
Chapter 2
State of the Art

In this chapter, we describe the state of the art of the computational intelligence
techniques, which we use as a basis for this work.

2.1 Time Series

Time series is a set of measurements of some phenomenon or experiment
sequentially recorded over time. These observations will be denoted by
x t1ð Þ; x t2ð Þ; ...,x tnð Þf g¼ x(t):t 2 T �Rf g con x tið Þ the value of the variable x in the

time ti. If T ¼ Z is said that the time series is discrete and if T ¼ R is said that the
time series is continuous [1, 2].

A classic model for a time series, assumes that a x 1ð Þ; . . .; x nð Þ series can be
expressed as the sum or product of its components: trend, cyclical, seasonal and
irregular [3]. There are three time series models, which are generally accepted as
good approximations to the true relationships between the components of the
observed data. These are:

Additive.

X tð Þ ¼ T tð ÞþC tð Þþ S tð Þþ I tð Þ ð2:1Þ

Multiplicative.

X tð Þ ¼ T tð Þ � C tð Þ � S tð Þ � I tð Þ ð2:2Þ

Mixed.

X tð Þ ¼ T tð Þ � S tð Þ � I tð Þ ð2:3Þ
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where:

X tð Þ observed series in time t
T tð Þ trend component
C tð Þ cyclic component
S tð Þ seasonal component
I tð Þ irregular or random component

A common assumption is that I tð Þ is a random or white noise component with
zero mean and constant variance. An additive model, is suitable, for example, when
S tð Þ does not depend on other components such as T tð Þ, if instead the seasonality
varies with the trend, the most suitable model is a multiplicative model. It is clear
that the multiplicative model can be transformed into additive, by taking loga-
rithms. The problem that arises is to adequately model the components of the series.

Temporal phenomena are both complex and important in many real-world
problems. Their importance stems from the fact that almost every kind of data
contains time-dependent components, either explicitly coming in the form of time
values or implicitly in the way that the data is collected from a process that varies
with time [4]. A time series is an important class of complex data objects [5] and
comes as a sequence of real numbers, each number representing a value reported at
a certain time instant [6]. The popular statistical model of Box-Jenkins [7] is
considered to be one of the most common choices for the prediction of time series.
However, since the Box-Jenkins models are linear and most real world applications
involve nonlinear problems, it is difficult for the Box-Jenkins models to capture the
phenomenon of nonlinear time series and this brings a limitation to the accuracy of
the generated predictions [8].

2.2 Interval Type-2 Fuzzy Neural Network

One way to build on IT2FNN is by fuzzifying a conventional neural network (NN).
Each part of a NN (the activation function, the weights, and the inputs and outputs)
can be fuzzified. A fuzzy neuron is basically similar to an artificial neuron, except
that it has the ability to process fuzzy information.

The IT2FNN system is one kind of IT2-TSK-FIS inside a NN structure. An
IT2FNN is proposed by Castro et al. in [9], with TSK reasoning and processing
elements called IT2FN for defining antecedents, and the IT1FN for defining the
consequents of rules Rk.

An IT2FN is composed by two adaptive nodes represented by squares, and two
non-adaptive nodes represented by circles. Adaptive nodes have outputs that
depend on their inputs, modifiable parameters and transference function while
non-adaptive, on the contrary, depend solely on their inputs, and their outputs
represent lower l

A
xð Þ and upper lA xð Þ membership functions. Parameters from

adaptive nodes with uncertain standard deviation are denoted by w 2 w1;1;w2;1
� �� �
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and with uncertain mean by b 2 b1; b2½ �ð Þ. The IT2FN (Fig. 2.1) with crisp input
signals xð Þ, crisp synaptic weights w; bð Þ and type-1 fuzzy outputs
l net1ð Þ; l net2ð Þ; l xð Þ; l xð Þ. This kind of neuron is build from two conventional
neurons with transference functions l net1ð Þ, Gaussian, generalized bell and logistic
for fuzzifier the inputs. Each neuron equation is defined as follows: the function l is
often referred to as an activation (or transfer) function. Its domain is the set of
activation values, net, of the neuron model; we thus often use this function as
l net2ð Þ. The variable net is defined as a scalar product of the weight and the
vectors:

net1 ¼ w1;1 þ b1; l1 ¼ l net1ð Þ;
net2 ¼ w2;1 þ b1; l2 ¼ l net2ð Þ ð2:4Þ

The non-adaptive t-norm node (T) evaluates the lower membership function l xð Þ
under t-norm algebraic product, while s-norm non-adaptive node (S), evaluate the
upper membership function l xð Þ under the s-norm algebraic sum, as shown in
Eq. (2.5):

l xð Þ ¼ l net1ð Þ � l net2ð Þ;
l xð Þ ¼ l net1ð Þþ l net2ð Þ � l xð Þ ð2:5Þ

Each IT2FN adapts an interval type-2 fuzzy set [10, 11], ~A, expressed in terms of
the output l xð Þ, of type-1 fuzzy neuron with T-norm and l xð Þ of type-1 fuzzy
neuron with S-norm. An internal type-2 fuzzy set is denoted as:

eA ¼
Z

x2X
Z

l xð Þ2 l xð Þ;l xð Þ½ �1=l
� �

=x ð2:6Þ

An IT1FN (Fig. 2.2) is built from two conventional adaptive linear neurons
(ADALINE) [12] for adapting the consequents y jk 2 ly

j
k�ry

j
k

� �
from the rules Rk , for

the output defined by

Fig. 2.1 Interval type-2 fuzzy neuron (IT2FN)
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j
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Xn
1¼1

C j
k;ixi þC j

k;0 �
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1¼1

S j
k;i xij j � S j

k;0;

ry
j
k ¼
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1¼1
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k;i xij j þ S j

k;0:

ð2:7Þ

Fig. 2.2 Interval type-1 fuzzy neuron

Fig. 2.3 Interval type-2 fuzzy neural network
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Thus consequents can be adapted with linear networks. The network weights are
the parameters of consequents C j

k;i; S
j
k;i for the kth rule. The outputs represents

interval linear MFs of the rule’s consequents (Fig. 2.3).

2.3 Ensemble Learning

The Ensemble consists of a learning paradigm where multiple component learners
are trained for a same task, and the prediction of the component learners are
combined for dealing with future instances [13]. Since an Ensemble is often more
accurate than its component learners, such a paradigm has become a hot topic in
recent years and has already been successfully applied to optical character recog-
nition, face recognition, scientific image analysis, medical diagnosis and time series
[14].

In general, a neural network ensemble is constructed in two steps, i.e. training a
number of component neural networks and then combining the component
predictions.

There are also many other approaches for training the component neural net-
works. Some examples are as follows. Hampshire and Waibel [15, 16] utilize
different objective functions to train distinct component neural networks. Cherkauer
[17] trains component networks with different number of hidden layers. Maclin and
Shavlik [18] initialize component networks at different points in the weight space.
Krogh and Vedelsby [19, 20] employ cross-validation to create component net-
works. Opitz and Shavlik [21, 22] exploit a genetic algorithm to train diverse
knowledge based component networks. Yao and Liu [23] regard all the individuals
in an evolved population of neural networks as component networks [24].

2.4 Interval Type-2 Fuzzy Systems

Type-2 fuzzy sets are used to model uncertainty and imprecision; originally they
were proposed by Zadeh [25, 26] and they are essentially “fuzzy–fuzzy” sets in
which the membership degrees are type-1 fuzzy sets (Fig. 2.4).

The structure of a type-2 fuzzy system implements a nonlinear mapping of on
input to on output space. This mapping is achieved through a set of type-2 if-then
fuzzy rules, each of which describes the local behavior of the mapping.

The uncertainty is represented by a region called footprint of uncertainty (FOU).
When leA x; uð Þ ¼ 1; 8u 2 lx� 0; 1½ � we have an interval type-2 membership function

[27–30] (Fig. 2.5).
The uniform shading for the FOU represents the entire interval type-2 fuzzy set

and it can be described in terms of an upper membership function leA xð Þ and a

lower membership function leA xð Þ.
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A fuzzy logic system (FLS) described using at least one type-2 fuzzy set is
called a type-2 FLS. Type-1 FLSs are unable to directly handle rule uncertainties,
because they use type-1 fuzzy sets that are certain [9, 31]. On the other hand, type-2
FLSs are very useful in circumstances where it is difficult to determine an exact
certainty value, and there are measurement uncertainties.

2.5 Genetic Algorithms

Genetic algorithms (GAs) are adaptive methods that can be used to solve search
and optimization problems. They are based on the genetic process of living
organisms. Over generations, the populations evolve in nature in accordance with
the principles of natural selection and survival of the strongest, postulated by
Darwin. By imitating this process, genetic algorithms are able to create solutions to
real world problems. The evolution of these solutions towards optimal values of the
problem depends largely on proper coding them. The basic principles of genetic

Fig. 2.4 Structure of the interval type-2 fuzzy logic system

Fig. 2.5 Interval type-2
membership function
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algorithms were established by Holland [32, 33] and are well described in the works
of Goldberg [34–36], Davis [37] and Michalewicz [38]. The large field of appli-
cations of GA is related to those problems for which there are no specialized
techniques. Even if such technical exist and work well, improvements can be made
with the same hybrid genetic algorithms.

A GA is a highly parallel mathematical algorithm that transforms a set (popu-
lation) of individual mathematical objects (typically strings of fixed length which fit
the model chains chromosomes), each of which is associated with a fitness in a new
population (e.g. the next generation) operations using models according to the
principle Darwinian reproduction and survival of the fittest and after having natu-
rally presented a series of genetic operations [39].

To apply the genetic algorithm requires the following five basic components:

1. Representation of the potential solutions to the problem.
2. One way to create an initial population of possible solutions (usually a random

process).
3. An evaluation function to play the role of the environment, classifying solutions

in terms of their “fitness”.
4. Genetic operators that alter the composition of the children that will occur for

the next generation.
5. Values for the different parameters using the genetic algorithm (population size,

crossover probability, mutation probability, maximum number of generations,
etc.).

Fig. 2.6 Steps of the genetic algorithm
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The basic operations of a genetic algorithm [40] are as follows illustrated in
Fig. 2.6:

• Step 1: Represent the problem variable domain as a chromosome of a fixed
length; choose the size of a chromosome population N, the crossover probability
(pc) and the mutation probability (pm).

• Step 2: Define a fitness function to measure the performance, or fitness, of an
individual chromosome in the problem domain. The fitness function establishes
the basis for selecting chromosomes that will be mated during reproduction.

• Step 3: Randomly generate an initial population of chromosomes of size
N : x1; x2; . . .; xN

• Step 4: Calculate the fitness of each individual chromosome:
f x1ð Þ; f x2ð Þ; . . .; f xNð Þ:

• Step 5: Select a pair of chromosomes for mating from the current population.
Parent chromosomes are selected with a probability related to their fitness.

• Step 6: Create a pair of offspring chromosomes by applying the genetic oper-
ators- crossover and mutation.

• Step 7: Place the created offspring chromosomes in the new population.
• Step 8: Repeat Step 5 until the size of the new chromosome population becomes

equal to the size of the initial population, N.
• Step 9: Replace the initial (parent) chromosome population with the new (off-

spring) population.
• Step 10: Go to Step 4, and repeat the process until the termination criterion is

satisfied.

2.6 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired optimization method pro-
posed by Eberhart and Kennedy [41–43] in 1995. PSO is as metaheuristic search
technique based on a population of particles. The main idea of PSO comes from the
social behavior of schools of fish and flocks of birds [44, 45]. In PSO each particle
moves in a D-dimensional space based on its own past experience and those of
other particles [46, 47]. Each particle has a position and a velocity represented by
the vectors xi ¼ xi;1; xi;2; . . .; xi;D

� �
and vi ¼ vi;1; vi;2; . . .; vi;D

� �
for the i-th particle.

At each iteration, particles are compared with each other to find the best particle
[48, 49]. Each particle records its best position as vi ¼ vi;1; vi;2; . . .; vi;D

� �
. The best

position of all particles in the swarm is called the global best, and is represented as
G ¼ G1;G2; . . .;GDð Þ. The velocity of each particle is given by Eq. (2.13).

vid ¼ wvid þC1 � randðÞ � pbestid � xidð ÞþC2 � randðÞ � gbest � xidð Þ ð2:13Þ

In this equation i ¼ 1; 2; . . .;M; d ¼ 1; 2; . . . D;C1 and C2 are positive constants
(known as acceleration constants), rand1ðÞ and rand2ðÞ are random numbers in
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[0, 1], and w, introduced by Shi and Eberhart [50] is the inertia weight. The new
position of the particle is determined by Eq. (2.14):

xid ¼ xid þ vid ð2:14Þ

The basic functionally of the PSO is illustrated as follows (Fig. 2.7).
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