and Jenkins 1995), and
stabilize coastal sediments, trapping sediments, and preventing coastal erosion
(Keough and Jenkins 1995; Westphalen et al. 2004). Carbon export from seagrass
meadows to adjacent habitats may act as ecological subsidies (Connolly et al. 2005;
Hyndes and Lavery 2005) and recently, attention has been given to their role in
carbon burial and sequestration (Fourqurean et al. 2012; Lavery et al. 2013; Serrano
et al. 2014; Marba et al. 2015).

Seagrasses grow on sediments in intertidal and subtidal waters, wherever suffi-
cient light and favourable hydrodynamic conditions exist. In this region, seagrasses
are common in estuaries and sheltered coastal areas including bays, lees of islands,
headlands, and fringing coastal reefs (Carruthers et al. 2007). The inverse estuaries
of the Gulfs in South Australia, or in Shark Bay in Western Australia are also home
to extensive seagrass meadows (Walker et al. 1988; Edyvane 1999).

Carruthers et al. (2007) described seagrass habitats for south-west and
south-coast Western Australia as ‘sheltered’, ‘exposed’ and ‘estuarine’ habitats.
This habitat classification is extended to South Australian waters with the inclusion
of ‘inverse estuary’ to account for the habitats found within the gulfs. Table 3.1
provides a description of habitat type with seagrass assemblages commonly found
in each region. Conceptual diagrams (Figs. 3.5, 3.6 and 3.7) present this infor-
mation diagrammatically. Note, the natural break in the habitat types occurs at the
Great Australian Bight, so is not explicitly described by State boundaries. The
majority of seagrasses in the marine environments of south and south-western
Australia are described as enduring, persistent seagrass meadows, while those in
estuarine environments, particularly the bar-built estuaries, may have a mix of
transitory, colonising seagrass meadows (sensu Kilminster et al. 2015). Dominant
meadow types are also provided in Table 3.1 for each habitat found with these
regions.

The sheltered waters of southern and south-western Australia are usually dom-
inated by Posidonia and Amphibolis spp., both forming large, dense, enduring
meadows. On the south-west coast, Halophila ovalis, H. decipiens, Heterozostera
nigricaulis, H. polychlamys, and even sometimes Syringodium isoetifolium tend to
occur as an understory to the larger-bodied seagrasses (Kendrick et al. 1999;
Carruthers et al. 2007), and they may be first to recolonise sediments from blowouts
following storms (Kirkman and Kuo 1990) or boat mooring damage (Walker et al.
1989). In southern Australia, sheltered waters are usually dominated by P. australis,
while in deeper waters P. sinuosa, P. angustifolia, A. antarctica and A. griffithii are
present (Edyvane 1999).
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South-west Australia
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Fig. 3.5 Seagrass habitats in south-west Australia
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Fig. 3.6 Seagrass habitats in southern Australia, from Cape Leeuwin to Spencer Gulf

Enduring Posidonia and Amphibolis spp. still feature in the exposed waters of
southern and south-western Australia, however those Posidonia species more tol-
erant of rough conditions, such as P. coriacea and the P. ostenfeldii complex, may
form patchy meadows (Campey et al. 2000; Carruthers et al. 2007). Western
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Fig. 3.7 Seagrass habitats in southern Australia, from Spencer Gulf to the east

Australian waters have greater Posidonia species diversity than South Australia.
The deeper waters of the South Australian coast are typically home to P. sinuosa,
and P. angustifolia (and A. antarctica and A. griffithii) (Edyvane 1999).

In the inverse estuaries (large gulfs) of South Australia the tidal range is much
greater (up to 3.6 m) than the microtidal tides typical of the region, and tides within
the gulfs are typified by periods of minimal tidal movement (termed a ‘dodge’ tide)
(also see the Shark Bay text box for an example in Western Australia). These waters
are also hypersaline, with mean salinities of 42—49 ppt in North Spencer Gulf and
35-42 ppt in Gulf of St Vincent (Edyvane 1999). These conditions create sheltered
intertidal seagrass habitats dominated by Heterozostera." Enduring meadows of
Posidonia australis dominate the sheltered subtidal areas, and in the deeper gulf
waters, P. sinuosa, P. angustifolia and A. antarctica are common. Posidonia
ostenfeldii complex can form small communities in more exposed waters and
Halophila australis has been found as deep as 23 m in offshore gulf waters
(Edyvane 1999).

Estuarine waters are home to just a few of the seagrasses found in the region,
likely due fewer species being tolerant to the frequent large swings in salinity. In the
south-west estuaries with permanent connections to the ocean, monospecific
meadows of Halophila ovalis usually dominate. In these estuaries, Halophila de-
cipiens can co-occur with H. ovalis or occur by itself (Kuo and Kirkman 1995).
Zostera muelleri tends to be found close to the mouth of the estuary, where salinity
is more marine and fluctuates less. Interestingly, Posidonia australis has recently

"Note historical reports of Zostera tasmanica e.g. Edyvane (1999), have been interpreted as
Heterozostera nigricaulis, based on Kuo (2005).
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been observed in the Swan-Canning estuary (M. Sanchez-Alarcon, V. Forbes pers.
comm, 15 Dec 2015) associated with reduced rainfall and streamflow in the
catchment (Petrone et al. 2010; Silberstein et al. 2012). Ruppia megacarpa is the
most common seagrass in the occasionally open bar-built estuaries of the
south-coast, such as Wilson Inlet (Carruthers et al. 1999, 2007). Posidiona aus-
tralis, P. sinuosa, Amphibolis antarctica and A. griffithii can be found in a few of
the permanently open estuaries on the south-coast, such as Oyster Harbour and
Waychinicup, where large connections to the ocean ensure good marine water
exchange. Hydrological modifications and water abstraction from the River Murray
has altered the seagrass ecology of the Coorong in South Australia and resulted in
the substantial reduction in area of both Ruppia megacarpa and Ruppia tuberosa
(McKirdy et al. 2010; Whipp 2010; Dick et al. 2011).

Geomorphological differences between the south-west of Western Australia and
south coast of Western Australia and South Australia create a range of different
seagrass habitats. Exposure is thought to be a key factor influencing not only what
seagrasses can prevail, and may also be a proxy for other ecological aspects. For
example, the genetic diversity of Posidonia australis is greater in more open waters
than inshore sites which have low water movement and/or face strong prevailing
winds at the time of seed dispersal (Sinclair et al. 2014). Light and nutrient
availability also influence seagrass habitats in this region (Cambridge and Hocking
1997; Collier et al. 2007; Lee et al. 2007; Ralph et al. 2007).

Hydrodynamic conditions are a significant driver of seagrass habitats across
multiple scales. At the largest of these scales, the Leeuwin Current system (in-
cluding the Capes Current and Creswell Currents) and Flinders Current provide
dispersal and connectivity opportunities for seagrasses in this region. For example,
floating fruit of Posidonia australis, moved by either currents or local winds, has
the potential to regularly connect meadows 10s of kilometres apart, and occa-
sionally connect meadows 100s of kilometres apart (Ruiz-Montoya et al. 2015).
This effect is species dependent however, as the different fruiting and seed strategy
and morphology alter their dispersal modes and capabilities (Ruiz-Montoya et al.
2012).

The two large gulfs of South Australia, Gulf St Vincent (6,800 km2) and
Spencer Gulf (ca. 22,000 km?), are often categorised as inverse estuaries (Kampf
2014). The large scale water movements into and out of these systems are strongly
seasonal (Middleton et al. 2013; O’Connell et al. 2016). Within Spencer Gulf,
where the most detailed analysis of water movement has been conducted
(Middleton et al. 2013), essentially water movement remains within the gulf during
the summer months with a nearshore northward water movement pattern. The
winter pattern of current movement in Spencer Gulf leads to exchange with the
oceanic waters outside the gulf and there is a stronger mixing across the gulf, east to
west. As a result, during the warmer summer months, the period of propagules
dispersal for many species especially Posidonia, a higher proportion of floating
seeds would be retained within the system. In cooler months, the movement of
Amphibolis seedlings occurs and these would be able to be transported further
within and outside the Spencer Gulf system.
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At the meadow scale, hydrodynamics affects the species of seagrass found
within each habitat type. Seagrasses exposed to strong ocean swells (such as the
southwest coast of Australia), appear to have adaptations to allow them to cope with
significant drag forces (de los Santos et al. 2012, 2016). Both Amphibolis griffithii
and Amphibolis antarctica meadows effectively baffle water flow, and A. antarctica
has been shown to reduce water flows from 50 to 2-5 cm's ' (Verduin and
Backhaus 2000). Additionally, the wiry stems of these species may provide further
protection from strong water movement. Similarly, P. ostenfeldii group of species
typically form patchy meadows with mixed species in open-ocean or rough water
(Campey et al. 2000). They are characterised by their long, thick, leathery leaves
and long leaf sheaths that are deeply buried, and vertical rhizome growth. These
characteristics appear to be associated with strong wave energy as well as highly
mobile sand substratum, typical of the environments in which the P. ostenfeldii
seagrasses are found (Kuo and Cambridge 1984).

Marine waters in southern and south-western Australia are considered olig-
otrophic, with nitrate concentrations <1 pM (Pearce and Pattiaratchi 1999; Balzano
et al. 2015). In addition, carbonate sediment prevalent through much of the region,
adsorbs phosphate onto calcium carbonate particles (McGlathery et al. 1994). These
low nutrient waters tend to result in water with high clarity, allowing light to
penetrate deeply. Seagrasses in this region are commonly found in waters greater
than 30 m deep, and sometimes significantly deeper (see information box
Deepwater Seagrass in Temperate Southern Waters).

With such low nutrient concentrations in the overlying water, the abundance of
dense, highly productive seagrasses in this region has seemed paradoxical. How
nutrient availability might influence seagrass habitats has been explored in the
south-western Australian region over recent decades. For example: nutrient con-
centrations differed for Posidonia coriacea and Heterozostera tasmanica growing
on the same carbonate sediments in Success Bank (Walker et al. 2004), suggesting
species-specific differences in the nutrient requirements or the strategy of nutrient
uptake and reallocation. Both Cambridge and Hocking (1997) and Collier et al.
(2010) demonstrated that nutrient reabsorption and translocation from older plant
tissues contributed to the nutrient requirement for Posidonia sinuosa and Posidonia
australis. The addition of N+P to a P. australis meadow at Rottnest Island did not
enhance growth, shoot density or biomass within 4 months of fertilization (Udy and
Dennison 1999), while fertilization (N, N+P, P and Fe-EDTA) had mixed results
that appeared site specific for transplanted seagrass shoots of Posidonia australis in
the Albany Harbours (Cambridge and Kendrick 2009). We now know that rather
than seagrass growth being highly constrained by the low nutrient waters, sea-
grasses in these regions contribute significant carbon (and nutrients) across
ecosystem boundaries (Hyndes et al. 2014). Seagrass wrack is deposited at high
rates on temperate south and south-western beaches (Kirkman and Kendrick 1997),
and this wrack supports detrital consumers in both terrestrial and marine ecosystems
(Ince et al. 2007; Heck et al. 2008). This detrital cycle seems highly important for
the ecoregion.
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Table 3.2 Range in depths where seagrasses have been observed or collected from Western and
South Australia

Species Depth range Reference
(m)
Halophila ovalis 0.1-38 Hillman et al (1995)
Huisman et al. (1999)
Heterozostera 0.5-16.9 Kuo (2005)
nigricaulis
Heterozostera 2-48 Kuo (2005)
polychlamys
Posidonia australis 0.1-15 Cambridge and Kuo (1979)
Posidonia sinuosa 0.1-15 Cambridge and Kuo (1979)
Posidonia angustifolia 2-44 Cambridge and Kuo (1979)
Huisman et al. (1999)
Posidonia ostenfeldii 5-20 Kuo and Cambridge (1984)
Posidonia coriacea 1-30 Kuo and Cambridge (1984)
Posidonia denhartogii 1-10 Kuo and Cambridge (1984)
Posidonia robertsoniae 0.5-20 Kuo and Cambridge (1984)
Posidonia kirkmanii 6-18 Kuo and Cambridge (1984)
Amphibolis antarctica 0.1-27.3 Walker and McComb (1988), Shepherd and
Womersley (1981)
Amphibolis griffithii 0.5-44 Shepherd and Womersley (1981)
Huisman et al. (1999)
Thalassodendron 2-48 m Kirkman and Cook (1987)
pachyrhizum Huisman et al. (1999)

Information Box: Deepwater Seagrasses in Temperate Southern Waters

Seagrasses have wide depth distributions in south and south-western
Australia, and extreme depth records occur in very clear oceanic waters
with low light attenuation on the continental shelf of temperate Australia
(Duarte 1991; Gattuso et al. 2006). These deep-water seagrass communities
are heavily influenced by availability of hard substrata (to anchor within) and
by significant wave height and benthic shear from ocean swells and currents
(Hemer 2006).

A survey of the taxonomic and distribution literature (Table 3.2) indicates
that most species found in temperate Australia have been reported from a
broad range of depths. The Posidonia australis complex is generally found in
sheltered bays and estuaries with species that are predominantly sheltered and
shallow water (<15 m) in distribution (P. australis) and species that are
predominantly exposed coastal and offshore deep water adapted
(P. angustifolia) (Cambridge and Kuo 1979). The P. ostenfeldii complex are
predominantly all deepwater species with distributions well beyond 15 m and
restricted in distribution to sheltered bays to open ocean environments (Kuo
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and Cambridge 1984). Heterozostera, Amphibolis and Halophila species are
found in sheltered estuarine and coastal environments but occur in the open
ocean to 40 + m depths (Shepherd and Womersley 1981; Shepherd and
Robertson 1989). Thalassodendron pachyrhizum is predominantly a
deep-water species but can be found in shallow waters where benthic shear
from swells is high. It has been reported to form extensive meadows at 35 m
and greater depths (Kirkman and Cook 1987). Our knowledge of temperate
deepwater seagrass communities is restricted to broad habitat information and
occurrence and little research has characterised seagrass distributions and
seagrass adaptation to deeper, more wave exposed environments.

Recent remote surveys using video and hydroacoustic methods have
expanded our knowledge of distribution and in this section we will present
data about seagrass distribution from Recherche Archipelago from extensive
video tows. Also we will propose that 7. pachyrhizum is a deepwater seagrass
and present data from drop video surveys of Cape Naturaliste, as well as
deeper and remote continental shelf environments west of Jurien, Western
Australia.

The inshore continental shelf near Esperance, Western Australia encom-
passing the western Recherche Archipelago from Figure of Eight to Mondrain
Islands, was recently mapped (Kendrick et al. 2005) and one of the major
surprises was that seagrasses were not restricted to sheltered inshore envi-
ronments but found subtidally near islands greater than 30 km offshore and at
depths to 50-60 m. An extensive database allowed for the depth distribution
of major seagrass genera to be determined (Fig. 3.8). For the genus Posidonia
the average depth across all 7 species observed was 16.7 &+ 7.4 m
(mean + SD, n = 692) and a maximum recorded depth of 37 m. For the
genus Amphibolis (A. antarctica [rock] and A. griffithii [sand]), the average
depth was 19.9 &+ 8.9 (mean = SD, n = 175) and a maximum recorded
depth of 51 m. For the genus Halophila (predominantly H. ovalis and H.
australis) the average depth was 22.4 £ 8.3 (mean &+ SD, n = 282) and a
maximum recorded depth of 49 m. The average depth for all genera are
greater than the criteria used to define deep-water seagrass communities in
tropical Australia (Coles et al. 2009) where only Halophila species are pre-
sent deeper than 15 m. The diverse mix of temperate seagrass species found
at depth in the waters of Esperance demonstrates the link between water
clarity and seagrass depth distributions as originally summarized by Duarte
(1991) and later modelled by Gattuso et al. (2006).

Thalassodendron pachyrhizum is a species that occurs predominatly in
deeper waters on the continental shelf or wave swept shallower waters nearer
the coast. Preliminary research on leaf production, biomass, reproduction and
the production of viviparous seedlings indicates it is well adapted to deeper
low light, high wave energy mid- to outer continental shelf environments
(Kirkman and Cook 1987; Kuo and Kirkman 1987). Drop camera surveys
were undertaken at Cape Naturaliste across depths from 15 to 60 m and at the
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Fig. 3.8 Frequency histograms of depth distribution of major genera of seagrass found in the
western Recherche Archipelago (Data from Kendrick et al. 2005)



78 K. Kilminster et al.

edge of the continental shelf >30 km west of Jurien Bay in 25-70 m depth,
during 2008 as part of a National Heritage Trust II project ‘Securing WA’s
marine futures’ (Radford et al. 2008). Surveys on limestone and granite reefs
at Cape Naturaliste found the average depth where 7. pachyrhizum occurred
was 33.8 £ 5 m (mean £ SD, n = 55) with a maximum recorded depth of
43.5 m. Surveys on the limestone reefs at the edge of the continental shelf
found the average depth where T. pachyrhizum occurred was 35.3 £ 3.5 m
(mean £ SD, n = 140) with a maximum recorded depth of 49 m. The survey
extents were 166 km> for Cape Naturaliste and 72 km? for Jurien. The
coverage of seagrasses was patchy but extensive, suggesting these meadows
are ubiquitous across these depths on sand covered limestone reef and
pavement on mid to outer shelf oceanic environments. Their role and
importance in the deep shelf environments is presently unknown. Similar
deepwater collections have been made for many of the seagrasses in southern
Australia indicating deepwater seagrass meadows are ubiquitous although
patchy in distribution across much of the continental shelfs of temperate
Australia.

3.4 Impacts on Seagrasses in this Region

The major threats to seagrasses are coastal development, eutrophication, extreme
climate events and global warming. Over the last two decades, the loss of seagrass
from direct and indirect human impacts amounts to 18% of the documented global
seagrass area (Green and Short 2003).

In Western Australia, significant areas of seagrass have been lost in protected
coastal embayments (Table 3.3). The most well documented anthropogenic loss of
1000s of hectares of seagrass is Cockburn Sound. In the 1950s and 1960s, the
seagrass species Posidonia sinuosa, P. angustifolia and P. australis formed an
almost continuous meadow between 1 and 10 m depth that fringed the eastern,
southern and western coasts of the sound. Over 5 years, between 1967 and 1972,
1587 ha of seagrass meadows were lost from the eastern and south-eastern shallow
shelfs (<10 m depths) of the Sound (Cambridge and McComb 1984). The decline
in area of seagrass cover was driven by nutrient inputs from sewage, a fertiliser
plant and other industrial effluents (Cambridge et al. 1986; Kendrick et al. 2000,
2002). The significant quantity of dead seagrass leaf and rhizome material that
entered detrital pathways from the seagrass loss (Cambridge and Hocking 1997),
over extensive areas of the eastern and southern fringing shelves fuelled the con-
version of the inshore ecosystem from net autotrophic to net heterotrophic. Losses
of seagrasses continued into the 1980s and early 1990s. Loss through dredging and
land reclamation has also occurred in Cockburn Sound, Albany harbours and
Esperance Bay, but the scale of direct impact is in the 10s to 100s of ha (Table 3.3).
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Table 3.3 Drivers of seagrass decline and scale of seagrass response in the SW of Australia

Authors Location Spatial Driver Response
extent
Hastings Rottnest 81 ha Mooring and Rocky Bay loss of seagrasses
et al. (1995) |Island, anchoring of boats | total 31%
Western 18% 1941-1981
Australia 13% 1981-1992
Thomson Bay
1941-92 < 5%
Fragmentation occurring but
seagrass recovery fast
Kendrick Success and | 3,974 ha | Channel dredging, | Between 1965 and 1995 there
et al. (2000) | Parmelia limesands dredging, |was a 21% increase in seagrass
Banks, West. nutrients cover on Success Bank. On
Australia Parmelia Bank % cover of
seagrasses has remained
constant at approx 45%
Seagrasses responsible for
gains are Amphibolis griffithii
and Posidonia coriacea
Seddon et al. | Spencer Gulf, | 8,269 ha | Extreme low tide Historical dieback between
(2000) South and warming of 1987 and 1994 in the intertidal
Australia nearshore waters and shallow subtidal
Over 8269 ha showed dieback
attributed to climate change
associated with El Nifo
Kendrick Cockburn 3,667 ha | Eutrophication Historical decline in seagrass
et al. (2002) | sound, area by 77% since 1967.
Western 1967-72: 1587 ha lost.
Australia 1972:1981: 602 ha lost. 1981—
1999: 79 ha lost. Species of
seagrass lost were
predominantly Posidonia
sinuosa
Bryars et al. | Adelaide 365 ha Nutrients, Loss of seagrass in area near
(2003), waters, South smothering and sewage outfall. Recovery was
Bryars and Australia reduced light slow and dominated by
Neverauskas Halophila australis
(2004)
Hegge and Esperance 773 ha | Port infrastructure, | Between 1956 and 2001 83 ha
Kendrick Bay dredging and land | were reclaimed, 72 ha were
(2005) reclamation dredged resulting in in the loss
of 116 ha of predominantly
Posidonia sinuosa meadows
Bryars and Eastern Gulf |>2,000 Wastewater Selective disappearance of
Rowling of St Vincent | ha treatment plant Amphibolis in three distinct
(2009) outfalls (and thus areas since the 1930s, with

elevated nutrients)

loss in one area (Henley Beach
to Brighton) estimated to be
1,000-2,000 ha
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Indirect impacts from dredging have only recently been addressed (Fraser et al.
2017) and the extent of combined indirect and direct effects is generally underes-
timated. Mooring and anchor damage has also been reported at Rottnest Island near
Perth with combined losses from many mooring in the range of 10s of hectares,
predominantly driven by physical scouring of the bottom by chains. The largest
recent losses of seagrasses in Western Australia were driven by a marine heatwave
in 2011 (1,000s of km?: see information box Climate Change—increases in
extreme events) and subsequent synergistic interactions, with light availability from
floods and increased turbidity associated with microbial breakdown of seagrass
biomass, that continued to drive seagrass loss for over 2 years.

In South Australia, most reported loss of seagrass meadows has been linked to
increased nutrient inputs and subsequent synergistic interactions with associated
sediment destabilisation. Approximately 5,000 ha of seagrasses were lost over
70 years from the metropolitan Adelaide coastline in eastern Gulf St Vincent. The
initial loss was linked to wastewater treatment plant outfalls and stormwater dis-
charges, and subsequent loss associated with increased sediment mobilisation and
local erosion (Westphalen et al. 2004). Approximately 168 ha of seagrass were lost
near Port Lincoln in southwestern Spencer Gulf due to declining water quality
including discharge wastes from fish processing factories (Hart 1999; Gayland
2009). Similarly, significant losses of subtidal seagrasses reported in Western Cove
on Kangaroo Island were linked to eutrophication due to land-based nutrient inputs
(Bryars et al. 2003), as was the disappearance of large areas of deepwater
Heterozostera over a 30-year period in Investigator Strait/Gulf St Vincent, where
losses may have been due to land-based discharges and prawn trawling (Tanner
2005). Also, other activities reported to have impacted seagrasses include mining
and seismic operations, construction works, aquaculture structures, and moorings
(Shepherd et al. 1989; Madigan et al. 2000; Bryars 2003; Bryars et al. 2003).
Large-scale natural losses of intertidal and shallow subtidal seagrasses (up to
13,000 ha) in northern Spencer Gulf were linked to extreme weather conditions
(Seddon et al. 2000). The spatial scale of loss from climate and oceanographic
events like the Spencer Gulf and Shark Bay examples described here are generally
much greater (1,000s of ha to 1,000s of kmz) than those associated with direct
anthropogenic impacts, and the combined impacts from multiple stressors at the
ecosystem scale, like those in Cockburn Sound and Adelaide waters pose the
greatest threat to temperate seagrasses in in western and southern Australia.

Information Box: Climate Change—Increases in Extreme Events
Shark Bay Seagrass Defoliation—Marine Heatwave of 2011

In summer 2011, the west coast of Australia was affected by a marine heat
wave that elevated sea temperatures 2—4 °C higher than normal over several
weeks, resulting in coral bleaching, macroalgal mortalities, and fish kills over
much of the coast (Wernberg et al. 2013). In Shark Bay, temperate species,
Amphibolis antarctica and Posidonia australis are the dominant seagrasses,
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although they are towards the northern limits of their geographical distribu-
tion. Tropical species of the genera Cymodocea, Halodule and Halophila are
found growing with these temperate species.

Defoliation of A. antarctica meadows was observed baywide but was
more extreme in areas of high turbidity, driven either by detrital pools across
the whole Shark Bay System as well as riverine particulates in floodwaters
from the Wooramel River. A. antarctica was susceptible to decreases in light
availability when combined with higher temperatures, presumably due to
increased respiratory demand with no ability to increase photosynthesis to
match (Walker and Cambridge 1995). The small, tropical seagrass species, H.
uninervis was unaffected by the combined flooding and warming event as it is
adapted to higher water temperatures. In addition, high seed production and
dormancy in the sediments in this seagrass would be well suited to increases
in frequency and intensity of disturbance events like marine heatwaves and
riverine flooding.

Fig. 3.9 Healthy meadows
of Amphibolis antarctica in
Shark Bay (top) and
defoliated meadow after 2011
marine heatwave (bottom) on
the Wooramel Bank, Shark
Bay Western Australia
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In the eastern gulf, defoliation of Amphibolis antarctica increased with
proximity to floodwaters originating from the Wooramel Delta (Fraser et al.
2014). In March, two months after the combined effects of high water tem-
peratures generated by the marine heatwave 2011 and flooding from extreme
weather, plants were either totally or showed a high level of defoliation
within 15 km of the Wooramel river mouth (Fig. 3.9) and plants subse-
quently died. Above-ground (leaf) biomass 2 years later was only 7-20% of
that recorded before the 2011 marine heatwave.

Similarly, in the L’Haridon Bight, Monkey Mia and Peron Peninsula
meadows, wide-scale defoliation of A. antarctica and death of meadows was
clearly observed 1 year after the marine heatwave. Percent cover of A.
antarctica declined from median values of 65% to less than 10% in
L’Haridon Bight (31 sites), 80% to <10% in sites at Monkey Mia (42 sites),
65% to <5% on the eastern Peron Peninsula (20 sites), and 65-25% on the
eastern Peron Peninsula including Denham (20 sites) (Thomson et al. 2015).

Defoliation of A. antarctica was a bay-wide phenomenon. The greatest
effects were seen in shallow areas nearshore, at depth, and in turbid waters.
The loss of a major foundation species across such a wide region in Shark
Bay has already affected seagrass dependent marine organisms with a decline
in health status of the herbivorous green sea turtle, Chelonia mydas, evidence
that there were long-term community-level impacts to Shark Bay from the
marine heatwave (Thomson et al. 2015).

The other major seagrass, Posidonia australis did not show defoliation
across the bay, but 100% seed abortion was observed from flowering in the
Western Bay and Peron Peninsular (Sinclair et al. 2016). Flowers developed
pericarp (fruit) but these were all empty, containing aborted embryos.
Successful reproduction has only recently been observed in 2016.

Given the ecological importance of A. antarctica in Shark Bay, accounting
for 85% (~3700 km?) of the total cover of seagrasses (Walker et al. 1988),
predicted increases in the frequency and magnitude of marine heat waves and
floods will have catastrophic implications for these seagrass ecosystems at the
northern extremes of their distribution. Also, a recent assessment of tropi-
calisation of temperate and tropical seagrasses ecosystems along the Western
Australian coastline predicted that the temperate seagrasses A. antarctica and
P. australis would contract in geographical distribution southward between
200 and 400 km by 2100 (Hyndes et al. 2016). Although this range con-
traction prediction is limited as it based only on published physiological
optima and limits in temperature for these seagrasses, and thus did not take
into account acclimation and adaptation to higher temperatures in these
species, it does give a dire early warning of the future for temperate sea-
grasses that are already at their range limits.
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3.5 Emerging Threats and Management Issues

With coastal development, eutrophication, extreme climate events and global
warming, seagrasses in this region face a future of risk from multiple stressors at the
ecosystem scale. The anthropogenic threats which have been responsible for many
of the reported cases of localised seagrass loss are shown in Table 3.3. We expect
increased human development of the coastal zone and associated effects of over-
fishing, physical destruction, and seagrass loss from eutrophication, increased tur-
bidity, and other pollutants to continue to be a risk to seagrass in this region,
however it is now combined with climate-related changes which have the potential
to affect very large areas. Seagrasses exposed at low tide may be threatened by
climate change (c.f. Seddon et al. 2000) and sea-level rises, particularly if hardening
of coastlines occurs to protect infrastructure. Climate change also will bring
changes in the frequency, seasonal timing and severity of storms and storm surges
that threaten to physically remove seagrasses from shallow subtidal coastal areas.
Estuarine seagrasses may be lost in some areas due to reductions in freshwater
flows associated with climate change. Subsequent increases in salinities associated
with evaporation in some shallow systems may be beyond the physiological tol-
erances of seagrasses (as already observed in The Coorong).

Invasive pest species, including Caulerpa taxifolia and C. racemosa that are
already established in the Port River region of eastern Gulf St Vincent, South
Australia, and may threaten seagrasses as documented in other parts of the world
(De Villele and Verlaque 1995). C. racemosa has also been observed within sea-
grass beds in the Leschenault Estuary, Western Australia (Department of Water and
Environmental Regulation, unpublished data).

Disturbance of the natural hydrological and detrital cycles, through coastal
development and construction of marinas, has been a realised management issue in
the last decade in Western Australia. The highly productive seagrass meadows of
Geographe Bay, and the annual detritus they produce, caused a significant man-
agement issue following the construction of Port Geographe. Breakwaters which
were designed to prevent sand bar formation at the harbour entrance, actually
became a very efficient trap of seagrass wrack (estimates of 100,000 m?, several
metres high and 1-2 km in length) (Pattiaratchi et al. 2015). Loss of beach access
and hydrogen sulfide generated from decaying seagrass wrack caused issues for
local residents. The breakwater, seawall and entrance channel were eventually
reconfigured at a cost of $28 million in 2015 to address the problem caused by the
initial development (http://www.transport.wa.gov.au/portgeographe).

3.6 Summary

The southern and southwestern Australian marine environment is a region of unique
biodiversity. The future of seagrasses in this region depends more than ever on
smart and effective management preventing the impacts of major and emerging
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threats. Other than the loss of seagrass due to coastal development, the greatest
threat to temperate seagrasses of this region is from climate and oceanographic
events, such as heat waves. Indeed these climate associated losses occur at spatial
scales that surpass those of the direct anthropogenic impacts. However, the future
for effective management of seagrass is also brighter than ever, with increased
understanding of recruitment bottlenecks, restoration options and aspects of sea-
grass resilience.
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