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Abstract. This paper describes a method and results of computational fluid
dynamics (CFD) simulation of blood flow. Material properties of blood are
assumed to be constant, homogeneous and isotropic. Blood is regarded as vis-
coplastic liquid, where two different rheological models are applied: Bingham
and Casson model. Plastic viscosity and yield stress are given as a function of
hematocrit. The flow regime is considered as laminar. Having applied rheo-
logical models to time dependent balance equations of mass and momentum
conservation given in integral form, a finite-volume method is used for dis-
cretization. Discretization results in a set of systems of linearized algebraic
equations which are solved individually, for blood velocity components and
blood pressure, at every time step within a considered time interval. The method
is applicable to domains of arbitrary shapes and unstructured computational
meshes. The examples presented include: (a) pulsatile viscoplastic flow in a pipe
representing a simplified blood vessel, where the solutions obtained with the two
rheological models are compared to the numerical and analytical solution
obtained with Newtonian liquid, as well as (b) blood flow in aorto-renal
bifurcation and carotid artery branch. In analysis of the flow in the branch, three
geometric models are tested: idealized bifurcation with the branch angle of 60°
and 90°, and a realistic shape of the bifurcation.
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1 Introduction

Investigation and understanding of the blood flow dynamics in blood vessels have
gained considerable importance in the recent years. Hemodynamic properties,
including velocity, pressure and wall shear stress, play an important role in research on
vascular systems. Occlusion as well as obstruction and blockage of the flow frequently
lead to disease, damage and fatal consequences. They arise especially in vessels of
complex geometric shapes and/or in vessels with relatively high blood flow rates,
specifically, in coronary, carotid, abdominal and femoral arteries, where also the
aforementioned flow properties exhibit strong spatial and temporal variations.
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Understanding relations between these flow properties’ variations, the blood flow and
vessel behaviour may help finding appropriate treatment and therapy.

Practically, blood flow is always time-dependent, and its dynamic nature may cause
important differences as compared to usually analysed steady-state flows. Generally, it
can be regarded as incompressible and laminar. Under circumstances, it may also be
considered as turbulent, such as in the ascending aorta, in the branch regions of large
arteries, in narrowed parts of blood vessels or around heart valves. However, its main
distinction from usual liquid flows found in natural systems and engineering applica-
tions is non-Newtonian behaviour. Unlike in commonly found fluids like water, oil,
milk or gasoline, the dependence of shear stress and shear strain rate is not linear.

This paper presents a mathematical model of blood flow which takes into account
its non-Newtonian behaviour using two different rheological models for viscoplastic
fluids: Bingham and Casson model, as well as a numerical method for its solution using
finite-volume discretization.

2 Mathematical Model and Numerical Method

Mathematical model emanates from conservation laws of continuum mechanics and
includes conservation of mass, conservation of linear momentum and conservation of
space (the latter is applied in cases where moving or deformable walls are calculated)
[1, 2]. The conservation laws apply to all fluids, and herewith they are also applicable
to blood flows.

Bingham model describes bilinear relation between the shear stress and the strain
rate, and can be written in form which delivers explicit expressions for dynamic vis-
cosity of the liquid:
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Casson model delivers a non-linear relation of shear stress and strain rate, and is
found to be appropriate to describe rheological behaviour of blood:
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where l0 is the plastic viscosity, s0 is the initial yield stress needed to initiate the flow,
II _D is the second invariant of the shear strain rate tensor D, Td is the deviatoric part of
the stress tensor, and v is the velocity vector.

Material properties of blood are assumed to be constant (except the dynamic vis-
cosity which is solution dependent, and herewith it may be variable in space and time),
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homogeneous and isotropic. The plastic viscosity and the yield stress are given as a
function of hematocrit h [3]:

l0 ¼
l0p

1� h=100ð Þ2;5 ; s0 ¼ 0:00625hð Þ2; ð3Þ

where l0;p is the viscosity of the blood plasma.
The part of space under consideration is divided into a set of adjacent,

non-overlapping cells of polyhedral shapes, building thus an unstructured numerical
mesh. The adopted constitutive relation is applied to the conservation equations of
mass and linear momentum, written in integral form for each cell in the numerical
mesh. A finite-volume discretization described by Demirdžić and Muzaferija [1] and
Ferziger and Perić [2] is then applied to convert the time-dependent integro-differential
equations into a set of non-linear algebraic equations. At every time step within a
considered time interval, the set is separated into subsystems of equations for each
solution variable: velocity components and pressure. Temporary decoupling and lin-
earization of the subsystems are performed within an iterative procedure, which also
accommodates implementation of non-linear viscosity nature described by Eqs. (1) and
(2) [4], as well as velocity-pressure linkage employing SIMPLE algorithm [5], and the
subsystems are solved sequentially in turn. Upon a convergence criterion is reached,
the solving process proceeds to the next time step.

3 Examples

3.1 Pulsatile Viscoplastic Flow in a Pipe

Time-dependent, pulsatile flow through a 40 mm long pipe with diameter of 4 mm is
calculated. Uniformly distributed axial velocity across the pipe is prescribed at the inlet,
while its temporal variation is given in form of a sine function:

u tð Þ ¼ u 1þ sin
2pt
T

� �
: ð4Þ

This form of the sine function implies that the prescribed inlet velocity is
non-negative, i.e. there is no backflow at the inlet.

The mean axial velocity value of 0.135 m/s and pulsation period of T = 0.2 s are
specified. The flow is calculated for a Newtonian liquid whose dynamic viscosity is
0.0032 Pas, as well as for a Bingham and Casson fluid, whose plastic viscosity is also
0.0032 Pas and the initial yield stress is 0.0375 Pa. A structured computational mesh
with 150 cells in axial and 20 cells in radial direction is generated.

Figure 1 shows distribution of the axial velocity of developed flow across the pipe
diameter at four distinct instants of time, calculated for Newtonian fluid flow and
compared to the corresponding analytical solution of Womersley [4]. Agreement of the
results is evident, with maximum deviation of less than 5%, implying a good accuracy
of the base model setup.
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Figure 2 shows comparison of the developed flow solutions obtained using
non-Newtonian models with that obtained using the Newtonian one. The axial velocity
distribution across the pipe diameter at four distinct instants of time is displayed again.
In the first half of the pulsation period, agreement of the investigated models is
apparent. In the second half, differences are remarkable. Particularly, the differences
obtained with Casson model in the central part of the pipe (considerably lower axial
velocity) at the time t/T = 0.875 are noticeable. In a number of published works, blood
flow is, probably for simplicity reasons, simulated as Newtonian or Bingham fluid,
although its rheologic behaviour is better described by Casson model. The here pre-
sented results clearly indicate that the choice of rheological model strongly affects the
pulsating flow solution, and may trigger inconclusive findings if the model is not
adopted appropriately.

In addition to that, the backflow near the wall is detected in the third quarter of the
pulsation period, and herewith the wall shear stress becomes negative at the location of
the extracted profile, even though the inlet velocity is non-negative. Such a dynamic
behaviour may cause additional dynamic load to the vessel wall.

numerical solu on

(a)

(b)

(c)

(d)

Fig. 1. Axial velocity profiles of a Newtonian liquid in a rigid pipe at different instants of time:
a t/T = 0.125; b t/T = 0.375; c t/T = 0.625 and d t/T = 0.875
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3.2 Pulsatile Blood Flow

3.2.1 Idealized Bifurcation at Two Different Branch
Angles—Aorto-Renal Branch
The model setup is adapted according to the experimental conditions described by
Tokunori et al. [6], where a simplified model of aorto-renal branch is studied. Diameter
of the abdominal aorta is 20 mm, while the diameter of the renal artery is 6 mm. Flow
velocity is assumed to have parabolic distribution at the inlet. Temporal variation of the
inlet velocity is described using the following periodic function:

u tð Þ ¼ 0:15þ Ui � 0:15ð Þ sin 2pt
T

ð5Þ

where the mean velocity is Ui = 0.6718 m/s and the pulsation period is T = 0.75 s. The
outlet flow rates through the abdominal and the renal aorta are split in proportion of
91:09, respectively. Blood is modeled as a Bingham fluid, where the values in the
constitutive relation s0 and l0 are obtained from the assumed hematocrit value for
normal blood h = 43% and the blood plasma viscosity l0;p = 0.00125 Pas [3].

Fig. 2. Axial velocity profiles of a non-Newtonian liquid in a rigid pipe at different instants of
time: a t/T = 0.125; b t/T = 0.375; c t/T = 0.625 and d t/T = 0.875, calculated using two
different rheologic models: Casson (magenta) and Bingham (yellow) fluid, and compared to
Newtonian fluid solution (blue)
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Two different branch angles are considered: 90° and 60°, see Figs. 3 and 4.
In the first case, separation and recirculation on the upstream side of the renal artery

are observed, which is also reported in experimental results [6]. The ratio between the
maximum backflow velocity and the maximum main stream velocity is 0.4, while this
ratio according to the experimental results is 0.3 ± 0.1.

In the latter case, with the branch angle of 60°, the recirculation is rather thin and
small, so that it can be practically neglected.

3.2.2 A Realistic Shape of Bifurcation of Carotid Artery
Simulation of blood flow in a realistic shape with complex geometry is demonstrated in
the case of carotid artery. Blood vessel walls have irregular surface shape with rela-
tively large variations of the cross section area. In addition to that, the here considered
parts of the carotid artery form a branch. Blood vessel diameter at the inlet, as well as
the diameters at the both outlets are assumed to be 6.2 mm. The same periodic
inlet-velocity condition is used as in the case of aorto-renal branch. The outlet sections
are defined as zero-pressure boundaries. Blood is modelled as Casson fluid with the
same l0 and s0 values as in the previous case.

Figure 5 shows distribution of the velocity magnitude as well as pressure distri-
bution over the blood vessel wall. Strong separation and recirculation of the blood flow
from the vessel walls is seen in the regions of abrupt expansion of the cross-section
area. Also negative pressure values are obtained in the regions of strong contraction.

separation region

Fig. 4. Velocity vectors in longitudinal section of a simplified model of aorto-renal branch at
two different branch angles 90° and 60°

Fig. 3. Numerical mesh in idealized bifurcation at the branch angle 90° (left) and 60° (right)
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4 Conclusions

In this work, a mathematical model for computational flow analysis with two different
constitutive relations for viscoplastic fluids is introduced, solved using finite-volume
method, and applied to several examples of pulsating flow such as those appearing in
blood vessels.

Numerical solutions of the flow in a simple pipe obtained with the Newtonian
model and with the two models of viscoplastic fluid are compared to the analytical
solution obtained for Newtonian fluid. The comparison confirms applicability and
plausibility of the implemented models. The non-Newtonian models are also applied to
geometric domains of complex shape arising in aorto-renal branch and in a branch of
carotid artery.

Numerical solution provides detailed insight into the blood flow structure indicating
the regions with significant wall pressure and wall shear stress changes which may
directly lead to blood vessel damages. It also detects the blood flow separation and
recirculation. These regions are supposed to be the places where occlusion by plaque
may develop.
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