Chapter 4 Simulation Studies

In this section we present results obtained of the ensemble of IT2FNN models and the use of fuzzy integrators as response optimized with GA and PSO algorithms for time series prediction.

4.1 Mackey-Glass Time Series

This section presents the simulation and test results obtained by applying the proposed prediction method to the Mackey-Glass time series for $\tau = 13$, 17, 30, 34, 68, 100, 136, using different approach of the ensemble of IT2FNN architectures and the two types of optimization of the fuzzy integrators with the GAs and PSO algorithms, used in this work.

4.1.1 Ensemble of the IT2FNN Architectures for Mackey-Glass

The ensemble of IT2FNN architectures has three models as follows: the IT2FNN-1 model optimizes the parameters of the "igaussmtype2" MFs (Fig. 3.9a), the learning rate is 0.03 and the desired error is 0.00001; the IT2FNN-2 model optimizes the parameters of the "igausstype2" MFs (Fig. 3.9b), the learning rate is

0.011 and the desired error is 0.000001; and the IT2FNN-3 model optimizes the parameters of the "igaussstype2" MFs (Fig. 3.9c), the learning rate is 0.02 and the desired error is 0.0000001. The number the epochs for training the IT2FNN models is 800.

The obtained results of the ensemble of IT2FNN architectures are shown on Table 4.1. The best error is of 0.002517717 and the average error is of 0.00591527 with the IT2FNN-3 for the Mackey-Glass ($\tau = 13$); the best error is of 0.000254857 and the average error is of 0.000513248 with the IT2FNN-1 for the Mackey-Glass ($\tau = 17$); the best error is of 0.00089312 and the average error is of 0.004463189 with the IT2FNN-1 for the Mackey-Glass ($\tau = 30$); the best error is of 0.000307511 and the average error is of 0.010427016 with the IT2FNN-3 for the Mackey-Glass ($\tau = 34$); the best error is of 0.00085505 and the average error is of 0.000818732 with the IT2FNN-2 for the Mackey-Glass ($\tau = 68$); the best error is of 0.000612878 and the average error is of 0.00327431 with the IT2FNN-1 for the Mackey-Glass ($\tau = 100$); and the best error is of 0.00031059 and the average error is of 0.002382512 with the IT2FNN-1 for the Mackey-Glass ($\tau = 136$).

IT2FNN	RMSE	RMSE				
	Best	Average				
IT2FNN-1-Tau = 13	0.008596153	0.010146361				
IT2FNN-2-Tau = 13	0.007919986	0.010166644				
IT2FNN-3-Tau = 13	0.002517717	0.00591527				
IT2FNN-1-Tau = 17	0.000258457	0.00513248				
IT2FNN-2-Tau = 17	0.000281517	0.00554012				
IT2FNN-3-Tau = 17	0.005466984	0.021365826				
IT2FNN-1-Tau = 30	0.00089312	0.004463189				
IT2FNN-2-Tau = 30	0.00124898	0.004503043				
IT2FNN-3-Tau = 30	0.001404767	0.012277316				
IT2FNN-1-Tau = 34	0.00077769	0.004371837				
IT2FNN-2-Tau = 34	0.001349607	0.004943326				
IT2FNN-3-Tau = 34	0.000307511	0.010427016				
IT2FNN-1-Tau = 68	0.000988737	0.004635047				
IT2FNN-2-Tau = 68	0.000855055	0.003818732				
IT2FNN-3-Tau = 68	0.001238312	0.008696349				
IT2FNN-1-Tau = 100	0.000612878	0.00327431				
IT2FNN-2-Tau = 100	0.000782409	0.003720222				
IT2FNN-3-Tau = 100	0.001152992	0.005881063				
IT2FNN-1-Tau = 136	0.000331059	0.002382512				
IT2FNN-2-Tau = 136	0.001351276	0.004299122				
IT2FNN-3-Tau = 136	0.001133525	0.005586892				

Table 4.1 Results for theensemble of IT2FNN for theMackey-Glass time series

4.1.1.1 IT2FNN-1 Model

The forecast obtained for the IT2FNN-1 for the Mackey-Glass ($\tau = 17$) time series shown in Fig. 4.1, the evolution error is shown in Fig. 4.2, and the optimization structure of the IT2FNN-1 with backpropagation learning algorithm show in Fig. 4.3, the forecast obtained for the Mackey-Glass ($\tau = 13$ and $\tau = 30$) time series shown in Figs. 4.4 and 4.5.

4.1.1.2 IT2FNN-2 Model

The forecast obtained for the IT2FNN-2 for the Mackey-Glass ($\tau = 17$) time series is shown in Fig. 4.6, the evolution error is shown in Fig. 4.7, and the optimization structure of IT2FNN-2 with backpropagation learning algorithm shown in Fig. 4.8, the forecast obtained for the Mackey-Glass ($\tau = 34$ and $\tau = 68$) time series shown in Figs. 4.9 and 4.10.

4.1.1.3 IT2FNN-3 Model

The forecast obtained for the IT2FNN-3 for the Mackey-Glass ($\tau = 17$) time series is shown in Fig. 4.11, the evolution error is shown in Fig. 4.12, and the

Fig. 4.1 Forecast of IT2FNN-1 for the Mackey-Glass ($\tau = 17$) time series

Fig. 4.2 Evolution error (RMSE) of IT2FNN-1 for the Mackey-Glass time series

Fig. 4.3 Final MFs after training the IT2FNN-1 model

Fig. 4.4 Forecast of IT2FNN-1 for the Mackey-Glass ($\tau = 13$) time series

Fig. 4.5 Forecast of IT2FNN-1 for the Mackey-Glass ($\tau = 30$) time series

Fig. 4.6 Forecast of IT2FNN-2 for the Mackey-Glass ($\tau = 17$) time series

Fig. 4.7 Evolution error (RMSE) of IT2FNN-2 for the Mackey-Glass time series

Fig. 4.8 Final MFs after training the IT2FNN-2 model

Fig. 4.9 Forecast of IT2FNN-2 for the Mackey-Glass ($\tau = 34$) time series

Fig. 4.10 Forecast of IT2FNN-2 for the Mackey-Glass ($\tau = 68$) time series

Fig. 4.11 Forecast of IT2FNN-3 for the Mackey-Glass ($\tau = 17$) time series

Fig. 4.12 Evolution error (RMSE) of IT2FNN-3 for the Mackey-Glass time series

optimization structure of IT2FNN-3 with backpropagation learning algorithm shown in Fig. 4.13, the forecast obtained for the Mackey-Glass ($\tau = 100$ and $\tau = 136$) time series is shown in Figs. 4.14 and 4.15.

Fig. 4.13 Final MFs after training the IT2FNN-3 model

Fig. 4.14 Forecast of IT2FNN-3 for the Mackey-Glass ($\tau = 100$) time series

Fig. 4.15 Forecast of IT2FNN-3 for the Mackey-Glass ($\tau = 136$) time series

4.1.2 Optimization of the Fuzzy Integrators with the Genetic Algorithm

The obtained results with optimized the fuzzy integrators with the GAs are shown on Table 4.2. The best error is of 0.02142164 and the average error is of 0.02255155 for the type-1 fuzzy integrator (T1FIS) using "Gbell" MFs, and the best error is of 0.02023097 and the average error is of 0.02033528 for the interval type-2 fuzzy integrator (IT2FIS) using "itritype2" MFs for the Mackey-Glass ($\tau = 17$) time series.

We are presenting 10 experiments in Table 4.2, but the average error was calculated considering 30 experiments with the same parameters and conditions for the GAs. Therefore to evaluate the performance of the 30 experiments for this work, we applied different metrics to calculated average errors as shown in Table 4.3.

The forecast obtained of the optimized T1FIS using "Gauss" MFs for the Mackey-Glass ($\tau = 17$) time series shown in Fig. 4.16, the performance of the evolution error is shown in Fig. 4.17, and the optimization structure of T1FIS using "Gauss" MFs with the GAs shown in Fig. 4.18.

The forecast obtained of the optimized T1FIS using "Gbell" MFs for the Mackey-Glass ($\tau = 17$) time series shown in Fig. 4.19, the performance of the evolution error is shown in Fig. 4.20, and the optimization structure of T1FIS using "Gbell" MFs with the GAs shown in Fig. 4.21.

The forecast obtained of optimized the T1FIS using "Triangular" MFs for the Mackey-Glass ($\tau = 17$) time series shown in Fig. 4.22, the performance of the evolution error is shown in Fig. 4.23, and the optimization the structure of T1FIS using "Triangular" MFs with the GAs shown in Fig. 4.24.

The forecast obtained of the optimized interval type-2 fuzzy integrators using "igaussmtype2" MFs for the Mackey-Glass ($\tau = 17$) time series is shown in

No. exp.	Type-1 fuzzy	integrators		Interval type-2 fuzzy integrators			
	Gaussian	Gbell	Triangular	igaussmtype2	igbelltype2	itritype2	
1	0.02359056	0.02629806	0.08221695	0.021158482	0.02118375	0.02071019	
2	0.0228442	0.02433066	0.08161724	0.021033109	0.02081994	0.02043439	
3	0.0223283	0.02338475	0.08161615	0.021001443	0.02061247	0.02035049	
4	0.02209832	0.02249878	0.08161613	0.020976213	0.02056261	0.02032144	
5	0.02189447	0.02163905	0.08161613	0.020962286	0.02052157	0.02030222	
6	0.02173872	0.02154845	0.08161613	0.020947947	0.02049882	0.02027343	
7	0.02165485	0.02148594	0.08161613	0.020936484	0.02048822	0.02025226	
8	0.02159362	0.02146486	0.08161613	0.020921625	0.02047444	0.02024165	
9	0.02156282	0.02144333	0.08161613	0.020913384	0.02045962	0.02023573	
10	0.02152446	0.02142164	0.08161613	0.020907752	0.02044867	0.02023097	
Average	0.02208303	0.02255155	0.08167632	0.020975873	0.02060701	0.02033528	

Table 4.2 Result of the optimization of fuzzy integrator with the GAs

Metrics Type-1 fuzzy integrat Gaussian Gaussian RMSE (Best) 0.02152446 RMSE (Average) 0.022083031 MSE 0.000563653	rators Gbell 0.021421638	Triangular 0.081616127	Interval type-2 integ igaussmtype2	grators	itritvne2
Gaussian RMSE (Best) 0.02152446 RMSE (Average) 0.022083031 MSE 0.000563653	Gbell 0.021421638	Triangular 0.081616127	igaussmtype2	iohelltvne2	itritvne2
RMSE (Best) 0.02152446 RMSE (Average) 0.022083031 MSE 0.000563653	0.021421638	0.081616127	0.0000000	1500113Pv-	-od forme
RMSE (Average) 0.022083031 MSE 0.000563653	. 1 1 . 1		75//06070.0	0.020448674	0.02023097
MSE 0.000563653	0.022551551	0.081676324	0.020975873	0.02060701	0.020335278
	0.000593601	0.007011427	0.000455647	0.000447241	0.000435666
MAE 0.016962307	0.017643378	0.066130265	0.015458052	0.015277128	0.015126578
MPE –8.337207925	-5.889802358	-1.418200646	-4.415973906	-3.886701193	-2.082901948
MAPE 1.917797038	1.977747607	7.491090409	1.746785771	1.731109592	1.696076726

GAs
the
with
integrator
of fuzzy
optimization o
of the
Performance
Table 4.3

Fig. 4.16 Forecast of T1FIS using "Gauss" MFs for the Mackey-Glass time series

Fig. 4.17 Evolution error (RMSE) of the GAs for the T1FIS using "Gauss" MFs

Fig. 4.25, the performance of the evolution error is shown in Fig. 4.26, and the optimization structure of the interval type-2 fuzzy integrators using "igaussmtype2" MFs with the GAs is shown in Fig. 4.27.

Fig. 4.18 Final MFs after optimized the T1FIS using "Gauss" MFs

Fig. 4.19 Forecast of T1FIS using "Gbell" MFs for the Mackey-Glass time series

Fig. 4.20 Evolution error (RMSE) of the GAs for the T1FIS using "Gbell" MFs

Fig. 4.21 Final MFs after optimized the T1FIS using "Gbell" MFs

Fig. 4.22 Forecast of T1FIS using "Triangular" MFs for the Mackey-Glass time series

Fig. 4.23 Evolution error (RMSE) of the GAs for the T1FIS using "Triangular" MFs

Fig. 4.24 Final MFs after optimized the T1FIS using "Triangular" MFs

Fig. 4.25 Forecast of IT2FIS using "igaussmtype2" MFs for the Mackey-Glass time series

Fig. 4.26 Evolution error (RMSE) of the GAs for the IT2FIS using "igaussmtype2" MFs

Fig. 4.27 Final MFs after optimized the IT2FIS using "igaussmtype2" MFs

Fig. 4.28 Forecast of IT2FIS using "igbelltype2" MFs for the Mackey-Glass time series

The forecast obtained of the optimized interval type-2 fuzzy integrators using "igbelltype2" MFs for the Mackey-Glass ($\tau = 17$) time series is shown in Fig. 4.28, the performance of the evolution error is shown in Fig. 4.29, and the optimization

Fig. 4.29 Evolution error (RMSE) of the GAs for the IT2FIS using "igbelltype2" MFs

Fig. 4.30 Final MFs after optimized the IT2FIS using "igbelltype2" MFs

structure of the interval type-2 fuzzy integrators using "igbelltype2" MFs with the GAs is shown in Fig. 4.30.

The forecast obtained of optimized the interval type-2 fuzzy integrators using "itritype2" MFs for the Mackey-Glass ($\tau = 17$) time series is shown in Fig. 4.31, the performance of the evolution is error shown in Fig. 4.32, and the optimization structure of the interval type-2 fuzzy integrators using "itritype2" MFs with GAs shown in Fig. 4.33.

4.1.3 Optimization of the Fuzzy Integrators with the Particle Swarm Optimization

The obtained results with optimized the fuzzy integrators with the PSO are shown on Table 4.3. The best error is of 0.035228102 and the average error is of 0.036484603 for the type-1 fuzzy integrator using "Gbell" MFs, and the best error is of 0.023691987 and the average error is of 0.023691987 for the interval type-2 fuzzy integrator using "igbellype2" MFs for the Mackey-Glass ($\tau = 17$) time series.

We are presenting 10 experiments in Table 4.4, but the average error was calculated considering 30 experiments with the same parameters and conditions for the PSO. Therefore to evaluate the performance of the 30 experiments for this work, we applied different metrics to calculate average errors as shown in Table 4.5.

Fig. 4.31 Forecast of IT2FIS using "itritype2" MFs for the Mackey-Glass time series

Fig. 4.32 Evolution error (RMSE) of the GAs for the IT2FIS using "itritype2" MFs

Fig. 4.33 Final MFs after optimized the IT2FIS using "itritype2" MFs

The forecast obtained of the optimized T1FIS using "Gaussian" MFs for the Mackey-Glass ($\tau = 17$) time series shown in Fig. 4.34, the performance of the evolution error is shown in Fig. 4.35, and the optimization structure of T1FIS using "Gaussian" MFs with the PSO is shown in Fig. 4.36.

The forecast obtained of the optimized T1FIS using "Gbell" MFs for the Mackey-Glass ($\tau = 17$) time series shown in Fig. 4.37, the performance of the evolution error is shown in Fig. 4.38, and the optimization structure of T1FIS using "Gbell" MFs with the PSO is shown in Fig. 4.39.

The forecast obtained of optimized the T1FIS using "Triangular" MFs for the Mackey-Glass ($\tau = 17$) time series shown in Fig. 4.40, the performance of the evolution error is shown in Fig. 4.41, and the optimization structure of the T1FIS using "Triangular" MFs with the PSO is shown in Fig. 4.42.

The forecast obtained of the optimized interval type-2 fuzzy integrators using "igaussmtype2" MFs for the Mackey-Glass ($\tau = 17$) time series is shown in

No. Exp.	Type-1 fuzzy integrate	ors		Interval type-2 fuzzy in	ntegrators	
	Gaussian	Gbell	Triangular	igaussmtype2	igbelltype2	itritype2
1	0.038239735	0.038527952	0.081862239	0.024438775	0.023724407	0.025115433
2	0.038181885	0.037436519	0.081612326	0.024433153	0.023720482	0.025115387
3	0.038066524	0.037057909	0.081426474	0.024418709	0.023719104	0.025115354
4	0.037946889	0.036709338	0.081283351	0.024347737	0.023713049	0.025115331
5	0.03760558	0.036438493	0.081142876	0.024287919	0.023702786	0.025115316
9	0.037294437	0.036133836	0.081004562	0.024261472	0.023687797	0.025115285
7	0.036723101	0.035971393	0.080849129	0.024243773	0.023678693	0.025115256
8	0.036510778	0.035753022	0.080176079	0.024228428	0.023670658	0.025115218
6	0.036203161	0.03558947	0.079900848	0.024208057	0.023654475	0.025115174
10	0.035946912	0.035228102	0.079753554	0.024183221	0.023648414	0.025115114
Average	0.0372719	0.036484603	0.080901144	0.024305124	0.023691987	0.025115287

Table 4.4 Result of the optimization of fuzzy integrator with the PSO

Metrics	Type-1 fuzzy integra	tor		Type-2 fuzzy integrat	tor	
	Gaussian	Gbell	Triangular	igaussmtype2	igbelltype2	Itritype2
RMSE (Best)	0.031543721	0.034842843	0.106253992	0.01891173	0.020071084	0.0205731
RMSE (Average)	0.047506067	0.050711845	0.117611133	0.023752013	0.022696277	0.02576771
MSE	0.007214748	0.005309127	0.019661961	0.002960679	0.001445358	0.00205462
MAE	0.058668759	0.054341832	0.113583028	0.034935372	0.025597427	0.03070206
MPE	0.495293832	0.238903859	0.548675423	0.045305119	-1.41435995	1.6958679
MAPE	6.918855495	6.407519242	14.02215078	4.13271772	2.957239916	3.41521921

PSO
the
with
integrators
of fuzzy
optimization
of the
Performance
able 4.5

Fig. 4.34 Forecast of T1FIS using "Gaussian" MFs for the Mackey-Glass time series

Fig. 4.35 Evolution error (RMSE) of the PSO for the T1FIS using "Gaussian" MFs

Fig. 4.36 Final MFs after optimized the T1FIS using "Gaussian" MFs

Fig. 4.37 Forecast of T1FIS using "Gbell" MFs for the Mackey-Glass time series

Fig. 4.38 Evolution error (RMSE) of the PSO for the T1FIS using "Gbell" MFs

Fig. 4.39 Final MFs after optimized the T1FIS using "Gbell" MFs with PSO

Fig. 4.40 Forecast of T1FIS using "Triangular" MFs for the Mackey-Glass time series

Fig. 4.41 Evolution error (RMSE) of the PSO for the T1FIS using "Triangular" MFs

Fig. 4.43, the performance of the evolution error is shown in Fig. 4.44, and the optimization structure of the interval type-2 fuzzy integrators using "igaussmtype2" MFs with the PSO is shown in Fig. 4.45.

Fig. 4.42 Final MFs after optimized the T1FIS using "Triangular" MFs with PSO

Fig. 4.43 Forecast of IT2FIS using "igaussmtype2" MFs for the Mackey-Glass time series

Fig. 4.44 Evolution error (RMSE) of the PSO for the IT2FIS using "igaussmtype2" MFs

Fig. 4.45 Final MFs after optimized the IT2FIS using "igaussmtype2" MFs

The forecast obtained of the optimized interval type-2 fuzzy integrators using "igbelltype2" MFs for the Mackey-Glass ($\tau = 17$) time series is shown in Fig. 4.46, the performance of the evolution error is shown in Fig. 4.47, and the optimization

Fig. 4.46 Forecast of IT2FIS using "igbelltype2" MFs for the Mackey-Glass time series

Fig. 4.47 Evolution error (RMSE) of the PSO for the IT2FIS using "igbelltype2" MFs

Fig. 4.48 Final MFs after optimized the IT2FIS using "igbelltype2" MFs

structure of the interval type-2 fuzzy integrators using "igbelltype2" MFs with the PSO is shown in Fig. 4.48.

The forecast obtained of the optimized interval type-2 fuzzy integrators using "itritype2" MFs for the Mackey-Glass ($\tau = 17$) time series is shown in Fig. 4.49,

Fig. 4.49 Forecast of IT2FIS using "itritype2" MFs for the Mackey-Glass time series

Fig. 4.50 Evolution error (RMSE) of the PSO for the IT2FIS using "itritype2" MFs

the performance of the evolution error is shown in Fig. 4.50, and the optimization structure of the interval type-2 fuzzy integrators using "itritype2" MFs with the PSO is shown in Fig. 4.51.

Fig. 4.51 Final MFs after optimized the IT2FIS using "itritype2" MFs

4.2 Mexican Stock Exchange Time Series

This section presents the simulation and test results obtained by applying the proposed prediction method to the Mexican Stock Exchange (BMV) time series for periods (01/03/2011-12/31/2015) (Fig. 3.3) using different approach of the ensemble of IT2FNN architectures, used in this work.

4.2.1 Ensemble of IT2FNN Architectures for BMV Time Series

The ensemble of IT2FNN architectures has three models as follows: the IT2FNN-1 model optimize the parameters of the "igaussmtype2" MFs (Fig. 3.9a), the learning rate is 0.03 and the desired error is 0.00001; the IT2FNN-2 model optimize the parameters of the "igausstype2" MFs (Fig. 3.9b), the learning rate is 0.011 and the desired error is 0.000001; and the IT2FNN-3 model optimize the parameters of the "igausstype2" MFs (Fig. 3.9c), the learning rate is 0.02 and the desired error is 0.0000001. The number the epochs for training the IT2FNN models is 100.

The obtained results of the ensemble of IT2FNN architectures are shown on Table 4.6. The RMSE (best) is of 0.010127619, the RMSE (average) is of 0.016586239, the MSE is 0.001738454, the MAE is 0.012085755, the MPE is 1.284208192 and the MAPE 0.275038065 with the IT2FNN-1 model. Therefore the IT2FNN-1 model is better than the IT2FNN-2 and IT2FNN-3 models.

4.2.1.1 IT2FNN-1 Model

The forecast obtained for the IT2FNN-1 for the BMV time series is shown in Fig. 4.52, the evolution error is shown in Fig. 4.53, and the optimization structure of the IT2FNN-1 with backpropagation (BP) learning algorithm is shown in Fig. 4.54.

Metrics	IT2FNN-1	IT2FNN-2	ITFNN-3
RMSE (Best)	0.010127619	0.022896849	0.010126143
RMSE (Average)	0.016586239	0.02748781	0.018984807
MSE	0.001738454	0.002373369	0.002859776
MAE	0.012085755	0.023283565	0.015326454
MPE	1.284208192	2.469791397	1.626561735
MAPE	0.275038065	0.385345148	0.511999726

 Table 4.6
 Performance of

 the ensemble of IT2FNN for
 the BMV time series

Fig. 4.52 Forecast of IT2FNN-1 for the BMV time series

Fig. 4.53 Evolution error (RMSE) of IT2FNN-1 for the BMV time series

Fig. 4.54 Final MFs after training the IT2FNN-1 model with the BP algorithm

4.2.1.2 IT2FNN-2 Model

The forecast obtained for the IT2FNN-2 for the BMV time series shown in Fig. 4.55, the evolution error is shown in Fig. 4.56, and the structure optimization of the IT2FNN-2 with BP learning algorithm is shown in Fig. 4.57.

Fig. 4.55 Forecast of the IT2FNN-2 for the BMV time series

Fig. 4.56 Evolution error (RMSE) of IT2FNN-2 for the BMV time series

Fig. 4.57 Final MFs after training the IT2FNN-2 model with BP algorithm

Fig. 4.58 Forecast of IT2FNN-3 for the BMV time series

4.2.1.3 IT2FNN-3 Model

The forecast obtained for the IT2FNN-3 for the BMV time series is shown in Fig. 4.58, the evolution error is shown in Fig. 4.59, and the structure optimization of IT2FNN-3 with BP learning algorithm is shown in Fig. 4.60.

Fig. 4.59 Evolution error (RMSE) of IT2FNN-3 for the BMV time series

Fig. 4.60 Final MFs after training the IT2FNN-3 model with BP algorithm

4.3 Dow Jones Time Series

This section presents the simulation and test results obtained by applying the proposed prediction method to the Dow Jones time series for periods (01/03/2011-12/31/2015) (Fig. 3.4) using a different approach of the ensemble of IT2FNN architectures, used in this work.

4.3.1 Ensemble of IT2FNN Architectures for Dow Jones Time Series

The ensemble of IT2FNN architectures has three models as follows: the IT2FNN-1 model optimize the parameters of the "igaussmtype2" MFs (Fig. 3.9a), the learning rate is 0.03 and the desired error is 0.00001; the IT2FNN-2 model optimize the parameters of the "igausstype2" MFs (Fig. 3.9b), the learning rate is 0.011 and the desired error is 0.000001; and the IT2FNN-3 model optimize the parameters of the "igausstype2" MFs (Fig. 3.9c), the learning rate is 0.02 and the desired error is 0.0000001. The number the epochs for training the IT2FNN models is 100.

Table 4.7 Performance of the ensurpties of IT2ENIN for	Metrics	IT2FNN-1	IT2FNN-2	ITFNN-3
the Dow Jones time series	RMSE (Best)	0.015844833	0.01329307	0.01307153
	RMSE (Average)	0.020874526	0.01909446	0.018482224
	MSE	0.001743898	0.002022886	0.002138805
	MAE	0.015181591	0.014462062	0.013647136
	MPE	1.598124859	1.521469583	1.436647482
	MAPE	0.236962281	0.346789986	0.320293965

The obtained results of the ensemble of IT2FNN architectures are shown on Table 4.7. The RMSE (best) is of 0.01307153, the RMSE (average) is of 0.018482224, the MSE is 0.002138805, the MAE is 0.013647136, the MPE is 1.436647482 and the MAPE 0.320293965 with the IT2FNN-3 model. Therefore the IT2FNN-3 model is better than the IT2FNN-1 and IT2FNN-2 models.

4.3.1.1 IT2FNN-1 Model

The forecast obtained for the IT2FNN-1 for the Dow Jones time series is shown in Fig. 4.61, the evolution error is shown in Fig. 4.62, and the structure optimization of the IT2FNN-1 with BP learning algorithm is shown in Fig. 4.63.

Fig. 4.61 Forecast of IT2FNN-1 for the Dow Jones time series

Fig. 4.62 Evolution error (RMSE) of IT2FNN-1 for the Dow Jones time series

Fig. 4.63 Final MFs after training the IT2FNN-1 model with BP algorithm

Fig. 4.64 Forecast of IT2FNN-2 for the Dow Jones time series

4.3.1.2 IT2FNN-2 Model

The forecast obtained for the IT2FNN-2 for the Dow Jones time series is shown in Fig. 4.64, the evolution error is shown in Fig. 4.65, and the structure optimization of the IT2FNN-2 with BP learning algorithm is shown in Fig. 4.66.

4.3.1.3 IT2FNN-3 Model

The forecast obtained for the IT2FNN-3 for the Dow Jones time series shown in Fig. 4.67, the evolution error is shown in Fig. 4.68, and the optimization structure of the IT2FNN-3 with BP learning algorithm is shown in Fig. 4.69.

Fig. 4.65 Evolution error (RMSE) of IT2FNN-2 for the Dow Jones time series

Fig. 4.66 Final MFs after training the IT2FNN-2 model with BP algorithm

Fig. 4.67 Forecast of IT2FNN-3 for the Dow Jones time series

Fig. 4.68 Evolution error (RMSE) of IT2FNN-3 for the Dow Jones time series

Fig. 4.69 Final MFs after training the IT2FNN-3 model with BP algorithm

4.4 NASDAQ Time Series

This section presents the simulation and test results obtained by applying the proposed prediction method to the NASDAQ time series for periods (01/03/2011–12/31/2015) (Fig. 3.5) using a different approach of the ensemble of IT2FNN architectures, used in this work.

4.4.1 Ensemble of IT2FNN Architectures for NASDAQ Time Series

The ensemble of IT2FNN architectures has three models as follows: the IT2FNN-1 model optimizes the parameters of the "igaussmtype2" MFs (Fig. 3.9a), the learning rate is 0.03 and the desired error is 0.00001; the IT2FNN-2 model optimizes the parameters of the "igausstype2" MFs (Fig. 3.9b), the learning rate is 0.011 and the desired error is 0.000001; and the IT2FNN-3 model optimizes the parameters of the "igausstype2" MFs (Fig. 3.9c), the learning rate is 0.02 and the desired error is 0.000001. The number the epochs for training the IT2FNN models is 100.

Table 4.8 Performance of the ensemble of IT2ENIN for	Metrics	IT2FNN-1	IT2FNN-2	ITFNN-3
the NASDAO time series	RMSE	0.011711953	0.01318047	0.013617022
the MASDAQ time series	(Best)			
	RMSE	0.016485694	0.017226806	0.020196196
	(Average)			
	MSE	0.001635756	0.001412437	0.003081807
	MAE	0.012063554	0.012381383	0.01588996
	MPE	1.288842865	1.324005862	1.691563953
	MAPE	0.240159673	0.191975465	0.513682447

The obtained results of the ensemble of IT2FNN architectures are shown on Table 4.8. The RMSE (best) is of 0.011711953, the RMSE (average) is of 0.016485694, the MSE is 0.001635756, the MAE is 0.012063554, the MPE is 1.288842865 and the MAPE 0.240159673 with the IT2FNN-1 model. Therefore the IT2FNN-1 model is better than the IT2FNN-2 and IT2FNN-3 models.

4.4.1.1 IT2FNN-1 Model

The forecast obtained for the IT2FNN-1 for the NASDAQ time series is shown in Fig. 4.70, the evolution error is shown in Fig. 4.71, and the optimization structure of IT2FNN-1 with BP learning algorithm is shown in Fig. 4.72.

Fig. 4.70 Forecast of IT2FNN-1 for the NASDAQ time series

Fig. 4.71 Evolution error (RMSE) of IT2FNN-1 for the NASDAQ time series

Fig. 4.72 Final MFs after training the IT2FNN-1 model with BP algorithm

4.4.1.2 IT2FNN-2 Model

The forecast obtained for the IT2FNN-2 for the NASDAQ time series is shown in Fig. 4.73, the evolution error is shown in Fig. 4.74, and the optimization structure of the IT2FNN-2 with BP learning algorithm is shown in Fig. 4.75.

Fig. 4.73 Forecast of IT2FNN-2 for the NASDAQ time series

Fig. 4.74 Evolution error (RMSE) of IT2FNN-2 for the NASDAQ time series

Fig. 4.75 Final MFs after training the IT2FNN-2 model with BP algorithm

4.4.1.3 IT2FNN-3 Model

The forecast obtained for the IT2FNN-3 for the NASDAQ time series is shown in Fig. 4.76, the evolution error is shown in Fig. 4.77, and the optimization structure of the IT2FNN-3 with BP learning algorithm is shown in Fig. 4.78.

4.5 Statistical Comparison Results of the Optimization of the Fuzzy Integrators

We also perform a statistical comparison of all the results obtained of the proposed model (Fig. 3.1) for the Mackey-Glass time series. The statistical test used for comparison is the *Z*-scores, whose parameters are defined in Table 4.9. In applying the statistic *Z*-scores, with significance level of 0.05, and the alternative hypothesis stating that the μ_1 is lower than the μ_2 ; $H_a(\mu_1 < \mu_2)$ (Fig. 4.79), and of course the null hypothesis tells us that the μ_1 is greater than or equal to the μ_2 ; $H_0(\mu_1 \ge \mu_2)$, with a rejection region for all values that fall below -1.732. We are presenting 30

Fig. 4.76 Forecast of IT2FNN-3 for the NASDAQ time series

Fig. 4.77 Evolution error (RMSE) of IT2FNN-3 for the NASDAQ time series

Fig. 4.78 Final MFs after training the IT2FNN-3 model with BP algorithm

Table 4.9 Statistical	Parameter	Value
Z-scores parameters	Confidence interval	95%
	Significance level (a)	5%
	Null hypothesis (H ₀)	$\mu_1^* \ge \mu_2^*$
	Alternative hypothesis (H _a)	$\mu_1 < \mu_2$
	Critical value	-1.645
	$\mu_{\rm c}$ —Average error of the optimization	on of fuzzy integrators wit

 μ_1 —Average error of the optimization of fuzzy integrators with the GAs

 μ_2 —Average error of the optimization of fuzzy integrators with the PSO

experiments with the same parameters and conditions for the GAs and PSO algorithms for this work, so the n_1 and n_2 are equal 30.

The main objective of applying the statistical *Z*-scores is to analyze the performance and thus find if there is significant evidence of the proposed model results being better for the Mackey-Glass time series. The optimization of the fuzzy integrators results are generated from GAs and PSO algorithms. The results of the statistical *Z*-scores are shown in Table 4.10, so there is significant evidence to reject the null hypothesis because the value of p < 0.05 and the value of z < -1.645 and we accepted the alternative hypothesis. Therefore the results obtained of the optimization of fuzzy integrators with GAs are better than the PSO.

Fig. 4.79 Lower-Tailed Test $(\mu_1 < \mu_2)$

Optimization of the Type-1 fuzzy integrator using Gaussian MFs								
GAs		PSO		Parameters		Evidence		
μ_1	σ_1	μ ₂	σ_2	Z	p < 0.05			
0.02208303	0.000638122	0.0372719	0.000821093	-75.895	0	Significant		
Optimization	of the Type-1 Fu	zzy Integrator i	using GBell MFs					
GAs		PSO		Parameters		Evidence		
μ1	σ_1	μ ₂	σ ₂	Z	p < 0.05			
0.02255155	0.001567122	0.0364846	0.000936185	-39.660	0	Significant		
Optimization	of the Type-1 Fu	zzy Integrator i	using Triangular	MFs				
GAs		PSO		Parameters		Evidence		
μ1	σ_1 μ_2 σ_2 z $p <$		p < 0.05]				
0.08167633	0.08167633 0.000180209 0.08090114 0.00069041		5.645	0.0566351	Not Significant			
Optimization of the Interval Type-2 Fuzzy Integrator using igaus.					1Fs			
GAs		PSO		Parameters		Evidence		
μ1	σ_1 μ_2 σ_2		Z	p < 0.05				
0.02097587	0.00007548	0.02430513	0.00009724	-148.123	0	Significant		
Optimization	of the Interval T	ype-2 Fuzzy Int	egrator using igi	belltype2 MF.	5			
GAs		PSO		Parameters		Evidence		
μ1	σ_1	μ ₂	σ_2	Z	p < 0.05			
0.02060701	0.000218508	0.02369199	0.00002811	-72.821	0	Significant		
Optimization	of the Interval T	ype-2 Fuzzy Int	egrator using itr	itype2 MFs				
GAs		PSO		Parameters		Evidence		
μ1	σ_1	μ ₂	σ_2	z	p < 0.05			
0.02033528	0.000138626	0.02511529	0.000000010	-179.170	0	Significant		

Table 4.10 Results of the Z-scores parameters

Based on the statistical Z-scores results, we can make the conclusion that the results obtained of the optimization of fuzzy integrators with the GAs are better than the PSO for the Mackey-Glass time series.