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Abstract. The future planning, management and prediction of water
demand and usage should be preceded by long-term variation analysis
for related parameters in order to enhance the process of developing
new scenarios whether for surface-water or ground-water resources. This
paper aims to provide an appropriate methodology for long-term pre-
diction for the water flow and water level parameters of the Shannon
river in Ireland over a 30-year period from 1983–2013 through a frame-
work that is composed of three phases: city wide scale analytics, data
fusion, and domain knowledge data analytics phase which is the main
focus of the paper that employs a machine learning model based on deep
convolutional neural networks (DeepCNNs). We test our proposed deep
learning model on three different water stations across the Shannon river
and show it out-performs four well-known time-series forecasting models.
We finally show how the proposed model simulate the predicted water
flow and water level from 2013–2080. Our proposed solution can be very
useful for the water authorities for better planning the future allocation
of water resources among competing users such as agriculture, demotic
and power stations. In addition, it can be used for capturing abnormali-
ties by setting and comparing thresholds to the predicted water flow and
water level.
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1 Introduction

Simulating and forecasting the daily time step for the hydrological parame-
ters especially daily water flow (streamflow) and water level with sort of high
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accuracy on the catchment scale is a key role in the management process of water
resource systems. Reliable models and projections can be hugely used as a tool
by water authorities in the future allocation of the water resource among com-
peting users such as agriculture, demotic and power stations. Catchment char-
acteristics are important aspects in any hydrological forecasting and modeling
process. The performance of modeling and projection methods for single hydro-
metric station varies according to its catchment climatic zone and characteristics.
Karran et al. [11] state that methods that are proven as effective for modeling
streamflow in the water abundant regions might be unusable for the dryer catch-
ments, where water scarcity is a reality due to the intermittent nature of streams.
Climate characteristics may severely affect the performance of different forecast-
ing methods in different catchments and this area of research still requires much
more exploration. The understanding of streamflow and water level dynamics is
very important, which is described by various physical mechanisms occurring on
a wide range of temporal and spatial scales [20]. Simulating these mechanisms
and relations can be executed by physical, conceptual or data-driven models.
However physical and conceptual models are the only current ways for providing
physical interpretations and illustrations into catchment-scale processes, they
have been criticized for being difficult to implement for high-resolution time-
scale prediction, in addition to the need too many different types of data sets,
which are usually very difficult to obtain. In general, physical and conceptual
models are very difficult to run and the more resolution they have, the more
data they need, which leads to over parametrize complex models [1].

Fig. 1. Shannon river catchments and segments.

In this paper, we introduce a water management framework for the aim of
providing insights of how to better allocate water resources by providing a highly
accurate forecasting model based on deep convolutional neural networks (termed
as DeepCNNs in the rest of the paper) for predicting the water flow and water
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level for the Shannon river in Ireland, the longest river in Ireland at 360.5 km.
It drains the Shannon River Basin which has an area of 16,865 km2, one fifth
of the area of Ireland. Figure 1 shows Shannon river segments and catchments
across Ireland. To the best of our knowledge, this paper is the first to explore
and show the effectiveness of the deep learning models in the hydrology domain
for long-term projections by employing deep convolutional network model and
comparing its performance and showing that it out-performs other well-known
time series forecasting models. We organize the paper as follows: Sect. 2 reviews
the related work and identify our exact contribution with respect to the state-
of-the-art. Section 3 introduces our proposed framework for water management.
Section 4 presents the proposed architecture of the deep convolutional neural
networks. Section 5 describes the experiments illustrates our results. Finally, we
conclude the paper in Sect. 6.

2 Related Work

Artificial Neural Networks (ANNs) have been used in hydrology in many appli-
cations such as water flow (stream flow) modeling, water quality assessment and
suspended sediment load predictions. The first uses for ANN in hydrology is
introduced initially in the early 1990s [3], which find the method useful for fore-
casting process in the hydrological application. The ANN then has been used
in many hydrological applications to confirm the usefulness and to model differ-
ent hydrological parameters, as stream flow. The multi-layer perceptron (MLP)
ANN models seem to be the most used ANN algorithms, which are optimized
with a back-propagation algorithm, these models are improved the short-term
hydrological forecasts. Examples of recent remarkable published applications for
the use of ANN in hydrology are as follows [2,12]. Support Vector Machines
(SVMs) have been recently adapted to the hydrology applications that is firstly
used in 2006 by Khan and Coulibaly in [13], who state that SVR model out
performs MLP ANNs in 3–12 month water levels predictions of a lake, then the
use of SVM in hydrology has been promoted and recommended in many studies’
as described in [4] from the use of flood stages, storm surge prediction, stream
flow modeling to even daily evapotranspiration estimations.

The limited ability to process the non-stationary data is the biggest concern
of the machine learning techniques applied to the hydrology domain, which leads
to the recent application of hybrid models, where the input data are preprocessed
for non-stationary characteristics first and then run through the post processing
machine learning models to deal with the non-linearity issues. Wavelet transfor-
mation combined with machine learning models has been proven to give highly
accurate and reliable short-term projections. The most popular hybrid model
is the wavelet transform coupled with an artificial neural network (WANN).
Kim and Valdés [14] is one of the first hydrological applications of the WANN
model, which address the area of forecasting drought in the Conchos River Basin,
Mexico, then many following published studies provide the application of WANN
in streamflow forecasting and many research areas in hydrological modeling and
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prediction. In general, all the studies that compare between the ANN and WANN
conclude that the WANN models have outperformed the stand alone ANNs [3].
Furthermore, wavelet transform coupled with SVM/SVR (WSVM/WSVR) has
been proposed to be used in hydrology applications. To the best of our knowl-
edge, there is a very little research into the application of this hybrid model for
streamflow forecasting and there is no application on water level forecasting.

Karran et al. [11] compares the use of four different models, artificial neural
networks (ANNs), support vector regression (SVR), wavelet-ANN, and wavelet-
SVR for one single station in each watershed of Mediterranean, Oceanic, and
Hemiboreal watershed, the results show that SVR based models performed best
overall. Kisi et al. [16] have applied the WSVR models with different methods to
model monthly streamflow and find that the WSVR models outperformed the
stand alone SVR. From the previous state-of-the-art work, we have concluded
that the previous mentioned machine learning models (ANNs, SVMs, WANNS,
and WSVMs) are the most well-studied and well-known in the field of hydrology.
Hence, we build in this paper four baselines employing the previous mentioned
models for having a fair comparison for our proposed deep convolutional neural
networks across three various water stations. To the best of our knowledge, this
paper is the first to adapt Deep Learning technique in the hydrology domain and
showing better accuracy across three water stations compared to state-of-the-art
models used in the hydrology applications.

3 Water Management Framework

In this section, we summarize the three phases for the proposed framework
for predicting water flow and water level through multistage analytics process.
(a) City wide scale data analytics: This phase is composed mainly of two
steps, the first step utilize the dynamically spatial distributed water balance
model integrating the climate and land use changes. This stage use a wide range
of input parameters and grids including seasonally climate variables and changes,
land use and its seasonal parameters and future changes, seasonal groundwater
depth, soil properties, topography, and slope. The output of this step is sev-
eral parameters including runoff, recharge, interception, evapotranspiration, soil
evaporation, transpiration including total uncertainties or error in the water bal-
ance. We utilize runoff from this step as an extracted feature to be passed to
the data storage (please refer to [6] for the description of the used model). In the
second step, we gathered the data for the temp-max and temp-min from Met
Eireann1 from 1983–2013, the national meteorological service in Ireland. We fur-
ther simulated the future temperatures from 2013–2080 using statistical down
scaling model as described in [7]. (b) Data Fusion: In this phase, we follow
a stage-based fusion method [22] in which we fused the features extracted from
the previous stage with the two observed outputs for water flow and water level
from 1983–2013. Furthermore, we normalize and scale the data and store it in a

1 http://www.met.ie.

http://www.met.ie
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data-storage for further being processed by the next phase. (c) Domain knowl-
edge data analytics: This phase is our main focus for the paper in which we
consume the features stored in the data-storage and train our proposed model
along with the baseline models for the aim of predicting water flow and water
level across three different water stations.
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Fig. 2. Water management framework.

4 Deep Convolutional Neural Networks

In order to design an effective forecasting model for predicting water flow and
water level across several years, we needed to exploit the time series nature of the
data. Intuitively, analyzing the data over a sufficient wide time interval rather
than only including the last reading would potentially lead to more information
for the future water flow and water level. A first approach is that we concatenate
various data samples together and feed them to a machine learning model, this
is what we did in the baseline models which boosts the performance achieved.
To achieve further improvements, we make use of the adequacy of convolutional
neural networks for such type of data [18]. We propose the following architec-
ture, each input sample consists of 10 consecutive readings concatenated together
(10 worked best on our datasets). Each of the three input features (Temp-max,
Temp-min, and Run-off) is fed to the network to a separate channel. The result-
ing dataset is a tensor of N ×T ×D dimensions, where N is the number of data
points (the total number of records minus the number of concatenated readings).
T is the length of the concatenated strings of events and D is the number of col-
lected features. Each of the resulting tensor records, of dimensionality 1×T ×D
is processed by a stack of convolution layers as shown in Fig. 3.

The first convolution layer utilizes a set of three-channel convolution filters of
size l. We do not employ any pooling mechanisms since the dimensionality of the
data is relatively low. In addition, zero padding was used for preserving the input
data dimensionality. Each of these filters provides a vector of length 10, each of its
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Fig. 3. The proposed convolutional neural network architecture (DeepCNNs).

elements further goes to non linear transformation using ReLu [19] as a transfer
function. The resulting outputs are further processed by another similar layers of
convolutional layers, with as many channels as convolution filters in the previous
layer. Given an input record x, we can therefore definer the entries output by
filter f of convolution layer l at position i as shown in Eq. 1. Finally, the last
convolution layer is flattened and further processed through a feedforward fully
connected layers.

a
(l)
f,i =

⎧
⎨

⎩

φ(
∑2

j=0

∑c−1
k=0 w

(l)
fjkxj,i+k−c/2 + bfl), if l = 0

φ(
∑n(l−1)−1

j=0

∑c−1
k=0 w

(l)
fjka

(l−1)
j,i+k−c/2 + bfl), otherwise

(1)

where φ is the non-linear activation function. xj,i is the value of a channel (which
corresponds to a feature) j at position i of the input record (if i is negative or
greater than 10, then xj,i = 0). w

(l)
fjk is the value of channel j of convolution

filter f of layer l at position k, and bfl is the bias of filter f at layer l. n(l) is the
number of convolutions filters at layer l.

5 Experiments

In this section, we first describe the dataset used in our experiments, then we
give an overview on the used baseline models, and finally we show our results
discussing the key findings and observations.

5.1 Dataset

Following the procedures described in Fig. 2, the resulted datasets stored in the
data storage are comprised of five parameters named, max-temp, min-temp, run-
off, water flow and water level where the first three represents the featuresof the
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trained models while the later two represents the outputs of the models. The
used parameters can be defined as follows:

– max-temp, min-temp: These are the highest and lowest temperatures
recorded in ◦C during each day in the dataset.

– run-off: Runoff is described as the part of the water cycle that flows over land
as surface water instead of being absorbed into groundwater or evaporating
and is measured in mm.

– water flow: Water flow (streamflow) is the volume of water that moves
through a specific point in a stream during a given period of time (one day
in our case) and is measured in m3/sec.

– water level: This parameter indicates the maximum height reached by the
water in the river during the day and is measured in m.

The previous parameters in the dataset are for 30-years (1983–2013) resulting
in 11,392 samples where each sample represents a day. The datasets formulated
related to three different water hydrometric stations named, Inny, lower-shannon,
and suck.

5.2 Baselines

In this section we describe the baseline models that have been developed for
assessing the performance of the proposed deep convolutional neural network. We
choose two very popular ordinary machine learning algorithms that has already
shown success in hyrdology, Artificial Neural Networks (ANNs) [8] and Support
Vector Machines (SVMs) [4]. In addition, we choose two wavelet transformation
models that have shown stable outcomes and in particular for the time-series
forecasting problems, Wavelet-ANNs (WANNs) and Wavelet-SVMs (WSVMs).

– ANNs: We developed three layer feed-forward neural network employing
backpropogation algorithm. An automated RapidMinder algorithm proposed
in [17] is utilized for optimizing the number of neurons in the hidden layer
with setting the number of epochs to 500, learning rate to 0.1 and momentum
to 0.1 as well.

– SVMs: We developed SVM with non-linear dot kernel which requires two
parameters to be configured by the user, namely cost (C) and epsilon (ε). We
set C to 0.0001 and ε to 0.001. The selected combination was adjusted to the
most precision that could be acquired through a trial and error process for a
more localized optimization for the model parameters.

We used Discrete Wavelet Transforms (DWTs) to decompose the original time
series into a time-frequency representation at different scales (wavelet sub-times
series). In this type of baselines, we set the level of decomposition to 3, two
levels of details and one level of approximations. The signals were decomposed
using the redundant trous algorithm [5] in conjunction with the non-symmetric
db1 wavelet as the mother function2. Three sets of wavelet sub-time series were
2 The using of the átrous algorithm with the db1 wavelet mother function is a result

of the optimizing Python Wavelet tool [9].
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created, including a low-frequency component (Approximation) that uncovers
the signal’s trend, and two sets of high-frequency components (Details). The
original signal is always recreated by summing the details with the smoothest
approximation of the signal. All the input time series are gone through the
designed wavelet transform and the resulted sub datasets have been used by the
following models:

– WANNs: The decomposed time series are fed to the ANN method for the
prediction of water flow and water level for one day ahead. The WANNs model
employs discrete wavelet transform to overcome the difficulties associated
with the conventional ANN model, as the wavelet transform is known to
overcome the non-stationary properties of time series.

– WSVMs: The WSVR are built in the same way as the WANN model.

5.3 Results and Discussion

We followed the previous design for the convolutional neural network in which
we performed a random grid search of the hyperparameter space and choose
the best performing set. We found that the best performing model is composed
of 3 convolutional layers, each of which learns 32 convolution patches of width
5 employing zero padding. After the convolutional layers, we employed 8 fully
stacked connected layers. The convolutional layers are regularized using dropout
technique [21] with a probability of 0.2 for dropping units. All dense layers
employ L2 regularization with λ = 0.000025. All layers are batch normalized
[10] and use ReLu units [19] for activation with an exception for the output
layer because it is a regression problem and we are interested in predicting
numerical values directly without transform. The efficient ADAM optimization
algorithm [15] is used and a mean squared error loss function is optimized with
a minibatches of size 10. We set aside 30% from the whole data for testing
the performance of the trained model while the 70% rest of the data act as
the training dataset. From the training dataset, we select 90% for training each
model, and the remaining 10% as the validation set, we used it to export the
best model if any improvements on the validation score, we continue the whole
process for 200 epochs. In addition, we reduce the learning rate by a factor of 2
once learning stagnates for 20 consecutive epochs. Figures 4, 5 and 6 show the
output of the previous training process for the Inny, lower-shannon, and suck
water stations respectively where the x axis represents the daily time steps while
y axis indicates the output whether it is the water flow (streamflow) or water
level. The blue line in the figures indicates the original dataset (ground truth),
the green indicates the output of the model on the training dataset, while the
red line indicates the output of the model on the test data in which it has not
been exposed at all to the model during the training procedures.

We compare our proposed model with the other baseline models described
in the previous section. We use the following three evaluation metrics for our
comparisons: (a) Root-mean-square error (RMSE): is the most frequently used
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Fig. 4. Inny water station.

Fig. 5. Lower-shannon water station.

Fig. 6. Suck water station.
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Table 1. Comparison between baseline models and DeepCNNs.

Water station Model Water flow Water level

RMSE MAE R2 RMSE MAE R2

Inny ANNs 2.721 1.249 0.977 0.061 0.025 0.982

SVMs 2.712 0.956 0.977 0.06 0.022 0.983

WANNs 2.785 1.389 0.977 0.061 0.026 0.982

WSVMs 2.673 0.933 0.978 0.06 0.023 0.983

DeepCNNs 2.14 0.92 0.98 0.05 0.02 0.99

Lower-Shannon ANNs 27.1 16.665 0.974 0.063 0.039 0.853

SVMs 29.782 18.191 0.969 0.066 0.037 0.842

WANNs 27.335 16.622 0.973 0.063 0.038 0.854

WSVMs 30.715 19.89 0.968 0.065 0.036 0.842

DeepCNNs 22.30 13.43 0.98 0.05 0.03 0.87

Suck ANNs 4.25 2.09 0.985 0.08 0.042 0.986

SVMs 3.831 1.783 0.987 0.079 0.031 0.986

WANNs 4.252 1.954 0.985 0.079 0.039 0.986

WSVMs 4.075 1.469 0.985 0.08 0.031 0.986

DeepCNNs 3.46 1.43 0.99 0.06 0.03 0.99

metric for assessing time-series forecasting models which measures the differ-
ences between values predicted by a model and the values actually observed.
(b) Mean absolute error (MAE): is a quantity used to measure how close fore-
casts or predictions are to the eventual outcomes. (c) Coefficient of determination
(R2): is a metric that gives an indication about the goodness of fit of a model
in which a closer value to 1 indicates a better fitted model. Table 1 illustrates
the results of the comparisons between our proposed model and all baselines
across the previous described three performance metrics for the three different
water stations. Interestingly, we noticed that the proposed deep convolutional
neural network model outperforms all baselines across the three different per-
formance metrics. This suggests that predicting water flow and water level in
rivers manifests itself in a complex fashion, and motivates further research in the
application of deep learning methods to the water management domain. From
such comparison, it is observed as well that SVMs is the second best performing
model for the Inny and Suck water stations. ANNs is the second best performing
model for the lower-shannon water station for both outputs.

Finally, and based on the forecasted/simulated values for the features (Temp-
max, Temp-min and run-off) from 2013–2080, we show in Fig. 7a and b the pre-
diction for water flow and water level respectively for the lower-shannon station
employing our trained model based on the DeepCNNs. Based on the predictions
by our proposed model, it is worth noting from Fig. 7a that there will be a signif-
icant increase in the water flow crossing 250 m3 in several days across 2028, 2040
and 2059 while a less but still significant increase across several days in 2047,
2048, 2076 and 2078. It could be observed as well from Fig. 7b that there will be
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a significant rise of water level crossing 33.4 m in several days in 2021 and bit
less in 2032, 2044, 2045 and others as well. These results should be very useful
for further being assessed by water authorities for building mitigation plans for
the impact of such increase as well as better planning for water allocation across
various competing users.

Fig. 7. Predictions of water flow and water level for lower-shannon water station from
2013–2080 using the DeepCNNs proposed model.

6 Conclusion and Outlook

This paper presents the application of a new data-driven methods for model-
ing and predicting daily water flow and water level on the catchment scale for
the Shannon river in Ireland. We have designed a deep convolutional network
architecture to exploit the time-series nature of the data. Using several features
captured at real across three various water stations, we have shown that the pro-
posed convolutional network outperforms other four well-known time series fore-
casting models (ANNs, SVMs, WANNs and WSVMs). The inputs to the models
consist of a combination of 30-years daily time series data sets (1983–2013),
which can be divided between observed data sets (maximum temperature, min-
imum temperature, water level and water flow) and simulated data set, runoff.
Based on the proposed deep convolutional network model, we further show the
predictions of the water flow and water level for the lower-shannon water station
from the duration of 2013–2080. Our proposed solution should be very useful for
water authorities in the future allocation of water resources among competing
users such as agriculture, demotic and power stations. In addition, it could for-
mulate the basis of a decision support system by setting thresholds on water flow
and water level predictions for the sake of creating accurate emergency alarms
for capturing any expected abnormalities for the Shannon river.
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