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18.1	 �Introduction

The current volume of research articles published every year is in continuous growth 
and it has become virtually impossible for physicians, even when they are focused 
on more specific fields, to keep up with the enormous amount of research data. The 
major reason for conducting a review is that large quantities of information must be 
simplified into palatable parts for understanding.

There are different types of reviews. Not all review articles are systematic 
reviews and not all systematic reviews are followed by a meta-analysis. Reviews 
that do not use planned scientific methods to search, collect, and summarize 
information are not systematic reviews. They usually are traditional narrative 
reviews, where there are no clearly specified methods of identifying, selecting, 
and validating information included from multiple studies. Once systematic 
reviews have been performed, only a subset of them will include statistical meth-
ods to quantify and combine the results from independent studies, which we call 
meta-analysis.

Commonly in oncology, there are controversies about the real value of interven-
tions. It is, therefore, important to recognize potential biases and also to establish as 
accurately as possible the actual differences between the strategies being evaluated. 
Summarizing the evidence facilitates the interpretation of the results, and makes it 
possible to identify whether the claimed statistically significant benefits are also 
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clinically relevant. For this reason, systematic reviews are needed to refine the 
unmanageable amounts of information found in electronic databases, separating the 
insignificant, unsound, or redundant deadwood in the literature from the studies that 
are worthy of reflection [1], and then using the processed information for different 
purposes, such as to:

•	 Make recommendations for clinical practice and guidelines
•	 Establish the state of existing knowledge (useful when applying for grants)
•	 Clarify conflicting data from different studies
•	 Highlight areas where further original research are required.

Also, many times, a meta-analysis can add better quality evidence to the current 
medical literature. For instance, after pooling together many underpowered negative 
studies, a meta-analysis can finally give us the answer that each study alone was 
unable to provide. However, if not done properly, a meta-analysis can lead to bias 
(metabias). In addition, systematic reviews have become impressively more com-
mon [2]. Therefore, it is crucial that physicians become familiar with interpreting 
this kind of work; the best way to do this is to gain understanding of the key points 
needed to perform such work.

18.2	 �How to Plan a Systematic Review

The first step in performing a systematic review is to define the research question. 
However, to avoid waste of time or duplication of efforts, it is important to search 
for published and ongoing systematic reviews which might have already answered 
the same question or are aiming to do so. This search can be made in specific data-
bases, such as the Cochrane Library (http://www.cochranelibrary.com) and 
PROSPERO (www.crd.york.ac.uk/PROSPERO). General databases (e.g., 
MEDLINE and EMBASE) should also be searched.

After the research question has been decided and the need for a new review has 
been confirmed, a protocol should be registered in public databases (such as 
Cochrane and PROSPERO). A written protocol defines the study methodology and 
sets the inclusion/exclusion criteria for trials, literature searches, data extraction and 
management, assessment of the methodological quality of individual studies, and 
data synthesis. As for any clinical study, the systematic review protocol must be 
designed a priori. Although the majority of oncology medical journals do not require 
an a priori registered protocol, we believe this is necessary to minimize the risk of 
systematic errors or biases being introduced by decisions that are influenced by the 
findings.

Ideally, a systematic review and its protocol are planned and conducted by a team 
with multiple skills. A team leader should coordinate and write the final report. A 
medical oncologist with clinical practice is needed to clarify issues related to the 
chosen topic. Reviewers are required to screen abstracts, read the full text, and 
extract the data. A statistician can assist with data analysis. Frequently, researchers 
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accumulate different functions, but a well-planned team helps to reduce the risk of 
errors; a team of at least three people is needed.

18.2.1	 �Framing the Question

As mentioned above, the beginning of a systematic review occurs through building 
a good clinical question. A well-formulated question usually has four parts: the 
population, the intervention; the comparison intervention; and the outcome. This 
question structure is known by the acronym PICO (Problem/Patient/Population, 
Intervention/Indicator, Comparison, Outcome). The PICO framework helps to iden-
tify key concepts of the question, and should be sufficiently broad to allow examina-
tion of variation in the study factor (e.g., intensity or dose regimen) and across 
populations. An example of a good and straightforward clinical question using the 
PICO framework can be found in a published systematic review [3] and is detailed 
below:

–– P: metastatic colorectal cancer patients receiving first-line systemic palliative 
treatment

–– I: complete stop of treatment
–– C: continuous treatment until disease progression
–– O: overall survival.

Therefore, the question is: “Does complete stop of treatment in the first-line pal-
liative setting of metastatic colorectal cancer patients impact overall survival?” Note 
this final question allows the inclusion of different regimens, durations, and intensi-
ties, and makes it possible to evaluate only the strategy of concern. The decision of 
how broad or narrow a clinical question to use is based on clinical judgment. A 
“narrower” question may not be clinically useful and can result in false or biased 
conclusions. On the other hand, broad questions may pool together studies too dif-
ferent to be combined (“apples with oranges”) and make the search process more 
difficult and time-consuming.

Framing the question is not only the first step of a systematic review. It is also the 
most important, since it will have a direct impact on the inclusion and exclusion 
criteria used to select studies, the development of the search strategy, and the main 
data to be abstracted.

18.2.2	 �Searching the Evidence

It is easy to find a few relevant articles by a straightforward literature search, but the pro-
cess becomes progressively more challenging as we try to find more “hidden” trials.

Systematic reviews of interventions require a thorough, objective, and reproduc-
ible search of a range of sources to identify as many relevant studies as possible. 
A search of PubMed/MEDLINE alone is not considered adequate. It is known that 
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only 30% to 80% of all known published randomized trials are identifiable using 
MEDLINE [4]. In the field of oncology, it is critical to search electronic databases 
such as MEDLINE and EMBASE, but also databases from clinical trials, and sum-
maries as the Cochrane Library. However, searching the LILACS database is irrel-
evant in systematic reviews in oncology [5].

It is essential to define in advance structured and highly sensitivity search strate-
gies for the identification of trials in each database. These strategies should be 
described later in the formal article, to allow reproducibility. There are no magic 
formulae to make all of the process easy, but there are some standard tactics which 
could be helpful.

A central tactic for a good literature search in the electronic databases is to take a 
systematic approach to breaking down the review question into components, which can 
be combined using “AND” and “OR” terms. Using the example above, in the review 
evaluating “Does complete stop of treatment in the first-line palliative setting of meta-
static colorectal cancer patients impact overall survival?”, the key components:

•	 (colorectal neoplasms AND maintenance chemotherapy) represent the overlap 
between these two terms and retrieve only articles that use both terms. A PubMed 
search using these terms retrieved 279 articles (at the time of all searches, in 
April, 2017: new citations are added to the PubMed database regularly).

•	 (colorectal neoplasms AND (maintenance chemotherapy OR intermittent che-
motherapy)) represents a broader search, which includes other possible terms in 
the articles that can describe the strategies. A PubMed search using these terms 
retrieved 513 articles.

•	 (colorectal neoplasms AND maintenance chemotherapy AND intermittent che-
motherapy) represents the small set where all three terms overlap. A PubMed 
search using these terms retrieved only 13 articles.

•	 (colorectal neoplasms AND (maintenance chemotherapy OR intermittent che-
motherapy) AND random*) combines the term random*, which is the shorthand 
for words beginning with random, e.g., randomized, randomization, randomly. A 
PubMed search using these terms retrieved 20 articles.

Although the overlap of all three terms will usually have the best concentration 
of relevant articles, this strategy will probably miss many relevant studies. The ideal 
search strategy combines precision with sensitivity.

Usually, the initial strategy will inevitably miss useful terms, and the search pro-
cess will need to be repeated and refined. However, the results of initial searches are 
used to retrieve the initial relevant papers, which can be used in two ways to identify 
missed trials:

•	 The bibliographies of the found articles can be checked for articles missed by the 
initial search;

•	 A citation search, using the Science Citation Index, can be conducted to identify 
papers that have cited the identified studies, some of which may report subse-
quent primary research.
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The missed paper can provide clues on how the search may be broadened to 
capture further papers, sometimes using other keywords. The whole process may 
then be repeated using the new keywords identified.

It is important to remember that studies are conducted in all parts of the world, 
and may be published in different languages. Ideally, a systematic review should 
include all relevant studies, irrespective of the publication language. Including arti-
cles written only in English would lead to greater biases, as positive studies con-
ducted in countries where English is not the state language are more likely than 
negative ones to be submitted to an English-language journal. This increases the 
usual publication bias with an additional “tower of Babel” bias.

Having a reviewer who has good experience with databases is crucial for build-
ing an efficient literature search. But the use of multiple strategies is important to 
track down all relevant articles. As the whole process is complex and has a high risk 
of loss due to fatigue, it is fundamental that the literature searches should be done 
by two researchers, independently.

Duplicate publications and reports should be handled with caution. Systematic 
reviews have studies as the primary units of interest and analyses. However, a single 
study may have more than one report about the results. Each report should be ana-
lyzed and each may contribute useful information for the review. Thus, no publica-
tion should be discarded solely because of duplication. However, only the most 
complete or most recent data should be used in the final analyses, and the duplicates 
should be highlighted in the flowchart of paper selection.

18.2.2.1	 �Publication Bias
As one could expect, it has been demonstrated that statistically significant findings 
have a higher likelihood of being reported than non-significant ones [6–9]. Because 
of such publication bias, potentially relevant studies could be missing from a 
meta-analysis.

There are different ways to assess whether publication bias is present in a 
meta-analysis. The most commonly used methods are based on funnel plot asym-
metry [10–12] (Fig. 18.1). In a funnel plot, each study’s treatment effect (shown 
on the x-axis) is plotted against a measure of that study’s size or precision, usually 
using the standard error of the treatment effect on a reverse scale (shown on the 
y-axis). The name “funnel plot” comes from the fact that the accuracy of the esti-
mate of the effect increases as the sample size increases. Thus, in the absence of 
publication bias, the studies will be dispersed in a symmetrically inverted funnel 
format. Studies with smaller sample sizes, which lack power and precision, will 
usually be spread at the bottom. As larger studies are published, the effect esti-
mate tends to remain the same, due to the increasing accuracy, configuring the 
vertex of the funnel. Nevertheless, there are points of criticism about this method. 
First, some authors have argued that the visual interpretation of funnel plots is too 
subjective to be used [13]. Second, other explanations for asymmetry include het-
erogeneity and methodological anomalies. Finally, as Sterne et al. [14] suggest, 
the number of studies required to test selection bias by funnel plot should be ten 
or larger.
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18.2.2.2	 �Gray Literature and Hand-Searching
To minimize the risk of selection bias, it is crucial to find all important data, and also 
to critically evaluate all existing pieces of evidence, including gray literature, which 
can be defined as unpublished studies or studies that are not commercially pub-
lished and, therefore, are not indexed in the relevant databases [15]. In oncology, the 
more common sources of gray literature are regulatory information (The United 
States Food and Drug Administration [FDA] and the European Medicines Agency 
[EMA]), trial registers (clinicaltrials.gov), and conference abstracts. The Scopus 
and EMBASE databases usually provide unpublished works presented at the main 
oncology conferences. Other examples of gray literature are book chapters, pharma-
ceutical company data, letters, dissertations, and theses.

It has been shown that published papers, compared with gray literature, yield 
significantly larger estimates of the intervention effect [15–18]. Therefore, many 
argue in favor of including studies from the gray literature in order to more precisely 
estimate the intervention effect. On the other hand, unpublished studies and studies 
published in the gray literature lack peer review and might be incomplete, which 
raises concerns regarding their methodological quality, leading others to question 
whether they must be included in a meta-analysis. Despite the controversy, the 
acceptance of gray literature in systematic reviews by researchers and editors is 
increasing [19, 20] and guidelines for reporting systematic reviews, such as PRISMA 
[21, 22], AMSTAR [23], and Cochrane [24] recommend that researchers should 
identify and include all reports, gray and published, that meet the predefined inclu-
sion criteria.

Following the same reasoning as that for searching gray literature, it is suggested 
that a “hand-search” be performed of the references in the included studies or those 
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Fig. 18.1  Two 
hypothetical scatter plots 
of measure of study size 
vs. measure of treatment 
effect, known as funnel 
plots. Each dot represents a 
study. (a) Symmetrical 
funnel plot, suggesting 
absence of publication 
bias. (b) Asymmetrical 
funnel plot, with an 
apparent absence of studies 
with non-significant hazard 
ratios (HR ~ 1.0). Adapted 
from Sterne JA, Egger 
M. Funnel plots for 
detecting bias in meta-
analysis: guidelines on 
choice of axis. J Clin 
Epidemiol. 2001;54 
(10):1046–55
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in previous reviews. This action can be useful in identifying eligible articles that 
may not have been retrieved by the search strategy.

18.3	 �Dealing with Data

18.3.1	 �Extracting the Data

For most systematic reviews, data collection forms are essential for dealing with 
published or presented studies. The data collection form is not reported itself, but it 
is a bridge between what is reported by the original researchers and what is ulti-
mately reported by the reviewers. A good form should include details about the 
identification of trials, the inclusion/exclusion criteria, risk of bias, methodological 
aspects of trials, and, finally, data for inclusion in the analysis. Because each sys-
tematic review is different, data collection forms will vary across reviews.

It is highly recommended that more than one reviewer extract data from each 
report, to minimize errors and reduce potential biases that could be introduced by 
review authors. It has already been shown that, although single data extraction 
requires less time and fewer human resources, it generates more errors [25]. Special 
attention should be given to endpoints involving subjective interpretation. 
Disagreements between reviewers should be recorded and described in the final 
publication.

When studies are reported in more than one publication or presentation, the data 
should be extracted from each report separately, and afterward the reviewers should 
combine information across multiple data collection forms.

Frequently, overall survival (OS) and other time-to-event outcomes (such as 
progression-free survival or disease-free survival) are evaluated in oncological sys-
tematic reviews. These endpoints are best evaluated using the hazard ratio (HR) 
[26], which is presented with the respective confidence interval (CI). Dichotomous 
data (such as response rates and adverse events) are usually analyzed using the odds 
ratio (OR). More rarely the risk ratio (RR) can also be presented.

Sometimes HRs are not presented for OS analyses. However, in almost all cases 
it is possible to calculate estimates by transcribing the survival curves presented or 
by using other original data with a spreadsheet developed by Tierney et  al. and 
available online [27]. Continuous outcomes, with mean values and standard varia-
tion, are not frequent in oncology trials.

18.3.2	 �Assessing the Risk of Bias

It is important to understand that, whereas in a clinical study the individual is usu-
ally a patient, in a systematic review with/without meta-analysis the individual is 
a study. Therefore, one pitfall of systematic reviews and meta-analysis is that they 
are subject to the validity and quality of the studies included. In fact, one can 
apply a common concept of computer science called “garbage in, garbage out”, 

18  Systematic Reviews and Meta-Analyses of Oncology Studies



294

where the quality of the output (results from a meta-analysis) is determined by the 
quality of the input (included studies). Therefore, all studies that meet the eligibil-
ity criteria for the systematic review must have their methodological quality 
assessed on an individual basis. Problems with the design and execution of indi-
vidual trials raise questions about the internal and external validity of their find-
ings and there is evidence to conclude that biases are introduced into the results of 
a meta-analysis when the methodological quality of the included studies is inad-
equate (even when they are randomized controlled trials) [28]. “Study quality” 
and “risk of bias”, will be used here as synonymous, although the Cochrane 
Collaboration favors “risk of bias” instead of “quality”, as “an emphasis on risk of 
bias overcomes ambiguity between the quality of reporting and the quality of the 
underlying research” [24].

The issues of quality assessment are not always related to the design of the trial. 
Often the trials are just poorly described. In fact, whenever we face an article, we 
are almost never able to find out how well the study was performed. The only infor-
mation available for making a judgment regarding a study’s risk of bias is the way 
that it was reported. In other words, we are only able to evaluate how well it was 
reported. For instance, we are usually not able to evaluate the quality of study pro-
cedures, protocol violations, or whether there was any data fabrication or falsifica-
tion, simply because this information is not usually reported.

Currently, a large number of tools are available for assessing the methodological 
quality of studies (e.g., the Cochrane tool [29], Jadad [30], and Delphi [31], among 
others). A meta-analysis may include only high-quality trials; alternatively, a sensi-
tivity analysis (see Sect. 18.4.4) can be done according to the quality of the trials. 
Each tool has its own instructions, and a detailed description of each one is beyond 
the scope of this chapter. Items described under the following headings are general 
concepts of the key methodological subjects often assessed by these tools (discussed 
more deeply in Chap. 10).

18.3.2.1	 �Randomization and Allocation Concealment
The included article should report whether randomization was done, and if so, the 
method used. Random numbers tables, computer random number generators, and 
stratified or block randomization or minimization are considered to be methods 
with a low risk of bias. The use of date of birth or date of visit/admission (e.g., even 
or odd dates) is at high risk of bias. Allocation concealment is responsible for 
maintaining the effect of randomization in preventing selection bias. The article 
should report the allocation concealment method. Methods that adequately prevent 
investigators from predicting the type of group to which the patients were allo-
cated, such as central allocation (e.g., phone, web, or pharmacy), are considered as 
having a low risk of bias. Trials in which randomization is inadequately concealed 
are more likely to show a beneficial effect of the intervention [32]. After analyzing 
102 meta-analyses that examined 804 trials, of which 272 (34%) had adequate 
allocation concealment, Wood et al. showed that trials with unclear or inadequate 
allocation concealment tended to show a more favorable effect of the experimental 
treatment [33].
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18.3.2.2	 �Blinding/Masking
Low risk of bias means that it is unlikely that the blinding could have been broken or, 
in the case of an open trial, that the outcome would not be influenced by an inclusion 
of blinding. Although the lack of blinding has little or no effect on objective outcomes 
(such as death/OS), it usually yields exaggerated treatment effect estimates for subjec-
tive outcomes (such as pain levels). Wood et al. also showed, based on 76 meta-anal-
yses examining 746 trials, of which 432 (58%) were blinded, that intervention effects 
can be exaggerated by 7% in non-blinded compared with blinded trials [33].

18.3.2.3	 �Losses to Follow-Up/Exclusions/Missing Data
Incomplete outcome data are due to patient dropouts or exclusions and there are a 
number of reasons why they occur. It is assumed that the higher the proportion of 
missing outcomes, or the larger the difference in proportions between the groups, 
the higher is the risk of bias. Also, there is the theoretical risk that investigators 
could have excluded patients to favor the experimental intervention. In addition, all 
randomized patients must be included in the analysis (“intention-to-treat analysis”), 
which means that a patient who did not receive the intervention, as mandated by 
protocol, for any reason should not be excluded from the final analysis.

18.3.3	 �Qualitative Analysis

Although not all systematic reviews have a meta-analysis, they do all have a qualita-
tive analysis, which is presented in the “Results” section of a systematic review. A 
qualitative analysis usually begins by describing the search process, illustrated by a 
flow chart, specifying the databases and the number of records retrieved, and giving 
reasons why studies were excluded. This description gives the reader an idea of the 
comprehensiveness of the search strategy and increases the internal validity of the 
review.

It is also during the qualitative analysis that the authors highlight the clinical and 
methodological characteristics of the included studies, including their size, design, 
inclusion/exclusion of important subgroups, strengths, and limitations, and the rela-
tionships between the study characteristics and the authors’ reported findings. All 
data of interest extracted from each included study, regardless of the number of 
articles eligible, should be compiled in the form of Tables, making it easier for the 
reader to have an overview of the studies’ main characteristics, including some kind 
of clinical heterogeneity among the studies.

18.4	 �Meta-Analysis: Summarizing Results Across Studies

They may seem complex, but all commonly used methods for meta-analyses follow 
some common principles. Meta-analysis is basically a two-stage process. In the first 
stage, a summary statistic is calculated for each trial, to describe the observed inter-
vention effect, which is based on the type of variable (Table 18.1). In the second 
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stage, a pooled intervention effect estimate is calculated as a weighted average of the 
intervention effects estimated in the individual trials. The weights of each study are 
chosen to reflect the amount of information that each trial contains, correlated with 
the sample sizes and dispersion of data; the weights are based on the analysis model 
(fixed-effect model vs. random-effects model) and the statistical method chosen.

18.4.1	 �Fixed-Effect Model Vs. Random-Effects Model

The fixed-effect model is based on the mathematical assumption that there is a sin-
gle common treatment effect (one true effect size) across the studies, and the differ-
ences among the effect estimates of each study are attributed merely to chance or 
type-II errors. If all studies were infinitely large, they would share the same esti-
mates of effect. Therefore, if you consider that all included studies are functionally 
identical, and have very similar populations and the same experimental and control 
interventions, a fixed-effect model may be applied. This model will compute the 
common effect size for this specific population in a more precise manner than the 
random-effects model, but you should not extrapolate your findings to other popula-
tions. This is a rare situation in oncology.

In contrast to the fixed-effect model, the random-effects model assumes that the 
true effect of the intervention might be different across the studies. This model 
allows that the true effect size may differ from study to study by chance. This is the 
reason why the word “effect” is singular in “fixed-effect model” (one true effect) 
and plural in “random-effects model” (multiple true effects). The random-effects 
method will usually provide an estimate of the effect with less precision (i.e., with 
a wider CI), which can be considered a more conservative approach and is indicated 
in the vast majority of meta-analyses. A recent review of systematic reviews in 
oncology showed that the random-effects model was underused [34].

Statistically speaking, when using a fixed-effect model, you are pooling together 
the observed effects from each study (the data you extract from articles) and com-
bining them to make your best guess of what the true common effect they all share 
really is. Again, if each study was perfect and infinitely large, the observed effects 

Table 18.1  Types of 
variables and their corre-
sponding measures of effect

Type of variable Effect measures
Dichotomous Risk ratio (relative risk)

Odds ratio
Risk difference

Continuous Mean difference (difference in means)
Standardized mean difference

Ordinal Proportional odds ratios
Same as dichotomousa

Same as continuousa

Time-to-event Hazard ratio
aIn practice, longer ordinal scales are often analyzed as con-
tinuous data and shorter ordinal scales are often made into 
dichotomous data by combining adjacent categories together
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of each study would be the same and equal to the true effect (Fig. 18.2a). The differ-
ence between the observed effects in each study from the one common true effect 
they all share is due only to random errors inherent to each study. Therefore, the 
fixed-effect model has only one source of variance: the within-study variance. In 
contrast, in a random-effects model, there are two sources of variance: the within-
study variance and the between-study variance. The latter is represented by τ2 (Tau-
square). The weight each study receives is (often) the inverse of variance (see Sect. 
18.4.2.1). However, while in the fixed-effect model the variance has one compo-
nent, the random-effects model has two [35]. Therefore, statistically, the only differ-
ence between the fixed and random models is how your software weights each 
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Fig. 18.2  Differences between fixed- and random-effects models. (a) The difference between the 
observed effect (filled square) and the combined true effect has one component in the fixed model 
and two in the random model. (b) This fact leads to one source of variance in the fixed-effect 
model, while the random-effects model has two sources. (c) Example of fixed-effect and random-
effects meta-analyses with the same studies. The impact of the method chosen on the weight of 
each study results in significant differences in the sizes of the squares and the width of the dia-
monds. Adapted from Borenstein M et al. A basic introduction to fixed-effect and random-effects 
models for meta-analysis. Res Synth Methods. 2010;1 (2):97–111
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study. The weight equals the inverse of the variance in both models, but the variance 
is further modified by the between-study variance in the random-effects model by 
using τ2 (Tau-square). Note that, as the meta-analysis shown references in Fig. 18.2c 
used the random-effects model, the Tau-square was shown (it would be absent in the 
case of a fixed-effect model).

18.4.2	 �Statistical Methods

A number of available statistical methods are used to weight effect estimates among 
the studies included in a review and to pool them together. Three of the most com-
mon methods are are outlined below.

18.4.2.1	 �Generic Inverse-Variance Method
The generic inverse-variance method is one with high applicability because it combines 
any effect estimates that have the standard error reported. This method can be used to 
combine dichotomous or continuous data and for fixed- and random-effects models.

Mathematically, variance is the square of the standard error. In turn, standard 
error describes the extent to which the estimate may be wrong owing to random 
error. The bigger the sample size of a study, the smaller are both the variance and the 
standard error. The inverse-variance method assumes that the variance is inversely 
proportional to the importance of the study; that is, the lower the variance, the more 
weight will be attributed to this study.

18.4.2.2	 �Mantel-Haenszel Method
When the data of the studies are scarce in terms of events and/or the studies have 
small sample sizes, estimates of the standard errors of the effect by inverse variance 
methods may be poor. In such situations, the Mantel-Haenzel method is preferable, 
since it uses a different model of weight assignment from that used for the inverse 
of the variance. This method is used only for dichotomous data, but can be used for 
both fixed- and random-effects models.

18.4.2.3	 �Peto Odds Ratio Method
This method is used only for dichotomous data that used the OR as an effect mea-
sure and only for the fixed-effect model. It is an alternative to the Mantel-Haenszel 
method, and is preferable when the two treatment arms have roughly the same num-
ber of participants and the treatment effect is small (ORs are close to one) but sig-
nificant, which is a common situation in oncology.

18.4.3	 �Assessing Heterogeneity

As the different included studies are not conducted according to the same protocols, 
they will differ in at least a few aspects. Therefore, a certain level of heterogeneity 
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across studies is usually present, and it can be clinical, methodological, or 
statistical:

–– Clinical heterogeneity is due to variability in the included population (e.g., 
participants’ age, performance status, and prior treatments), variability in 
interventions (different drugs, different dose reduction management of the 
intervention), and variability in outcome (different definitions of an 
outcome).

–– Methodological heterogeneity is due to variability in the risk of bias and/or vari-
ability in study design.

–– Statistical heterogeneity is the variation in the treatment effects of the interven-
tion being evaluated across the studies, i.e., the observed intervention effects are 
more different from each other than one would expect due to random error 
(chance) alone. Statistical heterogeneity arises as a consequence of clinical and/
or methodological heterogeneity.

Graphically, statistical heterogeneity is presented as CIs from each study with 
poor overlap. There are statistical tests that can evaluate the heterogeneity 
between studies. The Chi-square (χ2, Chi2, or Q) is one of these tests and it mea-
sures how much the difference between effect measures is attributable to chance 
alone. However, this test has some expressive limitations, such as not being suf-
ficiently powered to detect heterogeneity when few studies are included or when 
the studies have insufficient sample sizes. Also, as clinical and/or methodologi-
cal variability often exists [36], some authors argue that detecting statistical het-
erogeneity could be pointless, since it will be present regardless of whether a 
statistical test is able or not able to detect it [37]. Therefore, quantifying the 
heterogeneity may be more useful than simply defining whether it is present or 
not. The Higgins (or I2) inconsistency test describes the percentage of variability 
in the estimate of effect that is attributed to heterogeneity rather than chance. 
There are different recommendations on how interpret the result of an I2 test. We 
suggest the following [37]:

•	 0–25%—mild, acceptable heterogeneity
•	 25–50%—moderate heterogeneity
•	 > 50%—high heterogeneity.

When heterogeneity is found, the authors have some options to deal with it:

–– Use sensitivity analysis, subgroup analysis, or meta-regression.
–– Do not perform a meta-analysis. The authors should only combine studies that 

are similar enough to be comparable. Although such decisions require qualita-
tive judgments, when heterogeneity is significant and cannot be explained by 
any sensitivity analysis, the performance of a meta-analysis is not 
recommended.

18  Systematic Reviews and Meta-Analyses of Oncology Studies



300

18.4.4	 �Sensitivity and Subgroup Analyses and Meta-Regression

Sensitivity analysis involves repeating the meta-analysis after removing one or a 
few studies that met the included criteria. Any source of heterogeneity can be the 
subject of sensitivity analysis to explore its possible influence on the estimation of 
the effect. Also, sensitivity analysis can be done to find the source of statistical het-
erogeneity. It is also particularly useful for dealing with outliers, which often over-
estimate the effect of the intervention.

Subgroup analysis involves dividing studies, or the studies’ participants, into 
subgroups according to clinical or methodological characteristics they share. 
Subgroup analysis of subsets of participants is almost always only possible in indi-
vidual patient data meta-analysis (see Sect. 18.5). Although each subgroup can be 
more homogeneous than the entire group, the reader must be aware that subgroup 
analysis has limitations. First, it decreases the power of the analysis, since each 
subgroup has fewer studies and patients than the total of the subgroups, which can 
lead to a false-negative result in a subgroup. Second, the higher the number of sub-
groups analyzed, the greater will be the likelihood that one of them yields false-
positive results. Finally, splitting patients from different studies into subgroups is 
not based on randomized comparisons, i.e., several other variables may be different 
and not balanced among patients in a subgroup and, hence, the findings may be 
misleading.

Meta-regression is a statistical test, similar to multiple regression, which aims to 
predict the effect estimate according to the characteristics of studies. The advantage 
of meta-regression over subgroup analysis is that the effect of multiple factors that 
might have modified the effect estimate can be analyzed simultaneously. However, 
the number of variables that can be considered to explain effect changes is limited 
by the number of studies available. Because of this, the Cochrane handbook recom-
mends that “meta-regression should generally not be considered when there are 
fewer than ten studies in a meta-analysis.” [24].

18.4.5	 �Understanding a Forest Plot

The most usual and informative way to present the results of a meta-analysis is in 
the form of a graph called a forest plot. This presentation shows the effect estimate 
and the CI for each study and for the meta-analysis, in addition to allowing rapid 
inspection of the studies’ data and the conclusion of the meta-analysis. Different 
statistical software can yield forest plots with few differences. Also, the same soft-
ware is capable of generating forest plots with different information, depending 
mainly on the type of data and the measure of effect used, as well as what the stat-
istician wants to show. However, all forest plots share the same concepts of 
presentation.

For didactic purposes, we divided our forest plot [38] into three zones 
(Fig. 18.3a). In Fig. 18.3a, for zone 1, each line corresponds to a study, which is 
usually identified in the first column by author name and year of publication or 
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the study’s acronym. The information in the next columns may vary depending 
on the type of data. In our example we listed the event rates of each study (num-
ber of events in the total of patients in the intervention and control groups). If the 
meta-analysis had analyzed diagnostic tests, for instance, the forest plot could 
inform you of the true positives and true negatives instead. The second and third 
columns in Fig. 18.3a show the weight and the effect estimate of each study (the 
study’s result), along with each study’s corresponding 95% CI. The weight is 
related to the area of the squares in zone 2. The study estimate with it’s corre-
sponding 95% CI determines the position where the squares are and the width of 
the line on both sides. Usually, the bigger the square the smaller the lines. The 
meta-analysis (the overall effect estimate) is the black diamond that appears 
below the estimates of the included studies, where its edges correspond to its 
95% CI. It is related to the last line of zone 1 (shown in bold).

LHRH
Study or subgroub
Badawy 2009
Gerber 2011
Del mastro 2011
Munster 2012

Elgindy 2013
Moore 2015

Total (95% CI)
Total events

Test for overall effect: Z = 3.16 (P= 0.002)

322 242
Heterogeneity: Tau2 = 0.28; Chi2 = 14.13. df = 6 (P0.03);I2 = 58%

Song 2013

Events
35 39 13 39 11.5% 17.50 [5.11,59.88]

1.78 [0.62, 5.17]
1.75 [1.07, 2.88]
0.81 [0.12, 5.34]
2.08 [1.15, 3.74]
1.44 [0.42, 4.90]
3.39 [1.16, 9.94]

2.41 [1.40, 4.15]

13.5%
22.7%
6.4%

21.0%
11.5%
13.4%

100.0%

30
121
21
94
47
69

17
60
19
39
40
54

30
139
26
89
46
66

21
88
23
53
41
61

435 421

Weight M-H, Random,
Odds ratio

Year
2009
2011
2011
2012
2013
2013
2015

95% CIEventsTotal Total
agonist Control Odds ratio

M-H, Random, 95% CI

0.02 0.1
Favours control Favours LHRH agonist

Favours control Favours LHRH agonist
0.02 0.1 1 10 50

Line of no effect

Estimate and confidence
interval for each study

Estimate and confidence
interval for the meta-analysis

Direction of effect

Scale

Odds ratio

M-H, Random, 95 % CI

1 10 50

a

b

Fig. 18.3  An example of a forest plot, divided into three zones (a) for didactic purposes: the top-
left zone (1—red rectangle) provides descriptive data from each study; the right zone (2—circle) 
presents the graphical nature of the information in zone 1, and the bottom zone (3—black rectan-
gle) shows further statistical components of the forest plot. (b) Example of meta-analysis forest 
plot for interpretation. Courtesy of Munhoz et al. Gonadotropin-releasing hormone agonists for 
ovarian function preservation in premenopausal women undergoing chemotherapy for early-stage 
breast cancer: A systematic review and meta-analysis. JAMA Oncol. 2016;2 (1):65–73
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For the interpretation of the graph in zone 2 (Fig.  18.3b), in addition to the 
information above, it is important to check the scale, where we will usually find the 
direction of the effect. Here, studies that concentrate the black squares to the left of 
the solid vertical line (the line of no effect) indicate results in favor of the interven-
tion and the studies that concentrate their black squares to the right of the vertical 
line indicate results in favor of the control group. The same applies to the interpre-
tation of the meta-analysis (diamonds). If the diamonds or lines representing the 
confidence intervals of each individual study are above the vertical line of absence 
of effect, the interpretation is that there are no statistically significant differences 
between treatments, or that the meta-analysis is inconclusive. Note that, when 
dealing with RRs, ORs, or HRs, the absence of effect is represented as 1. When 
dealing with mean difference, the absence of effect will be represented as 0 (as in 
Fig. 18.2c).

In zone 3, the first line simply summarizes the total of events. The last line gives 
you the p-value of the meta-analysis. Note that, as the diamonds do not cross the 
line of no effect, an overall effect p-value <0.05 is expected if the CI is defined as 
95%. The second line shows data regarding heterogeneity analysis (see Sect. 18.4.3).

18.5	 �Individual Patient Data (IPD) Reviews

Rather than extracting data from study publications, the original research data may 
be available directly from the researchers responsible for each study. Individual 
patient data (IPD) reviews, in which data are provided on each of the participants in 
each of the trials, are considered the gold standard in terms of availability of data 
[39]. IPD minimizes the risk of bias and errors resulting from inadequate censoring. 
IPD can be re-analyzed centrally and eventually also combined in meta-analyses. 
On the other hand, IPD is usually more costly and time-consuming to obtain than 
other data. In addition, sometimes the data of all studies that meet the inclusion 
criteria cannot be available and analysis of only the available data entails a risk of 
selection bias.

IPD is particularly useful in oncology, where controversial questions and small 
benefits from interventions are common, and long-term follow-up for time-to-event 
endpoints (such as OS) is usually required. Situations where publications analyses 
are based on evaluable patients (not on all patients randomized), or situations where 
the published information is inadequate or where more complex statistical analysis 
is required are also well suited for IPD.

18.6	 �How to Present a Systematic Review with Meta-Analysis

After conducting all systematic steps, before submitting or presenting a review, it is 
important to return to the original question, and assess how well it was answered by 
the found evidence. Usually, it is important to evaluate how important the study 
design flaws are in the interpretation of the meta-analysis. When further research is 
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needed, some specific suggestions can be made about specific design features (bet-
ter than a simple call for more data).

To assess the applicability of the results the authors should evaluate the inclu-
sion/exclusion criteria. But it is also important to consider how a specific group 
would differ from the general population.

Presenting a systematic review with meta-analysis is more than just showing the 
numbers. We suggest a critical assessment, weighing up the beneficial and harmful 
effects of the interventions evaluated.

The Grading of Recommendations, Assessment, Development and Evaluation 
(GRADE) Working Group presents a tool that helps to rate the certainty of the evi-
dence found and the strength of final recommendations [40, 41]. GRADEpro, which 
can be found on the web (www.gradepro.org), is free and easy to use for summariz-
ing and presenting information.

A systematic review should summarize the evidence in a clear and logical order. 
The authors can use a variety of Tables and Figures to present information, but we 
suggest following the PRISMA statement [21, 22] to improve the quality of reports.

�Conclusions
As we have seen, through a rigorous methodological process, systematic reviews 
and meta-analysis help providers to keep up with the enormous amount of 
research data, judge the quality of studies, and integrate findings. Systematic 
reviews and meta-analysis yield greater precision of effect estimates, improve 
external validity (generalizability), providing consistency of results over differ-
ent study populations, highlight the limitations of previous studies, and contrib-
ute to a higher quality of future studies. However, there are many points where 
authors should be careful in order to not add bias to their analysis and conclu-
sions. Meta-analysis of randomized controlled trials with homogeneity is con-
sidered the highest level of evidence [42], but the situation where large 
randomized trials contradict a prior meta-analysis is still a field of debate 
[43–45].
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