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Abstract. Mobile phone metadata is increasingly used for humanitar-
ian purposes in developing countries as traditional data is scarce. Basic
demographic information is however often absent from mobile phone
datasets, limiting the operational impact of the datasets. For these rea-
sons, there has been a growing interest in predicting demographic infor-
mation from mobile phone metadata. Previous work focused on creating
increasingly advanced features to be modeled with standard machine
learning algorithms. We here instead model the raw mobile phone meta-
data directly using deep learning, exploiting the temporal nature of the
patterns in the data. From high-level assumptions we design a data rep-
resentation and convolutional network architecture for modeling patterns
within a week. We then examine three strategies for aggregating patterns
across weeks and show that our method reaches state-of-the-art accuracy
on both age and gender prediction using only the temporal modality in
mobile metadata. We finally validate our method on low activity users
and evaluate the modeling assumptions.
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1 Introduction

For the first time last year, there were more active mobile phones in the world
than humans [17]. Every time one of these phones is being used to text or call,
it generates mobile phone metadata or CDR (Call Detail Records). Collected at
large scale this metadata – records of who calls or texts whom, for how long, and
from where – provide a unique lens into the behavior of humans and societies.
For instance, mobile phone metadata have been used to plan disaster response
and inform public health policy [2,24]. The potential of mobile phone metadata
is particularly high in developing countries where basic statistics such as popula-
tion density or mobility are often either missing or suffer from severe biases [21].
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Fig. 1. The mean number of outgoing calls averaged across the population. Differences
between workdays and weekends are clearly visible as well as different times of the day.

Last year, an expert advisory group to the United Nations emphasized the impor-
tance of mobile phone data in measuring and ultimately achieving the Sustain-
able Development Goals [23].

The potential of mobile phone data in developing countries has, however,
been hindered by the absence of demographic information, such as age or gen-
der, associated with the data. This issue has caused a growing interest in pre-
dicting demographic information from mobile phone metadata. While previous
work has focused on developing increasingly complicated features, we here pro-
pose a novel way of modeling mobile phone metadata using deep learning. From
high-level assumptions regarding the nature of temporal patterns, we design
a data representation and convolutional network (ConvNet) architecture that
reach state-of-the-art accuracy inferring both age and gender using only the
temporal modality.

2 Related Work

Previous work has relied heavily on hand-engineered features to predict demo-
graphics and other information from mobile phone metadata. Sarraute et al. [19]
and Herrera-Yagüe et al. [8] both combined hand-engineered features with vari-
ous machine learning algorithms to predict gender from mobile phone metadata
while de Montjoye et al. used them to predict personality traits [15]. Martinez
et al. used an support vector machine (SVM) and random forest (RF) on similar
features as well as a custom algorithm based on k-means to predict gender [6].
Finally, Dong et al. used a double-dependent factor graph model to predict demo-
graphic information in a mobile phone social graph [5]. While promising, the
graph-based approach requires demographic information about a large fraction
of the population to be known a priori, making it impractical in most coun-
tries where training data is not available at scale and must be collected through
surveys.

The current state of the art in predicting demographics from mobile phone
data is a recent paper by Jahani et al. [10] which relies on a large number of hand-
engineered features (1440) provided by the open-source bandicoot toolbox [16]
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and a carefully tuned SVM with a radial basis function kernel. The features
used are divided into two categories (individual, spatial) and based on carefully
engineered definitions such as how to group together calls and text messages into
conversations or compute the churn rate of common locations.

3 Data and Assumptions

A mobile phone produces a record every time it sends or receives a text message
or makes or receives a phone call. These records (called mobile phone metadata,
or CDRs) are generated by the carrier’s infrastructure and are highly stan-
dardized. CDRs contain the type of interaction (text/call), direction (in/out),
timestamp (date and time), recipient ID, call duration (if call) and cell tower to
which the phone was connected to. The dataset we work with, provided by an
anonymous carrier, contains more than 250 million anonymized mobile phone
records for 150.000 people in a Western European country covering a period of
14 weeks.

We state the following three assumptions about the nature of the temporal
patterns in mobile phone metadata:

1. The day of the week and time of day of an observed pattern holds
predictive power
Previous work showed that increasing the temporal granularity of the hand-
engineered features in the bandicoot toolbox by differentiating between day-
time and nighttime activity yields a substantial accuracy boost [10]. For
instance, the percentage of initiated calls at night during the weekend was
one of the most useful features to predict gender. Consequently, we assume
that information on the specific time of the week that a pattern occurred
contains useful information to predict demographic attributes.

2. Temporal patterns are similar across days of the week
While the time of day matters (e.g. night vs. day), we furthermore assume
that such temporal patterns have similarities across days of the week which
could help predict demographic attributes. For instance, one could imagine
that a relevant temporal pattern on Friday night may help model a similar
pattern on Saturday night.

3. Local temporal patterns can be combined into predictive global
features
The current state-of-the-art approach relies on complex hand-engineered (and
non-linear) features such as the response rate within conversations, churn
between antennas, and entropy of contacts [10]. We assume that the convo-
lutional network (ConvNet) will be able to combine local temporal patterns
on the scale of hours to find global features (i.e. on the scale of days/weeks),
thereby removing the need for such high-level hand-engineered features.
ConvNets have similarly been used in previous work to learn a hierarchy
of features directly from raw visual data [13].
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4 Representation, Architecture and Aggregation

4.1 Week-Matrix Representation

Assumptions 1 and 2 from Sect. 3 are used to derive our data representation
for a week of mobile phone metadata. We represent the data as eight matrices
summarizing mobile phone usage on a given week with hours of the day on the
x-axis and the weekdays on the y-axis (see Fig. 1). These eight matrices are the
number of unique contacts, calls, texts and the total duration of calls for incom-
ing and outgoing interactions respectively. Every cell in the matrices represents
the amount of activity for a given variable of interest in that hour interval (e.g.
between 2 and 3 pm). In this way, we effectively bin any number of interac-
tions during the week. These eight matrices are combined into a 3-dimensional
matrix with a separate ‘channel’ for each of the 8 variables of interest. This
3-dimensional matrix is named a ‘week-matrix’.

The week-matrix representation is a logical result of our Assumptions 1 and
2. Our first assumption focuses on the importance of high temporal granularity,
which is why our data representation summarizes mobile phone usage for each
hour, thereby splitting local patterns into separate bins such that they may be
captured by a suitable classification algorithm. Our second assumption focuses
on the similarity of temporal patterns across weekdays, making it logical to
design the week-matrix to have the weekdays on the y-axis such that similar
patterns are located in neighboring cells in the matrix (see Fig. 1 for clear tem-
poral patterns in mobile phone usage across weekdays). We shift the time in the
matrices by 4 h such that it is easier to capture mobile phone usage occurring
across midnight (Fig. 1 shows that there is especially a lot of activity occurring
the night between Saturday and Sunday). Each row in the matrix thus contains
data from 4 am–4 am instead of from midnight to midnight. This shift also
moves the low-activity (and potentially less informative) areas to the borders of
the matrix.

4.2 ConvNet Architecture

We use our assumptions (see Sect. 3) to develop the ConvNet architecture used
to model a single week of mobile metadata. The choice of architecture is crucial
to finding predictive patterns and has been equated to a choice of prior [1].

Assumption 2 emphasizes the similarity of temporal patterns across week-
days. We therefore design an architecture consisting of five horizontal conv. layers
followed by a vertical conv. filter and a dense layer (see Table 1 and Fig. 2). The
horizontal conv. layers learn to capture patterns within a single day, reusing the
same parameters across different times of day and across the different weekdays.
For a 1D conv. filter with filter size four (as illustrated in Fig. 2) the value of a
single neuron at the position k in the next layer is:

ok = σ

(
b +

3∑
l=0

wlik+l

)
, (1)
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where wl is position l in the weight matrix for that filter and b is the bias [18].
The input is defined as ik for position k in the previous layer. σ is a non-linear
activation function, which in this case is the leaky ReLU [14]. A single conv. layer
consists of multiple filters with the specified size, allowing the conv. layer to cap-
ture many different patterns across the entire input using only a few parameters.

The intraday patterns captured by the horizontal conv. layers are then com-
bined using the vertical conv. layer across the different weekdays to find global
features. Lastly, the dense layer and the softmax layer combine these global
features to predict the demographic attribute (see Fig. 2).

Assumptions 1 and 3 emphasizes the importance of capturing information
about local temporal patterns. Consequently, we design an architecture that
does not use pooling layers, which would throw away information about the
location of the patterns in the week-matrix. Similarly, we make sure of a small
conv. filter size for the first four conv. filter to focus on capturing local patterns.

There are many different parameters that can be tuned when choosing the
architecture and the optimization procedure for training the ConvNet. Bayesian
optimization is used for tuning seven of these as proposed in [20], covering e.g.
the learning rate, L2 regularization, and the number of filters in the horizontal
conv. layers. The vertical conv. layer has a fixed number of 400 filters. The dense
layer has 400 neurons, whereas the softmax layer has as many neurons as the
number of classes (two for gender and three for age).

4.3 Aggregation of Patterns Across Weeks

The ConvNet architecture described models only a single week of data at a
time, whereas each user has multiple weeks of data that should all be utilized
when predicting a demographic attribute. Based on our three assumptions (see
Sect. 3) it makes sense to design the ConvNet architecture to model a single
week at a time, making it possible to reuse the same convolutional filters across
multiple weeks. There are several ways to aggregate the features captured by the
ConvNet for individual weeks, making our method utilize the data for multiple
weeks. We examine three different approaches: averaging the predictions, adding
a long short-term memory (LSTM) module to the ConvNet and modeling the
features captured by the ConvNet with an SVM.

The most basic approach for modeling multiple weeks of data is to pass each
week-matrix through the ConvNet architecture and then average the probabili-
ties from the softmax layer. In this way, an overall prediction can be found across
all weeks of data for a given user. An issue with this averaging approach is that
it limits the contribution of a given week to the final prediction.

Another way of modeling multiple weeks of data is by modifying the
ConvNet architecture to include a long short-term memory (LSTM) module [9].
The LSTM is a specialized variant of the recurrent neural network (RNN), which
uses recurrent connections between the neurons to capture patterns in sequences
of inputs. We design a ConvNet-LSTM such that it has the same architecture for
finding patterns as our ConvNet architecture, but without the final softmax layer
for classification (i.e. conv1–dense7 as seen in Fig. 2). This architecture is then
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Table 1. Architecture for the convolutional network. The filter size describes the num-
ber of neurons in the previous layer that each neuron in the current conv. layer is
connected to. A filter with size M × 1 takes as input M neurons located side-by-side
horizontally, whereas a 1 × N filter uses N neurons located side-by-side vertically.

Layer name Conv. filter size

input –

conv1 4 × 1

conv2 4 × 1

conv3 4 × 1

conv4 4 × 1

conv5 12 × 1

conv6 1 × 7

dense7 –

softmax8 –

7 days

24 hours

8 input
channels

7

21

7

12

7

1

M F

Convolution (4x1)

Convolution (12x1) 

Softmax Classification

Convolution (1x7)

Full Connection

input

conv1

conv3

conv5

conv6

dense7

softmax8

Convolution (4x1)

7

18

7

15

Convolution (4x1)

Convolution (4x1)

conv2

conv4

Fig. 2. Illustration of the convolutional network architecture. The depth of a conv. layer
equals the number of filters in that layer. Dimensions are not to scale.
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connected to a 2-layer LSTM module with 128 hidden units in each layer. In this
way, the week-matrices can be modeled with an end-to-end architecture that can
utilize convolutional layers to find patterns within a week and recurrent layers to
find patterns across weeks. It is trained using the default settings of the Adam
optimization method [12]. L2 regularization of 10−4 and recurrent dropout [7]
of 0.5 is used to avoid overfitting. The ConvNet-LSTM is implemented using
Keras [3] and Theano [22].

Lastly, we use an SVM with a radial basis function kernel to design a 2-step
model (ConvNet-SVM). The ConvNet is used to transform the raw data into
learned high-level features for each week with the SVM then modeling patterns
across weeks. Using ConvNets to find good representations of raw data for mod-
eling with SVMs has previously been done for generic visual recognition [4], but
to our knowledge this is the first time it is done for combining patterns across
individual observations in the dataset (i.e. weeks in this case). We extract the
feature activations for dense7 and softmax8 (see Fig. 2. For each user we com-
pute the mean and standard deviation for these extracted feature activations
across the different weeks. A total of 800 + 2nc features are extracted this way,
where nc is the number of classes in the problem at hand (2 for gender, 3 for
age). The number of features for the SVM is constant regardless of the number
of weeks for a given user.

5 Results

In line with previous work and potential applications, we demonstrate the effec-
tiveness of our method on gender and age prediction. We consider a binary gen-
der variable (largest class: 56.3%) and an age variable discretized by the data
provider into three groups: [18–39], [40–49], [50+], splitting the dataset almost
equally (largest class: 35.7%). Our dataset contains data of approximately 150.000
people. We split it into training (100.000 people), validation (10.000 people), and
test set (40.000 people). We compare our results to a state-of-the-art approach,
Bandicoot-SVM [10], using an SVM on the bandicoot features trained and tested
on the same data as our method.

We report results using the three approaches for aggregating patterns across
weeks described in Sect. 4. Table 2 shows that our 2-step model (ConvNet-SVM),
which extracts the high-level features found using the ConvNet and models them
with an SVM yields the highest accuracy of the three approaches.

Our ConvNet-SVM method reaches state-of-the-art accuracy and slightly
outperforms it on both age and gender prediction (p < 10−5 with a one-tailed
t-test). Our method reaches the state-of-the-art using only the temporal modality
in mobile metadata, whereas the current state-of-the-art approach also exploits
patterns related to mobility (see Sect. 7).

Mobile phone usage in developing countries is still fairly low [17] making it
important for our method to perform well on low-activity users (see Fig. 4 for
the distribution of interactions per user). To test the performance of our method,
we train and evaluate it on low-activity users (users with fewer interactions than
the median) and show that our model reaches state-of-the-art and even slightly
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Table 2. Accuracy of classifiers on the test set when predicting age and gender.

Age Gender

Random 35.7% 56.3%

Bandicoot-SVM 61.6% 78.2%

ConvNet (averaging) 60.7% 78.3%

ConvNet-LSTM 61.3% 78.4%

ConvNet-SVM 63.1% 79.7%
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Fig. 3. Accuracy on gender prediction
as a function of the number of inter-
actions (across all 14 weeks) visual-
ized using generalized additive model
(GAM) smoothing. The x-axis is con-
strained to contain roughly 50% of the
users. The black solid line is the base-
line accuracy when predicting everyone
as part of the majority class.
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Fig. 4. Histogram of the distribution of
the number of interactions. The top 5%
users in terms of number of interactions
are not included.

Table 3. Accuracy on the original and the temporally randomized week-matrices.

Age Gender

Original 60.7% 78.3%

Permuted 54.0% 70.4%

Change −11.0% −10.1%

outperforms it (p < 0.01 with a one-tailed t-test) with an accuracy of 76.9% vs.
75.7% for the Bandicoot-SVM. Figure 3 shows the accuracy of our method and the
Bandicoot-SVM as a function of the number of interactions (calls + texts) when
trained on all users showing that we perform particularly well on users with few
interactions.
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6 Evaluating Assumptions

Designing a ConvNet architecture for a particular modeling task involves many
choices regarding filter sizes, layer types, etc. We derived many of our choices
from the three assumptions stated in Sect. 3. In this section we evaluate these
assumptions to qualify our choices.

Evaluating Assumption 1: The first assumption states that the weekday
and time of day of an observed pattern holds predictive power. One way we
can evaluate this assumption is by comparing the performance of a ConvNet on
the original data with the performance of a ConvNet using the same hyperpa-
rameters and architecture but using data that has been temporally randomized.
We temporally randomize the dataset by assigning values to cells at random in
the week-matrix, thereby destroying potential temporal patterns in the week-
matrices while keeping the rest of the information intact (total activity, etc.). To
quantify the impact of the temporal randomization independently of the SVM,
we evaluate the performance when averaging predictions across weeks. Table 3
shows temporally randomizing the week-matrices decreases accuracy by 11%
when predicting age and by 10.1% when predicting gender.

The importance of the time and day of the interactions is indicated by exam-
ining the week-matrices which our model is most confident belong to a man or
a woman. Figure 5 shows that the top “men” week-matrix has a higher number
of outgoing contacts during the hours from 7 am to 4 pm on workdays while the
top “female” week-matrix’s outgoing contacts are spread across the day.

Evaluating Assumption 2: The second assumption states that temporal pat-
terns are similar across weekdays. To evaluate our assumption, we examine the
performance of ConvNet architectures on a 1-dimensional representation of the
data. While this 1D representation contains the same information as the week-
matrix, the hours of the weekdays are arranged next to each other horizontally
instead of vertically (168 × 1 instead of 24 × 7, see Fig. 1) therefore preventing
the ConvNet to exploit similarity in patterns across days of the week. We test
multiple ConvNet architectures (examples in Table 4) that have the same num-
ber of conv. layers as our ConvNet architecture and a comparable number of
parameters and show that all of these architectures yield a lower accuracy than
our ConvNet and the current state-of-the-art approach.

Evaluating Assumption 3: The third assumption states that local tempo-
ral patterns captured by convolutional filters (see Eq. 1) can be combined into
predictive global features, thereby eliminating the need for hand-engineered fea-
tures. To evaluate this assumption, we examine the global features learned with
our deep learning method by comparing the patterns captured by the neurons
of our ConvNet1 with the bandicoot features. We only consider the individual
bandicoot features as our ConvNet does not capture location and movement
information used for the mobility features.
1 For this comparison we use the mean activation of neurons in the FC7 layer.
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Table 4. Examples of 1-dimensional ConvNet architectures that we have tested. These
contain convolutional, dense, max-pool and softmax layers as denoted by the prefix. The
filter size is shown in the suffix. The mark (s) means that the conv. layer has a stride of
2. Padding is used such that only pooling and a stride of 2 decreases the dimensions.

ConvNet 1 ConvNet 2

input

conv5 conv13

conv5 conv13

pool2 conv13(s)

conv5 conv13

conv5 conv13

pool2 conv13(s)

conv5

conv5

dense

softmax

Table 5. Top 5 bandicoot features captured by the neurons.

Features |r|
Interevent time (call) 0.786

Number of contacts (text) 0.782

Interevent time (text) 0.769

Entropy of contacts (call) 0.764

Number of interactions (text) 0.761

Table 5 shows that the ConvNet captures information very similar to the
one encoded in high-level hand-engineered features such as interevent time and
entropy of contacts, suggesting that our deep learning model combines local
temporal patterns into global features.
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Fig. 5. Visualization of a single channel, the number of unique outgoing contacts,
in the week-matrix most predictive of the male gender (top) and of female gender
(bottom). The week-matrix most predictive of male gender has a higher number of
outgoing contacts during the hours from 7 am to 4 pm on workdays while the “female”
week-matrix’s outgoing contacts are spread across the day.

7 Discussion

Our results (Table 2) show that the ConvNet-SVM outperforms the ConvNet-
LSTM despite the ConvNet-SVM not capturing the ordering of the week-matrices.
While an in-depth study is outside the scope of this paper, these results suggest
that there are no strong inter-week patterns that are crucial for predicting demo-
graphic attributes.

The state-of-the-art approach found that two mobility features (percent inter-
actions at home and entropy of antennas) were among the top 5 most predictive
features for one of their two benchmark datasets [10]. In contrast, our ConvNet-
SVM method reached state-of-the-art accuracy despite not using mobility infor-
mation at all. In future work, we would like to use deep learning methods for
modeling the other modalities in mobile phone metadata as well, thereby likely
increasing the prediction accuracy.

Our weekmatrix representation have been added to bandicoot2 and our
trained ConvNets for Caffe [11] are available3.

2 Version ≥ 0.4 at http://bandicoot.mit.edu under bc.special.punchcard.
3 https://github.com/yvesalexandre/convnet-metadata/.

http://bandicoot.mit.edu
https://github.com/yvesalexandre/convnet-metadata/
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8. Herrera-Yagüe, C., Zufiria, P.J.: Prediction of telephone user attributes based
on network neighborhood information. In: Perner, P. (ed.) MLDM 2012. LNCS
(LNAI), vol. 7376, pp. 645–659. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31537-4 50

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Jahani, E., Sundsøy, P., Bjelland, J., Bengtsson, L., de Montjoye, Y.A., et al.:
Improving official statistics in emerging markets using machine learning and mobile
phone data. EPJ Data Sci. 6(1), 3 (2017)

11. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv arXiv:1408.5093 (2014)

12. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR. arXiv
arXiv:1412.6980 (2015)

13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

14. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: Proceedings of ICML (2013)

15. de Montjoye, Y.-A., Quoidbach, J., Robic, F., Pentland, A.S.: Predicting personal-
ity using novel mobile phone-based metrics. In: Greenberg, A.M., Kennedy, W.G.,
Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 48–55. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37210-0 6

16. de Montjoye, Y.A., Rocher, L., Pentland, A.S.: bandicoot: a Python tool-
box for mobile phone metadata. J. Mach. Learn. Res. 17(175), 1–5 (2016).
http://jmlr.org/papers/v17/15-593.html

17. News, I.: Mobile subscriptions near the 7 billion mark - does almost everyone have
a phone? (2013). Accessed 5 Jan 2016. http://itunews.itu.int/en/3741-Mobile-
subscriptions-near-the-78209billion-markbrDoes-almost-everyone-have-a-phone.
note.aspx

https://github.com/fchollet/keras
http://arxiv.org/abs/1310.1531
http://arxiv.org/abs/1512.05287
https://doi.org/10.1007/978-3-642-31537-4_50
https://doi.org/10.1007/978-3-642-31537-4_50
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-37210-0_6
http://jmlr.org/papers/v17/15-593.html
http://itunews.itu.int/en/3741-Mobile-subscriptions-near-the-78209billion-markbrDoes-almost-everyone-have-a-phone.note.aspx
http://itunews.itu.int/en/3741-Mobile-subscriptions-near-the-78209billion-markbrDoes-almost-everyone-have-a-phone.note.aspx
http://itunews.itu.int/en/3741-Mobile-subscriptions-near-the-78209billion-markbrDoes-almost-everyone-have-a-phone.note.aspx


152 B. Felbo et al.

18. Nielsen, M.A.: Neural Networks and Deep Learning. Determination Press (2015)
19. Sarraute, C., Blanc, P., Burroni, J.: A study of age and gender seen through mobile

phone usage patterns in Mexico. In: ASONAM (2014)
20. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine

learning algorithms. In: NIPS (2012)
21. Stuart, E., Samman, E., Avis, W., Berliner, T.: The data revolution: finding the

missing millions. Overseas Development Institute (2015)
22. Theano Development Team: Theano: a Python framework for fast computation of

mathematical expressions. arXiv arXiv:1605.02688 (2016)
23. United Nations: A world that counts - mobilising the data revolution for sus-

tainable development (2014). UN Independent Expert Advisory Group on a Data
Revolution for Sustainable Development

24. Wesolowski, A., Qureshi, T., Boni, M.F., Sundsøy, P.R., Johansson, M.A., Rasheed,
S.B., Engø-Monsen, K., Buckee, C.O.: Impact of human mobility on the emergence
of dengue epidemics in Pakistan. PNAS 112(38), 11887–11892 (2015)

http://arxiv.org/abs/1605.02688

	Modeling the Temporal Nature of Human Behavior for Demographics Prediction
	1 Introduction
	2 Related Work
	3 Data and Assumptions
	4 Representation, Architecture and Aggregation
	4.1 Week-Matrix Representation
	4.2 ConvNet Architecture
	4.3 Aggregation of Patterns Across Weeks

	5 Results
	6 Evaluating Assumptions
	7 Discussion
	References




