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Preface

This book focuses on the fields of hybrid systems, fuzzy systems, bio-inspired
algorithms, and time series. This book describes the construction of ensembles of
interval type-2 fuzzy neural network (IT2FNN) models and the optimization of their
fuzzy integrators with bio-inspired algorithms for time series prediction. Interval
type-2 and type-1 fuzzy systems are used to integrate the outputs of the ensemble
of IT2FNN models which are used. Genetic Algorithms and Particle Swarm
Optimization are the bio-inspired algorithms used for the optimization of fuzzy
integrators. The Mackey–Glass, Mexican Stock Exchange, Dow Jones, and
NASDAQ time series are used to test the performance of the proposed method.
Prediction errors are evaluated by the following metrics: mean absolute error
(MAE), mean square error (MSE), root mean square error (RMSE), mean per-
centage error (MPE), and mean absolute percentage error (MAPE).

In Chap. 1, a brief introduction to the book is presented, where the intelligence
techniques that are used, the main contribution, motivations, application, and a
general description of the proposed methods are mentioned.

In Chap. 2, we describe the State of the Art, basic theoretical and technical
concepts about the areas of computational intelligence, forecasts as well as a brief
introduction and operations are addressed, as all of them are of great importance for
the development of this work.

In Chap. 3, we describe the Problem Statement and Development of the
ensemble of IT2FNN models with optimization of the fuzzy integrators used GAs
and PSO algorithms for time series prediction; we also describe the IT2FNN
models (IT2FNN-1, IT2FNN-2, and IT2FNN-3). The development of the structure
of the chromosome (in GA) and particles (in PSO) for the optimization of fuzzy
integrators is also presented.

Chapter 4 presents the results of the proposed method for all study cases:
ensemble of IT2FNN models with optimization of the fuzzy integrators used GA
and PSO algorithms for time series prediction, ensemble of the IT2FNN models for
the Mexican Stock Exchange, Dow Jones, and NASDAQ time series with which we
work during the development of this work.
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Chapter 5 presents the Conclusion of this research work, and future work is
suggested.

We end this Preface of the book by giving thanks to all the people who have
helped or encouraged us during the writing of this book. First of all, we would like
to thank our colleagues and friends, namely Prof. Patricia Melin, Prof. Oscar
Castillo, and Prof. Janusz Kacprzyk for always supporting our work and for
motivating us to report this research work. We would also like to thank our families
for their continuous support during the time that we spent in this project. Of course,
we have to thank our institution, Tijuana Institute of Technology, for always
supporting our projects. We must thank our supporting agencies, CONACYT and
TNM, in our country for their help during this project. Finally, we thank our
colleagues working in Soft Computing, who are too many to mention all by name.

Tijuana, Mexico Jesus Soto
Patricia Melin
Oscar Castillo
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Chapter 1
Introduction

Based on the evolution of a variable or a set of variables given in a time series, to
predict future values of this variable we should seek the dynamic laws governing
the real state of the system over time. This preliminary step is the prediction
modeling process. In short, time series analysis aims at drawing conclusions about a
complex system using past data.

The time series analysis consists of a description of the movements that compose
it, then building models using these movements to explain the structure and predict
the evolution of a variable over time [1, 2]. The main and fundamental procedure
for the analysis of a time series is described below:

1. Collecting data of the time series, and trying to ensure that these data are
reliable.

2. Representing the time series qualitatively by noting the presence of long-term
trends, cyclical variations and seasonal variations.

3. Plot a graph or trend line and obtain the appropriate trend values using the least
squares method.

4. When seasonal variations are present, obtained these and adjust the data to these
seasonal variations (i.e. data seasonally).

5. Adjust the seasonally trend.
6. Represent the cyclical variations obtained in step 5.
7. Combining the results of steps 1–6 and any other useful information to make a

prediction (if desired) and if possible discuss the sources of error and their
magnitude.

In general the above ideas can help in solving the important problem of pre-
diction in time series. Along with common sense, experience, skill and judgment of
the researchers, such mathematical analysis can, however, be of value for predicting
the short, medium and long term.

This book focuses on the construction of ensembles for the Interval Type-2
Fuzzy Neural Networks (IT2FNN) architectures and the optimization of the fuzzy
integrators for time series prediction with Bio-inspired algorithms. Interval type-2

© The Author(s) 2018
J. Soto et al., Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with
Bio-Inspired Algorithms for Time Series Prediction, SpringerBriefs in Computational
Intelligence, https://doi.org/10.1007/978-3-319-71264-2_1

1



and type-1 fuzzy systems are used to integrate the output (forecast) of each
Ensemble of IT2FNN models are used. The Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) are used for the optimization of the parameters values
of fuzzy integrators. The Mackey-Glass, Mexican Stock Exchange (BMV) , Dow
Jones and NASDAQ time series are used to test of performance of the proposed
method. Prediction errors are evaluated by the following metrics: Mean Absolute
Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean
Percentage Error (MPE) and Mean Absolute Percentage Error (MAPE).

As related work we can mention: Type-1 Fuzzy Neural Network (T1FNN) [3–7]
and the IT2FNN [8–11], also the type-1 [12–15] and type-2 [16, 17] fuzzy evolu-
tionary systems are typical hybrid systems in soft computing. These systems com-
bine T1FLS generalized reasoning methods [18–22] and IT2FLS [23–25] with NN
learning capabilities [26–28] and evolutionary algorithms [4, 29–33] respectively.
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Chapter 2
State of the Art

In this chapter, we describe the state of the art of the computational intelligence
techniques, which we use as a basis for this work.

2.1 Time Series

Time series is a set of measurements of some phenomenon or experiment
sequentially recorded over time. These observations will be denoted by
x t1ð Þ; x t2ð Þ; ...,x tnð Þf g¼ x(t):t 2 T �Rf g con x tið Þ the value of the variable x in the

time ti. If T ¼ Z is said that the time series is discrete and if T ¼ R is said that the
time series is continuous [1, 2].

A classic model for a time series, assumes that a x 1ð Þ; . . .; x nð Þ series can be
expressed as the sum or product of its components: trend, cyclical, seasonal and
irregular [3]. There are three time series models, which are generally accepted as
good approximations to the true relationships between the components of the
observed data. These are:

Additive.

X tð Þ ¼ T tð ÞþC tð Þþ S tð Þþ I tð Þ ð2:1Þ

Multiplicative.

X tð Þ ¼ T tð Þ � C tð Þ � S tð Þ � I tð Þ ð2:2Þ

Mixed.

X tð Þ ¼ T tð Þ � S tð Þ � I tð Þ ð2:3Þ

© The Author(s) 2018
J. Soto et al., Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with
Bio-Inspired Algorithms for Time Series Prediction, SpringerBriefs in Computational
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where:

X tð Þ observed series in time t
T tð Þ trend component
C tð Þ cyclic component
S tð Þ seasonal component
I tð Þ irregular or random component

A common assumption is that I tð Þ is a random or white noise component with
zero mean and constant variance. An additive model, is suitable, for example, when
S tð Þ does not depend on other components such as T tð Þ, if instead the seasonality
varies with the trend, the most suitable model is a multiplicative model. It is clear
that the multiplicative model can be transformed into additive, by taking loga-
rithms. The problem that arises is to adequately model the components of the series.

Temporal phenomena are both complex and important in many real-world
problems. Their importance stems from the fact that almost every kind of data
contains time-dependent components, either explicitly coming in the form of time
values or implicitly in the way that the data is collected from a process that varies
with time [4]. A time series is an important class of complex data objects [5] and
comes as a sequence of real numbers, each number representing a value reported at
a certain time instant [6]. The popular statistical model of Box-Jenkins [7] is
considered to be one of the most common choices for the prediction of time series.
However, since the Box-Jenkins models are linear and most real world applications
involve nonlinear problems, it is difficult for the Box-Jenkins models to capture the
phenomenon of nonlinear time series and this brings a limitation to the accuracy of
the generated predictions [8].

2.2 Interval Type-2 Fuzzy Neural Network

One way to build on IT2FNN is by fuzzifying a conventional neural network (NN).
Each part of a NN (the activation function, the weights, and the inputs and outputs)
can be fuzzified. A fuzzy neuron is basically similar to an artificial neuron, except
that it has the ability to process fuzzy information.

The IT2FNN system is one kind of IT2-TSK-FIS inside a NN structure. An
IT2FNN is proposed by Castro et al. in [9], with TSK reasoning and processing
elements called IT2FN for defining antecedents, and the IT1FN for defining the
consequents of rules Rk.

An IT2FN is composed by two adaptive nodes represented by squares, and two
non-adaptive nodes represented by circles. Adaptive nodes have outputs that
depend on their inputs, modifiable parameters and transference function while
non-adaptive, on the contrary, depend solely on their inputs, and their outputs
represent lower l

A
xð Þ and upper lA xð Þ membership functions. Parameters from

adaptive nodes with uncertain standard deviation are denoted by w 2 w1;1;w2;1
� �� �
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and with uncertain mean by b 2 b1; b2½ �ð Þ. The IT2FN (Fig. 2.1) with crisp input
signals xð Þ, crisp synaptic weights w; bð Þ and type-1 fuzzy outputs
l net1ð Þ; l net2ð Þ; l xð Þ; l xð Þ. This kind of neuron is build from two conventional
neurons with transference functions l net1ð Þ, Gaussian, generalized bell and logistic
for fuzzifier the inputs. Each neuron equation is defined as follows: the function l is
often referred to as an activation (or transfer) function. Its domain is the set of
activation values, net, of the neuron model; we thus often use this function as
l net2ð Þ. The variable net is defined as a scalar product of the weight and the
vectors:

net1 ¼ w1;1 þ b1; l1 ¼ l net1ð Þ;
net2 ¼ w2;1 þ b1; l2 ¼ l net2ð Þ ð2:4Þ

The non-adaptive t-norm node (T) evaluates the lower membership function l xð Þ
under t-norm algebraic product, while s-norm non-adaptive node (S), evaluate the
upper membership function l xð Þ under the s-norm algebraic sum, as shown in
Eq. (2.5):

l xð Þ ¼ l net1ð Þ � l net2ð Þ;
l xð Þ ¼ l net1ð Þþ l net2ð Þ � l xð Þ ð2:5Þ

Each IT2FN adapts an interval type-2 fuzzy set [10, 11], ~A, expressed in terms of
the output l xð Þ, of type-1 fuzzy neuron with T-norm and l xð Þ of type-1 fuzzy
neuron with S-norm. An internal type-2 fuzzy set is denoted as:

eA ¼
Z

x2X
Z

l xð Þ2 l xð Þ;l xð Þ½ �1=l
� �

=x ð2:6Þ

An IT1FN (Fig. 2.2) is built from two conventional adaptive linear neurons
(ADALINE) [12] for adapting the consequents y jk 2 ly

j
k�ry

j
k

� �
from the rules Rk , for

the output defined by

Fig. 2.1 Interval type-2 fuzzy neuron (IT2FN)

2.2 Interval Type-2 Fuzzy Neural Network 7



ly
j
k ¼

Xn
1¼1

C j
k;ixi þC j

k;0 �
Xn
1¼1

S j
k;i xij j � S j

k;0;

ry
j
k ¼

Xn
1¼1

C j
k;ixi þC j

k;0 þ
Xn
1¼1

S j
k;i xij j þ S j

k;0:

ð2:7Þ

Fig. 2.2 Interval type-1 fuzzy neuron

Fig. 2.3 Interval type-2 fuzzy neural network
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Thus consequents can be adapted with linear networks. The network weights are
the parameters of consequents C j

k;i; S
j
k;i for the kth rule. The outputs represents

interval linear MFs of the rule’s consequents (Fig. 2.3).

2.3 Ensemble Learning

The Ensemble consists of a learning paradigm where multiple component learners
are trained for a same task, and the prediction of the component learners are
combined for dealing with future instances [13]. Since an Ensemble is often more
accurate than its component learners, such a paradigm has become a hot topic in
recent years and has already been successfully applied to optical character recog-
nition, face recognition, scientific image analysis, medical diagnosis and time series
[14].

In general, a neural network ensemble is constructed in two steps, i.e. training a
number of component neural networks and then combining the component
predictions.

There are also many other approaches for training the component neural net-
works. Some examples are as follows. Hampshire and Waibel [15, 16] utilize
different objective functions to train distinct component neural networks. Cherkauer
[17] trains component networks with different number of hidden layers. Maclin and
Shavlik [18] initialize component networks at different points in the weight space.
Krogh and Vedelsby [19, 20] employ cross-validation to create component net-
works. Opitz and Shavlik [21, 22] exploit a genetic algorithm to train diverse
knowledge based component networks. Yao and Liu [23] regard all the individuals
in an evolved population of neural networks as component networks [24].

2.4 Interval Type-2 Fuzzy Systems

Type-2 fuzzy sets are used to model uncertainty and imprecision; originally they
were proposed by Zadeh [25, 26] and they are essentially “fuzzy–fuzzy” sets in
which the membership degrees are type-1 fuzzy sets (Fig. 2.4).

The structure of a type-2 fuzzy system implements a nonlinear mapping of on
input to on output space. This mapping is achieved through a set of type-2 if-then
fuzzy rules, each of which describes the local behavior of the mapping.

The uncertainty is represented by a region called footprint of uncertainty (FOU).
When leA x; uð Þ ¼ 1; 8u 2 lx� 0; 1½ � we have an interval type-2 membership function

[27–30] (Fig. 2.5).
The uniform shading for the FOU represents the entire interval type-2 fuzzy set

and it can be described in terms of an upper membership function leA xð Þ and a

lower membership function leA xð Þ.
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A fuzzy logic system (FLS) described using at least one type-2 fuzzy set is
called a type-2 FLS. Type-1 FLSs are unable to directly handle rule uncertainties,
because they use type-1 fuzzy sets that are certain [9, 31]. On the other hand, type-2
FLSs are very useful in circumstances where it is difficult to determine an exact
certainty value, and there are measurement uncertainties.

2.5 Genetic Algorithms

Genetic algorithms (GAs) are adaptive methods that can be used to solve search
and optimization problems. They are based on the genetic process of living
organisms. Over generations, the populations evolve in nature in accordance with
the principles of natural selection and survival of the strongest, postulated by
Darwin. By imitating this process, genetic algorithms are able to create solutions to
real world problems. The evolution of these solutions towards optimal values of the
problem depends largely on proper coding them. The basic principles of genetic

Fig. 2.4 Structure of the interval type-2 fuzzy logic system

Fig. 2.5 Interval type-2
membership function
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algorithms were established by Holland [32, 33] and are well described in the works
of Goldberg [34–36], Davis [37] and Michalewicz [38]. The large field of appli-
cations of GA is related to those problems for which there are no specialized
techniques. Even if such technical exist and work well, improvements can be made
with the same hybrid genetic algorithms.

A GA is a highly parallel mathematical algorithm that transforms a set (popu-
lation) of individual mathematical objects (typically strings of fixed length which fit
the model chains chromosomes), each of which is associated with a fitness in a new
population (e.g. the next generation) operations using models according to the
principle Darwinian reproduction and survival of the fittest and after having natu-
rally presented a series of genetic operations [39].

To apply the genetic algorithm requires the following five basic components:

1. Representation of the potential solutions to the problem.
2. One way to create an initial population of possible solutions (usually a random

process).
3. An evaluation function to play the role of the environment, classifying solutions

in terms of their “fitness”.
4. Genetic operators that alter the composition of the children that will occur for

the next generation.
5. Values for the different parameters using the genetic algorithm (population size,

crossover probability, mutation probability, maximum number of generations,
etc.).

Fig. 2.6 Steps of the genetic algorithm
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The basic operations of a genetic algorithm [40] are as follows illustrated in
Fig. 2.6:

• Step 1: Represent the problem variable domain as a chromosome of a fixed
length; choose the size of a chromosome population N, the crossover probability
(pc) and the mutation probability (pm).

• Step 2: Define a fitness function to measure the performance, or fitness, of an
individual chromosome in the problem domain. The fitness function establishes
the basis for selecting chromosomes that will be mated during reproduction.

• Step 3: Randomly generate an initial population of chromosomes of size
N : x1; x2; . . .; xN

• Step 4: Calculate the fitness of each individual chromosome:
f x1ð Þ; f x2ð Þ; . . .; f xNð Þ:

• Step 5: Select a pair of chromosomes for mating from the current population.
Parent chromosomes are selected with a probability related to their fitness.

• Step 6: Create a pair of offspring chromosomes by applying the genetic oper-
ators- crossover and mutation.

• Step 7: Place the created offspring chromosomes in the new population.
• Step 8: Repeat Step 5 until the size of the new chromosome population becomes

equal to the size of the initial population, N.
• Step 9: Replace the initial (parent) chromosome population with the new (off-

spring) population.
• Step 10: Go to Step 4, and repeat the process until the termination criterion is

satisfied.

2.6 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired optimization method pro-
posed by Eberhart and Kennedy [41–43] in 1995. PSO is as metaheuristic search
technique based on a population of particles. The main idea of PSO comes from the
social behavior of schools of fish and flocks of birds [44, 45]. In PSO each particle
moves in a D-dimensional space based on its own past experience and those of
other particles [46, 47]. Each particle has a position and a velocity represented by
the vectors xi ¼ xi;1; xi;2; . . .; xi;D

� �
and vi ¼ vi;1; vi;2; . . .; vi;D

� �
for the i-th particle.

At each iteration, particles are compared with each other to find the best particle
[48, 49]. Each particle records its best position as vi ¼ vi;1; vi;2; . . .; vi;D

� �
. The best

position of all particles in the swarm is called the global best, and is represented as
G ¼ G1;G2; . . .;GDð Þ. The velocity of each particle is given by Eq. (2.13).

vid ¼ wvid þC1 � randðÞ � pbestid � xidð ÞþC2 � randðÞ � gbest � xidð Þ ð2:13Þ

In this equation i ¼ 1; 2; . . .;M; d ¼ 1; 2; . . . D;C1 and C2 are positive constants
(known as acceleration constants), rand1ðÞ and rand2ðÞ are random numbers in
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[0, 1], and w, introduced by Shi and Eberhart [50] is the inertia weight. The new
position of the particle is determined by Eq. (2.14):

xid ¼ xid þ vid ð2:14Þ

The basic functionally of the PSO is illustrated as follows (Fig. 2.7).
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Chapter 3
Problem Statement and Development

The first goal of this book is the construction of the Ensembles of IT2FNN models
and their optimization of the fuzzy integrators with GAs and PSO algorithms for
time series prediction. The second goal is the design of interval type-2 and type-1
fuzzy systems to integrate the outputs (forecasts) of the IT2FNN models forming
the Ensemble. The Genetic Algorithm (GAs) and Particle Swarm Optimization
(PSO) were used for the optimization the parameters of the MFs of fuzzy inte-
grators. The Mackey-Glass, Mexican Stock Exchange, Dow Jones, NASDAQ time
series are used to test of performance of the proposed architectures (Fig. 3.1). When
more than one forecasting technique seems reasonable for a particular application,
then the forecast accuracy measures can also be used to discriminate between
competing models. One can subtract the forecast value from the observed value of
the data at that time point and obtain a measure of error. Therefore to evaluate the
prediction error, we can apply the metrics to calculate the Mean Absolute Error
(MAE) by Eq. (3.1), Mean Square Error (MSE) by Eq. (3.2), Root Mean Square
Error (RMSE) by Eq. (3.3), Mean Percentage Error (MPE) by Eq. (3.4) and Mean
Absolute Percentage Error (MAPE) by Eq. (3.5), respectively.

MAE ¼ 1
2

Xn
t¼1

At � Ptð Þj j ð3:1Þ

MSE ¼ 1
2

Xn
t¼1

At � Ptð Þ2 ð3:2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

Xn
t¼1

At � Ptð Þ2
s

ð3:3Þ

MPE ¼ 100%
n

¼
Xn
t¼1

At � Ptð Þ
At

ð3:4Þ
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MAPE ¼ 100%
n

¼
Xn
t¼1

At � Ptð Þ
At

����
���� ð3:5Þ

where A, corresponds to the real data of the time series, P corresponds to the
forecast of the NNs or the aggregation models, t is the time variable, and n is the
number of data points of the time series.

The general proposed architecture combines the ensemble of IT2FNN models
and the use of fuzzy response integrators optimized with GA and PSO algorithms
for time series prediction (Fig. 3.1).

3.1 Historical Data

The problem of predicting future values of a time series has been a point of
reference for many researchers. The aim is to use the values of the time series
known at a point x = t to predict the value of the series at some future point
x = t + P. The standard method for this type of prediction is to create a mapping

Fig. 3.1 The general proposed architecture
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from D points of a D spaced time series, i.e. (x(t − (D − 1) D), …, x(t − D), x(t)), to
a predicted future value x(t + P), for example the values D = 4 and D = P = 6
[1, 2] or 250 were used in this work. The data used in this book are the
Mackey-Glass for s = 13, 17, 30, 34, 68, 100, 136; the Mexican Stock Exchange,
the Dow Jones and the NASDAQ time series.

3.1.1 Mackey-Glass Time Series

The chaotic time series data used is defined by the Mackey-Glass [3, 4] time series,
whose differential equation is given by Eq. (3.6):

x tð Þ ¼ 0:2x t � sð Þ
1� x10 t � sð Þ � 0:1x t � sð Þ ð3:6Þ

For obtaining the values of the time series at each point, we can apply the
Runge-Kutta method [1, 2] for the solution of Eq. (3.6). The integration step was
set at 0.1, with initial condition x(0) = 1.2, s = 17, x(t) is then obtained for
0 � t � 1200, (We assume x(t) = 0 for t < 0 in the integration). From the
Mackey-Glass time series we used 800 pairs of data points (Fig. 3.2), similar to
[5–9]. The first 400 pairs of points are used for training (50%) and the other 400
pairs of points are used to validate the IT2FNN models.

Fig. 3.2 Mackey-Glass time series
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3.1.2 Mexican Stock Exchange

The Mexican Stock Exchange (BMV) is a financial institution that operates by a
grant from the Department of Finance and Public Credit, with the goal of following
closely the Securities Market of Values in Mexico [10, 11]with the initial public
offering taking place on June 13 of 2008 with its shares representing its capital [12].
From the BMV time series we extracted 1250 pairs of data that correspond to a
period from 01/03/2011 to 12/31/2015 (Fig. 3.3) and can be downloaded from daily
live Yahoo database [13], where the first 625 pairs of points are used for training
(50%) and the other 625 pairs of points are used to validate the IT2FNN models.

3.1.3 Dow Jones Time Series

The better represent the movements of the stock market at the time, the Dow Jones
& Company designed a barometer of economic activity meter with twelve com-
panies creating the Dow Jones stock index [14, 15]. Like the New York Times and
Washington Post newspapers the company is open to the market but is controlled
the by the private sector. So far, the company is controlled by the Bancroft family,
which controls 64% of the shares entitled to vote [16]. From the Dow Jones
Industries Average time series we are using 1250 pairs of data that correspond from
01/03/2011 to 12/31/2015 (Fig. 3.4) and can be downloaded from daily live Yahoo
database [17], where the first 625 pairs of points are used for training (50%) and the
other 625 pairs of points are used to validate the IT2FNN models.

Fig. 3.3 Mexican Stock Exchange time series
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3.1.4 NASDAQ Time Series

NASDAQ is the largest U.S. electronic stock market. It has listed around 3300
companies; it may probably list most of the companies and, on average, trades more
shares per day than other U.S. markets [18] price. The price is able to represent the
tendency of variety of NASDAQ market in some sense. Therefore, the forecast of
the price can benefit of analyzing the whole market [19, 20]. From the NASDAQ
time series we are using 1250 pairs of data that correspond from 01/03/2011 to
12/31/2015 (Fig. 3.5) and can be downloaded from daily live Yahoo database [21],
where the first 625 pairs of points are used for training (50%) and the other 625
pairs of points are used to validate the IT2FNN models.

3.2 Ensembles of IT2FNN Architectures

The ensembles of IT2FNN architectures imply a significant learning improvement
comparatively to a single IT2NN and especially to the learning algorithms. Each
IT2FNN works independently in its own domain. Each of the IT2FNN is build and
trained for a specific task for each module. Three modules are used in each
experiment of the ensemble of IT2FNN. In module 1 we have the IT2FNN-1, in
module 2 we have the IT2FNN-2 and in module 3 we have the IT2FNN-3.
Therefore each IT2FNN architecture has three/four input variables and one output
variable that are described as follows:

Fig. 3.4 Dow Jones time series
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Mackey-Glass time series, in this case we predict x(t) from three past (delays)
values of the time series, that is, x(t − 18), x(t − 12), and x(t − 6). Therefore the
format of the training data is:

x t � 18ð Þ; x t � 12ð Þ; x t � 6ð Þ; x tð Þ½ � ð3:7Þ

where t = 19 to 818 and x(t) is the desired prediction of the Mackey-Glass time
series (Fig. 3.2).

The BMV, Dow Jones and NASDAQ time series, we predict x(t) (corresponds to
the 2015 period) from four past (delays) values of the time series, that is, x
(t − 1000) corresponds to the 2011 period, x(t − 750) corresponds to the 2012
period, x(t − 500) corresponds to the 2013 period, and x(t − 250) corresponds to
the 2014 period. Therefore the format of the training data is:

x t � 1000ð Þ; x t � 750ð Þ; x t � 500ð Þ; x t � 250ð Þ; x tð Þ½ � ð3:8Þ

where t = 1001 to 1250 and x(t) is the desired prediction of the time series (see
Figs. 3.3, 3.4 and 3.5).

3.2.1 IT2FNN-1 Model

The IT2FNN-1 model has 5 layers (Fig. 3.6), consists of adaptive nodes with an
equivalent function for the lower-upper membership in the fuzzification layer (layer
1). Non-adaptive nodes in the rules layer (layer 2) interconnect with the fuzzifi-
cation layer (layer 1) in order to generate TSK IT2FIS rules antecedents. The

Fig. 3.5 NASDAQ time series
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adaptive nodes in the consequent layer (layer 3) are connected to input layer (layer
0) to generate rules consequents. The non-adaptive nodes in type-reduction layer
(layer 4) evaluate left-right values with KM algorithm [22]. The non-adaptive node
in the defuzzification layer (layer 5) average left-right values.

For simplicity, we assume the IT2FNN-1 under consideration has n inputs and
one output. The forward-propagation procedure is described as follows:

Layer 0: Inputs

x ¼ x1; . . .; xi; . . .; xn;ð Þt

Layer 1: IT2 MFs elk;i xið Þ ¼ l
k;i

xið Þ; lk;i xið Þ
n o

for example (Fig. 3.9a)
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� �� �
; k ¼ 1; 2; . . .;M; i ¼ 1; 2; . . .; n;

1lk;i xi rk;i;
1 mk;i
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; e

�1
2
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Fig. 3.6 IT2FNN-1 architecture
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Layer 2: Rules

f k ¼
ne�
i¼1 l

k;i

� 	
; f

k ¼
ne�
i¼1 lk;i

� � ð3:10Þ

Layer 3: Consequents left-right firing points

ykl ¼
Xn
i¼1

Ck;ixi þCk;0 �
Xn
i¼1

Sk;i xij j � Sk;0;
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Xn
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Layer 4: Left-right points (type-reduction using KM algorithm)
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Layer 5: Defuzzification

by ¼ byl þbyr
2

: ð3:13Þ

IT2FNN uses backpropagation method with heuristic techniques (variable
learning rate backpropagation, and resilient backpropagation), which were devel-
oped from a performance analysis of the standard steepest descent algorithm and
numerical optimization techniques for IT2FNN training: conjugate gradient,
quasi-Newton, and Levenberg-Marquardt for learning how to determine premise
parameters (to find the parameters related to interval type-2 MFs) and consequent
parameters. The learning procedure has two parts: in the first part the input patterns
are propagated, the consequent parameters and the premise parameters are assumed
to be fixed for the current cycle through the training set. In the second part the
pattern are propagated again, and at this moment, backpropagation is used to
modify the premise parameters, and consequent parameters. These two parts are
considered an epoch.

Give an input-output training pair xp : tp
� �
 �8p ¼ 1; . . .; q, in order to get the

design of the IT2FNN, the error function (E) must minimized.

24 3 Problem Statement and Development



ep ¼ tp � ŷp ð3:14Þ

Ep ¼ 1
2
e2p ¼

1
2

tp � ŷp
� �2 ð3:15Þ

E ¼
Xq
p¼1

Ep ð3:16Þ

3.2.2 IT2FNN-2 Model

The IT2FNN-2 model has 6 layers (Fig. 3.7), if uses NN for fuzzifying the inputs
(layers 1 to 2). The non-adaptive nodes in the rules layer (layer 3) interconnect with
the lower-upper linguistic values layer (layer 2) to generate TSK IT2FIS rules
antecedents. The non-adaptive nodes in the consequents layer (layer 4) are con-
nected with the input layer (layer 0) to generate rule consequents. The non-adaptive
nodes in type-reduction layer (layer 5) evaluate left-right values with KM algo-
rithm. The non-adaptive node in defuzzification layer (layer 6) averages left-right
values.

The forward-propagation procedure is described as follows:
Layer 0: Inputs

x ¼ x1; . . .; xi; . . .; xnð Þt

Fig. 3.7 IT2FNN-2 architecture

3.2 Ensembles of IT2FNN Architectures 25



Layer 1: Every node ‘ in this layer is a square (Fig. 3.7) with node function

for k = 1 to M

for i = 1 to n

1netk;i ¼ 1wk;ixi þ 1bk;i;
1lk;i xið Þ ¼ l 1netk;i

� �
;

2netk;i ¼ 2wk;ixi þ 2bk;i;
2lk;i xið Þ ¼ l 2netk;i

� � ð3:17Þ

end

end

where l is the transfer function which can be Gaussian, GBell or logistic (e.g.
Gaussian with uncertain mean “igaussmtype2” and transfer function GBell with
uncertain mean “igbellmtype2”) (see Fig. 3.9b).

Layer 2: Every node ‘ in this layer is a circle labeled with T-norm and S-norm
alternated.

l
k;i

xið Þ ¼ 1lk;i xið Þ � 2lk;i xið Þ
lk;i xið Þ ¼ 1lk;i xið Þþ 2lk;i xið Þ � l

k;i
xið Þ

k ¼ 1; 2; . . .;M; i ¼ 1; 2; . . .; n

ð3:18Þ

Layer 3 to 6: This layer are equivalent to layers 2 to 5 on the IT2FNN-1
architecture.

3.2.3 IT2FNN-3 Model

The IT2FNN-3 model has 7 layers (Fig. 3.8). Layer 1 has adaptive nodes for
fuzzifying the inputs; layer 2 has non-adaptive nodes with the interval fuzzy values
(Fig. 3.9c). Layer 3 (rules) has non-adaptive nodes for generating firing strength of
TSK IT2FIS rules. Layer 4, lower and upper values the rules firing strength are
normalized. The adaptive nodes in layer 5 (consequent) are connected to layer 0 for
generating the rules consequents. The non-adaptive nodes in layer 6 evaluate values
from the left-right interval. The non-adaptive node in layer 7 (defuzzification)
evaluates average of interval left-right values.

The forward-propagation procedure is described as follows: the first 3 layers (0
to 3) are identical to the corresponding layers on the IT2FNN-2 architecture.
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Fig. 3.8 IT2FNN-3 architecture

Fig. 3.9 The MFs used for training the IT2FNN architectures
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Layer 4: Every node ‘ in this layer is a circle labeled ℘ which evaluates the
left-most and right-most firing points denoted by:

f kl ¼ wk
l f

k þwk
l f

k

wk
l þwk

l

; f kr ¼ wk
r f

k þwk
r f

k

wk
r þwk

r

ð3:19Þ

where w values are adjustable weights.
Layer 5 is equivalent to layer 3 on the IT2FNN-1 architecture
Layer 6: The two nodes in this layer are circles labeled with “R” that evaluates

the two end-points, yl and yr:

ŷl ¼
PM

k¼1 f
k
l � yklPM

k¼1 f
k
l

; ŷr ¼
PM

k¼1 f
k
r � ykrPM

k¼1 f
k
r

ð3:20Þ

Layer 7: The single node in this layer is a circle labeled “R” that computes the
output.

y_ ¼ ŷl þ ŷr
2

ð3:21Þ

3.3 Fuzzy Integrators

The design of the type-1 (Fig. 3.10) and interval type-2 (Fig. 3.11) fuzzy inference
systems integrators are of Mamdani type and have 3 inputs (IT2FNN1, IT2FNN2
and IT2FNN3) and 1 output (Forecast), so each Input-Output variable is assigned
two MFs with linguistic labels “Small and Large” and have 8 if-then rules. The
design of the if-then rules for the fuzzy inference system depends on the number of
membership functions used in each input variable using the system [e.g. the fuzzy
inference system uses 3 input variables which each entry contains two membership
functions, therefore the total number of possible combinations for the fuzzy-rules is
8 (e.g. 2*2*2 = 8)], therefore we used 8 fuzzy-rules for the experiments (Fig. 3.12)
because the performance is better and minimized the prediction error of the
Mackey-Glass, BMV, Dow Jones and NASDAQ time series.

In the type-1 fuzzy integrators we used different MFs [Gaussian, Generalized
Bell, and Triangular (Fig. 3.13a)] and for the interval type-2 fuzzy integrators we
used different MFs [igaussmtype2, igbelltype2 and itritype2 (Fig. 3.13b)] [23] to
observe the behavior of each of them and determine which one provides better
forecast of the time series.
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IT2FNN1 (2)

IT2FNN2 (2)

IT2FNN3 (2)

Forecast (2)

T1gaussmmfstest

(mamdani)

8 rules

Fig. 3.10 Structure of the type-1 fuzzy integrator

IT2FNN1 (2)

IT2FNN2 (2)

IT2FNN3 (2)

Forecast (2)

it2gaussmmfstest

(mamdani)

8 rules

Fig. 3.11 Structure of the interval type-2 fuzzy integrator
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3.4 Optimization of the Fuzzy Integration with the Genetic
Algorithm

We optimize the parameters values of the MFs in each type-1 and interval type-2
fuzzy integrators with GAs. The representation of GAs is of Real-Values and the
chromosome size will depend of the number of MFs that are used in each design of
the type-1 and interval type-2 fuzzy inference system integrators.

Fig. 3.12 If-then rules for the fuzzy integrators

Fig. 3.13 Type-1 MFs (a) and interval type-2 MFs (b) for the fuzzy integrators
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The objective function is defined to minimize the prediction error as follows:

f tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 at � ptð Þ2
n

s
ð3:22Þ

where a, corresponds to the real data of the time series, p corresponds to the output
of the fuzzy integrators, t is de sequence time series, and n is the number of data
points of time series.

The general structure of the chromosome (individuals) represents the parameters
of the MFs of fuzzy integrators. The number of parameters varies according to the
type of the MFs for the type-1 fuzzy system (e.g. two parameter are needed to
represent a Gaussian MF are “r” and “l”) for this case the GA optimized 16
parameters of the type-1 fuzzy integrator (Fig. 3.14). The interval type-2 fuzzy
system (e.g. three parameter are needed to represent “igaussmtype2” MF’s are “r”,
“l1” and “l2”) for this case the GA optimized 24 parameters of the interval type-2
fuzzy integrator (Fig. 3.15). Therefore the number of parameters that each fuzzy
inference system integrator has depends of the MFs type (Fig. 3.13) assigned to
each input and output variables.

The optimization was performed for the parameter values of the MFs (inputs and
outputs) of fuzzy integrators. The parameters for the Genetic algorithm used to
optimize the fuzzy integrators are described in Table 3.1.

Fig. 3.14 Representation of chromosome of the GAs for the optimization of the Gaussian MFs
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3.5 Optimization of the Fuzzy Integrators
with the Particle Swarm Optimization

We optimize the parameter values of the MFs in each type-1 and interval type-2
fuzzy integrators with PSO. The representation in PSO is of Real-Values and the
particle size will depend on the number of the MFs that are used in each design of
the fuzzy integrators.

The objective function to evaluate the performance of the PSO is similar to the
Eq. (3.22). The general structure of the particles represents the parameters of the

Fig. 3.15 Representation of chromosome of the GA for the optimization of the igaussmtype2
MFs

Table 3.1 The parameters of
the GA used for optimization
the fuzzy integrators

Representation of phenotypic Real-values

Selection Stochastic Universal Sample

Crossing or recombination Discrete Recombination [0.8]

Mutation 0.1

Individuals 100

Generations 100

Iterations or run 31
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MFs of the fuzzy integrators similar to the chromosome of the GAs (Figs. 3.14 and
3.15). Therefore the PSO are used to optimization the MFs (Fig. 3.13) of fuzzy
integrators. The parameters for the PSO used to optimize the fuzzy integrators are
described in Table 3.2.
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Chapter 4
Simulation Studies

In this section we present results obtained of the ensemble of IT2FNN models and
the use of fuzzy integrators as response optimized with GA and PSO algorithms for
time series prediction.

4.1 Mackey-Glass Time Series

This section presents the simulation and test results obtained by applying the
proposed prediction method to the Mackey-Glass time series for s = 13, 17, 30, 34,
68, 100, 136, using different approach of the ensemble of IT2FNN architectures and
the two types of optimization of the fuzzy integrators with the GAs and PSO
algorithms, used in this work.

4.1.1 Ensemble of the IT2FNN Architectures
for Mackey-Glass

The ensemble of IT2FNN architectures has three models as follows: the IT2FNN-1
model optimizes the parameters of the “igaussmtype2” MFs (Fig. 3.9a), the
learning rate is 0.03 and the desired error is 0.00001; the IT2FNN-2 model opti-
mizes the parameters of the “igausstype2” MFs (Fig. 3.9b), the learning rate is

© The Author(s) 2018
J. Soto et al., Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with
Bio-Inspired Algorithms for Time Series Prediction, SpringerBriefs in Computational
Intelligence, https://doi.org/10.1007/978-3-319-71264-2_4
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0.011 and the desired error is 0.000001; and the IT2FNN-3 model optimizes the
parameters of the “igaussstype2” MFs (Fig. 3.9c), the learning rate is 0.02 and the
desired error is 0.0000001. The number the epochs for training the IT2FNN models
is 800.

The obtained results of the ensemble of IT2FNN architectures are shown on
Table 4.1. The best error is of 0.002517717 and the average error is of 0.00591527
with the IT2FNN-3 for the Mackey-Glass (s = 13); the best error is of 0.000254857
and the average error is of 0.000513248 with the IT2FNN-1 for the Mackey-Glass
(s = 17); the best error is of 0.00089312 and the average error is of 0.004463189
with the IT2FNN-1 for the Mackey-Glass (s = 30); the best error is of 0.000307511
and the average error is of 0.010427016 with the IT2FNN-3 for the Mackey-Glass
(s = 34); the best error is of 0.00085505 and the average error is of 0.003818732
with the IT2FNN-2 for the Mackey-Glass (s = 68); the best error is of 0.000612878
and the average error is of 0.00327431 with the IT2FNN-1 for the Mackey-Glass
(s = 100); and the best error is of 0.000331059 and the average error is of
0.002382512 with the IT2FNN-1 for the Mackey-Glass (s = 136).

Table 4.1 Results for the
ensemble of IT2FNN for the
Mackey-Glass time series

IT2FNN RMSE

Best Average

IT2FNN-1-Tau = 13 0.008596153 0.010146361

IT2FNN-2-Tau = 13 0.007919986 0.010166644

IT2FNN-3-Tau = 13 0.002517717 0.00591527

IT2FNN-1-Tau = 17 0.000258457 0.00513248

IT2FNN-2-Tau = 17 0.000281517 0.00554012

IT2FNN-3-Tau = 17 0.005466984 0.021365826

IT2FNN-1-Tau = 30 0.00089312 0.004463189

IT2FNN-2-Tau = 30 0.00124898 0.004503043

IT2FNN-3-Tau = 30 0.001404767 0.012277316

IT2FNN-1-Tau = 34 0.00077769 0.004371837

IT2FNN-2-Tau = 34 0.001349607 0.004943326

IT2FNN-3-Tau = 34 0.000307511 0.010427016

IT2FNN-1-Tau = 68 0.000988737 0.004635047

IT2FNN-2-Tau = 68 0.000855055 0.003818732

IT2FNN-3-Tau = 68 0.001238312 0.008696349

IT2FNN-1-Tau = 100 0.000612878 0.00327431

IT2FNN-2-Tau = 100 0.000782409 0.003720222

IT2FNN-3-Tau = 100 0.001152992 0.005881063

IT2FNN-1-Tau = 136 0.000331059 0.002382512

IT2FNN-2-Tau = 136 0.001351276 0.004299122

IT2FNN-3-Tau = 136 0.001133525 0.005586892
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4.1.1.1 IT2FNN-1 Model

The forecast obtained for the IT2FNN-1 for the Mackey-Glass (s = 17) time series
shown in Fig. 4.1, the evolution error is shown in Fig. 4.2, and the optimization
structure of the IT2FNN-1 with backpropagation learning algorithm show in
Fig. 4.3, the forecast obtained for the Mackey-Glass (s = 13 and s = 30) time series
shown in Figs. 4.4 and 4.5.

4.1.1.2 IT2FNN-2 Model

The forecast obtained for the IT2FNN-2 for the Mackey-Glass (s = 17) time series
is shown in Fig. 4.6, the evolution error is shown in Fig. 4.7, and the optimization
structure of IT2FNN-2 with backpropagation learning algorithm shown in Fig. 4.8,
the forecast obtained for the Mackey-Glass (s = 34 and s = 68) time series shown
in Figs. 4.9 and 4.10.

4.1.1.3 IT2FNN-3 Model

The forecast obtained for the IT2FNN-3 for the Mackey-Glass (s = 17) time series
is shown in Fig. 4.11, the evolution error is shown in Fig. 4.12, and the

Fig. 4.1 Forecast of IT2FNN-1 for the Mackey-Glass (s = 17) time series
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Fig. 4.3 Final MFs after training the IT2FNN-1 model

Fig. 4.2 Evolution error (RMSE) of IT2FNN-1 for the Mackey-Glass time series
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Fig. 4.5 Forecast of IT2FNN-1 for the Mackey-Glass (s = 30) time series

Fig. 4.4 Forecast of IT2FNN-1 for the Mackey-Glass (s = 13) time series
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Fig. 4.6 Forecast of IT2FNN-2 for the Mackey-Glass (s = 17) time series

Fig. 4.7 Evolution error (RMSE) of IT2FNN-2 for the Mackey-Glass time series

40 4 Simulation Studies



Fig. 4.8 Final MFs after training the IT2FNN-2 model

Fig. 4.9 Forecast of IT2FNN-2 for the Mackey-Glass (s = 34) time series
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Fig. 4.10 Forecast of IT2FNN-2 for the Mackey-Glass (s = 68) time series

Fig. 4.11 Forecast of IT2FNN-3 for the Mackey-Glass (s = 17) time series
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optimization structure of IT2FNN-3 with backpropagation learning algorithm
shown in Fig. 4.13, the forecast obtained for the Mackey-Glass (s = 100 and
s = 136) time series is shown in Figs. 4.14 and 4.15.

Fig. 4.12 Evolution error (RMSE) of IT2FNN-3 for the Mackey-Glass time series

Fig. 4.13 Final MFs after training the IT2FNN-3 model
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Fig. 4.14 Forecast of IT2FNN-3 for the Mackey-Glass (s = 100) time series

Fig. 4.15 Forecast of IT2FNN-3 for the Mackey-Glass (s = 136) time series
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4.1.2 Optimization of the Fuzzy Integrators with the Genetic
Algorithm

The obtained results with optimized the fuzzy integrators with the GAs are shown
on Table 4.2. The best error is of 0.02142164 and the average error is of
0.02255155 for the type-1 fuzzy integrator (T1FIS) using “Gbell”MFs, and the best
error is of 0.02023097 and the average error is of 0.02033528 for the interval type-2
fuzzy integrator (IT2FIS) using “itritype2”MFs for the Mackey-Glass (s = 17) time
series.

We are presenting 10 experiments in Table 4.2, but the average error was cal-
culated considering 30 experiments with the same parameters and conditions for the
GAs. Therefore to evaluate the performance of the 30 experiments for this work, we
applied different metrics to calculated average errors as shown in Table 4.3.

The forecast obtained of the optimized T1FIS using “Gauss” MFs for the
Mackey-Glass (s = 17) time series shown in Fig. 4.16, the performance of the
evolution error is shown in Fig. 4.17, and the optimization structure of T1FIS using
“Gauss” MFs with the GAs shown in Fig. 4.18.

The forecast obtained of the optimized T1FIS using “Gbell” MFs for the
Mackey-Glass (s = 17) time series shown in Fig. 4.19, the performance of the
evolution error is shown in Fig. 4.20, and the optimization structure of T1FIS using
“Gbell” MFs with the GAs shown in Fig. 4.21.

The forecast obtained of optimized the T1FIS using “Triangular” MFs for the
Mackey-Glass (s = 17) time series shown in Fig. 4.22, the performance of the
evolution error is shown in Fig. 4.23, and the optimization the structure of T1FIS
using “Triangular” MFs with the GAs shown in Fig. 4.24.

The forecast obtained of the optimized interval type-2 fuzzy integrators using
“igaussmtype2” MFs for the Mackey-Glass (s = 17) time series is shown in

Table 4.2 Result of the optimization of fuzzy integrator with the GAs

No. exp. Type-1 fuzzy integrators Interval type-2 fuzzy integrators

Gaussian Gbell Triangular igaussmtype2 igbelltype2 itritype2

1 0.02359056 0.02629806 0.08221695 0.021158482 0.02118375 0.02071019

2 0.0228442 0.02433066 0.08161724 0.021033109 0.02081994 0.02043439

3 0.0223283 0.02338475 0.08161615 0.021001443 0.02061247 0.02035049

4 0.02209832 0.02249878 0.08161613 0.020976213 0.02056261 0.02032144

5 0.02189447 0.02163905 0.08161613 0.020962286 0.02052157 0.02030222

6 0.02173872 0.02154845 0.08161613 0.020947947 0.02049882 0.02027343

7 0.02165485 0.02148594 0.08161613 0.020936484 0.02048822 0.02025226

8 0.02159362 0.02146486 0.08161613 0.020921625 0.02047444 0.02024165

9 0.02156282 0.02144333 0.08161613 0.020913384 0.02045962 0.02023573

10 0.02152446 0.02142164 0.08161613 0.020907752 0.02044867 0.02023097

Average 0.02208303 0.02255155 0.08167632 0.020975873 0.02060701 0.02033528
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Fig. 4.25, the performance of the evolution error is shown in Fig. 4.26, and the
optimization structure of the interval type-2 fuzzy integrators using “igaussmtype2”
MFs with the GAs is shown in Fig. 4.27.

Fig. 4.16 Forecast of T1FIS using “Gauss” MFs for the Mackey-Glass time series

Fig. 4.17 Evolution error (RMSE) of the GAs for the T1FIS using “Gauss” MFs
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Fig. 4.18 Final MFs after optimized the T1FIS using “Gauss” MFs

Fig. 4.19 Forecast of T1FIS using “Gbell” MFs for the Mackey-Glass time series
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Fig. 4.20 Evolution error (RMSE) of the GAs for the T1FIS using “Gbell” MFs

Fig. 4.21 Final MFs after optimized the T1FIS using “Gbell” MFs
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Fig. 4.22 Forecast of T1FIS using “Triangular” MFs for the Mackey-Glass time series

Fig. 4.23 Evolution error (RMSE) of the GAs for the T1FIS using “Triangular” MFs
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Fig. 4.24 Final MFs after optimized the T1FIS using “Triangular” MFs

Fig. 4.25 Forecast of IT2FIS using “igaussmtype2” MFs for the Mackey-Glass time series
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Fig. 4.26 Evolution error (RMSE) of the GAs for the IT2FIS using “igaussmtype2” MFs

Fig. 4.27 Final MFs after optimized the IT2FIS using “igaussmtype2” MFs
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The forecast obtained of the optimized interval type-2 fuzzy integrators using
“igbelltype2” MFs for the Mackey-Glass (s = 17) time series is shown in Fig. 4.28,
the performance of the evolution error is shown in Fig. 4.29, and the optimization

Fig. 4.28 Forecast of IT2FIS using “igbelltype2” MFs for the Mackey-Glass time series

Fig. 4.29 Evolution error (RMSE) of the GAs for the IT2FIS using “igbelltype2” MFs
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structure of the interval type-2 fuzzy integrators using “igbelltype2” MFs with the
GAs is shown in Fig. 4.30.

The forecast obtained of optimized the interval type-2 fuzzy integrators using
“itritype2” MFs for the Mackey-Glass (s = 17) time series is shown in Fig. 4.31,
the performance of the evolution is error shown in Fig. 4.32, and the optimization
structure of the interval type-2 fuzzy integrators using “itritype2” MFs with GAs
shown in Fig. 4.33.

4.1.3 Optimization of the Fuzzy Integrators with the Particle
Swarm Optimization

The obtained results with optimized the fuzzy integrators with the PSO are shown
on Table 4.3. The best error is of 0.035228102 and the average error is of
0.036484603 for the type-1 fuzzy integrator using “Gbell” MFs, and the best error
is of 0.023691987 and the average error is of 0.023691987 for the interval type-2
fuzzy integrator using “igbellype2” MFs for the Mackey-Glass (s = 17) time series.

We are presenting 10 experiments in Table 4.4, but the average error was cal-
culated considering 30 experiments with the same parameters and conditions for the
PSO. Therefore to evaluate the performance of the 30 experiments for this work, we
applied different metrics to calculate average errors as shown in Table 4.5.

Fig. 4.30 Final MFs after optimized the IT2FIS using “igbelltype2” MFs

54 4 Simulation Studies



Fig. 4.31 Forecast of IT2FIS using “itritype2” MFs for the Mackey-Glass time series

Fig. 4.32 Evolution error (RMSE) of the GAs for the IT2FIS using “itritype2” MFs
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The forecast obtained of the optimized T1FIS using “Gaussian” MFs for the
Mackey-Glass (s = 17) time series shown in Fig. 4.34, the performance of the
evolution error is shown in Fig. 4.35, and the optimization structure of T1FIS using
“Gaussian” MFs with the PSO is shown in Fig. 4.36.

The forecast obtained of the optimized T1FIS using “Gbell” MFs for the
Mackey-Glass (s = 17) time series shown in Fig. 4.37, the performance of the
evolution error is shown in Fig. 4.38, and the optimization structure of T1FIS using
“Gbell” MFs with the PSO is shown in Fig. 4.39.

The forecast obtained of optimized the T1FIS using “Triangular” MFs for the
Mackey-Glass (s = 17) time series shown in Fig. 4.40, the performance of the
evolution error is shown in Fig. 4.41, and the optimization structure of the T1FIS
using “Triangular” MFs with the PSO is shown in Fig. 4.42.

The forecast obtained of the optimized interval type-2 fuzzy integrators using
“igaussmtype2” MFs for the Mackey-Glass (s = 17) time series is shown in

Fig. 4.33 Final MFs after optimized the IT2FIS using “itritype2” MFs
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Fig. 4.34 Forecast of T1FIS using “Gaussian” MFs for the Mackey-Glass time series

Fig. 4.35 Evolution error (RMSE) of the PSO for the T1FIS using “Gaussian” MFs
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Fig. 4.36 Final MFs after optimized the T1FIS using “Gaussian” MFs

Fig. 4.37 Forecast of T1FIS using “Gbell” MFs for the Mackey-Glass time series
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Fig. 4.38 Evolution error (RMSE) of the PSO for the T1FIS using “Gbell” MFs

Fig. 4.39 Final MFs after optimized the T1FIS using “Gbell” MFs with PSO
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Fig. 4.43, the performance of the evolution error is shown in Fig. 4.44, and the
optimization structure of the interval type-2 fuzzy integrators using “igaussmtype2”
MFs with the PSO is shown in Fig. 4.45.

Fig. 4.40 Forecast of T1FIS using “Triangular” MFs for the Mackey-Glass time series

Fig. 4.41 Evolution error (RMSE) of the PSO for the T1FIS using “Triangular” MFs
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Fig. 4.42 Final MFs after optimized the T1FIS using “Triangular” MFs with PSO

Fig. 4.43 Forecast of IT2FIS using “igaussmtype2” MFs for the Mackey-Glass time series
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The forecast obtained of the optimized interval type-2 fuzzy integrators using
“igbelltype2” MFs for the Mackey-Glass (s = 17) time series is shown in Fig. 4.46,
the performance of the evolution error is shown in Fig. 4.47, and the optimization

Fig. 4.44 Evolution error (RMSE) of the PSO for the IT2FIS using “igaussmtype2” MFs

Fig. 4.45 Final MFs after optimized the IT2FIS using “igaussmtype2” MFs
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Fig. 4.46 Forecast of IT2FIS using “igbelltype2” MFs for the Mackey-Glass time series

Fig. 4.47 Evolution error (RMSE) of the PSO for the IT2FIS using “igbelltype2” MFs
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structure of the interval type-2 fuzzy integrators using “igbelltype2” MFs with the
PSO is shown in Fig. 4.48.

The forecast obtained of the optimized interval type-2 fuzzy integrators using
“itritype2” MFs for the Mackey-Glass (s = 17) time series is shown in Fig. 4.49,

Fig. 4.48 Final MFs after optimized the IT2FIS using “igbelltype2” MFs

Fig. 4.49 Forecast of IT2FIS using “itritype2” MFs for the Mackey-Glass time series
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the performance of the evolution error is shown in Fig. 4.50, and the optimization
structure of the interval type-2 fuzzy integrators using “itritype2”MFs with the PSO
is shown in Fig. 4.51.

Fig. 4.50 Evolution error (RMSE) of the PSO for the IT2FIS using “itritype2” MFs

Fig. 4.51 Final MFs after optimized the IT2FIS using “itritype2” MFs
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4.2 Mexican Stock Exchange Time Series

This section presents the simulation and test results obtained by applying the
proposed prediction method to the Mexican Stock Exchange (BMV) time series for
periods (01/03/2011–12/31/2015) (Fig. 3.3) using different approach of the
ensemble of IT2FNN architectures, used in this work.

4.2.1 Ensemble of IT2FNN Architectures for BMV Time
Series

The ensemble of IT2FNN architectures has three models as follows: the IT2FNN-1
model optimize the parameters of the “igaussmtype2” MFs (Fig. 3.9a), the learning
rate is 0.03 and the desired error is 0.00001; the IT2FNN-2 model optimize the
parameters of the “igausstype2” MFs (Fig. 3.9b), the learning rate is 0.011 and the
desired error is 0.000001; and the IT2FNN-3 model optimize the parameters of the
“igaussstype2” MFs (Fig. 3.9c), the learning rate is 0.02 and the desired error is
0.0000001. The number the epochs for training the IT2FNN models is 100.

The obtained results of the ensemble of IT2FNN architectures are shown on
Table 4.6. The RMSE (best) is of 0.010127619, the RMSE (average) is of
0.016586239, the MSE is 0.001738454, the MAE is 0.012085755, the MPE is
1.284208192 and the MAPE 0.275038065 with the IT2FNN-1 model. Therefore
the IT2FNN-1 model is better than the IT2FNN-2 and IT2FNN-3 models.

4.2.1.1 IT2FNN-1 Model

The forecast obtained for the IT2FNN-1 for the BMV time series is shown in
Fig. 4.52, the evolution error is shown in Fig. 4.53, and the optimization structure
of the IT2FNN-1 with backpropagation (BP) learning algorithm is shown in
Fig. 4.54.

Table 4.6 Performance of
the ensemble of IT2FNN for
the BMV time series

Metrics IT2FNN-1 IT2FNN-2 ITFNN-3

RMSE
(Best)

0.010127619 0.022896849 0.010126143

RMSE
(Average)

0.016586239 0.02748781 0.018984807

MSE 0.001738454 0.002373369 0.002859776

MAE 0.012085755 0.023283565 0.015326454

MPE 1.284208192 2.469791397 1.626561735

MAPE 0.275038065 0.385345148 0.511999726
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Fig. 4.52 Forecast of IT2FNN-1 for the BMV time series

Fig. 4.53 Evolution error (RMSE) of IT2FNN-1 for the BMV time series
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4.2.1.2 IT2FNN-2 Model

The forecast obtained for the IT2FNN-2 for the BMV time series shown in
Fig. 4.55, the evolution error is shown in Fig. 4.56, and the structure optimization
of the IT2FNN-2 with BP learning algorithm is shown in Fig. 4.57.

Fig. 4.54 Final MFs after training the IT2FNN-1 model with the BP algorithm

Fig. 4.55 Forecast of the IT2FNN-2 for the BMV time series
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Fig. 4.56 Evolution error (RMSE) of IT2FNN-2 for the BMV time series

Fig. 4.57 Final MFs after training the IT2FNN-2 model with BP algorithm
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4.2.1.3 IT2FNN-3 Model

The forecast obtained for the IT2FNN-3 for the BMV time series is shown in
Fig. 4.58, the evolution error is shown in Fig. 4.59, and the structure optimization
of IT2FNN-3 with BP learning algorithm is shown in Fig. 4.60.

Fig. 4.58 Forecast of IT2FNN-3 for the BMV time series

Fig. 4.59 Evolution error (RMSE) of IT2FNN-3 for the BMV time series
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4.3 Dow Jones Time Series

This section presents the simulation and test results obtained by applying the
proposed prediction method to the Dow Jones time series for periods (01/03/2011–
12/31/2015) (Fig. 3.4) using a different approach of the ensemble of IT2FNN
architectures, used in this work.

4.3.1 Ensemble of IT2FNN Architectures for Dow Jones
Time Series

The ensemble of IT2FNN architectures has three models as follows: the IT2FNN-1
model optimize the parameters of the “igaussmtype2” MFs (Fig. 3.9a), the learning
rate is 0.03 and the desired error is 0.00001; the IT2FNN-2 model optimize the
parameters of the “igausstype2” MFs (Fig. 3.9b), the learning rate is 0.011 and the
desired error is 0.000001; and the IT2FNN-3 model optimize the parameters of the
“igaussstype2” MFs (Fig. 3.9c), the learning rate is 0.02 and the desired error is
0.0000001. The number the epochs for training the IT2FNN models is 100.

Fig. 4.60 Final MFs after training the IT2FNN-3 model with BP algorithm
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The obtained results of the ensemble of IT2FNN architectures are shown on
Table 4.7. The RMSE (best) is of 0.01307153, the RMSE (average) is of
0.018482224, the MSE is 0.002138805, the MAE is 0.013647136, the MPE is
1.436647482 and the MAPE 0.320293965 with the IT2FNN-3 model. Therefore
the IT2FNN-3 model is better than the IT2FNN-1 and IT2FNN-2 models.

4.3.1.1 IT2FNN-1 Model

The forecast obtained for the IT2FNN-1 for the Dow Jones time series is shown in
Fig. 4.61, the evolution error is shown in Fig. 4.62, and the structure optimization
of the IT2FNN-1 with BP learning algorithm is shown in Fig. 4.63.

Table 4.7 Performance of
the ensemble of IT2FNN for
the Dow Jones time series

Metrics IT2FNN-1 IT2FNN-2 ITFNN-3

RMSE
(Best)

0.015844833 0.01329307 0.01307153

RMSE
(Average)

0.020874526 0.01909446 0.018482224

MSE 0.001743898 0.002022886 0.002138805

MAE 0.015181591 0.014462062 0.013647136

MPE 1.598124859 1.521469583 1.436647482

MAPE 0.236962281 0.346789986 0.320293965

Fig. 4.61 Forecast of IT2FNN-1 for the Dow Jones time series
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Fig. 4.62 Evolution error (RMSE) of IT2FNN-1 for the Dow Jones time series

Fig. 4.63 Final MFs after training the IT2FNN-1 model with BP algorithm
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4.3.1.2 IT2FNN-2 Model

The forecast obtained for the IT2FNN-2 for the Dow Jones time series is shown in
Fig. 4.64, the evolution error is shown in Fig. 4.65, and the structure optimization
of the IT2FNN-2 with BP learning algorithm is shown in Fig. 4.66.

4.3.1.3 IT2FNN-3 Model

The forecast obtained for the IT2FNN-3 for the Dow Jones time series shown in
Fig. 4.67, the evolution error is shown in Fig. 4.68, and the optimization structure
of the IT2FNN-3 with BP learning algorithm is shown in Fig. 4.69.

Fig. 4.64 Forecast of IT2FNN-2 for the Dow Jones time series
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Fig. 4.65 Evolution error (RMSE) of IT2FNN-2 for the Dow Jones time series

Fig. 4.66 Final MFs after training the IT2FNN-2 model with BP algorithm
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Fig. 4.67 Forecast of IT2FNN-3 for the Dow Jones time series

Fig. 4.68 Evolution error (RMSE) of IT2FNN-3 for the Dow Jones time series
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4.4 NASDAQ Time Series

This section presents the simulation and test results obtained by applying the
proposed prediction method to the NASDAQ time series for periods (01/03/2011–
12/31/2015) (Fig. 3.5) using a different approach of the ensemble of IT2FNN
architectures, used in this work.

4.4.1 Ensemble of IT2FNN Architectures for NASDAQ
Time Series

The ensemble of IT2FNN architectures has three models as follows: the IT2FNN-1
model optimizes the parameters of the “igaussmtype2” MFs (Fig. 3.9a), the
learning rate is 0.03 and the desired error is 0.00001; the IT2FNN-2 model opti-
mizes the parameters of the “igausstype2” MFs (Fig. 3.9b), the learning rate is
0.011 and the desired error is 0.000001; and the IT2FNN-3 model optimizes the
parameters of the “igaussstype2” MFs (Fig. 3.9c), the learning rate is 0.02 and the
desired error is 0.0000001. The number the epochs for training the IT2FNN models
is 100.

Fig. 4.69 Final MFs after training the IT2FNN-3 model with BP algorithm
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The obtained results of the ensemble of IT2FNN architectures are shown on
Table 4.8. The RMSE (best) is of 0.011711953, the RMSE (average) is of
0.016485694, the MSE is 0.001635756, the MAE is 0.012063554, the MPE is
1.288842865 and the MAPE 0.240159673 with the IT2FNN-1 model. Therefore
the IT2FNN-1 model is better than the IT2FNN-2 and IT2FNN-3 models.

4.4.1.1 IT2FNN-1 Model

The forecast obtained for the IT2FNN-1 for the NASDAQ time series is shown in
Fig. 4.70, the evolution error is shown in Fig. 4.71, and the optimization structure
of IT2FNN-1 with BP learning algorithm is shown in Fig. 4.72.

Table 4.8 Performance of
the ensemble of IT2FNN for
the NASDAQ time series

Metrics IT2FNN-1 IT2FNN-2 ITFNN-3

RMSE
(Best)

0.011711953 0.01318047 0.013617022

RMSE
(Average)

0.016485694 0.017226806 0.020196196

MSE 0.001635756 0.001412437 0.003081807

MAE 0.012063554 0.012381383 0.01588996

MPE 1.288842865 1.324005862 1.691563953

MAPE 0.240159673 0.191975465 0.513682447

Fig. 4.70 Forecast of IT2FNN-1 for the NASDAQ time series
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4.4.1.2 IT2FNN-2 Model

The forecast obtained for the IT2FNN-2 for the NASDAQ time series is shown in
Fig. 4.73, the evolution error is shown in Fig. 4.74, and the optimization structure
of the IT2FNN-2 with BP learning algorithm is shown in Fig. 4.75.

Fig. 4.71 Evolution error (RMSE) of IT2FNN-1 for the NASDAQ time series

Fig. 4.72 Final MFs after training the IT2FNN-1 model with BP algorithm
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Fig. 4.73 Forecast of IT2FNN-2 for the NASDAQ time series

Fig. 4.74 Evolution error (RMSE) of IT2FNN-2 for the NASDAQ time series
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4.4.1.3 IT2FNN-3 Model

The forecast obtained for the IT2FNN-3 for the NASDAQ time series is shown in
Fig. 4.76, the evolution error is shown in Fig. 4.77, and the optimization structure
of the IT2FNN-3 with BP learning algorithm is shown in Fig. 4.78.

4.5 Statistical Comparison Results of the Optimization
of the Fuzzy Integrators

We also perform a statistical comparison of all the results obtained of the proposed
model (Fig. 3.1) for the Mackey-Glass time series. The statistical test used for
comparison is the Z-scores, whose parameters are defined in Table 4.9. In applying
the statistic Z-scores, with significance level of 0.05, and the alternative hypothesis
stating that the l1 is lower than the l2; Ha l1\l2ð Þ (Fig. 4.79), and of course the
null hypothesis tells us that the l1 is greater than or equal to the l2; H0 l1 � l2ð Þ,
with a rejection region for all values that fall below −1.732. We are presenting 30

Fig. 4.75 Final MFs after training the IT2FNN-2 model with BP algorithm
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Fig. 4.76 Forecast of IT2FNN-3 for the NASDAQ time series

Fig. 4.77 Evolution error (RMSE) of IT2FNN-3 for the NASDAQ time series
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experiments with the same parameters and conditions for the GAs and PSO algo-
rithms for this work, so the n1 and n2 are equal 30.

The main objective of applying the statistical Z-scores is to analyze the per-
formance and thus find if there is significant evidence of the proposed model results
being better for the Mackey-Glass time series. The optimization of the fuzzy
integrators results are generated from GAs and PSO algorithms. The results of the
statistical Z-scores are shown in Table 4.10, so there is significant evidence to reject
the null hypothesis because the value of p\ 0:05 and the value of z\� 1:645 and
we accepted the alternative hypothesis. Therefore the results obtained of the opti-
mization of fuzzy integrators with GAs are better than the PSO.

Fig. 4.78 Final MFs after training the IT2FNN-3 model with BP algorithm

Table 4.9 Statistical
Z-scores parameters

Parameter Value

Confidence interval 95%

Significance level (a) 5%

Null hypothesis (H0) l�1 � l�2
Alternative hypothesis (Ha) l1\l2
Critical value −1.645

l1—Average error of the optimization of fuzzy integrators with
the GAs
l2—Average error of the optimization of fuzzy integrators with
the PSO
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Based on the statistical Z-scores results, we can make the conclusion that the
results obtained of the optimization of fuzzy integrators with the GAs are better than
the PSO for the Mackey-Glass time series.

Fig. 4.79 Lower-Tailed Test ðl1 \l2Þ

Table 4.10 Results of the Z-scores parameters

Optimization of the Type-1 fuzzy integrator using Gaussian MFs

GAs PSO Parameters Evidence

l1 r1 l2 r2 Z p < 0.05

0.02208303 0.000638122 0.0372719 0.000821093 −75.895 0 Significant

Optimization of the Type-1 Fuzzy Integrator using GBell MFs

GAs PSO Parameters Evidence

l1 r1 l2 r2 Z p < 0.05

0.02255155 0.001567122 0.0364846 0.000936185 −39.660 0 Significant

Optimization of the Type-1 Fuzzy Integrator using Triangular MFs

GAs PSO Parameters Evidence

l1 r1 l2 r2 z p < 0.05

0.08167633 0.000180209 0.08090114 0.00069041 5.645 0.0566351 Not Significant

Optimization of the Interval Type-2 Fuzzy Integrator using igaussmtype2 MFs

GAs PSO Parameters Evidence

l1 r1 l2 r2 z p < 0.05

0.02097587 0.00007548 0.02430513 0.00009724 −148.123 0 Significant

Optimization of the Interval Type-2 Fuzzy Integrator using igbelltype2 MFs

GAs PSO Parameters Evidence

l1 r1 l2 r2 z p < 0.05

0.02060701 0.000218508 0.02369199 0.00002811 −72.821 0 Significant

Optimization of the Interval Type-2 Fuzzy Integrator using itritype2 MFs

GAs PSO Parameters Evidence

l1 r1 l2 r2 z p < 0.05

0.02033528 0.000138626 0.02511529 0.000000010 −179.170 0 Significant
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Chapter 5
Conclusion

Ensembles of IT2FNN models and the optimization of their fuzzy integrators using
the GA and PSO algorithms for time series prediction, was proposed in this book.

We design the Ensemble of IT2FNN architectures for time series prediction.
Three modules were used in each experiment of the Ensembles architectures. In
module 1 the training was with the IT2FNN-1 model, in module 2 the training was
with the IT2FNN-2 model and in module 3 the training was with the IT2FNN-3
model.

Genetic Algorithm and Particle swarm optimization were used to optimization
the parameters of the membership functions of fuzzy integrators. We used type-1
(Gaussian, Generalized Bell and Triangular) and interval Type-2 (igaussmtype-2,
igbelltype2 and itritrype2) MFs.

Gaussian membership functions in type-1 and type-2 fuzzy systems produced
better results in predicting time series that were tested in the fuzzy integrators on
this proposed model. I think that behave better with the kind of values that are
represent in the time series.

Based on the statistical Z-scores results, we can make the conclusion that the
results obtained of the optimization of fuzzy integrators with GAs are better than the
PSO for the Mackey-Glass (s = 13, 17, 30, 34, 68, 100, 136) time series show in
Table 4.10.

The results of ensemble of the IT2FNN architectures for Mackey-Glass (s = 13,
17, 30, 34, 68, 100, 136), Mexican Stock Exchange, Dow Jones and NASDAQ time
series showed efficient results in the prediction error and the performance obtained
of proposed method is good for this research.

Prediction errors obtained in this book are evaluated by the following metrics:
Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error
(RMSE), Mean Percentage Error (MPE) and Mean Absolute Percentage Error
(MAPE). Therefore according to the results obtained by these metrics it can be
concluded that the proposed model provides good performance in solving problems
of time series.
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The objectives and goals in this book were achieved satisfactorily, because the
results reported from experiments are efficient prediction errors because they are
very small.

Future works
We envision applying others fuzzy integrator methods for the ensemble of IT2FNN
models, like Sugeno fuzzy integration or the Choquet integral.

Apply other methods to optimize of fuzzy integrators, like the Gravitational
Search Algorithm (GSA), Differential Evolution (DE), Cuckoo Search (CS),
Firefly, Bat algorithms (BAT) and other ones metaheuristic algorithms for
optimization.

Apply the proposed method to problems of control systems.
Apply the proposed method to problems pattern recognition.
Apply the method for obtain data prediction of another time series, like the,

Dollar exchange series and Political elections.
Apply the proposed method to problems clustering, classification and control

systems.
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Appendix

IT2FNN-1 (Source Code)

function [Y,Yl,Yr,sigma,M1,M2,C,S,c1,c2,RMSE,MSE,MAE,ME,MAPE,

MPE] = TRAINIT2TSKNNGMF1(X,D,sigma,M1,M2,C,S,alpha,TOL,ITERMAX)

%

[L,n] = size(X) ;

[N,*] = size(M1);

OK = false;

iter = 0;

while (*OK),

for i=1:L % data

xe = [X(i,:) D(i)];

Z = [xe' ; abs(xe')];

UU=[];

LL=[];

for j=1:N % rules

Uu=1;

Ll=1;

for m=1:n % variables

Param=[sigma(j,m),M1(j,m),M2(j,m)];

mf=evalimftype2(X(i,m),Param,'igaussmtype2');

ll = mf.LU{1}(:,1);

uu = mf.LU{1}(:,2);

Uu=Uu*uu;

Ll=Ll*ll;

end % variables

UU=[UU,Uu];

LL=[LL,Ll];

end % reglas

%

c2 = [C +S]*Z;

c1 = [C -S]*Z;

%

© The Author(s) 2018
J. Soto et al., Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with
Bio-Inspired Algorithms for Time Series Prediction, SpringerBriefs in Computational
Intelligence, https://doi.org/10.1007/978-3-319-71264-2

89



[r_out,I2l,I2u,wr]= rightpoint(c2',LL,UU);

[l_out,I1u,I1l,wl]= leftpoint(c1',LL,UU);

%

Yl(i)=l_out;

Yr(i)=r_out;

Y(i) =(l_out+r_out)/2;

e(i) =D(i)-Y(i);

% Seleciona las MFs que contribuyen al punto a la derecha (yr)

ME10=M1;

ME20=M2;

sigma0=sigma;

LE=length(I2u); % numero de fu(I2u)

for t=1:LE % fu(I2u)

for k=1:n % variables

if X(i,k)<M1(I2u(t),k)

l=I2u(t);

M1(l,k)=M1(l,k)+alpha*e(i)*0.5*((X(i,k)-ME10(l,k))/(sigma0

(l,k)^2))…

*(c2(l)-r_out)*wr(l)/sum(wr);

sigma(l,k)=sigma(l,k)+alpha*e(i)*0.5*(((X(i,k)-ME10(l,k))

^2)/(sigma0(l,k)^3))…

*(c2(l)-r_out)*wr(l)/sum(wr);

elseif X(i,k)>M2(I2u(t),k)

l=I2u(t);

M2(l,k)=M2(l,k)+alpha*e(i)*0.5*((X(i,k)-ME20(l,k))/(sigma0

(l,k)^2))…

*(c2(l)-r_out)*wr(l)/sum(wr);

sigma(l,k)=sigma(l,k)+alpha*e(i)*0.5*(((X(i,k)-ME20(l,k))

^2)/(sigma0(l,k)^3))…

*(c2(l)-r_out)*wr(l)/sum(wr);

end

end % variables

end % fu(I2u)

%

LE=length(I2l); % numero de fl(I2l)

%

for t=1:LE % numero de fl(I2l)

for k=1:n % variables

if X(i,k)<(M1(I2l(t),k)+M2(I2l(t),k))/2

l=I2l(t);

M2(l,k)=M2(l,k)+alpha*e(i)*0.5*((X(i,k)-ME20(l,k))/(sigma0

(l,k)^2))…

*(c2(l)-r_out)*wr(l)/sum(wr);

sigma(l,k)=sigma(l,k)+alpha*e(i)*0.5*(((X(i,k)-ME20(l,k))
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^2)/(sigma0(l,k)^3))…

*(c2(l)-r_out)*wr(l)/sum(wr);

else

l=I2l(t);

M1(l,k)=M1(l,k)+alpha*e(i)*0.5*((X(i,k)-ME10(l,k))/(sigma0

(l,k)^2))…

*(c2(l)-r_out)*wr(l)/sum(wr);

sigma(l,k)=sigma(l,k)+alpha*e(i)*0.5*(((X(i,k)-ME10(l,k))

^2)/(sigma0(l,k)^3))…

*(c2(l)-r_out)*wr(l)/sum(wr);

end

end % variables

end % fl(I2u)

% Seleciona las MFs que contribuyen al punto a la izquierda (yl)

LE=length(I1l); % numero de fl(I1l)

for t=1:LE % fl(I1l)

for k=1:n % variables

if X(i,k)<(M1(I1l(t),k)+M2(I1l(t),k))/2

l=I1l(t);

M2(l,k)=M2(l,k)+alpha*e(i)*0.5*((X(i,k)-ME20(l,k))/(sigma0

(l,k)^2))…

*(c1(l)-l_out)*wl(l)/sum(wl);

sigma(l,k)=sigma(l,k)+alpha*e(i)*0.5*(((X(i,k)-ME20(l,k))

^2)/(sigma0(l,k)^3))…

*(c1(l)-l_out)*wl(l)/sum(wl);

else

l=I1l(t);

M1(l,k)=M1(l,k)+alpha*e(i)*0.5*((X(i,k)-ME10(l,k))/(sigma0

(l,k)^2))…

*(c1(l)-l_out)*wl(l)/sum(wl);

sigma(l,k)=sigma(l,k)+alpha*e(i)*0.5*(((X(i,k)-ME10(l,k))

^2)/(sigma0(l,k)^3))…

*(c1(l)-l_out)*wl(l)/sum(wl);

end

end % variables

end % fl(I1l)

%

LE=length(I1u); % numero de fu(I1u)

%

for t=1:LE % fu(I1u)

for k=1:n % variables

if X(i,k)< M1(I1u(t),k)

l=I1u(t);

M1(l,k)=M1(l,k)+alpha*e(i)*0.5*((X(i,k)-ME10(l,k))/(sigma0

(l,k)^2))…
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*(c1(l)-l_out)*wl(l)/sum(wl);

sigma(l,k)=sigma(l,k)+alpha*e(i)*0.5*(((X(i,k)-ME10(l,k))

^2)/(sigma0(l,k)^3))…

*(c1(l)-l_out)*wl(l)/sum(wl);

elseif X(i,k)> M2(I1u(t),k)

l=I1u(t);

M2(l,k)=M2(l,k)+alpha*e(i)*0.5*((X(i,k)-ME20(l,k))/(sigma0

(l,k)^2))…

*(c1(l)-l_out)*wl(l)/sum(wl);

sigma(l,k)=sigma(l,k)+alpha*e(i)*0.5*(((X(i,k)-ME20(l,k))

^2)/(sigma0(l,k)^3))…

*(c1(l)-l_out)*wl(l)/sum(wl);

end

end % variables

end % fu(I1u)

%

for l=1:N % reglas

for k=1:n % variables

if sigma(l,k) < 0

sigma(l,k)=abs(sigma(l,k));

end

end

end

%

% fa1=wl/sum(wl); % wl = {fu(1),…,fu(L),fl(L+1),…,fl(N)} = {fu(I1u),fl

(I1l)}

% fa2=wr/sum(wr); % wr = {fl(1),…,fl(R),fu(R+1),…,fu(N)} = {fl(I2l),fu

(I2u)}

%

fa1=wr'/sum(wr);

fa2=wl'/sum(wl);

% Termino de constantes de la funcion lineal

C(:,n+1)=C(:,n+1)+alpha*e(i)*(fa1+fa2)/2;

S(:,n+1)=S(:,n+1)+alpha*e(i)*(fa1-fa2)/2;

for j=1:n, % variables

C(:,j)=C(:,j)+alpha*e(i)*X(i,j) *(fa1+fa2)/2;

S(:,j)=S(:,j)+alpha*e(i)*abs(X(i,j))*(fa1-fa2)/2;

end % variables

% Reconstruye las funciones de membresia tipo-2 por intervalos

S=abs(S);

ME1=[];

ME2=[];

for t=1:N % reglas
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P=[M2(t,:)',M1(t,:)']';

m2=max(P);

m1=min(P);

ME1=[ME1,m1'];

ME2=[ME2,m2'];

end % reglas

M1=ME1';

M2=ME2';

end % end for i (datos)

iter = iter + 1;

% Calcular errores RMSE, MSE, ME, MAE, MPE, MAPE

RMSE(iter) = sqrt(mse(e));

% RMSE(iter)=errperf(D',Y,'rmse');

MSE(iter)=errperf(D',Y,'mse');

ME(iter)=sum(D'-Y)/size(D,1);

MAE(iter)=errperf(D',Y,'mae');

MPE(iter)=(sum((D'-Y)./D')/size(D,1))*100;

for p=1:length(D),

if (isnan(D(p,1))) || (D(p,1)==0),

D(p,1)=1;%D(p-1,1);

end

end

MAPE(iter)=errperf(D',Y,'mape');

fprintf('*** Epochs %d *** RMSE %f *** MSE %f *** ME %f *** MAE %

f ***** MPE %f ***** MAPE %f *****\n', iter, RMSE(iter),MSE(iter),ME

(iter),MAE(iter),MPE(iter),MAPE(iter));

if (iter==ITERMAX)

%% Plot evolution error RMSE

h = figure;

plot(RMSE,'-

r','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','r',

'MarkerSize',8);

axis([-inf inf -0.05 .4]);

xlabel('Epochs','fontsize',8,'fontweight','b','color','k');

ylabel('Errors','fontsize',8,'fontweight','b','color','k');

legend(['\fontsize{12}RMSE..: ',num2str(RMSE(iter))],'loca-

tion','best');

% legend(['Best..: ', num2str(BestResultMinIter

(Iter,1))],'location','best');
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title('Plot the Error (RMSE) Evolution of the IT2FNN-1');

% Best Errors (MSE) for each Evolution in the GAs

print(h, '-dpng','-r150',[folders,'EvolutionRMSE']);

% drawnow;

close(h);

%% Plotear evolucion de los errores por Iteracion Metrics (RMSE, MSE,

MAE y ME)

h=figure;

plot(RMSE,'-

r','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','r',

'MarkerSize',8); hold on

plot(MSE,'–

b','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g',

'MarkerSize',8);

plot(MAE,'-.

g','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','b',

'MarkerSize',8);

% plot(ME,'-

cs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','b',

'MarkerSize',8);

axis([-inf inf -0.05 .4]);

hold off

xlabel('Epochs','fontsize',8,'fontweight','b','color','k');

ylabel('Errors','fontsize',8,'fontweight','b','color','k');

legend(['\fontsize{12}RMSE..: ',num2str(RMSE(iter))],['\fontsize

{12}MSE..: ',num2str(MSE(iter))],['\fontsize{12}MAE..: ',num2str(MAE

(iter))],'location','best');

% legend(['- STD..: ',num2str(BestResultMinIterSTDMen(Iter))],

['Best..: ',num2str(BestResultMinIter(Iter,1))],['+ STD..: ',num2str

(BestResultMinIterSTDMas(Iter))],'location','best');

title

('Comparison the Error Metrics for the Performance of the IT2FNN-1');

print(h, '-dpng','-r150',[folders,'BestMetricsPlotEvolution']);

% drawnow;

close(h);

%% Plotear evolucion de los errores por Iteracion Metrics (MAPE y MPE)

h=figure;

% plot(MPE,'-

ro','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','r',

'MarkerSize',8); hold on

plot(MAPE,'-

b','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g',

'MarkerSize',8);
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% hold off

xlabel('Epochs','fontsize',8,'fontweight','b','color','k');

ylabel('Errors','fontsize',8,'fontweight','b','color','k');

% legend('\fontsize{12}MAPE','location','best');

legend(['\fontsize{12}MAPE..: ',num2str(MAPE(iter))],'loca-

tion','best');

title('Plot the Error (MAPE) Evolution of the IT2FNN-1');

print(h, '-dpng','-r150',[folders,'BestMAPEEvolution']);

% drawnow;

close(h);

end

% fprintf(1,'%6i %12.8f\n',iter,rmse(iter));

if iter >= ITERMAX

OK = false;

disp('procedimiento excede el numero maximo de iteraciones');

break;

end

if RMSE <= TOL

OK = true;

disp('procedimiento terminado con exito');

break;

end

end
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